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Preface

As the shrinking of transistors (Moore’s law) is hitting physical limits, those in the fields
of high-performance computing (HPC) as well as those pursuing artificial intelligence
(AI) are exploring other ways to perform more computing. This has led both groups to
explore approaches to computer arithmetic that break from traditional fixed-point and
floating-point representation.

As part of SCAsia 2022, the Conference on Next-Generation Arithmetic (CoNGA
2022) provided the premier forum for discussing the impact of novel number formats on

• application speed and accuracy,
• hardware costs,
• software-hardware codevelopment,
• algorithm choices, and
• tools and programming environments.

This was the third event in the CoNGA conference series. The submissions for the
technical papers program went through a rigorous peer review process, undertaken by
an international Program Committee. A set of eight papers were finally selected for
inclusion in the proceedings. The accepted papers cover a range of topics including
image processing, neural networks for machine learning and inference, encoding of
multidimensional real number arrays, and improved decoding methods. The emerging
posit format is considered in most of these papers, and is compared with proposed
floating-point formats from Google, Nvidia, IBM, and others. After five years of effort,
the Posit Standard was ratified by the Posit Working Group as the result of CoNGA 2022
meetings that resolved all remaining issues.

We would like to thank all authors for their submissions to this conference. Our
sincere thanks go to all Program Committee members for providing high-quality and
in-depth reviews of the submissions and selecting the papers for this year’s program.
We also thank the conference organizers for giving us the opportunity to hold CoNGA
2022 as a sub-conference of SCAsia 2022.

April 2022 John Gustafson
Vassil Dimitrov
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2 DSI Aerospace Technologie GmbH, Bremen, Germany
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Abstract. Sets-Of-Real-Numbers (SORN) Arithmetic derives from the
type-II unums and realizes a low-complexity and low-precision digital
number format. The interval-based SORNs are especially well-suited for
preprocessing large datasets or replacing particular parts of threshold-
based algorithms, in order to achieve a significant reduction of runtime,
complexity and/or power consumption for the respective circuit.

In this work, the advantages and challenges of SORN arithmetic are
evaluated and discussed for a SORN-based edge detection algorithm
for image processing. In particular, different SORN implementations of
the Sobel Operator for edge filtering are presented, consisting of matrix
convolution and a hypot function. The implemented designs are evalu-
ated for different algorithmic and hardware performance measures. Com-
parisons to a reference Integer implementation show promising results
towards a lower error w.r.t. ground truth solutions for the SORN imple-
mentation. Syntheses for FPGA and CMOS target platforms show a
reduction of area utilization and power consumption of up to 68% and
80%, respectively.

Keywords: SORN · Unum · Computer arithmetic · Image processing

1 Introduction and Related Work

The universal number format unum, proposed by John Gustafson [12], presents
a new approach for the computation with real numbers in digital hardware sys-
tems. To enhance and overcome traditional number formats, especially the IEEE
standard for floating point arithmetic [16], the initial type-I unums were designed
to utilize Interval Arithmetic (IA) instead of rounding in order to avoid the prop-
agation of rounding errors. In addition, type-I unums exploit variable mantissa
and exponent lengths for a reduced datapath and memory bandwidth. Evalua-
tions and discussions on unum type-I hardware implementations can be found
in [5,10] and [2].

Based on the initial unum format, with type-II unums and the corresponding
Sets-Of-Real-Numbers (SORN) [11], as well as type-III unums (posits) [13], two
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
J. Gustafson and V. Dimitrov (Eds.): CoNGA 2022, LNCS 13253, pp. 1–13, 2022.
https://doi.org/10.1007/978-3-031-09779-9_1
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further formats were derived. Whereas posits provide a less radical approach with
constant bit lengths that can be used as a drop-in replacement for other floating
point formats with compatibility to legacy systems, type-II unums and SORNs
utilize the implicit IA concept created for type-I unums and radicalize this app-
roach towards a very low precision format enabling low-complexity, -power and
-latency implementations of arithmetic operations. A detailed introduction to
SORN arithmetic is given in Sect. 2.

Due to the low-precision nature of SORNs, the format is not applicable
to any application or algorithm. However, it can be shown that SORNs are
especially well suited for preprocessing large systems of equations in order to
reduce the amount of solutions for a certain optimization problem, such as in
MIMO detection [4] or training of Machine Learning algorithms [14]. Another
suitable application for the low-precision SORN arithmetic are threshold-based
algorithms were a high accuracy result is not of major interest, as long as a suf-
ficient threshold detection can be provided. In this work such a threshold-based
algorithm for image processing is implemented and evaluated for SORN arith-
metic. In particular, the Sobel Operator [18] used for edge detection in images is
implemented as a full SORN and a hybrid Integer-SORN design and compared
to an Integer reference design. Details on the Sobel Operator and the respective
SORN implementations are given in Sec. 3. FPGA and CMOS synthesis results,
as well as an algorithmic evaluation of the different Sobel implementations based
on a reference image data set are provided in Sect. 4.

2 Type-II Unums and SORNs

One of the main concepts of type-I unums is implicit IA by means of an extra
bit after the mantissa, which indicates the presence of an open interval whenever
maximum precision is exceeded [12]. With this approach, rounding errors can be
omitted at the expense of a certain imprecision, when an open interval is given
as result of a computation instead of a single value. Type-II unums fully utilize
this interval concept by reducing the representation of the real numbers to only
a small set of exact values and open intervals.

2.1 Original Type-II Unums and SORNs

For the original type-II unum representation proposed in [11], the real numbers
are represented by a set of n exact values called lattice values li, including zero
(l0 = 0), one (l(n−1)/2 = 1) and infinity (ln−1 = ∞), and the open intervals in
between. Every lattice value is included with a positive and negative sign. A
basic set with n = 3 is given with the lattice values li ∈ {0, 1,∞}:

{±∞ (−∞,−1) − 1 (−1, 0) 0 (0, 1) 1 (1,∞)} (1)

The representation can be extended by introducing further lattice values li > 1
and their reciprocals to the set. A general representation can be interpreted as
depicted in Fig. 1a.
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l2

1/l2−1/l2
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ln−2−ln−2

1/ln−2−1/ln−2

(ln−2,∞)(−∞,−ln−2)

(0, 1/ln−2)(0,−1/ln−2)

(1, l2)(−l2,−1)
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(a)
x0

× (−1, 0) 0 (0, 1)
100 010 001

x1

(−1, 0) 100 001 010 100
0 010 010 010 010

(0, 1) 001 100 010 001

(b)

x0[0] x0[1] x0[2] x1[0] x1[1] x1[2]

y[0] y[1] y[2](c)

Fig. 1. (a) Representation of the reals with the original type-II unum format. (b) LUT
for the multiplication of a simplified 3 bit SORN datatype. (c) Gate level structure for
the 3 bit SORN multiplication LUT.

For the implementation of arithmetic operations, the so-called Sets-Of-Real-
Numbers (SORN) binary representation is derived from the unum type-II set.
The absence (0) and presence (1) of every lattice value and interval is indicated
with a single bit, resulting in a SORN bitwidth wsorn = 2n. Arithmetic oper-
ations with SORNs are carried out using pre-computed lookup tables (LUTs)
which contain the result of every possible input combination for a given datatype
configuration. Figure 1b shows the LUT for the multiplication of two SORNs
using a simplified 3 bit datatype. Some SORN operations may result in union
intervals, for example when two open intervals are added. In this case the result
is represented by a pattern of consecutive bits:

100(−1,0) + 001(0,1) = 111(−1,1) (2)

The LUT structures for SORN operations can be implemented for hardware
circuits using simple Boolean Logic which enables very fast computing with low-
complexity. The corresponding gate level structure for the multiplication LUT
in Fig. 1b is depicted in Fig. 1c.

2.2 Adaptions of the SORN Representation

Following the regular unum type-II-based structure for implementing SORNs
maintains the unum compatibility and provides an error-free solution for process-
ing arithmetic operations. However, the structure of the LUT-based arithmetics
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Table 1. SORN datatype configurations for the hybrid (6 b–11 b) and full (15 b) SORN
sobel designs.

Label Configuration

6 b lin [0, 50]; (50, 100]; (100, 150]; (150, 200]; (200, 250]; (250,∞]

10 b log 0; (0, 2]; (2, 4]; (4, 8]; (8, 16]; (16, 32]; (32, 64]; (64, 128]; (128, 256]; (256,∞]

11 b lin [0, 25]; (25, 50]; (50, 75]; (75, 100]; (100, 125]; (125, 150];

(150, 175]; (175, 200]; (200, 225]; (225, 250]; (250,∞]

15 b lin [−∞,−300); [−300,−250); . . . ; [−100,−50); [−50, 0); 0;

(0, 50]; (50, 100]; (100, 150]; (150, 200]; (200, 250]; (250, 300]; (300,∞]

15 b log [−∞,−512); [−512,−256); . . . ; [−32,−16); [−16, 0); 0;

(0, 16]; (16, 32]; (32, 64]; (64, 128]; (128, 256]; (256, 512]; (512,∞]

with low bitwidths encompasses a major challenge within complex datapaths:
computing multiple sequential SORN operations may lead to increasing interval
widths at the output, mainly depending on the performed operations. In a worst-
case scenario, the result of a SORN computation represents the interval (−∞,∞)
and does not contain any useful information. This can be counteracted with a
higher resolution within the SORN representation. Evaluations in [3] showed that
the exact values within a unum-type-II based SORN are barely ever addressed
without their adjacent intervals. Consequently, moving away from a strict unum
type-II based structure and adapting the SORN representation towards half-
open intervals without exact values increases the information-per-bit within a
SORN value and reduces the interval growth. Possible SORN representations fol-
lowing this concept are given in Table 1. The corresponding label indicates the
number of elements in the Set-Of-Real-Numbers, which is also the number of
bits in SORN representation. In addition, the label indicates whether the inter-
vals within the set tile the real number line in a logarithmic or linear manner. In
order to find a suitable datatype for a given application, the automatic SORN
datapath generation tool from [17] provides an easy and fast way of prototyping
SORN arithmetics for hardware circuits.

3 Edge Detection

In this work SORN arithmetic is applied to the Sobel Operator, an algorithm
used for edge detection within image processing systems. Edges are regions in a
digital image where distinct changes in color or brightness can be detected [1],
in order to classify segments of the image, or to detect certain objects. Edge
detection is used in various modern applications, such as fingerprint recognition
[7], cloud classification via satellite images [8], or autonomous driving [6,20].
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3.1 Sobel Operator

The Sobel Operator belongs to the family of first-order convolutional filters that
compute the horizontal and vertical gradient of a grayscale image [18]. The Sobel
method uses two 3 × 3 kernels, which are convolved with the grayscale image
A ∈ N

Nx×Ny in order to determine the image gradients Gx and Gy in horizontal
and vertical direction, respectively [19]:

Gx =

⎡
⎣

1 0 −1
2 0 −2
1 0 −1

⎤
⎦ ∗ A3×3 Gy =

⎡
⎣

1 2 1
0 0 0

−1 −2 −1

⎤
⎦ ∗ A3×3 (3)

After computing the image gradient

G =
√
Gx

2 + Gy
2 (4)

a comparison to the pre-defined threshold T determines whether the current
pixel is an edge. This process is performed for every single pixel of the image A
and results in a binary image containing all detected edges.

(a) Grayscale Test Image (b) Reference Sobel Impl. (Integer)

(c) Hybrid SORN Sobel Impl. (11b lin) (d) Full SORN Sobel Impl. (15b lin)

Fig. 2. (a) Grayscale highway test image [9] with Sobel edge detection results from (b)
an Integer reference implementation with threshold T = 250, (c) a Hybrid-SORN 11 b
implementation with threshold interval T = (250,∞], and (d) the negated result for a
full-SORN 15b implementation with threshold interval T = (0, 50].
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In Fig. 2 edge detection applied to a highway image is shown, which is used
for road lane detection in driving assistant systems [6,9]. Figure 2a shows the
grayscale test image and Fig. 2b the result of an edge detection using the Sobel
method with integer arithmetic.

3.2 SORN Implementation

In this work, the Sobel method described in Eq. (3) and (4) is implemented
with SORN arithmetic as a hybrid Integer-SORN and as a full SORN design,
both for different SORN datatypes. Additionally, an Integer reference design is
implemented in order to compare the SORN designs to a State-of-the-Art (SotA)
architecture. The three designs are described in the following.

Integer Reference Design. The grayscale test image A contains pixels with
values Axy ∈ {0, . . . , 255} which can be implemented with Integer values of 8 b.
The convolution described in Eq. (3) is implemented with conventional Integer
additions and subtractions as shown in Fig. 3. For the calculation of the gradient
G the square root is omitted and the result G2 is compared to the squared
threshold T 2 instead.

x − y 2x − 2y x − y

x + y

x + y

Conv. Gx

INT (Reference)
INT (Hybrid)
SORN (Full)

x − y 2x − 2y x − y

x + y

x + y

Conv. Gy

INT (Reference)
INT (Hybrid)
SORN (Full)

x2 + y2

x2 x2

x + y
Square&Add
INT (Reference)

Hypot
SORN (Hybrid)
SORN (Full)

Gx Gy

G2 G

Fig. 3. Block diagram for the three different Sobel implementations: all integer for
the reference implementation, integer convolution with SORN hypot for the hybrid
approach, and SORN convolution and hypot for the full SORN approach.
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Hybrid Integer-SORN Design. For the hybrid design, the convolutions are
carried out with Integer operations, similar to the reference implementation.
The horizontal and vertical gradients Gx and Gy are then converted to a SORN
representation. Since they are squared in the following hypot operation, their
absolutes are converted, and SORN datatypes without negative values can be
used. The hybrid design is implemented for three different SORN representations
with 6 b, 10 b and 11 b, all given in Table 1. The hypot operation is implemented
as one single SORN operation, as depicted in Fig. 3 (conversion blocks from
Integer to SORN between convolution and hypot are not shown). Since the result
G is in SORN representation, the threshold T has to be chosen as one of the
SORN intervals from the respective datatype. Figure 2c shows the edge result
of the hybrid SORN implementation for the 11 b datatype and the threshold
interval T = (250,∞], which corresponds to the Integer threshold T = 250 used
for the reference implementation in Fig. 2b.

Full SORN Design. For the full SORN design, the Integer inputs from the
test image A are converted to SORN representation before the convolutions and
hypot function are carried out in SORN arithmetic, as shown in Fig. 3 (con-
versions not shown). Since for the convolution also subtraction is required, the
full SORN design is implemented for two different 15 b datatypes with nega-
tive values, as shown in Table 1. In order to obtain a comparable edge result, for
the full SORN approach thresholds near the zero-bit in SORN representation are
selected and the result image is negated afterwards. Figure 2d shows the negated
edge result for the full SORN implementation with the 15 b lin datatype and a
threshold interval T = (0, 50].

4 Evaluation

Figure 2 shows a test image and the edge detection results of the three different
Sobel implementations described in Sect. 3.2. By visual comparison they seem
to be quite similar, even though a few differences can be found, for example
when comparing the detection of the cars on the road. For a comprehensive
evaluation, however, a visual comparison of different edge results is not suffi-
cient. Unfortunately, measuring the performance and comparing different edge
detection methods or implementations is an open problem. In [15] various error
and performances metrics are evaluated and compared, and the authors con-
clude that no convincing general-purpose solution exists. Since in this work no
different methods, but only different implementations are to be compared, the
most intuitive approach is a numerical comparison of the different edge results.
Therefore the normalized absolute error nae between the SORN results and the
Integer reference implementation can be defined as

nae =

∑Nx
x=1

∑Ny
y=1(Eint(x, y) �= Esorn(x, y))

NxNy
(5)
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with the respective edge detection results Eint and Esorn and the test image
dimensions Nx and Ny. This metric basically counts the number of different
pixels between the Integer and SORN edge images and normalizes the result by
the total number of pixels. Applied to the edge images from Fig. 2, the errors
read as follows:

nae|hybridSORN,11b = 0.0181 (6)
nae|fullSORN,15b = 0.0287 (7)

This metric can not determine whether the SORN implementation performs
better or worse than the Integer reference, but it can show that the difference
between both results is below 2% and 3%, respectively, which is in line with the
visual evaluation. In order to further evaluate the different Sobel implementa-
tions, in the following section a larger number of test images is considered.

4.1 Algorithmic Evaluation with BSDS500

The Berkeley Segmentation Data Set 500 (BSDS500) [1] is a set of images for the
performance evaluation of contour detection and image segmentation algorithms,
consisting of images of humans, animals, objects and landscapes. For a compre-
hensive evaluation, the 200 test images from the data set are processed with the
different Sobel implementations for all presented SORN datatypes. Additionally,
two different thresholds per configuration are analyzed. For the hybrid designs,
the two rightmost SORN intervals with indices wsorn − 1 and wsorn are used
as thresholds. The results are compared to the corresponding Integer threshold
for the reference design. For the 6 b datatype for example, the interval thresh-
olds are T = (200, 250] and T = (250,∞], the corresponding Integer thresholds
are T = 200 and T = 250. For the full SORN implementation thresholds near
the zero-bit are utilized and the resulting edge images are negated, in order to
achieve the best performance. Therefore the equivalent threshold Te is given,
which corresponds to the compared Integer threshold.

In Table 2 the results for the mean normalized absolute error between the
SORN and reference edge results are given. The utilized metric represents the
mean of the nae from Eq. (5) over all test images. For both the hybrid and
full SORN versions the designs utilizing a linear distributed SORN datatype
perform better than the log-based versions. Furthermore, the rightmost SORN

Table 2. Mean normalized absolute error between SORN and reference integer imple-
mentation for 200 test images from BSDS500 [1].

SORN Datatype hybrid SORN full SORN

6b lin 10 b log 11 b lin 15 b log 15 b lin

mnae T = wsorn 0.0659 0.1200 0.0598 Te = wsorn 0.1396 0.0667

T = wsorn − 1 0.1167 0.2323 0.0852 Te = wsorn − 1 – 0.0673
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interval thresholds lead to the best results by means of lowest difference to
the Integer reference. Compared to the results for the image in Fig. 2, given in
Eq. (6)–(7), the errors are slightly higher, but still below 7%. It is mentioned
again, that this metric can only measure the difference between Integer and
SORN implementation. For a rating of the different designs, a third, independent
reference is required.

Ground Truth Reference Comparison. For this purpose, the BSDS500 con-
tains so-called ground truth edge results. These are human made edge detections
from different human subjects [1]. For evaluating the edge detections of the differ-
ent SORN implementations in comparison to the Integer reference, Fig. 4 shows
the mean normalized absolute error between 6 different ground truth solutions
GT and the respective edge detection results E, with the image dimensions Nx

and Ny and the number of test images Ni:

mnae =

∑Ni

i=1

(∑Nx
x=1

∑Ny
y=1(GTi(x,y) �=Ei(x,y))

NxNy

)

Ni
(8)

For the hybrid and full SORN implementations, for each datatype the thresh-
old configuration with the best results is shown, as well as the corresponding Inte-
ger configurations. Similar to the previous evaluation, those SORN implementa-
tions utilizing linear distributed datatypes perform better than the log-based ver-
sions. For this evaluation, the linear-based SORN implementations outperform
even the corresponding Integer references. As mentioned above and discussed in
[15], this does not necessarily indicate that the SORN-based edge detection is
better than the Integer-based for any application. Nevertheless, this evaluation
on BSDS500, as well as the example in Fig. 2 show that the hybrid and full

1 2 3 4 5 6
0

0.05

0.1

0.15

Ground truth solution

m
na

e
w
.r
.t
.
G
T

Int, T = 200
Int, T = 225
Int, T = 256
hybrid SORN, 6b lin,
T = (200, 250]
hybrid SORN, 11b lin,
T = (225, 250]
hybrid SORN, 10b log,
T = (256,∞]
full SORN, 15b lin,
Te = (250, 300]
full SORN, 15b log,
Te = (512,∞]

Fig. 4. Mean normalized absolute error w.r.t. 6 ground truth solutions for the different
Integer and SORN Sobel implementations over 200 test images from BSDS500.
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SORN-based edge detection implementations of the Sobel operator provide, at
least, a similar result quality as the Integer implementation and can serve as a
replacement for the SotA implementation.

4.2 Hardware Performance

In addition to the algorithmic evaluation, also the hardware performance in
terms of latency, complexity and power consumption for the respective hybrid
and full SORN designs, as well as for the Integer reference design is evaluated. In
the following, the results of FPGA and CMOS syntheses of all designs described
in Sect. 3.2 are presented.

FPGA Results. In Table 3 the synthesis results for an Artix-7 AC701 FPGA
from Xilinx are given for all presented designs for a target frequency of 100 MHz.
All designs are evaluated without internal pipeline registers and no DSPs are
used. The worst negative slack (WNS) shows that solely the 6 b and 10 b hybrid
SORN implementations are able to run at a target frequency of 100 MHz, yet all
SORN designs achieve a higher maximum frequency than the Integer reference
design. Concerning the required LUTs and the power consumption, the hybrid
SORN approach significantly outperforms the reference design with a complexity
reduction of up to 68%, whereas for the full SORN approach only the 15 b log
configuration achieves a lower power consumption, all other measures can not
compete with the reference design.

Table 3. FPGA synthesis results without DSPs for an Artix-7 AC701 FPGA
(xc7a200tfbg676-2).

Module Int hybrid SORN full SORN

6 b lin 10 b log 11 b lin 15 b log 15 b lin

Target Freq. [MHz] 100 100 100 100 100 100

WNS [ns] −1.487 0.554 0.492 −0.173 −0.466 −1.042

Max Freq. [MHz] 87.055 105.865 105.175 98.299 95.548 90.563

LUTs 457 148 207 219 597 712

Total power [W] 0.145 0.136 0.137 0.138 0.140 0.147

CMOS Results. Table 4 shows the synthesis results for the proposed designs
without pipeline registers for a 28 nm SOI CMOS technology from STM. Each
configuration is synthesized for a target frequency of 1 GHz and for the respective
maximum frequency. For the 1 GHz comparison, all SORN-based designs achieve
a lower area and power consumption than the reference design, with reductions
of up to 45% for area and 44% for power, respectively. Targeting maximum
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Table 4. CMOS STM 28nm SOI technology synthesis results.

Module Int hybrid SORN full SORN

6b lin 10 b log 11 b lin 15 b log 15 b lin

Target Freq. [MHz] 1000 1000 1000 1000 1000 1000

Runtime [ns] 0.962 0.958 0.962 0.962 0.961 0.962

Area [µm2] 1153.987 638.765 693.110 733.421 989.808 1132.282

Power [µW] 550.337 329.210 349.387 349.964 309.294 324.075

Max. Freq. [MHz] 1263 1681 1603 1605 1661 1715

Runtime [ns] 0.792 0.595 0.624 0.623 0.602 0.583

Area [µm2] 2087.165 1100.294 1157.251 1245.706 1661.213 2017.642

Power [µW] 1979.710 757.566 774.962 838.914 403.631 413.465

frequency, all SORN-based designs achieve at minimum a 27% higher frequency
than the reference design while still requiring less area and power. For this maxi-
mum frequency comparison, the hybrid SORN designs show a significantly lower
area requirement than the reference design (up to 47% reduction), whereas the
full SORN designs require significantly less power (up to 80% reduction).

5 Conclusion

The Sobel Operator for edge detection can be implemented as a hybrid SORN
design with Integer convolution and SORN hypot function, or as a full SORN
approach. Depending on the utilized SORN datatype and the chosen thresh-
olds, both versions provide a similar algorithmic performance than the Integer
reference implementation. For the presented evaluation on BSDS500 with the
corresponding ground truth reference comparison, some of the SORN config-
urations even show a lower difference to ground truth than the Integer refer-
ence. Regarding hardware performance, the presented evaluations show that the
SORN approach achieves higher frequencies and significantly lower complexity
and power consumption than the Integer reference for both FPGA and CMOS.

For future work the SORN-based edge detection can be integrated into a
more complex image processing system in order to provide further evaluations
on the quality of the edge detection results in the context of an actual (real-
time) application, for example lane detection in autonomous driving. In addition,
other edge detection methods such as the Canny detector or the Marr Hildreth
Operator can be implemented and evaluated for SORNs.
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Abstract. We propose a hardware operator to decompress Posit8 rep-
resentations with exponent sizes 0, 1, 2, 3 to the IEEE 754 binary 16
(FP16) representation. The motivation is to leverage the tensor units of
a manycore processor that already supports FP16.32 matrix multiply-
accumulate operations for deep learning inference. According to our
experiments, adding instructions to decompress Posit8 into FP16 num-
bers would enable to further reduce the footprint of deep neural network
parameters with an acceptable loss of accuracy or precision. We present
the design of our decompression operator and compare it to lookup-table
implementations for the technology node of the targeted processor.

Keywords: Posit8 · FP16 · Deep learning inference

1 Introduction

Various approaches for reducing the footprint of neural network parameters have
been proposed or deployed. Mainstream deep learning environments support
rounding of the FP32 parameters to either the FP16 or BF16 representations.
They support further reduction in size of the network parameters by applying
linear quantization techniques that map FP32 numbers to INT8 numbers [14]. In
this paper, we follow an alternate approach to FP32 parameter compression by
rounding them to Posit8 numbers. As reported in [4,9], exponent sizes (es) of 0,
1, 2, 3 are useful to compress image classification and object detection network
parameters (es=2 is now the standard for Posit8 [1]).

Unlike previous work [17,19] that apply Posit arithmetic to deep learning
inference, we do not aim at computing directly with Posit representations.
Rather, we leverage the capabilities of the Kalray MPPA3 processor for deep
learning inference [10] whose processing elements implement 4× deep FP16.32
dot-product operators [2,3]. The second version of this processor increases 4× the
number of FP16.32 dot-product operators that become 8× deep. As a result, the
peak performance for FP16.32 matrix multiply-accumulate operations increases
8×. For this processor, we designed decompression operators that expand Posit8
into FP16 multiplicands before feeding them to the FP16.32 dot-product oper-
ators. These Posit8 decompression operators have to be instanced 32 times in
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
J. Gustafson and V. Dimitrov (Eds.): CoNGA 2022, LNCS 13253, pp. 14–30, 2022.
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http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-09779-9_2&domain=pdf
https://doi.org/10.1007/978-3-031-09779-9_2


A Posit8 Decompression Operator for Deep Neural Network Infeference 15

order to match the PE load bandwidth of 32 bytes per clock cycle. The corre-
sponding instruction provides the es parameter as a two-bit modifier.

In Sect. 2, we evaluate the effects of compressing the IEEE 754 binary 32
floating-point representation (FP32) deep learning parameters to Posit8 repre-
sentations on classic classification and detection networks, then discuss the chal-
lenges of decompressing Posit8 representations to FP16. In Sect. 3, we describe
the design of several Posit8 to FP16 decompression operators and compare their
area and power after synthesis for the TSMC 16FFC technology node.

2 Compression of Floating-Point Parameters

2.1 Floating-Point Representations Considered

A floating-point representation uses a triplet (s,m, e) to encode a number x as:

x = (−1)s · βe−bias · 1.m, (1)

where β is the radix, s ∈ {0, 1} is the sign, m = m1...mp−1 is the mantissa with
an implicit leading bit m0 set to 1, p is the precision and e ∈ [emin, emax] is
the exponent. The IEEE-754 standard describes binary representations (β = 2)
and decimal representations (β = 10). Binary representations such as FP32 and
FP16 are often used in neural network inference. Let us denote the encoding of
x in a representation F with xF , so we write xFP32 and xFP16 as follows:

xFP32 = (−1)s · 2e−127 · 1.m, with p = 24, (2)

xFP16 = (−1)s · 2e−15 · 1.m, with p = 11. (3)

A first alternative to IEEE-754 floating-point for deep learning is the BF16
representation, which is a 16-bit truncated version of FP32 with rounding to
nearest even only and without subnormals [13]. It has a sign bit, an exponent of
8 bits and a mantissa of 7 bits. A number represented in BF16 is written as:

xBF16 = (−1)s · 2e−127 · 1.m, with p = 8. (4)

A second alternative is the floating-point representation introduced by
Microsoft called MSFP8 [8], which is equivalent to IEEE-754 FP16 truncated to
8 bits. This representation has a sign bit, a 5-bit exponent and a 2-bit mantissa:

xMSFP8 = (−1)s · 2e−15 · 1.m, with p = 3. (5)

The third alternative considered are the 8-bit Posit representations [11].
Unlike FP, Posit representations have up to four components: sign, regime, expo-
nent and mantissa. A Positn.es representation is fully specified by n, the total
number of bits and es, the maximum number of bits dedicated to the exponent.
The components of a Posit representation have dynamic lengths and are deter-
mined according to the following priorities. Bits are first assigned to the sign and
the regime. If some bits remain, they are assigned to the exponent and lastly, to
the mantissa. The regime is a run-length encoded signed value (Table 1).
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Table 1. Regime interpretation (reproduced from [5]).

Binary 0001 001 01 10 110 1110

Regime value –3 –2 –1 0 1 2

Table 2. Comparison of components and dynamic ranges of representations. Note
that the components of Posit numbers have dynamic length. The indicated values of
exponent and mantissa for Posit represent the maximum number of bits the components
can have. The regime has priority over the mantissa bits.

Repres FP32 FP16 BF16 MSFP8 Posit8.0 Posit8.1 Posit8.2 Posit8.3

Exponent 8 5 8 5 0 1 2 3

Mantissa 23 10 7 2 5 4 3 2

Regime – – – – 2–7 2–7 2–7 2–7

Range 83.38 12.04 78.57 9.63 3.61 7.22 14.45 28.89

The numerical value of a Posit number is given by (6) where r is the regime
value, e is the exponent and m is the mantissa:

xPositn.es = (−1)s · (22
es

)
r · 2e · m, with p = m. (6)

In order to choose a suitable arithmetic representation for a set of values, one
needs to consider two aspects: dynamic range and precision. The dynamic range
is the decimal logarithm of the ratio between the largest representable number
to the smallest one. The precision is the number of bits of the mantissa, plus the
implicit one. The total size and exponent size determine the dynamic range of
a given representation. Table 2 summarizes the components of the floating-point
representations considered along with their dynamic range.

The FP32 representation has a wide dynamic range and provides the baseline
for DNN inference. The BF16 representation preserves almost the same dynamic
range as FP32, while FP16 has a smaller dynamic range and higher precision
than BF16. MSFP8 has almost the same dynamic range as FP16, however it
comes with a much reduced precision. Concerning Posit representations, not
only they offer tapered precision by distributing bits between the regime and the
following fields, but also they present the opportunity of adjusting es to adapt
to the needs of a given application. An increase of the es decreases the number
of bits available for the fractional part, which in turn reduces the precision.

2.2 Effects of Parameter Compression

We use pre-trained classic deep neural networks, compress their FP32 parame-
ters to FP16 and to each of the alternative floating-point representations, after
which we analyse the impact on the results of different classification and detec-
tion networks. In the following experiments, all computations are done in FP32,
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however we simulate the effects of lower precision by replacing the parameters
with the values given by the alternative representations. Conversion from FP32
to BF16 is done by using FP32 numbers with the last 16 bits set to 0. Similarly,
for the MSFP8 we use FP16 numbers with last 8 bits are cleared.

Table 3. Classification networks. Compression is applied to all parameters.

