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ANHA Series Preface

The Applied and Numerical Harmonic Analysis (ANHA) book series aims to
provide the engineering, mathematical, and scientific communities with significant
developments in harmonic analysis, ranging from abstract harmonic analysis to
basic applications. The title of the series reflects the importance of applications
and numerical implementation, but richness and relevance of applications and
implementation depend fundamentally on the structure and depth of theoretical
underpinnings. Thus, from our point of view, the interleaving of theory and
applications and their creative symbiotic evolution are axiomatic.

Harmonic analysis is a wellspring of ideas and applicability that has flourished,
developed, and deepened over time within many disciplines and by means of
creative cross-fertilization with diverse areas. The intricate and fundamental rela-
tionship between harmonic analysis and fields such as signal processing, partial
differential equations (PDEs), and image processing is reflected in our state-of-the-
art ANHA series.

Our vision of modern harmonic analysis includes a broad array of mathematical
areas, e.g., wavelet theory, Banach algebras, classical Fourier analysis, time-
frequency analysis, deep learning, and fractal geometry, as well as the diverse topics
that impinge on them.

For example, wavelet theory can be considered an appropriate tool to deal with
some basic problems in digital signal processing, speech and image processing,
geophysics, pattern recognition, biomedical engineering, and turbulence. These
areas implement the latest technology from sampling methods on surfaces to fast
algorithms and computer vision methods. The underlying mathematics of wavelet
theory depends not only on classical Fourier analysis but also on ideas from abstract
harmonic analysis, including von Neumann algebras and the affine group. This leads
to a study of the Heisenberg group and its relationship to Gabor systems, and of the
metaplectic group for a meaningful interaction of signal decomposition methods.

The unifying influence of wavelet theory in the aforementioned topics illustrates
the justification for providing a means for centralizing and disseminating informa-
tion from the broader, but still focused, area of harmonic analysis. This will be a key
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vi ANHA Series Preface

role of ANHA. We intend to publish with the scope and interaction that such a host
of issues demands.

Along with our commitment to publish mathematically significant works at the
frontiers of harmonic analysis, we have a comparably strong commitment to publish
major advances in the following applicable topics in which harmonic analysis plays
a substantial role:

*Analytic Number theory * Antenna Theory * Artificial Intelligence * Biomedical
Signal Processing * Classical Fourier Analysis * Coding Theory *

Communications Theory * Compressed Sensing * Crystallography and
Quasi-Crystals * Data Mining * Data Science * Deep Learning * Digital Signal

Processing * Dimension Reduction and Classification * Fast Algorithms * Frame
Theory and Applications * Gabor Theory and Applications * Geophysics * Image

Processing * Machine Learning * Manifold Learning * Numerical Partial
Differential Equations * Neural Networks * Phaseless Reconstruction * Prediction
Theory * Quantum Information Theory * Radar Applications * Sampling Theory

(Uniform and Non-uniform) and Applications * Spectral Estimation * Speech
Processing * Statistical Signal Processing * Super-resolution * Time Series *

Time-Frequency and Time-Scale Analysis * Tomography * Turbulence *
Uncertainty Principles *Waveform design * Wavelet Theory and Applications

The above point of view for the ANHA book series is inspired by the history of
Fourier analysis itself, whose tentacles reach into so many fields.

In the last two centuries, Fourier analysis has had a major impact on the
development of mathematics, on the understanding of many engineering and
scientific phenomena, and on the solution of some of the most important problems
in mathematics and the sciences. Historically, Fourier series were developed in
the analysis of some of the classical PDEs of mathematical physics; these series
were used to solve such equations. In order to understand Fourier series and the
kinds of solutions they could represent, some of the most basic notions of analysis
were defined, e.g., the concept of “function.” Since the coefficients of Fourier
series are integrals, it is no surprise that Riemann integrals were conceived to deal
with uniqueness properties of trigonometric series. Cantor’s set theory was also
developed because of such uniqueness questions.

A basic problem in Fourier analysis is to show how complicated phenomena,
such as sound waves, can be described in terms of elementary harmonics. There are
two aspects of this problem: first, to find, or even define properly, the harmonics or
spectrum of a given phenomenon, e.g., the spectroscopy problem in optics; second,
to determine which phenomena can be constructed from given classes of harmonics,
as done, for example, by the mechanical synthesizers in tidal analysis.

Fourier analysis is also the natural setting for many other problems in engineer-
ing, mathematics, and the sciences. For example, Wiener’s Tauberian theorem in
Fourier analysis not only characterizes the behavior of the prime numbers but is
a fundamental tool for analyzing the ideal structures of Banach algebras. It also
provides the proper notion of spectrum for phenomena such as white light. This
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latter process leads to the Fourier analysis associated with correlation functions in
filtering and prediction problems. These problems, in turn, deal naturally with Hardy
spaces in complex analysis, as well as inspiring Wiener to consider communications
engineering in terms of feedback and stability, creating his cybernetics. This latter
theory develops concepts to understand complex systems such as learning and
cognition and neural networks, and it is arguably a precursor of deep learning and
its spectacular interactions with data science and AI.

