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Preface

As the shrinking of transistors (Moore’s law) is hitting physical limits, those in the fields
of high-performance computing (HPC) as well as those pursuing artificial intelligence
(AI) are exploring other ways to perform more computing. This has led both groups to
explore approaches to computer arithmetic that break from traditional fixed-point and
floating-point representation.

As part of SCAsia 2022, the Conference on Next-Generation Arithmetic (CONGA
2022) provided the premier forum for discussing the impact of novel number formats on

application speed and accuracy,
hardware costs,

software-hardware codevelopment,
algorithm choices, and

tools and programming environments.

This was the third event in the CONGA conference series. The submissions for the
technical papers program went through a rigorous peer review process, undertaken by
an international Program Committee. A set of eight papers were finally selected for
inclusion in the proceedings. The accepted papers cover a range of topics including
image processing, neural networks for machine learning and inference, encoding of
multidimensional real number arrays, and improved decoding methods. The emerging
posit format is considered in most of these papers, and is compared with proposed
floating-point formats from Google, Nvidia, IBM, and others. After five years of effort,
the Posit Standard was ratified by the Posit Working Group as the result of CONGA 2022
meetings that resolved all remaining issues.

We would like to thank all authors for their submissions to this conference. Our
sincere thanks go to all Program Committee members for providing high-quality and
in-depth reviews of the submissions and selecting the papers for this year’s program.
We also thank the conference organizers for giving us the opportunity to hold CoNGA
2022 as a sub-conference of SCAsia 2022.

April 2022 John Gustafson
Vassil Dimitrov
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On the Implementation of Edge Detection
Algorithms with SORN Arithmetic

Moritz Barthel' @), Nils Hiilsmeier’®, Jochen Rust?®, and Steffen Paul®
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University of Bremen, Bremen, Germany
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2 DSI Aerospace Technologie GmbH, Bremen, Germany
jochen.rust@dsi-as.de

Abstract. Sets-Of-Real-Numbers (SORN) Arithmetic derives from the
type-1I unums and realizes a low-complexity and low-precision digital
number format. The interval-based SORNs are especially well-suited for
preprocessing large datasets or replacing particular parts of threshold-
based algorithms, in order to achieve a significant reduction of runtime,
complexity and/or power consumption for the respective circuit.

In this work, the advantages and challenges of SORN arithmetic are
evaluated and discussed for a SORN-based edge detection algorithm
for image processing. In particular, different SORN implementations of
the Sobel Operator for edge filtering are presented, consisting of matrix
convolution and a hypot function. The implemented designs are evalu-
ated for different algorithmic and hardware performance measures. Com-
parisons to a reference Integer implementation show promising results
towards a lower error w.r.t. ground truth solutions for the SORN imple-
mentation. Syntheses for FPGA and CMOS target platforms show a
reduction of area utilization and power consumption of up to 68% and
80%, respectively.

Keywords: SORN - Unum + Computer arithmetic + Image processing

1 Introduction and Related Work

The universal number format unum, proposed by John Gustafson [12], presents
a new approach for the computation with real numbers in digital hardware sys-
tems. To enhance and overcome traditional number formats, especially the IEEE
standard for floating point arithmetic [16], the initial type-I unums were designed
to utilize Interval Arithmetic (IA) instead of rounding in order to avoid the prop-
agation of rounding errors. In addition, type-I unums exploit variable mantissa
and exponent lengths for a reduced datapath and memory bandwidth. Evalua-
tions and discussions on unum type-I hardware implementations can be found
in [5,10] and [2].

Based on the initial unum format, with type-II unums and the corresponding
Sets-Of-Real-Numbers (SORN) [11], as well as type-I1II unums (posits) [13], two
© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
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further formats were derived. Whereas posits provide a less radical approach with
constant bit lengths that can be used as a drop-in replacement for other floating
point formats with compatibility to legacy systems, type-II unums and SORNs
utilize the implicit TA concept created for type-I unums and radicalize this app-
roach towards a very low precision format enabling low-complexity, -power and
-latency implementations of arithmetic operations. A detailed introduction to
SORN arithmetic is given in Sect. 2.

Due to the low-precision nature of SORNSs, the format is not applicable
to any application or algorithm. However, it can be shown that SORNs are
especially well suited for preprocessing large systems of equations in order to
reduce the amount of solutions for a certain optimization problem, such as in
MIMO detection [4] or training of Machine Learning algorithms [14]. Another
suitable application for the low-precision SORN arithmetic are threshold-based
algorithms were a high accuracy result is not of major interest, as long as a suf-
ficient threshold detection can be provided. In this work such a threshold-based
algorithm for image processing is implemented and evaluated for SORN arith-
metic. In particular, the Sobel Operator [18] used for edge detection in images is
implemented as a full SORN and a hybrid Integer-SORN design and compared
to an Integer reference design. Details on the Sobel Operator and the respective
SORN implementations are given in Sec. 3. FPGA and CMOS synthesis results,
as well as an algorithmic evaluation of the different Sobel implementations based
on a reference image data set are provided in Sect. 4.

2 Type-II Unums and SORNs

One of the main concepts of type-I unums is implicit IA by means of an extra
bit after the mantissa, which indicates the presence of an open interval whenever
maximum precision is exceeded [12]. With this approach, rounding errors can be
omitted at the expense of a certain imprecision, when an open interval is given
as result of a computation instead of a single value. Type-II unums fully utilize
this interval concept by reducing the representation of the real numbers to only
a small set of exact values and open intervals.

2.1 Original Type-II Unums and SORNSs

For the original type-II unum representation proposed in [11], the real numbers
are represented by a set of n exact values called lattice values l;, including zero
(lo = 0), one (l(n-1y/, = 1) and infinity ([,—1 = o0), and the open intervals in
between. Every lattice value is included with a positive and negative sign. A
basic set with n = 3 is given with the lattice values l; € {0,1, co}:

{00 (=00,-1) —1(=1,0)0(0,1) 1 (1,00)} (1)

The representation can be extended by introducing further lattice values I; > 1
and their reciprocals to the set. A general representation can be interpreted as
depicted in Fig. la.
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(*00-, —ln—2

n—2,00)
x0[0] xo0[1] x0[2] x1[0] x1[1] x1[2]

(1,12)
1
(1/I271)

vlejelejele]e]e]e
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100 010 001
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(c) y[o] yl1] y[2]
(b)

Fig. 1. (a) Representation of the reals with the original type-II unum format. (b) LUT
for the multiplication of a simplified 3 bit SORN datatype. (c) Gate level structure for
the 3 bit SORN multiplication LUT.

For the implementation of arithmetic operations, the so-called Sets-Of-Real-
Numbers (SORN) binary representation is derived from the unum type-II set.
The absence (0) and presence (1) of every lattice value and interval is indicated
with a single bit, resulting in a SORN bitwidth wge, = 2™. Arithmetic oper-
ations with SORNs are carried out using pre-computed lookup tables (LUTSs)
which contain the result of every possible input combination for a given datatype
configuration. Figure 1b shows the LUT for the multiplication of two SORNs
using a simplified 3 bit datatype. Some SORN operations may result in union
intervals, for example when two open intervals are added. In this case the result
is represented by a pattern of consecutive bits:

100(_1,0) + 001(0,1) = 111(_171) (2)

The LUT structures for SORN operations can be implemented for hardware
circuits using simple Boolean Logic which enables very fast computing with low-
complexity. The corresponding gate level structure for the multiplication LUT
in Fig. 1b is depicted in Fig. lc.

2.2 Adaptions of the SORN Representation

Following the regular unum type-II-based structure for implementing SORNs
maintains the unum compatibility and provides an error-free solution for process-
ing arithmetic operations. However, the structure of the LUT-based arithmetics
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Table 1. SORN datatype configurations for the hybrid (6 b-11b) and full (15b) SORN
sobel designs.

Label | Configuration

6b lin | [0, 50]; (50, 100]; (100, 150]; (150, 200]; (200, 250]; (250, o]

10b log | 0; (0, 2]; (2, 4]; (4, 8]; (8, 16]; (16, 32]; (32, 64]; (64, 128]; (128, 256]; (256, o0
11b lin | [0, 25]; (25, 50]; (50, 75]; (75, 100]; (100, 125]; (125, 150];

(150, 175]; (175, 200]; (200, 225}; (225, 250]; (250, oc]
15b lin | [—o00, —300); [~300, —250); ... ;[—100, —50); [~50,0); 0;

(0, 50]; (50, 100]; (100, 150]; (150, 200]; (200, 250]; (250, 300]; (300, o0]
15b log | [-00, —512);[—512, —256); ... ;[—32,—16);[—16,0);0;

(0, ] (16, 32]; (32, 64]; (64, 128]; (128, 256]; (256, 512]; (512, o0]

with low bitwidths encompasses a major challenge within complex datapaths:
computing multiple sequential SORN operations may lead to increasing interval
widths at the output, mainly depending on the performed operations. In a worst-
case scenario, the result of a SORN computation represents the interval (—oo, 00)
and does not contain any useful information. This can be counteracted with a
higher resolution within the SORN representation. Evaluations in [3] showed that
the exact values within a unum-type-II based SORN are barely ever addressed
without their adjacent intervals. Consequently, moving away from a strict unum
type-1I based structure and adapting the SORN representation towards half-
open intervals without exact values increases the information-per-bit within a
SORN value and reduces the interval growth. Possible SORN representations fol-
lowing this concept are given in Table 1. The corresponding label indicates the
number of elements in the Set-Of-Real-Numbers, which is also the number of
bits in SORN representation. In addition, the label indicates whether the inter-
vals within the set tile the real number line in a logarithmic or linear manner. In
order to find a suitable datatype for a given application, the automatic SORN
datapath generation tool from [17] provides an easy and fast way of prototyping
SORN arithmetics for hardware circuits.