DNN Criterion FP32 FP16 BF16 MSFP8 Posit

8.0 8.1 8.2 8.3

VGG16 ACC-1 70.6 70.6 70.8 69.7 10.2 70.8 70.5 70

ACC-5 91.3 91.3 91.2 90.3 25.2 91.0 91.0 90

VGG19 ACC-1 70.1 70.1 70.3 67.9 4.8 70.1 69.9 70.6

ACC-5 90.4 90.4 90.5 89.4 16.3 90 90 90.4

ResNet50 ACC-1 75.7 71.3 75.5 62.8 0.0 27.7 73.2 66

ACC-5 93.3 90.2 93.5 83.8 0.0 91.4 91.4 88.7

InceptionV3 ACC-1 71.1 71.1 71.3 44.8 65.1 69.4 69.7 63.1

ACC-5 89.9 89.9 90.0 67.9 86.1 91.0 89.5 85.3

Xception ACC-1 73.5 73.4 73.6 37.5 70.6 72.4 72.1 63.8

ACC-5 92.1 92.2 91.7 60.6 90.9 91.4 90.9 86.0

MobileNetV2 ACC-1 71.2 71.2 71 0.2 12.7 12.3 11.0 3.2

ACC-5 90.0 90.0 89.6 0.6 24.7 25.7 24.4 9.9

Table 4. Detection network. Compression is applied to all parameters.

DNN Criterion FP32 FP16 BF16 MSFP8 Posit

8.0 8.1 8.2 8.3

YOLO v3 mAP 0.41595 0.41595 0.41585 0.3022 0.4025 0.4155 0.411 0.394

Regarding the Posit representations, even at small size they encode numbers
with useful precision and dynamic range. Thus, in our experiments, we evaluate
Posit8 representations with es between 0 and 3. A dictionary containing the
255 values given by each Posit8 type is first obtained by relying on a reference
software implementation [11]. We observe that all Posit8.0 and Posit8.1 values
can be represented exactly in FP16. The Posit8.2 representation has 8 values of
large magnitude which are not representable in FP16, but can be represented in
BF16. For the Posit8.3 representation, 46 values are not representable in FP16
and 12 values are not representable in BF16. In our experiments, compression is
done by replacing the parameters with their nearest values in the dictionary.

We experiment with six classification networks and one object detection net-
work. The evaluation criteria are: Accuracy Top 1 (ACC-1), Accuracy Top 5
(ACC-5) for classification and Mean Average Precision (mAP) for detection.
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Table 3 contains the results for the classification networks VGG16 [23], VGG19,
ResNet50 [12], InceptionV3 [24], Xception [7], MobileNetV2 [22], which have dif-
ferent architectures. We also display the results obtained with FP32 and FP16
in order to compare with the standard floating-point representations. The mAP
results for the object detection network (YOLO v3 [21]) are shown in Table 4.

Overall, compression with BF16 gives better results than with FP16. Despite
its lower precision than FP16, BF16 appears to be well suited to deep neural
network inference. On the other hand, the reduced precision of MSFP8 leads to
a significant loss of performance for all tested networks. For the Posit8.0 and
Posit8.3 representations, a significant loss of performance is also observed in
both conventional classification (VGG16) and detection networks (YOLO).

Table 5. Classification networks. Compression is only applied to parameters of convo-
lutions and of fully connected operators.

DNN Criterion FP32 Posit

8.0 8.1 8.2 8.3

ResNet50 ACC-1 75.7 71.3 75.0 75 73.6

ACC-5 93.3 9.8 92.7 92.8 92.6

InceptionV3 ACC-1 71.1 66.0 70.9 70.1 69.9

ACC-5 89.9 86.8 90.7 89.1 88.5

Xception ACC-1 73.5 72.1 72.6 72.8 68.8

ACC-5 92.1 91.3 91.7 91.3 89.4

MobileNetV2 ACC-1 70.8 25.3 53.5 52.7 39.4

ACC-5 89.8 47.0 76.9 77.3 63.1

For networks containing normalization operators (ResNet50, InceptionV3,
Xception and MobileNetV2), the loss of performance is significant on at least
one of the Posit8 representation. This motivates a second round of experiments
on the four the networks that have batch normalization operators. As reported
in Table 5, not compressing the parameters of the batch normalization operators
improves the performance on all these networks. However, despite the improve-
ment, MobileNetV2 remains with a significant accuracy loss.

To summarize the effects of parameter compression to 8-bit representations,
using Posit8.es with 0 ≤ es ≤ 3 appears interesting. We expect that accuracy and
precision could be further improved by selecting the compression representation
(none, FP16, Posit8.es) individually for each operator. This motivates the design
and implementation of a Posit8.es to FP16 decompression operator.

2.3 Decompression Operator Challenges

Previous implementations of Posit operators [6,15,16,18,20,25–27] include a
decompressing component, often called data extraction or decoding unit, that
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transforms a Posit number into an internal representation similar to a floating-
point number of non-standard size, into which the Posit can be exactly repre-
sented. While the structure of these units provides inspiration for our work, the
design of our decompression operator faces new challenges.

– Unlike Posit operator implementations of previous work which support a sin-
gle Posit representation after synthesis, our decompression operator receives
the exponent size from the instruction opcode. Support of variable es is inter-
esting for the MPPA3 processor as its deep learning compiler may adapt the
number representation of each tensor inside a network in order to provide the
best classification accuracy or detection precision.

– Posit numbers have a symmetric representation with respect to the expo-
nent, unlike IEEE 754 floating-point that has an asymmetry tied to gradual
underflow, so previous works do not deal with subnormal numbers. Support
of subnormal numbers is important for the decompression of the Posit8.2 and
Posit8.3 representations to FP16. The smallest Posit8.2 numbers are exactly
represented as FP16 subnormals, ensuring the conversion does not under-
flow. Although the decompression of the Posit8.3 representation to FP16 may
underflow, the range added by gradual underflow is crucial for networks that
compute with FP16 parameters.

– For the Posit8 numbers with es ∈ {2, 3} that are not exactly representable
in FP16, our decompression operator supports the four IEEE 754 standard
rounding modes (Round to Nearest Even, Round Up, Round Down and
Round to Zero) by extrapolating the flag setting convention described by
IEEE 754 standard when narrowing to a smaller representations.

– For these Posit8.es number that cannot be exactly represented in FP16, our
decompression operator also has to raise the IEEE 754 overflow or under-
flow flags. Likewise, the Not a Real (NaR) value cannot be expressed in the
IEEE 754 standard, so this conversion should raise and invalid flag and return
a quiet Not a Number (NaN) [1].

Lemma 1. With the Posit8.2 and Posit8.3 representations, knowing the regime
is sufficient to pre-detect conversion underflow or overflow to FP16.

Proof. Let us call wE the width of the floating-point exponent. For FP16 wE = 5,
so maximum exponent value is emax = 2wE−1 − 1 = 15. Similarly, the smallest
possible exponent (counting subnormals) is emin sn = −2(wE−1) + 1 − wM + 1 =
−24 (where wM is the width of the mantissa).

The Positn representation combined exponent (in the floating point sense) is
c = r ×2es + e where r is the regime, with −n+1 ≤ r ≤ n−2, and e is the posit
exponent 0 ≤ e ≤ 2es − 1. A Posit number overflows the FP16 representation
when c > emax i.e. r × 2es + e ≥ emax + 1. This can be detected irrespective of
e when emax + 1 is a multiple of 2es. This is the case when es ≤ 4.

A Posit number underflows the FP16 representation when c < emin sn. Since
c = r × 2es + e < 0 and e ≥ 0, then we need for the detection that emin sn − 1 is
a value with the maximum e, which is 2es − 1. This can be detected irrespective
of e when emin sn is a multiple of 2es. This is the case when es ≤ 3.
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By application of Lemma 1, Posit8.2 overflows FP16 when regime ≥ 4, while
Posit8.3 overflows when regime ≥ 2 and underflows when regime ≤ −4.

Lemma 1 still holds for other values of n if the goal is to compute the
IEEE 754 overflow flag, however it does not work as well for the underflow
as this can only detect the underflow to zero, and not the loss of significand bits
in a subnormal result. The Posit8.3 representation works here since it is small
enough to not have significand bits when its value is converted to a small FP16
subnormal. The regime r should be large enough to imply no mantissa bits, i.e.
1 + r + 1 + es ≥ n, for the r corresponding to the small FP subnormals.

For example, with the FP32 representation emax = 127 so Lemma 1 applies
for conversion overflow pre-detection if es ≤ 6. For the FP32 underflow pre-
detection, emin sn = 154 = 2 × 77 so Lemma 1 does not apply in case es > 1.

3 Design and Implementation

3.1 Combinatorial Operator Design

Our first Posit8 decompression operator design is combinatorial (Fig 1), with
steps similar to those of previously proposed Posit hardware operators. First
the two’s complement of the Posit number is computed when its sign bit is 1.
The regime is then decoded with a leading digit counter combined with a shifter.
Since the maximum exponent size es is variable, three more small shifters (Fig. 2)
are used to separate the Posit exponent field e from the mantissa and to combine
e with the regime value in binary to compute the unbiased FP16 exponent. The
FP16 bias is then added, and the three parts of the FP16 number are combined.
Additional details are needed to decompress special Posit8 numbers, or when a
Posit value overflows or underflows the FP16 representation.

The special cases of Posit8 decompression to FP16 are pre-detected in the
operator. Testing for Posit zero and Posit NaR are done in parallel and return
floating-point zero or floating-point NaN (with the inexact flag) at the end of
the operator, adding two multiplexers to the end of the operator. Those were
not drawn to save space. Similarly, since all the other flag values are coded into
tables, they are not drawn on the operator and not described in the figures. A
few one-bit multiplexers are added to set the IEEE 754 flags.

Lemma 1 enables to check a table as soon as the regime is known to determine
if the value will overflow or underflow FP16. The rest of the exponent construc-
tion is done in parallel with the table lookup. Moreover, since the mantissa of
Posit8 is always smaller than the mantissa of FP16, there is no precision lost in
the normal and subnormal cases. However, the rounding mode may change the
values returned when there is a conversion underflow or an overflow.

The special case table (Fig. 3) outputs four different values: ∞ (0x7C00),
Ω (0x7BFF), smallest subnormal (SN) (0x0001) and zero (0x0000). The sign is
concatenated after the table. Two extra bits are used, the first to encode if the
value in the table should be used, and the second to know if this is an overflow
or an underflow, in order to use this for the flags.
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Fig. 1. Posit8 to floating-point 16 decompression operator.
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The table for subnormal values (Fig. 4) is used as soon as the unbiased FP16
exponent in known. For the Posit8.2 representation, the numbers that convert
to subnormals do not have any mantissa bits. For Posit8.3 however, this may
happen in two cases, so the most significant bit of the mantissa is input to
the table. The values returned by the table are always exact, so no inexact or
underflow flags are needed. This table does not output the sign but instead a bit
indicating if the value of the table should be used or not.

3.2 General Operator Efficiency

The synthesis are done with Synopsys Design Compiler NXT for the TSMC
16FFC node. We compare our combinatorial operator implementation to a base-
line lookup-table and track the area (Fig. 5) and power (Fig. 6) according to the
operating frequency. A pipelined version of this operator is obtained by adding
a stage between the leading digit count and the first shift. This enables the use

es = 2

After LDC (1)
After RShift1 (2)

After LShift (3)
After Combining with Regime (4)

After RShift2 (5)

es = 0

es = 2

es = 1

es = 3

: Regime : Exponent : Mantissa

Fig. 2. Shifters to separate exponent and mantissa
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sign es regime rounding mode output
0 2 4 to 6 10 or 11 (RD or RZ) 10&Ω
0 2 4 to 6 00 or 01 (RN or RU) 10&∞
1 2 4 to 6 01 or 11 (RU or RZ) 10&Ω
1 2 4 to 6 00 or 10 (RN or RD) 10&∞
0 3 2 to 6 10 or 11 (RD or RZ) 10&Ω
0 3 2 to 6 00 or 01 (RN or RU) 10&∞
1 3 2 to 6 01 or 11 (RU or RZ) 10&Ω
1 3 2 to 6 00 or 10 (RN or RD) 10&∞
0 3 -4 to -6 01 (RU) 11&SN
0 3 -4 to -6 else 11&0
1 3 -4 to -6 10 (RD) 11&SN
1 3 -4 to -6 else 11&0
* * * * 00&0

Fig. 3. Table for the special values

exponent mantissa msb output
0 0 1 & 000 0010 0000 0000
0 1 1 & 000 0011 0000 0000
-1 0 1 & 000 0001 0000 0000
-1 1 1 & 000 0001 1000 0000
-2 0 1 & 000 0000 1000 0000
-3 0 1 & 000 0000 0100 0000
-4 0 1 & 000 0000 0010 0000
-5 0 1 & 000 0000 0001 0000
-6 0 1 & 000 0000 0000 1000
-7 0 1 & 000 0000 0000 0100
-8 0 1 & 000 0000 0000 0010
-9 0 1 & 000 0000 0000 0001
* * 0 & 000 0000 0000 0000

Fig. 4. Table for the subnormal values

of a faster clock and reduces the area, the trade-off being that the conversion
takes 2 clock cycles. The throughput is still of one value per clock cycle.

The lookup table implementation uses as inputs {Posit, es, rounding mode}
so it has 212 = 4096 entries. The Posit sign is needed to compute the overflow
and underflow IEEE 754 flags in Round Up and Round Down modes.
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At the target frequency of our processor (1.5 GHz), the pipelined combina-
torial implementation has 2

3 the area and half the leakage power of a baseline
table-based implementation. It also has a lower dynamic power consumption.
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3.3 Specialized Operator Efficiency

As discussed earlier, the rounding mode has no effects on the decompression
for the majority of Posit8 numbers, and may only change the result in cases
of overflow or underflow. This motivates specializing the operators to convert
Posit8 to FP16 representations for the Round-to-Nearest (RN) mode only.

The combinatorial decompression operators are built the same way as before,
the only changes being on the special case table which is significantly reduced
since the rounding mode and sign no longer intervene, while the number of
possible outputs is halved.
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The baseline table implementation now uses inputs {Posit, es} so it has
210 = 1024 entries. Moreover, as the sign is no longer needed for producing the
IEEE 754 overflow and underflow flags, the table implementation can be factored
as illustrated in Fig. 7. If the Posit is negative, its two’s complement is used for
accessing the table, and the sign is appended to the output of the table.

Those specialized operators show similar result in area (Fig. 8) and leakage
power (Fig. 9). The factored table implementation however is significantly better

Posit8.es es

∼ +1

MUX

7

POSITIVE POSIT
TO FP16 TABLE

2

9

15

16

8
1

Fig. 7. Posit8 to FP16 decompression operator based on a factored table.
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than the baseline table as it exploits a symmetry that was not apparent. At our
target frequency, our pipelined operator implementation has 5

6 the area and 2
3

the leakage power of the optimised table-based implementation, and has lower
dynamic power consumption (Fig. 9).

Another specialisation of interest is to only decompress the standard Posit8.2
representation. This further reduces the size (Fig. 10) and the power consumption
(Fig. 11) of the combinatorial implementations since it simplifies both the special
tables and the small shifters. This operator is also smaller than the table-based
implementations. It is interesting to note that for tables this small, at high
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frequencies the overhead of computing the absolute values may offset the benefit
of halving the table size.

4 Summary and Conclusion

This paper proposes to use 8-bit floating-point representations for the compres-
sion of the IEEE 754 binary 32 (FP32) parameters of trained deep learning
classification and detection networks. Traditional compression of FP32 param-
eters for inference rounds them to the IEEE 754 binary 16 (FP16) or to BF16
representations, where they are used as multiplicands before accumulation to
FP32 or wider representations. Assuming that efficient mixed-precision FP16.32
matrix multiply-add operators are available, our objective is to select 8-bit rep-
resentations suitable for floating-point parameter compression and to design the
corresponding decompression operators to the FP16 representation.

We first observe that compressing parameters from FP32 to MSFP8 (a FP16
representation truncated to 8 bits proposed by Microsoft) does not give accept-
able inference results for the networks considered. Indeed, to achieve compression
of the FP32 parameters without significant accuracy loss, a trade-off between the
dynamic range and the precision is needed. Accordingly, parameter compression
to the Posit8.1, Posit8.2 and Posit8.3 representations performs well for inference
with the tested networks, with a few exceptions.

We then design and implement combinatorial and table-based Posit8 to FP16
decompression operators with increasing degrees of specialization. The combina-
torial designs benefit from an insight on the conditions which leads to overflow
or underflow when converting Posit8.2 or Posit8.3 to FP16. This enables to pre-
detect those conditions by inspecting only the Posit regime bits.

The most general decompression operators presented receive as input a Posit8
value, the exponent size 0 ≤ es ≤ 3, and one of the four IEEE 754 rounding
modes. A first specialization considers only rounding to the nearest even, which
in turn enables the table-based implementation to be factored relative to the sign.
A second specialization only decompresses the standard Posit8 representation,
whose exponent size is 2. In all cases, the pipelined version of our combinatorial
decompression operator appears as the best option.

References

1. Standard for Posit Arithmetic (2022) Release 5.0
2. Brunie, N.: Modified fused multiply and add for exact low precision product accu-

mulation. In: 24th IEEE Symposium on Computer Arithmetic, ARITH 2017, Lon-
don, United Kingdom, pp. 106–113, July 2017

3. Brunie, N.: Towards the basic linear algebra unit : replicating multi-dimensional
FPUs to accelerate linear algebra applications. In: 2020 54th Asilomar Conference
on Signals, Systems, and Computers, pp. 1283–1290 (2020)

4. Carmichael, Z., Langroudi, H.F., Khazanov, C., Lillie, J., Gustafson, J.L.,
Kudithipudi, D.: Performance-efficiency trade-off of low-precision numerical for-
mats in deep neural networks. In: Proceedings of the Conference for Next Gener-
ation Arithmetic 2019, pp. 3:1–3:9. CoNGA 2019, ACM, New York (2019)



A Posit8 Decompression Operator for Deep Neural Network Infeference 29

5. Carmichael, Z., Langroudi, H.F., Khazanov, C., Lillie, J., Gustafson, J.L.,
Kudithipudi, D.: Deep positron: a deep neural network using the posit number
system. In: DATE, pp. 1421–1426. IEEE (2019)

6. Chaurasiya, R., et al.: Parameterized posit arithmetic hardware generator. In: 2018
IEEE 36th International Conference on Computer Design (ICCD), pp. 334–341.
IEEE (2018)

7. Chollet, F.: Xception: Deep learning with depthwise separable convolutions. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 1251–1258 (2017)

8. Chung, E., et al.: Serving dnns in real time at datacenter scale with project brain-
wave. IEEE Micro 38, 8–20 (2018)

9. Cococcioni, M., Rossi, F., Ruffaldi, E., Saponara, S., de Dinechin, B.D.: Novel
arithmetics in deep neural networks signal processing for autonomous driving: chal-
lenges and opportunities. IEEE Sig. Process. Mag. 38(1), 97–110 (2020)

10. de Dinechin, B.D.: Consolidating high-integrity, high-performance, and cyber-
security functions on a manycore processor. In: 56th ACM/IEEE Design Automa-
tion Conference (DAC 2019), p. 154 (2019)

11. Gustafson, J.L., Yonemoto, I.T.: Beating floating point at its own game: posit
arithmetic. Supercomput. Frontiers Innov. 4(2), 71–86 (2017)

12. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.
In: Proceedings of IEEE conference on CVPR, pp. 770–778 (2016)

13. Intel: BFLOAT16 - Hardware Numerics Definition Revision 1.0, November 2018
14. Jacob, B., et al.: Quantization and training of neural networks for efficient integer-

arithmetic-only inference. In: 2018 IEEE Conference on Computer Vision and Pat-
tern Recognition, CVPR 2018, Salt Lake City, UT, USA, pp. 2704–2713, June 2018

15. Jaiswal, M.K., So, H.K.H.: Universal number posit arithmetic generator on FPGa.
In: 2018 Design, Automation & Test in Europe Conference & Exhibition (DATE),
pp. 1159–1162. IEEE (2018)

16. Jaiswal, M.K., So, H.K.H.: Pacogen: a hardware posit arithmetic core generator.
IEEE access 7, 74586–74601 (2019)

17. Lu, J., Fang, C., Xu, M., Lin, J., Wang, Z.: Evaluations on deep neural networks
training using posit number system. IEEE Trans. Comput. 70(2), 174–187 (2020)

18. Murillo, R., Del Barrio, A.A., Botella, G.: Customized posit adders and multipliers
using the FloPoCo core generator. In: 2020 IEEE International Symposium on
Circuits and Systems (ISCAS), pp. 1–5. IEEE (2020)

19. Murillo, R., Del Barrio, A.A., Botella, G.: Deep pensieve: a deep learning frame-
work based on the posit number system. Digital Signal Process. 102, 102762 (2020)

20. Podobas, A., Matsuoka, S.: Hardware implementation of POSITs and their appli-
cation in FPGAs. In: 2018 IEEE International Parallel and Distributed Processing
Symposium Workshops (IPDPSW), pp. 138–145. IEEE (2018)

21. Redmon, J., Farhadi, A.: Yolov3: an incremental improvement. CoRR
abs/1804.02767 (2018)

22. Sandler, M., Howard, A.G., Zhu, M., Zhmoginov, A., Chen, L.: Mobilenetv 2:
inverted residuals and linear bottlenecks. In: CVPR, pp. 4510–4520. IEEE Com-
puter Society (2018)

23. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale
image recognition. In: 3rd ICLR (2015)

24. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the incep-
tion architecture for computer vision. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 2818–2826 (2016)



30 O. Desrentes et al.

25. Uguen, Y., Forget, L., de Dinechin, F.: Evaluating the hardware cost of the posit
number system. In: 2019 29th International Conference on Field Programmable
Logic and Applications (FPL), pp. 106–113. IEEE (2019)

26. Xiao, F., Liang, F., Wu, B., Liang, J., Cheng, S., Zhang, G.: Posit arithmetic hard-
ware implementations with the minimum cost divider and squareroot. Electronics
9(10), 1622 (2020)

27. Zhang, H., He, J., Ko, S.B.: Efficient posit multiply-accumulate unit generator for
deep learning applications. In: 2019 IEEE International Symposium on Circuits
and Systems (ISCAS), pp. 1–5. IEEE (2019)



Qtorch+: Next Generation Arithmetic
for Pytorch Machine Learning

Nhut-Minh Ho1(B), Himeshi De Silva2, John L. Gustafson1,
and Weng-Fai Wong1

1 National University of Singapore, Singapore, Singapore
{minhhn,john.gustafson,wongwf}@comp.nus.edu.sg

2 Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
himeshi de silva@i2r.a-star.edu.sg

Abstract. This paper presents Qtorch+, a tool which enables next gen-
eration number formats on Pytorch, a widely popular high-level Deep
Learning framework. With hand-crafted GPU accelerated kernels for pro-
cessing novel number formats, Qtorch+ allows developers and researchers
to freely experiment with their choice of cutting-edge number formats
for Deep Neural Network (DNN) training and inference. Qtorch+ works
seamlessly with Pytorch, one of the most versatile DNN frameworks, with
little added effort. At the current stage of development, we not only sup-
port the novel posit number format, but also any other arbitrary set of
points in the real number domain. Training and inference results show
that a vanilla 8-bit format would suffice for training, while a format
with 6 bits or less would suffice to run accurate inference for various
networks ranging from image classification to natural language process-
ing and generative adversarial networks. Furthermore, the support for
arbitrary number sets can contribute towards designing more efficient
number formats for inference in the near future. Qtorch+ and tutorials
are available on GitHub (https://github.com/minhhn2910/QPyTorch).

Keywords: Deep Learning · Posit format · Novel number formats ·
Pytorch framework

1 Introduction

Reducing the bitwidth of number representations employed in Neural Networks
to improve their efficiency is a powerful technique that can be used to make
Deep Learning more accessible to a wider community. This is especially impor-
tant when the variety of applications that use Deep Learning and the size and
complexity of models have all increased drastically. For example, even with the
latest GPU hardware capabilities, the GPT-3 model with 175 billion parameters
requires 288 years to train [4]. The reason for the extraordinary training time and
computational resources required is primarily due to the fact that the gargan-
tuan amount of parameters cannot fit into the main memory of even the largest
GPU [30]. Therefore, lowering the precision to reduce the memory consumption
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is extremely helpful to improve execution times and enable models to be run on
a wider range of general-purpose hardware.

Research into low-precision number representations and their related arith-
metic operations for Deep Learning has made many inroads in recent years.
Several new low-precision floating-point formats have been proposed, many of
them specifically targeted towards this domain. PositTM arithmetic [13] with
its ability to provide tailor-made accuracy to values that are of significance in
the application, has seen increasing interest. Due to the arithmetic properties of
posits, they naturally lend themselves to low-precision neural network training
and inference. In the case of low-precision inference, custom sets of values can
also be designed for quantization to achieve high levels of model compression.
Therefore, these formats merit comprehensive investigations for the use in DNN
training and inference.

Due to the fast-pace and significant interest, a pressing issue the Deep Learn-
ing research community has had to grapple with in the recent past is the dif-
ficulty for independent groups to reproduce model results that are being pub-
lished. Though publicly available industry benchmarks [28] have been created
to address the problem, even those results cannot practically be reproduced by
research groups without access to significant expertise and resources. The fine-
tuning and hand-tweaked kernels are almost always proprietary and not publicly
available. An open-source Deep Learning framework which enables experiment-
ing with the aforementioned arithmetic formats, will allow researchers to quickly
prototype and test newer number representations for Deep Learning.

In this paper we present Qtorch+, a framework for experimenting with posits
and arbitrary number sets with flexible rounding for Deep Learning. Qtorch+
is developed upon QPyTorch, a low-precision arithmetic simulation package in
PyTorch that supports fixed-point and block floating-point formats [48]. Because
our framework operates seamlessly with PyTorch, users are granted all the flexi-
bility that come with it for low-precision experimentation. This includes support
for a rich set of models, benchmarks, hardware configurations and extendable
APIs. Leveraging the many capabilities of Qtorch+, we evaluate an extensive
set of benchmarks for both training and inference with low-precision posits and
arbitrary number sets.

The remainder of the paper is organized as follows. Section 2 presents some
background into Neural Networks, floating-point and fixed-point formats, posits
and arbitrary number sets. It also gives an introduction into integer quantization
and discusses work in the area relevant to these topics. In Sect. 3 we present the
design and implementation details of the Qtorch+ framework. Section 4 gives
and overview of the practical usage of the framework for training and inference.
Section 5 details the results the framework achieved on inference tasks. Some
case studies related to training with posits and performing inference with a
customized number set are presented in Sect. 6. Section 7 concludes.
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2 Background and Related Work

2.1 Neural Networks

Neural networks have achieved astonishing performance on different complex
tasks in recent years. Starting with the introduction of Convolutional Neural
Networks (CNN) for image classification, they have branched out to many other
diverse tasks today [25]. The initial CNNs were typically trained using the back-
propagation method [24] which required intensive computational power. Hard-
ware that could handle such computational demands and the representative
datasets required for training more complex tasks remained an obstacle for a
long period of time. More recently, with the introduction of GPUs for acceler-
ated training and inference at multiple magnitudes faster than traditional proces-
sors, more and more deeper neural network architectures have been designed to
tackle more complex datasets and challenges (e.g. Imagenet [10]). Most notably,
the introduction of very deep networks such as Resnet [14] have revolution-
ized the approach to computer vision with Deep Learning increasingly adopted
for more difficult tasks. To this day, neural networks have been used for many
tasks including vision [14,45,49], language [4,43], audio [31,37], security [36,42],
healthcare [12,39], general approximation [19,47], etc.

2.2 Floating-Point and Fixed-Point Formats

Floating-point and fixed-point formats have been widely used for general com-
putation since the early days of the computing era. They have different char-
acteristics which make them suitable for different application domains and
for different approximations. This led to various works on tuning those for-
mats [1,6,8,11,15,18]. Recently, with the popularity of deep neural networks,
hardware vendors and researchers have found that lower bitwidth on these for-
mats can still achieve high accuracy both on inference and training while improv-
ing system energy efficiency and performance [29,40]. Thus, there are several
works that target the reduced precision of floating point and fixed point format
for neural network inference and training [5,40,41,44] [3,17,26,38].

Both arbitrary bitwidth floating-point and fixed-point formats have been sup-
ported by the original QPytorch framework. In this paper, we focus on extending
the framework to support novel number formats such as posits and, more gen-
erally, arbitrary sets of numbers.

2.3 Integer Quantization

Integer quantization in neural networks refers to the mapping FP32 values to 8-
bit integer (INT8) values. This process requires selecting the quantization range
and defining the mapping function between FP32 values to the closest INT8 value
and back (quantize and dequantize). If the selected range is [α, β], then uniform
quantization takes an FP32 value, x ∈ [α, β] and maps it to an 8-bit value. The
most popular mapping function used is f(x) = s · x (scale quantization) where
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s, x, z ∈ R; s is the scale factor by which x will be multiplied. The uniform scale
quantization is the most popular in hardware [46]. Let s1 and s2 be the scales
used to quantize weight W and activation A of a dot product operation (⊗).
The scale quantized dot product result R′ can be dequantized by multiplying
with the appropriate factor:

R′ = W ′ ⊗ A′ =
K∑

1

wi × s1 × ai × s2 = R × s1 × s2

Integer quantization is already supported by mainstream frameworks and
hardware vendors [21,46]. Thus, it is not the primary focus of this paper.

2.4 Posit Format

The posit number format has a distinctive property compared to other formats
which results in better numerical stability in many application domains. The
distribution of representable values in posits is more concentrated to a central
point in the log2 domain (around 20) as seen in Fig. 1b. This property will ben-
efit certain applications where most of the values are concentrated to a specific
range. In contrast, this will overwhelm the number of representable values of
both floating-point and fixed-point formats. As seen in the Figure, the floating-
point accuracy distribution is uniform when compared to the tapered accuracy
of posits. Consequently, many studies [7,16,22,23,27] have shown that DNNs
and some specific domain applications [20] are among the beneficiaries of this
property of posits.

The above described property is due to the unique representation of posits.
Figure 1a shows an example of a posit. A posit environment is defined by the
length of the posit, nsize, and the size of the exponent field, es, which in this
case is 16 bits and 3 bits. The first bit is reserved for the sign of the number.
What follows after the sign is the regime field which is of variable length. To
decode the regime, one can simply count the number of 0s (or 1s) after the sign
until a 1 (or 0) is reached. If the first regime bit is 0 the regime is negative and
vice-versa. In this case, the regime is therefore −3. The regime value is used
as the power to be raised for a value known as useed which is computed by
using the exponent length: (22

es

). There is always an implicit hidden bit in the
fraction (except for zero). All these fields are read as shown in the Figure to
obtain the value the posit is representing. Complete details of the posit format
and its related arithmetic can be found in the posit standard [32].

