
Chapter 1
Hierarchical Compressed Sensing

Jens Eisert, Axel Flinth, Benedikt Groß, Ingo Roth, and Gerhard Wunder

1.1 Introduction

The field of compressed sensing studies the recovery of structured signals from
linear measurements [12, 19]. Originally focusing on the structure of sparsity of
vectors, the framework was quickly extended to the structure of low-rankness
of matrices. These structures are simultaneously restrictive and rich. They are
restrictive so that they allow for signal recovery using far fewer linear measurements
than the ambient dimensions suggest and rich in that they naturally appear in a
plethora of applications. That being said, in many practically relevant applications,
the signals feature a more restrictive structure than mere sparsity or low-rankness.
A particularly important broad class arising in a wealth of contexts is hierarchically
structured signals. Such structures are in the focus of this book chapter.
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The perhaps simplest examples are constituted by hierarchically sparse vectors.
A two-level hierarchically sparse vector is a vector consisting of multiple blocks
with a restricted support as follows: only a small number of the blocks have non-
vanishing entries and the blocks are themselves sparse. An illustrative example can
be given via imagining a telecommunication base station responsible for handling a
large set of potential users. If in each instance, only a few users actively transmit, and
the messages that are transmitted are sparsely representable, the vector compiling
all messages in its blocks is hierarchically sparse. The hierarchically sparse vectors
will serve as the main illustrative example of the entire chapter. It is straightforward
to generalize this notion for vectors with a hierarchy of nested blocks with sparsity
assumptions restricting the number of non-vanishing blocks on each level.

Another hierarchical structure of interest is given by replacing the sparsity
constraint on the vector-valued blocks by a low-rank assumption of matrix-valued
blocks. A motivating example here can be found in quantum tomography, where
quantum states can be modelled as low-rank Hermitian matrices. Hierarchical struc-
tures of quantum states arise here in the tasks of performing quantum tomography
with a partially uncalibrated measurement device or de-mixing sparse sums of
quantum states.

An intriguing feature of hierarchically structured signals is that their recovery
task is amenable to efficient thresholding algorithms. In general, thresholding
algorithms such as the iterative hard-thresholding pursuit are built on the insight
that, in contrast to the original recovery problem, the projection onto the set of
structured signals is efficient and in fact often particularly simple. This allows one
to employ algorithmic strategies such as projective gradient descent.

For hierarchically sparse signals, it turns out that the calculation of the projection
has the same computational complexity as the thresholding onto sparse signals.
Furthermore, the hierarchical structure allows for the parallelization of the projec-
tions for the blocks on each level yielding potential for further reducing the time
complexity by exploiting the restrictive structure. Based on this insight, we formally
introduce variants of the iterative hard-thresholding (IHT) algorithm and the hard-
thresholding pursuit (HTP) for hierarchically sparse signals.

For the IHT and HTP algorithm, recovery guarantees for measurement maps
that act close to isometrically, on sparse vectors, exist. Due to their similarity, the
recovery algorithms for hierarchically sparse signals inherit the recovery guarantees
from the original IHT and HTP provided the measurement map exhibits a restricted
isometry property (RIP) that is adapted to the hierarchically structured signal set.
We refer to the modified RIP restricted to hierarchically sparse signals as the
hierarchically restricted isometry property (HiRIP).

In this chapter, we derive a series of theoretical results concerning the HiRIP.
Requiring only HiRIP instead of RIP for the measurement opens up the pos-
sibility of exploiting multiple benefits. First, standard measurement ensembles
such as random Gaussian matrices can achieve HiRIP with a reduced sampling
complexity compared to RIP. The achievable logarithmic improvement mirrors
the reduced complexity of the restricted signal set compared to standard sparse
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vectors. Second, we introduce an ensemble of operators that do have the HiRIP,
but not RIP in any parameter regime. We give this flexible class of operators the
name hierarchical measurements since they are naturally adapted to hierarchical
structures. Hierarchical measurements combine different measurement maps on
each level of the hierarchy and, as we show, inherit HiRIP from standard RIP
and coherence properties of their constituent maps. An important instance of
hierarchical measurement is Kronecker products of measurements such that each
factor acts on the blocks of a certain hierarchy level.

Finally, we illustrate how the framework of hierarchical compressed sensing can
be applied in applications in machine-type communications and quantum technolo-
gies providing motivating examples and evaluations of practical performances.

Let us end with an outline of the remainder of the chapter. In Sects. 1.2 and
1.3, respectively, we formally introduce hierarchically sparse vectors and present
the algorithms used to recover them. Section 1.4 is devoted to theoretical results
concerning the hierarchical restricted isometry property (HiRIP) and step by step
develops a flexible toolkit to establish the HiRIP for large classes of measurement
ensembles. In Sect. 1.5, we move on to discussing the sparse, low-rank signal model,
including how the recovery algorithms can be adapted. In Sect. 1.6, we provide a
more specific discussion of selected applications. We close with a conclusion as
well as a small outlook in Sect. 1.7.

1.2 Hierarchically Sparse Vectors

We consider structured sparse signals that are vectors over the field K, referring
to either the reals R or the complex numbers C, and are hierarchically structured
into blocks. The support is restricted by sparsity assumptions on one or multiple
hierarchy levels. The simplest instance of hierarchically sparse signals is two-level
hierarchically sparse vector with constant block sizes and sparsities [20, 41–43].

Definition 1.1 (Two-Level Hierarchically Sparse Vectors) Let N, n, s, σ ∈ N.
A vector x ∈ K

Nn is called (s, σ )-hierarchically sparse, if it consists of blocks
xi ∈ K

n, x� = (x�
1 , . . . , x�

i , . . . , x�
N)�, where at most s blocks xi are non-zero,

and each of the non-zero blocks is at most σ -sparse.

For brevity, we write (s, σ )-sparse, dropping the hierarchically in the following.
We refer to the set of (s, σ )-sparse vectors in K

Nn as SN,n
s,σ or simply S if the

parameters are clear from the context. We also call the support supp(x) ⊂ [N ]× [n]
of an (s, σ )-sparse vector a (s, σ )-sparse support, where [n] := {1, . . . , n}. The
definition of a two-level hierarchically sparse vectors can be generalized in several
directions: We can allow different block sizes and block sparsities. Furthermore,
each block is allowed to be a hierarchically sparse vector itself. This gives rise to
a more general recursive definition of hierarchically sparse vectors with arbitrary
many levels. The defining data of such a general hierarchically sparse vector can
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(4, 2)

(1, 1) (3, 2) (2, 1) (2, 1)

(4, 2) (6, 2) (5, 2) (3, 1) (5, 2) (10, 4) (6, 3) (3, 1)

Fig. 1.1 This figure shows an example of a hierarchically sparse vector. The grouping of the
entries is encoded in a rooted tree. The children of a vertex constitute a block at their level. The
pair of values at each vertex indicates the block size (the number of children) and the sparsity, i.e.
the number of children with non-vanishing entries. The leaves of the tree are identified with the
entries of the vector. The support of the vector drawn below and corresponding vertices with non-
vanishing entries are highlighted in red. ©2020 IEEE. Reprinted, with permission, from Ref. [35]

be collected in a rooted tree consisting of nodes, labelled by block sizes and
sparsities, see Fig. 1.1. We refer to Ref. [35] for a formal definition of general
hierarchically sparse vectors. Other special cases of hierarchically sparse vectors
have been considered in the literature. Prominent examples are block sparse [13, 14]
and level sparse [3, 28] vectors.

Another setting where the hierarchical sparsity naturally emerges is so-called
bi-sparsity, see e.g. Ref. [18]. In said reference, a Hermitian matrix X ∈ K

n×n is
called bisparse if there exists a set S ⊆ [N ] with |S| ≤ s so that Xij is non-zero,
only if both i and j are in S. Clearly, any bisparse matrix can be interpreted as
an (s, s)-sparse vector. More generally, a matrix Y ∈ K

N×n with Yij non-zero for
i ∈ S and j ∈ � for sets with cardinalities |S| = s, |, �| ≤ σ can be regarded
as (s, σ )-bisparse and in the same manner identified with an (s, σ )-sparse vector.
Bisparsity is of course more restrictive than hierarchical sparsity, but the projection
operator onto the set of bisparse matrices is—in stark contrast to its hierarchical
sparsity counterpart—NP-hard to compute. Hierarchical sparsity can thus be seen
as a relaxation of bisparsity which allows for more efficient recovery procedures.
We refer to Ref. [18] for a more comprehensive discussion on these matters, as
well as other ways to relax the bisparse structures. We encounter this relaxation in
conjunction with blind deconvolution in Sect. 1.6.2 and a non-commutative analog
of it in our discussion of blind quantum tomography in Sect. 1.6.3.