3 Edge Detection

In this work SORN arithmetic is applied to the Sobel Operator, an algorithm
used for edge detection within image processing systems. Edges are regions in a
digital image where distinct changes in color or brightness can be detected [1],
in order to classify segments of the image, or to detect certain objects. Edge
detection is used in various modern applications, such as fingerprint recognition
[7], cloud classification via satellite images [8], or autonomous driving [6,20].
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3.1 Sobel Operator

The Sobel Operator belongs to the family of first-order convolutional filters that
compute the horizontal and vertical gradient of a grayscale image [18]. The Sobel
method uses two 3 x 3 kernels, which are convolved with the grayscale image
A € NNy in order to determine the image gradients Gy and Gy in horizontal
and vertical direction, respectively [19]:

10 -1 12 1
Gy=12 0 —2| * Asxs Gy=10 0 0 |*Asq; (3)
10 -1 -1 -2 -1

After computing the image gradient

G=1/G>+G,? (4)

a comparison to the pre-defined threshold T determines whether the current
pixel is an edge. This process is performed for every single pixel of the image A
and results in a binary image containing all detected edges.

(c) Hybrid SORN Sobel Impl. (11b lin) (d) Full SORN Sobel Impl. (15b lin)

Fig. 2. (a) Grayscale highway test image [9] with Sobel edge detection results from (b)
an Integer reference implementation with threshold T' = 250, (c¢) a Hybrid-SORN 11b
implementation with threshold interval T' = (250, co], and (d) the negated result for a
full-SORN 15b implementation with threshold interval T' = (0, 50].
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In Fig. 2 edge detection applied to a highway image is shown, which is used
for road lane detection in driving assistant systems [6,9]. Figure 2a shows the
grayscale test image and Fig. 2b the result of an edge detection using the Sobel
method with integer arithmetic.

3.2 SORN Implementation

In this work, the Sobel method described in Eq. (3) and (4) is implemented
with SORN arithmetic as a hybrid Integer-SORN and as a full SORN design,
both for different SORN datatypes. Additionally, an Integer reference design is
implemented in order to compare the SORN designs to a State-of-the-Art (SotA)
architecture. The three designs are described in the following.

Integer Reference Design. The grayscale test image A contains pixels with
values Ay, € {0,...,255} which can be implemented with Integer values of 8b.
The convolution described in Eq. (3) is implemented with conventional Integer
additions and subtractions as shown in Fig. 3. For the calculation of the gradient
G the square root is omitted and the result G? is compared to the squared
threshold T2 instead.

<3
<
<3
<
<3
<
<3
<

X -y 2x — 2y X -y X -y 2x — 2y X -y

Conv. G« Conv. Gy

INT (Reference) INT (Reference)

INT (Hybrid) INT (Hybrid)

SORN ( ) SORN ( )

\. J \ J

Hypot
SORN (Hybrid)
SORN (Full)

Square&Ad

INT (Reference)

G? G

Fig. 3. Block diagram for the three different Sobel implementations: all integer for
the reference implementation, integer convolution with SORN hypot for the hybrid
approach, and SORN convolution and hypot for the full SORN approach.
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Hybrid Integer-SORN Design. For the hybrid design, the convolutions are
carried out with Integer operations, similar to the reference implementation.
The horizontal and vertical gradients Gx and Gy are then converted to a SORN
representation. Since they are squared in the following hypot operation, their
absolutes are converted, and SORN datatypes without negative values can be
used. The hybrid design is implemented for three different SORN representations
with 6b, 10b and 11b, all given in Table 1. The hypot operation is implemented
as one single SORN operation, as depicted in Fig.3 (conversion blocks from
Integer to SORN between convolution and hypot are not shown). Since the result
G is in SORN representation, the threshold T has to be chosen as one of the
SORN intervals from the respective datatype. Figure 2c shows the edge result
of the hybrid SORN implementation for the 11b datatype and the threshold
interval T = (250, co], which corresponds to the Integer threshold T = 250 used
for the reference implementation in Fig. 2b.

Full SORN Design. For the full SORN design, the Integer inputs from the
test image A are converted to SORN representation before the convolutions and
hypot function are carried out in SORN arithmetic, as shown in Fig.3 (con-
versions not shown). Since for the convolution also subtraction is required, the
full SORN design is implemented for two different 15b datatypes with nega-
tive values, as shown in Table 1. In order to obtain a comparable edge result, for
the full SORN approach thresholds near the zero-bit in SORN representation are
selected and the result image is negated afterwards. Figure 2d shows the negated
edge result for the full SORN implementation with the 15b lin datatype and a
threshold interval T' = (0, 50].

4 FEvaluation

Figure 2 shows a test image and the edge detection results of the three different
Sobel implementations described in Sect. 3.2. By visual comparison they seem
to be quite similar, even though a few differences can be found, for example
when comparing the detection of the cars on the road. For a comprehensive
evaluation, however, a visual comparison of different edge results is not suffi-
cient. Unfortunately, measuring the performance and comparing different edge
detection methods or implementations is an open problem. In [15] various error
and performances metrics are evaluated and compared, and the authors con-
clude that no convincing general-purpose solution exists. Since in this work no
different methods, but only different implementations are to be compared, the
most intuitive approach is a numerical comparison of the different edge results.
Therefore the normalized absolute error nae between the SORN results and the
Integer reference implementation can be defined as

Nx Ny int (X X
nae — szl Zyzl(EuX[( Z;]Y) 7& Esorn( 7Y)) (5)
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with the respective edge detection results Fi, and Fgom and the test image
dimensions Ny and Ny. This metric basically counts the number of different
pixels between the Integer and SORN edge images and normalizes the result by
the total number of pixels. Applied to the edge images from Fig. 2, the errors
read as follows:

naelnybriasorn,11b = 0.0181 (6)
naelfnsorn, 15 = 0.0287 (7)

This metric can not determine whether the SORN implementation performs
better or worse than the Integer reference, but it can show that the difference
between both results is below 2% and 3%, respectively, which is in line with the
visual evaluation. In order to further evaluate the different Sobel implementa-
tions, in the following section a larger number of test images is considered.

4.1 Algorithmic Evaluation with BSDS500

The Berkeley Segmentation Data Set 500 (BSDS500) [1] is a set of images for the
performance evaluation of contour detection and image segmentation algorithms,
consisting of images of humans, animals, objects and landscapes. For a compre-
hensive evaluation, the 200 test images from the data set are processed with the
different Sobel implementations for all presented SORN datatypes. Additionally,
two different thresholds per configuration are analyzed. For the hybrid designs,
the two rightmost SORN intervals with indices wgon — 1 and wgorm are used
as thresholds. The results are compared to the corresponding Integer threshold
for the reference design. For the 6 b datatype for example, the interval thresh-
olds are T = (200,250] and T = (250, 0o], the corresponding Integer thresholds
are T = 200 and T = 250. For the full SORN implementation thresholds near
the zero-bit are utilized and the resulting edge images are negated, in order to
achieve the best performance. Therefore the equivalent threshold T, is given,
which corresponds to the compared Integer threshold.

In Table2 the results for the mean normalized absolute error between the
SORN and reference edge results are given. The utilized metric represents the
mean of the nae from Eq. (5) over all test images. For both the hybrid and
full SORN versions the designs utilizing a linear distributed SORN datatype
perform better than the log-based versions. Furthermore, the rightmost SORN

Table 2. Mean normalized absolute error between SORN and reference integer imple-
mentation for 200 test images from BSDS500 [1].

SORN Datatype hybrid SORN full SORN
6blin | 10b log | 11b lin 15b log | 15b lin
mnae | T = Wsorn 0.0659 | 0.1200 |0.0598 | T. = Wsorn 0.1396 |0.0667
T = Wsorn — 1]0.1167 ] 0.2323 |0.0852 | T, = Wsorn — 1 |~ 0.0673
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interval thresholds lead to the best results by means of lowest difference to
the Integer reference. Compared to the results for the image in Fig. 2, given in
Eq. (6)—(7), the errors are slightly higher, but still below 7%. It is mentioned
again, that this metric can only measure the difference between Integer and
SORN implementation. For a rating of the different designs, a third, independent
reference is required.