2.5 Arbitrary Number Sets

Apart from the aforementioned formats, we found that allowing arbitrary num-
ber sets for inference can help accelerate the research and development of cus-
tomized hardware for machine learning applications [2,34]. Thus, we also extend
the framework to support any number format which can be customized depend-
ing on the application. For this feature, the user will use their own method
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Fig. 1. Posit format

to craft a highly specialized table set for rounding. The arbitrary number set
feature can also directly simulate any number format and other table lookup
techniques. In general, any number format can be simulated with this method
given the set of all representable values in the format. However, due to the table
size, we recommend using this for very low bitwidth representations. As case
studies of this feature, we will give some examples of using this to achieve very
small sets while maintaining high output quality for selected applications. This
feature will support two main research directions:

– Hardware friendly number formats with strict rules on the distribution of
representable values. This category consist of number formats that are known
to be efficient in multiplication (logarithmic domain, additive of logarithmic
numbers).

– Arbitrary number sets which have no rules on the distribution of representable
values. To implement this category in hardware, we need a customized table
lookup or integer-to-integer mapping combinational logic circuit.

3 Design and Implementation of Qtorch+

Because most Deep Learning frameworks and accelerators support extremely
fast FP32 inference, we can take advantage of highly optimized FP32 implemen-
tations as the intermediate form to simulate our number formats with sufficient
rounding. For this to work correctly, we assume that FP32 is the superset of our
target format to be simulated. This remains true when the number simulated is
low bitwith (e.g. 8-bit and below). For simulating higher bitwith (above 16 bits)
arbitrary number formats, we can opt to use FP64 as the intermediate number
format to store the rounded values. In the context of this paper, we focus on
very low bitwith number formats and using FP32 as the intermediate format.
The workflow of a DNN operation simulated in a low bitwidth number format
with correct rounding can be viewed in Fig. 2. This method has been widely
used to simulate low precision fixed-point and floating-point formats and inte-
ger quantization in state-of-the-art techniques [48]. By introducing posits to the
framework, the quantizers in Fig. 2 will have configuration parameters: nsize, es
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for posit format and scaling which is used to implementing exponent bias as in
Sect. 3.2. All of the quantizers and their usage will be demonstrated in Sect. 4.1.

Fig. 2. Qtorch+’s training model and APIs are inherited from the original QPytorch
framework with the separated kernel approach to quantize the values to new formats
while using FP32 matrix multiplication for fast simulation time. We extend these func-
tionalities to support posits, exponent biases and arbitrary number sets

3.1 Floating-Point and Posit Conversion

To simulate posits efficiently, we implement the conversion between the number
format and FP32 in Qtorch+ using integer and bit operations as well as built-in
hardware instructions. The implementation of the functions are based on efficient
encoding and decoding of a 16 bit posit into FP32 [9].

To convert a posit into FP32, the sign bit is first extracted and the two’s com-
plement value of the number is obtained if the sign is negative. Thereafter, the
regime is decoded as described in Sect. 2.4. Once these two operations are com-
pleted, we can remove these two fields with a right shift operation and directly
superimpose the remaining exponent and fraction fields to the corresponding
fields of an FP32 value. To get the final exponent, the decoded regime value and
the exponent point bias has to be added to the exponent field.

To convert an FP32 value to a posit, first the FP32 value needs to be checked
against the maximum and minimum bounds of the posit’s representable range.
If it can be represented as a posit, then as in the case before the sign can be
extracted. The regime and exponent field of the posit can be decoded directly
from the exponent field of the FP32 number. Some post-processing is done to
format the regime field afterwards. Once all the fields are known, the posit can be
assembled and formatted. There are many tweaks to these algorithms described
that are performed to make these two operations very efficient.
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3.2 Scaling and Using the Exponent Bias in Posit

After studying the the value distribution histograms of many neural networks, we
found that both the weights and the activations can be scaled for a more accurate
posit representation. For example, in some GANs, the weights are concentrated
in the range [2−4 to 2−5]. Therefore, we can shift the peak of the histogram
to the range with highest posit accuracy, near 20. Note that scaling cannot
provide additional accuracy for floating-point formats because their accuracy
distribution is flat (see Fig. 1b).

Before and after a computation using a posit value, the encoder and decoder
are used to achieve scaling. The decoder will decode the binary data in posit
format to {S,R,E, F} which represent {sign, regime, exponent, fraction}, ready
for computation. The definitions of biased encoder and decoder for posit data P
and a bias t are as follow:

Biased Decoder : {P, t} → {S,R,E − t, F}
Biased Encoder : {S,R,E + t, F} → {P} (1)

We scale using the posit encoder and decoder instead of floating-point mul-
tiplications for efficiency. If we choose an integer power of 2 for the scale, input
scaling and output descaling can be done by simply biasing and un-biasing the
exponent value in the encoder and decoder, as shown in Eq. 1. This exponent
bias can be easily implemented in hardware by additional integer adder circuit
with minimal hardware cost [16].

3.3 Arbitrary Number Sets

This feature is fully supported by the extended quantizer. To use this, the user
will create a full set of all possible representable values of their format and pass
it as an input to the quantizer. All the real values will then be rounded to
their nearest value in the given set. This feature will be described in detail and
demonstrated in Sect. 6.4.

4 Practical Usage of Qtorch+

This section describes the APIs of Qtorch+ and how to use novel number formats
in Deep Learning applications.

4.1 Leverage Forward hook and Forward pre hook in Pytorch

To use Qtorch+ in inference seamlessly without any additional effort from the
user, we leverage the “hook function” feature in Pytorch [33]. The weights can
be quantized with our posit quant function without the need for modifying the
original model. However, for activation, changing the model code to intercept
the dataflow of layers is required to apply custom number format simulation.
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With the recent Pytorch version and the introduction of “hook” functions, there
is no need to modify the original model to achieve the same result. The for-
ward hook function is to process the output of the current layer before going to
the next layer. The forward pre hook function is used to process the input of
the current layer before doing the layer operations. Thus, forward pre hook is
a universal way to intercept the input of any layers while forward hook is the
convenient way to intercept the output of any layer. For general usage, we can
use forward pre hook and preprocess activations of the current layer with low
bitwidth number formats. Likewise, we use forward hook for extra simulation of
the precision of the accumulator when we do not assume the exact dot product.

Fig. 3. Using Pytorch’s feature to intercept the dataflow and simulate inference.

4.2 Qtorch+ in Training

Listing 1 shows the modification required to prepare the model for training. As
we can see, the steps taken are not much different from the standard pytorch
models preparation and construction. There are two main steps that we need to
perform in order to use posit training:

– Declare all the quantizer used for each component of the optimizer and ini-
tialize the new optimizer with these parameters.

– Modify the model source code (MyModelConstructor) to use the argument
act error quant in the forward pass of the model. The quant function must
intercept the dataflow between each Convolutional/Linear layer for correct
simulation. User can decide their own policy of skipping some layers to use
higher precision (posit16, FP16 or FP32) if necessary.
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1 from qtorch.quant import Quantizer, quantizer

2 from qtorch.optim import OptimLP

3 from qtorch import Posit

4 # define two different formats for ease of use

5 bit_8 = posit(nsize=8, es=2)

6 bit_16 = posit(nsize=16, es=2)

7

8 # define quantization function for each component of the neural network

9 weight_quant = quantizer(bit_8)

10 grad_quant = quantizer(bit_8)

11 momentum_quant = quantizer(bit_16)

12 acc_quant = quantizer(bit_16)

13

14 # define a lambda function so that the Quantizer module can be duplicated easily

15 act_error_quant = lambda: Quantizer(forward_number=bit_8, backward_number=bit_8)

16

17 #Step not included here: modify model forward pass to add quant() between layers.

18 model = MyModelConstrutor(act_error_quant)

19

20 #define normal optimizer as usual

21 optimizer = SGD(model.parameters(), lr=0.05, momentum=0.9, weight_decay=5e-4)

22 #user the enhanced optimizer with different number formats.

23 optimizer = OptimLP(optimizer,

24 weight_quant=weight_quant,

25 grad_quant=grad_quant,

26 momentum_quant=momentum_quant,

27 acc_quant=acc_quant,

28 grad_scaling=2**10 ) # do loss scaling if necessary

Listing 1: Example of the modification needed to add to prepare the model for
training with Qtorch+.

4.3 Qtorch+ in Inference

Listing 2 shows how to utilize posits (or other number formats) in inference. The
code in details involve two main steps:

– Decide the number formats for processing convolutional/linear layer. It
is implemented as two functions: linear weight and linear activation (e.g.
posit(6,1) in Listing 2. Decide the number formats for processing other layers
(and the layers in excluded list). This number format for other layers needs
to be in high precision to prevent accuracy loss. It also needs to be compati-
ble with the low-bitwidth format for efficient hardware design (an accelerator
that supports both FP32 and posit6 is likely more expensive than the one
that only support posit6 and posit16).

– Given a pretrained model, instead of looking into the model definition, we
can prepare and call the prepare model() function with the logic in Listing 2.

– In general, the simulation of the number format for output with forward hook
as in Fig. 3 can be skipped when we assume the dot product is done using the
quire and the output format has enough precision to hold the output value
(high precision as posit 16-bit or 32-bit).
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1 from qtorch.quant import posit_quantize

2 def other_weight(input):

3 return posit_quantize(input, nsize=16, es=1)

4 def other_activation(input):

5 return posit_quantize(input, nsize=16, es=1)

6 def linear_weight(input):

7 return posit_quantize(input, nsize=6, es=1, scale=scale_weight)

8 def linear_activation(input):

9 return posit_quantize(input, nsize=6, es=1, scale=scale_act)

10

11 def forward_pre_hook_other(m, input):

12 return (other_activation(input[0]),)

13 def forward_pre_hook_linear(m, input):

14 return (linear_activation(input[0]),)

15

16 layer_count = 0

17 excluded_list = [] # list of all layers to be excluded from using low precision

18 model = torchvision.models.efficientnet_b7(pretrained=True) #load pretrained model

19 for name, module in model.named_modules():

20 if isinstance(module, nn.Conv2d) or isinstance(module, nn.Linear) \

21 and layer_count not in excluded_list:

22 module.weight.data = linear_weight(module.weight.data)

23 module.register_forward_pre_hook(forward_pre_hook_linear)

24 layer_count +=1

25 else: #should use fixed-point or posit 16 bits for other layers’ weight

26 if hasattr(module, ’weight’):

27 layer_count +=1

28 module.weight.data = other_weight(module.weight.data)

29 module.register_forward_pre_hook(forward_pre_hook_other)

Listing 2: Example of the preprocessing code needed to add to prepare the model
for inference with Qtorch+. Note that this code is generic to all models which
can be loaded at line 18. We do not need to modify the source code of the
model definition as other frameworks. For user convenience, we can hide this
whole procedure into a single function prepare model which does exactly the
same task.

5 Inference Results of Posit

Table 1 shows the inference results of low bitwidth posit formats on different
tasks. Because our framework is fully compatible with Pytorch, we can choose a
diverse set of models for difficult tasks, especially the recent state-of-the-art mod-
els [4,45,49]. Any model that has a script which can be run using Pytorch can
leverage our framework. Our models include the state-of-the-art image classifica-
tion model EfficientNet B7 which reaches 84.3% top 1 accuracy on Imagenet. We
also include the released GPT-2 model of OpenAI which achieved state-of-the-
art performance in Language Modeling when it was introduced. For performance
metric, we follow the guideline of other benchmark suites which set the thresh-
old 99% of FP32 quality when using lower precision. The vanilla posit8 (without
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scaling) can achieve beyond 99% accuracy of FP32 in half of the models. The
accuracy of image classification models when using posit8 conforms with the 99%
standard (except GoogleNet which achieves 98.9% FP32 Accuracy). The pre-
trained models are retrieved from the official Pytorch1, hugging face framework2

and the respective authors. The inference models and scripts to run with posits
are accessible online3. For image classification task, the test dataset is Imagenet.
For Object detection, the test set is COCO 2017. For style transfer and super res-
olution models, we use custom datasets provided by the authors [45,49]. Question
answering and language modelling task uses the SQuaD v1.1 and WikiText-103
dataset respectively.

When hardware modification is not allowed, the rest of the model can achieve
99% FP32 standard by dropping the first and the last layer of the models and
apply higher precision to them (posit(16,1)). With little modification to the
hardware to include an exponent bias, we can increase the accuracy of the model
vastly as can be observed in column P6+DS in Table 1. The effect of scaling can
increase the accuracy up to 7.8% in ResNEXT101. In GANs (Style Transfer and
Super resolution tasks), the effect of skipping the first and the last few layers
are more important than scaling posit format. Thus, we can see the P6+D can
surpass posit8 in most cases. We will provide the results of posit8 when applying
scaling and skipping to reach 99% FP32 standard.

6 Case Studies

6.1 Training with Posit8

Previous works have shown that posit8 is enough for training neural network
to reach near FP32 accuracy both in conventional image classification appli-
cation [27] and GANs [16]. In the context of this paper, we do not enhance
previous results. Instead, we try to show the completeness of the framework
which supports several training tasks. Because many pretrained neural networks
have been fine tuned for weeks or even months, we also do not replicate the
training results of these tasks. Instead, we will show a diverse training tasks on
neural networks which converge in less than a day due to time constraints. For
other high time-consuming tasks when training with posit, please refer to the
related work which used our extension to train Generative Adversarial Networks
which typically takes days to weeks to complete one experiment [16]. The results
can be seen in Table 3. This training results can be reproduced with our sample
code and gradient scaling configuration for P8+ available at4. From the table
we can see that, in contrast with inference, P(8,2) has dominant performance
in training compared to P(8,1). With correct scaling, the P8+ can reach FP32
accuracy. This agrees with previous works [29] that gradient scaling (also known

1 https://pytorch.org/vision/stable/models.html.
2 https://huggingface.co.
3 https://github.com/minhhn2910/conga2022.
4 Same link as footnote 5.

https://pytorch.org/vision/stable/models.html
https://huggingface.co
https://github.com/minhhn2910/conga2022
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Table 1. Inference results of 12 models on different tasks. For Image classification
applications, the values are accuracy %. For Object Detection application, the values
are box average precision (boxAP %). For GAN (style transfer and super resolution),
the values are structural similarity index measure (SSIM %). For Question Answering,
the values are F1 scores. For Language Modelling task, the value are Perplexity(lower
better). P(6,1) means posit format with 6-bit nsize and 1-bit es. P6+D means applying
the best posit 6-bit configuration while dropping (excluding) ≈2 layers in the original
models for use in higher precision. P6+DS mean applying both dropping layers and
weight/activation scale (exponent bias). The cells in bold font are where the configu-
rations reach 99% FP32 quality as specified by MLPerf benchmark [35].

Task Model FP32 P(8,1) P(8,2) P(6,1) P(6,2) P6+D P6+DS

Image classification Resnet50 76.1 75.7 75.3 66.3 54.9 69.1 74.4

Image classification ResNEXT101 79.3 78.8 78.4 66.3 65.8 69.8 77.6

Image classification GoogleNet 69.8 69.0 68.8 55.8 34.9 59.4 65.5

Image classification EfficientNetB7 84.3 84.0 83.7 79.8 75.3 80.2 82.7

Object detection FasterRCNN 36.9 36.4 36.2 25.5 24.0 28.2 35.5

Object detection MaskRCNN 37.9 37.5 37.2 36.9 25.3 28.8 36.5

Object detection SSD 25.1 21.3 24.1 1.6 10.8 15.3 22.6

Style transfer Horse-to-Zebra 100 96.4 93.7 84.8 79.6 98.0 98.4

Style transfer VanGogh Style 100 95.0 90.6 80.7 72.3 96.2 96.7

Super resolution ESRGAN 100 95.1 89.7 72.9 61.1 99.2 99.6

Question answering BERT-large 93.2 93.2 93.2 92.8 92.9 92.9 92.9

Language modeling GPT2-large ↓ 19.1 19.1 19.2 21.4 22.0 20.8 19.5

Table 2. Enhancing the benchmarks in Table 1 to reach the 99% FP32 standard with
posit 8-bit and with layer skipping and scaling. We pick the best accuracy among P(8,1)
and P(8,2) for each model to present the result

Models GoogleNet FasterRCNN SSD Horse-to-Zebra VanGoghStyle ESRGAN

P8+ 69.5 36.6 24.8 99.8 99.7 99.9

as loss scaling) in low precision is advantageous and should be applied as a stan-
dard procedure in other training framework. For network like VGG11, we saw
that correct gradient scaling can recover the training accuracy from 22.9% to
88.6%. In this experiment, we manually set the gradient scales based on experi-
menting all the power-of-2 scales possible (from 2−10 to 210) and choose the best
scale which results in the best training output. The scale is static and be used
for the entire training without changes. We set the number of training epochs
to be 10 epochs for Lenet and Transformer5 and 20 epochs for other networks.

5 For Transformer, we had to use P(16,2) for the backward error propagating instead
of P(8,2) to achieve convergence.
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Table 3. Training and inference with Qtorch+ and Posit. P8+ means the posit 8-bit
configuration is used with gradient scaling that achieves highest output quality.

Model Task (metric) Dataset FP32 P(8,1) P(8,2) P8+

Lenet Classification (Top1 %) MNIST 98.7 9.8 98.6 99.0

Resnet Classification (Top1 %) Cifar10 91.0 11.1 89.7 91.6

VGG Classification (Top1 %) Cifar10 87.5 10.0 22.9 88.6

Resnet Classification (Top1 %) Cifar100 72.9 61.8 72.4 72.7

Transformer Translation (BLEU %) 30 k 35.4 32.9 34.5 35.0

6.2 Tips for Training with 8-Bit Posit

After trial and error, we have summarized a few tips on how to successfully train
neural networks with posit8, especially with model that is difficult to train in
low precision and fail to converge:

– Reduce batch size and use the built-in gradient/loss scaling. The effect of
batch size and gradient scaling will be studied in this section.

– If gradient scaling still does not help convergence, the bitwidths need to be
increased. Heuristically, we found that increasing the backward error precision
is enough for convergence. Because the forward pass of most models is working
well with posit8, they generally do not need higher bitwidth in training.

– Adjusting gradient scaling in training is generally more important than
adjusting the weight scaling and exponent bias of posits.

It is a rule of thumb that using mini-batch will improve training accuracy.
However, small batches mean low utilization of GPUs and longer training time.
Each model has their own default batch size which is used in our experiment in
Table 3. The experiment with different batch sizes are presented in Fig. 4. From
the figure, we can see that the batch size parameter affects the accuracy of both
FP32 and posit training. However, large batch size has stronger adverse effect on
the vanilla posit format. We also conclude that, where the vanilla posit format
cannot help convergence, gradient scaling must be used. In rare cases, when
the gradient scaling on low bitwidth posit format still cannot help convergence,
increasing the bitwidth should be considered. In the experiment in Fig. 4, we
try to further use weight scaling and gradient bias similar to inference but the
effect is not significant and weight-scaling/exponent bias alone cannot help posit8
training reach FP32 accuracy as gradient scaling does.
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Fig. 4. Training with different batch sizes and the effect of gradient scaling. The vari-
ants used are VGG11 and Resnet18. VGG-B128 means VGG11 with 128 images in a
batch.

6.3 Inference with Lower Posit Bitwidth

Section 5 shows that posit6 is still good for some inference tasks. In this section
we will pick a few tasks which have high posit6 quality and further reduce the
precision down to 3 bits to observe the output quality. For each bitwidth, we only
select the format with the best accuracy and perform scaling and layer skipping
similar to Sect. 5. The results can be seen in Fig. 5.

6.4 Inference with Arbitrary Number Set

To demonstrate the ability of the framework to support designing custom number
formats, we conduct experiments with a logarithmic number format. The format
is a series of power-of-two values, with the exponent represented with the fixed-
point format with N bit. Let I.F be a signed fixed point format with I bits signed
integer and F bit fraction part. We can construct a logarithmic format based on
the equation: ±2I.F . The total number of bits required to represent the format is:
I+F+1(sign bit). For this type of format, the multiplication is simple because it
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Fig. 5. Inference with bitwidth lower than 6.



Qtorch+: Next Generation Arithmetic for Pytorch Machine Learning 45

can be performed by adding the I.F fixed point numbers. To use this feature, the
user will generate all possible representable values of the format and supply to
our quantizer (configurable table quantize). Our new quantizer will take all the
representable values as an array and round real values to their nearest entry in
the given numbers set. Figure 6 shows the inference results of multiple networks
on the aforementioned formats. Figure 6, the L2(7 − bit) means the 2I.F format
with I+F+1 = 7 bit. As we can see, a customized format can perform reasonable
well on different neural networks with enough bitwidth. However, it cannot reach
posit accuracy when using extreme low bitwidth (3–4 bits).

User can easily create their own format, or even a random number set with-
out generating rules and optimized the values in the set to improve accuracy. For
optimize number sets with only 4–8 distinct values but achieve good output qual-
ity on other networks (ESRGAN, GPT-2), we will have an online demonstration
on our GitHub repository. Describing and implementing optimizing method for
arbitrary numbers set is beyond the scope of this paper. In this section we only
present the features and demonstrations.

6.5 Overhead of the Framework

Simulating number formats without hardware support will incur certain over-
head on converting the format from and to the primitive FP32 format in the
hardware. Our conversions are implemented both in CPU and GPU to support
the variety of systems. In the end-to-end pipeline, especially in training, the
overhead of simulating novel number formats is overshadowed by other time
consuming tasks (data fetching, optimizer, weight update). The overhead of
inference and training varies vastly between models. Measuring the computa-
tion time to complete one epoch, we got 29% slowdown when training Resnet
and 81% slowdown when training VGG. However, when considering the whole
end-to-end training of 20 epochs, Resnet and VGG got 21% and 70% slowdown
respectively. The measured time for inference the whole Imagenet test dataset
showed insignificant overhead (<10% in the models we tested). For generic mod-
els, our overhead is in range with the original QPytorch framework [48] ≈30%.
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Inference accuracy with custom number formats

Fig. 6. Inference with a custom 2I.F number format
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7 Conclusion

We have presented the design, implementation and usage of Qtorch+, an exten-
sion to Pytorch framework to enable effortless novel number formats inference
and training of neural networks. The extension is fully compatible with recent
Pytorch version and therefore can be applied to many state-of-the-art models.
As shown in our experiment, 8-bit posit arithmetic with scaling and kipping
layers are sufficient to pass the 99% FP32 quality standard set by the commu-
nity. With further extension to remove the restriction on representable number
distribution, we support and arbitrary number set for use in Pytorch. This can
lead to further development and research on novel low-bitwidth number formats
and hardware accelerators in the near future. The tool is available open source
and can also be install with pip package manager. At the time of writing this
paper, our first version of Qtorch+ has received more than 2,000 Python package
installations from around the world.
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Abstract. In this paper, a new low-precision hardware-software code-
sign framework is presented, to optimally select the numerical formats
and bit-precision for TinyML models and benchmarks. The selection is
performed by integer linear programming using constraints mandated by
tiny edge devices. Practitioners can use the proposed framework to reduce
design costs in the early stages of designing accelerators for TinyML mod-
els. The efficacy of various numerical formats is studied within a new low-
precision framework, ACTION. Results assert that generalized posit and
tapered fixed are suitable numerical formats for TinyML when the trade-
off between accuracy and hardware complexity is desired.

Keywords: Deep neural networks · Low-precision arithmetic ·
Hardware-Software Codesign

1 Introduction

TinyML is an emerging machine learning (ML) field that aims to bring intelli-
gence on ubiquitous tiny edge platforms with ≤ 1 MB memory footprint, 100
MOPS (million operations per second) throughput, and ≤ 1 mW power con-
sumption [1]. The capability to perform ML inference on edge devices enabled by
TinyML, can expand the scope of ML applications to new areas such as nature
conservation [2], and STEM education [3]. Moreover, the on-device inference
capabilities provided by TinyML bypass the latency and energy consumption of
data transition between the device and cloud to enhance privacy and security.
However, the resource limitations of edge devices introduce significant challenges
to perform on-device ML inference on current TinyML models with thousands
of parameters and millions of computations [4].

Quite often, to deploy TinyML models on tiny edge devices, the ML inference is
performed with low-precision numerical formats [5–11]. The low-precision numeri-
cal format offers complexity reduction in multiple dimensions, such as computa-
tional resources, energy and memory footprint [5,11]. However, the benefits of
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low-precision numerical format come at the expense of model performance [12].
The trade-off between hardware complexity and accuracy loss differs between dif-
ferent numerical format configurations [13]. The non-uniform numerical format
such as posit [14] has better accuracy and more hardware complexity compared
to a hardware-oriented and equispaced numerical format such as fixed-point. This
incongruence in accuracy and hardware complexity offered by various numerical
formats introduces a broad and large design space for numerical format explo-
ration. Tangential to this, the hardware and model performance constraints are
varied from one edge device to another. The process of manual selection of numeri-
cal format is ad-hoc and sub-optimal due to the large design exploration space and
variability in constraints. Therefore, the process of selecting the optimal numer-
ical format for a TinyML target requires an automatic hardware-software co-
design framework that considers model performance and hardware complexity con-
straints. Such a framework can be used by practitioners and startups as an Early-
DSE [15] (early stage design space exploration) framework that generates the tem-
plate for a suitable accelerator, including the numerical format specification (to aid
in reducing the cost of the accelerator’s design). Other frameworks that automat-
ically select an appropriate low-precision numerical format based on constraints
that are mandated by TinyML model performance and tiny edge platform limi-
tations have been previously proposed in literature [5–7,11]. However, the scope
of these existing hardware-software co-design frameworks have been limited to
the selection of a bit-precision of the fixed-point numerical format for a particular
layer of a TinyML model [5,6]. Moreover, the current frameworks to select a low-
precision numerical format use computationally intensive reinforcement learning
(RL) algorithms with high sensitivity to initial parameter selection [5,6].

Therefore, we propose a hardware-software co-design framework, called
ACTION, that finds the optimal numerical format configuration through integer
linear programming (ILP) inspired from recent studies in mixed-precision quan-
tization [16,17]. Using ILP optimization instead of RL reduces the search time,
bypasses the need for hyperparameter optimization, and reduces computational
overheads [16]. Specifically, the optimal numerical format configuration achieved
through the ILP solver minimizes or maximizes one of the objective metrics (e.g.,
accuracy) while the other subjective constraints (e.g., latency, memory footprint)
are met. Unlike the existing frameworks, ACTION, supports a broad range of
numerical formats including posit and generalized posit, summing up to a total
of 60 possible numerical format configurations.

The key contributions of this work are as follows:

1. We develop a low-precision hardware-software co-design framework to con-
strain the early stage design space exploration which selects an appropriate
numerical format based on the custom user defined constraints through inte-
ger linear programming optimization.

2. Various configurations and dataflows in a systolic array based architecture
are studied to evaluate the performance of the numerical formats when incor-
porated in an accelerator.
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2 Background

A non-zero finite real number y is represented by Eq. (1) where s is the sign, L
is the bit array, φ is a function mapping the bit array f ∈ [0, 1) as a fraction to
a real value, and � is an arbitrary function between the integer and the fraction
(in this study � ∈ {×,+})

y = (−1)s × ψ(L) � φ(f) (1)

The numerical format used in this study is summarized in Table 1, based
on Eq. (1). Note that all numerical formats use a two’s complement representa-
tion to represent a negative number except for the floating point numerical for-
mat, which uses a sign-magnitude representation. The main difference between
these numerical formats is the way that the bit array L is encoded. In tradi-
tional numerical formats such as fixed and floating point, L is binary(B) and
offset-binary(OB) encoded respectively while in recent numerical formats such
as tapered fixed-point (taper [18]), L is signed unary encoded or regime encoded
(RE) where the runlength m of identical bits (l...l) is terminated by either an
compliment bit l where m ≤ n or by a final bit. Hence the value R in regime
encoding is computed as (2).

R =

{
−m, l = 0
m − 1, l = 1

(2)

In posit and generalized posit numerical formats the bit string l is divided
into two parts, the regime and the exponent. The regime bit array is singed
unary encoded and the exponent bit array is binary encoded. The signed unary
encoding is a variable encoding that adds a tapered accuracy attribute to the
posit, generalized posit and tapered fixed-point formats. In numerical formats
with tapered-accuracy, the density of values is highest near 0 and then tapers
towards the maximum-representable number as shown in Fig. 1.

Table 1. Description of numerical formats that are explored in this study.

Format L Encode ψ(L) � φ(f) Parameters

Fixed-point B L + f –

Tapered fixed-point RE R + f Is, sc

Floating point OB 2e−2es−1−1 × 1 + f –

Posit RE, B 22esR+e × 1 + f –

Generalized posit RE, B 22esR+e+eb × 1 + f rs,eb

The numerical formats with a tapered-accuracy characteristic are more appro-
priate to represent TinyML model parameters (weights) due to their bell-shaped
distribution [9].
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Among numerical formats with the tapered-accuracy characteristic, only gen-
eralized posit and tapered fixed-point can accommodate the variability observed
in a layer’s parameter distribution by assigning two additional hyperparameters
that can modify it’s dynamic range and tapered precision [7,19]. Ordinarily, the
maximum accuracy is located at 1 in posit, generalized posit and tapered fixed-
point formats. The Exponent bias (eb) and scaling factor (sc) can re-center the
location of maximum accuracy from 1 to 2eb or 2sc. The dynamic range and shape
of the numerical format values’ distribution (maximum tapered to uniform) is
controlled by a maximum regime/integer run-length (rs/Is) parameter.

Fig. 1. The relative decimal accuracy [14] for various 8-bit numerical formats Float 8 5
, Float 8 4, Float 8 3 are 8-bit floating format with 5, 4 and 3 exponent bits, respec-
tively, and Posit 8 0, Posit 8 1, and Posit 8 2 are 8-bit posit format with 0, 1, and 2
exponent bits respectively. The Fixed 8 5 indicates fixed-point numerical format with
5-bit integer and 3 fraction bits, and Generalized posit 8 1 4 0 is 8-bit generalize posit
numerical format with es = 1, rs = 4, and eb = 0.

3 Related Work

In recent years, the impact of various low-precision numerical formats on deep
learning inference accuracy has been studied thoroughly [12,13,20–22]. For
instance, Gysel et al. proposed the Ristretto framework to explore the effect
of fixed-point, minifloat (8-bit floating point format with arbitrary exponent
and fraction bit-width), and block floating point (where each block of floating
point numbers used a shared exponent) on classification accuracy [20]. The out-
come of this study on the CIFAR-10 corpus shows negligible accuracy difference
between DNN inference with an AlexNet model using 8-bit and 32-bit floating
point format parameters.

However, a few works proposed empirical frameworks that demonstrate the
effect of numerical formats on the trade-off between performance and hardware
complexity. For instance, Hashemi et al. demonstrate that DNN inference with
8-bit fixed-point using AlexNet (on CIFAR-10 dataset) results in a 6.8× improve-
ment in energy consumption with <2% accuracy degradation compared to a
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DNN inference with 32-bit floating point [13]. Following this work, Langroudi et al.
introduce the Cheetah framework where the trade-off between inference accuracy
and hardware complexity (e.g., energy-delay product (EDP)) is provided for DNN
inference with [5, 8] precision posit, float and fixed-point formats [12]. The optimal
bit-precision for each numerical format in this framework is obtained through a top-
down iterative process where the accuracy and hardware complexity achieved by
a numerical format is compared with the specified design constraints provided by
practitioners. Through this study, posit shows better accuracy and EDP trade-off
as compared to float and fixed-point numerical formats. Recently, Thierry Tambe
et al. [22] and Langroudi et al. [21] introduce two novel numerical formats (adaptive
float and adaptive posit) to represent DNN parameters. With negligible hardware
overhead, these numerical formats are able to adapt to the dynamic range and dis-
tribution of DNN parameters and thus improve inference accuracy [21,22].