For simplicity and notational clarity, we content ourselves to present the frame-
work for two-level hierarchically sparse vectors. It is straightforward to generalize
the algorithmic strategies and most analytical results of this chapter to the general
definition of hierarchically sparse vectors outlined above, see Ref. [35] for details.
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1.3 Hierarchical Thresholding and Recovery Algorithms

We study the linear inverse problem of recovering an (s, σ )-hierarchically sparse
vector x ∈ K

Nn from noisy linear measurements of the form

y = Mx + e,

where M ∈ K
m×Nn is the linear measurement operator and e ∈ K

m encodes
additive noise. The recovery task can be cast as the constraint optimization problem

minimize
x∈KNn

1

2
‖y − Mx‖2 subject to x is (s, σ )-sparse., (1.1)

where ‖y‖ = [∑
i |yi |2

]1/2
denotes the �2-norm.

So-called hard-thresholding algorithms solve the analogous optimization prob-
lem to (1.1) for standard s-sparse recovery by making use of the projection of a
vector z ∈ K

n onto the set of s-sparse vectors. The projection onto s-sparse vectors,

Ts(z) := argmin
x∈Kn

‖x − z‖ subject to x s-sparse,

can be computed efficiently via hard thresholding, i.e. by setting to zero all but the
s largest entries in absolute value. Note that since the set of s-sparse vectors in K

n

is not a convex set, the projection is non-unique. But for the arguments made here
every solution works equally well. Using a quick-select algorithm [24], the average
computational complexity of the thresholding operation is in O(n) with worst-case
complexity O(n2).

Following the blueprint of model-based compressed sensing [4], we can derive
variants of standard hard-thresholding algorithms for the more restrictive sparsity
structure under consideration here by modifying the thresholding operator accord-
ingly. The projection of a vector z ∈ K

Nn onto the set S of (s, σ )-hierarchically
sparse vectors,

Ts,σ (z) = argmin
x∈S

1

2
‖x − z‖2 ,

can be computed via hierarchical hard thresholding: first, the standard hard thresh-
olding operation Tσ is applied to each block. Then, all but the s blocks with largest
�2-norm are set to zero. The procedure is summarized as Algorithm 1 and illustrated
in Fig. 1.2. We find that the average computational complexity of the hierarchical
thresholding operation scales as O(Nn), i.e. linear in the overall vector space
dimension as for the standard hard thresholding. Furthermore, the hard thresholding
and �2-norm calculation of the different blocks can be parallelized, reducing the
time complexity to O(max(N, n)). The hierarchical thresholding operation can be
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Algorithm 1: Hierarchical hard thresholding
input : z ∈ K

Nn, sparsity levels (s, σ )

1 for i ∈ [N ] do
2 xi = Tσ (zi);
3 νi = ‖xi‖;
4 end
5 I = supp (Ts ((ν1, . . . , νN )));
6 for i ∈ [N ] \ I do
7 xi = 0
8 end

output : (s, σ )-hierarchically sparse vector x = (x�
1 , . . . , x�

N)�

Fig. 1.2 In this figure, the evaluation of the hierarchical thresholding operator Ts,σ is illustrated.
Starting with a given dense vector (a), each block is thresholded to its best σ -sparse approximation
(b). To determine the s dominant blocks, the �2-norm is calculated for each block. The resulting
vector (c) of length N is again thresholded to its best s-sparse approximation (d). The resulting
blocks indicated by the s-sparse approximation (d) are selected from the σ -sparse approximation
(b). The remaining (s, σ )-sparse support (e) is the output of Ts,σ . ©2020 IEEE. Reprinted, with
permission, from Ref. [35]

extended recursively to general hierarchically sparse signals described in Sect. 1.2
without increasing the overall computational complexity.

Equipped with an efficient thresholding operation, we can formulate recovery
algorithms for hierarchically sparse signals following standard strategies. A par-
ticularly simple algorithm is the iterative hard thresholding algorithm [5] which
performs a projected gradient descent. The resulting hierarchical iterative hard-
thresholding algorithm (HiIHT, Algorithm 2 [53]) alternates gradient descent steps
of the objective function (1.1) with the hard-thresholding operation Ts,σ .
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Algorithm 2: HiIHT algorithm

input : data y ∈ K
m, measurement operator M ∈ K

m×Nn, sparsity levels (s, σ )

initialize: x(0) = 0
1 repeat
2 x̄(t) = x(t−1) + τ (t)M∗ (

y − Mx(t−1)
)
;

3 x(t) = Ts,σ

(
x̄(t)

)
;

4 until stopping criterion is met at t = t∗
output : (s, σ )-sparse vector x(t∗)

Algorithm 3: HiHTP algorithm

input : data y ∈ K
m, measurement operator M ∈ K

m×Nn, sparsity levels (s, σ )

initialize: x(0) = 0
1 repeat
2 x̄(t) = x(t−1) + τ (t)M∗ (

y − Mx(t−1)
)
;

3 I (t) = supp
(
Ts,σ

(
x̄(t)

))
;

4 x(t) = argmin
x

1
2‖y − Mx‖2 subject to supp(x) ⊆ I (t);

5 until stopping criterion is met at t = t∗
output : (s, σ )-sparse vector x(t∗)

Here, τ (t) is a suitably chosen step size. The original IHT algorithms use constant
steps τ (t) = 1 for all t . Alternative strategies include backtracking as in the
normalized iterative hard thresholding (NIHT) algorithm [6].

Faster convergence can be achieved with an adaption of the hard-thresholding
pursuit [17] to hierarchical sparsity, the HiHTP [35, 36]. Compared to the HiIHT, the
HiHTP algorithm uses the result of the thresholded gradient step as a proxy to guess
the support of the correct solution in each step. Subsequently, a linear least-squares
problem is solved on the support guess. The solution can be computed via pseudo-
inverse or an approximate method. Notably, with this modification, if the algorithm
finds the correct solution, it does this in a finite number of steps to the precision of
the least-squares problem solver. The HiHTP algorithm is given as Algorithm 3.

The computational complexity of both algorithms, HiIHT and HiHTP, is typi-
cally dominated by the matrix vector multiplication with the measurement matrix
M and M∗, scaling in general as O(mNn). If a fast matrix vector multiplication is
available for the measurement matrix, this scaling can be significantly improved.

The additional least-square solution in the HiHTP algorithm contributes
O(sσm2) operations. For this reason, HiIHT can be faster per iteration than the
HiHTP in certain parameter regimes. Note that the computational complexity,
featuring the overall vector space dimension Nn and the total sparsity sσ , is
identical to the complexity of the original IHT and HTP algorithms.

Modifications using hierarchically sparse thresholding can also be applied to
other compressed sensing algorithms such as the CoSAMP [32], the Subspace
Pursuit [10], or Orthogonal Matching Pursuit, see e.g. Refs. [30, 46] and the
references therein. Proximal operators of the convex relaxations of the problem
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(1.1) can be calculated using soft-thresholding operations yielding a hierarchical
version of the LASSO algorithms [20, 41–43]. Due to their similarity, the HiIHT
and HiHTP algorithms inherit their convergence proofs and recovery guarantees
with slight modifications from their non-hierarchical counterparts. To this end, we
make use of the variant of the restricted isometry property (RIP) [8] adapted to
hierarchically sparse signals.

Definition 1.2 (Hierarchical Restricted Isometry Property (HiRIP)) Given a
linear operator M : K

Nn → K
m, we denote by δs,σ the smallest constant such

that

(1 − δs,σ )‖x‖2 ≤ ‖Mx‖2 ≤ (1 + δs,σ )‖x‖2

holds for all (s, σ )-hierarchically sparse vectors x ∈ K
Nn.

We will also refer to the standard s-sparse RIP constant δs , defined analogously
with the bounds holding for all s-sparse vectors. The standard RIP constant
dominates the HiRIP constant as δsσ ≥ δs,σ since Ss,σ is a subset of the set of s · σ -
sparse vectors. But as we will see below, using the HiRIP allows for a considerably
more fine-grained analysis, yielding improvements in the sampling complexity.

In terms of a HiRIP condition, we can guarantee a robust and stable convergence
to the correct solution for the hierarchical hard-thresholding algorithms. To this end,
given x ∈ K

Nn and a support set � ⊂ [N ] × [n], we denote by x�� the projection
of x onto the subspace of KNn indicated by �.

Theorem 1.1 (Recovery Guarantee for HiIHT and HiHTP [35, 53]) Suppose
the measurement operator M : KNn → K

m satisfies the HiRIP condition

δ3s,2σ < δ∗,

where δ∗ is a threshold, equal to 1/
√
3 for the HiHTP algorithm and equal to

√
2−

1 for the HiIHT algorithm. Then, for x ∈ K
Nn, e ∈ K

m, and � ⊂ [N ] × [n]
an (s, σ )-hierarchically sparse support set, the sequence (xk)k defined by HiIHT
(Algorithm 2) or HiHTP (Algorithm 3), respectively, with y = Mx�� + e satisfies,
for any k ≥ 0,

‖xk − x��‖ ≤ ρk‖x0 − x��‖ + τ‖e‖,

where the constants ρ and τ depend on which algorithm is used: for HiIHT,

ρHiIHT = √
3δ3s,2σ , τHiIHT = 2.18

1 − ρHiIHT
,

whereas for HiHTP,
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ρHiHTP =
(

2δ3s,2σ
1 − δ2(2s,2σ)

)1/2

, τHiHTP = 5.15

1 − ρHiHTP
.