Ground Truth Reference Comparison. For this purpose, the BSDS500 con-
tains so-called ground truth edge results. These are human made edge detections
from different human subjects [1]. For evaluating the edge detections of the differ-
ent SORN implementations in comparison to the Integer reference, Fig. 4 shows
the mean normalized absolute error between 6 different ground truth solutions
GT and the respective edge detection results E, with the image dimensions Ny
and Ny and the number of test images IV;:

S (zfﬁ; ;Vz1<GTi(x,y>¢Ei<x,y)>)
i=1 NNy
mnae = ~ (8)

For the hybrid and full SORN implementations, for each datatype the thresh-
old configuration with the best results is shown, as well as the corresponding Inte-
ger configurations. Similar to the previous evaluation, those SORN implementa-
tions utilizing linear distributed datatypes perform better than the log-based ver-
sions. For this evaluation, the linear-based SORN implementations outperform
even the corresponding Integer references. As mentioned above and discussed in
[15], this does not necessarily indicate that the SORN-based edge detection is
better than the Integer-based for any application. Nevertheless, this evaluation
on BSDS500, as well as the example in Fig.2 show that the hybrid and full

—A— Int, T'= 200
R R bl - St B----- m -@-Int, T = 225

‘ . - Int, T = 256
hybrid SORN, 6b lin,
T = (200, 250]
hybrid SORN, 11b lin,
T = (225, 250]
hybrid SORN, 10b log,
T = (256, o0]
full SORN, 15b lin,
T. = (250, 300]
full SORN, 15b log,
T. = (512, 9]

- A=

mnae w.r.t. GT

Ground truth solution

Fig. 4. Mean normalized absolute error w.r.t. 6 ground truth solutions for the different
Integer and SORN Sobel implementations over 200 test images from BSDS500.
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SORN-based edge detection implementations of the Sobel operator provide, at
least, a similar result quality as the Integer implementation and can serve as a
replacement for the SotA implementation.

4.2 Hardware Performance

In addition to the algorithmic evaluation, also the hardware performance in
terms of latency, complexity and power consumption for the respective hybrid
and full SORN designs, as well as for the Integer reference design is evaluated. In
the following, the results of FPGA and CMOS syntheses of all designs described
in Sect. 3.2 are presented.

FPGA Results. In Table 3 the synthesis results for an Artix-7 AC701 FPGA
from Xilinx are given for all presented designs for a target frequency of 100 MHz.
All designs are evaluated without internal pipeline registers and no DSPs are
used. The worst negative slack (WNS) shows that solely the 6 b and 10b hybrid
SORN implementations are able to run at a target frequency of 100 MHz, yet all
SORN designs achieve a higher maximum frequency than the Integer reference
design. Concerning the required LUTs and the power consumption, the hybrid
SORN approach significantly outperforms the reference design with a complexity
reduction of up to 68%, whereas for the full SORN approach only the 15b log
configuration achieves a lower power consumption, all other measures can not
compete with the reference design.

Table 3. FPGA synthesis results without DSPs for an Artix-7 AC701 FPGA
(xc7a200tfbg676-2).

Module Int hybrid SORN full SORN

6b lin 10b log|11b lin | 15b log | 15b lin
Target Freq. [MHz] | 100 100 100 100 100 100
WNS [ns] —1.48710.554 0.492 —0.173 | —0.466 | —1.042
Max Freq.  [MHz] | 87.055 | 105.865 | 105.175 | 98.299 | 95.548 | 90.563
LUTs 457 148 207 219 597 712
Total power [W] 0.145 |0.136 0.137 0.138 0.140 0.147

CMOS Results. Table4 shows the synthesis results for the proposed designs
without pipeline registers for a 28 nm SOI CMOS technology from STM. Each
configuration is synthesized for a target frequency of 1 GHz and for the respective
maximum frequency. For the 1 GHz comparison, all SORN-based designs achieve
a lower area and power consumption than the reference design, with reductions
of up to 456% for area and 44% for power, respectively. Targeting maximum
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Table 4. CMOS STM 28nm SOI technology synthesis results.

Module Int hybrid SORN full SORN

6b lin 10blog |11blin |15blog |15b lin
Target Freq. [MHz] | 1000 1000 1000 1000 1000 1000
Runtime [ns] 0.962 0.958 0.962 0.962 0.961 0.962
Area [um?] | 1153.987 | 638.765 | 693.110 |733.421 |989.808 | 1132.282
Power [BW] |550.337 |329.210 349.387 | 349.964 | 309.294 | 324.075
Max. Freq. [MHz] | 1263 1681 1603 1605 1661 1715
Runtime [ns] 0.792 0.595 0.624 0.623 0.602 0.583
Area [um?] | 2087.165 | 1100.294 | 1157.251 | 1245.706 | 1661.213 | 2017.642
Power [@W] | 1979.710 | 757.566 774.962 |838.914 | 403.631 | 413.465

frequency, all SORN-based designs achieve at minimum a 27% higher frequency
than the reference design while still requiring less area and power. For this maxi-
mum frequency comparison, the hybrid SORN designs show a significantly lower
area requirement than the reference design (up to 47% reduction), whereas the
full SORN designs require significantly less power (up to 80% reduction).

5 Conclusion

The Sobel Operator for edge detection can be implemented as a hybrid SORN
design with Integer convolution and SORN hypot function, or as a full SORN
approach. Depending on the utilized SORN datatype and the chosen thresh-
olds, both versions provide a similar algorithmic performance than the Integer
reference implementation. For the presented evaluation on BSDS500 with the
corresponding ground truth reference comparison, some of the SORN config-
urations even show a lower difference to ground truth than the Integer refer-
ence. Regarding hardware performance, the presented evaluations show that the
SORN approach achieves higher frequencies and significantly lower complexity
and power consumption than the Integer reference for both FPGA and CMOS.

For future work the SORN-based edge detection can be integrated into a
more complex image processing system in order to provide further evaluations
on the quality of the edge detection results in the context of an actual (real-
time) application, for example lane detection in autonomous driving. In addition,
other edge detection methods such as the Canny detector or the Marr Hildreth
Operator can be implemented and evaluated for SORNS.
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Abstract. We propose a hardware operator to decompress Posit8 rep-
resentations with exponent sizes 0, 1, 2, 3 to the IEEE 754 binary 16
(FP16) representation. The motivation is to leverage the tensor units of
a manycore processor that already supports FP16.32 matrix multiply-
accumulate operations for deep learning inference. According to our
experiments, adding instructions to decompress Posit8 into FP16 num-
bers would enable to further reduce the footprint of deep neural network
parameters with an acceptable loss of accuracy or precision. We present
the design of our decompression operator and compare it to lookup-table
implementations for the technology node of the targeted processor.

Keywords: Posit8 - FP16 - Deep learning inference

1 Introduction

Various approaches for reducing the footprint of neural network parameters have
been proposed or deployed. Mainstream deep learning environments support
rounding of the FP32 parameters to either the FP16 or BF16 representations.
They support further reduction in size of the network parameters by applying
linear quantization techniques that map FP32 numbers to INT8 numbers [14]. In
this paper, we follow an alternate approach to FP32 parameter compression by
rounding them to Posit8 numbers. As reported in [4,9], exponent sizes (es) of 0,
1, 2, 3 are useful to compress image classification and object detection network
parameters (es=2 is now the standard for Posit8 [1]).

Unlike previous work [17,19] that apply Posit arithmetic to deep learning
inference, we do not aim at computing directly with Posit representations.
Rather, we leverage the capabilities of the Kalray MPPA3 processor for deep
learning inference [10] whose processing elements implement 4x deep FP16.32
dot-product operators [2,3]. The second version of this processor increases 4 x the
number of FP16.32 dot-product operators that become 8x deep. As a result, the
peak performance for FP16.32 matrix multiply-accumulate operations increases
8x. For this processor, we designed decompression operators that expand Posit8
into FP16 multiplicands before feeding them to the FP16.32 dot-product oper-
ators. These Posit8 decompression operators have to be instanced 32 times in
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order to match the PE load bandwidth of 32 bytes per clock cycle. The corre-
sponding instruction provides the es parameter as a two-bit modifier.

In Sect.2, we evaluate the effects of compressing the IEEE 754 binary 32
floating-point representation (FP32) deep learning parameters to Posit8 repre-
sentations on classic classification and detection networks, then discuss the chal-
lenges of decompressing Posit8 representations to FP16. In Sect. 3, we describe
the design of several Posit8 to FP16 decompression operators and compare their
area and power after synthesis for the TSMC 16FFC technology node.

