
On the Implementation of Edge Detection
Algorithms with SORN Arithmetic

Moritz Bärthel1(B) , Nils Hülsmeier1 , Jochen Rust2 , and Steffen Paul1

1 Institute of Electrodynamics and Microelectronics (ITEM.me),
University of Bremen, Bremen, Germany

{baerthel,huelsmeier,steffen.paul}@me.uni-bremen.de
2 DSI Aerospace Technologie GmbH, Bremen, Germany

jochen.rust@dsi-as.de

Abstract. Sets-Of-Real-Numbers (SORN) Arithmetic derives from the
type-II unums and realizes a low-complexity and low-precision digital
number format. The interval-based SORNs are especially well-suited for
preprocessing large datasets or replacing particular parts of threshold-
based algorithms, in order to achieve a significant reduction of runtime,
complexity and/or power consumption for the respective circuit.

In this work, the advantages and challenges of SORN arithmetic are
evaluated and discussed for a SORN-based edge detection algorithm
for image processing. In particular, different SORN implementations of
the Sobel Operator for edge filtering are presented, consisting of matrix
convolution and a hypot function. The implemented designs are evalu-
ated for different algorithmic and hardware performance measures. Com-
parisons to a reference Integer implementation show promising results
towards a lower error w.r.t. ground truth solutions for the SORN imple-
mentation. Syntheses for FPGA and CMOS target platforms show a
reduction of area utilization and power consumption of up to 68% and
80%, respectively.

Keywords: SORN · Unum · Computer arithmetic · Image processing

1 Introduction and Related Work

The universal number format unum, proposed by John Gustafson [12], presents
a new approach for the computation with real numbers in digital hardware sys-
tems. To enhance and overcome traditional number formats, especially the IEEE
standard for floating point arithmetic [16], the initial type-I unums were designed
to utilize Interval Arithmetic (IA) instead of rounding in order to avoid the prop-
agation of rounding errors. In addition, type-I unums exploit variable mantissa
and exponent lengths for a reduced datapath and memory bandwidth. Evalua-
tions and discussions on unum type-I hardware implementations can be found
in [5,10] and [2].

Based on the initial unum format, with type-II unums and the corresponding
Sets-Of-Real-Numbers (SORN) [11], as well as type-III unums (posits) [13], two
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
J. Gustafson and V. Dimitrov (Eds.): CoNGA 2022, LNCS 13253, pp. 1–13, 2022.
https://doi.org/10.1007/978-3-031-09779-9_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-09779-9_1&domain=pdf
http://orcid.org/0000-0001-8214-7636
http://orcid.org/0000-0001-9590-4579
http://orcid.org/0000-0002-1345-076X
http://orcid.org/0000-0003-3392-0471
https://doi.org/10.1007/978-3-031-09779-9_1


2 M. Bärthel et al.

further formats were derived. Whereas posits provide a less radical approach with
constant bit lengths that can be used as a drop-in replacement for other floating
point formats with compatibility to legacy systems, type-II unums and SORNs
utilize the implicit IA concept created for type-I unums and radicalize this app-
roach towards a very low precision format enabling low-complexity, -power and
-latency implementations of arithmetic operations. A detailed introduction to
SORN arithmetic is given in Sect. 2.

Due to the low-precision nature of SORNs, the format is not applicable
to any application or algorithm. However, it can be shown that SORNs are
especially well suited for preprocessing large systems of equations in order to
reduce the amount of solutions for a certain optimization problem, such as in
MIMO detection [4] or training of Machine Learning algorithms [14]. Another
suitable application for the low-precision SORN arithmetic are threshold-based
algorithms were a high accuracy result is not of major interest, as long as a suf-
ficient threshold detection can be provided. In this work such a threshold-based
algorithm for image processing is implemented and evaluated for SORN arith-
metic. In particular, the Sobel Operator [18] used for edge detection in images is
implemented as a full SORN and a hybrid Integer-SORN design and compared
to an Integer reference design. Details on the Sobel Operator and the respective
SORN implementations are given in Sec. 3. FPGA and CMOS synthesis results,
as well as an algorithmic evaluation of the different Sobel implementations based
on a reference image data set are provided in Sect. 4.

