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New Challenges in Covariance
Estimation: Multiple Structures and
Coarse Quantization

Johannes Maly, Tianyu Yang, Sjoerd Dirksen, Holger Rauhut,
and Giuseppe Caire

3.1 Introduction

The key objective in covariance estimation is simple to state: given n ∈ N i.i.d.

samples X1, ...,Xn d∼ X of a random vector X ∈ R
p, compute a reliable estimate

of the covariance matrix E[XX�] = � ∈ R
p×p (without loss of generality, we

restrict ourselves here to mean-zero distributions, i.e., E[X] = 0). For this purpose,
a natural estimator is the sample covariance matrix

�̂n = 1

n

n∑

k=1

Xk(Xk)� (3.1)

as it converges to �, for n → ∞, by the law of large numbers. Nevertheless, an
asymptotic result is of limited use from practical perspective. Given n ∈ N, it
provides no information on the reconstruction error ‖�̂n − �‖ measured in the
operator norm ‖ · ‖. (Although other norms or error metrics might be considered
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as well, e.g., the Frobenius norm, we mainly restrict ourselves in this chapter on
operator norm bounds as the most common representative.)

In the last two decades, numerous works on non-asymptotic analysis of covari-
ance estimation showed that reliable approximation of � by �̂n becomes feasible
for sub-Gaussian distributions if n � p, where a � b denotes a ≤ Cb for some
absolute constant C > 0. For instance, if X has a Gaussian distribution, then it is
well known [61] that with probability at least 1 − 2e−t

‖�̂n − �‖ � ‖�‖
(√

p + t

n
+ p + t

n

)
. (3.2)

This classical result exhibits various weaknesses. For instance, it requires strong
concentration of the distribution of X around its mean. The estimator in (3.1) is
sensitive to outliers and not reliable if concentration fails [12, 34]. Furthermore,
in applications the ambient dimension can easily exceed the number of accessible
samples such that even if concentration may be assumed, the estimate in (3.2) is
void.

3.1.1 Outline and Notation

In Sect. 3.2, we briefly discuss massive MIMO as one specific modern application
of covariance estimation. The massive MIMO setting originates from wireless
communications research and will serve as a motivation for investigating multiple
structures and quantized samples in a mathematical framework. Section 3.3 then
surveys recent theoretical advances on estimation of structured covariance matrices,
and Sect. 3.4 shows the impact of coarse sample quantization on estimation guar-
antees. Having the theoretical results from Sects. 3.3 and 3.4 in mind, in Sect. 3.5,
we finally return to the details of massive MIMO and present our recent approach
in engineering literature. We conclude in Sect. 3.6 by discussing the gap between
existing theoretical guarantees and practical solutions. Some technical details of
Sect. 3.3 are deferred to the Appendix.

We denote [n] = {1, ..., n}. For any absolute constant C > 0, we abbreviate
a ≤ Cb (resp., ≥) as a � b (resp., �). We furthermore write a �L b (resp., �L) if
C only depends on the quantity L. Whenever we use absolute constants c, C > 0,
their values may vary from line to line. Scalar-valued functions act component-wise
on vectors and matrices. For a set S, the indicator function χS is 1 on S and 0 on
its complement Sc. We denote the all ones-matrix by 1 ∈ R

p×p and the identity by
I ∈ R

p×p. In particular,

[sign(x)]i =
{

1 if xi ≥ 0

−1 if xi < 0,
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for all x ∈ R
p and i ∈ [p]. For Z ∈ R

p×p, we denote the operator norm (the
maximum singular value) by ‖Z‖ = supu∈Sp−1 ‖Zu‖2, the nuclear norm (the sum of
singular values) by ‖Z‖∗ = tr(

√
Z�Z), the Frobenius norm (trace norm) by ‖Z‖2

F =
tr(Z�Z) = ∑p

i,j=1 Z2
i,j , the max norm by ‖Z‖∞ = maxi,j |Zi,j |, and the maximum

column norm ‖Z‖1→2 = maxj∈[p] ‖zj‖2, where zj denotes the j -th column of Z.
We use � for the Hadamard (i.e., entry-wise) product of two matrices. The uniform
distribution on a set S is denoted by Unif(S). The multivariate Gaussian distribution
with mean μ ∈ R

p and covariance matrix � ∈ R
p×p is denoted by N(μ,�). The

sub-Gaussian (ψ2-) and subexponential (ψ1-) norms of a random variable X are
defined by

‖X‖ψα = inf
{
t > 0 : E

[
exp

( |X|α
tα

)]
≤ 2

}

A mean-zero random vector X on R
n is called K-sub-Gaussian if

‖〈X, x〉‖ψ2 ≤ K E[〈X, x〉2]1/2 for all x ∈ R
n.

3.2 Motivation: Massive MIMO

Multiple-input multiple-output (MIMO) is a method in wireless communication to
enhance the capacity of a radio link by using multiple transmission and multiple
receiving antennas. It has become an essential element of wireless communication
standards for Wi-Fi and mobile devices [24, 50]. Massive MIMO equips the base
station (BS) with a large number of antennas to further increase bandwidth and
potential number of users [44, 45].

In a classical massive MIMO communication system, the BS is equipped with
a uniform linear array (ULA) of M antennas and communicates with multiple
users through a scattering channel, e.g., wave reflection on buildings or objects. See
Fig. 3.1 for an exemplary setup. During uplink (UL), the BS receives user pilots and
aims at estimating the respective channel covariance matrices, which characterize

Fig. 3.1 An exemplary
multipath propagation
channel, where the user signal
is received at the BS through
two scattering clusters

User

BS ULA
Scattering Channel
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each transmission channel. By assuming mutual orthogonality of all UL pilots, it
suffices to focus on a single user channel. We denote the corresponding UL channel
vector at time–frequency resource s by h(s) ∈ C

M (standard block-fading model,
e.g., [59]). Furthermore, we assume that the user transmits a single pilot per channel
coherence block such that the channel vectors h(s) are i.i.d. complex Gaussian
vectors, for s ∈ [N ] [27, 28].

The received pilot signal at the BS at resource block s is then given as

y(s) = h(s)x(s) + z(s), (3.3)

for s ∈ [N ], where x(s) ∈ C is the known pilot symbol and z(s) ∼ CN(0, N0I) =
N(0, N0

2 I) + jN(0, N0
2 I) models additive white Gaussian noise (AWGN). Without

loss of generality, one may assume that the pilot symbols are normalized, i.e.,
x(s) = 1. The core problem of massive MIMO channel estimation is now to
estimate the channel covariance matrix

�h = E[h(s)h(s)H] (3.4)

from N noisy samples y(s), s ∈ [N ]. Since the number of samples N is limited
due to time constraints of the UL phase, one expects for massive MIMO that N ≈
M . Translating this into our initial theoretical setting, i.e., identifying the ambient
dimension p with the number of antennas M , the number of samples n with the
number of independent time–frequency resources N , and the sample vectors Xk

with the channel vectors h(s), we see that the sample covariance matrix will not
provide a reliable estimate of �h in this case, cf. Eq. (3.2) for n ≈ p. Nevertheless,
a closer look into the channel model reveals that �h naturally exhibits intrinsic
structures such as low-rankness and Toeplitz structure, cf. Sect. 3.5.