Nowadays, some of the theory of PDEs has given way to the study of Fourier
integral operators. Problems in antenna theory are studied in terms of unimodular
trigonometric polynomials. Applications of Fourier analysis abound in signal
processing, whether with the fast Fourier transform (FFT), or filter design, or the
adaptive modeling inherent in time-frequency-scale methods such as wavelet theory.

The coherent states of mathematical physics are translated and modulated Fourier
transforms, and these are used, in conjunction with the uncertainty principle, for
dealing with signal reconstruction in communications theory. We are back to the
raison d’etre of the ANHA series!

College Park, MD John Benedetto
Wojciech Czaja

Boston, MA Kasso Okoudjou



Preface

In April 2014, the Deutsche Forschungsgemeinschaft (DFG, German Research
Foundation) established the Priority Program 1798 “Compressed Sensing in Infor-
mation Processing” (CoSIP). The objective of this volume is to offer a compre-
hensive overview of the scientific highlights obtained in the course of this Priority
Program, mainly during the second phase that started in July 2018.

Compressed sensing is an area of research with broad applications in electrical
engineering, computer science, and physics. It refers to situations where few
measurements already suffice to reconstruct a signal or image, despite the fact that
the acquired information leads to an underdetermined system of linear equations.
The key insight here is that most real-world signals are inherently sparse, that
is, for many natural classes of signals, there exist building blocks such that
decompositions of such signals with respect to these building blocks exhibit only
a small number of non-zero coefficients. It is remarkable that randomness has been
proven most successful in the acquisition step, enabling for a minimal number of
measurements. Furthermore, there exist efficient reconstruction algorithms which
make this approach feasible in practice.

The area of compressed sensing has attracted great interest of researchers in
mathematics and applied sciences since around 2004. A lot of recent research – both
in theory and application – are motivated by wireless communication and multiple-
input multiple-output channels (MIMO), which gain increasing importance with the
advent of digital technologies like the Internet of Things. In particular Chaps. 10, 11,
and 13 present an application-driven view point on wireless networks, while
Chap. 12 brings MIMO in context with radar imaging. These applications also
push forward the development of theory on different models of sparsity such as
hierarchical sparsity (see Chap. 1) or low-rank matrix recovery (Chap. 2), as well
as theory on covariance estimation (see Chaps. 3 and 4) and recovery algorithms
(see Chaps. 5–8). The rise of machine learning and deep neural networks likewise
leaves its imprint on compressed sensing-related topics in theory-driven research
(see Chaps. 7–9) as well as in research motivated by applications (see Chaps. 10, 13,
and 14). Last but not least, the problem of effectively acquiring compressive

ix
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measurements is still a challenge in particular applications, see Chap. 15 on moving
microphones and Chap. 16 on spherical near-field antenna measurements.

Overall, the network of SPP 1798 comprised more than 60 scientists, and
altogether 13 projects were funded in the second period and contributed to this
volume (Chaps. 8 and 9 are from the same project, the same holds for Chaps. 10
and 11). With Chap. 16, we also welcome a contribution from a project that has been
associated to CoSIP. The aim of this volume is of course not to give a complete
presentation of all results that have been obtained by participants of the Priority
Program but rather to collect the scientific highlights in order to demonstrate the
impact of CoSIP on further researches. The editors and authors hope that this
volume will arouse interest in the reader on the various new developments related to
compressed sensing that have been promoted by the Priority Program. For further
information concerning SPP 1798, please visit https://www.mathc.rwth-aachen.de/
spp1798ii/.

München, Germany Gitta Kutyniok
Aachen, Germany Holger Rauhut
Aachen, Germany Robert J. Kunsch
October 2021
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Chapter 1
Hierarchical Compressed Sensing

Jens Eisert, Axel Flinth, Benedikt Groß, Ingo Roth, and Gerhard Wunder

1.1 Introduction

The field of compressed sensing studies the recovery of structured signals from
linear measurements [12, 19]. Originally focusing on the structure of sparsity of
vectors, the framework was quickly extended to the structure of low-rankness
of matrices. These structures are simultaneously restrictive and rich. They are
restrictive so that they allow for signal recovery using far fewer linear measurements
than the ambient dimensions suggest and rich in that they naturally appear in a
plethora of applications. That being said, in many practically relevant applications,
the signals feature a more restrictive structure than mere sparsity or low-rankness.
A particularly important broad class arising in a wealth of contexts is hierarchically
structured signals. Such structures are in the focus of this book chapter.

J. Eisert
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2 J. Eisert et al.

The perhaps simplest examples are constituted by hierarchically sparse vectors.
A two-level hierarchically sparse vector is a vector consisting of multiple blocks
with a restricted support as follows: only a small number of the blocks have non-
vanishing entries and the blocks are themselves sparse. An illustrative example can
be given via imagining a telecommunication base station responsible for handling a
large set of potential users. If in each instance, only a few users actively transmit, and
the messages that are transmitted are sparsely representable, the vector compiling
all messages in its blocks is hierarchically sparse. The hierarchically sparse vectors
will serve as the main illustrative example of the entire chapter. It is straightforward
to generalize this notion for vectors with a hierarchy of nested blocks with sparsity
assumptions restricting the number of non-vanishing blocks on each level.