2 Type-II Unums and SORNs

One of the main concepts of type-I unums is implicit IA by means of an extra
bit after the mantissa, which indicates the presence of an open interval whenever
maximum precision is exceeded [12]. With this approach, rounding errors can be
omitted at the expense of a certain imprecision, when an open interval is given
as result of a computation instead of a single value. Type-II unums fully utilize
this interval concept by reducing the representation of the real numbers to only
a small set of exact values and open intervals.

2.1 Original Type-II Unums and SORNs

For the original type-II unum representation proposed in [11], the real numbers
are represented by a set of n exact values called lattice values li, including zero
(l0 = 0), one (l(n−1)/2 = 1) and infinity (ln−1 = ∞), and the open intervals in
between. Every lattice value is included with a positive and negative sign. A
basic set with n = 3 is given with the lattice values li ∈ {0, 1,∞}:

{±∞ (−∞,−1) − 1 (−1, 0) 0 (0, 1) 1 (1,∞)} (1)

The representation can be extended by introducing further lattice values li > 1
and their reciprocals to the set. A general representation can be interpreted as
depicted in Fig. 1a.



Edge Detection with SORN Arithmetic 3

±∞

0

−1 1

. . .

. . .

. . .

. . .

l2

1/l2−1/l2

−l2

ln−2−ln−2

1/ln−2−1/ln−2

(ln−2,∞)(−∞,−ln−2)

(0, 1/ln−2)(0,−1/ln−2)

(1, l2)(−l2,−1)

(1/l2, 1)(−1,−1/l2)

(a)
x0

× (−1, 0) 0 (0, 1)
100 010 001

x1

(−1, 0) 100 001 010 100
0 010 010 010 010

(0, 1) 001 100 010 001

(b)

x0[0] x0[1] x0[2] x1[0] x1[1] x1[2]

y[0] y[1] y[2](c)

Fig. 1. (a) Representation of the reals with the original type-II unum format. (b) LUT
for the multiplication of a simplified 3 bit SORN datatype. (c) Gate level structure for
the 3 bit SORN multiplication LUT.

For the implementation of arithmetic operations, the so-called Sets-Of-Real-
Numbers (SORN) binary representation is derived from the unum type-II set.
The absence (0) and presence (1) of every lattice value and interval is indicated
with a single bit, resulting in a SORN bitwidth wsorn = 2n. Arithmetic oper-
ations with SORNs are carried out using pre-computed lookup tables (LUTs)
which contain the result of every possible input combination for a given datatype
configuration. Figure 1b shows the LUT for the multiplication of two SORNs
using a simplified 3 bit datatype. Some SORN operations may result in union
intervals, for example when two open intervals are added. In this case the result
is represented by a pattern of consecutive bits:

100(−1,0) + 001(0,1) = 111(−1,1) (2)

The LUT structures for SORN operations can be implemented for hardware
circuits using simple Boolean Logic which enables very fast computing with low-
complexity. The corresponding gate level structure for the multiplication LUT
in Fig. 1b is depicted in Fig. 1c.

2.2 Adaptions of the SORN Representation

Following the regular unum type-II-based structure for implementing SORNs
maintains the unum compatibility and provides an error-free solution for process-
ing arithmetic operations. However, the structure of the LUT-based arithmetics



4 M. Bärthel et al.

Table 1. SORN datatype configurations for the hybrid (6 b–11 b) and full (15 b) SORN
sobel designs.