The theorem’s proof follows closely along the lines of the standard proofs for
HTP and IHT as found, e.g. in Refs. [7, 17, 19]. A detailed proof can be found in
Refs. [35, 53], respectively.

1.4 Hierarchically Restricted Isometric Measurements

The results of the last section make it clear that the HiRIP property has the same role
for hierarchically sparse recovery as the RIP takes on for sparse recovery. If we can
prove that an operator A, for appropriate hi-sparsity levels (s, σ ), has the HiRIP, it
is guaranteed that HiHTP can recover x from the measurements Ax. In this chapter,
we will establish the HiRIP for several families of measurement operators, using
more and more specialized techniques.

1.4.1 Gaussian Operators

Let us first discuss the HiRIP properties of the arguably most well-known random
construction of a measurement operator: the Gaussian random matrix. A random
matrix A ∈ K

m×n is thereby said to be Gaussian if the entries are i.i.d. distributed
according to the standard normal distribution N(0, 1).

It has become a folklore result (see e.g. Ref. [19, Ch.9]) that if A is Gaussian, the
renormalized matrix 1√

m
A has the s-RIP with high probability if

m � s log
(n

s

)
,

where the notation � f (x) means greater than C · f (x), with C an unspecified
universal numerical constant. It is therefore natural to ask how large m needs
to be in order for 1√

m
A to have the (s, σ )-HiRIP. Since (s, σ )-sparsity is more

restrictive than sσ -sparsity, we surely will not need more than const. · sσ · log (
sσ
nN

)

measurements. But is the threshold lower for the HiRIP? And if so, how much?
In fact, the framework ofmodel-based compressed sensing [4] gives us a standard

route to answer this question for the Gaussian ensemble. Let us sketch this route
in some detail. First, one realizes that for any normalized fixed x ∈ K

N , the
random vector 1√

m
Ax is also Gaussian and as such obeys the following measure

concentration inequality:
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P

( ∣∣∣∣
∥∥∥ 1√

m
Ax

∥∥∥
2 − 1

∣∣∣∣ > δ

)
≤ 2 exp

(
−cmδ2

)
,

where c is a numerical constant. For a fixed vector x ∈ K
n, 1√

m
A preserves its norm

with high probability.
Second, we generalize the almost isometric behaviour to hold for all vectors

supported on a certain k-dimensional subspace V . To this end, we first establish that
it suffices that the measurement operator acts almost isometrically on a so-called ρ-
net for the intersection of the Euclidean unit ball with V . A ρ-net for a set M is a set
N with the property that for any q ∈ M , there exists a p ∈ N with ‖q − p‖2 < ρ.
It is not hard to construct a ρ-net for the normalized elements of V with cardinality
[19]

|N | ≤ Cnet

(
1 + 2

ρ

)k

.

By choosing ρ suitably and applying a union bound over the ρ-net, we obtain for
any support S with |S| = k

P

( ∣
∣∣∣
∥∥∥ 1√

m
Ax

∥∥∥
2 − 1

∣
∣∣∣ > δ ∀x : supp(x) = S

)
≤ Cλk exp

(
−c̃mδ2

)
, (1.2)

where C, λ, and c̃ are universal numerical constants. With (1.2) at our disposal, it
is only one step to establish an isometry property for 1√

m
A ∈ R

m×N ·n for an entire
union of subspaces such as structured sparse vectors. For instance, in order to get
the (s, σ )-HiRIP, we need to take a union bound over all (s, σ )-sparse supports S.
There are

(
N
s

)(
n
σ

)s such supports. Therefore

P

( ∣∣∣∣
∥∥∥ 1√

m
Ax

∥∥∥
2 − 1

∣∣∣∣ > δ ∀ (s, σ )-sparse x

)
≤ C

(
N

s

)(
n

σ

)s

λsσ exp
(
−c̃mδ2

)
.

This probability is dominated by ε, if

m ≥ c̃−1δ−2 log

(
C

(
N

s

)(
n

σ

)s

λsσ ε−1
)

.

Using the Stirling approximation
(
p
k

) ∼ (p
k

)k , we obtain the more readable
condition

m � δ−2
(
s log

(
N
s

) + sσ log
(

n
σ

) + log
(
1
ε

))
.

Let us state this as a theorem.

Theorem 1.2 (HiRIP for Gaussian Matrices) Let A ∈ K
m,n·N be random

Gaussian. Then there is a universal numerical constant C > 0 so that if
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Fig. 1.3 Left: the number of recovered signals from 100 noiseless Gaussian samples over the
number of measurements m for HTP, HiLasso, and HiHTP. The signals consist of N = 30 blocks
of size n = 100 with s = 4 blocks having σ = 20 non-vanishing real entries. Right: the number of
recovered blocks over the number of measurements m for HTP and HiHTP. The dashed and dotted
lines indicate the average number of correctly recovered zero and non-zero blocks, respectively.
The solid lines show the total average number of recovered blocks. The signals consist of N =
30 blocks with s = 4 blocks having non-vanishing real entries. A signal or block is considered
recovered if it deviates from the true signal by less than 10−5 in �2-norm. ©2020 IEEE. Reprinted,
with permission, from Ref. [35]

m ≥ C
δ2

(
s log

(
N
s

) + sσ log
(

n
σ

) + log
(
1
ε

))
, (1.3)

1√
m

A has an (s, σ )-HiRIP constant δs,σ (A) ≤ δ with probability as least 1 − ε.

The difference of the condition (1.3) compared to the one needed to establish the
standard RIP

m ≥ C
δ2

(
sσ log

(
Nn
sσ

) + log
(
1
ε

))
(1.4)

is subtle. After all, both thresholds can be written as sσ multiplied with logarithmic
terms in the dimension of surrounding space. However, for certain parameter
regimes, the difference is significant. Indeed, in the scenario that N � n, (1.3)
can be much smaller than (1.4). This establishes that for Gaussian random matrices,
hierarchical thresholding algorithms are theoretically expected to have an improved
sampling complexity compared to their standard counterparts. Also in the non-
asymptotic regime, one can observe an improved sample requirement in numerical
simulation, see Fig. 1.3.

Note that the above discussion can be applied without problems to sub-Gaussian
matrices. A matrix is sub-Gaussian if the entries ai,j are i.i.d. distributed according
to a distribution that obeys P

(|ai,j | > t
) ≤ α exp

(−βt2
)
for some α, β > 0.
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1.4.2 Coherence Measures

The discussion in the last section very much relies on the random nature of the
measurement operator. This is a common feature of compressed sensing-related
theories—in order to obtain an optimal scaling, one practically has no choice other
than to use a random construction. A possible route to still establish (non-optimal)
RIP results for non-random matrices is to take a detour via so-called coherence
measures. The simplest result is as follows [19, Prop 6.2]: if we define the mutual
coherence of a matrix with normalized columns ai as

μ(A) = sup
i,j

|〈ai, aj 〉|,

the RIP constants obey

δs(A) ≤ (s − 1)μ(A). (1.5)

To establish analogous results for the HiRIP constants, we need to use coherence
measures adapted to the block structure. Such measures have been introduced in
Ref. [43] for the analysis of the HiLasso algorithm. To work with these coherence
measures, it is convenient to introduce further notation to refer to the blocks of a
vector individually. To this end, we use the Kronecker product of matrices in the
convention

A ⊗ B =
⎛

⎜
⎝

a1,1B . . . a1,NB
...

. . .
...

am,1B . . . am,NB

⎞

⎟
⎠ ,

where ai,j denotes the entries of A. The Kronecker product trivially also provides a
Kronecker product on vectors KN × K

n → K
Nn understood as n × 1 and N × 1

matrices, respectively. Using the basis {ei}i∈[N ], (ei)j = δi,j of KN , we can rewrite
a blocked vector x ∈ K

Nn with blocks xi ∈ K
n, i ∈ [N ], as the sum of products

x = (x�
1 , x�

2 . . . , x�
N)� = ∑

i∈[N ] ei ⊗ xi . The Kronecker product exemplifies the
canonical vector space isomorphism of KNn with the tensor product space K

N ⊗
K

n. Analogously, we identify the measurement matrices A ∈ K
m×N ·n with linear

operators A : KN ⊗ K
n → K

m. We refer to Ai ∈ K
m×n, i ∈ [N ], defined through

Ai(v) = A(ei ⊗ v), v ∈ K
n, as the block operators of A. Now we introduce the

specialized coherence measures.

Definition 1.3 (Sub-coherence and Block Coherence) Let A : KN ⊗ K
n → K

m

with block operators Ai ∈ K
m×n and let {ai,j }j∈[n] be the columns of the ith block

operator. We define

1. The sub-coherence ν(A) of A as the maximal mutual coherence of the block
operators, i.e.
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ν(A) = sup
i

μ(Ai) = sup
i

sup
j �=k

|〈ai,j , ai,k〉|.