Structure and Quantization Let us highlight two crucial points. First, whereas
engineers are successful in boosting the sample covariance matrix by using special
features of their problem setting, cf. Sect. 3.5, it might simplify existing approaches
if alternatives to the sample covariance matrix are used that automatically leverage
intrinsic structure(s) of the covariance matrix. As Sect. 3.3 will show, the last decade
substantially improved our theoretical understanding in this regard. Second, if the
above methods are used in real applications, one has to take into account that
the sample vectors y(s) have to be quantized to finite alphabets before digital
processing. Especially, in massive MIMO, the information loss due to quantization
can be significant since fine quantization at a multitude of antennas leads to
enormous energy consumption. The results presented in Sect. 3.4 can be seen as a
first theoretical step into understanding the non-asymptotic behavior of covariance
estimators under coarse quantization of the samples. Since we concentrate on
memoryless quantization schemes (each vector entry is quantized independently of
all others), our model should be applicable to massive MIMO in a straightforward
way.
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3.3 Estimation of Structured Covariance Matrices and
Robustness Against Outliers

As we have already seen in Sect. 3.2, there are several structures of interest
that � might exhibit in applications. We concentrate here on three important
instances—sparsity, low-rankness, and Toeplitz structure—that naturally emerge
in engineering, biology, and data science, e.g., [42, 53]. Parts of the results we
review below are not restricted to Gaussian random vectors but allow to treat
heavy-tailed distributions that only satisfy assumptions on their lower moments.
Techniques for robust covariance estimation include median of means [31, 49],
element- and spectrum-wise truncation [12, 47], and M-estimators [47, 48]. The
recent work [46] even constructs a “sub-Gaussian” estimator that only requires a
finite kurtosis assumption (L4–L2-norm equivalence). In this context, an estimator
is called sub-Gaussian if it performs on non-Gaussian distributions as well as the
sample covariance matrix applied to Gaussian distributions, for further discussion
see [46]. Although the proposed construction is computationally intractable, it
illustrates the potential of robust estimation. For further information on early and
recent approaches to robust covariance estimation, we refer the reader to [29, 34].

3.3.1 Sparse Covariance Matrices

We begin with the assumption that � is a sparse matrix, i.e., only few entries of
� are relevant and hence non-zero. If X models ordered variables, the non-zero
entries of �, for instance, might cluster around the diagonal such that � is a banded
or tapered matrix. A straightforward way to estimate such covariance matrices is
to band/taper the sample covariance matrix �̂n [6, 11, 23]. If the variables are
not ordered and the non-zero entries of � do not cluster, thresholding of �̂n is a
viable alternative [5, 19]. As remarked in [40], the aforementioned approaches can
be treated in a unified way by introducing a mask M ∈ [0, 1]p×p and considering
the masked sample covariance matrix M � �̂n. The masked formulation allows to
decompose the estimation error

‖M � �̂n − �‖ ≤ ‖M � �̂n − M � �‖ + ‖M � � − �‖

into a variance term that behaves well if M is (close to) sparse and a bias term
that is small whenever M encodes the support of �. The bias term is deterministic
and solely depends on a proper choice of M. For understanding the influence of
sparsity on the required sample size, it thus suffices to control the variance term.
The corresponding state-of-the-art result can be found in [13] which extends [40]
from Gaussian distributions to general distributions of finite fourth moment and
strengthens [40] if applied to Gaussian distributions. To facilitate the comparison
with (3.2), we present the result only in the Gaussian case.
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Theorem 3.1 ([13, Theorem 1.1]) Let M ∈ [0, 1]p×p, for p ≥ 3, be fixed and
X ∼ N(0,�) with � ∈ R

p×p. Then,

(
E‖M � �̂n − M � �‖2

) 1
2

� ‖�‖
⎛

⎝
√

‖�‖∞
‖�‖ · ‖M‖2

1→2 log(p)

n
+ ‖�‖∞

‖�‖ · ‖M‖ log(p) log(np)

n

⎞

⎠ .

Theorem 3.1 only bounds the second moment of the variance term, which
yields high-probability estimates via Markov’s inequality. However, the same
proof techniques apply to higher moments of the variance term as well such that
exponential tail bounds can be achieved for Gaussian X, cf. [13, Section 3.3].

Let us compare Theorem 3.1 with (3.2). For general covariance estimation, i.e.,
M = 1, we have ‖M‖2

1→2 = ‖M‖ = p, which implies that up to log-factors both

results are of the same order O(

√
p
n

+ p
n
). If M encodes sparsity, however, meaning

that only up to s � p columns and rows are non-zero and ‖M‖2
1→2 = ‖M‖ = s,

the estimation error is considerably reduced when applying Theorem 3.1. A similar
error reduction occurs if M � �̂n is a banded estimator of bandwidth B.

Estimation via Thresholding While the masked framework provides a unified
understanding of the intrinsic complexity of sparse covariance estimation, in
practice the mask M is unknown. A more realistic approach to the problem is hence
thresholding procedures as, e.g., [5]. To allow for non-ordered covariance matrices,
i.e., general sparsity and not only limited bandwidth of the matrix, the authors of [5]
introduce the set of bounded and (effectively) sparse covariance matrices

U(q, s,M) :=
⎧
⎨

⎩� : �i,i ≤ M and
p∑

j=1

|�i,j |q ≤ s, for all i ∈ [p]
⎫
⎬

⎭ ,

for q ∈ [0, 1) and s,M > 0. If q = 0, the matrices in U(q, s,M) have at most
s non-zero entries per row; if q > 0, the rows are close to s-sparse vectors. To
estimate � ∈ U(q, s,M), the thresholded estimator Tτ (�̂n) is considered, where

[Tτ (A)]i,j =
{

Ai,j if |Ai,j | ≥ τ,

0 else,
(3.5)

for any τ > 0 and A ∈ R
p×p.

Theorem 3.2 ([5, Theorem 1]) Let X ∼ N(0,�), for � ∈ U(q, s,M), and M ′ >

0 be sufficiently large (depending on M). If
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τ = M ′
√

log(p)

n
,

for n � log(p), then with probability at least 1 − e−cnτ 2

‖Tτ (�̂n) − �‖ = O
⎛

⎝s

(
log(p)

n

) 1−q
2

⎞

⎠ .