Another hierarchical structure of interest is given by replacing the sparsity
constraint on the vector-valued blocks by a low-rank assumption of matrix-valued
blocks. A motivating example here can be found in quantum tomography, where
quantum states can be modelled as low-rank Hermitian matrices. Hierarchical struc-
tures of quantum states arise here in the tasks of performing quantum tomography
with a partially uncalibrated measurement device or de-mixing sparse sums of
quantum states.

An intriguing feature of hierarchically structured signals is that their recovery
task is amenable to efficient thresholding algorithms. In general, thresholding
algorithms such as the iterative hard-thresholding pursuit are built on the insight
that, in contrast to the original recovery problem, the projection onto the set of
structured signals is efficient and in fact often particularly simple. This allows one
to employ algorithmic strategies such as projective gradient descent.

For hierarchically sparse signals, it turns out that the calculation of the projection
has the same computational complexity as the thresholding onto sparse signals.
Furthermore, the hierarchical structure allows for the parallelization of the projec-
tions for the blocks on each level yielding potential for further reducing the time
complexity by exploiting the restrictive structure. Based on this insight, we formally
introduce variants of the iterative hard-thresholding (IHT) algorithm and the hard-
thresholding pursuit (HTP) for hierarchically sparse signals.

For the IHT and HTP algorithm, recovery guarantees for measurement maps
that act close to isometrically, on sparse vectors, exist. Due to their similarity, the
recovery algorithms for hierarchically sparse signals inherit the recovery guarantees
from the original IHT and HTP provided the measurement map exhibits a restricted
isometry property (RIP) that is adapted to the hierarchically structured signal set.
We refer to the modified RIP restricted to hierarchically sparse signals as the
hierarchically restricted isometry property (HiRIP).

In this chapter, we derive a series of theoretical results concerning the HiRIP.
Requiring only HiRIP instead of RIP for the measurement opens up the pos-
sibility of exploiting multiple benefits. First, standard measurement ensembles
such as random Gaussian matrices can achieve HiRIP with a reduced sampling
complexity compared to RIP. The achievable logarithmic improvement mirrors
the reduced complexity of the restricted signal set compared to standard sparse
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vectors. Second, we introduce an ensemble of operators that do have the HiRIP,
but not RIP in any parameter regime. We give this flexible class of operators the
name hierarchical measurements since they are naturally adapted to hierarchical
structures. Hierarchical measurements combine different measurement maps on
each level of the hierarchy and, as we show, inherit HiRIP from standard RIP
and coherence properties of their constituent maps. An important instance of
hierarchical measurement is Kronecker products of measurements such that each
factor acts on the blocks of a certain hierarchy level.

Finally, we illustrate how the framework of hierarchical compressed sensing can
be applied in applications in machine-type communications and quantum technolo-
gies providing motivating examples and evaluations of practical performances.

Let us end with an outline of the remainder of the chapter. In Sects. 1.2 and
1.3, respectively, we formally introduce hierarchically sparse vectors and present
the algorithms used to recover them. Section 1.4 is devoted to theoretical results
concerning the hierarchical restricted isometry property (HiRIP) and step by step
develops a flexible toolkit to establish the HiRIP for large classes of measurement
ensembles. In Sect. 1.5, we move on to discussing the sparse, low-rank signal model,
including how the recovery algorithms can be adapted. In Sect. 1.6, we provide a
more specific discussion of selected applications. We close with a conclusion as
well as a small outlook in Sect. 1.7.

1.2 Hierarchically Sparse Vectors

We consider structured sparse signals that are vectors over the field K, referring
to either the reals R or the complex numbers C, and are hierarchically structured
into blocks. The support is restricted by sparsity assumptions on one or multiple
hierarchy levels. The simplest instance of hierarchically sparse signals is two-level
hierarchically sparse vector with constant block sizes and sparsities [20, 41–43].

Definition 1.1 (Two-Level Hierarchically Sparse Vectors) Let N, n, s, σ ∈ N.
A vector x ∈ K

Nn is called (s, σ )-hierarchically sparse, if it consists of blocks
xi ∈ K

n, x� = (x�1 , . . . , x�i , . . . , x�N)�, where at most s blocks xi are non-zero,
and each of the non-zero blocks is at most σ -sparse.