2. The sparse block coherence μσσ
block(A) of A as

μσσ
block(A) = sup

i �=j

ρσσ (A∗
i Aj ),

where ρσσ (B) denotes the σ -sparse singular value of a matrix B ∈ K
N×N ,

ρσσ (B) = sup
u,v σ -sparse
‖u‖=‖v‖=1

|〈u,Bv〉|.

Intuitively, ν(A) measures the coherence within each block, whereas μσσ
block(A)

measures the coherence between the blocks. Note that we have used a different
normalization in the definition of the sparse block coherence compared to Ref.
[43]. We can establish the following bounds on the HiRIP constants in terms of
the coherence measures.

Theorem 1.3 (HiRIP Through Coherence Bound) Let A : KN ⊗ K
n → K

m be
an operator with block operators Ai and s ∈ [N ], σ ∈ [n]. It holds that
1. supi δσ (Ai) ≤ δ1,σ (A) and μσσ

block(A) ≤ 2δ2,σ (A).

2. δs,σ (A) ≤ supi δσ (Ai) + (s − 1)μσσ
block(A).

In addition, if all columns of the block operators Ai are normalized, then

δs,σ (A) ≤ (σ − 1)ν(A) + (s − 1)μσσ
block(A) .

Proof

1. Let j �= k and x, y ∈ K
n be σ -sparse normalized vectors. First, we have

|‖Ajx‖2 − ‖x‖2| = |‖A(ej ⊗ x)‖2 − ‖ej ⊗ x‖2| ≤ δ1,σ (A),

since ej ⊗ x is (1, σ )-sparse. This proves the first claim. For the second claim,
we use the polarization identity to find

〈Ajx,Aky〉 = 1

4

3∑

�=0

i�
∥∥∥Ajx + i�Aky

∥∥∥
2 = 1

4

3∑

�=0

i�
∥∥∥A(ej ⊗ x + i�ek ⊗ y)

∥∥∥
2
.

Since ej ⊗ x and ek ⊗ y have disjoint block supports, ej ⊗ x + i�ek ⊗ y are
(2, σ )-sparse for all �. Hence,
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∣∣
∣∣∣
1

4

3∑

�=0

i�
∥
∥∥A(ej ⊗ x + i�ek ⊗ y)

∥
∥∥
2 − 1

4

3∑

�=0

i�
∥
∥∥ej ⊗ x + i�ek ⊗ y

∥
∥∥
2
∣∣
∣∣∣

≤ δ2,σ · 1
4

3∑

�=0

∥∥∥ej ⊗ x + i�ek ⊗ y

∥∥∥
2
.

Now we use that
∥
∥ej ⊗ x + i�ek ⊗ y

∥
∥2 = 2 for all �. This proves both that the

final bound above equals 1
2δs,σ and that

∑3
�=0 i�

∥∥ej ⊗ x + i�ek ⊗ y
∥∥2 = 0,

yielding the claim.
2. Let x = ∑

i ei ⊗ xi be an (s, σ )-sparse and normalized signal. There exists an
S ⊆ [N ] with |S| = s so that xi = 0 for i /∈ S. We have

‖Ax‖2 =
N∑

i=1

‖Aixi‖2 +
∑

i �=j

〈Aixi, Ajxj 〉.

Each xi is σ -sparse and, thus, |‖Aixi‖2 −‖xi‖2| ≤ δσ (Ai)‖xi‖2. Taking the sum
over i yields

∣∣∣
∣∣
‖x‖2 −

N∑

i=1

‖Aixi‖2
∣∣∣
∣∣
≤ sup

i

δσ (Ai)‖x‖2.

We still need to deal with the cross-block terms. Let the support of xi be denoted
Si , the orthogonal projection onto the space supported on Si with PSi

, and define
V as the subspace with the same support as x. Consider the operator C : V → V ,

y =
∑

i

ei ⊗ yi �→
∑

i∈S

ei ⊗ PSi

⎛

⎝
∑

k∈S\{i}
A∗

i Akyk

⎞

⎠ .

We have

∑

i �=j

〈Aixi, Ajxj 〉 = 〈x, Cx〉,

and C is Hermitian. The latter implies that |〈x, Cx〉| ≤ λ‖x‖2, where λ is the
magnitude of the largest eigenvalue of C. To estimate λ, let v = ∑

i ei ⊗ vi

be a normalized eigenvector for C and i such that ‖vi‖ is maximal. We have
λvi = PSi

∑
k∈S A∗

i Akvk , and consequently

λ‖vi‖2 = 〈vi, PSi

∑

k∈S

A∗
i Akvk〉 =

∑

k∈S
k �=i

〈Aivi, Akvk〉
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≤
∑

k∈S
k �=i

μσσ
block(A)‖vi‖‖vk‖ ≤ (s − 1)μσσ

block(A)‖vi‖2.

In the second step, we have used that vi = PSi
vi , since v ∈ V . In the penultimate

step, we have used that vi and vk all are σ -sparse and that each index k in the
sum is different from i. In the final step, we have used the optimality of i. This
proves that λ ≤ (s − 1)μσσ

block(A) and therefore the claim.
Finally, the addition of the theorem follows from the claim with (1.5). ��

The above result can be applied to construct a large family of operators that
have suitably small HiRIP constants without exhibiting RIP in this regime. Consider
N pairwise orthogonal, p-dimensional subspaces of Km, and Ei : K

p → K
m

isometric embeddings onto them. Let further C ∈ K
p×n be a fixed matrix with

δσ (C) = δ < 1. We consider the operator

A : KN ⊗ K
n → K

m, x �→
N∑

i=1

EiCxi.

The block operators of A are given by EiC, i ∈ [N ], and each of them is
compressively encoding K

n into one of the mutually orthogonal subspaces. Due
to the fact that the Ei are isometric, δσ (Ai) = δσ (C) for each i. The pairwise
orthogonality of the subspaces implies thatA∗

i Aj = 0 for i �= j , so thatμσσ
block(A) =

0. Theorem 1.3 then implies that δs,σ (A) ≤ δ(C) for any s.
The above construction will generically not result in an operator with small

δsσ (A). To this end, suppose that sσ ≤ n and p ≤ n − sσ . Then, there exists an
sσ -sparse w ∈ K

n with Cw = 0. Now the vector x = (w, 0, . . . , 0) is sσ -sparse,
but

∣∣‖Ax‖2 − ‖x‖2∣∣ = ∣∣‖0‖2 − ‖x‖2∣∣ = ‖x‖2. We conclude that δsσ (A) ≥ 1.
A disadvantage of this construction is that necessarily m ≥ Np ≥ Nσ . This is

a considerably worse scaling than we found for Gaussian random matrices, which
exhibit the HiRIP for m � sσ up to log-factors. The scaling in N as opposed to
the sparsity parameter on the block-level s arises from the encoding into mutually
orthogonal subspaces. The idea of ‘mixing’ block operators can, however, be driven
a lot further to avoid this overhead as we will see in the next section.

1.4.3 Hierarchical Measurement Operators

As we saw above, a measurement operator on K
N ⊗ K

n can always be thought of
as a mixture of block operators, say

B(x) =
N∑

i=1

Bixi .
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The inequalities in Theorem 1.3, part 1 imply that in order for B to have a small
HiRIP constant, we need each block operator to be well-conditioned, and in addition
that the blocks are incoherent. What can we do when they are not?

Assume that instead of just observing Bx, we are allowed to sample a few
different linear combinations of the vectors Bixi ,

y =
(

N∑

i=1

ai,jBixi

)

j∈[M]
=

N∑

i=1

ai ⊗ Bixi,

with ai = (aj,i)j∈[M] ∈ K
M . Can this make recovery easier? Let us define such

measurement operators that act hierarchically on the block structure of the vectors
as hierarchical measurement operators.

Definition 1.4 (Hierarchical Measurement Operators) Let A ∈ K
M,N and Bi ∈

K
m,n, i = 1, . . . , N , be given and denote the ith column of A by ai . We call the

operator

H : KN ⊗ K
n → K

M ⊗ K
m, x �→

N∑

i=1

ai ⊗ Bixi,

the hierarchical measurement operator defined by A and (Bi)i∈[N ].

The structure and naming of hierarchical operators makes it easy to believe that
they are an excellent fit for hierarchically sparse recovery. They are, however, by no
means only of academic interest. We will discuss this more thoroughly in Sect. 1.6.
For now, the practical interest might already become apparent by noting that an
important special case of hierarchical measurement operators is the following: in the
case of Bi = B being equal, the hierarchical operator is the same as the Kronecker
product A⊗B of the matrices A and B. How do the hierarchical isometry constants
ofH relate to the ones of A and the Bis? In order to discuss this question, we begin
by proving the following lemma.

Lemma 1.1 (RIP Implies Nuclear Norm Isometry) Let X ∈ K
N×N have the

property that for some sets S and S of cardinality s, Xi,j = 0 if either i /∈ S or
j /∈ S.

1. If X is positive-definite Hermitian, which in particular implies S = S,

∣∣〈A∗A,X〉 − ‖X‖∗
∣∣ ≤ δs(A)‖X‖∗ .