Label Configuration

6 b lin [0, 50]; (50, 100]; (100, 150]; (150, 200]; (200, 250]; (250,∞]

10 b log 0; (0, 2]; (2, 4]; (4, 8]; (8, 16]; (16, 32]; (32, 64]; (64, 128]; (128, 256]; (256,∞]

11 b lin [0, 25]; (25, 50]; (50, 75]; (75, 100]; (100, 125]; (125, 150];

(150, 175]; (175, 200]; (200, 225]; (225, 250]; (250,∞]

15 b lin [−∞,−300); [−300,−250); . . . ; [−100,−50); [−50, 0); 0;

(0, 50]; (50, 100]; (100, 150]; (150, 200]; (200, 250]; (250, 300]; (300,∞]

15 b log [−∞,−512); [−512,−256); . . . ; [−32,−16); [−16, 0); 0;

(0, 16]; (16, 32]; (32, 64]; (64, 128]; (128, 256]; (256, 512]; (512,∞]

with low bitwidths encompasses a major challenge within complex datapaths:
computing multiple sequential SORN operations may lead to increasing interval
widths at the output, mainly depending on the performed operations. In a worst-
case scenario, the result of a SORN computation represents the interval (−∞,∞)
and does not contain any useful information. This can be counteracted with a
higher resolution within the SORN representation. Evaluations in [3] showed that
the exact values within a unum-type-II based SORN are barely ever addressed
without their adjacent intervals. Consequently, moving away from a strict unum
type-II based structure and adapting the SORN representation towards half-
open intervals without exact values increases the information-per-bit within a
SORN value and reduces the interval growth. Possible SORN representations fol-
lowing this concept are given in Table 1. The corresponding label indicates the
number of elements in the Set-Of-Real-Numbers, which is also the number of
bits in SORN representation. In addition, the label indicates whether the inter-
vals within the set tile the real number line in a logarithmic or linear manner. In
order to find a suitable datatype for a given application, the automatic SORN
datapath generation tool from [17] provides an easy and fast way of prototyping
SORN arithmetics for hardware circuits.

3 Edge Detection

In this work SORN arithmetic is applied to the Sobel Operator, an algorithm
used for edge detection within image processing systems. Edges are regions in a
digital image where distinct changes in color or brightness can be detected [1],
in order to classify segments of the image, or to detect certain objects. Edge
detection is used in various modern applications, such as fingerprint recognition
[7], cloud classification via satellite images [8], or autonomous driving [6,20].



Edge Detection with SORN Arithmetic 5

3.1 Sobel Operator

The Sobel Operator belongs to the family of first-order convolutional filters that
compute the horizontal and vertical gradient of a grayscale image [18]. The Sobel
method uses two 3 × 3 kernels, which are convolved with the grayscale image
A ∈ N

Nx×Ny in order to determine the image gradients Gx and Gy in horizontal
and vertical direction, respectively [19]:

Gx =

⎡
⎣

1 0 −1
2 0 −2
1 0 −1

⎤
⎦ ∗ A3×3 Gy =

⎡
⎣

1 2 1
0 0 0

−1 −2 −1

⎤
⎦ ∗ A3×3 (3)

After computing the image gradient

G =
√
Gx

2 + Gy
2 (4)

a comparison to the pre-defined threshold T determines whether the current
pixel is an edge. This process is performed for every single pixel of the image A
and results in a binary image containing all detected edges.

(a) Grayscale Test Image (b) Reference Sobel Impl. (Integer)

(c) Hybrid SORN Sobel Impl. (11b lin) (d) Full SORN Sobel Impl. (15b lin)

Fig. 2. (a) Grayscale highway test image [9] with Sobel edge detection results from (b)
an Integer reference implementation with threshold T = 250, (c) a Hybrid-SORN 11 b
implementation with threshold interval T = (250,∞], and (d) the negated result for a
full-SORN 15 b implementation with threshold interval T = (0, 50].



6 M. Bärthel et al.

In Fig. 2 edge detection applied to a highway image is shown, which is used
for road lane detection in driving assistant systems [6,9]. Figure 2a shows the
grayscale test image and Fig. 2b the result of an edge detection using the Sobel
method with integer arithmetic.