Theorem 3.2 does not require knowledge on the support of � and respects
sparsity defects. However, if we once more consider the case q = 0, we see that the
estimate in Theorem 3.2 is suboptimal since the error behaves (up to log-factors)

like O(
√

s2

n

)
and not like O(

√
s
n
) as one would expect.

3.3.2 Low-Rank Covariance Matrices

When working with high-dimensional random vectors, another commonly con-
sidered structural prior is to assume that the distribution concentrates around a
low-dimensional manifold. This may manifest itself in � being a low-rank matrix.
Interestingly, the sample covariance matrix in (3.1) intrinsically leverages low-
rankness of �. To understand this phenomenon, we consider the effective rank of �

defined as

r(�) = ‖�‖∗
‖�‖ .

It is straightforward to verify that 1 ≤ r(�) ≤ rank(�). In contrast to the rank of �,
the quantity r(�) is small even if � is only close to a low-rank matrix, e.g., consider
� to be a full rank matrix with exponentially decaying spectrum.

Theorem 3.3 ([37, Corollary 2]) LetX ∼ N(0,�), for � ∈ R
p×p, and n � r(�).

Then with probability at least 1 − e−t the sample covariance matrix satisfies

‖�̂n − �‖ � ‖�‖
(√

r(�)

n
+ r(�)

n
+
√

t

n
+ t

n

)
.

The authors of [37] further show that the bound in Theorem 3.3 is tight up to
constants. If we compare the result to (3.2), we see that both estimates agree for
(effectively) full rank matrices like � = I. If � is of low rank, however, Theorem 3.3
controls the estimation error even in the case n < p.

Low-Rank Estimators We could stop at this point since �̂n apparently meets our
requirements. Nevertheless, two questions remain. First, if one assumes � to be
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low rank, one would wish for an estimator that is low rank itself, and, second,
Theorem 3.3 fails if X does not exhibit strong concentration around its mean. The
first point can be addressed by using the LASSO estimator

�̂
λ

n = arg min
S�0

‖S − �̂n‖2
F + λ‖S‖∗ , (3.6)

where λ > 0 is a tunable parameter. Initially introduced in [43] to estimate
covariance matrices from incomplete observations, the result reads in our setting
as follows.

Theorem 3.4 ([43, Corollary 1]) Let X ∼ N(0,�), for � ∈ R
p×p, and n �

r(�) log(2p + n)2. If

λ = C

√
tr(�̂n)‖�̂n‖

√
log(2p)

n
,

for a sufficiently large absolute constant C > 0, then with probability at least 1− 1
2p

the estimator in (3.6) satisfies

‖�̂λ

n − �‖ � ‖�‖
√
r(�) log(2p)

n
.

The nuclear norm regularization in (3.6) induces (effective) low-rankness on

�̂
λ

n [21, 51] and the order of estimation error reflects up to log-factors the one in

Theorem 3.3. Furthermore, the construction of �̂
λ

n can easily be adapted to heavy-
tailed distributions by replacing �̂n with an appropriate robust counterpart, e.g., the
spectrum-wise truncated sample covariance matrix [34]. A corresponding version
of Theorem 3.4 that is not restricted to (sub)-Gaussian distributions is [34, Theorem
5.2].

3.3.3 Toeplitz Covariance Matrices and Combined Structures

The third structure we discuss here in detail naturally arises in various engineering
problems. If the entries of X resemble measurements on a temporal or spatial grid
whose covariances only depend on the distances of measurements (in time or space)
but not their location, � is a symmetric Toeplitz matrix, i.e.,
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� =

⎛

⎜⎜⎜⎜⎝

σ1 σ2 · · · σp

σ2
. . .

. . .
...

...
. . . σ2

σp · · · σ2 σ1

⎞

⎟⎟⎟⎟⎠
,

and the first column σ ∈ R
p determines � via �i,j = σ|i−j |+1. (For simplicity,

we identify Toeplitz matrices with their first column in the following.) Such a
structure appears, for instance, in Direction-Of-Arrival (DOA) estimation [38] and
medical/radar imaging processing [9, 56]. For further examples, we refer the reader
to [53]. Since Toeplitz structure reduces the degrees of freedom in � from p2 to p,
leveraging this structure can lead to a notable reduction in sample complexity.

The authors of [10] propose to average, the sample covariance matrix along its

diagonals to obtain the Toeplitz estimator �̂
Toep
n defined as

[σ̂Toep
n ]r = 1

(p + 1) − r

∑

i−j=r−1

[�̂n]i,j , for r ∈ [p]. (3.7)

They derive error estimates for Gaussian distributions with banded Toeplitz covari-
ance matrices.

The more recent work [33] extends these results to non-Gaussian distributions
and general masks as introduced in Sect. 3.3.1. To be more precise, the authors
of [33] assume that the distribution of X has the so-called convex concentration
property.

Definition 3.1 A random vector X ∈ R
p has the convex concentration property

with constant K if for any 1-Lipschitz function φ : Rp → R, one has E[φ(X)] < ∞
and

Pr [|φ(X) − E[φ(X)]| ≥ t] ≤ 2e
− t2

K2 , for all t > 0.

By setting φ(·) = 〈·, x〉, for x ∈ R
p, one easily sees that all distributions that have

the convex concentration property are sub-Gaussian. For the sake of consistency, we
therefore restrict ourselves here to Gaussian distributions as their most prominent
representative. For a symmetric Toeplitz mask M ∈ [0, 1]p×p characterized by its
first column m ∈ [0, 1]p, we furthermore define the weighted 
1- and 
2-norms of
m as

‖m‖1,∗ =
p∑

r=1

mr

(p + 1) − r
and ‖m‖2,∗ =

(
p∑

r=1

m2
r

(p + 1) − r

) 1
2

.
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Theorem 3.5 ([33, Theorem 3]) Let M ∈ [0, 1]p×p be a symmetric Toeplitz mask
and X ∼ N(0,�) with � ∈ R

p×p symmetric and Toeplitz. Then,

E‖M � �̂
Toep
n − M � �‖ � ‖�‖

(√‖m‖2,∗ log(p)

n
+ ‖m‖1,∗ log(p)

n

)
.

As Theorem 3.1, the result is not restricted to an estimate of the expected error
but includes respective high probability bounds with exponential tail decay. Let us
compare Theorem 3.5 to Theorem 3.1. If we ignore log-factors and assume that
M is a banding or tapering mask with support bandwidth B ≤ p

2 , i.e., only the
B innermost diagonals of M are non-zero, Theorem 3.5 guarantees an estimation

error of order O(
√

B
pn

+ B
pn

), cf. [33, Corollary 2], which improves the estimate

O(

√
B
n

+ B
n
) of Theorem 3.1 by a factor p. This improvement corresponds to the

reduction in degrees of freedom when comparing Toeplitz to general matrices. Note,
however, that the additional assumption B ≤ αp, for α ∈ (0, 1), is required for such
a reduction since estimation of the outermost diagonals of � is hardly enhanced
by averaging over the Toeplitz structure. This is expressed by Theorem 3.5 since
‖m‖1,∗ and ‖m‖2,∗ are O(1) and not O( 1

p
) if the tail entries of m are not of vanishing

magnitude.