2. If S and S are disjoint,

|〈A∗A,X〉| ≤ δ2s(A)‖X‖∗ .
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Here, ‖X‖∗ denotes the nuclear norm, also known as the trace norm, of X, i.e. the
sum of its singular values.

Proof Consider a singular value decomposition of X, X = ∑N
i=1 σiviu

∗
i . We have

〈A∗A,X〉 = ∑N
i=1 σi〈Aui,Avi〉. Due to the assumption, for all i with σi �= 0,

supp(vi) ⊂ S and supp(vi) ⊂ S.

1. For X positive-definite, the σi are the eigenvalues of X, and ui = vi . Since each
ui is s-sparse, it holds that

∣∣〈A∗A,X〉 − ‖X‖∗
∣∣ ≤

N∑

i=1

σi |〈Aui,Aui〉 − 1| ≤
N∑

i=1

σi · δs(A) = δs(A)‖X‖∗.

2. Ref. [19, Prop. 6.3] states that since the supports of ui and vi are disjoint, we
have |〈Aui,Avi〉| ≤ δ2s(A). This in turn implies

|〈A∗A,X〉| ≤
N∑

i=1

σi |〈Aui,Avi〉| ≤
N∑

i=1

σiδ2s(A) = δ2s(A)‖X‖∗ .

��
We now prove thatH inherits the HiRIP from the RIP of its constituent matrices,

in that δs,σ (H) can be bounded in terms of δs(A) and the constants δσ (Bi).

Theorem 1.4 (Hierarchically Inherited HiRIP) Let H be the hierarchical oper-
ator defined by A and (Bi)i∈[N ]. We have for s, σ arbitrary

δs,σ (H) ≤ δs(A) + sup
i

δσ (Bi) + δs(A) · sup
i

δσ (Bi).

Proof Let x be normalized and (s, σ )-sparse and S such that ai = 0 for i /∈ S. We
have

‖H(x)‖ =
N∑

i,j=1

〈ai ⊗ (Bixi), aj ⊗ (Bj xj )〉 =
N∑

i,j=1

〈ai , aj 〉〈Bixi , Bj xj 〉 = 〈A∗A,G〉,

where G ∈ K
N×N denotes the matrix with non-vanishing entries Gi,j =

〈Bixi, Bjxj 〉 for i ∈ S and j ∈ S. By Lemma 1.1, part 1,

|〈A∗A,G〉 − ‖G‖∗| ≤ δs(A)‖G‖∗. (1.6)

It remains to estimate ‖G‖∗. In order to do this, consider the operator M :
K

|S| → K
m, c �→ ∑

i∈S ciBixi . By construction, G = M∗M , and therefore,
‖G‖∗ = ‖M‖2 = ∑

i∈S ‖Bixi‖2, where ‖ · ‖ here refers to the Frobenius norm.
Consequently,
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∣∣∣‖G‖∗ − ‖x‖2
∣∣∣ ≤

∑

i∈S

∣∣∣‖Bixi‖2 − ‖xi‖2
∣∣∣ ≤

∑

i∈S

δσ (Bi)‖xi‖2. (1.7)

Combining (1.6) and (1.7), we obtain

∣∣
∣〈A∗A,G〉 − ‖x‖2

∣∣
∣ ≤ ∣

∣〈A∗A,G〉 − ‖G‖∗
∣
∣ +

∣∣
∣‖G‖∗ − ‖x‖2

∣∣
∣

≤ δs(A)

(
1 + sup

i

δσ (Bi)

)
‖x‖2 + sup

i

δσ (Bi)‖x‖2,

which proves the claim. ��
The theorem shows that hierarchical operators are a rich class of operators which

much more often have the HiRIP than the RIP. To make this precise, we take a look
at the special case of Kronecker products A ⊗ B. Theorem 1.4 implies that if δs(A)

and δσ (B) are small, δs,σ (A ⊗ B) is also small. This is in stark contrast to the RIP
of Kronecker products. Indeed, Ref. [25] derived that

δs(A ⊗ B) ≥ max(δs(A), δs(B)).

That is, in order for A ⊗ B to have the s-RIP (nota bene, not the sσ -RIP), both
A and B must have it. This obstacle leads to demanding performance bounds in
applications [40].

The total number of measurements measured by a hierarchical operator is equal
to mM . Together with the classical results on the RIP of Gaussian operators, the
theorem implies that by choosingA andB Gaussian, we can hence build hierarchical
operators having the (s, σ )-HiRIP using only

const · sσ log
( n

σ

)
log

(
N

s

)

many measurements. This scaling is up to log-factors identical to the result Eq. (1.3)
we established for fully Gaussian matrices. This is noteworthy, since while fully
Gaussian matrix consists of MN ·mn independent parameters, a Kronecker product
A ⊗ B only has MN + mn. This constitutes a considerable de-randomization of the
measurements, which can be e.g. exploited to reduce the storage complexity or to
speed up calculations. We refer to Refs. [34, 35] for an extended discussion and an
alternative direct proof of HiRIP for Kronecker product measurements.

Theorem 1.4 tells us that operators with small RIP constants can be combined to
obtain an operator with a small HiRIP constant. We now take a look at the contrary
question: To what extend are small RIP constants of the constituent operators
required to bound the HiRIP constants of the hierarchical measurement operator?

In order to get a simple formulation of our first result, let us first note that there
is an ambiguity in the definition of a hierarchical measurement operator. We can
always simultaneously rescale ai and Bi since ai ⊗ Bi = (λai) ⊗ (λ−1Bi). We
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may thus w.l.o.g. assume that ‖ai‖ = 1 for all i. Under this assumption, a small
(s, σ )-HiRIP constant of H indeed implies small σ -RIP constants of all Bi .

Proposition 1.1 (σ -RIP Bound from (s, σ )-HiRIP) Let H be a hierarchical
measurement operator given by A and (Bi)i∈[N ]. Assume that the columns of A

fulfil ‖ai‖ = 1 for all i. Then, it holds that

sup
i

δσ (Bi) ≤ δ1,σ (H).

Proof The ith block operator Hi of H is given by ai ⊗ Bi ∈ K
Mm×N . The

normalization implies that ‖(ai ⊗ Bi)x‖2 = ‖ai‖2 · ‖Bix‖2 = ‖Bix‖2 for each
x ∈ K

N . Thus, δσ (Bi) = δσ (Hi ), and the result follows from Theorem 1.3, part 1.
��

The above result in essence states that for H to have the (s, σ )-HiRIP, it is
necessary that all Bi have the corresponding σ -RIP. Intriguingly, for the RIP
requirement of A, the situation is very different. Indeed, if the Bi are mapping into
incoherent subspaces, A does not need to have the RIP. The precise result is as
follows.

Theorem 1.5 (HiRIP with Block Incoherence) For a family (Bi)i∈[N ], define the
operator

B : KN ⊗ K
n → K

m, x �→
N∑

i=1

Bixi .

Let A ∈ K
M×N and natural numbers s, σ , and t be given. The hierarchical operator

H given by A and (Bi)i∈[N ] fulfils

δts,σ (H) ≤ sup
i

δσ (Bi) + δs(A) · sup
i

δσ (Bi) + t
√

s · δ2s(A) · μ
(2σ,2σ)
block (B) .

Proof Let x = ∑
i ei ⊗ xi be a (ts, σ )-sparse, normalized vector and S ⊂ [N ] be

such that xi = 0 for i /∈ S. We may subdivide S into t disjoint sets S1, . . . , St with
cardinality s each. For each pair (k, �) ∈ [t]× [t], we define a matrix Gk,� ∈ K

N×N

with non-vanishing entries G
k,�
i,j = 〈Bixi, Bjxj 〉 for i ∈ Sk and j ∈ S�. We may use

the same reasoning as in the proof of Theorem 1.4 to argue that

‖H(x)‖2 =
〈∑

k=1

A∗A,Gk,k〉 +
∑

k �=�

〈A∗A,Gk,�〉 .

Now, each matrix Gk,� fulfils the assumption of Lemma 1.1, part 1 for k = � and
Lemma 1.1, part 2 for k �= �. Hence,
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∣∣∣
∣∣
‖H(x)‖2 −

t∑

k=1

∥∥
∥Gk,k

∥∥
∥∗

∣∣∣
∣∣
≤ δs(A) ·

N∑

k=1

∥∥
∥Gk,k

∥∥
∥∗ + δ2s(A) ·

∑

k �=�

∥∥
∥Gk,�

∥∥
∥∗ .

Still in analogy to the proof of Theorem 1.4, we find that
∣∣ ∥∥Gk,k

∥∥∗ − ‖xk‖2
∣∣ ≤

supi δσ (Bi)‖xk‖2, and consequently

∣∣∣H(x) − ‖x‖2
∣∣∣ ≤ δs(A)

(
1 + sup

i

δσ (Bi)

)
+ δ2s(A) ·

∑

k �=�

∥∥∥Gk,�
∥∥∥∗ .