3.2 SORN Implementation

In this work, the Sobel method described in Eq. (3) and (4) is implemented
with SORN arithmetic as a hybrid Integer-SORN and as a full SORN design,
both for different SORN datatypes. Additionally, an Integer reference design is
implemented in order to compare the SORN designs to a State-of-the-Art (SotA)
architecture. The three designs are described in the following.

Integer Reference Design. The grayscale test image A contains pixels with
values Axy ∈ {0, . . . , 255} which can be implemented with Integer values of 8 b.
The convolution described in Eq. (3) is implemented with conventional Integer
additions and subtractions as shown in Fig. 3. For the calculation of the gradient
G the square root is omitted and the result G2 is compared to the squared
threshold T 2 instead.

x − y 2x − 2y x − y

x + y

x + y

Conv. Gx

INT (Reference)
INT (Hybrid)
SORN (Full)

x − y 2x − 2y x − y

x + y

x + y

Conv. Gy

INT (Reference)
INT (Hybrid)
SORN (Full)

x2 + y2

x2 x2

x + y
Square&Add
INT (Reference)

Hypot
SORN (Hybrid)
SORN (Full)

Gx Gy

G2 G

Fig. 3. Block diagram for the three different Sobel implementations: all integer for
the reference implementation, integer convolution with SORN hypot for the hybrid
approach, and SORN convolution and hypot for the full SORN approach.



Edge Detection with SORN Arithmetic 7

Hybrid Integer-SORN Design. For the hybrid design, the convolutions are
carried out with Integer operations, similar to the reference implementation.
The horizontal and vertical gradients Gx and Gy are then converted to a SORN
representation. Since they are squared in the following hypot operation, their
absolutes are converted, and SORN datatypes without negative values can be
used. The hybrid design is implemented for three different SORN representations
with 6 b, 10 b and 11 b, all given in Table 1. The hypot operation is implemented
as one single SORN operation, as depicted in Fig. 3 (conversion blocks from
Integer to SORN between convolution and hypot are not shown). Since the result
G is in SORN representation, the threshold T has to be chosen as one of the
SORN intervals from the respective datatype. Figure 2c shows the edge result
of the hybrid SORN implementation for the 11 b datatype and the threshold
interval T = (250,∞], which corresponds to the Integer threshold T = 250 used
for the reference implementation in Fig. 2b.

Full SORN Design. For the full SORN design, the Integer inputs from the
test image A are converted to SORN representation before the convolutions and
hypot function are carried out in SORN arithmetic, as shown in Fig. 3 (con-
versions not shown). Since for the convolution also subtraction is required, the
full SORN design is implemented for two different 15 b datatypes with nega-
tive values, as shown in Table 1. In order to obtain a comparable edge result, for
the full SORN approach thresholds near the zero-bit in SORN representation are
selected and the result image is negated afterwards. Figure 2d shows the negated
edge result for the full SORN implementation with the 15 b lin datatype and a
threshold interval T = (0, 50].

4 Evaluation

Figure 2 shows a test image and the edge detection results of the three different
Sobel implementations described in Sect. 3.2. By visual comparison they seem
to be quite similar, even though a few differences can be found, for example
when comparing the detection of the cars on the road. For a comprehensive
evaluation, however, a visual comparison of different edge results is not suffi-
cient. Unfortunately, measuring the performance and comparing different edge
detection methods or implementations is an open problem. In [15] various error
and performances metrics are evaluated and compared, and the authors con-
clude that no convincing general-purpose solution exists. Since in this work no
different methods, but only different implementations are to be compared, the
most intuitive approach is a numerical comparison of the different edge results.
Therefore the normalized absolute error nae between the SORN results and the
Integer reference implementation can be defined as

nae =

∑Nx
x=1

∑Ny
y=1(Eint(x, y) �= Esorn(x, y))

NxNy
(5)