Estimation via Thresholding Theorem 3.5 differs from the previously discussed
results in the sense that it allows to simultaneously leverage two structures of
�, sparsity and Toeplitz structure. Nevertheless, as in Sect. 3.3.1, the masked
framework leaves open the question of how to choose M in practice. By combining
the thresholded approach in Theorem 3.2 with the techniques of Theorem 3.5,
one can obtain a thresholded Toeplitz estimator which profits from both structural
priors. To state a corresponding estimate, let us define the set of bounded Toeplitz
covariance matrices with (effectively) sparse first column σ by

UToep(q, s,M) :=
{

� : �i,j = σ|i−j |+1 ≤ M, for σ ∈ R
p with

p∑

r=1

|σr |q ≤ s

}
.

We furthermore denote by Bαp(�) the matrix � restricted to bandwidth αp, i.e.,
[Bαp(�)]i,j = �i,j if |i − j | + 1 ≤ αp and [Bαp(�)]i,j = 0 else.

Theorem 3.6 There exists an absolute constant C > 0 such that the following
holds. Let X have the convex concentration property with constant K . Let E[X] = 0
and E[XX�] = �, for � ∈ UToep(q, s,M). For all α ∈ (0, 1) and c > 1, we have
with probability at least 1 − (2αp)−(c−1) that if

τ =
√

2c

(1 − α)
max{CK2,

√
CK}

√
log(p)

np
, (3.8)
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then

∥∥∥Tτ (Bαp(�̂
Toep
n )) − �

∥∥∥ � s

(
max{C2K4, CK2} c

1 − α

log(p)

np

) 1−q
2 + ‖Bαp(�) − �‖,

where Tτ is the thresholding operator from (3.5).

Two comments are in order here. To gain from the Toeplitz structure, Theo-
rem 3.6 requires � to be close to a banded matrix. This is as in Theorem 3.5 before
and has been discussed previously. Moreover, by adapting the proof strategy of
Theorem 3.2, the result inherits the slightly suboptimal error decay in the sparsity
level s, cf. the discussion of Theorem 3.2 for the case q = 0. The proof, which
combines ideas from [5] and [33], can be found in the Appendix.

Combining Toeplitz Structure and Low-Rankness Sparsity is not the only
structure that can be imposed on Toeplitz matrices. For instance, in massive MIMO,
see Sect. 3.2, low-rankness of � may naturally be assumed in addition to Toeplitz
structure [28]. The recent works [20, 39] propose several algorithms to estimate low-
rank Toeplitz covariance matrices from partial observations by a technique called
“sparse ruler.” In particular, the authors can show that the sufficient number of
samples to approximate � scales (up to log-factors) polynomial in the (effective)
rank of �.

Remark 3.1 Before closing this section, let us briefly comment on the three types
of structures discussed above and their mutual relation:

Sparsity: The concept of sparsity is the maybe most fundamental way of theoreti-
cally describing intrinsic “low-complexity” of points in a vector space. Whereas
we only introduced sparsity of vectors in R

n with respect to the canonical basis,
it is straightforward to generalize the definition to arbitrary vector spaces and
other bases (or even frames). Note, however, that sparsity strongly depends on
the chosen representation of objects in space, i.e., a point that is sparse in one
basis need not be sparse in another.

Low-rankness: One can view low-rankness as a special case of sparsity since a
matrix is low rank if and only if the vector of its singular values is sparse
in the canonical basis. Stated differently, a matrix is low rank if its induced
linear mapping only acts on low-dimensional subspaces of the ambient input
and output space. This second characterization shows that, in contrast to sparsity,
low-rankness is not representation dependent. Furthermore, one can generalize
the concept to higher dimensional linear operators as well, e.g., tensor spaces.

Toeplitz structure: Just as low-rankness, Toeplitz structure is a special type of
sparsity that requires matrix structure of the points in space. Its low-dimensional
structure lies in the fact that only (2n − 1) parameters are necessary to charac-
terize an R

n×n Toeplitz matrix. In contrast to low-rankness, Toeplitz structure
is representation dependent. Nevertheless, Toeplitz matrices naturally appear as
covariance matrices of stationary random processes, i.e., if the covariance of two
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events does not depend on their localization in time but only their distance in
time.

For further discussion and literature on the subject, we refer the interested reader to
[22].

3.4 Estimation from Quantized Samples

All results stated above assume that the sample vectors Xk are real-valued, i.e.,
one has access to infinite precision representations of the samples. In applications,
this assumption is not always fulfilled. Especially in signal processing, samples are
collected via sensors and, hence, need to be quantized to finitely many bits before
they can be digitally transmitted and processed. Engineers have been examining
the influence of coarse quantization on correlation and covariance estimation for
decades, e.g., [2, 14, 30, 41, 54]. However, in contrast to classical covariance
estimation from unquantized samples, so far only asymptotic estimation guarantees
have been derived in the quantized setting. To improve our understanding on the
effect of quantization on covariance estimation, we analyzed two memoryless one-
bit quantization schemes in our recent work [16]. We call a quantizer memoryless
if it quantizes each entry of Xk independently of all remaining entries. This is
fundamentally different from feedback systems, e.g., ��-quantization [4, 55],
and of particular interest for large-scale applications like massive MIMO where
the entries of Xk correspond to inputs from different antennas, cf. Sect. 3.2. We
conclude by providing a detailed discussion of the models and results in [16].

3.4.1 Sign Quantization

In the first setting, we assume to receive one-bit quantized samples

sign(Xk) ∈ {−1, 1}p, (3.9)

for k ∈ [n], instead of Xk itself. (Recall that we apply scalar functions like sign
entry-wise to vectors and matrices.) Since the quantizer sign is scale-invariant, i.e.,
sign(z) = sign(Dz) for any diagonal matrix D ∈ R

p×p with strictly positive entries
and z ∈ R

p, we can only hope to recover the correlation matrix of the distribution,
i.e., a normalized version of � with entries

[ �i,j√
�i,i

√
�j,j

]
i,j

. We thus assume that

X ∼ N(0,�), where � has ones on its diagonal.
It has been known for decades that
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�̃n = sin

(
π

2n

n∑

k=1

sign(Xk)sign(Xk)�
)

(3.10)

is well suited to approximate � from the quantized samples, cf. [30]. Note that the
specific form of �̃n is motivated by Grothendieck’s identity (see, e.g., [61, Lemma
3.6.6]), also known as “arcsin-law” in the engineering literature [30, 60], which
implies that

� := E[sign(Xk)sign(Xk)�] = 2

π
arcsin(�) (3.11)

if X ∼ N(0,�). Applying the strong law of large numbers and the continuity of
the sine function to (3.10), one easily obtains with (3.11) that �̃n is a consistent
estimator of �.