It remains to bound the terms with k �= l. First, let us note that, since Gk,� has
rank at most s, ‖Gk,�‖∗ ≤ √

s‖Gk,�‖. We now use the definition of the intra-block
coherence to argue that

∥∥∥Gk,�
∥∥∥ =

√ ∑

i∈Sk,j∈S�

|〈Bixi, Bjxj 〉|2 ≤ μ
(2σ,2σ)
block

√ ∑

i∈Sk,j∈S�

‖xi‖2 · ‖xj‖2 .

Finally with

∑

k �=�

√ ∑

i∈Sk,

‖xi‖2 ·
√∑

j∈S�

‖xj‖2 ≤
⎛

⎝
∑

k

√∑

i∈Sk

‖xi‖2
⎞

⎠

2

≤ t‖x‖2 ,

where we have used the Cauchy–Schwarz inequality in the final step, the claim
follows. ��

Note that the above result shows that A does not need to have the ts-RIP in
order for the hierarchical operator to exhibit the corresponding HiRIP. We may in
particular choose t = N/s and obtain an operator that acts isometrically on any
vector with sparse blocks. In terms of sample complexity, the above result is still a
bit opaque. By making a particular choice of t and using the methods of Gaussian
random matrices discussed in Sect. 1.4.1, one can derive the following result (see
Ref. [16] for a proof).

Proposition 1.2 (Sample Complexity) Let (Bi)i and B be as in Theorem 1.4.3.
Assume that

(
tμ

(2σ,2σ)
block (B)

)2 ≤ N

log(N)
,

and choose A ∈ K
M×N as a Gaussian matrix. Let δ, ε > 0. Provided that
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M ≥ C

⎛

⎜
⎝

(
tμ

(2σ,2σ)
block (B)

)2 · 1
δ2
log

⎛

⎜
⎝

N
(
1 + supi δσ (Bi)

)2
(
tμ

(2σ,2σ)
block (B)

)2

⎞

⎟
⎠ + log

(
1
ε

)
⎞

⎟
⎠ ,

where C is a universal numerical constant, the hierarchical measurement operator
H defined by A and (Bi)i∈N obeys

δt,σ (H) ≤ δ + sup
i

δσ (Bi)

with a probability at least 1 − ε.

This proposition shows that if μ
(2σ,2σ)
block (B) is small enough, the number of ‘Gaussian

linear combinations’ we take with A does not have to grow linearly in t in order to
establish a (t, σ )-RIP—instead, only (tμ

(2σ,2σ)
block (B))2 is needed.

The square dependence here on (tμ(2σ,2σ)) is of course inferior compared to the
linear dependence of the sparsity we can achieve with the help of Theorem 1.4. It is
unclear whether this is merely an artefact of the proof.

These results end our discussion of the hierarchical operators and with that our
theoretical results on hierarchical restricted isometry properties.

1.5 Sparse De-mixing of Low-Rank Matrices

Generally, hierarchically sparse vectors arise from recursively assuming nested
groupings of the vector entries to be sparsely non-vanishing. Another generalization
of hierarchically structured vectors arises when we replace the sparsity assumption
with another structure assumption such as a low rank when suitably reshape. One of
the simplest of such examples is the de-mixing of a sparse sum of low-rank matrices
from linear measurements. For i ∈ [N ], let Ai : Kn×n → K

m be linear maps and
ρi ∈ K

n×n be matrices of rank at most r . The problem of de-mixing low-rank
matrices is to reconstruct the matrices ρi given data of the form

y =
N∑

i=1

Ai (ρi) .

A further structure assumption might be that out of the N matrices ρi actually only
a number of s are non-vanishing, giving rise to the problem of de-mixing a sparse
sum. We can straightforwardly cast the problem as the reconstruction problem of
a hierarchically structured vector. To this end, we set X = ∑N

i=1 ei ⊗ ρi . We can
regard X as a ‘vector’ in K

Nn×n of matrix-valued blocks of rank-r and at most s

vanishing blocks.
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Algorithm 4: SDT algorithm
input : Data y, measurement A, sparsity s and rank r of signal
initialize: X0 = 0.

1 repeat
2 Calculate step-widths μl

3 Xl+1 = T̄s,r

(
Xl + diag(μl)PT

Xl

(
A∗ (

y − A(Xl)
)))

4 until stopping criterion is met at l = l∗
output : Recovered signal Xl∗

Compared to (s, σ )-sparse vectors, we have replaced the non-vanishing σ -sparse
blocks by low-rank matrices. The de-mixing problem of a sparse sum of low-rank
matrices then is the task to reconstruct such a hierarchically (block) sparse, (block-
wise) low-rank vector X from linear measurements.

The principle strategy of hierarchical hard thresholding of Sect. 1.3 carries over
to hierarchically sparse, low-rank vectors. The projection onto the set of rank-r
matrices is given by the hard thresholding of the singular values. Let ρ ∈ K

n×n

have singular value decomposition U diag(�)V ∗ with a vector of singular values
� ∈ K

n. We define

Pr(ρ) = U diag(Tr (�))V ∗ .

Basically, replacing the application of Tσ in the hierarchically thresholding Algo-
rithm 1 yields a projection onto hierarchically sparse, low-rank vectors which we
will refer to as T̄s,r .

Modifying the projective gradient descent of the HiIHT algorithm with this
projection yields the so-called sparse de-mixing thresholding (SDT) algorithms,
Algorithm 4 [38]. In contrast to the structure of a union of subspaces of sparse
vectors, the set of rank r matrices constitutes an embedded differential manifold in
the linear vector space of all matrices. The geometrical structure can be exploited in
iterative hard-thresholding algorithms by projecting the gradient of the embedding
space in the descent step onto the tangent space of the manifold at the current iterate
[1, 47, 49]. At point ρ, the tangent space of the manifold of rank-r matrices is the
linear span of the set of matrices that have the same row or column space as ρ

[1]. For a hierarchically sparse, low-rank vector X = ∑N
i=1 ei ⊗ ρi , we use the

projection onto the tangent space for each block. We denote by PVi
and PUi

the
projection onto the row and column space of ρi , respectively. For ρi vanishing,
we set the projections to be the identity. We define PTX

: K
Nn×n → K

Nn×n as
G = ∑N

i=1 ei ⊗ gi �→ ∑N
i=1 ei ⊗ [gi − (Id−PUi

)gi(Id−PVi
)]. The particularity

of the SDT algorithm is that we allow for a different step size for each matrix
block. We refer to Ref. [38] for more details on the algorithm and Ref. [50] for
an implementation. The SDT algorithm without the sparse thresholding operation
to determine the block support coincides with the algorithm proposed in Ref. [45].
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Fig. 1.4 The figure (taken from Ref. [38]) displays the recovery rate for the SDT in different
variants for different values of m for random Gaussian measurements. DT refers to the SDT
algorithms without the sparsity constraint (SD) and informed DT to the SDT algorithm restricted
to the correct support. A signal is considered successfully recovered, if the algorithm output
deviates from the true signal by less than 10−3 in Frobenius norm. Each point is averaged over
50 iterations and signal instances with r = 1, n = 16, N = 10, and s = 3. One observes nearly
coinciding recovery performances for the informed DT and the SDT algorithm. In comparison, the
DT algorithm requires significantly more samples for recovery

Following the blueprint of model-based compressed sensing, one can also
establish a recovery guarantee based on a RIP condition custom-tailored to the
hierarchical structure at hand. For random Gaussian measurement ensembles, this
gives rise to a sampling complexity of

δ−2[s log(N/s) + (2n + 1)rs log 1
δ
]

to guarantee the correct recovery of X ∈ K
Nn×n with at most s non-vanishing

blocks of rank r [38, Theorem 6]. Many results derived in Sect. 1.4 that establish the
HiRIP for hierarchically sparse vectors for different measurement ensembles can be
generalized to hierarchically sparse, low-rank vectors. This allows one to guarantee
recovery by the SDT algorithm for a large class of measurement ensembles.

Compared to an algorithm that does not exploit the sparsity of the de-mixing
problem, the SDT algorithm can exhibit a significant improvement in the sampling
complexity in relevant parameter regimes, Fig. 1.4.

Hierarchically sparse, low-rank vectors certainly constitute another important
class of hierarchically structured signals as it encodes the de-mixing problem of
a sparse sum of low-rank matrices. The theme of hierarchically combining low-
rank and sparse structure assumptions in nested grouping of entries gives rise to a
plethora of structures all of which can be efficiently reconstructed using recursive
combinations of the hierarchical thresholding method introduced above.
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1.6 Selected Applications

1.6.1 Channel Estimation in Mobile Communication

In mobile communication, a lot of users are simultaneously communicating with
a base station through electromagnetic waves. Let us model the messages a user
wants to transmit with a sequence c ∈ K

n. To send this message, the user
must first translate the message to a wave. A popular scheme for this is so-
called OFDM (Orthogonal Frequency-Division Multiplexing). This scheme can be
imagined as each ck giving rise to a complex exponential, a so-called tone, b(ω) =
[1, e−iωt1 , . . . e−iωtn−1 ] ∈ K

1×n, where ω is the frequency and t1, . . . , tn−1 are some
discretization times. In OFDM, a fixed grid of the formωk = 2πkω, k ∈ [n], is used,
where ω is the normalized frequency. Mathematically, this corresponds to applying
the discrete Fourier transform to c.