For brevity, we write (s, σ )-sparse, dropping the hierarchically in the following.
We refer to the set of (s, σ )-sparse vectors in K

Nn as SN,n
s,σ or simply S if the

parameters are clear from the context. We also call the support supp(x) ⊂ [N ]× [n]
of an (s, σ )-sparse vector a (s, σ )-sparse support, where [n] := {1, . . . , n}. The
definition of a two-level hierarchically sparse vectors can be generalized in several
directions: We can allow different block sizes and block sparsities. Furthermore,
each block is allowed to be a hierarchically sparse vector itself. This gives rise to
a more general recursive definition of hierarchically sparse vectors with arbitrary
many levels. The defining data of such a general hierarchically sparse vector can
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(4, 2)

(1, 1) (3, 2) (2, 1) (2, 1)

(4, 2) (6, 2) (5, 2) (3, 1) (5, 2) (10, 4) (6, 3) (3, 1)

Fig. 1.1 This figure shows an example of a hierarchically sparse vector. The grouping of the
entries is encoded in a rooted tree. The children of a vertex constitute a block at their level. The
pair of values at each vertex indicates the block size (the number of children) and the sparsity, i.e.
the number of children with non-vanishing entries. The leaves of the tree are identified with the
entries of the vector. The support of the vector drawn below and corresponding vertices with non-
vanishing entries are highlighted in red. ©2020 IEEE. Reprinted, with permission, from Ref. [35]

be collected in a rooted tree consisting of nodes, labelled by block sizes and
sparsities, see Fig. 1.1. We refer to Ref. [35] for a formal definition of general
hierarchically sparse vectors. Other special cases of hierarchically sparse vectors
have been considered in the literature. Prominent examples are block sparse [13, 14]
and level sparse [3, 28] vectors.

Another setting where the hierarchical sparsity naturally emerges is so-called
bi-sparsity, see e.g. Ref. [18]. In said reference, a Hermitian matrix X ∈ K

n×n is
called bisparse if there exists a set S ⊆ [N ] with |S| ≤ s so that Xij is non-zero,
only if both i and j are in S. Clearly, any bisparse matrix can be interpreted as
an (s, s)-sparse vector. More generally, a matrix Y ∈ K

N×n with Yij non-zero for
i ∈ S and j ∈ � for sets with cardinalities |S| = s, |, �| ≤ σ can be regarded
as (s, σ )-bisparse and in the same manner identified with an (s, σ )-sparse vector.
Bisparsity is of course more restrictive than hierarchical sparsity, but the projection
operator onto the set of bisparse matrices is—in stark contrast to its hierarchical
sparsity counterpart—NP-hard to compute. Hierarchical sparsity can thus be seen
as a relaxation of bisparsity which allows for more efficient recovery procedures.
We refer to Ref. [18] for a more comprehensive discussion on these matters, as
well as other ways to relax the bisparse structures. We encounter this relaxation in
conjunction with blind deconvolution in Sect. 1.6.2 and a non-commutative analog
of it in our discussion of blind quantum tomography in Sect. 1.6.3.

For simplicity and notational clarity, we content ourselves to present the frame-
work for two-level hierarchically sparse vectors. It is straightforward to generalize
the algorithmic strategies and most analytical results of this chapter to the general
definition of hierarchically sparse vectors outlined above, see Ref. [35] for details.
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1.3 Hierarchical Thresholding and Recovery Algorithms

We study the linear inverse problem of recovering an (s, σ )-hierarchically sparse
vector x ∈ K

Nn from noisy linear measurements of the form

y = Mx + e,

where M ∈ K
m×Nn is the linear measurement operator and e ∈ K

m encodes
additive noise. The recovery task can be cast as the constraint optimization problem

minimize
x∈KNn

1

2
‖y −Mx‖2 subject to x is (s, σ )-sparse., (1.1)

where ‖y‖ = [∑i |yi |2
]1/2

denotes the �2-norm.
So-called hard-thresholding algorithms solve the analogous optimization prob-

lem to (1.1) for standard s-sparse recovery by making use of the projection of a
vector z ∈ K

n onto the set of s-sparse vectors. The projection onto s-sparse vectors,

Ts(z) := argmin
x∈Kn

‖x − z‖ subject to x s-sparse,

can be computed efficiently via hard thresholding, i.e. by setting to zero all but the
s largest entries in absolute value. Note that since the set of s-sparse vectors in K

n

is not a convex set, the projection is non-unique. But for the arguments made here
every solution works equally well. Using a quick-select algorithm [24], the average
computational complexity of the thresholding operation is in O(n) with worst-case
complexity O(n2).

Following the blueprint of model-based compressed sensing [4], we can derive
variants of standard hard-thresholding algorithms for the more restrictive sparsity
structure under consideration here by modifying the thresholding operator accord-
ingly. The projection of a vector z ∈ K

Nn onto the set S of (s, σ )-hierarchically
sparse vectors,

Ts,σ (z) = argmin
x∈S

1

2
‖x − z‖2 ,

can be computed via hierarchical hard thresholding: first, the standard hard thresh-
olding operation Tσ is applied to each block. Then, all but the s blocks with largest
�2-norm are set to zero. The procedure is summarized as Algorithm 1 and illustrated
in Fig. 1.2. We find that the average computational complexity of the hierarchical
thresholding operation scales as O(Nn), i.e. linear in the overall vector space
dimension as for the standard hard thresholding. Furthermore, the hard thresholding
and �2-norm calculation of the different blocks can be parallelized, reducing the
time complexity to O(max(N, n)). The hierarchical thresholding operation can be
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Algorithm 1: Hierarchical hard thresholding

input : z ∈ K
Nn, sparsity levels (s, σ )