8 M. Bärthel et al.

with the respective edge detection results Eint and Esorn and the test image
dimensions Nx and Ny. This metric basically counts the number of different
pixels between the Integer and SORN edge images and normalizes the result by
the total number of pixels. Applied to the edge images from Fig. 2, the errors
read as follows:

nae|hybridSORN,11b = 0.0181 (6)
nae|fullSORN,15b = 0.0287 (7)

This metric can not determine whether the SORN implementation performs
better or worse than the Integer reference, but it can show that the difference
between both results is below 2% and 3%, respectively, which is in line with the
visual evaluation. In order to further evaluate the different Sobel implementa-
tions, in the following section a larger number of test images is considered.

4.1 Algorithmic Evaluation with BSDS500

The Berkeley Segmentation Data Set 500 (BSDS500) [1] is a set of images for the
performance evaluation of contour detection and image segmentation algorithms,
consisting of images of humans, animals, objects and landscapes. For a compre-
hensive evaluation, the 200 test images from the data set are processed with the
different Sobel implementations for all presented SORN datatypes. Additionally,
two different thresholds per configuration are analyzed. For the hybrid designs,
the two rightmost SORN intervals with indices wsorn − 1 and wsorn are used
as thresholds. The results are compared to the corresponding Integer threshold
for the reference design. For the 6 b datatype for example, the interval thresh-
olds are T = (200, 250] and T = (250,∞], the corresponding Integer thresholds
are T = 200 and T = 250. For the full SORN implementation thresholds near
the zero-bit are utilized and the resulting edge images are negated, in order to
achieve the best performance. Therefore the equivalent threshold Te is given,
which corresponds to the compared Integer threshold.

In Table 2 the results for the mean normalized absolute error between the
SORN and reference edge results are given. The utilized metric represents the
mean of the nae from Eq. (5) over all test images. For both the hybrid and
full SORN versions the designs utilizing a linear distributed SORN datatype
perform better than the log-based versions. Furthermore, the rightmost SORN

Table 2. Mean normalized absolute error between SORN and reference integer imple-
mentation for 200 test images from BSDS500 [1].

SORN Datatype hybrid SORN full SORN

6 b lin 10 b log 11 b lin 15 b log 15 b lin

mnae T = wsorn 0.0659 0.1200 0.0598 Te = wsorn 0.1396 0.0667

T = wsorn − 1 0.1167 0.2323 0.0852 Te = wsorn − 1 – 0.0673



Edge Detection with SORN Arithmetic 9

interval thresholds lead to the best results by means of lowest difference to
the Integer reference. Compared to the results for the image in Fig. 2, given in
Eq. (6)–(7), the errors are slightly higher, but still below 7%. It is mentioned
again, that this metric can only measure the difference between Integer and
SORN implementation. For a rating of the different designs, a third, independent
reference is required.

Ground Truth Reference Comparison. For this purpose, the BSDS500 con-
tains so-called ground truth edge results. These are human made edge detections
from different human subjects [1]. For evaluating the edge detections of the differ-
ent SORN implementations in comparison to the Integer reference, Fig. 4 shows
the mean normalized absolute error between 6 different ground truth solutions
GT and the respective edge detection results E, with the image dimensions Nx

and Ny and the number of test images Ni:

mnae =

∑Ni

i=1

(∑Nx
x=1

∑Ny
y=1(GTi(x,y) �=Ei(x,y))

NxNy

)

Ni
(8)

For the hybrid and full SORN implementations, for each datatype the thresh-
old configuration with the best results is shown, as well as the corresponding Inte-
ger configurations. Similar to the previous evaluation, those SORN implementa-
tions utilizing linear distributed datatypes perform better than the log-based ver-
sions. For this evaluation, the linear-based SORN implementations outperform
even the corresponding Integer references. As mentioned above and discussed in
[15], this does not necessarily indicate that the SORN-based edge detection is
better than the Integer-based for any application. Nevertheless, this evaluation
on BSDS500, as well as the example in Fig. 2 show that the hybrid and full