The efficacy of numerical formats in terms of hardware complexity and infer-
ence accuracy is also evaluated on TinyML models and benchmarks [5–8,10].
However, the variants of fixed-point numerical formats used for these studies
and other numerical formats is not evaluated on TinyML models and bench-
marks. For instance, Rusci et al. demonstrate a mixed 2-, 4-, 8-bits precision
fixed-point numerical format to perform TinyML inference on MCU devices
with low-memory constraints (e.g., 2 MB) [6]. In this study, the automatic bit
precision assignment policy for parameters across layers are selected through
a reinforcement learning algorithm. On MobileNet V2 and ImageNet dataset,
the aforementioned mixed-precision quanization approach results in about 1.3%
inference accuracy degradation as compared to inference accuracy with 32-bit
floats. Recently, Langroudi et al. introduce an efficient method of quantizing
TinyML models using a novel tapered fixed-point numerical format that lever-
ages the benefit of both posit (in terms of accuracy performance) and fixed-point
(in terms of hardware efficiency) [7]. The tapered fixed-point has shown better
EDP and accuracy trade-off over fixed-point on various benchmarks [7].

This research proposes the ACTION, framework for TinyML models where
the numerical format and bit-precision of model parameters is automatically
selected through ILP optimization. A notable difference between this work and
previous works is that the ACTION framework supports a broad range of numer-
ical formats and its search space exploration time is an order of magnitude faster
than previous RL approach [6].

4 ACTION Framework

The goal of ACTION framework is to automatically and swiftly select the appro-
priate numerical format based on constraints required by TinyML benchmarks
and tiny edge devices. This platform can be generalized for use on other DNN
models and edge devices since it provides the ability for practitioners to choose
their own constraints. This framework comprises of four key aspects as shown
in Fig. 2: User Interface, Initialization, Optimizer, and Evaluator.
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Fig. 2. The ACTION high-level low-precision hardware & software co-design frame-
work for TinyML models on tiny edge platforms

4.1 User Interface

The goal of the user interface is to preselect the metrics and parameters given
as input to the framework. These include benchmark specifications, models,
datasets (e.g., TinyML v0.5 benchmark), metrics, constraints, and variables
(summarized in Table 2, and 3). The framework then generates specifications
of the accelerator such as numerical format configuration, PE configurations,
memory requirements and data flows, that are summarized in an output file.
The input and output of the user interface are specified in YAML format.

4.2 Initialization

In the initialization step, the model is trained with 32-bit floating point values.
The high-precision 32-bit floating point trained weights and activations are trans-
ferred to the evaluator. The specification of the TinyML model that is used by
the accuracy and hardware complexity evaluator is automatically generated.

4.3 Evaluator

The Evaluator unit is explained with the help of an example of a single hidden
layer convolutional neural network to highlight its key components and operation
clearly, although it can be generalized for any TinyML model.

Software Design and Exploration: A computational node in a single hidden
layer convolutional neural network computes (3) where B indicates the bias
vector, W is the weight tensor with numerical values that are associated with
each connection, A represents the activation vector as input values to each node,
θ is the activation function, Q denotes the quantization function, Y is a feature
vector consisting of the output of each node, and M is equal to the product of
(C,R, S) filter parameters: the number of filter channels, the filter heights, and
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the filter weights respectively. The computation in (3) is performed N times,
where N is a product of batch size, output activation size (height and width)
and the number of filters.

Yj = θ(Q(Bj) +
M∑
i=0

Q(Ai) × Q(Wij)) (3)

In this work, each 32-bit floating point TinyML parameter (xi) is mapped to a
l-bit low-precision numerical format value (x′

i) through the quantization function
as defined in (4), where s and z are the scaling factor and zero point, respectively.
Large magnitude 32-bit floating point numbers that are not expressible in [l, u]
(low-precision numerical format values range) are clipped either to the format
lowerbound (l) and upperbound (u). Moreover, the clipped values that lie in
interval [a, b] (the two consecutive low-precision numerical format values) are
rounded to the nearest even number.

x′
i = Q(xi, q, l, u, s, z) = Round(Clip(s × xi + z, l, u)) (4)

The product of quantized activations and weights are computed with a
low-precision numerical format multiplier without rounding the end products.
The products are then accumulated over wide signed fixed-point register, the
quire [14]. Note that this MAC operation for m operands is error free since quire
size, as shown in (5), is selected in a way that the dynamic range of partial
accumulated values are captured. The Dl in (5) represents the dynamic range of
the low-precision numerical format.

wquire = �log2(m)� + 2 × �log2(Dl)� + 2 (5)

Hardware System Design and Architecture: To evaluate the area, energy
and latency of the hardware accelerator, analyzing only the hardware complexity
introduced by various numerical formats can be misleading. Existing frameworks
that evaluate the performance of the numerical formats compare only the energy
consumption of the MAC operations which overlooks the constraints imposed by
memory and dataflow in the accelerator.

In order to evaluate the area, and power of an accelerator which incorporates
a particular numerical format, we limit the evaluation to an architecture compris-
ing of Processing Elements (PE) arranged in a 2D systolic array configuration.
The compute efficiency of the systolic array architectures depends highly on the
dataflow and the PE array size since the matrix multiplication operation of a
TinyML model is mapped to the PEs arranged in the 2D matrix structure. To
estimate the latency of the system we bridge our framework with the SCALE-
Sim tool [23] by simulating the TinyML models for various configurations of PE
and dataflows as illustrated in Fig. 3.
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To analyze the energy consumption and the area of the system, each PE is
replaced with the multiply and accumulate (MAC) unit of the numerical formats
stated in Table 3. The MAC units for various numerical formats and different
configurations were synthesized on the Synopsys 32 nm CMOS technology node.
Power consumption and the area of individual MAC units were combined with
the cycle count and memory access details obtained from SCALE-Sim to analyze
the hardware complexity of the accelerators with various incorporated numerical
format configurations.

Fig. 3. The overview of the accelerator’s system architecture used to evaluate the
efficacy of the numerical formats on accelerators.

4.4 Optimizer

Integer Linear Programming (ILP): The ILP in this work is defined as (6)
where yi and xi are objective and subjective metrics selected from Table 2, A as
configuration sets from Table 3, Cj are constraints with respect to subjective xj .

min
yi

k=1∑
i=0

yi(A)

s.t. xj(A) < cj , 0 < j < 6

(6)



58 H. F. Langroudi et al.

For instance the accuracy degradation (ACCd) is selected as an objective, and
area, EDP, memory footprint, and MAC frequency are chosen as subjectives, the
(6) as in (7). In this study, we set the maximum number of subjective metrics
to 4. On occasion, the subjective metrics have some overlap, such as power and
EDP.

min
ACCd

ACCd(A)

s.t. EDP(A) < EDP Constraint
Area(A) < Area Constraint
Memory footprint(A) < Memory footprint. Constraint
MAC Frequency(A) < MAC Frequency Constraint

(7)

5 Experimental Setup, Results and Analysis

The ACTION framework is implemented in TensorFlow [24]. A summary of
the metrics and constraints specifications are presented in Table 2. The current
version of ACTION framework supports 8 metrics crucial for TinyML appli-
cations. For specific metrics, constraints are selected at 3 intervals between the
best and worst performance yielding values. Note that in some cases, the best
possible result for a specific metric may not meet the TinyML target. This shows
that the low-precision arithmetic needs to combine with other hardware/software
optimizations such as pruning [25] and processing in memory [26] to meet that
specific metric for TinyML. The specification of key variables and their configu-
rations are summarized in Table 3. Note that the generalized posit hyperparam-
eters (rs ∈ [1..n − 1] and eb ∈ [−3, 3]) and tapered fixed-point (Is ∈ [1..n] and
sc ∈ [−3, 3]) are not mentioned in Table 3 since these values are fixed and pre-
determined based on the dynamic range and distribution of parameters [7,19].
The specifications of the tasks and inference performance with 32-bit floats are
summarized in Table 4. To estimate latency, we bridge our framework with the
SCALE-Sim tool [23]. SCALE-Sim, however, does not consider the cycles con-
sumed while shuttling data back and forth between the global buffer and the
DRAM. Therefore, the total latency is re-approximated by considering PE array
execution time and DRAM access time (Micron MT41J256M4). For the energy
estimation analysis, execution time, and power consumption, we consider the
use of the 32-nm CMOS technology node.

5.1 Numerical Formats’ Performance on TinyML Benchmark

The Table 5 are summarized the performance of various numerical formats on
TinyML v0.5 benchmark that evaluated using ACTION framework. Amongst
the evaluated numerical formats, generalized posit shows the best performance.
For instance, the inference accuracy on the image classification benchmark using
generalized posit is improved by an average of 6.70%, 19.92%, 8.66%, 30.02%, as
compared to posit, float, tapered fixed-point and fixed-point respectively. The
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Table 2. The metrics and constraints specification.

Categ Metrics Constraints TinyML target

1 EDP [mean-std,mean,mean+std] –

Energy –

Power ≤ 1mw [1]

2 MAC Frequency 10–100 MHz [27]

3 PE utilization –

4 Area < 20 mm2 [27]

6 Accuracy Degradation 1–6% [1]

7 Memory footprint ≤ 100KB + 0.5MB [28]

Table 3. The key variable specification (P:Posit, FP:Floating point, FX: Fixed-point,
GP: generalized posit, and TFX: tapered fixed-point).

Variable Configuration Search space

Formats P(n ∈ [5..8], es = [0..2]) 60

FP(n ∈ [5..8], e = [3..n − 2])

FX(n ∈ [5..8], f = [1..n − 1])

GP(n ∈ [5..8], es = [0..2])

TFX(n ∈ [5..8])

PE 32 × 32, 32 × 16, 16 × 16, 12 × 14, 8 × 8 5

Data-flow OS, WS, IS 3

Total – 900

Table 4. The TinyML v0.5 [4] models and benchmarks using 32-bit float parameters
description.

Application Dataset DNN Model # Parameters # Ops Performance

Keyword spotting Speech commands v2 DS-CNN 24.91 K 5.54 M 92.15%

Visual wake words VWW dataset MobileNetV1 221.79 K 15.69 M 82.72%

Image classification CIFAR10 ResNet-8 78.67 K 25.27 M 86.26%

high performance of the generalized posit numerical format on TinyML bench-
marks can be credited to the capability of this numerical format to auto-adjust
to the dynamic range and distribution of the weights and activations. Moreover,
we observed that the performance of tapered fixed-point is not only better than
fixed-point, but also, on average, comparable with floats and posit formats, which
has not been previously observed [7]. This finding emphasizes that tapered fixed-
point is a good candidate for TinyML models and applications. Moreover, as the
number of bits is decreased to 7-bits and below, the float, fixed-point and tapered
fixed-point formats show poor accuracy performance. This can be attributed to
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Table 5. The TinyML inference performance using various numerical formats on
TinyML v0.5 benchmark (P:Posit, FP:Floating point, FX: Fixed-point, GP: Gener-
alized posit, and TFX: Tapered fixed-point).

Format
Keyword Spotting Image classification

8-bit 7-bit 6-bit 5-bit 8-bit 7-bit 6-bit 5-bit

P 91.97% 85.33% 48.62% 23.79% 85.31% 77.28% 53.78% 26.19%
FP 86.45% 46.29% 13.72% 8.50% 82.10% 69.45% 11.28% 10.79%
FX 12.70% 8.87% 8.39% 8.22% 37.00% 21.80% 15.97% 12.90%
GP 92.10% 91.39% 88.14% 49.62% 85.81% 83.90% 76.36% 42.72%
TFX 79.20% 43.75% 8.52% 8.43% 85.24% 82.10% 38.60% 17.72%

32-bit FP 92.15% 86.26%

Format
Visual Wake Words

8-bit 7-bit 6-bit 5-bit

P 83.02% 80.58% 74.53% 66.28%
FP 80.02% 68.25% 59.95% 59.37%
FX 76.43% 72.06% 61.86% 60.71%
GP 83.02% 82.14% 76.72% 69.97%
TFX 82.97% 81.92% 76.00% 66.76%

32-bit FP 82.26%

discrepancy between the dynamic range provided by these numerical formats
and the actual dynamic range of weights and activations.

5.2 ACTION Framework Results

Figures 4 and 5 illustrate the performance of each numerical format incorporated
on the various configurations of accelerator and dataflows. The ILP optimization
identified the optimal numerical format much quicker (≤1 s, performed on Intel
i9-9960X) than the tedious and iterative process undertaken by reinforcement
learning optimization algorithms (which can take several hours [5]). When con-
straints are selected in the region beyond the mean plus standard deviation of
metrics (highlighted region), generalized posit was most frequently selected as
the optimal numerical format. Note that except the accuracy vs. MAC frequency
trade-off (Figs. 4.b and 5.b), the numerical formats are selected in way that to
maximize accuracy when the accuracy and hardware constraints (e.g., EDP)
are met. In the case of MAC frequency, the numerical formats are selected to
maximize frequency when the accuracy constraints are satisfied.

To evaluate the efficacy of the numerical formats on a custom accelerator, the
framework uses the SCALE-Sim simulator which outputs the estimated cycle
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Fig. 4. (a) EDP vs Accuracy (b) MAC frequency vs. Accuracy (c) Power vs. Accuracy
(d) Energy vs. Accuracy (e) Area vs Accuracy (f) Memory vs Accuracy for an image
classification task with an accelerator configured with PEs arranged in a 16 × 16
systolic array and output stationary dataflow. The constraint was derived by adding
the mean with the standard deviation of the metric. The numerical format selected
by the ILP optimizer (marked by the large dark blue oval) in the highlighted region
identifies the format for which the best accuracy and metric combination is achieved.
GP n es is n-bit generalized posit with es-bit exponent.
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Fig. 5. (a) EDP vs Accuracy (b) MAC frequency vs. Accuracy (c) Power vs. Accuracy
(d) Energy vs. Accuracy (e) Area vs Accuracy (f) Memory vs Accuracy for keyboard
spotting task with an accelerator configured with PEs arranged in a 16 × 16 systolic
array and output stationary dataflow. The constraint was derived by adding the mean
with the standard deviation of the metric. The numerical format selected by the ILP
optimizer (marked by the large dark blue oval) in the highlighted region identifies the
format for which the best accuracy and metric combination is achieved. GP n es is
n-bit generalized posit with es-bit exponent.
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count and the memory data movement sequences for executing a CNN model
on a custom configuration. The cycle count and the data movement are com-
bined with results obtained by synthesizing the MAC unit of each numerical
format to generate the EDP and latency of the accelerator. Various dataflows
and PE matrix array configurations were compared against the output stationary
dataflow, which outperformed the other dataflows and offered a 24% reduction in
latency as compared to the weight stationary dataflow in particular, for a single
inference cycle. It has also shown significant improvement in EDP and utiliza-
tion factor as compared to the input stationary and weight stationary dataflows.
Moreover, generalized posit has outperformed all the other formats in Keyword
Spotting and Image Classification tasks with minor overhead in EDP.

6 Conclusions

Through the ACTION framework, we propose a hardware-software co-design
framework for early stage design space exploration to discover the optimal numer-
ical formats and accelerator configurations based on custom user defined con-
straints. The configuration selection problem is solved by integer linear program-
ming (ILP), which allows us to identify the optimal numerical format and acceler-
ator configuration faster than reinforcement learning approaches. We show that
generalized posit yields a 16% improvement in the average inference accuracy
over the other numerical formats that are considered in this paper.
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Abstract. Recently proposed real-number representations like Posits

and Elias codes provide attractive alternatives to IEEE floating point for
representing real numbers in science and engineering applications. Many
of these applications represent fields on structured grids that exhibit
smoothness, where adjacent scalar values are similar and often accessed
together in stencil or vector computations. This similarity results in
redundancy in representation, where several leading bits in the repre-
sentation of adjacent values are shared.

We propose a generalization of scalar “universal codes” to small, mul-
tidimensional blocks of values that exploit their similarity and underly-
ing dimensionality. Drawing upon ideas from multimedia and floating-
point compression, our approach combines a decorrelating transform
with adaptive, error-optimal interleaving of coefficient bits, which allows
increasing accuracy per bit stored by orders of magnitude. Our solution
accommodates both a fixed-length representation of blocks—facilitating
random access—and variable-length storage to within a user-prescribed
tolerance—e.g., for I/O, communication, and streaming computations.
Our approach generalizes universal coding of the reals to vectors and
tensors, and is straightforward to implement for several known number
systems by extending a previously published framework for universal
coding based on simple refinement rules.

Keywords: Number representations · Floating point · Universal
coding · Data compression · Decorrelating transform · Vector
quantization

1 Introduction

As data movement and storage have come to dominate the power and perfor-
mance landscape in high-performance computing, there has been a recent push to
investigate new real number representations that are more economical than the
ubiquitous ieee 754 floating-point format [1]. Example proposals include Brain-

Floats [11] and TensorFloats [2], which make a different tradeoff between the
number of exponent and significand bits than ieee 754. More significant depar-
tures from ieee 754 include include Unums [8], Posits [9], URRs [10], and
Elias codes [20], some of which generalize universal codes originally developed
for positive integers [7] to the reals. Many of these representations can be synthe-
sized using number system frameworks that allow experimenting with alternative
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
J. Gustafson and V. Dimitrov (Eds.): CoNGA 2022, LNCS 13253, pp. 66–83, 2022.
https://doi.org/10.1007/978-3-031-09779-9_5
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number representations [18–20,23,25], and several examples have demonstrated
the benefits of such representations in numerical applications in terms of improv-
ing the accuracy per bit stored [14,16,20]. Common to the universal number
representations is the notion of tapered accuracy [21], where commonly occur-
ring numbers near one are represented more accurately than rare numbers that
are extremely small or large in magnitude. This is achieved by allocating fewer
bits to represent the exponent in favor of retaining more bits for the significand
(or fraction) for numbers near ±1.

Many science and engineering applications model the physical world as
mostly continuous scalar fields, such as temperature and pressure, that are sam-
pled discretely onto uniform Cartesian grids and are represented as multidi-
mensional arrays of reals. In these applications, values at adjacent grid points
tend to exhibit significant correlation, which manifests as shared leading bit pat-
terns in their number representation. The conventional approach of representing
arrays as independent scalars wastes precious bits on such redundant informa-
tion, resulting in a larger than necessary memory footprint and associated costs
in moving data through the memory hierarchy. Recent efforts have attempted
to remove the redundancy using variations on block-floating-point representa-
tion [12], by partitioning arrays into small blocks of correlated scalars and elim-
inating shared information [3,16,17]. Whether explicit or not, such methods
substitute the scalar quantization of reals implied by the number representa-
tion with a vector quantization step, where each fixed-length codeword encodes
a whole block of numbers (unraveled as a vector). Current block-floating-point
representations are modeled on ieee 754—they use a fixed-length exponent com-
mon to the block and a set of significands (or coefficients) that are scaled by the
common exponent.

In this paper, we propose an alternative block-based representation that
builds upon the ideas shared by universal number representations, which use a
variable-length encoding of the exponent and that—given sufficient precision—
can represent any real. This is unlike ieee 754 and block-floating-point repre-
sentations that utilize a fixed-length exponent, which places a fixed limit on
the smallest and largest numbers representable regardless of precision. Our new
representation further reduces redundancy by performing a decorrelating linear
transformation, which in effect replaces leading bits shared among values in a
block with strings of leading zeros (or ones) that can be efficiently encoded. We
demonstrate the accuracy benefits of a tapered number system for blocks of reals
combined with a decorrelation step that eliminates shared leading bits in order
to represent more trailing bits of significands. Like most other floating-point-like
representations, we may truncate the binary representation at any point—a step
analogous to rounding—to achieve a fixed-length representation of each block
that facilitates random access (at block granularity). We may alternatively trun-
cate the representation when it satisfies an error tolerance, resulting in variable-
length records. In applications where the data is accessed sequentially, e.g., in
I/O and streaming computations, such variable-length codes ensure a uniform
level of error and avoid an excess in precision when it is not needed or when
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the trailing bits are already contaminated with error, e.g., due to roundoff, dis-
cretization, approximate solvers, sensor noise, etc. [6,15,28].

Our framework generalizes universal codes for R to R
n without being tied to

any particular number representation. Rather, we allow any universal code for
the reals to be used and show how to optimally interleave the bits representing
a collection of scalars from such a code to represent decorrelated real-valued
vectors or tensors. In this paper, we present results of extending Posits and
demonstrate their utility in multiple applications.

2 Preliminaries

One of our earlier insights [18] is that most real number representations are fully
described by a cumulative distribution function (CDF), F (x), with associated
probability density, f(x). F (x) maps a real, x ∈ R, to the interval (0, 1), with
F (−∞) = 0 and F (+∞) = 1.1 The binary bit string 0.b1b2 . . . bp thus represents
F (x) =

∑p
i=1 bi2−i ∈ [0, 1) using p bits of precision.2 In other words, for finite

p, F (x) is rounded to the nearest multiple of 2−p.3 This rounding may also be
viewed as linear scalar quantization with step size Δ = 2−p.

A universal code for the reals also satisfies the following properties:

1. f(x) > 0 ∀x ∈ R, which ensures that every real can be represented uniquely.
Because f(x) = 0 for x > FLT MAX, ieee 754 is not a universal code.

2. |x| ≤ |y| ⇐⇒ f(x) ≥ f(y). In other words, f(x) decreases monotonically
away from zero, with larger |x| requiring longer codewords. As a corollary,
f(x) = f(−x).

3. limx→∞
− log2 f(x)

log2 x is finite. This ensures that − log2 f(x), which governs code
length, does not increase too rapidly. Like universal codes for integers, this
property disqualifies representations like the unary code, whose length is arbi-
trarily longer than binary code.

These properties essentially generalize similar properties required for universal
integer codes; see [7].

Another key insight from [18] is that universal codes may be expressed as
two functions: a generator function, g, that is used in unbounded search to
bracket x ≥ 1 or x−1 ≥ 1, and a refinement function, r(xmin, xmax), that is
used in binary search to increase the precision by narrowing the interval con-
taining x. For Posits, g(x) = βx, where β = 22

m

is the base (also called useed
in [9]); see [19]. In the 2022 Posit standard, m = 2 for Posits regardless of
precision; thus, g(x) = 16x. The generalization of the Elias gamma code uses

1 In Posits and [20], −∞ and +∞ map to the same point, called NaR, and are
represented as F (−∞) mod 1 = F (+∞) mod 1 = 0.

2 Using two’s complement representation, it is common to translate (0, 1) to (− 1
2
, 1
2
)

by negating the b12
−1 term such that the bit string 0.000 . . . represents x = 0.

3 Special rounding modes may be used so that finite numbers are not rounded to the
interval endpoints {0, 1}, which represent ±∞.
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g(x) = 2x, and is thus a particular instance of Posits with m = 0, while
Elias delta uses g(x) = 2x2; see [18]. These number systems use as refine-
ment function the arithmetic mean of the interval endpoints, r(a, b) = (a+ b)/2,
unless a and b differ in magnitude by more than 2, in which case the function
returns the geometric mean, r(a, b) =

√
ab. Thus, a whole number system may be

designed by specifying two usually very simple functions. For simplicity of nota-
tion, we will use the refinement function, r, to split intervals even when they are
unbounded. We use the convention r(−∞,∞) = 0, r(0,∞) = 1, r(a,∞) = g(a),
r(0, b) = r(b−1,∞)−1, r(−b,−a) = −r(a, b); see [18]. Each codeword bit thus
determines in which subinterval, [a, s) or [s, b), x lies, with s = r(a, b).

A näıve way of extending universal codes from R to R
n would be to interleave

the bits from the n independent codewords in round-robin fashion. Not only does
this often result in significant redundancy of identical bits, but such round-robin
interleaving is also suboptimal from an accuracy standpoint when absolute rather
than relative error matters. As we shall see later, one can significantly improve
accuracy by instead interleaving the bits in a data-dependent order.

3 Universal Coding of Vectors

Before describing our coding algorithm in detail, we first outline its key steps.
Given a d-dimensional scalar array, we first partition it into blocks. As in the
zfp [17] representation, we have chosen our blocks to be of length 4 in each
dimension. This block size has proven large enough to expose sufficient correla-
tion, yet small enough to provide sufficiently fine granularity and allow a fast and
simple implementation of decorrelation. Furthermore, a block size that is a power
of two simplifies indexing via bitwise shifting and masking instead of requiring
integer division. Hence, a d-dimensional block consists of n = 4d scalars. If array
dimensions are not multiples of four, we pad blocks as necessary; see [6].

Each block is then encoded separately, either using a fixed number of bits,
np, where p is the per-scalar precision, or by emitting only as many bits as
needed to satisfy an absolute error tolerance, ε. The encoding step begins by
decorrelating the block (Sect. 3.1) using a linear transformation. The goal of this
step is to eliminate any correlation between values and to sparsify the block such
that common leading bits in a scalar representation of the values are (usually)
replaced with leading zero-bits, with many transform coefficients having small
magnitude. We use the same transformation as in zfp, which can be imple-
mented very efficiently using addition, subtraction, and multiplication by 1

2 or
by 2. As in zfp, the resulting set of n transform coefficients is then reordered by
total sequency using a fixed permutation π(x) (Sect. 3.2).4 Finally, the reordered
coefficients are encoded by emitting one bit at a time from the universal scalar
code of one of the n coefficients selected in each iteration (Sect. 3.3). We leave

4 Sequency denotes the number of zero-crossings of a discrete 1D function. Total
sequency denotes the sum of per-component zero-crossings of basis functions in a
tensor product basis, and is analogous to total degree of a multivariate polynomial.
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Encode(x = (x1, . . . , xn), p, ε)
1. x ← Qx // §3.1: decorrelate x
2. x ← π(x) // §3.2: sort x on sequency
3. R ← (−∞, +∞)n // initialize hyper-rectangle
4. for k = 1, . . . , np // §3.3: encode x in up to np bits
5. i ← argmaxj |Rj | // identify widest dimension i
6. I ← Ri

7. if |I| ≤ (
4
15

)d
ε // is error tolerance met?

8. terminate
9. s ← r(Imin, Imax) // compute interval split point

10. if xi < s // is xi below the split point s?
11. output(0)
12. Imax ← s
13. else
14. output(1)
15. Imin ← s
16. Ri ← I // update narrowed interval

Listing 1: Universal coding algorithm for n-dimensional (n = 4d) vector x using
precision, p, and error tolerance, ε. If unspecified, we assume ε = 0. |I| denotes
the interval width Imax − Imin.

the choice of universal scalar code open; in our algorithm, this choice is deter-
mined solely by the interval refinement function, r. The coefficient chosen in each
iteration of the coding algorithm is data-dependent and done in a manner so as
to minimize the upper bound on the L∞ error in the reconstructed block. The
decoding algorithm performs the same sequence of steps but using their natural
inverses and in reverse order.

Listing 1 gives pseudocode for encoding a single d-dimensional block of n = 4d

real scalars. Any arithmetic performed and state variables used must have suffi-
cient precision, e.g., ieee double precision. We proceed by describing each step of
the encoding algorithm in more detail and conclude with some implementation
details.

3.1 Decorrelation

When a (mostly) continuous function is sampled onto a sufficiently fine uniform
grid, values at adjacent grid points tend to be significantly correlated. Such dis-
crete data is said to be “smooth” or to exhibit autocorrelation. Autocorrelated
data is undesirable because it introduces overhead in the representation, as expo-
nents and leading significand bits of adjacent values tend to agree. The process
of removing correlation is called decorrelation, which can be achieved using a
linear transformation (i.e., by a matrix-vector product).

Consider a partitioning of a d-dimensional array into equal-sized blocks of
n = 4d values each. Then each of the n “positions” within a block may be
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(a) (b)

Fig. 1. Decorrelation of two correlated and identically distributed variables (X, Y )
with variance σ2 = 1 and covariance ρσ2 = 0.9. In this simple example, the decorre-
lating transform is merely a 45-degree rotation. These plots show contours of the joint
probability density before and after decorrelation as well as the set of representable
vectors (indicated by dots at regular quantiles) using 6 total bits of precision. In (a),
vectors are represented using 3 bits per component. In (b), 4 bits are used for the X
component (with variance 1 + ρ = 1.9), while 2 bits are used for the Y component
(with variance 1−ρ = 0.1). Notice the denser sampling and improved fit to the density
in (b). Decorrelation here removes the covariance between the two variables.

associated with a random variable, Xi, with the values from the many blocks
constituting random variates from the n random variables. The spatial corre-
lation among the {Xi} is determined by their variance and covariance. The
covariance—and therefore correlation—is eliminated by performing a transfor-
mation (or change of basis) using a particular orthogonal n × n matrix, Q. For
perfect decorrelation, this matrix Q is given by the eigenvectors of the covari-
ance matrix, and the associated optimal transform is called the Karhunen-Loève
Transform (KLT) [27]. The KLT is data-dependent and requires a complete anal-
ysis of the data, which is impractical in applications where the data evolves over
time, as in PDE solvers. Instead, it is common to use a fixed transform such as
the discrete cosine transform (DCT) employed in jpeg image compression [26],
the Walsh-Hadamard transform [27], or the Gram orthogonal polynomial basis,
which is the foundation for the transform used in the current version of zfp [6]
as well as in our encoding scheme. Such suboptimal transforms do not entirely
eliminate correlation, though in practice they tend to be very effective.

To visualize the process of decorrelation, Fig. 1 shows a cartoon illustration
using two correlated and identically distributed random variables (X,Y ), rep-
resenting the relationship between pairs of adjacent grid points. In Fig. 1(a),
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X,Y ∼ N (0, 1) are unit Gaussians with covariance matrix

Σ = QT DQ =
(

1 ρ
ρ 1

)

, (1)

where

Q =
1√
2

(
1 1

−1 1

)

D =
(

1 + ρ 0
0 1 − ρ

)

(2)

represent the eigendecomposition of Σ. (X,Y ) are decorrelated by the linear
transformation

(
X ′ Y ′)T = Q

(
X Y

)T = 1√
2

(
X + Y Y − X

)T , leaving D

as the diagonal covariance matrix, i.e., covariance and therefore correlation
have been eliminated. Furthermore, whereas X and Y have identical variance,
σ2(X ′) = 1 + ρ is far greater than σ2(Y ′) = 1 − ρ when ρ is close to one, as
is often the case. Consequently, we expect random variates from Y ′ to be small
in magnitude relative to X ′, which allows representing Y ′ at reduced precision
relative to X ′ without adverse impact on accuracy. In other words, in a Posit

or other universal coding scheme of (X ′, Y ′) as independent components, with
|X ′| � |Y ′|, the leading significand bits of X ′ carry more importance than the
leading significand bits of Y ′, which have smaller place value.

Our approach to universal encoding of Rn is to make use of the independent
scalar universal codes of the vector components (e.g., X ′ and Y ′ above), but to
interleave bits from those codes by order of importance, i.e., by impact on error.
This allows for fixed-precision representation of vectors from R

n (in our example,
n = 2) as a fixed-length prefix of the full-precision bit string of concatenated
bits. We may also use a variable-precision representation, where we keep all bits
up to some minimum place value ε = 2e, where ε represents an absolute error
tolerance.