1 for i ∈ [N ] do
2 xi = Tσ (zi);
3 νi = ‖xi‖;
4 end
5 I = supp (Ts ((ν1, . . . , νN )));
6 for i ∈ [N ] \ I do
7 xi = 0
8 end

output : (s, σ )-hierarchically sparse vector x = (x�1 , . . . , x�N)�

Fig. 1.2 In this figure, the evaluation of the hierarchical thresholding operator Ts,σ is illustrated.
Starting with a given dense vector (a), each block is thresholded to its best σ -sparse approximation
(b). To determine the s dominant blocks, the �2-norm is calculated for each block. The resulting
vector (c) of length N is again thresholded to its best s-sparse approximation (d). The resulting
blocks indicated by the s-sparse approximation (d) are selected from the σ -sparse approximation
(b). The remaining (s, σ )-sparse support (e) is the output of Ts,σ . ©2020 IEEE. Reprinted, with
permission, from Ref. [35]

extended recursively to general hierarchically sparse signals described in Sect. 1.2
without increasing the overall computational complexity.

Equipped with an efficient thresholding operation, we can formulate recovery
algorithms for hierarchically sparse signals following standard strategies. A par-
ticularly simple algorithm is the iterative hard thresholding algorithm [5] which
performs a projected gradient descent. The resulting hierarchical iterative hard-
thresholding algorithm (HiIHT, Algorithm 2 [53]) alternates gradient descent steps
of the objective function (1.1) with the hard-thresholding operation Ts,σ .
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Algorithm 2: HiIHT algorithm

input : data y ∈ K
m, measurement operator M ∈ K

m×Nn, sparsity levels (s, σ )
initialize: x(0) = 0

1 repeat
2 x̄(t) = x(t−1) + τ (t)M∗ (y −Mx(t−1)

)
;

3 x(t) = Ts,σ

(
x̄(t)
)
;

4 until stopping criterion is met at t = t∗
output : (s, σ )-sparse vector x(t

∗)

Algorithm 3: HiHTP algorithm

input : data y ∈ K
m, measurement operator M ∈ K

m×Nn, sparsity levels (s, σ )
initialize: x(0) = 0

1 repeat
2 x̄(t) = x(t−1) + τ (t)M∗ (y −Mx(t−1)

)
;

3 I (t) = supp
(
Ts,σ

(
x̄(t)
))

;
4 x(t) = argmin

x

1
2‖y −Mx‖2 subject to supp(x) ⊆ I (t);

5 until stopping criterion is met at t = t∗
output : (s, σ )-sparse vector x(t

∗)

Here, τ (t) is a suitably chosen step size. The original IHT algorithms use constant
steps τ (t) = 1 for all t . Alternative strategies include backtracking as in the
normalized iterative hard thresholding (NIHT) algorithm [6].

Faster convergence can be achieved with an adaption of the hard-thresholding
pursuit [17] to hierarchical sparsity, the HiHTP [35, 36]. Compared to the HiIHT, the
HiHTP algorithm uses the result of the thresholded gradient step as a proxy to guess
the support of the correct solution in each step. Subsequently, a linear least-squares
problem is solved on the support guess. The solution can be computed via pseudo-
inverse or an approximate method. Notably, with this modification, if the algorithm
finds the correct solution, it does this in a finite number of steps to the precision of
the least-squares problem solver. The HiHTP algorithm is given as Algorithm 3.

The computational complexity of both algorithms, HiIHT and HiHTP, is typi-
cally dominated by the matrix vector multiplication with the measurement matrix
M and M∗, scaling in general as O(mNn). If a fast matrix vector multiplication is
available for the measurement matrix, this scaling can be significantly improved.

The additional least-square solution in the HiHTP algorithm contributes
O(sσm2) operations. For this reason, HiIHT can be faster per iteration than the
HiHTP in certain parameter regimes. Note that the computational complexity,
featuring the overall vector space dimension Nn and the total sparsity sσ , is
identical to the complexity of the original IHT and HTP algorithms.

Modifications using hierarchically sparse thresholding can also be applied to
other compressed sensing algorithms such as the CoSAMP [32], the Subspace
Pursuit [10], or Orthogonal Matching Pursuit, see e.g. Refs. [30, 46] and the
references therein. Proximal operators of the convex relaxations of the problem
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(1.1) can be calculated using soft-thresholding operations yielding a hierarchical
version of the LASSO algorithms [20, 41–43]. Due to their similarity, the HiIHT
and HiHTP algorithms inherit their convergence proofs and recovery guarantees
with slight modifications from their non-hierarchical counterparts. To this end, we
make use of the variant of the restricted isometry property (RIP) [8] adapted to
hierarchically sparse signals.

Definition 1.2 (Hierarchical Restricted Isometry Property (HiRIP)) Given a
linear operator M : KNn → K

m, we denote by δs,σ the smallest constant such
that

(1− δs,σ )‖x‖2 ≤ ‖Mx‖2 ≤ (1+ δs,σ )‖x‖2

holds for all (s, σ )-hierarchically sparse vectors x ∈ K
Nn.