1 2 3 4 5 6
0

0.05

0.1

0.15

Ground truth solution

m
na

e
w
.r
.t
.
G
T

Int, T = 200
Int, T = 225
Int, T = 256
hybrid SORN, 6b lin,
T = (200, 250]
hybrid SORN, 11b lin,
T = (225, 250]
hybrid SORN, 10b log,
T = (256,∞]
full SORN, 15b lin,
Te = (250, 300]
full SORN, 15b log,
Te = (512,∞]

Fig. 4. Mean normalized absolute error w.r.t. 6 ground truth solutions for the different
Integer and SORN Sobel implementations over 200 test images from BSDS500.



10 M. Bärthel et al.

SORN-based edge detection implementations of the Sobel operator provide, at
least, a similar result quality as the Integer implementation and can serve as a
replacement for the SotA implementation.

4.2 Hardware Performance

In addition to the algorithmic evaluation, also the hardware performance in
terms of latency, complexity and power consumption for the respective hybrid
and full SORN designs, as well as for the Integer reference design is evaluated. In
the following, the results of FPGA and CMOS syntheses of all designs described
in Sect. 3.2 are presented.

FPGA Results. In Table 3 the synthesis results for an Artix-7 AC701 FPGA
from Xilinx are given for all presented designs for a target frequency of 100 MHz.
All designs are evaluated without internal pipeline registers and no DSPs are
used. The worst negative slack (WNS) shows that solely the 6 b and 10 b hybrid
SORN implementations are able to run at a target frequency of 100 MHz, yet all
SORN designs achieve a higher maximum frequency than the Integer reference
design. Concerning the required LUTs and the power consumption, the hybrid
SORN approach significantly outperforms the reference design with a complexity
reduction of up to 68%, whereas for the full SORN approach only the 15 b log
configuration achieves a lower power consumption, all other measures can not
compete with the reference design.

Table 3. FPGA synthesis results without DSPs for an Artix-7 AC701 FPGA
(xc7a200tfbg676-2).

Module Int hybrid SORN full SORN

6 b lin 10 b log 11 b lin 15 b log 15 b lin

Target Freq. [MHz] 100 100 100 100 100 100

WNS [ns] −1.487 0.554 0.492 −0.173 −0.466 −1.042

Max Freq. [MHz] 87.055 105.865 105.175 98.299 95.548 90.563

LUTs 457 148 207 219 597 712

Total power [W] 0.145 0.136 0.137 0.138 0.140 0.147

CMOS Results. Table 4 shows the synthesis results for the proposed designs
without pipeline registers for a 28 nm SOI CMOS technology from STM. Each
configuration is synthesized for a target frequency of 1 GHz and for the respective
maximum frequency. For the 1 GHz comparison, all SORN-based designs achieve
a lower area and power consumption than the reference design, with reductions
of up to 45% for area and 44% for power, respectively. Targeting maximum



Edge Detection with SORN Arithmetic 11

Table 4. CMOS STM 28nm SOI technology synthesis results.

Module Int hybrid SORN full SORN

6b lin 10 b log 11 b lin 15 b log 15 b lin

Target Freq. [MHz] 1000 1000 1000 1000 1000 1000

Runtime [ns] 0.962 0.958 0.962 0.962 0.961 0.962

Area [µm2] 1153.987 638.765 693.110 733.421 989.808 1132.282

Power [µW] 550.337 329.210 349.387 349.964 309.294 324.075

Max. Freq. [MHz] 1263 1681 1603 1605 1661 1715

Runtime [ns] 0.792 0.595 0.624 0.623 0.602 0.583

Area [µm2] 2087.165 1100.294 1157.251 1245.706 1661.213 2017.642

Power [µW] 1979.710 757.566 774.962 838.914 403.631 413.465

frequency, all SORN-based designs achieve at minimum a 27% higher frequency
than the reference design while still requiring less area and power. For this maxi-
mum frequency comparison, the hybrid SORN designs show a significantly lower
area requirement than the reference design (up to 47% reduction), whereas the
full SORN designs require significantly less power (up to 80% reduction).