2 Compression of Floating-Point Parameters

2.1 Floating-Point Representations Considered
A floating-point representation uses a triplet (s,m,e) to encode a number x as:
T = (_1)5 .ﬂefbias -1.m, (1)

where 3 is the radix, s € {0, 1} is the sign, m = my...m,_1 is the mantissa with
an implicit leading bit mq set to 1, p is the precision and e € [emin, €maz] 18
the exponent. The IEEE-754 standard describes binary representations (8 = 2)
and decimal representations (8 = 10). Binary representations such as FP32 and
FP16 are often used in neural network inference. Let us denote the encoding of
z in a representation F' with zp, so we write zpp32 and zgpig as follows:

rppgy = (—1)% - 267127 1, with p = 24, (2)
rrpig = (—1)% - 2715 . Lom, with p = 11. (3)

A first alternative to IEEE-754 floating-point for deep learning is the BF16
representation, which is a 16-bit truncated version of FP32 with rounding to
nearest even only and without subnormals [13]. It has a sign bit, an exponent of
8 bits and a mantissa of 7 bits. A number represented in BF16 is written as:

rprig = (—1)% - 2717 . 1.m, with p = 8. (4)

A second alternative is the floating-point representation introduced by
Microsoft called MSFP8 [8], which is equivalent to IEEE-754 FP16 truncated to
8 bits. This representation has a sign bit, a 5-bit exponent and a 2-bit mantissa:

zysrps = (—1)% - 2671 . 1m, with p = 3. (5)

The third alternative considered are the 8-bit Posit representations [11].
Unlike FP, Posit representations have up to four components: sign, regime, expo-
nent and mantissa. A Positn.es representation is fully specified by n, the total
number of bits and es, the maximum number of bits dedicated to the exponent.
The components of a Posit representation have dynamic lengths and are deter-
mined according to the following priorities. Bits are first assigned to the sign and
the regime. If some bits remain, they are assigned to the exponent and lastly, to
the mantissa. The regime is a run-length encoded signed value (Table 1).
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Table 1. Regime interpretation (reproduced from [5]).

Binary 0001 |001|01/10|110| 1110
Regime value | -3 -2 |-1]/0 |1 2

Table 2. Comparison of components and dynamic ranges of representations. Note
that the components of Posit numbers have dynamic length. The indicated values of
exponent and mantissa for Posit represent the maximum number of bits the components
can have. The regime has priority over the mantissa bits.

Repres FP32 | FP16 | BF16 | MSFP8 | Posit8.0 | Posit8.1 | Posit8.2 | Posit8.3

Exponent | 8 5 8 5 0 1 2 3
Mantissa | 23 10 7 2 5 4 3 2
Regime |- - - - 2-7 2-7 2-7 2-7

Range 83.38 | 12.04 | 78.57 | 9.63 3.61 7.22 14.45 28.89

The numerical value of a Posit number is given by (6) where r is the regime
value, e is the exponent and m is the mantissa:

T

TPositn.es — (_1)5 : (2265) 2% m, with p = m. (6)

In order to choose a suitable arithmetic representation for a set of values, one
needs to consider two aspects: dynamic range and precision. The dynamic range
is the decimal logarithm of the ratio between the largest representable number
to the smallest one. The precision is the number of bits of the mantissa, plus the
implicit one. The total size and exponent size determine the dynamic range of
a given representation. Table 2 summarizes the components of the floating-point
representations considered along with their dynamic range.

The FP32 representation has a wide dynamic range and provides the baseline
for DNN inference. The BF16 representation preserves almost the same dynamic
range as FP32, while FP16 has a smaller dynamic range and higher precision
than BF16. MSFP8 has almost the same dynamic range as FP16, however it
comes with a much reduced precision. Concerning Posit representations, not
only they offer tapered precision by distributing bits between the regime and the
following fields, but also they present the opportunity of adjusting es to adapt
to the needs of a given application. An increase of the es decreases the number
of bits available for the fractional part, which in turn reduces the precision.

2.2 Effects of Parameter Compression

We use pre-trained classic deep neural networks, compress their FP32 parame-
ters to FP16 and to each of the alternative floating-point representations, after
which we analyse the impact on the results of different classification and detec-
tion networks. In the following experiments, all computations are done in FP32,
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however we simulate the effects of lower precision by replacing the parameters
with the values given by the alternative representations. Conversion from FP32
to BF16 is done by using FP32 numbers with the last 16 bits set to 0. Similarly,
for the MSFP8 we use FP16 numbers with last 8 bits are cleared.

Table 3. Classification networks. Compression is applied to all parameters.

DNN Criterion | FP32 | FP16 | BF16 | MSFPS8 | Posit
8.0 |81 |82 |83
VGG16 ACC-1 |70.6 |70.6 |70.8 |69.7 10.2]70.8|70.5 |70
ACC-5 |91.3 |91.3 | 91.2 90.3 25.2191.0/91.0 90
VGG19 ACC-1 |70.1 |70.1 |70.3 |67.9 4.8/70.1{69.9|70.6

ACC-5 |90.4 |90.4 90.5 |89.4 16.3/90 |90 |90.4
ResNet50 ACC-1 |75.7 |71.3 |75.5 |62.8 0.027.7|73.2|66

ACC-5 ]93.3 |90.2 | 93.5 |83.8 0.0/91.4]91.488.7
InceptionV3 |ACC-1 |71.1 |71.1 |71.3 44.8 65.169.469.7|63.1
ACC-5 [89.9 [89.9 90.0 67.9 86.191.0 |89.5|85.3
Xception ACC-1 |735 734 |73.6 |37.5 70.6 | 72.4|72.163.8
ACC-5 [92.1 922 |91.7 |60.6 90.9191.490.9 | 86.0
MobileNetV2 | ACC-1 |71.2 |71.2 |71 0.2 12.7112.3|11.0| 3.2
ACC-5 |90.0 [90.0 |89.6 0.6 2471257244 9.9

Table 4. Detection network. Compression is applied to all parameters.

DNN Criterion | FP32 FP16 BF16 MSFPS8 Posit
8.0 8.1 8.2 8.3
YOLO v3 | mAP 0.41595 | 0.41595 | 0.41585 | 0.3022 | 0.4025 | 0.4155 | 0.411 | 0.394

Regarding the Posit representations, even at small size they encode numbers
with useful precision and dynamic range. Thus, in our experiments, we evaluate
Posit8 representations with es between 0 and 3. A dictionary containing the
255 values given by each Posit8 type is first obtained by relying on a reference
software implementation [11]. We observe that all Posit8.0 and Posit8.1 values
can be represented exactly in FP16. The Posit8.2 representation has 8 values of
large magnitude which are not representable in FP16, but can be represented in
BF16. For the Posit8.3 representation, 46 values are not representable in FP16
and 12 values are not representable in BF16. In our experiments, compression is
done by replacing the parameters with their nearest values in the dictionary.

We experiment with six classification networks and one object detection net-
work. The evaluation criteria are: Accuracy Top 1 (ACC-1), Accuracy Top 5
(ACC-5) for classification and Mean Average Precision (mAP) for detection.
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Table 3 contains the results for the classification networks VGG16 [23], VGG19,
ResNet50 [12], InceptionV3 [24], Xception [7], MobileNetV2 [22], which have dif-
ferent architectures. We also display the results obtained with FP32 and FP16
in order to compare with the standard floating-point representations. The mAP
results for the object detection network (YOLO v3 [21]) are shown in Table 4.
Overall, compression with BF16 gives better results than with FP16. Despite
its lower precision than FP16, BF16 appears to be well suited to deep neural
network inference. On the other hand, the reduced precision of MSFP8 leads to
a significant loss of performance for all tested networks. For the Posit8.0 and
Posit8.3 representations, a significant loss of performance is also observed in
both conventional classification (VGG16) and detection networks (YOLO).

Table 5. Classification networks. Compression is only applied to parameters of convo-
lutions and of fully connected operators.

DNN Criterion | FP32 | Posit

8.0 (81 |82 |83
ResNet50 ACC-1 |75.7 |71.3|75.0 75 |73.6
ACC-5 933 | 9.8/92.7/92.8/92.6
InceptionV3 | ACC-1 |71.1 |66.0 70.9|70.1 69.9
ACC-5 89.9 |86.8/90.7|89.1|88.5
Xception ACC-1 |73.5 |72.1|72.6|72.8|68.8
ACC-5 92.1 191.3/91.7/91.389.4
MobileNetV2 | ACC-1 | 70.8 |25.3|53.5|52.7/39.4
ACC-5 |89.8 |47.0/76.9|77.3/63.1

For networks containing normalization operators (ResNet50, InceptionV3,
Xception and MobileNetV2), the loss of performance is significant on at least
one of the Posit8 representation. This motivates a second round of experiments
on the four the networks that have batch normalization operators. As reported
in Table 5, not compressing the parameters of the batch normalization operators
improves the performance on all these networks. However, despite the improve-
ment, MobileNetV2 remains with a significant accuracy loss.