Decorrelating Transform. The example above shows a decorrelating trans-
form for pairs of values. In practice, in numerical applications where physical
fields are represented (e.g., temperature on a 3D grid), values vary slowly and
smoothly, and correlations extend beyond just immediate neighbors. This obser-
vation is the basis for block compression schemes such as jpeg image compres-
sion [26] and zfp floating-point compression [17], where larger d-dimensional
blocks of values are decorrelated together, e.g., 8×8 in jpeg and 4×4×4 in 3D
zfp. Due to its success in science applications, we chose to base our universal
encoding scheme on the zfp framework, which relies on a fast transform that
approximates the discrete cosine transform used in jpeg:

Q =
1
16

⎛

⎜
⎜
⎝

4 4 4 4
5 1 −1 −5

−4 4 4 −4
−2 6 −6 2

⎞

⎟
⎟
⎠ Q−1 =

1
4

⎛

⎜
⎜
⎝

4 6 −4 1
4 2 4 5
4 −2 4 −5
4 −6 −4 1

⎞

⎟
⎟
⎠ (3)

This transform, which is slightly non-orthogonal, can be implemented very effi-
ciently in place using lifting steps [5] and involves only 5 additions, 5 subtrac-
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tions, and 6 multiplications by 1
2 or 2, compared to 12 additions and 16 multi-

plications for a standard matrix-vector multiplication; see [6] for details. Unlike
in zfp, we perform arithmetic in floating point, e.g., using ieee double precision
or, if desired, mpfr arbitrary-precision arithmetic. Note how ‖Q‖∞ = 1, which
ensures that there is no range expansion during application of Q. Conversely,
‖Q−1‖∞ = 15

4 . Thus, rounding errors in the transform coefficients may expand

by as much as
(
15
4

)d in d dimensions, which is accounted for in Listing 1, line 7.

Fig. 2. Distributions as interquartile range of the magnitude relative to maximum for
each of the 4×4 values fi,j (left) and transform coefficients for basis functions O(xiyj)
(right). The distributions represent four million randomly sampled 2D blocks from 32
fields from seven different data sources. Notice the effectiveness of decorrelation in
compacting the signal energy into the low-order modes (vertical axis is logarithmic).

As in zfp, we make use of a tensor product basis in d > 1 dimensions, where
we apply the transform along each dimension of a block to decorrelate its 4d

values. Following decorrelation of a block, we proceed by encoding its transform
coefficients, most of which tend to be very small in magnitude. Each block is
thus transformed and encoded independent of other blocks, allowing access to
arrays at block granularity.

Figure 2 illustrates the benefits of decorrelation by plotting the distributions
of values from 2D blocks before and after decorrelation. These distributions
represent the magnitude of values in each block relative to the block’s largest
value, i.e., |fi,j |/max0≤i,j≤3 |fi,j |. The plots show how essentially identically dis-
tributed values fi,j are sparsified by decorrelation using the zfp tensor product
basis Q ⊗ Q. Each basis vector approximates a regularly sampled orthogonal
Gram polynomial, with coefficients for high-order polynomial terms being sev-
eral orders of magnitude smaller than the constant and linear terms. This implies
that the data within each block is well approximated using only a few low-order
terms. The basis functions O(xiyj) have been ordered by total degree i + j,
then by i2 + j2, resulting in a nearly monotonic decrease in each of the quartiles
(Q1 = 25%, Q2 = 50% = median, Q3 = 75%).

Using a Taylor expansion of the continuous scalar field being encoded, one
can show that the magnitude of the ith transform coefficient, f ′

i , in d = 1
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dimension varies as O(hi), with h being the grid spacing. The extension to
higher dimensions is straightforward, e.g., |f ′

i,j,k| = O
(
(Δx)i(Δy)j(Δz)k

)
. Thus,

|f ′
i,j,k| = O(hi+j+k) when Δx = Δy = Δz = h. This further explains why total

sequency ordering by i + j + k results in a monotonic decrease in magnitude as
h → 0. Moreover, this has implications on the variance of transform coefficients,
which could be exploited if different scalar coding schemes were used for the
transform coefficients.

3.2 Reordering

One observation from Fig. 2 is that the decorrelating transform results in trans-
form coefficients whose distributions differ widely. In particular, coefficients cor-
responding to basis functions with high total sequency (shown toward the right
in this figure) tend to be close to zero. Thus, the encoding of bits from those
coefficients tend only to confirm that their intervals should be further narrowed
toward zero. Conversely, low-sequency coefficients tend to carry most of the
information, and hence their bits (within a given bit plane) tend to be more
valuable. Thus, when tiebreaking decisions have to be made in terms of ordering
coefficients within a single bit plane, we prefer to encode bits from low-sequency
coefficients first. This is accomplished by reordering the coefficients by total
sequency, as is also done in zfp and jpeg. That is, a coefficient f ′

i,j,k in a 3D
block has total sequency i + j + k. We use as secondary sort key i2 + j2 + k2,
e.g., a trilinear term (i = j = k = 1) precedes a cubic one (i = 3, j = k = 0),
and break any remaining ties arbitrarily. Note that this ordering tends to list
coefficients roughly by decreasing magnitude.

3.3 Encoding

At this point, we have a set of decorrelated values roughly ordered by decreasing
magnitude. Because they are no longer correlated, their joint probability density
(in the idealized case) is given by the product of marginal densities:

f(X1,X2, . . . , Xn) = f1(X1)f2(X2) · · · fn(Xn). (4)

Due to this independence, vector quantization is reduced to independent scalar
quantization, where the quantization results in an n-dimensional “grid” onto
which the vector X = (X1, . . . , Xn) is quantized. Note that such a grid need not
have the same number of grid points (as implied by the per-variable precision)
along each dimension.

Though the Xi are independent, note that they are not identically dis-
tributed, as evidenced by Fig. 2. Ideally, we would design a separate code optimal
for each such distribution, however this brings several challenges:

– The actual distributions are data or application dependent. While some efforts
have been made to optimize number systems for given data distributions [13],
such approaches become impractical in computations like PDE solvers, where
the distributions are not known a priori.
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– Even if the data distributions were known, finding corresponding error mini-
mizing codes is an open problem. Currently, L2 optimal codes are known for
only a few distributions, most notably the Laplace distribution [22].

– Assuming these two prior challenges can be addressed, the CDF for an error
optimal code would likely not be expressible in closed form or would involve
nontrivial math functions that would be prohibitively expensive to evaluate.
For best performance, we prefer CDFs that are linear over binades.

Faced with these challenges, we take a different approach by making use of “gen-
eral purpose” universal number representations like Posits and by optimizing
the order in which bits from the Xi are interleaved to minimize the L∞ error
norm. While representations like Posits are parameterized (on “exponent size”),
which would allow parameter selection tailored to each random variable Xi, we
do not pursue such an approach here but believe it would be a fruitful avenue
for future work.

Given a codeword c comprised of interleaved bits, c can be thought of as
encoding the path taken when traversing a k-d tree that recursively partitions the
n-dimensional space—a hyper-rectangle—in halves using a sequence of binary
cuts, each along one of the n axes. To minimize the L∞ error norm, we should
always cut the hyper-rectangle containing x along the axis in which it is widest.
Due to the expected monotonic and rapid decrease in magnitude of the xi, this
suggests that the hyper-rectangle is usually wider for small i than for large i, and
that a few leading bits for xi with large i are sufficient to determine that such
coefficients are small and contribute little to the overall accuracy. Hence, many
leading bits of the codeword will be allocated to x0,...,0—the mean value within
a block—while the bits for small, high-frequency components are deferred until
later since they have only small impact on accuracy.

Our encoding algorithm tracks the interval endpoints for each xi. In each
iteration, corresponding to the output of a single bit, it conceptually sorts the
intervals by width. For each codeword bit, we split the widest interval; when
there is a tie, we prefer xi with low index (i.e., total sequency), i. The resulting
scheme effectively reduces to bit plane coding (cf. [17,24]), where the n bits of a
bit plane are encoded together before moving on to the next significant bit. The
bracketing sequence associated with universal coding, however, quickly prunes
many bits of a bit plane by marking whole groups of bits of a coefficient as zero.5

Consequently, by simple bookkeeping (through tracking intervals), many bits of
a bit plane are known to be zero and need not be coded explicitly.

The decoding step proceeds in reverse order and progressively narrows the n
intervals based on the outcomes of single bit tests. The result of this process is a
set of intervals that x is contained in. Our current approach is to simply use the
lower interval bound along each dimension as representative. Other strategies,
such as using the next split point or by rounding the input vector during encoding
could also be used, though the latter is complicated by not knowing a priori the
precision of each vector component, which is data-dependent.
5 This marking is done in variable-radix coding [19] by testing whole digits of radix

β > 2, e.g., four bits at a time are tested in Posits with β = 24 = 16.
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3.4 Implementation

Although the algorithm in Listing 1 is straightforward, it involves an expensive
step to repeatedly find the widest of n = 4d intervals (line 5). A linear search
requires O(n) time, which can be accelerated (especially for d ≥ 3) to O(log n)
time using a heap data structure. In each iteration, we operate on one of the n
intervals and keep the remaining n−1 = 22d −1 intervals sorted in a heap, which
conveniently is a perfect binary tree with 2d levels. Following the narrowing of
an interval (line 16), we compare its width to the heap root’s, and if still larger,
we continue operating on the same interval in the next iteration. Otherwise, we
swap the current interval with the heap root and sift it down (using O(log n)
operations) until the heap property has been restored. For 3D data, we found
the use of a heap to accelerate encoding by roughly 4×.

We note that the implementation of universal vector codes presented here
has not been optimized for speed. The need to perform arithmetic on intervals
and to process a single bit at a time clearly comes at a substantial expense. We
see potential speedups by tracking interval widths in terms of integer exponents
instead. We may also exploit faster scalar universal coding schemes developed, for
example, for Posits, which process multiple bits at a time. Furthermore, it may
be possible to avoid data-dependent coding by exploiting expected relationships
between coefficient magnitudes such that the order in which bits are interleaved
may be fixed. Such performance optimizations are left as future work.

4 Results

We begin our evaluation by examining the rate-distortion tradeoff when encoding
static floating-point outputs from scientific simulations. Although it is common
to compare representations by plotting the signal-to-noise ratio (SNR) as a func-
tion of rate—the number of bits of storage per scalar value—we have chosen to
represent the same information in terms of what we call the accuracy gain vs.
rate. We define the accuracy gain, α, as

α = log2
σ

E
− R =

1
2

log2

∑
i(xi − μ)2

∑
i(xi − x̃i)2

− R, (5)

where σ and μ are the standard deviation and mean of the original data, xi

is one of the original data values and x̃i is its approximation in a given finite-
precision number system, E is the L2 error (distortion), and R is the rate.
Here the term log2

σ
E provides a lower bound on the rate required to encode

an (uncorrelated) i.i.d. Gaussian source within error E [4, §10.3.2], and effec-
tively serves as a baseline against which R is measured. For correlated data,
we expect R ≤ log2

σ
E for a number representation that exploits correlation,

resulting in α ≥ 0. Conversely, because scalar representations like ieee 754 and
Posits ignore such correlations, they yield α ≤ 0. We note that α is high when
the error, E, and the rate, R, are low. For effective coding schemes, α(R) tends
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to increase from zero at low rates—indicating that “compression” is achieved—
until a stable plateau is reached, when each additional bit encoded results in
a halving of the error—indicating that random, incompressible significand bits
have been reached. Ultimately, E either converges to zero (α → ∞) or to some
small nonzero value, e.g., due to roundoff errors, where additional precision is not
helpful (α → −∞). The maximum α indicates the amount of redundant informa-
tion that a representation is able to eliminate. In addition, α allows comparing
the efficiency of representations when both R and E differ by a nonnegligible
amount, which using R, E, or SNR = 20 log10

σ
E alone would be difficult.

4.1 Static Data

Figure 3 plots the accuracy gain (higher is better) for various representations
of two fields (density and viscosity) from a hydrodynamics simulation.6 The
density field varies in the range [1, 3] while the viscosity field spans many orders
of magnitude and also includes negative values.

The representations compared include ieee 754 (half and float); Posits and
Elias δ; two versions of MultiPosits based on our universal vector coding
scheme; and two corresponding versions of zfp. Here the -r suffix indicates
fixed-rate representations, where each block is assigned the same number of
bits; the -a suffix indicates fixed-accuracy representations, where a given error
tolerance dictates the storage size of each block. Fixed-accuracy mode is gener-
ally preferable when emphasis is on error rather than storage size, as then errors
are roughly uniform over the entire domain, which allows for a smaller storage
budget when the tolerance is met. In fixed-rate mode, additional bits are typ-
ically spent on each block, but the total L2 error is usually dominated by the
highest-error blocks. Hence, reducing the error nonuniformly across blocks does
not appreciably reduce the total error but does increase storage. Of course, the
variable-rate storage associated with a fixed-accuracy representation complicates
memory management and random access, but we include such results here as
they serve an important use case: offline storage and sequential access.

The two plots in Fig. 3 suggest several trends. First, fixed-rate MultiPosits

generally improve on Posits by about 3.5–8 bits of accuracy across a wide range
of rates; Posits in turn perform better than ieee. The negative accuracy gain
for the scalar representations essentially corresponds to the overhead of encoding
exponents, and we see that ieee does worse when using 8 (float) rather than 5
(half) exponent bits. In all cases, zfp outperforms MultiPosits, for reasons
that will be discussed below. We also see that fixing the accuracy (-a) rather
than rate (-r) is a substantial improvement. We note that this may be of impor-
tance for I/O and communication applications, where the data is serialized and
transferred sequentially. While we have implemented fixed-accuracy mode for
MultiPosits, the same idea could be generalized to scalar representations like
Posits and ieee, i.e., by truncating any significand bits whose place value fall

6 The double-precision fields are from the Miranda code and are available from SDR-

Bench at https://sdrbench.github.io.

https://sdrbench.github.io
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Fig. 3. Accuracy gain as a function of rate for two 384 × 384 × 256 fields from a
hydrodynamics simulation. The small dynamic range of the density field allows it be
represented without loss using most representations, resulting in an eventual uptick
in accuracy gain as the error approaches and even reaches zero. The viscosity field
cannot be represented without loss, and the error eventually converges to a small
value, resulting in an eventual decline in accuracy gain as additional bits do not reduce
the error.

below some given power of two. Another observation is that MultiPosits-a

gives a somewhat irregular curve both in terms of rate and accuracy gain, in
contrast to zfp-a; there is a noticeable jump in both R and α every four data
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points at low rates. These jumps correlate with the increase in number of Posit
regime bits [9], which occur every time the binary exponent increases or decreases
by four. Such increments introduce a flurry of additional bits for the next bit
plane that increase both rate and accuracy. We finally note that some repre-
sentations, like MultiPosits, incur additional roundoff error from the use of
double-precision arithmetic, as evidenced by the gap between MultiPosits and
zfp at high rates.

4.2 Dynamic Data

We have implemented our universal vector code within the context of the zfp

framework, which accommodates user-defined codecs for its compressed-array
C++ classes. These classes handle encoding, decoding, and caching of blocks (in
ieee double-precision format) for the user and expose a conventional multidi-
mensional array API, thus hiding all the details of how the arrays are represented
in memory. We additionally implemented a codec that uses a traditional scalar
representation of blocks to allow for an apples-to-apples comparison using a
single array implementation.

Based on these arrays, we implemented a 3D Poisson partial differential equa-
tion (PDE) solver using finite differences with Gauss-Seidel updates, i.e., array
elements are updated in place as soon as possible. The equation solved is

Δu(x, y, z) =
√

x2 + y2 + z2 = r (6)

on Ω = [−1, 1]3 with boundary condition u = 1
12r3 and initial condition u = 0

on the interior of the domain. Given this setup, the closed form solution equals
u = 1

12r3 on the entire domain. We use a standard second-order 7-point stencil
for the Laplacian finite difference operator and a grid of dimensions 643. Higher-
order stencils did not appreciably change the results.

Figure 4 plots the L2 error in Δu as a function of solver iteration. As is
evident, the low-precision scalar types quickly converge to a fixed error level as
they run out of precision to accurately resolve differences. The MultiPosit and
zfp vector types perform significantly better, both at 16- and 32-bit precision.
Compared to ieee 32-bit float, the 32-bit MultiPosit representation improves
the solution accuracy by five orders of magnitude.

5 Discussion

Our universal vector codes generalize the corresponding scalar codes for corre-
lated multidimensional fields that often arise in scientific computing. Using a
decorrelating step, we decouple the vector quantization step into independent
scalar quantization steps and later interleave the bits from their binary represen-
tation so as to minimize error. Our framework relies on the simple and general
framework from [18] to produce a codeword one bit at a time, which ensures a
straightforward if inefficient implementation.

Our framework shares several steps with the zfp number representation for
multidimensional blocks:
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Fig. 4. Poisson equation solution error for various representations of the evolving state
variable. Not shown is zfp32, which coincides with the curve for double.

– A decomposition of d-dimensional arrays into blocks of 4d values.
– The same fast, linear, decorrelating transform. The key difference is that we

implement our transform in floating point rather than integer arithmetic.
– The same reordering and prioritization of transform coefficients.

The two frameworks also differ in several ways:

– Whereas zfp uses a fixed-length encoding of a single per-block exponent, we
use per-coefficient tapered exponent coding.

– We inherit the same two’s complement representation used for scalar Posits,
whereas zfp encodes integer values in negabinary.

– zfp makes use of additional control bits to encode the outcome of group
tests, which apply to multiple bits within the same bit plane. Our framework
does not use group testing across vector components but rather within each
scalar to form regime bits. These bits directly refine the representation, like
all significand bits, whereas zfp’s group tests instead govern the control flow.

In head-to-head competition, zfp is a clear winner in terms of accuracy, storage,
and speed, in part due to a more sophisticated coding scheme, though the speed
advantage comes from its ability to process multiple bits simultaneously. Our
framework as designed is data-dependent and operates at the single-bit level.
zfp also has the advantage of exploiting the sparsity of transform coefficients,
which allows concise encoding of up to 4d zeros in d dimensions using a single bit.
In contrast, our scheme achieves only up to 4:1 “compression” of Posit zero-bits
and must encode at least 2 × 4d bits to finitely bound each of the 4d transform
coefficients. By comparison, zfp routinely allows a visually fair representation
of 3D blocks using one bit per value or less. In fixed-rate mode, our framework
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like zfp suffers from lack of proper rounding, as the per-coefficient precision
is data-dependent and not known until encoding completes. Hence, coefficients
are always rounded toward −∞. We suggest possible strategies to combat the
effects of improper rounding above. Finally, the tapered nature of Posits and
related number systems implies that blocks whose transform coefficients differ
significantly from one may require many bits to even bracket the coefficients.
In fact, the range preserving nature of the decorrelating transform on average
causes already small coefficients to be reduced even further. zfp performs some
level of bracketing by aligning all values to a single common block exponent,
which requires only a fraction of a bit per value to encode.

From these observations, we conclude that MultiPosits offer a significant
advantage over Posits in applications that involve smooth fields while not rival-
ing the zfp number system. Nevertheless, we believe that the ideas explored here
may seed follow-on work to improve upon our framework, both with respect to
accuracy per bit stored and speed. For instance, our coding scheme ignores the
potential for intra bit plane compression and the potential to avoid data depen-
dencies by adapting codes better suited to each of the transform coefficients.

6 Conclusion

We have presented a universal encoding scheme that generalizes the Posit and
other universal scalar number systems to vectors or blocks of numbers for numer-
ical applications that involve spatially correlated fields. Our approach is to par-
tition the data arrays into blocks, decorrelate the blocks using a fast transform,
and then interleave bits from a universal coding of vector components in an
error-optimal order. Using numerical experiments with real data and partial
differential equation solvers, we demonstrated that MultiPosits may yield as
much as a six orders-of-magnitude increase in accuracy over conventional Posits
for the same storage, and even larger increases compared to ieee 754 floating
point. While our approach, as currently presented, is primarily of theoretical
interest due to its high computational cost, we envision that our results will
inspire follow-on work to address the performance issues associated with bitwise
coding of vectors. In particular, we hope to develop data-independent universal
vector codes that reap similar per-bit accuracy benefits with near-zero compu-
tational cost.
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Abstract. Posit arithmetic has caught the attention of the research
community as one of the most promising alternatives to the IEEE 754
standard for floating-point arithmetic. However, the recentness of the
posit format makes its hardware less mature and thus more expen-
sive than the floating-point hardware. Most approaches proposed so far
decode posit numbers in a similar manner as classical floats. Recently, a
novel decoding approach has been proposed, which in contrast with the
previous one, considers negative posits to have a negative fraction. In
this paper, we present a generic implementation for the latter and offer
comparisons of posit addition and multiplication units based on both
schemes. ASIC synthesis reveals that this alternative approach enables
a faster way to perform operations while reducing the area, power and
energy of the functional units. What is more, the proposed posit oper-
ators are shown to improve the state-of-the-art of implementations in
terms of area, power and energy consumption.

Keywords: Computer arithmetic · Posit · Decoding · Addition ·
Multiplication

1 Introduction

Historically, most scientific applications have been built on top of the IEEE 754
standard for floating-point arithmetic [10], which has been for decades the format
for representing real numbers in computers. Nevertheless, the IEEE 754 format
possesses some problems that are inherent to its construction, such as rounding,
reproducibility, the existence of signed zero, the denormalized numbers or the
wasted patterns for indicating Not a Number (NaN) exceptions [6]. All in all,
IEEE 754 is far from being perfect, as different CPUs may produce different
results, and all these special cases must be dynamically checked, which increases
the hardware cost of IEEE 754 units.

Recently, several computer arithmetic encodings and formats, such as the
High-Precision Anchored (HPA) numbers from ARM, the Hybrid 8-bit Floating
Point (HFP8) format from IBM, bfloat16, and many more have been considered
as an alternative to IEEE 754-2019 compliant arithmetic [7], which has also
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
J. Gustafson and V. Dimitrov (Eds.): CoNGA 2022, LNCS 13253, pp. 84–99, 2022.
https://doi.org/10.1007/978-3-031-09779-9_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-09779-9_6&domain=pdf
http://orcid.org/0000-0003-0204-0797
http://orcid.org/0000-0002-0166-834X
http://orcid.org/0000-0002-6769-1200
http://orcid.org/0000-0002-0848-2636
https://doi.org/10.1007/978-3-031-09779-9_6


Comparing Different Decodings for Posit Arithmetic 85

recently included a 16-bit IEEE 754 version. Nonetheless, the appearance of the
disruptive posit arithmetic [8] in 2017 has shaken the board. While the aforemen-
tioned approaches, except for the half-precision IEEE 754, are vendor-specific,
posits aim to be standard. This novel way of representing reals mitigates and
even solves the previously mentioned IEEE 754 drawbacks. Posits only possess
one rounding mode, and there are just two special cases to check (zero and
infinity). Also, posits are ordered in the real projective line, so comparisons are
basically as the integer ones, and even conceive the use of fused operations in
order to avoid losing precision. This is done by avoiding rounding of individual
operations and accumulating the partial results in a large register called quire,
which can even speed up computations with a large number of operands [15].
Another interesting property of posits is their tapered precision, that is, they are
more accurate when their magnitude is in the proximity of zero, that is, their
absolute value is near 1. These last properties have attracted a lot of attention
from the community because they suit Deep Learning applications [3,9,12,17].
These applications leverage the multiply-accumulate (MAC) operations in order
to accelerate the computation of matrix and dot products [2,23]. Furthermore,
the numbers employed are typically normalized and thus fall in the proximities
of zero. According to some authors, 32-bit posits can provide up to 4 orders
of magnitude improvement in terms of accuracy [14,19] when comparing with
the equivalent single-precision floating-point format. Nevertheless, this accuracy
enhancement comes at a cost. The quire occupies a vast portion of the resulting
posit functional unit [14,19,22].

Since 2017, several designs have appeared which implement individual
[4,11,16] and fused [3,19,24] posit operators. While their implementations are
different, either because of the functionality or due to the design, the unpack-
ing/decoding of posits is common to all of them. This paper presents a study
about the different ways of decoding posit numbers in literature, which directly
affects how these decoding units unpack posit operands and that could also
impact some other portions of the functional unit itself. Results show that decod-
ing posits in a different manner to the classical one inspired by floating-point
arithmetic can substantially reduce the hardware resources used by functional
units. In addition, this work presents an implementation of posit functional
units that follows the alternative decoding scheme aforementioned. The pro-
posed implementation outperforms state-of-the-art designs of posit adders and
multipliers in terms of performance and hardware requirements.

The rest of the paper is organized as follows: Section 2 introduces the neces-
sary background about the posit format, and details the two different approaches
for decoding posits that have been proposed so far. Section 3 describes the dif-
ferent components of fundamental posit arithmetic units (adders and multipli-
ers), as well as the existing design differences when using each of the decoding
approaches. The performance and resource utilization of both approaches are
compared in Sect. 4, which shows ASIC synthesis results for different compo-
nents and arithmetic units from the literature. Finally, Sect. 5 concludes this
work.
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Fig. 1. Posit〈n, es〉 binary encoding. The variable-length regime field may cause the
exponent to be encoded with less than es bits, even with no bits if the regime is wide
enough. The same occurs with the fraction.

2 Posit Arithmetic

A posit format is defined as a tuple 〈n, es〉, where n is the total bitwidth of the
posits and es is the maximum number of bits reserved for the exponent field. As
Fig. 1 shows, posit numbers are encoded with four fields: a sign bit (s), several
bits that encode the regime value (k), up to es bits for the unsigned exponent (e),
and the remaining bits for the unsigned fraction (f). The regime is a sequence of
l identical bits r finished with a negated bit r̄ that encodes an extra scaling factor.
As this field does not have a fixed length, some exponent or fraction bits might
not fit in the n-bit string, so 0 would be assigned to them. The variable length
of this field allows posit arithmetic to have more fraction bits for values close
to ±1 (which increases the accuracy within that range), or to have less fraction
bits for the sake of more exponent bits for values with large or small magnitudes
(increasing this way the range of representable values). This is known as tapered
accuracy, and contrasts with the constant accuracy that IEEE 754 floats present,
due to the fixed length of the exponent and fraction fields, as can be seen in Fig. 2
(here, the left part of the IEEE floating-point format corresponds to the gradual
underflow that subnormal numbers produce).

Posit arithmetic only considers two special cases: zero, that is represented
with all bits equal to 0, and Not a Real (NaR) exception, represented by all
the bits except the sign bit equal to 0. The rest of the bit patterns are used to
represent a different real value. However, at the time of writing this paper, two
main different ways of understanding how posit bit strings represent real values
have been proposed: using the sign-magnitude format, as floating-point numbers,
or considering posits in two’s complement notation. While both approaches are
equivalent from a mathematical sense (i.e. the same bit patterns represent the
same values, regardless of the approach), they present implementation differ-
ences that should be considered when implementing such arithmetic format in a
physical device. Other alternative interpretations of posits are discussed in [13].

2.1 Sign-Magnitude Posit Decoding

Posit arithmetic is a floating-point format for representing real numbers. Thus,
the numerical value X of a normal posit datum was initially defined in [8] by (1)
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Fig. 2. Accuracy binary digits for 32-bit formats

X = (−1)s × (useed)k × 2e × (1 + f), (1)

where useed = 22
es

, e is the integer encoded by the exponent field, k is l−1 when
r = 1, or −l when r = 0, and f is the normalized fraction (this is, the value
encoded by the fraction bits divided by 2F , so 0 ≤ f < 1). Under this decoding
approach, if a value is negative (when the sign bit is 1), its two’s complement
is computed before extracting the regime, exponent, and fraction, so values k, e
and f in Eq. (1) are always considered from the absolute value of the posit.

The main differences with the standard floating-point format are the utiliza-
tion of an unsigned and unbiased exponent, the hidden bit of the significand
is always “1” (no subnormal numbers are considered), and the existence of the
variable-length regime field. However, notice that this decoding is quite similar
to the one for classical floating-point numbers: it deals with a sign bit, a signed
exponent (regime and exponent can be gathered in a single factor) and a signifi-
cand with a hidden bit. As a consequence, the circuit design for both arithmetic
formats would be similar too. In fact, this float-like decoding scheme is the one
used by most of the posit arithmetic units from the literature [4,11,16], as well
as by the approximate posit units proposed so far [18,20].

Apparently, trying to implement posits by first forcing them to look more
like floats and then converting back does not seem optimal, and the community
is still in the early stages of discovering new decodings and circuit shortcuts that
leverage this recently proposed format.

2.2 Two’s Complement Posit Decoding

The previous decoding scheme of posit numbers deals with negative numbers in
a similar manner as signed integers do. From a hardware perspective, converting
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posits to their absolute value before decoding them adds extra area and per-
formance overhead, specially when compared with IEEE 754 floats. To address
this issue, Isaac Yonemoto, co-author of [8], proposes a different way of decoding
posit numbers: for negative values, the most significant digit of the significand
is treated as “−2” instead of “1”. The rest of the fields remain the same, but
under this approach there is no need to compute the two’s complement (abso-
lute value) of each negative posit. This is consistent with the way posits were
initially intended, as a mapping of the signed (two’s complement) integers to the
projective reals. The value X of a posit number is now given by (2)

X = (useed)k̃ × 2ẽ × (1 − 3s + f), (2)

where again useed = 22
es

, but now ẽ is equal to e XOR-ed bitwise with s and k̃
is −l when r = s, or l − 1 otherwise.

Theorem 1. For any given posit bit string that encodes a number other than
zero or NaR, the expressions (1) and (2) are equivalent.

Proof. When the sign bit is 0 (i.e. the bit string encodes a positive number), it
is trivial that both expressions evaluate the same.

On the other hand, the case when s = 1 requires more attention. First,
note that in such a case, two’s complement of the bit string must be computed
before evaluating expression (1). Hence, all the bits at the left of the rightmost
“1” are inverted. Let us consider three cases, depending on which field that bit
belongs to.

(i) If the rightmost “1” bit belongs to the fraction field, the fraction f �= 0.
Hence, it is evident that k = k̃ and e = ẽ, since k and e are obtained from
the inverted regime and exponent bits in the original bit string, respectively.
It remains to check whether the significands from expressions (1) and (2)
have an opposite value. But recall that the fraction from expression (1)
is two’s complemented, and due to the fact that 0 ≤ f < 1, the two’s
complement of f is f̃ = 1 − f . From this last property it follows that
(1 + f̃) = −(−2 + f).

(ii) If the rightmost “1” bit belongs to the exponent field, then f = 0 and e �= 0.
For the same reason as in the previous case, k = k̃. But now the exponent
field for expression (1) is two’s complemented rather than inverted, so we
have that e = ẽ + 1. However, since f = 0, the significand in expression
(1) evaluates 1, while expression (2) evaluates (1 − 3s + f) as −2, which
compensates the difference in the exponents.