The two key quantities for understanding the non-asymptotic performance of �̃n

are � and

A := cos(arcsin(�)) = cos(π
2 �).

Furthermore, we define

σ(Z)2 := Z2 � � − (Z � �)2 = 2

π
Z2 � arcsin(�) − 4

π2

(
Z � arcsin(�)

)2
,

for symmetric Z ∈ R
p×p.

Theorem 3.7 ([16, Theorem 1]) There exist constants c1, c2 > 0 such that the

following holds. Let X ∼ N(0,�) with �i,i = 1, for i ∈ [p], and X1, ...,Xn d∼ X
be i.i.d. samples of X. Let M ∈ [0, 1]p×p be a fixed symmetric mask. Then, for all
t ≥ 0 with n ≥ c1 log2(p)(log(p) + t), the biased sign estimator �̃n fulfills with
probability at least 1 − 2e−c2t

‖M � �̃n − M � �‖ � ‖σ (M � A)‖
√

log(p) + t

n

+ (max {‖M � A‖, ‖M � �‖}) log(p) + t

n
.

(3.12)

The right-hand side in Theorem 3.7 (for convenience, we only consider the case
M = 1 here) can be trivially estimated to get

‖�̃n − �‖ � max{‖ cos(arcsin(�))‖, ‖�‖}
(√

log(p) + t

n
+ log(p) + t

n

)
,
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Fig. 3.2 The experiment from [16] depicts average estimation error of �̂n and �̃n in operator
norm, for p = 20, n varying from 10 to 300 and three different choices of the ground truth � with
ones on the diagonal and off-diagonal entries equal to c = 0.5, c = 0.9, and c = 0.99

which is up to the additional dependence on cos(arcsin(�)) comparable to the error
bound in (3.2) for �̂n. This is remarkable since �̃n accesses considerably less
information on the samples than �̂n.

Theorem 3.7 even suggests that for strongly correlated distributions of X, i.e.,
� ≈ 1, the dominant first term on the right-hand side of (3.12) vanishes. In other
words, the bound in (3.12) predicts �̃n to outperform �̂n if the entries of X strongly
correlate. Numerical experiments from [16] confirm this counter-intuitive fact, cf.
Fig. 3.2. A possible explanation is that by construction, �̃n implicitly uses the
assumption that � has ones on its diagonal which is not provided to �̂n.

Furthermore, a corresponding lower bound on the second moment of the
estimation error shows that the unconventional term ‖σ(M � A)‖ is factual and
not an artifact of the proof, cf. [16, Proposition 14].

3.4.2 Dithered Quantization

The results of Sect. 3.4.1 are restricted to the estimation of correlation matrices of
Gaussian distributions. Both limitations stem from the chosen quantization model:
first, (3.9) is blind to the rescaling of variances and, second, Grothendieck’s identity
only holds for Gaussian distributions. Nevertheless, by introducing a dither in the
one-bit quantizer in (3.9), we can fully estimate the covariance matrix of general
sub-Gaussian distributions. Dithering means adding artificial random noise (with
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a suitably chosen distribution) to the samples before quantizing them to improve
reconstruction from quantized observations, cf. [25, 26, 52]. In the context of one-
bit compressed sensing, the effect of dithering was recently rigorously analyzed in
[3, 17, 18, 32, 36], see also the survey [15].

To be precise, we require two bits per entry of each sample vector where each bit
is dithered by an independent uniformly distributed dither, i.e., we are given

sign(Xk + τ k), sign(Xk + τ̄ k)�, k = 1, . . . , n, (3.13)

where the dithering vectors τ 1, τ̄ 1, . . . , τn, τ̄n are independent and uniformly
distributed in [−λ, λ]p, with λ > 0 to be specified later. From the quantized
observations in (3.13), we construct the estimator

�̃
dith
n = 1

2 �̃
′
n + 1

2 (�̃
′
n)

�, (3.14)

where

�̃
′
n = λ2

n

n∑

k=1

sign(Xk + τ k)sign(Xk + τ̄ k)�. (3.15)

Theorem 3.8 ([16, Theorem 3]) Let X be a mean-zero, K-sub-Gaussian vector

with covariance matrix E[XX�] = �. Let X1, ...,Xn d∼ X be i.i.d. samples of X.
Let M ∈ [0, 1]p×p be a fixed symmetric mask. If λ2 �K log(n)‖�‖∞, then with
probability at least 1 − e−t ,

‖M � �̃
dith
n − M � �‖

�K ‖M‖1→2(λ‖�‖1/2 + λ2)

√
log(p) + t

n
+ λ2‖M‖ log(p) + t

n
.

In particular, if λ2 ≈K log(n)‖�‖∞, then

‖M � �̃
dith
n − M � �‖

�K log(n)‖M‖1→2

√‖�‖ ‖�‖∞(log(p) + t)

n
+ log(n)‖M‖‖�‖∞

log(p) + t

n
.

(3.16)

The error bound (3.16) coincides (up to different logarithmic factors) with the
best known estimate for the masked sample covariance matrix in Theorem 3.1, even
though the sample covariance matrix requires direct access to the samples Xk . This
performance, however, heavily depends on the choice of λ, cf. [16]. Furthermore, it
should be mentioned that there are cases where the performance of the dithered
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estimator is significantly worse than the performance of the sample covariance
matrix. Let us consider for simplicity the case M = 1. If the samples Xk are
Gaussian, then [37] shows that

E‖�̂n − �‖ �
√‖�‖Tr(�)

n
+ Tr(�)

n
,

whereas (3.16) yields

E‖�̃dith
n − �‖ � log(n)

√
p‖�‖ ‖�‖∞ log(p)

n
+ log(n)

p‖�‖∞ log(p)

n

via tail integration. Since Tr(�) ≤ p‖�‖∞, the second estimate is worse in general.
Numerical experiments in [16] have shown that this difference is not an artifact of

proof. Simply put, �̂n and �̃
dith
n perform similarly if � has a constant diagonal,

whereas �̂n performs significantly better whenever Tr(�) � p‖�‖∞.
Theorem 3.8 can be extended to heavier-tailed random vectors. This, however,

requires a larger choice of λ and thus more samples to reach the same error.
For a sub-exponential random vector X, one would already need λ2 � log(n)2 ·
maxi∈[p] ‖Xi‖2

ψ1
. The dependence of λ on n, both in the latter statement and in

Theorem 3.8, can be observed in numerical experiments [16] as well.
Let us finally mention that the quantized estimators in (3.10) and (3.14) are

not necessarily positive semi-definite as one expects from covariance matrices.
In applications, one would thus replace both estimators by their projection onto
the cone of positive semi-definite matrices, which is efficiently computed via the
singular value decomposition [8, Section 8.1.1]. The obtained estimates also apply
to the projected estimators since convex projections are 1-Lipschitz.