To summarize the effects of parameter compression to 8-bit representations,
using Posit8.es with 0 < es < 3 appears interesting. We expect that accuracy and
precision could be further improved by selecting the compression representation
(none, FP16, Posit8.es) individually for each operator. This motivates the design
and implementation of a Posit8.es to FP16 decompression operator.

2.3 Decompression Operator Challenges

Previous implementations of Posit operators [6,15,16,18,20,25-27] include a
decompressing component, often called data extraction or decoding unit, that
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transforms a Posit number into an internal representation similar to a floating-
point number of non-standard size, into which the Posit can be exactly repre-
sented. While the structure of these units provides inspiration for our work, the
design of our decompression operator faces new challenges.

— Unlike Posit operator implementations of previous work which support a sin-
gle Posit representation after synthesis, our decompression operator receives
the exponent size from the instruction opcode. Support of variable es is inter-
esting for the MPPA3 processor as its deep learning compiler may adapt the
number representation of each tensor inside a network in order to provide the
best classification accuracy or detection precision.

— Posit numbers have a symmetric representation with respect to the expo-
nent, unlike IEEE 754 floating-point that has an asymmetry tied to gradual
underflow, so previous works do not deal with subnormal numbers. Support
of subnormal numbers is important for the decompression of the Posit8.2 and
Posit8.3 representations to FP16. The smallest Posit8.2 numbers are exactly
represented as FP16 subnormals, ensuring the conversion does not under-
flow. Although the decompression of the Posit8.3 representation to FP16 may
underflow, the range added by gradual underflow is crucial for networks that
compute with FP16 parameters.

— For the Posit8 numbers with es € {2,3} that are not exactly representable
in FP16, our decompression operator supports the four IEEE 754 standard
rounding modes (Round to Nearest Even, Round Up, Round Down and
Round to Zero) by extrapolating the flag setting convention described by
IEEE 754 standard when narrowing to a smaller representations.

— For these Posit8.es number that cannot be exactly represented in FP16, our
decompression operator also has to raise the IEEE 754 overflow or under-
flow flags. Likewise, the Not a Real (NaR) value cannot be expressed in the
IEEE 754 standard, so this conversion should raise and invalid flag and return
a quiet Not a Number (NaN) [1].

Lemma 1. With the Posit8.2 and Posit8.3 representations, knowing the regime
is sufficient to pre-detect conversion underflow or overflow to FP16.

Proof. Let us call wg the width of the floating-point exponent. For FP16 wg = 5,
so maximum exponent value is €,,4, = 2¥#~! — 1 = 15. Similarly, the smallest
possible exponent (counting subnormals) is €,in_sn = —2WF "D 41 —wp +1 =
—24 (where wyy is the width of the mantissa).

The Positn representation combined exponent (in the floating point sense) is
c =1 X 2% 4 e where r is the regime, with —n+1 < r < n—2, and e is the posit
exponent 0 < e < 2% — 1. A Posit number overflows the FP16 representation
when ¢ > €40 1.€. 7 X 2°° + € > €42 + 1. This can be detected irrespective of
e when e,,4, + 1 is a multiple of 2. This is the case when es < 4.

A Posit number underflows the FP16 representation when ¢ < €,,in_sn. Since
c=1x2°+4e¢e<0ande >0, then we need for the detection that €,,in_sn — 1 is
a value with the maximum e, which is 2¢® — 1. This can be detected irrespective
of e when €,,in_sn 18 a multiple of 2¢%. This is the case when es < 3.
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By application of Lemma 1, Posit8.2 overflows FP16 when regime > 4, while
Posit8.3 overflows when regime > 2 and underflows when regime < —4.

Lemma 1 still holds for other values of n if the goal is to compute the
IEEE 754 overflow flag, however it does not work as well for the underflow
as this can only detect the underflow to zero, and not the loss of significand bits
in a subnormal result. The Posit8.3 representation works here since it is small
enough to not have significand bits when its value is converted to a small FP16
subnormal. The regime r should be large enough to imply no mantissa bits, i.e.
14+ r+ 1+ es > n, for the r corresponding to the small FP subnormals.

For example, with the FP32 representation €,,,, = 127 so Lemma 1 applies
for conversion overflow pre-detection if es < 6. For the FP32 underflow pre-
detection, €n_sn = 154 = 2 X 77 so Lemma 1 does not apply in case es > 1.

3 Design and Implementation

3.1 Combinatorial Operator Design

Our first Posit8 decompression operator design is combinatorial (Fig 1), with
steps similar to those of previously proposed Posit hardware operators. First
the two’s complement of the Posit number is computed when its sign bit is 1.
The regime is then decoded with a leading digit counter combined with a shifter.
Since the maximum exponent size es is variable, three more small shifters (Fig. 2)
are used to separate the Posit exponent field e from the mantissa and to combine
e with the regime value in binary to compute the unbiased FP16 exponent. The
FP16 bias is then added, and the three parts of the FP16 number are combined.
Additional details are needed to decompress special Posit8 numbers, or when a
Posit value overflows or underflows the FP16 representation.

The special cases of Posit8 decompression to FP16 are pre-detected in the
operator. Testing for Posit zero and Posit NaR are done in parallel and return
floating-point zero or floating-point NaN (with the inexact flag) at the end of
the operator, adding two multiplexers to the end of the operator. Those were
not drawn to save space. Similarly, since all the other flag values are coded into
tables, they are not drawn on the operator and not described in the figures. A
few one-bit multiplexers are added to set the IEEE 754 flags.

Lemma 1 enables to check a table as soon as the regime is known to determine
if the value will overflow or underflow FP16. The rest of the exponent construc-
tion is done in parallel with the table lookup. Moreover, since the mantissa of
Posit8 is always smaller than the mantissa of FP16, there is no precision lost in
the normal and subnormal cases. However, the rounding mode may change the
values returned when there is a conversion underflow or an overflow.

The special case table (Fig.3) outputs four different values: co (0x7C00),
2 (0x7BFF), smallest subnormal (SN) (0x0001) and zero (0x0000). The sign is
concatenated after the table. Two extra bits are used, the first to encode if the
value in the table should be used, and the second to know if this is an overflow
or an underflow, in order to use this for the flags.
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The table for subnormal values (Fig. 4) is used as soon as the unbiased FP16
exponent in known. For the Posit8.2 representation, the numbers that convert
to subnormals do not have any mantissa bits. For Posit8.3 however, this may
happen in two cases, so the most significant bit of the mantissa is input to
the table. The values returned by the table are always exact, so no inexact or
underflow flags are needed. This table does not output the sign but instead a bit
indicating if the value of the table should be used or not.

3.2 General Operator Efficiency

The synthesis are done with Synopsys Design Compiler NXT for the TSMC
16FFC node. We compare our combinatorial operator implementation to a base-
line lookup-table and track the area (Fig.5) and power (Fig.6) according to the
operating frequency. A pipelined version of this operator is obtained by adding
a stage between the leading digit count and the first shift. This enables the use

es = 2

After LDC (1)
After RShiftl (2)
After LShift (3)

After Combining with Regime (4)
After RShift2 (5)

es =1 H ||
_ .

es =10
[Z
&

. : Regime . : Exponent |:| : Mantissa

Fig. 2. Shifters to separate exponent and mantissa
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sign|es| regime rounding mode  |output
0 |2|4to6 |10 or 11 (RD or RZ)[10&? exponent|mantissa msb output
0 |2]4to6 |00 or 01 (RN or RU)|10&00 0 0 1 & 000 0010 0000 0000
1 [2]4t06|01or11 (RU or RZ)|10&2 0 1 1 & 000 0011 0000 0000
1 2|4 to6 |00 or 10 (RN or RD)|10&0o0 -1 0 1 & 000 0001 0000 0000
0 [3[2to06 |10 or 11 (RD or RZ)|10&? é (1) i i 888 888(1] 1888 8888
0 3] 2to 6|00 or 01 (RN or RU)|10&00 i
-3 0 1 & 000 0000 0100 0000
1 3| 2to6 |01 or 11 (RU or RZ)|10&2 I} 0 1 & 000 0000 0010 0000
1 {3|2to6 |00or10 (RN or RD)|10&c0 5 0 1 & 000 0000 0001 0000
0 13-4 to -6 01 (RU) 11&SN -6 0 1 & 000 0000 0000 1000
0 |3]-4to-6 else 11&0 -7 0 1 & 000 0000 0000 0100
1 13]-4to -6 10 (RD) 11&SN -8 0 1 & 000 0000 0000 0010
1 |3]-4to-6 else 11&0 -9 0 1 & 000 0000 0000 0001
* Ok * * 00&0 * * 0 & 000 0000 0000 0000

Fig. 3. Table for the special values

Fig. 4. Table for the subnormal values

of a faster clock and reduces the area, the trade-off being that the conversion
takes 2 clock cycles. The throughput is still of one value per clock cycle.