5 Conclusion

The Sobel Operator for edge detection can be implemented as a hybrid SORN
design with Integer convolution and SORN hypot function, or as a full SORN
approach. Depending on the utilized SORN datatype and the chosen thresh-
olds, both versions provide a similar algorithmic performance than the Integer
reference implementation. For the presented evaluation on BSDS500 with the
corresponding ground truth reference comparison, some of the SORN config-
urations even show a lower difference to ground truth than the Integer refer-
ence. Regarding hardware performance, the presented evaluations show that the
SORN approach achieves higher frequencies and significantly lower complexity
and power consumption than the Integer reference for both FPGA and CMOS.

For future work the SORN-based edge detection can be integrated into a
more complex image processing system in order to provide further evaluations
on the quality of the edge detection results in the context of an actual (real-
time) application, for example lane detection in autonomous driving. In addition,
other edge detection methods such as the Canny detector or the Marr Hildreth
Operator can be implemented and evaluated for SORNs.

References

1. Arbelaez, P., Maire, M., Fowlkes, C., Malik, J.: Contour detection and hierarchi-
cal image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 33(5), 898–916
(2011). https://doi.org/10.1109/TPAMI.2010.161

https://doi.org/10.1109/TPAMI.2010.161


12 M. Bärthel et al.

2. Bärthel, M., Rust, J., Paul, S.: Hardware implementation of basic arithmetics and
elementary functions for unum computing. In: 2018 52nd Asilomar Conference on
Signals, Systems, and Computers, pp. 125–129, October 2018. https://doi.org/10.
1109/ACSSC.2018.8645453

3. Bärthel, M., Rust, J., Paul, S.: Application-specific analysis of different SORN
datatypes for unum type-2-based arithmetic. In: 2020 IEEE International Sympo-
sium on Circuits and Systems (ISCAS), pp. 1–5 (2020). https://doi.org/10.1109/
ISCAS45731.2020.9181182

4. Bärthel, M., Knobbe, S., Rust, J., Paul, S.: Hardware implementation of a latency-
reduced sphere decoder With SORN preprocessing. IEEE Access 9, 91387–91401
(2021). https://doi.org/10.1109/ACCESS.2021.3091778

5. Bocco, A., Durand, Y., De Dinechin, F.: SMURF: scalar multiple-precision unum
Risc-V floating-point accelerator for scientific computing. In: Proceedings of the
Conference for Next Generation Arithmetic 2019, pp. 1–8 (2019)

6. Bounini, F., Gingras, D., Lapointe, V., Pollart, H.: Autonomous vehicle and real
time road lanes detection and tracking. In: 2015 IEEE Vehicle Power and Propul-
sion Conference (VPPC), pp. 1–6 (2015). https://doi.org/10.1109/VPPC.2015.
7352903

7. Cui, W., Wu, G., Hua, R., Yang, H.: The research of edge detection algorithm for
Fingerprint images. In: 2008 World Automation Congress, pp. 1–5. IEEE (2008)

8. Dim, J.R., Takamura, T.: Alternative approach for satellite cloud classification:
edge gradient application. Adv. Meteorol. 2013 (2013)

9. Gatopoulos, I.: Line detection: make an autonomous car see road lines.
Towards Data Sci. (2019). https://towardsdatascience.com/line-detection-make-
an-autonomous-car-see-road-lines-e3ed984952c

10. Glaser, F., Mach, S., Rahimi, A., Gurkaynak, F.K., Huang, Q., Benini, L.: An 826
MOPS, 210uW/MHz Unum ALU in 65 nm. In: 2018 IEEE International Sympo-
sium on Circuits and Systems (ISCAS), pp. 1–5. IEEE (2018). https://doi.org/10.
1109/ISCAS.2018.8351546