3.5 The Underlying Structures of Massive MIMO
Covariance Estimation

Having the just surveyed theoretical insights on covariance matrix estimation in
mind, let us return to the massive MIMO setup of Sect. 3.2. To understand the
intrinsic structure of �h in (3.4) and consequent approaches in engineering literature
to leverage it, we have to dive deeper into the underlying model and its physical
interpretation. We thus follow the notational conventions of engineering literature
in this section. Recall that the number of antennas M can be identified with the
ambient dimension p, the number of time–frequency resources N with the number
of samples n, and the channel vectors h(s) correspond to samples Xk .

Under the assumptions stated in the beginning of Sect. 3.2, i.e., the BS is
equipped with M antennas in a ULA, the channel vector h(s) can be written
explicitly as
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h(s) =
∫ 1

−1
ρ(ξ, s) a(ξ) dξ,

for s ∈ [N ]. Here, ξ = sin(θ)
sin(θmax)

are the normalized angles of arrival (AoA) with
θmax ∈ [0, π

2 ] being the maximum array angular aperture (cf. Fig. 3.1), the vectors
a(ξ) ∈ C

M denote the respective array response at the BS, and the channel gain
ρ(ξ, s) is a complex Gaussian process with zero mean. By assuming the antenna
spacing to be d = λ

2 , where λ = c0
f0

denotes the wavelength with c0 being the speed
of light and f0 the carrier frequency, we obtain

a(ξ) = (
1, ejπξ , . . . , ejπ(M−1)ξ

)�
,

where j denotes the imaginary unit. With the additional assumption of wide
sense stationary uncorrelated scattering (WSSUS), the second-order statistics of the
Gaussian process ρ(ξ, s) are time invariant and uncorrelated across AoAs so that

E[ρ(ξ, s)ρ∗(ξ ′, s)] = γ (ξ) δ(ξ − ξ ′),

where γ : [−1, 1] → R≥0 is the real and non-negative measure that represents the
angular scattering function (ASF) and δ is the Dirac delta function. In particular,
this implies that

�h = E[h(s)h(s)H] =
∫ 1

−1
γ (ξ) a(ξ)a(ξ)H dξ. (3.17)

Building upon this explicit representation of h(s) and structural assumptions on γ ,
one can refine the estimate obtained from the sample covariance matrix of y defined
in (3.3).

A Hands-on Approach In [35], we choose the following approach. First note that
by (3.17) the channel covariance matrix belongs to the set

M =
{∫ 1

−1
γ (ξ) a(ξ)a(ξ)H dξ : γ ∈ A

}
,

where A denotes the class of typical ASFs in wireless propagation. If one assumes
sparse scattering propagation, the set A consists of sparse ASFs. In particular, we
assume that γ (ξ) can be decomposed as the sum of a discrete spike component γd

(modeling the power received from line-of-sight (LOS) paths and narrow scatterers)
and a continuous component γc (modeling the power received from wide scatterers).
Mathematically, we can write

γ (ξ) = γd(ξ) + γc(ξ) =
r∑

k=1

ckδ(ξ − ξk) + γc(ξ), (3.18)
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where γd consists of r � M Dirac deltas with AoAs ξ1, . . . , ξr and strengths
c1, . . . , cr > 0 corresponding to r specular propagation elements. Furthermore,
by sparsity assumptions on γ , we have that meas(γc) � meas([−1, 1]), where
meas(γc) denotes here the measure of the support of γc. Combining (3.17) and
(3.18), we decompose the channel covariance matrix as

�h = �d
h + �c

h =
r∑

k=1

ck a(ξk)a(ξk)
H +

∫ 1

−1
γc(ξ) a(ξ)a(ξ)H dξ, (3.19)

where �d
h is rank-r and positive semi-definite and �c

h is full rank and positive semi-
definite with few dominant singular values. We can approximate �h now in three
consecutive steps:

(i) Spike Location Estimation for γd : Applying the MUltiple SIgnal Classification
(MUSIC) algorithm [58], we estimate the AoAs ξk of the spike component γd

from the noisy samples y(1), . . . , y(N), cf. [35, Theorem 1]. Since this step
is fairly standard, we do not discuss the details here but refer the interested
reader to [35]. Let us only mention that the number of spikes is estimated by
the number of dominant eigenvalues of �y := E[y(s)y(s)H] (where one can
naturally assume a corresponding gap in the spectrum since the power received
via LOS paths in γd dominates the power received from wide scatterers in γc).
As a result, we obtain estimated spike locations ξ̂k , for k ∈ [r̂], and define an
approximation of γd

γ̃d(ξ) =
r̂∑

k=1

c̃k δ(ξ − ξ̂k),

where the coefficients c̃1, . . . , c̃r̂ ≥ 0 still need to be estimated.
(ii) Sparse Dictionary-Based Method: We approximate the continuous component

γc over a finite dictionary of densities Gc := {ψi : [−1, 1] → R, i ∈ [G]}
that are suitably chosen, e.g., Gaussian, Laplacian, or rectangular kernels, cf.
Fig. 3.3. We hence define

γ̃c(ξ) =
G∑

i=1

b̃iψi(ξ),

where only the coefficients b̃1, . . . , b̃G ≥ 0 need to be estimated.
(iii) Non-Negative Least Square (NNLS) estimator: Collecting the coefficients in a

single vector u = (b̃1, . . . , b̃G, c̃1, . . . , c̃r̂ )
� ∈ R

G+r̂
≥0 and recalling (3.19), we

define our coefficient-dependent estimate of the channel covariance
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Fig. 3.3 Example of a Gaussian dictionary that might be used to express γc

�h(u) =
r̂∑

k=1

c̃k a(ξ̂k)a(ξ̂k)
H +

G∑

i=1

b̃i

∫ 1

−1
ψi(ξ) a(ξ)a(ξ)H dξ =:

G+r̂∑

i=1

uiSi ,

(3.20)

where

Si =
{∫ 1

−1 ψi(ξ) a(ξ)a(ξ)H dξ if 1 ≤ i ≤ G

a(ξ̂i−G)a(ξ̂i−G)H if G < i ≤ G + r̂ .