The lookup table implementation uses as inputs {Posit, es, rounding mode}
so it has 2'2 = 4096 entries. The Posit sign is needed to compute the overflow
and underflow IEEE 754 flags in Round Up and Round Down modes.

300
—=—  Combinatorial circuit
250 |-| —@— Pipelined Combinatorial c.
—=— Table
200
L
— 150
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?:—El/
50
0
0 0.5 1 1.5 2

Frequency (GHz)

Fig. 5. Area depending on frequency for the general operators

At the target frequency of our processor (1.5 GHz), the pipelined combina-
the area and half the leakage power of a baseline
table-based implementation. It also has a lower dynamic power consumption.

torial implementation has

2
3
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3.3 Specialized Operator Efficiency

As discussed earlier, the rounding mode has no effects on the decompression
for the majority of Posit8 numbers, and may only change the result in cases
of overflow or underflow. This motivates specializing the operators to convert
Posit8 to FP16 representations for the Round-to-Nearest (RN) mode only.

The combinatorial decompression operators are built the same way as before,
the only changes being on the special case table which is significantly reduced
since the rounding mode and sign no longer intervene, while the number of
possible outputs is halved.
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:
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0 0.5 1 1.5 2
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Fig. 6. Power depending on frequency for the general operators
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The baseline table implementation now uses inputs {Posit, es} so it has
210 = 1024 entries. Moreover, as the sign is no longer needed for producing the
IEEE 754 overflow and underflow flags, the table implementation can be factored
as illustrated in Fig. 7. If the Posit is negative, its two’s complement is used for
accessing the table, and the sign is appended to the output of the table.

Those specialized operators show similar result in area (Fig.8) and leakage
power (Fig.9). The factored table implementation however is significantly better

Posit8.es es

8

1
7

~+1 2
MUX ;

9

POSITIVE POSIT

TO FP16 TABLE
15
16

Fig. 7. Posit8 to FP16 decompression operator based on a factored table.
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Fig. 8. Area depending on frequency for the RN only operators
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than the baseline table as it exploits a symmetry that was not apparent. At our
target frequency, our pipelined operator implementation has % the area and %
the leakage power of the optimised table-based implementation, and has lower
dynamic power consumption (Fig.9).

Another specialisation of interest is to only decompress the standard Posit8.2
representation. This further reduces the size (Fig. 10) and the power consumption
(Fig. 11) of the combinatorial implementations since it simplifies both the special
tables and the small shifters. This operator is also smaller than the table-based
implementations. It is interesting to note that for tables this small, at high

0.5
—&—  Combinatorial circuit
—e— Pipelined Combinatorial c.
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Fig. 9. Power depending on frequency for the RN only operators
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Fig. 10. Area

Fig. 11. Power depending on frequency for the RN and Posit8.2 only operators
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frequencies the overhead of computing the absolute values may offset the benefit
of halving the table size.

4 Summary and Conclusion

This paper proposes to use 8-bit floating-point representations for the compres-
sion of the IEEE 754 binary 32 (FP32) parameters of trained deep learning
classification and detection networks. Traditional compression of FP32 param-
eters for inference rounds them to the IEEE 754 binary 16 (FP16) or to BF16
representations, where they are used as multiplicands before accumulation to
FP32 or wider representations. Assuming that efficient mixed-precision FP16.32
matrix multiply-add operators are available, our objective is to select 8-bit rep-
resentations suitable for floating-point parameter compression and to design the
corresponding decompression operators to the FP16 representation.

We first observe that compressing parameters from FP32 to MSFP8 (a FP16
representation truncated to 8 bits proposed by Microsoft) does not give accept-
able inference results for the networks considered. Indeed, to achieve compression
of the FP32 parameters without significant accuracy loss, a trade-off between the
dynamic range and the precision is needed. Accordingly, parameter compression
to the Posit8.1, Posit8.2 and Posit8.3 representations performs well for inference
with the tested networks, with a few exceptions.

We then design and implement combinatorial and table-based Posit8 to FP16
decompression operators with increasing degrees of specialization. The combina-
torial designs benefit from an insight on the conditions which leads to overflow
or underflow when converting Posit8.2 or Posit8.3 to FP16. This enables to pre-
detect those conditions by inspecting only the Posit regime bits.

The most general decompression operators presented receive as input a Posit8
value, the exponent size 0 < es < 3, and one of the four IEEE 754 rounding
modes. A first specialization considers only rounding to the nearest even, which
in turn enables the table-based implementation to be factored relative to the sign.
A second specialization only decompresses the standard Posit8 representation,
whose exponent size is 2. In all cases, the pipelined version of our combinatorial
decompression operator appears as the best option.
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Abstract. This paper presents Qtorch+, a tool which enables next gen-
eration number formats on Pytorch, a widely popular high-level Deep
Learning framework. With hand-crafted GPU accelerated kernels for pro-
cessing novel number formats, Qtorch+ allows developers and researchers
to freely experiment with their choice of cutting-edge number formats
for Deep Neural Network (DNN) training and inference. Qtorch+ works
seamlessly with Pytorch, one of the most versatile DNN frameworks, with
little added effort. At the current stage of development, we not only sup-
port the novel posit number format, but also any other arbitrary set of
points in the real number domain. Training and inference results show
that a vanilla 8-bit format would suffice for training, while a format
with 6 bits or less would suffice to run accurate inference for various
networks ranging from image classification to natural language process-
ing and generative adversarial networks. Furthermore, the support for
arbitrary number sets can contribute towards designing more efficient
number formats for inference in the near future. Qtorch+ and tutorials
are available on GitHub (https://github.com/minhhn2910/QPyTorch).

Keywords: Deep Learning - Posit format + Novel number formats -
Pytorch framework

1 Introduction

Reducing the bitwidth of number representations employed in Neural Networks
to improve their efficiency is a powerful technique that can be used to make
Deep Learning more accessible to a wider community. This is especially impor-
tant when the variety of applications that use Deep Learning and the size and
complexity of models have all increased drastically. For example, even with the
latest GPU hardware capabilities, the GPT-3 model with 175 billion parameters
requires 288 years to train [4]. The reason for the extraordinary training time and
computational resources required is primarily due to the fact that the gargan-
tuan amount of parameters cannot fit into the main memory of even the largest
GPU [30]. Therefore, lowering the precision to reduce the memory consumption
© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
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is extremely helpful to improve execution times and enable models to be run on
a wider range of general-purpose hardware.

Research into low-precision number representations and their related arith-
metic operations for Deep Learning has made many inroads in recent years.
Several new low-precision floating-point formats have been proposed, many of
them specifically targeted towards this domain. Posit™ arithmetic [13] with
its ability to provide tailor-made accuracy to values that are of significance in
the application, has seen increasing interest. Due to the arithmetic properties of
posits, they naturally lend themselves to low-precision neural network training
and inference. In the case of low-precision inference, custom sets of values can
also be designed for quantization to achieve high levels of model compression.
Therefore, these formats merit comprehensive investigations for the use in DNN
training and inference.

Due to the fast-pace and significant interest, a pressing issue the Deep Learn-
ing research community has had to grapple with in the recent past is the dif-
ficulty for independent groups to reproduce model results that are being pub-
lished. Though publicly available industry benchmarks [28] have been created
to address the problem, even those results cannot practically be reproduced by
research groups without access to significant expertise and resources. The fine-
tuning and hand-tweaked kernels are almost always proprietary and not publicly
available. An open-source Deep Learning framework which enables experiment-
ing with the aforementioned arithmetic formats, will allow researchers to quickly
prototype and test newer number representations for Deep Learning.

In this paper we present Qtorch+, a framework for experimenting with posits
and arbitrary number sets with flexible rounding for Deep Learning. Qtorch+
is developed upon QPyTorch, a low-precision arithmetic simulation package in
PyTorch that supports fixed-point and block floating-point formats [48]. Because
our framework operates seamlessly with PyTorch, users are granted all the flexi-
bility that come with it for low-precision experimentation. This includes support
for a rich set of models, benchmarks, hardware configurations and extendable
APIs. Leveraging the many capabilities of Qtorch+, we evaluate an extensive
set of benchmarks for both training and inference with low-precision posits and
arbitrary number sets.