We will also refer to the standard s-sparse RIP constant δs , defined analogously
with the bounds holding for all s-sparse vectors. The standard RIP constant
dominates the HiRIP constant as δsσ ≥ δs,σ since Ss,σ is a subset of the set of s · σ -
sparse vectors. But as we will see below, using the HiRIP allows for a considerably
more fine-grained analysis, yielding improvements in the sampling complexity.

In terms of a HiRIP condition, we can guarantee a robust and stable convergence
to the correct solution for the hierarchical hard-thresholding algorithms. To this end,
given x ∈ K

Nn and a support set � ⊂ [N ] × [n], we denote by x�� the projection
of x onto the subspace of KNn indicated by �.

Theorem 1.1 (Recovery Guarantee for HiIHT and HiHTP [35, 53]) Suppose
the measurement operatorM : KNn → K

m satisfies the HiRIP condition

δ3s,2σ < δ∗,

where δ∗ is a threshold, equal to 1/
√

3 for the HiHTP algorithm and equal to
√

2−
1 for the HiIHT algorithm. Then, for x ∈ K

Nn, e ∈ K
m, and � ⊂ [N ] × [n]

an (s, σ )-hierarchically sparse support set, the sequence (xk)k defined by HiIHT
(Algorithm 2) or HiHTP (Algorithm 3), respectively, with y = Mx�� + e satisfies,
for any k ≥ 0,

‖xk − x��‖ ≤ ρk‖x0 − x��‖ + τ‖e‖,

where the constants ρ and τ depend on which algorithm is used: for HiIHT,

ρHiIHT = √3δ3s,2σ , τHiIHT = 2.18

1− ρHiIHT
,

whereas for HiHTP,
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ρHiHTP =
(

2δ3s,2σ

1− δ2
(2s,2σ)

)1/2

, τHiHTP = 5.15

1− ρHiHTP
.

The theorem’s proof follows closely along the lines of the standard proofs for
HTP and IHT as found, e.g. in Refs. [7, 17, 19]. A detailed proof can be found in
Refs. [35, 53], respectively.

1.4 Hierarchically Restricted Isometric Measurements

The results of the last section make it clear that the HiRIP property has the same role
for hierarchically sparse recovery as the RIP takes on for sparse recovery. If we can
prove that an operator A, for appropriate hi-sparsity levels (s, σ ), has the HiRIP, it
is guaranteed that HiHTP can recover x from the measurements Ax. In this chapter,
we will establish the HiRIP for several families of measurement operators, using
more and more specialized techniques.

1.4.1 Gaussian Operators

Let us first discuss the HiRIP properties of the arguably most well-known random
construction of a measurement operator: the Gaussian random matrix. A random
matrix A ∈ K

m×n is thereby said to be Gaussian if the entries are i.i.d. distributed
according to the standard normal distribution N(0, 1).

It has become a folklore result (see e.g. Ref. [19, Ch.9]) that if A is Gaussian, the
renormalized matrix 1√

m
A has the s-RIP with high probability if

m � s log
(n
s

)
,

where the notation � f (x) means greater than C · f (x), with C an unspecified
universal numerical constant. It is therefore natural to ask how large m needs
to be in order for 1√

m
A to have the (s, σ )-HiRIP. Since (s, σ )-sparsity is more

restrictive than sσ -sparsity, we surely will not need more than const. · sσ · log
(
sσ
nN

)

measurements. But is the threshold lower for the HiRIP? And if so, how much?
In fact, the framework of model-based compressed sensing [4] gives us a standard

route to answer this question for the Gaussian ensemble. Let us sketch this route
in some detail. First, one realizes that for any normalized fixed x ∈ K

N , the
random vector 1√

m
Ax is also Gaussian and as such obeys the following measure

concentration inequality:
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P

( ∣∣∣∣
∥∥∥ 1√

m
Ax

∥∥∥
2 − 1

∣∣∣∣ > δ

)
≤ 2 exp

(
−cmδ2

)
,

where c is a numerical constant. For a fixed vector x ∈ K
n, 1√

m
A preserves its norm

with high probability.
Second, we generalize the almost isometric behaviour to hold for all vectors

supported on a certain k-dimensional subspace V . To this end, we first establish that
it suffices that the measurement operator acts almost isometrically on a so-called ρ-
net for the intersection of the Euclidean unit ball with V . A ρ-net for a set M is a set
N with the property that for any q ∈ M , there exists a p ∈ N with ‖q − p‖2 < ρ.
It is not hard to construct a ρ-net for the normalized elements of V with cardinality
[19]

|N | ≤ Cnet

(
1+ 2

ρ

)k
.