11. Gustafson, J.L.: A Radical Approach to Computation with Real Numbers. Super-
comput. Front. Innov. 3(2) (2016). https://doi.org/10.14529/jsfi160203

12. Gustafson, J.L.: The end of error: Unum computing. CRC Press, Boca Raton,
Chapman & Hall/CRC Computational Science Series (2015)

13. Gustafson, J.L., Yonemoto, I.T.: Beating floating point at its own game: posit
arithmetic. Supercomput. Front. Innov. 4(2) (2017). https://doi.org/10.14529/
jsfi170206

14. Hülsmeier, N., Bärthel, M., Rust, J., Paul, S.: SORN-based cascade support vector
machine. In: 2020 28th European Signal Processing Conference (EUSIPCO), pp.
1507–1511. IEEE (2021)

15. Lopez-Molina, C., De Baets, B., Bustince, H.: Quantitative error measures for edge
detection. Pattern Recogn. 46(4), 1125–1139 (2013)

16. Microprocessor Standards Committee of the IEEE Computer Society: IEEE Stan-
dard for Floating-Point Arithmetic. IEEE Std. 754–2008, 1–70 (2008). https://
doi.org/10.1109/IEEESTD.2008.4610935

17. Rust, J., Bärthel, M., Seidel, P., Paul, S.: A hardware generator for SORN arith-
metic. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 39(12), 4842–4853
(2020). https://doi.org/10.1109/TCAD.2020.2983709

18. Sobel, I.: An Isotropic 3 × 3 Image Gradient Operator. Presentation at Stanford
A.I. Project 1968 (2014)

19. Solomon, C., Breckon, T.: Fundamentals of Digital Image Processing: A practical
approach with examples in Matlab. Wiley, Hoboken (2011)

https://doi.org/10.1109/ACSSC.2018.8645453
https://doi.org/10.1109/ACSSC.2018.8645453
https://doi.org/10.1109/ISCAS45731.2020.9181182
https://doi.org/10.1109/ISCAS45731.2020.9181182
https://doi.org/10.1109/ACCESS.2021.3091778
https://doi.org/10.1109/VPPC.2015.7352903
https://doi.org/10.1109/VPPC.2015.7352903
https://towardsdatascience.com/line-detection-make-an-autonomous-car-see-road-lines-e3ed984952c
https://towardsdatascience.com/line-detection-make-an-autonomous-car-see-road-lines-e3ed984952c
https://doi.org/10.1109/ISCAS.2018.8351546
https://doi.org/10.1109/ISCAS.2018.8351546
https://doi.org/10.14529/jsfi160203
https://doi.org/10.14529/jsfi170206
https://doi.org/10.14529/jsfi170206
https://doi.org/10.1109/IEEESTD.2008.4610935
https://doi.org/10.1109/IEEESTD.2008.4610935
https://doi.org/10.1109/TCAD.2020.2983709


Edge Detection with SORN Arithmetic 13

20. Yang, X., Yang, T.A., Wu, L.: An edge detection IP of low-cost system on chip for
autonomous vehicles. In: Arabnia, H.R., Ferens, K., de la Fuente, D., Kozerenko,
E.B., Olivas Varela, J.A., Tinetti, F.G. (eds.) Advances in Artificial Intelligence
and Applied Cognitive Computing. TCSCI, pp. 775–786. Springer, Cham (2021).
https://doi.org/10.1007/978-3-030-70296-0 56

https://doi.org/10.1007/978-3-030-70296-0_56

	On the Implementation of Edge Detection Algorithms with SORN Arithmetic
	1 Introduction and Related Work
	2 Type-II Unums and SORNs
	2.1 Original Type-II Unums and SORNs
	2.2 Adaptions of the SORN Representation

	3 Edge Detection
	3.1 Sobel Operator
	3.2 SORN Implementation

	4 Evaluation
	4.1 Algorithmic Evaluation with BSDS500
	4.2 Hardware Performance

	5 Conclusion
	References