All that remains is to determine the coefficient vector u. Since �y = �h +
N0I, we can do so by fitting (3.20) to the sample covariance matrix �̂y of
y(1), . . . , y(N), i.e.,

u∗ = arg min
u≥0

∥∥∥�̂y −
G+r̂∑

i=1

uiSi − N0I
∥∥∥

2

F
. (3.21)

Since �h is Hermitian Toeplitz, one can incorporate the structure in (3.21) by
replacing �̂h = �̂y − N0I with its projection �̃h onto the space of Hermitian
Toeplitz matrices (which can be done by averaging the diagonals as in (3.7)).
Denoting the first column of �̃h by σ̃ ∈ C

M and collecting the first columns
of the matrices Si in a matrix S̃ ∈ C

M×(G+r̂), we may instead solve

u∗ = arg min
u≥0

∥∥∥W(S̃u − σ̃ )

∥∥∥
2

F
, (3.22)

where W = diag
(
(
√

M,
√

2(M − 1),
√

2(M − 2), ...,
√

2)�
)

is a weight
matrix compensating the averaging process.

A Hands-on Approach: Empirical Evaluation Let us empirically compare the
NNLS estimator to the sample covariance matrix right away. We consider a ULA
with M = 128 antennas, where the spacing between two consecutive antenna
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elements is set to d = λ
2 . We produce random ASFs in the following general format:

γ (ξ) = γd(ξ) + γc(ξ)

= α

r

r∑

i=1

δ(ξ − ξi) + 1 − α

Z

⎛

⎝
nr∑

j=1

rectμj ,σj
(ξ) +

ng∑

k=1

Gaussianμk,σk
(ξ)

⎞

⎠ ,

(3.23)

where we set the number of delta, rectangular, and Gaussian functions to be
r := 2, nr := 2, and ng := 2, respectively. The spike locations are chosen
uniformly at random from [−1, 1], i.e., ξi ∼ Unif([−1, 1]) for i ∈ [2]. The
rectangular functions are defined as

rectμj ,σj
(ξ) = χ[

μj −σj

2 ,μj +σj

2

](ξ),

where μ1 ∼ Unif([−1, 0]), μ2 ∼ Unif([0, 1]), and σj ∼ Unif([0.1, 0.3]), for
j ∈ [2]. The Gaussian functions Gaussianμk,σk

are densities of N(μk, σk), where
μk ∼ Unif([−0.7, 0.7]) and σk ∼ Unif([0.03, 0.04]), for k ∈ [2]. Moreover,
α := 0.5 is set to present the power contribution of discrete spikes. The constant
Z = ∫ 1

−1 γc(ξ)dξ normalizes γc in measure. The signal-to-noise ratio (SNR) is set
to 10 dB.

In addition to the sample covariance, we compare our NNLS estimator to sparse
iterative covariance-based estimation (SPICE) [57]. This method also exploits the
ASF domain to fit a covariance matrix. Note that SPICE can only be applied with
Dirac delta dictionaries and that it does not include a step of spike support detection
as in our method.

Denoting a generic covariance estimate as �̄, we consider two metrics to evaluate
the estimation quality. The first metric, the normalized Frobenius-norm error, is

defined as ENF = ‖�h−�̄‖F‖�h‖F . The second metric, the power efficiency, evaluates the
similarity of dominant subspaces between the estimated and true matrices, which is
an important factor in various applications of massive MIMO such as user grouping
and group-based beamforming. Specifically, let d ∈ [M] denote a subspace
dimension parameter, and let Ud ∈ C

M×d and Ūd ∈ C
M×d be the d dominant

eigenvectors of �h and �̄ corresponding to their largest d eigenvalues, respectively.

Then, the power efficiency based on d is defined as EPE(d) = 1 − 〈�h,Ūd ŪH
d 〉

〈�h,UdUH
d 〉 . Note

that EPE(d) ∈ [0, 1] where a value closer to 0 means that more power is captured
by the estimated d-dominant subspace.

SPICE and the proposed NNLS estimators are applied with G = 2M Dirac
delta dictionaries for the continuous part Gc. The resulting Frobenius-norm error and
power efficiency are depicted in Fig. 3.4. All results are averaged over 20 random
ASFs and 200 random channel realizations for each ASF. The proposed NNLS
method outperforms the sample covariance matrix and SPICE for both metrics.
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Fig. 3.4 Frobenius-norm error (left) and power efficiency with N
M

= 0.5 (right)

Finally, one can observe a similar outcome for smaller sample sizes as well, e.g.,
N/M = 0.125, which occur naturally in massive MIMO.

3.6 Conclusion

The present chapter shows that in the last decade good progress has been made on
understanding the influence of intrinsic structure of covariance matrices on the non-
asymptotic performance of suitably designed estimators. As we have seen, such
estimators with strong guarantees are available for sparse, low-rank, and Toeplitz
covariance matrices. At the same time, the chapter illustrates that practitioners still
continue to tweak the basic sample covariance matrix using their specific knowledge
of the application at hand—seemingly unaware of the progress in theory. We hope
that this essay helps mathematicians and practitioners alike to gain an overview of
recent theoretical developments on structural and quantized covariance estimation
and that it motivates mathematicians to look deeper into the underlying physical
models of concrete applications to better understand the structures of interest.
Furthermore, our recent theoretical progress on quantized covariance estimation
suggests that reliable reconstruction of the covariance matrix is possible even under
heavy loss of information during sampling. The use of coarse quantization might
thus lead to a considerable increase in capacity in massive MIMO systems and
related applications.
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Appendix: Proof of Theorem 3.6

To prove Theorem 3.6, we need two technical lemmas. In the remaining section, σ

always refers to the first column of � and σ̂ to the first column of �̂
Toep
n .

Lemma 3.1 Under the assumptions of Theorem 3.6, we have for α ∈ (0, 1) and
0 < u < 1 that

Pr

[
max
r≤αp

|σ̂r − σr | ≥ √
u

]
≤ 2αpe

−(1−α) min
{

1
CK4 , 1

CK2

}
npu

,

where C > 0 is an absolute constant.

Proof We proceed similar as in [33]. First note that, for all k ∈ [n], r ∈ [αp], we
can write

|σ̂r − σr | = 1

(p + 1) − r

∣∣∣∣∣∣

∑

j−i=r−1

(
Xk

i X
k
j − σr

)
∣∣∣∣∣∣

=
∣∣∣〈MrXk,Xk〉 − E[〈MrXk,Xk〉]

∣∣∣ ,

(3.24)

where the mask Mr is defined by [Mr ]i,j = 1
(p+1)−r

if j − i = r − 1 and
[Mr ]i,j = 0 else, i.e., only the r-th co-diagonal of M is non-zero. By using a version
of the Hanson–Wright inequality for random vectors with the convex concentration
property [1], we get that

Pr
[∣∣〈MrXk,Xk〉 − E[〈MrXk,Xk〉]︸ ︷︷ ︸

=:Zr
i

∣∣ ≥ u
] ≤ 2e

− min

{
u2

CK4‖Mr ‖2
F

, u

CK2‖Mr ‖

}

,

which, by integration, leads to

E[|Zr
i |2q ] ≤ 2q(2CK4‖Mr‖2

F )q�(q) + 4q(CK2‖Mr‖)2q�(2q)