By choosing ρ suitably and applying a union bound over the ρ-net, we obtain for
any support S with |S| = k

P

( ∣∣∣∣
∥∥∥ 1√

m
Ax

∥∥∥
2 − 1

∣
∣∣∣ > δ ∀x : supp(x) = S

)
≤ Cλk exp

(
−c̃mδ2

)
, (1.2)

where C, λ, and c̃ are universal numerical constants. With (1.2) at our disposal, it
is only one step to establish an isometry property for 1√

m
A ∈ R

m×N ·n for an entire
union of subspaces such as structured sparse vectors. For instance, in order to get
the (s, σ )-HiRIP, we need to take a union bound over all (s, σ )-sparse supports S.
There are

(
N
s

)(
n
σ

)s such supports. Therefore

P

( ∣∣∣∣
∥∥∥ 1√

m
Ax

∥∥∥
2 − 1

∣∣∣∣ > δ ∀ (s, σ )-sparse x

)
≤ C

(
N

s

)(
n

σ

)s
λsσ exp

(
−c̃mδ2

)
.

This probability is dominated by ε, if

m ≥ c̃−1δ−2 log

(
C

(
N

s

)(
n

σ

)s
λsσ ε−1

)
.

Using the Stirling approximation
(
p
k

) ∼ (p
k

)k , we obtain the more readable
condition

m � δ−2
(
s log

(
N
s

)+ sσ log
(
n
σ

)+ log
(

1
ε

))
.

Let us state this as a theorem.

Theorem 1.2 (HiRIP for Gaussian Matrices) Let A ∈ K
m,n·N be random

Gaussian. Then there is a universal numerical constant C > 0 so that if
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Fig. 1.3 Left: the number of recovered signals from 100 noiseless Gaussian samples over the
number of measurements m for HTP, HiLasso, and HiHTP. The signals consist of N = 30 blocks
of size n = 100 with s = 4 blocks having σ = 20 non-vanishing real entries. Right: the number of
recovered blocks over the number of measurements m for HTP and HiHTP. The dashed and dotted
lines indicate the average number of correctly recovered zero and non-zero blocks, respectively.
The solid lines show the total average number of recovered blocks. The signals consist of N =
30 blocks with s = 4 blocks having non-vanishing real entries. A signal or block is considered
recovered if it deviates from the true signal by less than 10−5 in �2-norm. ©2020 IEEE. Reprinted,
with permission, from Ref. [35]

m ≥ C
δ2

(
s log

(
N
s

)+ sσ log
(
n
σ

)+ log
(

1
ε

))
, (1.3)

1√
m
A has an (s, σ )-HiRIP constant δs,σ (A) ≤ δ with probability as least 1− ε.

The difference of the condition (1.3) compared to the one needed to establish the
standard RIP

m ≥ C
δ2

(
sσ log

(
Nn
sσ

)+ log
(

1
ε

))
(1.4)

is subtle. After all, both thresholds can be written as sσ multiplied with logarithmic
terms in the dimension of surrounding space. However, for certain parameter
regimes, the difference is significant. Indeed, in the scenario that N � n, (1.3)
can be much smaller than (1.4). This establishes that for Gaussian random matrices,
hierarchical thresholding algorithms are theoretically expected to have an improved
sampling complexity compared to their standard counterparts. Also in the non-
asymptotic regime, one can observe an improved sample requirement in numerical
simulation, see Fig. 1.3.

Note that the above discussion can be applied without problems to sub-Gaussian
matrices. A matrix is sub-Gaussian if the entries ai,j are i.i.d. distributed according
to a distribution that obeys P

(|ai,j | > t
) ≤ α exp

(−βt2
)

for some α, β > 0.
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1.4.2 Coherence Measures

The discussion in the last section very much relies on the random nature of the
measurement operator. This is a common feature of compressed sensing-related
theories—in order to obtain an optimal scaling, one practically has no choice other
than to use a random construction. A possible route to still establish (non-optimal)
RIP results for non-random matrices is to take a detour via so-called coherence
measures. The simplest result is as follows [19, Prop 6.2]: if we define the mutual
coherence of a matrix with normalized columns ai as

μ(A) = sup
i,j

|〈ai, aj 〉|,

the RIP constants obey

δs(A) ≤ (s − 1)μ(A). (1.5)

To establish analogous results for the HiRIP constants, we need to use coherence
measures adapted to the block structure. Such measures have been introduced in
Ref. [43] for the analysis of the HiLasso algorithm. To work with these coherence
measures, it is convenient to introduce further notation to refer to the blocks of a
vector individually. To this end, we use the Kronecker product of matrices in the
convention

A⊗ B =
⎛

⎜
⎝

a1,1B . . . a1,NB
...

. . .
...

am,1B . . . am,NB

⎞

⎟
⎠ ,

where ai,j denotes the entries of A. The Kronecker product trivially also provides a
Kronecker product on vectors K

N × K
n → K

Nn understood as n × 1 and N × 1
matrices, respectively. Using the basis {ei}i∈[N ], (ei)j = δi,j of KN , we can rewrite
a blocked vector x ∈ K

Nn with blocks xi ∈ K
n, i ∈ [N ], as the sum of products

x = (x�1 , x�2 . . . , x�N)� =
∑

i∈[N ] ei ⊗ xi . The Kronecker product exemplifies the
canonical vector space isomorphism of KNn with the tensor product space K

N ⊗
K
n. Analogously, we identify the measurement matrices A ∈ K

m×N ·n with linear
operators A : KN ⊗ K

n → K
m. We refer to Ai ∈ K

m×n, i ∈ [N ], defined through
Ai(v) = A(ei ⊗ v), v ∈ K

n, as the block operators of A. Now we introduce the
specialized coherence measures.