(iii) If the rightmost “1” bit belongs to the regime, then e = f = 0. Also, it
should be noted that such a bit corresponds to the last (inverted) regime bit
(in case the regime is a sequence of 0’s) or to the bit immediately preceding
the inverted one (when the regime is a sequence of 1’s). In both cases, taking
two’s complement for computing (1) reduces the length of the regime field in
1, so it follows that k = k̃+1. In addition, note that in this situation e = 0,
while ẽ = 2es − 1. Nevertheless, a similar situation as in the previous case
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occurs with the fraction: the significand from expression (2) is evaluated as
−2, which compensates the difference of exponents previously mentioned.
Note that the multiplicands of both expressions are powers of 2, so it suffices
to check that both expressions have the same exponent. Indeed: (2es)k̃ + ẽ+
1 = (2es)k−1 + (2es − 1) + 1 = (2es)k. ��

When dealing with the hardware implementation, the significand of (1) can
be represented in fixed-point with a single (hidden) bit that always takes the
value “1”. On the other hand, when considering expression (2), the significand
(1 − 3s + f) belongs to the interval [−2,−1) for negative posits and to [1, 2)
for positive ones, so such signed fixed-point representation requires two integer
(or hidden) bits that depend on the sign of the posit. More precisely, in this
case, negative posits prepend “10” to the fraction bits as the 2’s complement
hidden bits, and positive posits prepend “01”. Note how this contrasts with the
unsigned fixed-point representation of the significand in the floating-point and
classical sign-magnitude posit decoding formats. Therefore, this approach elimi-
nates complexity in the decoding and encoding stages, but requires redesigning
some of the logic when implementing posit operators.

There are not many works that implement this two’s complement decoding
approach for posit numbers. The first implementation of posit adders and mul-
tipliers based on this decoding appeared in [24], and more details about such a
scheme were introduced in [7]. Also, [19] presents different energy-efficient fused
posit MAC units that follow the same approach as [24].

In this paper we present a generic implementation of posit functional units
based on two’s complement decoding. Furthermore, we compare different state-
of-the-art posit units based on both decoding schemes.

Finally, it is noteworthy that previous works have examined the effect of
two’s complement notations in floating-point arithmetic [1]. However, in such a
case, some features or properties are lost with respect to the IEEE standard for
floats. In this work we prove that both sign-magnitude and two’s complement
coding of posit numbers are equivalent, and therefore all properties are preserved
regardless of the used approach. The impact of each decoding scheme is found
on the hardware implementation, as will be discussed in Sect. 4.

3 Posit Operators

The advantage of using sign-magnitude decoding for posit numbers is that arith-
metic operations can be performed in a similar way to standard floating-point
ones (except for the bitwidth of the fields and exception handling). While this
can leverage the already designed circuits for floating point, forcing posits to
look like floats and then converting back adds some overhead to the operators.
However, considering the posit significand as a signed fixed-point value elimi-
nates the need for absolute value conversion, but requires some redesign of the
arithmetic cores.

This section describes in detail and compares the design of different arith-
metic operations when dealing with each posit decoding scheme.
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3.1 Decoding and Encoding Stages

Unlike floating-point hardware that ignores subnormal numbers, the variable-
length regime does not allow the parallel decoding of posit numbers, that is,
the fraction and exponent cannot be extracted until the length of the regime
is known. Thus, when implementing posit operators in hardware, it is usually
necessary to extract the four fields presented in Sect. 2 (s, k, e and f , plus a
flag for zero/NaR exceptions) from a compact posit number before starting the
real computation, as well as packing again the resulting fields after that. The
components that perform such processes are usually known as decoders and
encoders, respectively, and those are the modules that present more differences
in their design according to the decoding mode used.

The classical decoding scheme considers negative posits to be in two’s com-
plement. Hence, in such a case, it is necessary to first take a two’s complement
of the remaining bit string before decoding the regime (which is usually done
with a leading ones/zeros detector), exponent and fraction bits, as detailed in
Algorithm 1 (zero/NaR exception checking is omitted for the sake of clarity).
Then, all the computation is performed with the absolute value of the posits,
leaving aside the sign logic until the end, where it requires to take again the
two’s complement of the bit string according to the sign of the result. The pro-
cess of encoding a posit from its different fields mainly consists of performing
Algorithm 1 backwards, plus handling possible rounding and overflow/underflow
situations.

Algorithm 1 Classical posit decoding algorithm
Require: X ∈ Posit〈n, es〉, F = n − es − 3
Ensure: (−1)s × (useed)k × 2e × (1 + f) = X

s ← X[n − 1]
if s = 1 then

p ← ∼X[n − 2 : 0] + 1 � Take two’s complement
else if s = 0 then

p ← X[n − 2 : 0]
end if
r ← p[n − 2]
l ← LZOC(p) � Count regime length
if r = 1 then

k ← l − 1
else if r = 0 then

k ← −l
end if
q ← p[n − l − 3 : 0] � Extend with 0’s to the right, if necessary
e ← q[F + es − 1 : F ]
f ← q[F − 1 : 0]

On the other hand, the alternative scheme proposed by Yonemoto handles
both positive and negative posit numbers simultaneously, without the need of
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computing the absolute value of the posits. Determining the sign of the regime’s
value requires checking if the posit sign bit is equal to the MSB of the regime, and
the exponent value for this case requires XOR-ing es bits with the sign bit. The
decoding process for this approach is described in Algorithm 2. Also, as already
mentioned, handling the significand in signed fixed-point format for computation
requires one extra bit for the sign, since this decoding considers the significand
of positive values to be in the interval [1, 2) (as in the previous decoding), or in
[−2,−1) when the number is negative. This approach can reduce the latency of
the decoding and encoding stages, specially for larger bitwidths, since it requires
XOR-ing just es bits (generally es is not greater than 3) instead of computing
the two’s complement of the n-bit posits as in Algorithm 1. However, the signed
fixed-point significand introduces extra complexity in the core of the arithmetic
operations, as will be discussed below.

Algorithm 2 Alternative posit decoding algorithm
Require: X ∈ Posit〈n, es〉, F = n − es − 3
Ensure: (useed)k × 2e × (1 − 3s + f) = X

s ← X[n − 1]
p ← X[n − 2 : 0]
r ← p[n − 2]
l ← LZOC(p) � Count regime length
if r �= s then

k ← l − 1
else if r = s then

k ← −l
end if
q ← p[n − l − 3 : 0] � Extend with 0’s to the right, if necessary
e ← q[F + es − 1 : F ] ⊕ {es{s}} � Sign bit is replicated to perform XOR
f ← q[F − 1 : 0]

3.2 Addition

In posit arithmetic, as well as in the case of floating-point arithmetic, when
performing the addition (or subtraction) of two numbers, it is necessary to shift
one of the fractions so both exponents are equal. If the first exponent is smaller
than the second, the first fraction is shifted to the right by a number of bits
given by the absolute difference of the exponents. Otherwise, the same is done
to the second fraction. Then, the aligned significands are added, and the result
is normalized, so the larger exponent is adjusted if needed.

When using a classical sign-magnitude decoding approach, some extra logic
is needed to handle the sign of the result. But such logic is eliminated when deal-
ing with signed significands, since the sign of the result can be inferred from the
leftmost bit of the addition of the significands, without initially comparing the
magnitude of the inputs. Dealing with signed significands also avoids the need
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of performing subtraction or taking two’s complement when the sign of both
addends differ, which makes up for using one extra bit in the addition of signifi-
cands. On the other hand, normalization of the significand in two’s complement
deserves special attention, since it needs to count not only the leading zeroes,
but the leading ones when the result is negative. However, as will be shown in
Sect. 4, this does not involve hardware overhead for this particular module.

3.3 Multiplication

In a similar manner as in the case of addition, posit multiplication takes inspi-
ration from the floating-point algorithm: both significands are multiplied and
normalized, and the exponents are added together. Additionally, the result from
significand multiplication must be normalized to fit in the corresponding inter-
val, which involves shifting the fraction plus adding to the exponent the number
of shifted bits.

When the significands have a single hidden bit, i.e., using the sign-magnitude
posit decoding, the leftmost bit of the multiplication indicates if the resulting
fraction must be shifted and 1 must be added to the exponent. Note that in this
case, both multiplicands follow the expression (1 + f) ∈ [1, 2), so the product
must be in the interval [1, 4). Thus, normalizing the result might require shifting
one bit at most.

On the other hand, when dealing with the two’s complement decoding scheme,
even though the multiplication can be performed directly (just one more bit for
each operand is necessary), the normalization of the result is more complex in
this case. As each multiplicand (1 − 3s+ f) can be in the range [−2,−1) ∪ [1, 2),
the result will fall within the range (−4,−1) ∪ [1, 4]. In terms of fixed-point
arithmetic, the operand has two integer bits, so the multiplication has four bits
that represent the integer part of the number and that should be examined
in the normalization process. Note that the resulting sign is also implicit in
the multiplication result. However, this approach introduces one extra case that
needs special attention: when the two multiplicands are equal to −2, the result
is 4, which requires adding 2, rather than 1, to the exponent when normalizing
the result.

Finally, note that similar considerations should be taken into account for the
case of the division operation, although it is beyond the scope of this paper.

4 Hardware Evaluation

This section evaluates the hardware impact of each posit decoding scheme. In
addition to standard comparison of arithmetic units, in order to provide a more
fine-grained evaluation, this section compares the hardware requirements of each
individual component when using each of the decodings. To achieve an accurate
evaluation, all the results given in this work were generated to be purely combi-
national and synthesized targeting a 45 nm TSMC standard-cell library with no
timing constraint and typical case parameters using Synopsys Design Compiler.
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4.1 Components Evaluation

To have a better understanding of how the different ways of decoding posit num-
bers impact on the hardware resource utilization, we compared ASIC synthesis
results for each single component of the posit operators described in Sect. 3 when
implemented under each of the decoding schemes presented in this paper. For
the sign-magnitude decoding, we extracted the different components from Flo-
Posit [16], which includes open-source1 designs implemented using FloPoCo [5]
and requires less hardware resources than other implementations based on the
same classical decoding scheme. With respect to the two’s complement decoding,
there are no available designs other than those proposed in [24], which consist
of a C++ header library for HLS that implement a modified posit format. Thus,
in order to make as fair a comparison as possible, we implemented the designs
described in Sect. 3 using Yonemoto’s decoding scheme and using FloPoCo as
well, which allows to generate parameterized units for any number of bits and
exponent size.

In order to verify the correctness of the proposed architectures, exhaustive
tests for units with 16 bits or less, as well as random tests with corner cases
for larger bitwidths, were performed using a VHDL simulator. The results were
compared against two software libraries: the Universal number library [21], which
supports arithmetic operations for any arbitrary posit configuration, and GNU
MPFR, which was modified with support for posit binary representation. All
these tests were successful. Then, each module (decoder, encoder, core adder
and core multiplier) was synthesized separately, so the area, power, datapath
delay and energy (power-delay product) could be compared in detail. Results
were normalized with respect to the classical decoding scheme.

As can be seen in Fig. 3, which shows the cost of just the decoding stage
rather than the cost of the whole arithmetic operation, considerable savings
are obtained when decoding the posits by using Yonemoto’s two’s complement
proposal. Under this approach, the decoder module requires about 66% of the
area, 45% of power, 59% of delay and 27% of the energy than the same module
implemented using the classical sign-magnitude decoding approach. Also, it is
noteworthy that for many of the most common operations, like addition or mul-
tiplication, two operands need to be decoded, so this module is often duplicated.

Similar figures are obtained for the encoder module. As Fig. 4 shows, using
Yonemoto’s approach requires about 33% less area than the classical one, but in
this case the power and delay savings are not as pronounced as for the decoder
module. Nevertheless, using the alternative decoding scheme reduces energy con-
sumption of this process by half.

As already mentioned, dealing with signed significands avoids the need of
negating one of the operands when performing addition of different sign values.
This is demonstrated in Fig. 5, which compares the hardware requirements of
both approaches for just the logic of posit addition (without circuitry for decod-
ing operands nor for rounding/encoding the result). The extra bit for dealing

1 https://github.com/artecs-group/Flo-Posit/tree/6fd1776.

https://github.com/artecs-group/Flo-Posit/tree/6fd1776
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Fig. 3. Relative hardware performance metrics of Posit〈32, 2〉 decoder components.

Fig. 4. Relative hardware performance metrics of Posit〈32, 2〉 encoder components.

with the significand in two’s complement adds negligible overhead to this com-
ponent, and together with the reduction of logic to handle addition of different
sign operands, makes this scheme to use 91% of the area, 86% of the power and
84% of the datapath delay of the analogous component based on the classical
decoding.

The case of the multiplier module is different from the previous ones. Here,
handling the significands in two’s complement requires one extra bit for each
operand, and a total of four more bits for storing the multiplication result, when
compared with the sign-magnitude approach. This translates into approximately
7% more area and power, but similar delay, as shown in Fig. 6.

4.2 Comparison with the State-of-the-Art

The components using two’s complement decoding scheme seem to provide
smaller and faster implementations. However, it is important to verify that whole
operators follow the same trend, and that the proposed implementations are not
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Fig. 5. Relative hardware performance metrics of Posit〈32, 2〉 adder components

Fig. 6. Relative hardware performance metrics of Posit〈32, 2〉 multiplier components.

sub-optimal. For this purpose, three different implementations of posit opera-
tors from the state-of-the-art were compared: PACoGen [11]2 and Flo-Posit [16],
which use the sign-magnitude decoding scheme given by (1), and MArTo [24]3,
which is based in the decoding scheme proposed by Yonemoto with slight dif-
ferences. In particular, the designs presented in [24] perform conversion to/from
the so-called posit intermediate format (PIF), a custom floating-point format
that stores the significand in two’s complement (just like the approach evalu-
ated in this work) and takes an exponent (including the regime) which is biased
with respect to the minimum exponent, as in the IEEE 754 standard. The PIF
simplifies the critical path of the operators, at the cost of small additions in the
decoding/encoding of posits. Also, the proposed implementation that has been
discussed in the preceding section was added to the comparison, so there are two
implementations for each posit decoding approach. Unlike MArTo, the proposed
operators implement the logic in pure posit format, without conversion of posits

2 https://github.com/manish-kj/PACoGen/tree/5f6572c.
3 https://gitlab.inria.fr/lforget/marto/tree/2f053a56.

https://github.com/manish-kj/PACoGen/tree/5f6572c
https://gitlab.inria.fr/lforget/marto/tree/2f053a56
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to a float-like format. For a more detailed analysis of how the different decod-
ing approaches scale according to the number of bits, posit operators for 〈8, 1〉,
〈16, 1〉 and 〈32, 2〉 formats were synthesized. Despite the fact that Posit〈8, 0〉 is
a more common format in the literature, the PACoGen core generator does not
allow to generate posit operators with no exponent bits (es = 0), so Posit〈8, 1〉
is selected instead for a fair comparison. Finally, note that MArTo is an HLS-
compliant C++ library, rather than a RTL-based implementation as the rest of
the libraries used in this work. Thus, the C++ to HDL compilation of MArTo
operators is done using Vitis HLS 2021.1 with default options.

Synthesis results for the adder and multiplier units are shown in Fig. 7 and
Fig. 8, respectively. Both cases present a clear gap between the designs based
on the sign-magnitude posit decoding (PACoGen and Flo-Posit) and the ones
using the two’s complement scheme (MArTo and the one proposed in this paper),
specially for the power-delay product (energy) results. Except for the adder
delay, Flo-Posit designs present better figures than the analogous designs from
PACoGen, which seems to be far from an optimal implementation. Exactly the
same occurs for the proposed designs with respect to those from MArTo library,
but in this case the difference between both implementations is much smaller.
This might be due to the fact that both MArTo and the proposed units follow
quite similar designs but with certain differences in the implementation, since
the former designs are generated by a commercial HLS tool, while the latter are
directly designed at the RTL level. In accordance with these results, we took

Fig. 7. Synthesis results for different Posit〈n, es〉 adder designs.
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Fig. 8. Synthesis results for different Posit〈n, es〉 multiplier designs.

the best designs of each decoding scheme (Flo-Posit and the proposed one) as a
baseline for detailed comparison.

In the case of posit adders, the greatest resource savings are obtained for
32-bit operators: when using the alternative decoding, the area is reduced by
22.70%, the power by 32.90%, the delay by 10.22% and the energy by 39.77%.

On the other hand, and in line with the results shown previously, the alterna-
tive two’s complement decoding scheme for posit multiplier units also presents
less resource utilization when compared with the classical float-like scheme, but
these savings are not as pronounced as in the case of posit addition. As can be
seen in Fig. 8, the 32-bit multipliers based on Yonemoto’s decoding approach
reduce area, power, datapath delay and energy by 8.17%, 7.72%, 21.54%, and
27.60%, respectively.

5 Conclusions

Multiple designs of posit arithmetic units have been proposed since the appear-
ance of this alternative format. While those units might present several optimiza-
tions for area or energy efficiency, one of the main design differences is the way
posit strings are decoded. The first works on posit arithmetic presented a sign-
magnitude decoding scheme similar to floating-point arithmetic, with a sign bit,
a signed exponent and a fraction with a hidden bit equal to 1. But recently, a
two’s complement decoding for posits proposed by I. Yonemoto, which considers
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that the hidden bit means −2 for negative posits, seems to provide more efficient
implementations of functional units, at the cost of a more complex circuit design.

This paper aims to shed some light on the different ways of decoding posit
numbers presented in literature so far, and how such decodings affect the hard-
ware resources of posit operators. To that purpose, we implemented custom-size
posit adder and multiplier units following the alternative decoding scheme pro-
posed by Yonemoto. Synthesis evaluations show that posit units based on classi-
cal float-like decoding schemes require generally more hardware resources than
analogous units using the two’s complement decoding. In addition, the proposed
units are shown to improve previous posit implementations in terms of area and
energy consumption.
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Abstract. Universal provides a collection of arithmetic types, tools, and
techniques for performant, reliable, reproducible, and energy-efficient
algorithm design and optimization. The library contains a full spec-
trum of custom arithmetic data types ranging from memory-efficient
fixed-size arbitrary precision integers, fixed-points, regular and tapered
floating-points, logarithmic, faithful, and interval arithmetic, to adaptive
precision integer, decimal, rational, and floating-point arithmetic. All
arithmetic types share a common control interface to set and query bits
to simplify numerical verification algorithms. The library can be used to
create mixed-precision algorithms that minimize the energy consumption
of essential algorithms in embedded intelligence and high-performance
computing. Universal contains command-line tools to help visualize and
interrogate the encoding and decoding of numeric values in all the avail-
able types. Finally, Universal provides error-free transforms for floating-
point and reproducible computation and linear algebra through user-
defined rounding techniques.

Keywords: Mixed-precision algorithm · Energy-efficient arithmetic ·
Reliable computing · Reproducibility

1 Introduction

The proliferation of computing across more diverse use cases drives applica-
tion and algorithm innovation in more varied goals. Performance continues to
be a key driver in product differentiation, but energy efficiency is essential for
embedded and edge computing. Moreover, reliable and reproducible computing
is paramount in safety applications such as autonomous vehicles.

In embedded systems, energy is at a premium, and the application must
deliver a solution within a strict power constraint to be viable. In hyperscaled
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cloud data centers, the cost of electricity has overtaken the acquisition cost of
IT equipment, making energy efficiency even an economic driver for the cloud.

The reproducibility of computational results is essential to applications that
impact human safety and collaboration. Reproducible computation is required
for forensic analysis to explain a recorded failure of an autonomous vehicle.
Collaborative projects that leverage computational science are more efficient
when two different research groups can reproduce simulation results on different
platforms. Universal provides the deferred rounding machinery to implement
reproducibility. Lastly, numerically sensitive results require verification or quality
assertions. Reliable computing provides such guarantees on accuracy or bounding
boxes of error.

The Universal library offers custom arithmetic types and utilities for opti-
mizing energy efficiency, performance, reproducibility, and reliability of computa-
tional systems. Once the arithmetic solution has been found, Universal provides
a seamless transition to create and leverage custom compute engines to accelerate
the execution of the custom arithmetic. And finally, Universal provides a unified
mechanism to extend other language environments, such as MATLAB/Simulink,
Python, or Julia, with validated and verified custom arithmetic types.

2 Background and Motivation

Deep learning algorithms transform applications that classify and characterize
patterns in vision, speech, language, and optimal control. This so-called Soft-
ware 2.0 transformation uses data and computation to synthesize and manage
the behavior and capability of the application. In deep learning applications,
computational demand is high, and data supplied is varied, making performance
and energy efficiency paramount for success. The industry has responded with a
proliferation of custom hardware accelerators running energy-conserving numeric
systems.

These hardware accelerators need to be integrated into embedded, network,
and cloud ecosystems. For example, Google TPUs [16], and Intel CPUs [15] sup-
port a type called a brain float, which is a 16-bit floating-point format that trun-
cates the lower 16-bits of a standard IEEE-754 single-precision float. NVIDIA, on
the other hand, implements their unique data type, the TensorFloat-32 (TF32)
[17], which is a 19-bit format with 8 bits encoding the exponent, and 10 bits
encoding the mantissa.

This proliferation of vendor-specific types creates demand for solutions that
enable software designers to create, run, test, and deploy applications that take
advantage of custom arithmetic while, at the same time, integrating seamlessly
with a broad range of hardware accelerators. Software that can evaluate, adapt,
or replace different arithmetic types requires an upfront investment in architec-
ture design and implementation. Universal offers an environment where anyone
can deploy custom arithmetic types while maintaining complete flexibility to
adapt to better hardware from a different vendor when available.
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As the research and development community learns more about the com-
putational dynamics of Software 2.0 applications, novel number system repre-
sentations will be invented to enable new application capabilities. For example,
massive multiple-input multiple-output (MIMO) systems in cellular networks
will benefit from optimized arithmetic [21]. Convolutional Neural Networks are
showing attributes that favor logarithmic number systems [27]. Safety systems
require arithmetic that is reproducible and numeric algorithms that are reliable
[22]. Large scale high-performance computing applications that model physical
phenomena leverage continuity constraints to compress fields of metrics to lower
power consumption and maximize memory performance [13,18] This list of cus-
tom number systems and their arithmetic type representations will only grow,
igniting a renewed focus on efficiency of representation and computation.

Numerical environments such as Boost MultiPrecision [19], MPFR [5], and
GMP [7] have been focused on providing extensions to IEEE-754. They are not tai-
lored to providing new arithmetic types and encodings as required for improving
Software 2.0 applications. In contrast, Universal is purposefully designed to offer
and integrate new arithmetic types for the emerging applications in embedded
intelligence, mobile, and cloud computing.

Universal started in 2017 as a hardware verification library for the emerging
posit standard [9]. It provided a hardware model of a bit-level implementation
of arbitrary configuration posits, parameterized as posit<nbits,es> and pre-
sented as a plug-in arithmetic type for C++ linear-algebra libraries [6,25,26].
Since then, Universal has grown into a research and development platform for
multi-precision algorithm optimization and numerical analysis.

More recently, it has been instrumental in developing applications that
exhibit strong cooperation between general-purpose processing on the CPU and
special-purpose processing on accelerators. As Universal arithmetic types oper-
ate with the same encoding and memory layout as the hardware accelerator,
applications can use the general-purpose CPU to serialize, prepare, and manage
the data structures on behalf of the custom hardware accelerator without the
need for conversions to and from native types.

In this paper, we provide a status update to the third edition of the Univer-
sal library [23]. In Sect. 3, we discuss the various arithmetic types available in
Universal and where they fit in the set hierarchy representing abstract algebraic
number systems. Section 4 discusses the design flow for creating new arithmetic
types that have proven to be productive. Universal is still very much a hard-
ware/software co-design library, so Sect. 5 describes the standard application
programming interface of the arithmetic types in Universal that simplify inte-
gration into verification and regression test suites. Finally, Sect. 6 demonstrates
different algorithm and application framework integration examples. We con-
clude in Sect. 7 with a summary and future work.

3 Universal Arithmetic Type Organization

Figure 1 shows the cover of the different arithmetic types available in Universal
relative to the known algebraic sets.



Universal: Reliable, Reproducible, and Energy-Efficient Numerics 103

0 N Z

integer

de
ci
m
al

Q

ra
ti
on
al

fixpnt

R

areal

valid

cfl
oa
t

po
si
t

un
um

R\Q

irrational

Fig. 1. Abstract algebraic sets and Universal arithmetic types

Universal classifies arithmetic types into fixed and adaptive types. Fixed
types are arithmetic types that have a fixed memory layout when declared. In
contrast, the memory layout of adaptive types varies during the computation.
Fixed types are intended for energy-efficient, performant, and linear-algebra-
focused applications. Adaptive types are more suitable for accuracy and reliable
computing investigations.

For the fixed arithmetic types, Universal strives to offer sizes that are con-
figurable by individual bits as the target are custom hardware implementations
in specialized hardware accelerators. The parameterization space of fixed arith-
metic types is:

1. sampling profile and encoding
2. size in bits
3. dynamic range
4. arithmetic behavior (modulo, saturate, clip etc.)

The most informative example is the classic floating-point type: cfloat. It is
parameterized in all dimensions:

cfloat <nbits , es, BlockType ,
hasSubnormals , hasSupernormals , isSaturating >

We will discuss the details in Sect. 3.3.

3.1 Definitions

In Universal a custom arithmetic type is defined by a memory layout of the data
type, an encoding, and a set of operators that approximate an abstract algebra.
For example, a simple algebra on a ring where the data encoding is constrained
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to an 8-bit signed integer. Alternatively, a decimal floating-point type that emu-
lates a field with arithmetic operators, addition, subtraction, multiplication, and
division (+,−,×,÷).

Most arithmetic types in Universal represent such fields, albeit with a limited
range, and arithmetic rules that express how results are handled when they fall
outside of the representable range. Universal provides a rich set of types that
are very small and are frequently found in hardware designs to maximize silicon
efficiency.

3.2 Energy Efficiency, Performance, Accuracy, Reliability,
and Reproducibility

The energy consumption of a digital logic circuit is proportional to the silicon
area occupied. For an arithmetic type over a field, the silicon area of its Arith-
metic Logic Unit (ALU) circuit is directly proportional to the square of the size
of the encoding. Therefore, the constraint on the range covered by an arithmetic
type is a crucial design parameter for energy efficiency optimization.

However, in sub-micron chip manufacturing technology, the energy consump-
tion of data movement is more significant [14]. In 45 nm technology, an 8-bit
addition consumes about 0.03pJ, and a 32-bit floating-point multiply consumes
0.9pJ. However, reading a 32-bit operand from a register file is 5pJ, and read-
ing that same word from external memory is 640pJ. This discrepancy of energy
consumption between operator and data movement worsens with smaller man-
ufacturing geometries, adding additional importance to maximize information
content in arithmetic types to make them as dense and small as possible.

The performance of arithmetic types is also strongly impacted by data move-
ment. Any memory-bound algorithm will benefit from moving fewer bits to and
from external memory. Therefore, arithmetic types and algorithms must be co-
designed to minimize the number of bits per operation to maximize performance.

For applications constrained by accuracy, such as simulation and optimiza-
tion, arithmetic types need to cover the precision and dynamic range of the
computation. The precision of a type is the difference between successive values
representable by its encoding. The dynamic range is the difference between the
smallest and the largest value representable by the encoding.

The domain of reliable numerical computing must provide verified answers.
Arithmetic types for reliable computing need to guarantee numerical properties
of the result [4]. For example, interval arithmetic can assert that the true com-
putation answer lies in some interval and is an example of reliable computing.

Reproducible computation guarantees that results are the same regardless
of the execution order. Reproducible computing is particularly pertinent for
high concurrency environments, such as GPUs and High-Performance Comput-
ing (HPC) clusters.
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3.3 Fixed Size, Arbitrary Precision

Fixed-size, arbitrary precision arithmetic types are tailored to energy-efficiency
and memory bandwidth optimization.

integer<nbits, BlockType, NumberType> The integer arithmetic type can
represent Natural Numbers, Whole Numbers, and integers of nbits. Natu-
ral and Whole Numbers are encoded as 1’s complement numbers, and the
Integers are encoded as a 2’s complement numbers. Figure 2 shows a 16-
bit incarnation. Its closure semantics are modulo, and effectively extend the
C++ language with arbitrary precision signed integers of arbitrary fixed-size.
This type is very common in hardware designs.

16-bit integer

1 1 1 1 0 0 1 0 1 0 1 1 0 0 1 1

Fig. 2. A 16-bit integer.

fixpnt<nbits, rbits, arithmetic, BlockType> The fixpnt arithmetic
type is a 2’s complement encoded fixed-point of nbits with the radix point set
at bit rbits. Figure 3 shows a 16-bit incarnation with the radix point at bit
8. Its closure semantics are configurable: either modulo or saturating. The
fixpnt is constructed with blocks of type BlockType, and a fixpnt value is
aligned in memory on BlockType boundaries.

integer fraction (8 bits)

1 1 1 0 0 1 1 0 1 1 1 1 0 0 1 1

Fig. 3. A 16-bit fixed-point with 8 fraction bits.

cfloat<nbits, es, BlockType, sub, super, saturating> The cfloat arithmetic
type is a floating-point type of size nbits bits, with 1 sign bit, an exponent
field of es bits, and nbits − 1 − es number of mantissa bits. The exponent
is encoded as a biased integer. The mantissa is encoded with a hidden bit
for normal and supernormals numbers. Subnormal numbers are numbers
with all exponent bits set to 0s. Supernormal numbers are numbers with all
exponent bits set to 1s. Normal numbers are all encodings that are not sub-
normal or supernormal. Closure semantics can be saturating or clipping to
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±∞. Figure 4 shows a 16-bit cfloat with 5 bits of exponent. When subnor-
mals are selected and supernormals and saturating are deselected, this would
represent a half-precision IEEE-754 FP16. If subnormals are deselected, it
will represent the NVIDIA and AMD FP16 arithmetic type. Figure 5 shows a
single-precision floating-point. The cfloat type can represent floating-point
types ranging from 3 bits to thousands of bits, with or without subnor-
mals, with or without supernormals, and with clipping or saturating closure
semantics.

sign exponent mantissa (10 bits)

0 1 1 1 0 0 1 1 1 1 0 0 1 0 1 0

Fig. 4. Half-precision 16-bit floating-point representation, fp16.

sign exponent mantissa (23 bits)

0 1 1 1 0 0 0 1 1 1 1 1 1 0 0 1 0 1 0 1 1 1 1 0 0 1 0 1 0 1 1 1

Fig. 5. Single precision 32-bit floating-point representation, fp32.

posit<nbits, es, BlockType> The posit arithmetic type represents a tapered
floating-point type using the posit encoding. It offers a parameterized size
of nbits, with 1 sign bit, es exponent bits, and nbits − 3 − es mantissa bits
around 1.0. Figure 6 shows a 16-bit posit with 3 exponent bits in regime −3.

sign regime exp mantissa (8 bits)

0 0 0 0 1 1 0 1 1 1 0 1 1 1 0 1

Fig. 6. A posit<16,3>.

lns<nbits, base, BlockType> The lns arithmetic type implements a logarithmic
number system of size nbits, with base as the base.