As the electromagnetic waves travel from the user to the base station, they scatter
on random features, e.g. buildings and trees, in the environment. This scattering
causes random phase and amplitude shifts, modelled by so-called complex gains
ρp. It also means that a single transmission results in several incoming wave-fronts,
each with a different angle of arrival. This situation can be utilized if the base station
has several antennas arranged in an array: when the wave-front arrives at the antenna
array, the wave-front travels slightly different distances before arriving at each
antenna, i.e. if a ‘1’ arrives at antenna 0, antenna k will receive an ‘ak(θ)’, where θ

denotes the angle of the wave-front. Here, a = [a0, . . . , an−1] : [−π, π ] → K
1×n is

a function, often referred to as the antenna manifold in the communication literature.
For the popular uniform linear array (ULA), in which the antennas are placed at a
uniform separation d along a straight line, the antenna manifold is after a change of
variables u = d sin(θ) given by

a(u) = [
1, e2πdiu, e4πdiu, . . . , e2(n−1)πdiu

]
.

The parameter u actually takes on values in the entirety of [−d, d], but let us for
now assume that it lies on some grid {− d

2N , . . . , d
2N }.

Combining these two models, we see that for a specific user, all transmitted
signals result in a collective measurement of the form

∑L
�=1 ρpa(up)∗〈b(ωp)∗, c〉

where (ωp, up) is given by the delay and angle of the kth wave-front. The
communication is thus characterized by the channel matrix [9]

H =
L∑

p=1

ρpa(up)∗b(ωp) ∈ K
N×n .

Once we know H , the base station can easily decode any number of sent messages.
Note that as long as the environment and the position of the user do not change
drastically, H is expected to stay roughly constant.
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Fig. 1.5 Comparison of HiIHT and IHT performances for channel matrix reconstruction. ©2019
IEEE. Reprinted, with permission, from Ref. [53]

Now suppose that we are only given a low-dimensional sample of H . To be
concrete, define sub-sampling operators Pu ∈ K

M×N, Pω ∈ K
m×n in angle

and delay, and assume that we only observe PuHP �
ω . Can we still recover the

entire matrix? To do this, we may utilize that, according to the above discussion,
it has a sparse representation in the delay-angle domain. Indeed, defining A =
[e2kπiuj ]k,j∈[N ] ∈ K

N×N and B = [e−itkω� ]k,�∈[n] ∈ K
n×n, we get

PuHP �
ω = PuA

⎛

⎝
∑

p∈[L]
ρpeujp

⊗ eω�p

⎞

⎠ B∗P �
ω = (PuA ⊗ PωB)X,

withX = ∑L
p=1 ρpeujp

⊗eω�p
. Note thatX is not only sparse but also hierarchically

sparse: only a few angle blocks are active, and for each such angle, only a few
delays ωk are utilized and vice versa. In fact, it is a reasonable assumption that
the angles for the L paths are distinct, leading to a (1, L)-sparse ground truth. We
further observe that sampledH is a Kronecker product measurement ofX, where the
terms of the Kronecker product are sub-sampled Fourier matrices. Thus, the results
of Sect. 1.4.3 imply that the recovery indeed is possible and provide an explicit
sampling complexity.

In Fig. 1.5, the performance of HiIHT and IHT is compared for m = n = 256
and N = 1024. We generate data synthetically and inject the measurement with
Gaussian noise of an SNR of 10dB. The recovery quality is measured in terms of
the mean per-entry square error 1

nN
‖H − Ĥ‖2 between the actual channel matrix

H and the estimate Ĥ . This error is plotted against the sub-sampling factor M/N
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for different values of L. We see that HiIHT handles a small sub-sampling factor
considerably better than IHT. Indeed, only accessing one percent of the available
antennas is enough to achieve reasonable performance with HiIHT, whereas IHT
fails when less than about 10 percent of the antennas are utilized.

The communication setting presented here can be extended in several directions:
first, we may drop the assumptions on the delays and angles to be on a grid—in
the off-the-grid case, the vector X is arguably still approximately sparse. Second,
we can model the case of multiple users by adding a third level to the hierarchical
signal. On this level, sparsity naturally emerges assuming a sporadic user activity.
We refer to Ref. [53] for details.

1.6.2 Secure Massive Access

With the rise of new communication technologies such as the Internet of Things
(IoT) and Tactile Internet (TI), the amount of devices virtually explodes, and with it
the amount of sensitive information gathered from various sensors and transmitted
over the air. This development poses significant challenges on the security of
communication channels and demands for new physical layers of security. In
particular, it calls for fast and scalable low-overhead security schemes suitable for
the frequent burst of spontaneous communication between low-complexity devices
with a base station. Here, we use the hierarchical measurement framework to design
a secure massive access procedure based on blind deconvolution, see also the
discussion on bisparse structures in Sect. 1.2. More details can be found in Ref.
[52].

A base station sends out known pilots to enable all user equipments (UEs) to
measure the channel between the station and the UE. The channel is here modelled
as a filter in K

N , where N is the length of the delay period. For each transmitting
UE p ∈ [Nd ] and receiving base station antenna q ∈ [Nr ], there is one filter

hp,q = (hp,q,1, . . . , hp,q,i , . . . , hp,q,N ) ∈ K
N.

The concrete appearance of the filters is again determined by delays caused
by reflections on random physical features in the environment. Therefore, it is
reasonable to assume that each hp,q is sparse, and, for fixed UE q, all channels
hp,q for p = 1, . . . , Nt share the same sparsity pattern.

As in the previous section, the UE transmits their sequences cp ∈ K
E by first

linearly encoding them into signals xp = Bpcp using a codebook Bp ∈ K
N×E and

then sending them over the channel. In an IoT scenario, the messages typically are
very short, so that it can be assumed that they can be encrypted as sparse sequences
cp. During transmissions, these are convolved with the channel vectors, so that each
of the base station’s antennas receives a superposition of the UEs’ signals,
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yq =
Nr∑

p=1

hp,q � (Bpcp) + zq

with q = 1, . . . , Nt and � denoting the circular convolution. We may now lift [29]
the bilinear operation (cp, hp,q) → hp,q � Bpcp to a linear operation convp :
K

E×N → K
N on the matrix bph�

p,q ∈ K
E×N resulting in

yq =
Nr∑

p=1

convp(bph�
p,q) + zq . (1.8)

We observe that the channel estimation task at the base station becomes the problem
of simultaneously performing a blind deconvolution and de-mixing, naturally
formalized as the linear reconstruction of a signal

Xq = (b1h
�
1,q , . . . , bNd

h�
Nd,q) ∈ (KE×N)Nd ∼ K

Nd ·E·N.

The signal further exhibits the following structure: our assumptions of σ -
sparse channels and s-sparse messages imply that the matrices bph�

p,q are all
(s, σ )-bisparse. As discussed in Sect. 1.2, we may relax this to simple hierarchical
(s, σ )-sparsity. Additionally assuming a sparse user activity at a given time, i.e.
bp �= 0 only for μ users, the vector Xq is a three-level (s, σ, μ)-sparse vector. Note
that the operator convp has a structure that is not covered by our theoretical results.
Still, we may try to recover it using the HiHTP algorithm.

We conduct simulations with Nt = 1 receive antenna and Nr = 10 total UEs.
We set N = 1024 and N = E = 128. For each of the Nr users, a σ -sparse channel
hk ∈ R

E is drawn with the locations of the non-zeros distributed uniformly and
entries drawn from the standard normal distribution. The signals are computed as
xk = Bck , where B ∈ R

N×E is a Gaussian random matrix and ck ∈ R
E is s-sparse

with values in {−1, 1} if the user is active and 0 if the user is not active. This results
in the data y1 ∈ R

N as defined in (1.8).
We vary the number of active users μ, as well as the sparsities s and σ .

Figures 1.6 and 1.7 show the rate of successful recovery for varying number of active
users, averaged over 20 runs per setup. The x- and y-axis show the channel sparsity
μ and the signal sparsity s, respectively. As can be seen, the HiHTP algorithm is
indeed capable of recovering the ground truth, as long as the sparsity levels are low
enough.

An interesting feature of the model is that it can be used to generate a secure
communication scheme. To this end, we make use of the reciprocity of the channel:
the channel h

↑
p,q for transmission from UE q to base station antenna p is equal to

the channel h
↓
p,q for transmission in the other direction. This reciprocity condition

is fulfilled for modern off-the-shelf WiFi devices [48]. Due to the reciprocity,
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Fig. 1.6 Recovery rate for 2 of 10 active users. ©2018 IEEE. Reprinted, with permission, from
Ref. [52]
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Fig. 1.7 Recovery rate for 5 of 10 active users. ©2018 IEEE. Reprinted, with permission, from
Ref. [52]

the channel itself can serve as a source of shared randomness for the secret key
generation. The communication protocol consists of two phases:

Phase 1

1. The base station sends a predefined pilot signal to all UEs.
2. Each UE q measures the complex-valued channel gains h

↓
q = (h

↓
p,q)p∈[Nr ].