The remainder of the paper is organized as follows. Section 2 presents some
background into Neural Networks, floating-point and fixed-point formats, posits
and arbitrary number sets. It also gives an introduction into integer quantization
and discusses work in the area relevant to these topics. In Sect. 3 we present the
design and implementation details of the Qtorch+ framework. Section4 gives
and overview of the practical usage of the framework for training and inference.
Section 5 details the results the framework achieved on inference tasks. Some
case studies related to training with posits and performing inference with a
customized number set are presented in Sect. 6. Section 7 concludes.
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2 Background and Related Work

2.1 Neural Networks

Neural networks have achieved astonishing performance on different complex
tasks in recent years. Starting with the introduction of Convolutional Neural
Networks (CNN) for image classification, they have branched out to many other
diverse tasks today [25]. The initial CNNs were typically trained using the back-
propagation method [24] which required intensive computational power. Hard-
ware that could handle such computational demands and the representative
datasets required for training more complex tasks remained an obstacle for a
long period of time. More recently, with the introduction of GPUs for acceler-
ated training and inference at multiple magnitudes faster than traditional proces-
sors, more and more deeper neural network architectures have been designed to
tackle more complex datasets and challenges (e.g. Imagenet [10]). Most notably,
the introduction of very deep networks such as Resnet [14] have revolution-
ized the approach to computer vision with Deep Learning increasingly adopted
for more difficult tasks. To this day, neural networks have been used for many
tasks including vision [14,45,49], language [4,43], audio [31,37], security [36,42],
healthcare [12,39], general approximation [19,47], etc.

2.2 Floating-Point and Fixed-Point Formats

Floating-point and fixed-point formats have been widely used for general com-
putation since the early days of the computing era. They have different char-
acteristics which make them suitable for different application domains and
for different approximations. This led to various works on tuning those for-
mats [1,6,8,11,15,18]. Recently, with the popularity of deep neural networks,
hardware vendors and researchers have found that lower bitwidth on these for-
mats can still achieve high accuracy both on inference and training while improv-
ing system energy efficiency and performance [29,40]. Thus, there are several
works that target the reduced precision of floating point and fixed point format
for neural network inference and training [5,40,41,44] [3,17,26,38].

Both arbitrary bitwidth floating-point and fixed-point formats have been sup-
ported by the original QPytorch framework. In this paper, we focus on extending
the framework to support novel number formats such as posits and, more gen-
erally, arbitrary sets of numbers.

2.3 Integer Quantization

Integer quantization in neural networks refers to the mapping FP32 values to 8-
bit integer (INT8) values. This process requires selecting the quantization range
and defining the mapping function between FP32 values to the closest INT8 value
and back (quantize and dequantize). If the selected range is [«, 3], then uniform
quantization takes an FP32 value, z € [«, ] and maps it to an 8-bit value. The
most popular mapping function used is f(z) = s -z (scale quantization) where
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s,x,z € R; s is the scale factor by which x will be multiplied. The uniform scale
quantization is the most popular in hardware [46]. Let s; and sy be the scales
used to quantize weight W and activation A of a dot product operation (®).
The scale quantized dot product result R’ can be dequantized by multiplying
with the appropriate factor:

K
R/:W/®A/: E wixslxaiXSQ:Rxslxs2
1

Integer quantization is already supported by mainstream frameworks and
hardware vendors [21,46]. Thus, it is not the primary focus of this paper.

2.4 Posit Format

The posit number format has a distinctive property compared to other formats
which results in better numerical stability in many application domains. The
distribution of representable values in posits is more concentrated to a central
point in the log2 domain (around 2°) as seen in Fig. 1b. This property will ben-
efit certain applications where most of the values are concentrated to a specific
range. In contrast, this will overwhelm the number of representable values of
both floating-point and fixed-point formats. As seen in the Figure, the floating-
point accuracy distribution is uniform when compared to the tapered accuracy
of posits. Consequently, many studies [7,16,22,23,27] have shown that DNNs
and some specific domain applications [20] are among the beneficiaries of this
property of posits.

The above described property is due to the unique representation of posits.
Figure la shows an example of a posit. A posit environment is defined by the
length of the posit, nsize, and the size of the exponent field, es, which in this
case is 16 bits and 3 bits. The first bit is reserved for the sign of the number.
What follows after the sign is the regime field which is of variable length. To
decode the regime, one can simply count the number of Os (or 1s) after the sign
until a 1 (or 0) is reached. If the first regime bit is 0 the regime is negative and
vice-versa. In this case, the regime is therefore —3. The regime value is used
as the power to be raised for a value known as useed which is computed by
using the exponent length: (2265). There is always an implicit hidden bit in the
fraction (except for zero). All these fields are read as shown in the Figure to
obtain the value the posit is representing. Complete details of the posit format
and its related arithmetic can be found in the posit standard [32].

2.5 Arbitrary Number Sets

Apart from the aforementioned formats, we found that allowing arbitrary num-
ber sets for inference can help accelerate the research and development of cus-
tomized hardware for machine learning applications [2,34]. Thus, we also extend
the framework to support any number format which can be customized depend-
ing on the application. For this feature, the user will use their own method
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Fig. 1. Posit format

to craft a highly specialized table set for rounding. The arbitrary number set
feature can also directly simulate any number format and other table lookup
techniques. In general, any number format can be simulated with this method
given the set of all representable values in the format. However, due to the table
size, we recommend using this for very low bitwidth representations. As case
studies of this feature, we will give some examples of using this to achieve very
small sets while maintaining high output quality for selected applications. This
feature will support two main research directions:

— Hardware friendly number formats with strict rules on the distribution of
representable values. This category consist of number formats that are known
to be efficient in multiplication (logarithmic domain, additive of logarithmic
numbers).

— Arbitrary number sets which have no rules on the distribution of representable
values. To implement this category in hardware, we need a customized table
lookup or integer-to-integer mapping combinational logic circuit.

3 Design and Implementation of Qtorch+

Because most Deep Learning frameworks and accelerators support extremely
fast FP32 inference, we can take advantage of highly optimized FP32 implemen-
tations as the intermediate form to simulate our number formats with sufficient
rounding. For this to work correctly, we assume that FP32 is the superset of our
target format to be simulated. This remains true when the number simulated is
low bitwith (e.g. 8-bit and below). For simulating higher bitwith (above 16 bits)
arbitrary number formats, we can opt to use FP64 as the intermediate number
format to store the rounded values. In the context of this paper, we focus on
very low bitwith number formats and using FP32 as the intermediate format.
The workflow of a DNN operation simulated in a low bitwidth number format
with correct rounding can be viewed in Fig.2. This method has been widely
used to simulate low precision fixed-point and floating-point formats and inte-
ger quantization in state-of-the-art techniques [48]. By introducing posits to the
framework, the quantizers in Fig. 2 will have configuration parameters: nsize, es
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for posit format and scaling which is used to implementing exponent bias as in
Sect. 3.2. All of the quantizers and their usage will be demonstrated in Sect.4.1.

Previous Layer

Qweight

Qact N Activation

Accumulator

Backward Error Qerr <—¢

Fig. 2. Qtorch+’s training model and APIs are inherited from the original QPytorch
framework with the separated kernel approach to quantize the values to new formats
while using FP32 matrix multiplication for fast simulation time. We extend these func-
tionalities to support posits, exponent biases and arbitrary number sets

Qaee [

3.1 Floating-Point and Posit Conversion

To simulate posits efficiently, we implement the conversion between the number
format and FP32 in Qtorch+ using integer and bit operations as well as built-in
hardware instructions. The implementation of the functions are based on efficient
encoding and decoding of a 16 bit posit into FP32 [9].

To convert a posit into FP32, the sign bit is first extracted and the two’s com-
plement value of the number is obtained if the sign is negative. Thereafter, the
regime is decoded as described in Sect. 2.4. Once these two operations are com-
pleted, we can remove these two fields with a right shift operation and directly
superimpose the remaining exponent and fraction fields to the corresponding
fields of an FP32 value. To get the final exponent, the decoded regime value and
the exponent point bias has to be added to the exponent field.

To convert an FP32 value to a posit, first the FP32 value needs to be checked
against the maximum and minimum bounds of the posit’s representable range.
If it can be represented as a posit, then as in the case before the sign can be
extracted. The regime and exponent field of the posit can be decoded directly
from the exponent field of the FP32 number. Some post-processing is done to
format the regime field afterwards. Once all the fields are known, the posit can be
assembled and formatted. There are many tweaks to these algorithms described
that are performed to make these two operations very efficient.
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3.2 Scaling and Using the Exponent Bias in Posit

After studying the the value distribution histograms of many neural networks, we
found that both the weights and the activations can be scaled for a more accurate
posit representation. For example, in some GANs, the weights are concentrated
in the range [27* to 27°]. Therefore, we can shift the peak of the histogram
to the range with highest posit accuracy, near 2°. Note that scaling cannot
provide additional accuracy for floating-point formats because their accuracy
distribution is flat (see Fig. 1b).