The type set integer, fixpnt, cfloat, posit, and lns provide a productive
baseline of arithmetic types that most developers are familiar with. Universal
contains other types as well, including faithful types with uncertainty bits, type
I and II unums, and interval posits, called valids. These more advanced arith-
metic types provide facilities for reliable computing and numerical analysis.
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3.4 Variable Size, Adaptive Precision

Adaptive precision arithmetic types are tailored to questions regarding numerical
precision and computational accuracy. This has been the traditional domain of
numerical research platforms, such as Boost Multiprecision, MPFR, and GMP
[5,7,19]. Universal currently offers only two adaptive precision arithmetic types:

– decimal
– rational

Implementation work has started on adaptive precision floating-point based on
Douglas Priest’s work [24], and the lazy exact arithmetic type proposed by Ryan
McCleeary [20].

4 Creating a New Arithmetic Type

The experience with implementing a dozen or so arithmetic types has exposed
a typical pattern of how to quickly and reliably bring up a new arithmetic type.
The first step is to define the memory layout of the parameterized type. This
step blocks the storage required to contain the encoded bits. Universal exposed
the block type used for storage and alignment. For example, using a uint8 t
as the building block, the memory layout of the individual value would be the
minimum number of blocks to contain the encoding. The memory alignment
would be on byte boundaries.

Once the memory layout has been designed, the next step is to implement
the conversion from encoding to native types, such as float or double. Provide
a simple set of convert to methods to test the interpretation of bits in the
encoding to generate tables to validate the encoding.

The next step is to implement the inverse transformation - the conversion
from native types to the encoding of the new arithmetic type. This conversion
tends to be the most involved algorithmic task as sampling the native type values
by the new arithmetic type requires robust rounding decisions. The conversion
regression suite of this step is also involved as one needs to enumerate all possible
rounding situations across all possible encodings.

Once we have the memory layout, encoding, and the two conversion direc-
tions, the type can be used for computation by simply converting the value to
a native type, calling arithmetic operators or math library functions, and con-
verting the result back into the encoding.

The final two implementation tasks are native arithmetic operators and
native implementations of the elementary functions. Native implementations are
the only safeguard against double-conversion errors. Native implementations are
also crucial for performance and hardware validation. The arithmetic operators
vary by which algebraic system the arithmetic type is associated. Still, in general,
we need to implement the following set:

– addition
– subtraction
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– multiplication
– division
– remainder
– square root

The final step in creating a new arithmetic type is to provide native imple-
mentations of the elementary functions. To do this for parameterized types is still
an open research question, as the approximation polynomials, albeit minimax
or Minefield, are specific to each configuration.

5 Arithmetic Type API

5.1 Construction

All Universal arithmetic types have a default, copy, and move constructor. This
allows the application to create, copy, and efficiently call return values.
// required constructors
constexpr posit() noexcept
constexpr posit(const posit &) noexcept
constexpr posit(posit &&) noexcept

To support efficient conversions between native types and the user defined
type, we encourage to provide converting constructors for all native types. Cast-
ing to the largest native type would create inefficiency specifically for small
encodings where performance is most desired.
// signed native integer types
constexpr posit(signed char) noexcept
constexpr posit(short) noexcept
constexpr posit(int) noexcept
constexpr posit(long) noexcept
constexpr posit(long long) noexcept

// unsigned native integer types
constexpr posit(char) noexcept
constexpr posit(unsigned short) noexcept
constexpr posit(unsigned int) noexcept
constexpr posit(unsigned long) noexcept
constexpr posit(unsigned long long) noexcept

// native floating -point types
constexpr posit(float) noexcept
constexpr posit(double) noexcept
constexpr posit(long double) noexcept

Some compilers, Clang in particular, treat type aliases as different types.
Aliases such as uint8 t, uint16 t, uint32 t, uint64 t are not equivalent to
char, unsigned short, unsigned int, and unsigned long long, respectively.
This causes potential compilation problems when using type aliases in converting
constructors. Instead of matching the appropriate constructor, your code will go
through an implicit conversion, which can cause latent bugs that are hard to
find. Best is to specialize on the native language types, short, int, long, etc.
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5.2 Assignment

Assignment operators follow the same structure as the converting constructors.

// assignment operators for native types

// signed native integer types
constexpr fixpnt& operator =( signed char rhs) noexcept
constexpr fixpnt& operator =( short rhs) noexcept
constexpr fixpnt& operator =(int rhs) noexcept
constexpr fixpnt& operator =(long rhs) noexcept
constexpr fixpnt& operator =(long long rhs) noexcept

// unsigned native integer types
constexpr fixpnt& operator =(char rhs) noexcept
constexpr fixpnt& operator =( unsigned short rhs) noexcept
constexpr fixpnt& operator =( unsigned int rhs) noexcept
constexpr fixpnt& operator =( unsigned long rhs) noexcept
constexpr fixpnt& operator =( unsigned long long rhs) noexcept

// native floating -point types
constexpr fixpnt& operator =( float rhs) noexcept
constexpr fixpnt& operator =( double rhs) noexcept

Another compiler environment constraint, particularly for embedded envi-
ronments, is support for long double. Embedded ARM and RISC-V compiler
environments do not support long double, so Universal guards the long double
construction/conversion and must be explicitly enabled.

// guard long double support to enable
// ARM and RISC -V embedded environments
#if LONG_DOUBLE_SUPPORT
constexpr fixpnt(long double initial_value) noexcept
constexpr fixpnt& operator =(long double rhs) noexcept
constexpr explicit operator long double () const noexcept
#endif

5.3 Conversion

Operators that convert from native types to the custom type are provided
through converting constructors and assignment operators. However, the con-
version from custom type to native types is marked explicit to avoid implicit
conversions that can hide rounding errors that are impossible to isolate.

// make conversions to native types explicit
explicit operator int() const
explicit operator long long() const
explicit operator double () const
explicit operator float () const
explicit operator long double () const
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5.4 Logic Operators

The Universal arithmetic types are designed to be plug-in replacements for
native types. Notably, for the logic operators in the language, it is common
to come across this code:

...
cfloat <16,5> a, b, c;
...
if (b != 0) c = a / b;
...

Porting existing codes to use Universal types provided evidence that all and
every combination of literal comparisons are used. The logic operator design
must thus be complete and capture all combinations of arithmetic type and
literal type that are native to the language.

The design in Universal uses a strongly typed set of operator signatures
that provide an optimized implementation for the comparison leveraging the
size of the literal. Typically, we only need to implement operator==() and
operator<() with native encoding knowledge. The other logic operators can
be expressed in terms of these two operators. The exception to this rule is the
IEEE-754 derived arithmetic types with NaN encodings. In those systems, the
logic operators are not complementary, and each operator requires decision code
to deal with this particular type.

// base logic operators are defined as friends
template <size_t nbits , size_t es>
friend bool operator ==( const valid <nbits , es >& lhs ,

const valid <nbits , es >& rhs);
template <size_t nbits , size_t es>
friend bool operator !=( const valid <nbits , es >& lhs ,

const valid <nbits , es >& rhs);
template <size_t nbits , size_t es>
friend bool operator < (const valid <nbits , es >& lhs ,

const valid <nbits , es >& rhs);
template <size_t nbits , size_t es>
friend bool operator > (const valid <nbits , es >& lhs ,

const valid <nbits , es >& rhs);
template <size_t nbits , size_t es>
friend bool operator <=( const valid <nbits , es >& lhs ,

const valid <nbits , es >& rhs);
template <size_t nbits , size_t es>
friend bool operator >=( const valid <nbits , es >& lhs ,

const valid <nbits , es >& rhs);

There are three signed integers (int, long and long long), three unsigned,
and three floating-point (float, double, and long double) literals. This creates
the need for 6 × 3 × 3 × 3 × 2 = 324 free functions to capture all the combina-
tions between arithmetic type and literal. These free functions will transform
the literal to the arithmetic type and then call the operational layer to execute
the comparison. Judicious use of implicit conversion rules can be used to reduce
that number, but care must be taken to avoid double rounding errors.
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5.5 Arithmetic Operators

Binary arithmetic operators are implemented through free binary functions that
capture literals and type conversions coupled with in-place update class opera-
tors.

// update operators
cfloat& operator +=( const cfloat& rhs)
cfloat& operator -=( const cfloat& rhs)
cfloat& operator *=( const cfloat& rhs)
cfloat& operator /=( const cfloat& rhs)

// free binary functions to transform literals
template <size_t nbits , size_t es , typename bt,
bool hasSubnormals , bool hasSupernormals , bool isSaturating >
cfloat <nbits , es, bt,

hasSubnormals , hasSupernormals , isSaturating >
operator +(const double lhs ,

const cfloat <nbits , es , bt,
hasSubnormals , hasSupernormals ,
isSaturating >& rhs) {

cfloat <nbits , es , bt, hasSubnormals , hasSupernormals ,
isSaturating > sum(lhs);

sum += rhs;
return sum;

}

5.6 Serialization

All arithmetic types in Universal support serialization through the stream
libraries.

std:: ostream& operator <<(std:: ostream& ostr ,
const decimal& d)

std:: istream& operator >>(std:: istream& istr , decimal& p)

Such conversions may introduce rounding errors, so Universal types also
support a error free ASCII format. This is controlled by a compilation guard:

// /////////////
// enable/disable special posit format I/O
#if !defined(POSIT_ERROR_FREE_IO_FORMAT)
// default is to print double values
#define POSIT_ERROR_FREE_IO_FORMAT 0
#endif

When error-free printing is enabled, values are printed with a designation
and a hex format to represent the bits. Here is an example of a posit use case:

posit <32,2> p(1.0);
cout << "Error�free�posit�value:�" << p << endl;
...
> Error free posit value: 32.2 x40000000p



112 E. T. L. Omtzigt and J. Quinlan

5.7 Set and Query Interface

To support efficient verification and validation of an arithmetic type, the regres-
sion suites need to be able to set and query bits.
// modifiers

inline constexpr void clear() noexcept

inline constexpr void setzero () noexcept

inline constexpr void setbit(size_t i, bool v = true)

inline constexpr void setbits(uint64_t raw_bits) noexcept

inline constexpr void setblock(size_t b, const BlockType& data) noexcept

The methods setbit() and setbits() make it possible to write generic
regression tests for arithmetic types, thus drastically reducing the amount of
code that needs to be written to validate the arithmetic types in Universal.
This basic API can be augmented to set special encodings for specific arithmetic
types. For example, here is the extended set for cfloat :
inline constexpr void setinf(bool sign = true) noexcept

inline constexpr void setnan(int NaNType = NAN_TYPE_SIGNALLING) noexcept

inline constexpr void setsign(bool sign = true)

inline constexpr bool setexponent(int scale)

inline constexpr void setfraction(uint64_t raw_bits)

The verification phase is aided by a productive reflection interface. The Uni-
versal arithmetic types have a standard set of state query methods to simplify
the verification algorithms.

// selectors
inline constexpr bool sign() const noexcept
inline constexpr int scale () const noexcept
inline constexpr bool ispos () const noexcept
inline constexpr bool iszero () const noexcept
inline constexpr bool isone () const noexcept

Just like the modifiers, the basic API can be augmented to capture specific
state: here is the extended set for cfloat.

// special value queries for cfloat
inline constexpr bool isinf(int InfType) const noexcept
inline constexpr bool isnan(int NaNType) const noexcept

// range queries for cfloat
inline constexpr bool isnormal () const noexcept
inline constexpr bool isdenormal () const noexcept
inline constexpr bool issupernormal () const noexcept

5.8 Support Functions and Manipulators

Working with bit encodings is challenging, so Universal provides a collection of
manipulators and support functions to ease queries and interpret bit encodings.
The manipulator color print color-codes different segments of encoding so that
it is easier to decipher and compare, as is shown in Fig. 7 for different posit
configurations.
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Fig. 7. Demonstration of the color print(p) function.

6 Example: Matrix Scaling and Equilibrating

Several multi-precision iterative-based algorithms for solving Ax = b have been
developed [2,3,8,10] showing speedup over double precision solvers (e.g., [11]).
In those studies, the algorithms round the entries of A to lower precision (i.e.,
half precision), perform LU decomposition, compute a solution using the low
accuracy LU factors, then use iterative refinement back to working precision.
The results are highly dependent on the condition number of the matrix. It is
worth noting that even well-conditioned matrices can become ill-conditioned in
lower precision. Because when scaling to lower precision, underflow may pro-
duce a singular matrix, the percentage of nonzero elements after scaling to lower
precision is critical. Rounding to lower precision also can result in overflow (or
subnormals); however, overflow is far less likely in scientific computing applica-
tions [12]. Next, we outline three algorithms (see Appendix A) presented in [12]
using slightly different notation.

Let p represent the precision (e.g., fp16), amax = maxi,j |ai,j |, and xmax the
largest positive value represented in the lower precision arithmetic. The goal
of scaling is to reduce the condition number and to increase speed in solving.
Table 1 lists key characteristics of half precision, double precision, and posit<
16,2>.

Algorithm 1 converts all entries to lower precision format. Any entry that
rounds to infinity is replaced by the maximum signed value. However, Algo-
rithm 1 does not handle underflow or subnormal situations. Furthermore, it
alters the matrix significantly when |aij | � xmax, (see [12]). Algorithm 2 on the
other hand, scales then rounds in such a way to avoid overflow, however shrinks
the magnitude of each increasing the chance of underflow, thus increasing the
possibility of producing a singular matrix. Algorithm 3 addresses those issues
by equilibrating rows and columns so that the maximum entry is 1 in each row
and column. We note it is not possible to underflow using posit configurations,
so there will be no reduction in the number nonzero elements. As such, more
research on how and when to scale is needed. Universal permits testing multiple
configurations and provides a vehicle for this research.
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Table 1. Specifications of multiple binary formats. Precision of the arithmetic is mea-
sured by the unit round off, which is 2−p, where p is the number of fraction bits.

Format Fraction Exponent ulp Min Max

posit<16,2> ≤ 11 2 4.88e−04 1.39e−17 7.21e+16

fp16 11 5 4.88e−04 6.10e−05 6.55e+04

fp64 53 11 1.11e−16 2.22e−308 1.80e+308

7 Conclusions and Future Work

We have presented the current status of the Universal library v3. The third edi-
tion of the library contains the core arithmetic types that cover the algebraic sets
and contains a unified API to simplify validation and regression testing. We pro-
vided some examples of the arithmetic types’ intended use and reported on some
framework integrations for research and development of computational science
and engineering applications. Much work remains. The Oracle-style arithmetic
types need to be fleshed out so that the mathematical library work can move for-
ward. Math libraries that are parameterized with arithmetic type attributes such
as precision and dynamic range are still an open research question and, when
resolved, would dramatically improve the code-efficiency of Universal. Many new
arithmetic types are being proposed for Deep Learning and Optimal control
that need representations that are more energy-efficient. Moreover, many next-
generation application platforms are written in Python, Julia, Golang, and Rust,
and will need integration facilities to leverage the arithmetic types in Universal.
The current incarnation of the library provides productive facilities to research
and develop energy-efficient and high-performance algorithms through custom
arithmetic. The Universal library development is managed as an open-source
community project [1] where all contributions are welcome.

Appendix A: Squeezing Algorithms

Algorithm 1: Round and replace overflow with xmax.
Input: An n × n Matrix A
Output: Rounded matrix B

1 B = flp(A)
2 Set ap

ij = sign(aij)xmax
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Algorithm 2: Scaled matrix entries
Input: An n × n Matrix A
Output: Rounded matrix A(p)

1 amax = maxi,j |ai,j |
2 μ = xmax/amax

3 A(p) = flp(μA)

Algorithm 3: Double side scaling using row and column equilibration
Input: An n × n Matrix A
Output: Rounded matrix A(p)

1 Set R = 0
2 for i = 1 to n do
3 R(i, i) ← ||A(i, :)||−1

∞
4 end
5 B = RA
6 Set S = 0
7 for j = 1 to n do
8 S(j, j) ← ||A(:, j)||−1

∞
9 end

10 Set β = maximum absolute entry in RAS
11 Set μ = xmax/β
12 Return flp(μ(RAS)
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Abstract. The pervasiveness of deep neural networks (DNNs) in edge
devices enforces new requirements on information representation. Low
precision formats from 16 bits down to 1 or 2 bits have been proposed
in the last years. In this paper we aim to illustrate a general view of
the possible approaches of optimizing neural networks for DNNs at the
edge. In particular we focused on these key points: i) limited non-volatile
storage ii) limited volatile memory iii) limited computational power. Fur-
thermore we explored the state-of-the-art of alternative representations
for real numbers comparing their performance in recognition and detec-
tion tasks, in terms of accuracy and inference time. Finally we present
our results using posits in several neural networks and datasets, showing
the small accuracy degradation between 32-bit floats and 16-bit (or even
8-bit) posits, comparing the results also against the bfloat family.

Keywords: Deep learning · Edge computing · Fog computing · Fine
tuning at the edge · Alternative representation for real numbers · Small
reals · Posits · bfloat · Weights compression

1 Introduction

Recently, it has been shown that Machine Learning in general, and Deep Neural
Networks (DNNs) in particular, tolerate low-precision representations for their
parameters. This constitutes an opportunity for speeding up the computations,
to reduce storage, and, more importantly, to reduce power consumption. The
latter is of paramount importance at the edge and on embedded devices.

However, to allow the porting of trained DNNs on difference devices, there
is the need to standardize low precision formats for machine learning.

The aim of this work is to grab the attention to this very important topic,
with the hope that sooner or later a standard, like the well-known IEEE 754 one
(see [1]), will be put in place.

This is a necessity strongly felt by practitioners and industry, even if aca-
demics and researchers seem to be less aware of its importance.
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To make the picture of the situation more complex, we should also take into
account the requirements of safety critical applications, where low-precision is
less encouraged, but can still be considered, provided that it does not hamper
the safety of the system.

Safety critical applications at the edge not only put more stringent require-
ments on the binary representation for small reals in DNNs, but can also add
constraints of reproducibility of the computations. This latter aspect can impact
the design of the representation. As an example, consider the use of stochastic
rounding: even if it has been proved to increase the effectiveness during the train-
ing of a DNN (especially when using 8-bit precision floating point numbers [2]),
it undermines the reproducibility of the computations. Since we are confident
that sooner or later a standard will be created, it is important to start to make
comparison between the existing alternative ways to represents real numbers in
deep neural networks, in particular when planned to be used at the edge. Before
doing this, we provide a review of all the techniques proposed so far to reduce
power consumption, such as quantization, network pruning, etc.

The paper is organized as follows: in Sect. 2 we reviewed the state of art of
deploying Deep Neural Networks at the edge and the main trends of research
activities in this field. In Sect. 2.1 we briefly described the network pruning tech-
nique and its applications in simplifying neural networks. In Sect. 2.2 we summa-
rized the network quantization approach, also covering networks working with
binary or ternary weights (we have called the latter cases as “drastic quanti-
zation”). In Sect. 2.3 we reviewed a family of low-precision format for DNNs,
called small reals, that include all the types we analysed later on. In Sect. 3 we
analysed the most promising alternatives to IEEE 32-bit floats: bfloat family in
Sect. 3.1, flexpoint in Sect. 3.2 and Logarithmic Numbers in Sect. 3.3. In Sect. 4
we presented and deeply analysed the positTM format, highlighting some impor-
tant properties. Furthermore, we showed the main contributions of this work,
consisting of the integration of the cppPosit library and bfloats inside some inter-
esting machine learning frameworks. In Sect. 5 we presented results on deploying
neural networks on a low-power constrained device, the Raspberry Pi 3B and in
Sect. 6 we analyse the obtained results and their impact, other than discussing
future developments of the proposed approach. Finally, in Sect. 7 we draw a few
conclusions.

2 Deploying DNNs at the Edge: State of the Art

In the last decade, a lot of research efforts in DNNs has been devoted to reduce
the resources required to exploit neural networks with limited memory, stor-
age or computing power (such as smartphones or network edge devices), as
demonstrated by the success of TensorFlow Lite, the low-precision counterpart
of Google TensorFlow library. Two research lines emerged, the first one focusing
on the inference phase only, leading to reduced-precision representation for the
neural network parameters, the second one aimed at additionally speeding up
the training phase using low-precision numerical formats also for the gradients.
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Concerning low-precision numerical formats currently used in DNNs, three
main approaches can be distinguished:

1. use of low-precision floating-point formats;
2. use of low-precision fixed-point real numbers or integer numbers;
3. use of binary/ternary formats.

These alternative representations can be limited to the weights, or to the
weights and activations, or include all involved quantities (weights, activations
and gradients). When following the first approach (i.e., low-precision floats),
research and development efforts are converging toward a 16-bit floating point
representation instead of the classical 32-bit one (which is called binary32) [1].
The same IEEE 754 standard [1] which has standardized binary32 has also stan-
dardized a 16-bit counterpart, called binary16, which reserves 5 bits to the expo-
nent. However, most of the general purpose CPUs do not have full hardware
support for binary16. In addition, it seems to be not particularly effective in
deep learning. For these reasons, IBM has proposed a 16-bit floating point for-
mat having 6 bit for the exponent [3], called DLFloat (which stands for “deep
learning float”), while Google has proposed the 8-bit alternative for the expo-
nent [4], called bfloat16. This gap in the standard might be resolved soon, as
there is a strong push from the machine learning community for suitable arith-
metic formats. Another shortcoming of this approach is the lack of hardware
support: as said above, most CPUs support 32- and 64-bit floats, but not 16- or
8-bit floats. Moreover, there are proposals to use a completely different represen-
tation for real numbers, like the posit format introduced in 2017 [5]. Although
the posit format is promising for low-precision DNNs [6–9], the not widespread
availability of hardware support on CPUs still limits a large scale adoption (a
list of hardware implementations of posits can be found at https://en.wikipedia.
org/wiki/Unum (number format)).

The second approach (i.e., low-precision fixed-point numbers or integer num-
bers) is popular since it allows running DNNs even on entry-level CPUs micro-
controllers not equipped with a Floating Point Unit (FPU), since the Arithmetic
Logic Unit (ALU) is enough. On the one hand, fixed-point representations for
real numbers are widely used (especially in financial applications and to improve
the graphics in video games) even though C++ has not yet a standard library
supporting them. DNN implementations using low-precision fixed-point for the
both the weights and the activations are appearing [10]. Recently, a few papers
discussed the specific issues of training DNNs with a fixed-point representa-
tion [11]. On the other hand, low-precision integer numbers are very interesting
for time-sensitive applications, because operations between integer numbers have
predictable computing times. However, the use of (low-precision integers), like
8-bit or less, usually requires a tailored training algorithm [12]. This approach
is called quantization, for its obvious meaning.

The third approach takes the use of low-precision integer numbers in DNNs to
the extreme, using ternary or even binary weights. Remarkable results have been
obtained: DNNs with ternary weights (i.e., −1, 0 and 1) have been demonstrated

https://en.wikipedia.org/wiki/Unum_(number_format)
https://en.wikipedia.org/wiki/Unum_(number_format)
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to achieve the same classification accuracy as DNNs using binary32 weights [13].
DNNs with binary weights have been also devised, again with little or no degra-
dation in the classification accuracy [14]. These results were confirmed on the
very challenging ImageNet dataset, considered as the most demanding open-
source dataset for visual object recognition, with more than 20,000 different
object categories [15]. The use of models with precision down to INT2 (i.e., 2-bit
integer) has been demonstrated with a more than tolerable accuracy loss [16,17].
As a result, NVIDIA has added the support down to binary numbers to its top-
level GPUs to perform tensor operations [18]. Quantization can be applied either
during the training phase or after it, just to perform the inference. However,
DNN training using these numerical formats is more difficult compared to the
two previously presented solutions as the gradient descent cannot be exploited,
requiring the implementation of ad-hoc learning algorithms.

In [19] a series of challenges for DNN edge computing was presented. In par-
ticular the authors pointed out 4 main challenges to obtain a so called “TinyML”:
i) profiling the energy consumption is critical and the power consumption can
vary wildly between different devices ii) edge systems often have very limited
memory, two orders of magnitude smaller than usual smartphones, so optimiza-
tions are required iii) edge devices can be very different from each other, thus
there is the need to normalize the benchmarks and the results obtained in those
heterogeneous environments. iv) there is the need for software abstraction, even
if this means losing a bit of low-level optimization that comes from hand-written
and hand-tuned code.

2.1 Network Pruning

When deploying trained model to edge devices we must balance the model accu-
racy performance with the inference processing time and resource utilisation.
Indeed, the principal aim of network pruning is to reduce the computational
cost of DNNs.

Typically DNNs are deployed with a large number of layers if several types,
with most of them having their own weights and feature maps: traditionally,
pruning is aimed to drastically reduce the amount of parameters in the network
by removing some “redundant” connection between the layers. The idea is to
delete such parameters whose removal will impact the less the training error.
For example, we can delete very small-magnitude weights (when compared to
the rest of the network). After deletion the network can continue its training,
and so on, deleting weights at each step applying different deletion strategy. As
a drawback the training process is significantly slowed down, since it requires a
particular fine-tuning after each pruning step. The core idea expressed in [20] is
to express an optimal brain damage, that is a theoretical measure of the saliency
of weights in a network. In particular, a model of the training error functions
is built and it is analytically associated with the effect of a perturbation of
the parameters. From this expression the authors can express, with a series of
transformations, the saliency sk for each parameter k in the network.

The paper iterative approach is explained hereafter:
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1. The neural network is first trained until a result (good enough) is reached
2. Each parameter is associated with a saliency, sk

3. The parameters are sorted according to sk and low-saliency parameters are
deleted. Go to (1).

Deleting a parameter means setting it to 0 and making it immutable from
that moment on.

2.2 Network Quantization

During the years, as the deep neural networks models grew in accuracy over
the most famous datasets (e.g. ImageNet and others) the network complexity in
terms of Floating Point operations (FLOPs) and model footprint increased. In
particular the footprint of network models (e.g. AlexNet model size is around 233
MB) is particularly critical in low-power and edge devices that can be particu-
larly constrained in non-volatile storage capacity. Typically quantization involves
the compression of weights using small integers, like 8-bit integer types.

In [21] the authors presented an overview of quantization techniques on deep
neural networks. In particular the authors were able to compress complex net-
works like AlexNet by a factor 35, using a combination of quantization and
weight sharing, while inducing a very minimal increase in the recognition error.

Drastic Quantization (Binary and Ternary Networks). Another app-
roach to quantization is pushing the compression further, aiming to binary or
ternary weights representations. In [22] the authors presented an overview of
several approaches to drastic quantization, using the Hybrid Binary Neural Net-
work (HBN) model. This model is based on a combination of 32-bit integer layers
and binary layers. Typically, the input layer and the prediction output layer have
32-bit integer weights, while the intermediate ones are implemented using binary
weights. We report an example of HBN from Quantized Keras (QKeras), where
the 95% of weights are binary:

1. 2-dimensional convolution with 32-bit weights
2. Batch Normalization with 32-bit weights
3. Quantization layer
4. 2-dimensional convolution with binary weights
5. Batch Normalization with 32-bit parameters
6. Quantization layer
7. Fully Connected layer with binary weights
8. Output layer with 32-bit predictions.

The authors showed how the choice of layers to be quantised (binarised in
this case) is critical to reduce the network footprint and complexity without
impacting the accuracy of the model.
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2.3 Small Reals

Since quantization employs vary small integers for numerical representation, we
lose the possibility to fine-tune our models on the edge without changing any
aspect of the training algorithm. The idea of using small reals is based on the
need for continuity between the original network model representation and the
edge one. In particular, we want to remain in the real number domain. There
are several formats that can be classified as small reals, each of them having at
most 16-bit representation:

1. binary16: the standard IEEE 16-bit representation with 5-bit exponent and
10-bit fraction

2. bfloat family (in detail in Sect. 3.1) with 16 or 8 bit representations
3. posit numbers (in detail in Sect. 4) with 16 or 8 bit representations (but also

intermediate variants can be used, such as 6, 10, 12 or 14 bits if we accept
the cost of memory misalignment).

In the next section we provide the state of the art for alternative representa-
tions of real numbers, with special emphasis on small ones (16-bit or less). Then,
in Sect. 4, we review the posit format, which is considered at the moment the
main challenger to the IEEE 754 format.

3 Alternative Real Number Representation: State
of the Art

3.1 The bfloat Family

The bfloat family is an alternative representation to IEEE 32-bit floating point
numbers. In particular, the aim of bfloat is to propose a format that has very
common characteristics with the IEEE 32-bit format, with a reduction on the
format length.

bfloat16. The first format proposed in this family was the bfloat16. We sum-
marize hereafter its structure:

– 1-bit sign
– 8-bit exponent
– 7-bit fraction

It substantially differs from its predecessor 16-bit IEEE Floating Point
(binary16) because it has the same number of exponent bits as the 32-bit IEEE
Floating Point (binary32). This allows a very fast conversion between the two
types, since it only involves a truncation on the fraction (or an appropriate
rounding, depending on the cases). This format can be employed both for low-
precision inference and for mixed precision training [23].

There is a light support for bfloat16 in the latest generations of Intel Xeon
CPUs; in particular BF16 instructions were added to the AVX2 vector extension
of the architecture.
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bfloat8. The bfloat8 format represents a further reduction in bits. Indeed, the
format employs 5-bit exponent (as binary16) and only 2-bit for the fraction.
This choice makes the conversion from binary16 to bfloat8 very fast, being it
just a matter of truncation. The same cannot be said from binary32: in this case
the conversion is more complex. A particular implementation of bfloat8 (in [24])
enabled the use of stochastic rounding during mixed precision training on this
format. This approach allowed bringing in more randomization into the training
phase. Let us consider a number represented on a float with a higher number
of bits, let us say k bits, and we want to find its representation on k′ bits, with
k′ < k. Let x = s ·2e ·(1+f) (sign, exponent and fraction respectively) be such a
number. As an example, x might be a binary32 and x′ a bfloat8. We may compute
the probability p = f−f ′

ε where f ′ is the truncation of the larger fraction into the
smaller one and ε = 2−k. With probability p we round x to y = s ·2e ·(1+f ′ +ε),
while with probability 1−p we round it to y = s ·2e ·(1+f ′). With this approach
the authors were able to train several neural networks model on common datasets
(e.g. CIFAR10 and ImageNet) with 8-bit floating point numbers: they reported
very little degradation in DNN accuracy while reducing the model size by a
factor ∼2.

3.2 Flexpoint

The flexpoint format [25] is characterized by a shared tensor exponent. This
exponent is used as a common exponent for all the reals in a given neural network
layer or slice. This allows for example to have a 16-bit fixed-point representation
in an entire DNN layer, with just additional 5-bits for the whole layer as an
exponent. The exponent can be adjusted during the training, to match dynamic
range variations that happen during the process. It should be noted that the
idea behind flexpoint was already introduced earlier, but in different contexts,
as “block floating point” representations (see, for example, [26]). Finally observe
how the flexpoint approach, although interesting and powerful, cannot be used
as a drop-in replacement to binary32: software changes are required to the DNN
software libraries. This also makes cumbersome the reuse of pre-trained DNNs.

3.3 Logarithmic Numbers

As reported in [27], the main problem with floating point operations in hardware
is the transistors occupation for multiplication and division operations, which
occupy the main part of the FPU, being significantly more complex than the
circuitry for addition/subtraction. To address this issue, the Logarithmic Num-
ber System (LNS) was proposed decades ago in [28]. This system represents a
number x a number as y = 2x, in a pure logarithmic way. Following the loga-
rithm properties this means that multiplication and division are just a matter
of adding and subtracting logarithmic numbers (e.g. y1 × y2 = 2x1+x2).