3. Each UE encrypts his/her message m to a sequence cp = f (m, h
↓
q ), using some

encryption scheme f and h
↓
q as a random encryption key.
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Phase 2

1. All the UEs q send their encrypted sequences cq to the base station using the
scheme discussed above. The encoding operators Bp are left public.

2. The base station receives the superposition of all the convolutions of the cipher
text with the respective channels. With a hierarchical thresholding algorithm,
the station inverts (1.8) and, thus, gains knowledge of the cipher texts cp and

channels h
↑
p,q .

3. Due to reciprocity h
↑
p,q = h

↓
p,q , the base station thereby obtains the encryption

keys h
↓
q and decrypts the cipher texts.

The security of the scheme relies on the assumption that the channels of different
users are independent of each other and cannot be inferred from another position.
Unless a man in the middle has access to the antenna of a UE, the eavesdropper
cannot use his/her channel coefficients to recover the message of another user.

We note that small variations between both channels, i.e. small violations of
reciprocity, can be tolerated by adjusting the key generation process. One can for
example quantize the channel gain sufficiently coarse to equalize the keys. Here,
the hierarchical framework is applied to solve a blind deconvolution and de-mixing
problem. Refs. [16, 51] present further examples of the hierarchical measurement
framework applied to massive random access without a built-in security scheme.

1.6.3 Blind Quantum State Tomography

Quantum communication allows for the transmission of data under unprecedented
levels of security [21]. Here, the security proofs are neither based on assumptions on
the computational hardness of certain mathematical problems nor on the feasibility
of practically reverting or predicting the randomness of physical processes: instead,
there are proofs of security available based on the fundamental laws of nature
themselves. Under mild assumptions, quantum key distribution can be proven
secure under the most general attacks allowed by physics, within a paradigm
of closed laboratories. Simultaneously, the advent of novel quantum computing
devices promises solving certain tasks with a significantly improved computational
complexity compared to classical computing devices. These tasks include NP prob-
lems at the heart of established and universally employed cryptographic schemes.
It is beyond the scope of the present article to introduce the various applications
of the quantum technologies [2]. Instead, we here focus on a particular context in
which hierarchical compressed sensing naturally comes into play: this is the task
of semi-device dependently identifying the state of a quantum device. Methods for
such characterization and certification tasks are important diagnostic tools in the
development of quantum technologies. We refer to Refs. [11, 27] for details.

The problem at hand here is the identification of quantum states prepared in some
physical prescription. The recovery of unknown quantum states is called quantum
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state tomography. A general quantum state is described by a trace-normalized,
positive-definite complex matrix. Of particular interest are unit rank, so-called
pure quantum states or more generally low-rank quantum states. Ideally, devices
in quantum technologies operate or are envisioned to operate in pure quantum states
of large dimensions. Quantum states of higher rank encode ‘classical’ statistical
mixtures of pure states typically produced by noisy operations. We denote the set of
rank-r quantum states by Dn

r ⊂ C
n×n.

An important diagnostic task for quantum devices is, thus, to learn the low-
rank quantum state of the device from linear measurements. Exploiting the rank
constraint on the quantum states in the recovery task is crucial to devise quantum
tomography protocols working in state spaces of sizeable dimension. This renders
compressed sensing method of crucial importance for quantum tomography [15, 22,
23, 26, 33, 37, 39, 44].

That said, the apparatus with which one performs the measurements can espe-
cially for near-term devices not be reasonably assumed to be fully characterized:
commonly, there are calibrating parameters that are not fully known. An important
practical problem is, thus, the recovery of a low-rank quantum state ρ by means of
measurement devices that are simultaneously themselves characterized by a handful
of parameters, giving rise to sparse vectors ξ .

In a linear approximation of the measurement device calibration, this leads to the
problem of blind (self-calibrating) quantum state tomography: let A : Cnd×d →
R

m be a linear map describing the measurement and calibration model. Given data
y = A(X) ∈ R

m and the linear map A, recover X under the assumption that

X ∈ {ξ ⊗ ρ | ξ ∈ K
N s-sparse, ρ ∈ Dn

r } ⊂ C
Nn×n . (1.9)

The blind quantum state tomography problem can be regarded as a non-
commutative analogon of bisparse recovery problems where the data is bilinear in
two sparse vectors both to be recovered. Similarly to the vector case, already the
projection onto the set of structured signal is an NP-hard problem. In fact, one can
encode the sparse PCA problem [31] and thereby CLIQUE into the task of finding
the closest element of the form ξ⊗ρ with ξ ∈ K

N , ρ ∈ Dn
r to a givenX ∈ K

Nn×n in
Frobenius norm, Ref. [38, Theorem 3]. For this reason, it is not possible to directly
derive an efficient algorithm based on a hard-thresholding operation for the blind
quantum tomography problem.

However, the problem of de-mixing a sparse sum of low-rank matrices intro-
duced in Sect. 1.5 can be seen as a relaxation to the closest hierarchically structured
signal class that still allows for an efficient projection. The analogy to the relation
of bisparsity and hierarchical sparsity is imminent.

Consequently, the SDT algorithm is a natural candidate to efficiently tackle the
blind tomography problem. Figure 1.8 shows numerical simulations of the perfor-
mance of the SDT algorithms in the blind quantum tomography task for a random
calibration model motivated by quantum technologies in comparison to a standard
low-rank tomography algorithm. The relaxation to the hierarchical structured prob-
lem, however, comes at the cost of a sub-optimal scaling in complexity theory.While
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Fig. 1.8 The figure (taken from Ref. [38]) displays the trace-norm reconstruction error for the
SDT algorithm compared to a standard low-rank tomography algorithm for a different number
of measurements m of sub-sampled random Pauli measurements. Each point depicts 30 random
measurement and signal instances with r = 1, d = 8, n = 10, and s = 3. The dotted lines indicate
the median. The inline figure shows the mean �2-norm reconstruction error of the calibration
coefficients for the SDT algorithm

a parameter counting of the original blind tomography problem hints at an optimal
scaling ofO(max{s logN, nr}), the sparse de-mixing problem introduces already in
parameter count an additional factor of s to the second term O(max{s logN, snr}).
Due to the sparsity assumption on the calibration parameters, the total number
of calibration parameter N still only enters logarithmically. For this reason, the
scheme remains highly scalable in practically relevant parameter regimes despite
the relaxation. At the same time, using the framework of hierarchical compressed
sensing outlined above provides a rich toolkit to equip the SDT with flexible
guarantees for many ensembles of measurement and calibration models. Another
algorithmic approach to bilinear structured problems such as the blind tomography
problem is constraint alternating minimization. We refer to Ref. [38] for further
details.

1.7 Conclusion and Outlook

In this chapter, we have introduced a framework for hierarchically compressed
sensing with a focus mostly on the reconstruction of hierarchically sparse signals.
In its core, standard approaches of compressed sensing naturally generalize to
hierarchically structured signals, giving rise to recovery algorithms equipped with
theoretical guarantees. Thereby, the successful recovery of hierarchically sparse
signals via hard-thresholding algorithms can be established under a custom-tailored
restricted isometry assumption. There are, however, a number of specific features
that separate the hierarchical framework from its more generic counterparts.
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At the heart of the approach is the fact that the projection operator onto the set
of hierarchically structured signals is efficiently calculable via hierarchical hard
thresholding. Unlike for, e.g., the bisparse structure, it can be computed in linear
time and is highly amenable to parallelization. This in turn renders the simple
recovery algorithm interesting in realistic parameter regimes and under practical
demands.

Furthermore, within the hierarchical framework, there is a large family of opera-
tors that obey the hierarchical, but not the standard restricted isometry property. This
makes the framework potentially applicable in settings where standard compressed
sensing is infeasible.

On a more theoretical level, the hierarchically sparse structure can be used as
a relaxation of the complicated bisparse structure. In particular, we have presented
numerical evidence that instances of the sparse blind deconvolution problem can
be solved using HiHTP. And we have invoked the same strategy for the quantum
tomography problem and other related questions. While in this context theoretical
guarantees are expected to be sub-optimal, the simplicity and flexibility of the
hierarchical framework might still be of merit in order to analyze complicated
measurement settings. We leave further exploring these matters to future research.
A particularly interesting question is to analyze the HiRIP properties of the blind
deconvolution operator.

Indeed, we have at the end of this chapter seen several exemplary applications
where the hierarchical approach facilitates recovery. This brings us to the arguably
most important feature of the framework: hierarchically structured signals naturally
emerge in many applications. From our own background and past research, we can
conclude this with some confidence. But of course, we very much suspect that
there are many applications we are unaware of where the hierarchical framework
is readily applicable. For the sake of clarity, we have mainly focused our exposition
on the set of two-level hierarchically sparse vectors and merely hinted at the gen-
eralizations towards multiple levels potentially mixing low-rankness and sparsity
and potentially even further structures that for themselves come with an efficient
projection. We hope that we have conveyed that the approach, and even most of the
results we presented, can be rather straightforwardly generalized to this rich family
of hierarchical signal structures, leaving the playing field wide open.
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