≤ q!(4CK4‖Mr‖2
F )q + (2q)!(2CK2‖Mr‖)2q,

for any q ≥ 1. The random variables Zr
i are thus sub-gamma with variance

parameter ν = 16K4(C‖Mr‖2
F + C2‖Mr‖2) ≤ CK4‖Mr‖2

F and scale parameter
γ = 4CK2‖Mr‖2 [7, Theorem 2.3]. By independence, we get for all 0 < μ < 1

γ

E

[
eμ

∑n
i=1 Zr

i

]
=

n∏

i=1

E[eμZr
i ] ≤ e

μ2nν
2(1−γμ)
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(and the same holds for −Zr
i ) such that

∑n
i=1 Zr

i is sub-gamma with variance
parameter νn and scale parameter γ [7, Chapter 2.4]. Consequently,

Pr

[∣∣∣∣∣
1

n

n∑

i=1

Zr
i

∣∣∣∣∣ ≥ CK2
(

‖Mr‖F

√
u

n
+ ‖Mr‖u

n

)]

≤ Pr

[∣∣∣∣∣

n∑

i=1

Zr
i

∣∣∣∣∣ ≥ √
2νnu + γ u

]
≤ 2e−u,

for any u > 0 [7, Chapter 2.4]. Recalling (3.24) and noting that ‖Mr‖2
F = ‖Mr‖ =

1
(p+1)−r

yield with the choice u = min
{ 1

C2K4 , 1
CK2

}
((p + 1) − r)nũ that

Pr
[
|σ̃r − σr | ≥ 2

√
ũ
]

≤ Pr
[
|σ̃r − σr | ≥ √

ũ + ũ
]

≤ 2e
− min

{
1

C2K4 , 1
CK2

}
((p+1)−r)nũ

.

A union bound over r ∈ [αp] and the bound r ≤ αp conclude the proof. ��
The second lemma follows along the lines of [5, Theorem 1].

Lemma 3.2 Under the assumptions of Theorem 3.6, assume in addition that � has
a bandwidth of at most αp, i.e., Bαp(�) = � and thus supp(σ ) ⊂ [αp] and that

max
i,j∈[p] |Bαp(�̂

Toep
n )i,j − �i,j | = max

r≤αp
|σ̂r − σr | ≤ (1 − γ )τ, (3.25)

for some γ ∈ (0, 1). Then,

‖Tτ (Bαp(�̂
Toep
n )) − �‖ �γ τ 1−qs.

Proof For convenience, let us abbreviate �̃ := Bαp(�̂
Toep
n ) and denote its first

column by σ̃ . We write

‖Tτ (�̃) − �‖ ≤ ‖Tτ (�) − �‖ + ‖Tτ (�̃) − Tτ (�)‖.

Since � ∈ UToep(q, s,M),

p∑

j=1

|�i,j |χ{|�i,j |≤τ } =
p∑

j=1

|�i,j |q |�i,j |1−qχ{|�i,j |≤τ } ≤ τ 1−q

p∑

j=1

|�i,j |q

and Gershgorin’s disc theorem imply
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‖Tτ (�) − �‖ ≤ max
i

p∑

j=1

|�i,j |χ{|�i,j |≤τ } ≤ τ 1−qs. (3.26)

Moreover,

‖Tτ (�̃) − Tτ (�)‖ ≤ max
i

p∑

j=1

|�̃i,j |χ{|�̃i,j |≥τ, |�i,j |<τ }

+ max
i

p∑

j=1

|�i,j |χ{|�̃i,j |<τ, |�i,j |≥τ }

+ max
i

p∑

j=1

|�̃i,j − �i,j |χ{|�̃i,j |≥τ, |�i,j |≥τ }

= (I ) + (II ) + (III ).

First recall that by assumption supp(σ ) ⊂ [αp] and supp(σ̃ ) ⊂ [αp]. Hence, using
the observation that σ̃r = σ̂r , for r ≤ αp, and

p∑

j=1

χ{|�i,j |≥τ } =
p∑

j=1

τqτ−qχ{|�i,j |≥τ } ≤
p∑

j=1

|�i,j |qτ−q, (3.27)

we may estimate with (3.25) and � ∈ UToep(q, s,M)

(III ) ≤ max
r≤αp

|σ̂r − σr | · max
i

p∑

j=1

|�i,j |qτ−q ≤ sτ 1−q .

Furthermore,

(I ) ≤ max
i

p∑

j=1

|�̃i,j − �i,j |χ{|�̃i,j |≥τ, |�i,j |<τ } + max
i

p∑

j=1

|�i,j |χ{|�̃i,j |≥τ, |�i,j |<τ }

= (IV ) + (V ).

By (3.26), we know that (V ) ≤ τ 1−qs. Furthermore, we get that

(IV ) ≤ max
i

p∑

j=1

|�̃i,j − �i,j |χ{|�̃i,j |≥τ, |�i,j |<γτ }
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+ max
i

p∑

j=1

|�̃i,j − �i,j |χ{|�̃i,j |≥τ, γ τ≤|�i,j |<τ }

≤ max
r≤αp

|σ̃r − σr | · max
i

Ni(1 − γ ) + s(γ τ)−qτ,

where we defined Ni(1−γ ) := ∑p

j=1 χ{|�̃i,j −�i,j |>(1−γ )τ } and reused the bound on
(III ) for the second term (replacing τ with γ τ in the summation). Since we have
by (3.25) that Ni(1 − γ ) = 0, for i ∈ [p], we get that (IV ) �γ sτ 1−q . Hence,

(I ) �γ sτ 1−q .

Finally, note that by (3.27) and � ∈ UToep(q, s,M),

(II ) ≤ max
i

p∑

j=1

(|�̃i,j − �i,j | + |�̃i,j |)χ{|�̃i,j |<τ, |�i,j |≥τ }

≤ max
r≤αp

|σ̃r − σr | · max
i

p∑

j=1

χ{|�i,j |≥τ } + τ max
i

p∑

j=1

χ{|�i,j |≥τ }

≤ sτ 1−q + sτ 1−q .

Combining the bounds for (I ), (II ), and (III ) yields the claim. ��
Proof of Theorem 3.6 Note that

‖Tτ (Bαp(�̂
Toep
n )) − �‖ ≤ ‖Tτ (Bαp(�̂

Toep
n )) − Bαp(�)‖ + ‖Bαp(�) − �‖.

(3.28)

By Lemma 3.1, we get with probability at least 1 − (2αp)−(c−1) that

max
r≤αp

|σ̂r − σr | ≤
√

c

1 − α
max{CK2,

√
CK}

√
log(p)

np
= (1 − γ )τ, (3.29)

where c > 1 and 1 − γ = 1√
2

. The claim now follows by applying Lemma 3.2 to
the first term on the right-hand side of (3.28). ��
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