However, this approach requires huge hardware lookup tables to compute the
sum or difference of two logarithmic numbers [27]. This has been one of the main
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bottlenecks for the format, since handling these tables can be more expensive
than basic hardware multipliers.

Although this approach is really promising and can be combined with other
formats, it has not been demonstrated yet that logarithmic numbers are more
effective than floats for DNNs. Thus more research is clearly needed before resort-
ing to this solution.

4 The Posit Format and Innovative Contributions of This
Work

Posit numbers [5] are a representation for real numbers that can be configured in
two parameters, the number of bits nbits and the maximum number of exponent
bits esbits.

The format can have at most 4 fields (3 when esbit is chosen equal to 0):

1. 1-bit sign
2. Variable length regime
3. Variable length (up to esbits if present) exponent1

4. Variable length fraction2

The novelty of the format is all in the regime field. This field is encoded
with a run-length approach; indeed, its value depends on its length. To compute
the length l of the regime we just need to look at the number of subsequent
identical bits, interrupted by a bit of the opposite value (e.g. the bitstring 1110
has a length of 3, as well as the bitstring 0001). To compute the actual value of
the regime we need to take into account also the value of the single bit that is
repeated in the sequence, let’s call it b. The regime value is then:

k =

{
−l, if b = 0
l − 1, otherwise

(1)

The strong point of the variable length format is inside the regime: when
numbers are small (around the values ±1), the regime length is low and the
fraction length is high, thus giving the numbers in this area a high decimal
accuracy. This makes perfectly sense when matched with Deep Neural Networks,
where we can keep weights and activations across the layers near ±1 exploiting
weight decay and normalization techniques. Furthermore, if we look at the posit
range, most of the values are in the range [−1, 1]; this means that, a neural
network whose weights are entirely contained in this range will lose very little
accuracy if represented using posit numbers [29].

Particular properties of the posit format emerge when configuring the format
with 0 exponent bits. In detail:
1 An different way to look at the exponent field is to consider it having a fixed length

of esbit, where possible missing ones bits are implicitly considered equal to zero.
2 The same consideration done for the exponent field also applies to the fraction, which

could be regarded as a fixed-length field too, with implicit zeros.
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1. In the range [−1, 1] it is identical to a fixed point format
2. Simple operations such as doubling, halving and inverting can be computed

without decoding, directly on the posit integer representation [29]
3. Several DNN activation functions can be computed decoding free (see next

section)

4.1 Fast Approximated Activation Functions

When we configure posit numbers with 0 exponent bits we can implement DNN
activation functions using fast and approximated versions that can be computed
directly on the integer representation, without decoding the posit.

Fast Approximated Sigmoid. As pointed out in the original posit paper, the
Sigmoid can be computed directly on the posit representation as follows (v is the
integer representing the argument number, while Y is the integer representing
the result number):

Y = ((1 � nbits − 1) + v + 2) � 2

Fast Approximated Hyperbolic Tangent. From the sigmoid function we
can build other activation functions by manipulating the expression using the
operations described in the previous section (doubling, halving, inverting and
others). The hyperbolic tangent (tanh) can be implemented using the following
expression (if substituting the sigmoid with its approximated version, we obtain
the fast approximated tanh):

tanh(x) = − (1 − 2 · sigmoid(2x))

Fast Approximated Extended Linear Unit. The same approach can be
followed with the Extended Linear Unit (ELU), by combining the fast approxi-
mated sigmoid function and the other approximated operations seen above:

ex − 1 = −2 ·
[
1 − 1

2 · sigmoid(−x)

]
In [30] the authors proposed a way to adopt posit numbers at the edge. They

introduce a variant of posits called adaptive posit weight representation. When
converting weights from 32-bit float representation they are also quantised to
the adaptive posit format. This posit variant has a hyperparameter that control
the dynamic range; it can be defined as a regime bias or as a maximum regime
bit-width called rs. When rs = 1 the adaptive posit format is identical to a
floating point with the same number of bits (the regime is non-existent in this
case). When rs = n − 1 the adaptive posit format is a pure posit number.
Thanks to this approach the authors were able to test their approach on different
datasets and neural networks, without losing too much accuracy even with 5-
bit adaptive posits. Furthermore they reported the maximum frequency (on
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ASIC) obtained during conversions, peaking 1200 MHz with pure posit to float
conversion with 5-bit posits. On the contrary, in this work we used standard
16-bit and 8-bit precision posits, and we have compared them with bfloat16 and
bfloat8, respectively. The results of this comparison are reported in Sect. 5.

The aim of our approach is to compare different representations of real num-
bers on DNN fine tuning at the edge, avoiding any change in the training algo-
rithm. In particular, we replace binary32 with bfloat16, bfloat8, posit16 and
Posit8, and we report their classification accuracy on standard DNN classifica-
tion benchmarks.

The added-value of this approach is that no software-hardware change are
required, other than having an FPU supporting bfloat16/8 or posit16/8.

In particular, we are not requesting the support of the Stochastic Rounding,
nor a different loss function or a tailored training algorithm.

In order to support posit numbers, in the past, we developed the cppPosit
library [31]. To us, declaring a posit number is just simple as:

auto p8 = Posit<8,0,...>;

The greatest struggle in designing such a library was that we wanted a format
that could be plug and play, so that we could just add it to any other machine
learning library with just a type definition. To achieve this goal we focused on
some core aspects of modern C++ (from 11 to 17):

– Type traits
– Extensive use of constexpr keyword to evaluate most of the branches at com-

pile time, to gain as branchless portions of code as possible
– Extensive use of templates to generalize posit operations when compiling the

code using -Ofast -std=c++17

When using novel types such as posit numbers, the lack of hardware is a
critical aspect. We explicitly did not want to compute operations on posits (e.g.
addition/multiplication and other) directly manipulating the posit bits. Instead,
we only wrote the coding and decoding operations and the conversions to another
type, called backend. The backend is a type that can leverage hardware accelera-
tion to some extent. For example, two widely used backends in cppPosit are the
fixed-point backend and the floating-point backend. Moreover, using a look-up
table as a backend for such operations proved to be effective, but at greater
memory cost.

Another obstacle to seamless integration of cppPosit with machine learning
libraries was the interoperability with standard math library <cmath> or other
linear algebra libraries (e.g. Eigen). Thanks to the extensive use of templates we
easily integrated these two libraries within the cppPosit library, so that it could
be easily used both with Eigen and the standard C++ math library.

This kind of interoperability out-of-the-box is not common in other posit
libraries such as SoftPosit, that leverages a SoftFloat-like approach to arith-
metic emulation. Furthermore, the cppPosit library is header only, therefore, its
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integration in a machine learning framework is simplified to just the inclusion of
the main posit.h header.

Thanks to these design choices we integrated the posit library into the fol-
lowing machine learning framework:

– tinyDNN [32]: CPU-oriented DNN framework for small neural networks
– TensorFlow [33]: one of the most used DNN libraries, which offers a huge

collection of datasets and pre-trained models.

A particular mention must be done to our posit-based TensorFlow imple-
mentation:

– The posit format was integrated alongside the other formats as a new dtype
(a dtype is a data format in the TensorFlow name scheme)

– We needed to write a Python wrapper for cppPosit to accommodate the high-
level Python interface.

As a result, we could load, store and convert pre-trained networks between
posit format and the other format available in the TensorFlow library. In par-
ticular, we could manage to use 8-bit posits in TensorFlow (that typically does
not allow 8-bit formats outside Tensorflow Lite) without passing through net-
work optimization and quantization that are applied to the other 8-bit formats
in TensorFlow. We achieved this by leveraging the posit encapsulation to mask
the 8-bit type with a 16-bit memory alignment.

5 Comparison Results

In this section we present some results on deploying neural networks on a con-
strained resource device. We used a Raspberry Pi 3B, equipped with a Cortex-
A53 (ARMv8) CPU running at 1.4 GHz and 1 GByte of LPDDR2 SDRAM. We
tested neural network models that were trained in a much more powerful system
using 32-bit floating point numbers. Then we converted such models to different
numerical formats to evaluate the accuracy degradation of such representation.
Furthermore, we reported the sample inference time of the models on the Rasp-
berry board.

We used the following network models:

– LeNet-5 like convolutional neural network [34],
– EfficientNet deep convolutional neural network [35]
– Single Shot Detector (with 300 × 300 input images) [36]

We used the following evaluation datasets:

– MNIST: hand-written digits recognition benchmark [37], 32 × 32 grey scale
images

– GTSRB: German Traffic Sign Recognition benchmark [38], 32 × 32 RGB
images
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– CIFAR10: general purpose image recognition benchmark [39], 32 × 32 RGB
images

– ImagenetV2: additional test-set that uses the same Imagenet classes but with
new images [40], 224 × 224 RGB images

– Pascal VOC 2007: object detection dataset [41], 300 × 300 RGB images

In Table 1 we reported the accuracy results of the first three small datasets
(MNIST, GTSRB, CIFAR10) with the LeNet-5 like neural network. Since we
hand-trained on these three datasets, we were able to add a normalization on
our data pipeline, in order to represent the images on the range [−1, 1], enabling
us to perform inference using low-bit posits and bfloat.

In Table 2 we reported the accuracy results of the big datasets (Imagenet,
PASCAL VOC) with the very deep neural networks (EfficientNet and SSD300).
Since we were using a pre-trained model, we could not control the image encod-
ing; indeed, the images in these two model were expected to be encoded in
[0, 255]. This prevented us to use 8-bit posits and 8-bit bfloat due to numerical
ranges.

Table 1. Inference (test-set) accuracy on small, edge convolutional neural network
trained with binary32, on different small datasets.

LeNet-5 like CNN

MNIST GTRSB CIFAR10

binary32 98.86% 91.9% 83.5%

posit16,1 98.83% 91.8% 83.5%

posit16,0 98.50% 90.5% 83%

bfloat16 98.86% 91.9% 82%

posit8,0 98.34% 90.4% 78%

bfloat8 69.57% 80.45% 67.5%

Table 2. Inference accuracy test on very deep neural networks with big datasets (again,
pre-trained using binary32).

EfficientNetB0 + ImagenetV2
(accuracy)

SSD300 + VOC 2007 (mean avg.
precision)

binary32 81.9% 80.39%

posit16,2 79.7% 78.49%

bfloat16 78.9% 73.29%
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Table 3. Sample inference time (frames per second in brackets) on different neural
network models and input size. The times were evaluated on a Raspberry Pi3 Model B.
Concerning posit16,x and posit8,x, we used x = 0, 1, 2 exponent bits, without observing
changes in the speed.

LeNet-5 EfficientNet SSD300

Input Size: 32 × 32 × 1 32 × 32 × 3 224 × 224 × 3 300 × 300 × 3

posit16,x 9.2 ms (108.5 fps) 23.9 ms (41.72 fps) 17.05 s (0.05 fps) 730 s (0.0010 fps)

bfloat16 4.8 ms (208.97 fps) 9.7 ms (103.37 fps) 12.73 s (0.08 fps) 472 s (0.0020 fps)

posit8,x 9.1 ms (110.38 fps) 21 ms (46.94 fps) 15.89 s (0,06 fps) 714 s (0.0013 fps)

bfloat8 5.7 ms (173.03 fps) 11 ms (86.11 fps) 11.49 s (0.09 fps) 528 s (0.0018 fps)

6 Analysis of the Results and Future Developments

In Table 1 we can see how different formats perform in a scenario with small
networks and simple datasets. As reported, all the 16-bit alternatives we analysed
matched the baseline accuracy of the IEEE 32-bit floating point format. If we
halve the bits again, with the 8-bit formats, we can see how 8-bit posits widely
outperform bfloat8 numbers. This result show how 8-bit posits benefits from the
non-fixed fraction bits, having the possibility to expand them at the expense
of the regime when numbers are small. On the other hand, having only 2-bit of
fraction in bfloat8 can be an issue when we plug directly the novel format without
fine-tuning; indeed, if we could fine-tune the networks for a few epochs using
only bfloat8 we could benefit from the stochastic gradient approach. However,
without bfloat8 proper hardware support, this approach is still not feasible due to
emulation overhead. We could think of applying the same idea to posit numbers,
adding the support for such characteristic to a possible Posit Processing Unit
(PPU).

From Table 2 we can see the behaviour of the 16-bit formats, when employed
in more complex neural networks (EfficientNet has around 800 layers) and more
challenging DNN tasks. As reported, the two 16-bit formats struggle to match
the baseline accuracy, with the posit format losing 2% point in both cases and
the bfloat16 losing respectively, 3 and 7% points.

In Table 3 we can see the sample inference time of the various networks,
with different input sizes. When analysing these results we need to take in mind
that we are completely emulating the behaviour of the different formats since we
clearly do not have the proper hardware support and acceleration. Indeed, we rely
on a floating point backend to perform the computation while weights and images
are stored using the emulated format. This means that, for each multiplication
or addition, we will convert the number to the floating point backend and then
we will convert it back after computation to the original emulated format. This
results show how bfloat family largely benefits from the strict similarity with
IEEE floats; indeed, the conversion between a bfloat16 number and a binary32
one, is just a left shift of 16 positions (and vice versa) while the conversion



130 M. Cococcioni et al.

between a posit and a binary32 numbers is way more complex, involving more
operations.

If we combine both results from the tables we can envision a scenario where
we use a 16-bit bfloat16 to perform mixed precision inference/training on 16-bit
while we stick to posit8 for low-precision inference, having a clear advantage over
bfloat8 in our tests.

6.1 Future Developments

When analysing bfloat8 we saw that it could benefit from a few epochs of fine-
tuning using the stochastic rounding proposed by the authors. The most common
framework that employs 8-bit formats, such as Tensorflow/Lite, widely use the
quantization technique and network pruning to simplify networks for deployment
in edge devices. This approach can introduce some issues: i) loss of performance
in terms of accuracy ii) no guarantee of meeting target platform requirements
iii) no guarantee on inference time or frames processed per second. An idea could
be optimizing the network adding a multi-objective genetic algorithm that takes
into account some parameters as constraints to match the target platform: i)
maximum number of hidden layers, and ii) maximum number of active neurons
per layer. With such constraints, we will be able to control both the time com-
plexity for the training, the RAM request, and the inference latency (which, on
his turn, impacts the frame per second that can be processed, in computer vision
applications).

Future works may involve exploiting posit numbers for a family of micro-
controllers that are equipped with an FPU (e.g. STM32 or Cortex F4) to be
used as back-end unit for the computation.

7 Conclusions

In this paper we reviewed several techniques to optimize neural network for
deployment to the edge. We have highlighted the quest for a new standard
for computations with small reals at the edge. In particular we analysed the
behaviour of two very promising formats, the bfloat family and the posit format.
We presented some results concerning the use of the posit representation and
compared them to results with bfloat numbers. From the results we saw that
16-bit posits and bfloat can match the baseline IEEE 32-bit float accuracy in
several DNN task. Furthermore, we saw how 8-bit posit can outperform 8-bit
bfloat in simple DNN tasks. Despite the good results obtained so far using posits,
we think that there is still much to explore in order to fully exploit the potential
of this novel format. In particular we expect to obtain more interesting results
with the proper hardware support for both posit numbers and bfloat, which
would allow the native training of really deep neural networks, or the fine tuning
at the edge.



Small Reals Representations for Deep Learning at the Edge 131

Acknowledgments. Work partially supported by H2020 projects (EPI grant no.
826647, https://www.european-processor-initiative.eu/ and TEXTAROSSA grant no.
956831, https://textarossa.eu/) and partially by the Italian Ministry of Education
and Research (MIUR) in the framework of the CrossLab project (Departments of
Excellence).

References

1. IEEE standard for floating-point arithmetic. IEEE Std 754-2019 (Revision of IEEE
754-2008), pp. 1–84 (2019). https://doi.org/10.1109/IEEESTD.2019.8766229

2. Mellempudi, N., et al.: Mixed precision training with 8-bit floating point (2019).
arXiv: 1905.12334 [cs.LG]

3. Agrawal, A., et al.: DLFloat: a 16-b floating point format designed for deep learning
training and inference. In: 2019 IEEE 26th Symposium on Computer Arithmetic
(ARITH’19), pp. 92–95 (2019). https://doi.org/10.1109/ARITH.2019.00023

4. Burgess, N., et al.: Bfloat16 processing for neural networks. In: 2019 IEEE 26th
Symposium on Computer Arithmetic (ARITH), pp. 88–91, June 2019. https://doi.
org/10.1109/ARITH.2019.00022

5. Gustafson, J.L., Yonemoto, I.T.: Beating floating point at its own game: posit
arithmetic. Supercomput. Frontiers Innovations 4(2), 71–86 (2017)

6. Cococcioni, M., Ruffaldi, E., Saponara, S.: Exploiting posit arithmetic for deep
neural networks in autonomous driving applications. In: Proceedings of the 2018
IEEE International Conference of Electrical and Electronic Technologies for Auto-
motive (Automotive 2018), pp. 1–6 (2018). https://doi.org/10.23919/EETA.2018.
8493233

7. Cococcioni, M., et al.: A fast approximation of the hyperbolic tangent when using
posit numbers and its application to deep neural networks. In: Saponara, S., De
Gloria, A. (eds.) ApplePies 2019. LNEE, vol. 627, pp. 213–221. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-37277-4 25

8. Cococcioni, M., et al.: Novel arithmetics in deep neural networks signal processing
for autonomous driving: challenges and opportunities. IEEE Sig. Process. Mag.
38(1), 97–110 (2021). https://doi.org/10.1109/MSP.2020.2988436

9. Cococcioni, M., et al.: Fast deep neural networks for image processing using posits
and ARM scalable vector extension. J. Real-Time Image Process., 1–13 (2020).
ISSN 1861-8200. https://doi.org/10.1007/s11554-020-00984-x

10. Lin, D., Talathi, S., Annapureddy, S.: Fixed point quantization of deep convolu-
tional networks. In: Balcan, M.F., Weinberger, K.Q. (eds.) Proceedings of The 33rd
International Conference on Machine Learning, vol. 48. Proceedings of Machine
Learning Research, 20–22 June 2016, pp. 2849–2858. PMLR, New York (2016)

11. Chen, X., et al.: FxpNet: training deep convolutional neural network in fixed-point
representation. In: International Joint Conference on Neural Networks (IJCNN
2017) (2017)

12. Shuchang, Z., et al.: DoReFa-Net:: training low bitwidth convolutional neural net-
works with low bitwidth gradients (2018). arXiv: 1606.06160 [cs.NE]

13. Alemdar, H., et al.: Ternary neural networks for resource-efficient AI applications.
In: 2017 International Joint Conference on Neural Networks (IJCNN), pp. 2547–
2554 (2017). https://doi.org/10.1109/IJCNN.2017.7966166

14. Haotong, Q., et al.: Binary neural networks: a survey. Pattern Recogn. 105, 107281
(2020). ISSN 0031-3203

https://www.european-processor-initiative.eu/
https://textarossa.eu/
https://doi.org/10.1109/IEEESTD.2019.8766229
http://arxiv.org/abs/1905.12334
https://doi.org/10.1109/ARITH.2019.00023
https://doi.org/10.1109/ARITH.2019.00022
https://doi.org/10.1109/ARITH.2019.00022
https://doi.org/10.23919/EETA.2018.8493233
https://doi.org/10.23919/EETA.2018.8493233
https://doi.org/10.1007/978-3-030-37277-4_25
https://doi.org/10.1109/MSP.2020.2988436
https://doi.org/10.1007/s11554-020-00984-x
http://arxiv.org/abs/1606.06160
https://doi.org/10.1109/IJCNN.2017.7966166


132 M. Cococcioni et al.

15. Russakovsky, O., et al.: ImageNet large scale visual recognition challenge. Int.
J. Comput. Vis. (IJCV) 115(3), 211–252 (2015). https://doi.org/10.1007/s11263-
015-0816-y

16. McKinstry, J.L., et al.: Discovering low-precision networks close to full-precision
networks for efficient embedded inference. arXiv preprint arXiv:1809.04191 (2018)

17. Su, J., et al.: Accuracy to throughput trade-offs for reduced precision neural
networks on reconfigurable logic. In: Voros, N., Huebner, M., Keramidas, G.,
Goehringer, D., Antonopoulos, C., Diniz, P.C. (eds.) ARC 2018. LNCS, vol. 10824,
pp. 29–42. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78890-6 3

18. Choquette, J., et al.: NVIDIA A100 tensor core GPU: performance and innovation.
IEEE Micro 41(2), 29–35 (2021)

19. Banbury, C.R., et al.: Benchmarking TinyML systems: challenges and direction.
arXiv e-prints, art. arXiv:2003.04821 [cs.PF], March 2020

20. Le Cun, Y., Denker, J.S., Solla, S.A.: Optimal brain damage. In: Advances in
Neural Information Processing Systems vol. 2, pp. 598–605. Morgan Kaufmann
Publishers Inc., San Francisco (1990). 1558601007

21. Han, S., Mao, H., Dally, W.J.: Deep compression: compressing deep neu-
ral networks with pruning, trained quantization and Huffman coding (2016).
arXiv: 1510.00149 [cs.CV]

22. Pau, D., et al.: Comparing industry frameworks with deeply quantized neural
networks on microcontrollers. In: 2021 IEEE International Conference on Con-
sumer Electronics (ICCE), pp. 1–6 (2021). https://doi.org/10.1109/ICCE50685.
2021.9427638

23. Kalamkar, D.: A study of BFLOAT16 for deep learning training (2019).
arXiv: 1905.12322 [cs.LG]

24. Wang, N., et al.: Training deep neural networks with 8-bit floating point num-
bers. In: Proceedings of the 32nd International Conference on Neural Information
Processing Systems, NIPS 2018, pp. 7686–7695. Curran Associates Inc., Montréal
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25. Köster, U., et al.: Flexpoint: an adaptive numerical format for efficient training of
deep neural networks. In: Proceedings of the 31st Conference on Neural Information
Processing Systems (NIPS 2017), pp. 1742–1752 (2017)

26. Oppenheim, A.: Realization of digital filters using block-floating-point arithmetic.
IEEE Trans. Audio Electroacoust. 18(2), 130–136 (1970). https://doi.org/10.1109/
TAU.1970.1162085

27. Johnson, J.: Rethinking floating point for deep learning. CoRR, abs/1811.01721
(2018). http://arxiv.org/abs/1811.01721

28. Arnold, M.G., Garcia, J., Schulte, M.J.: The interval logarithmic number system.
In: Proceedings of the 16th IEEE Symposium on Computer Arithmetic (ARITH
2003), pp. 253–261 (2003). https://doi.org/10.1109/ARITH.2003.1207686

29. Cococcioni, M., et al.: Fast approximations of activation functions in deep neu-
ral networks when using posit arithmetic. Sensors 20(5) (2020). ISSN 1424-8220.
https://www.mdpi.com/1424-8220/20/5/1515

30. Langroudi, H.F., et al.: Adaptive posit: parameter aware numerical format for deep
learning inference on the edge. In: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR) Workshops, June 2020

31. Ruffaldi, E.: cppPosit. https://github.com/eruffaldi/cppPosit
32. Riba, E., Nyan, P.: tinyDNN. https://github.com/tiny-dnn/tiny-dnn
33. TensorFlow (2009). https://www.tensorflow.org/
34. LeCun, Y., et al.: Gradient-based learning applied to document recognition. Proc.

IEEE 86(11), 2278–2324 (1998). https://doi.org/10.1109/5.726791

https://doi.org/10.1007/s11263-015-0816-y
https://doi.org/10.1007/s11263-015-0816-y
http://arxiv.org/abs/1809.04191
https://doi.org/10.1007/978-3-319-78890-6_3
http://arxiv.org/abs/2003.04821
http://arxiv.org/abs/1510.00149
https://doi.org/10.1109/ICCE50685.2021.9427638
https://doi.org/10.1109/ICCE50685.2021.9427638
http://arxiv.org/abs/1905.12322
https://doi.org/10.1109/TAU.1970.1162085
https://doi.org/10.1109/TAU.1970.1162085
http://arxiv.org/abs/1811.01721
https://doi.org/10.1109/ARITH.2003.1207686
https://www.mdpi.com/1424-8220/20/5/1515
https://github.com/eruffaldi/cppPosit
https://github.com/tiny-dnn/tiny-dnn
https://www.tensorflow.org/
https://doi.org/10.1109/5.726791


Small Reals Representations for Deep Learning at the Edge 133

35. Tan, M., Le, Q.V.. EfficientNet: rethinking model scaling for convolutional neural
networks (2020). arXiv: 1905.11946 [cs.LG]

36. Liu, W., et al.: SSD: single shot MultiBox detector. In: Leibe, B., Matas, J., Sebe,
N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 21–37. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-46448-0 2 ISSN 1611-3349

37. LeCun, Y., Cortes, C.: MNIST handwritten digit database (2010). http://yann.
lecun.com/exdb/mnist/

38. Stallkamp, J., et al.: The German traffic sign recognition benchmark: a multi-
class classification competition. In: Proceedings of the IEEE International Joint
Conference on Neural Networks (IJCNN 2011), pp. 1453–1460 (2011)

39. Krizhevsky, A.: Learning multiple layers of features from tiny images. Technical
report (2009)

40. Recht, B., et al.: Do ImageNet classifiers generalize to ImageNet? (2019).
arXiv: 1902.10811 [cs.CV]

41. Everingham, M., et al.: The PASCAL visual object classes challenge 2007
(VOC2007) results. http://www.pascal-network.org/challenges/VOC/voc2007/
workshop/index.html

http://arxiv.org/abs/1905.11946
https://doi.org/10.1007/978-3-319-46448-0_2
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
http://arxiv.org/abs/1902.10811
http://www.pascal-network.org/challenges/VOC/voc2007/workshop/index.html
http://www.pascal-network.org/challenges/VOC/voc2007/workshop/index.html


Author Index

Bärthel, Moritz 1
Botella, Guillermo 84

Cococcioni, Marco 117

De Silva, Himeshi 31
Del Barrio, Alberto A. 84
Desrentes, Orégane 14
Dupont de Dinechin, Benoît 14

Gustafson, John L. 31

Ho, Nhut-Minh 31
Hülsmeier, Nils 1

Karia, Vedant 50
Kudithipudi, Dhireesha 50

Langroudi, Hamed F. 50
Lindstrom, Peter 66

Mallasén, David 84
Mashaido, Becky 50
Murillo, Raul 84

Omtzigt, E. Theodore L. 100

Pandit, Tej 50
Paul, Steffen 1

Quinlan, James 100

Resmerita, Diana 14
Rossi, Federico 117
Ruffaldi, Emanuele 117
Rust, Jochen 1

Saponara, Sergio 117

Wong, Weng-Fai 31


	 Preface
	 Organization
	 Contents
	On the Implementation of Edge Detection Algorithms with SORN Arithmetic
	1 Introduction and Related Work
	2 Type-II Unums and SORNs
	2.1 Original Type-II Unums and SORNs
	2.2 Adaptions of the SORN Representation

	3 Edge Detection
	3.1 Sobel Operator
	3.2 SORN Implementation

	4 Evaluation
	4.1 Algorithmic Evaluation with BSDS500
	4.2 Hardware Performance

	5 Conclusion
	References

	A Posit8 Decompression Operator for Deep Neural Network Inference
	1 Introduction
	2 Compression of Floating-Point Parameters
	2.1 Floating-Point Representations Considered
	2.2 Effects of Parameter Compression
	2.3 Decompression Operator Challenges

	3 Design and Implementation
	3.1 Combinatorial Operator Design
	3.2 General Operator Efficiency
	3.3 Specialized Operator Efficiency

	4 Summary and Conclusion
	References

	Qtorch+: Next Generation Arithmetic for Pytorch Machine Learning
	1 Introduction
	2 Background and Related Work
	2.1 Neural Networks
	2.2 Floating-Point and Fixed-Point Formats
	2.3 Integer Quantization
	2.4 Posit Format
	2.5 Arbitrary Number Sets

	3 Design and Implementation of Qtorch+
	3.1 Floating-Point and Posit Conversion
	3.2 Scaling and Using the Exponent Bias in Posit
	3.3 Arbitrary Number Sets

	4 Practical Usage of Qtorch+
	4.1 Leverage Forward_hook and Forward_pre_hook in Pytorch
	4.2 Qtorch+ in Training
	4.3 Qtorch+ in Inference

	5 Inference Results of Posit
	6 Case Studies
	6.1 Training with Posit8
	6.2 Tips for Training with 8-Bit Posit
	6.3 Inference with Lower Posit Bitwidth
	6.4 Inference with Arbitrary Number Set
	6.5 Overhead of the Framework

	7 Conclusion
	References

	ACTION: Automated Hardware-Software Codesign Framework for Low-precision Numerical Format SelecTION in TinyML
	1 Introduction
	2 Background
	3 Related Work
	4 ACTION Framework
	4.1 User Interface
	4.2 Initialization
	4.3 Evaluator
	4.4 Optimizer

	5 Experimental Setup, Results and Analysis
	5.1 Numerical Formats' Performance on TinyML Benchmark
	5.2 ACTION Framework Results

	6 Conclusions
	References

	MultiPosits: Universal Coding of Rn
	1 Introduction
	2 Preliminaries
	3 Universal Coding of Vectors
	3.1 Decorrelation
	3.2 Reordering
	3.3 Encoding
	3.4 Implementation

	4 Results
	4.1 Static Data
	4.2 Dynamic Data

	5 Discussion
	6 Conclusion
	References

	Comparing Different Decodings for Posit Arithmetic
	1 Introduction
	2 Posit Arithmetic
	2.1 Sign-Magnitude Posit Decoding
	2.2 Two's Complement Posit Decoding

	3 Posit Operators
	3.1 Decoding and Encoding Stages
	3.2 Addition
	3.3 Multiplication

	4 Hardware Evaluation
	4.1 Components Evaluation
	4.2 Comparison with the State-of-the-Art

	5 Conclusions
	References

	Universal: Reliable, Reproducible, and Energy-Efficient Numerics
	1 Introduction
	2 Background and Motivation
	3 Universal Arithmetic Type Organization
	3.1 Definitions
	3.2 Energy Efficiency, Performance, Accuracy, Reliability, and Reproducibility
	3.3 Fixed Size, Arbitrary Precision
	3.4 Variable Size, Adaptive Precision

	4 Creating a New Arithmetic Type
	5 Arithmetic Type API
	5.1 Construction
	5.2 Assignment
	5.3 Conversion
	5.4 Logic Operators
	5.5 Arithmetic Operators
	5.6 Serialization
	5.7 Set and Query Interface
	5.8 Support Functions and Manipulators

	6 Example: Matrix Scaling and Equilibrating
	7 Conclusions and Future Work
	References

	Small Reals Representations for Deep Learning at the Edge: A Comparison
	1 Introduction
	2 Deploying DNNs at the Edge: State of the Art
	2.1 Network Pruning
	2.2 Network Quantization
	2.3 Small Reals

	3 Alternative Real Number Representation: State of the Art
	3.1 The bfloat Family
	3.2 Flexpoint
	3.3 Logarithmic Numbers

	4 The Posit Format and Innovative Contributions of This Work
	4.1 Fast Approximated Activation Functions

	5 Comparison Results
	6 Analysis of the Results and Future Developments
	6.1 Future Developments

	7 Conclusions
	References

	Author Index