Before and after a computation using a posit value, the encoder and decoder
are used to achieve scaling. The decoder will decode the binary data in posit
format to {S, R, E, F'} which represent {sign, regime, exponent, fraction}, ready
for computation. The definitions of biased encoder and decoder for posit data P
and a bias t are as follow:

Biased Decoder : {P,t} — {S,R,E —t,F'}
Biased Encoder : {S,R, E +t,F} — {P} (1)

We scale using the posit encoder and decoder instead of floating-point mul-
tiplications for efficiency. If we choose an integer power of 2 for the scale, input
scaling and output descaling can be done by simply biasing and un-biasing the
exponent value in the encoder and decoder, as shown in Eq.1. This exponent
bias can be easily implemented in hardware by additional integer adder circuit
with minimal hardware cost [16].

3.3 Arbitrary Number Sets

This feature is fully supported by the extended quantizer. To use this, the user
will create a full set of all possible representable values of their format and pass
it as an input to the quantizer. All the real values will then be rounded to
their nearest value in the given set. This feature will be described in detail and
demonstrated in Sect. 6.4.

4 Practical Usage of Qtorch+

This section describes the APIs of Qtorch+ and how to use novel number formats
in Deep Learning applications.

4.1 Leverage Forward_hook and Forward_pre_hook in Pytorch

To use Qtorch+ in inference seamlessly without any additional effort from the
user, we leverage the “hook function” feature in Pytorch [33]. The weights can
be quantized with our posit_quant function without the need for modifying the
original model. However, for activation, changing the model code to intercept
the dataflow of layers is required to apply custom number format simulation.
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With the recent Pytorch version and the introduction of “hook” functions, there
is no need to modify the original model to achieve the same result. The for-
ward_hook function is to process the output of the current layer before going to
the next layer. The forward_pre_hook function is used to process the input of
the current layer before doing the layer operations. Thus, forward_pre_hook is
a universal way to intercept the input of any layers while forward_hook is the
convenient way to intercept the output of any layer. For general usage, we can
use forward_pre_hook and preprocess activations of the current layer with low
bitwidth number formats. Likewise, we use forward_hook for extra simulation of
the precision of the accumulator when we do not assume the exact dot product.

posit_quant

’ Weight / ’ Weight
FP32 Posit-6
os! Dot product Output Activation
FP32 or FP64 Posit-16 Posit-6

- Activation

Simulate exact dot
product

forward_pre_hook: forward_hook:

new_activation = posit_quant(activation) new_output= posit_quant(output)

Fig. 3. Using Pytorch’s feature to intercept the dataflow and simulate inference.

4.2 Qtorch+ in Training

Listing 1 shows the modification required to prepare the model for training. As
we can see, the steps taken are not much different from the standard pytorch
models preparation and construction. There are two main steps that we need to
perform in order to use posit training:

— Declare all the quantizer used for each component of the optimizer and ini-
tialize the new optimizer with these parameters.

— Modify the model source code (MyModelConstructor) to use the argument
act_error_quant in the forward pass of the model. The quant function must
intercept the dataflow between each Convolutional/Linear layer for correct
simulation. User can decide their own policy of skipping some layers to use
higher precision (posit16, FP16 or FP32) if necessary.
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from qtorch.quant import Quantizer, quantizer
from qtorch.optim import OptimLP

from qtorch import Posit

# define two different formats for ease of use
bit_8 = posit(nsize=8, es=2)

bit_16 = posit(nsize=16, es=2)

# define quantization function for each component of the neural network
weight_quant = quantizer(bit_8)

grad_quant = quantizer(bit_8)

momentum_quant = quantizer(bit_ls)

acc_quant = quantizer(bit_16)

# define a lambda function so that the Quantizer module can be duplicated easily

act_error_quant = lambda: Quantizer (forward_number=bit_8, backward_number=bit_8)

#Step not included here: modify model forward pass to add quant() between layers.
model = MyModelConstrutor(act_error_quant)

#define normal optimizer as usual
optimizer = SGD(model.parameters(), 1lr=0.05, momentum=0.9, weight_decay=5e-4)
#user the enhanced optimizer with different number formats.
optimizer = OptimLP(optimizer,
weight_quant=weight_quant,
grad_quant=grad_quant,
momentum_quant=momentum_quant,
acc_quant=acc_quant,
grad_scaling=2**10 ) # do loss scaling if necessary

Listing 1: Example of the modification needed to add to prepare the model for
training with Qtorch+.

4.3 Qtorch+ in Inference

Listing 2 shows how to utilize posits (or other number formats) in inference. The
code in details involve two main steps:

Decide the number formats for processing convolutional/linear layer. It
is implemented as two functions: linear_weight and linear_activation (e.g.
posit(6,1) in Listing 2. Decide the number formats for processing other layers
(and the layers in excluded list). This number format for other layers needs
to be in high precision to prevent accuracy loss. It also needs to be compati-
ble with the low-bitwidth format for efficient hardware design (an accelerator
that supports both FP32 and posit6 is likely more expensive than the one
that only support posit6 and posit16).

Given a pretrained model, instead of looking into the model definition, we
can prepare and call the prepare_model() function with the logic in Listing 2.
In general, the simulation of the number format for output with forward_hook
as in Fig. 3 can be skipped when we assume the dot product is done using the
quire and the output format has enough precision to hold the output value
(high precision as posit 16-bit or 32-bit).
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1 from qtorch.quant import posit_quantize

2 def other_weight (input):

3 return posit_quantize(input, nsize=16, es=1)

4 def other_activation(input):

5 return posit_quantize(input, nsize=16, es=1)

6 def linear_weight (input):

7 return posit_quantize(input, nsize=6, es=1, scale=scale_weight)
8 def linear_activation(input):

9 return posit_quantize(input, nsize=6, es=1, scale=scale_act)

11 def forward_pre_hook_other(m, input):

12 return (other_activation(input[0]),)

13 def forward_pre_hook_linear(m, input):

14 return (linear_activation(input[0]),)

15

16 layer_count = 0

17 excluded_list = [1 # list of all layers to be excluded from using low precision

18 model = torchvision‘models.efficientnet_b?(pretrained=True) #load pretrained model
19 for name, module in model.named_modules():

20 if isinstance(module, nn.Conv2d) or isinstance(module, nn.Linear) \

21 and layer_count not in excluded_list:
22 module.weight.data = linear_weight(module.weight.data)

23 module.register_forward_pre_hook(forward_pre_hook_linear)

24 layer_count +=1

25 else: #should use fized-point or posit 16 bits for other layers’ weight
26 if hasattr(module, ’weight’):

27 layer_count +=1

28 module.weight.data = other_weight (module.weight.data)

29 module.register_forward_pre_hook(forward_pre_hook_other)

Listing 2: Example of the preprocessing code needed to add to prepare the model
for inference with Qtorch+. Note that this code is generic to all models which
can be loaded at line 18. We do not need to modify the source code of the
model definition as other frameworks. For user convenience, we can hide this
whole procedure into a single function prepare_model which does exactly the
same task.

5 Inference Results of Posit

Table 1 shows the inference results of low bitwidth posit formats on different
tasks. Because our framework is fully compatible with Pytorch, we can choose a
diverse set of models for difficult tasks, especially the recent state-of-the-art mod-
els [4,45,49]. Any model that has a script which can be run using Pytorch can
leverage our framework. Our models include the state-of-the-art image classifica-
tion model EfficientNet B7 which reaches 84.3% top 1 accuracy on Imagenet. We
also include the released GPT-2 model of OpenAl which achieved state-of-the-
art performance in Language Modeling when it was introduced. For performance
metric, we follow the guideline of other benchmark suites which set the thresh-
old 99% of FP32 quality when using lower precision. The vanilla posit8 (without
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scaling) can achieve beyond 99% accuracy of FP32 in half of the models. The
accuracy of image classification models when using posit8 conforms with the 99%
standard (except GoogleNet which achieves 98.9% FP32 Accuracy). The pre-
trained models are retrieved from the official Pytorch', hugging face framework?
and the respective authors. The inference models and scripts to run with posits
are accessible online?. For image classification task, the test dataset is Imagenet.
For Object detection, the test set is COCO 2017. For style transfer and super res-
olution models, we use custom datasets provided by the authors [45,49]. Question
answering and language modelling task uses the SQuaD v1.1 and WikiText-103
dataset respectively.

When hardware modification is not allowed, the rest of the model can achieve
99% FP32 standard by dropping the first and the last layer of the models and
apply higher precision to them (posit(16,1)). With little modification to the
hardware to include an exponent bias, we can increase the accuracy of the model
vastly as can be observed in column P6+DS in Table 1. The effect of scaling can
increase the accuracy up to 7.8% in ResNEXT101. In GANs (Style Transfer and
Super resolution tasks), the effect of skipping the first and the last few layers
are more important than scaling posit format. Thus, we can see the P6+D can
surpass posit8 in most cases. We will provide the results of posit8 when applying
scaling and skipping to reach 99% FP32 standard.

6 Case Studi