Definition 1.3 (Sub-coherence and Block Coherence) Let A : KN ⊗ K
n → K

m

with block operators Ai ∈ K
m×n and let {ai,j }j∈[n] be the columns of the ith block

operator. We define

1. The sub-coherence ν(A) of A as the maximal mutual coherence of the block
operators, i.e.
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ν(A) = sup
i

μ(Ai) = sup
i

sup
j �=k
|〈ai,j , ai,k〉|.

2. The sparse block coherence μσσ
block(A) of A as

μσσ
block(A) = sup

i �=j
ρσσ (A∗i Aj ),

where ρσσ (B) denotes the σ -sparse singular value of a matrix B ∈ K
N×N ,

ρσσ (B) = sup
u,v σ -sparse
‖u‖=‖v‖=1

|〈u,Bv〉|.

Intuitively, ν(A) measures the coherence within each block, whereas μσσ
block(A)

measures the coherence between the blocks. Note that we have used a different
normalization in the definition of the sparse block coherence compared to Ref.
[43]. We can establish the following bounds on the HiRIP constants in terms of
the coherence measures.

Theorem 1.3 (HiRIP Through Coherence Bound) Let A : KN ⊗ K
n → K

m be
an operator with block operators Ai and s ∈ [N ], σ ∈ [n]. It holds that
1. supi δσ (Ai) ≤ δ1,σ (A) and μσσ

block(A) ≤ 2δ2,σ (A).

2. δs,σ (A) ≤ supi δσ (Ai)+ (s − 1)μσσ
block(A).

In addition, if all columns of the block operators Ai are normalized, then

δs,σ (A) ≤ (σ − 1)ν(A)+ (s − 1)μσσ
block(A) .

Proof

1. Let j �= k and x, y ∈ K
n be σ -sparse normalized vectors. First, we have

|‖Ajx‖2 − ‖x‖2| = |‖A(ej ⊗ x)‖2 − ‖ej ⊗ x‖2| ≤ δ1,σ (A),

since ej ⊗ x is (1, σ )-sparse. This proves the first claim. For the second claim,
we use the polarization identity to find

〈Ajx,Aky〉 = 1

4

3∑

�=0

i�
∥∥∥Ajx + i�Aky

∥∥∥
2 = 1

4

3∑

�=0

i�
∥∥∥A(ej ⊗ x + i�ek ⊗ y)

∥∥∥
2
.

Since ej ⊗ x and ek ⊗ y have disjoint block supports, ej ⊗ x + i�ek ⊗ y are
(2, σ )-sparse for all �. Hence,
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∣∣
∣∣∣
1

4

3∑

�=0

i�
∥
∥∥A(ej ⊗ x + i�ek ⊗ y)

∥
∥∥

2 − 1

4

3∑

�=0

i�
∥
∥∥ej ⊗ x + i�ek ⊗ y

∥
∥∥

2
∣∣
∣∣∣

≤ δ2,σ · 1

4

3∑

�=0

∥∥∥ej ⊗ x + i�ek ⊗ y

∥∥∥
2
.

Now we use that
∥
∥ej ⊗ x + i�ek ⊗ y

∥
∥2 = 2 for all �. This proves both that the

final bound above equals 1
2δs,σ and that

∑3
�=0 i

�
∥∥ej ⊗ x + i�ek ⊗ y

∥∥2 = 0,
yielding the claim.

2. Let x = ∑i ei ⊗ xi be an (s, σ )-sparse and normalized signal. There exists an
S ⊆ [N ] with |S| = s so that xi = 0 for i /∈ S. We have

‖Ax‖2 =
N∑

i=1

‖Aixi‖2 +
∑

i �=j
〈Aixi, Ajxj 〉.

Each xi is σ -sparse and, thus, |‖Aixi‖2−‖xi‖2| ≤ δσ (Ai)‖xi‖2. Taking the sum
over i yields

∣∣∣
∣∣
‖x‖2 −

N∑

i=1

‖Aixi‖2

∣∣∣
∣∣
≤ sup

i

δσ (Ai)‖x‖2.

We still need to deal with the cross-block terms. Let the support of xi be denoted
Si , the orthogonal projection onto the space supported on Si with PSi , and define
V as the subspace with the same support as x. Consider the operator C : V → V ,

y =
∑

i

ei ⊗ yi �→
∑

i∈S
ei ⊗ PSi

⎛

⎝
∑

k∈S\{i}
A∗i Akyk

⎞

⎠ .

We have

∑

i �=j
〈Aixi, Ajxj 〉 = 〈x, Cx〉,

and C is Hermitian. The latter implies that |〈x, Cx〉| ≤ λ‖x‖2, where λ is the
magnitude of the largest eigenvalue of C. To estimate λ, let v = ∑i ei ⊗ vi
be a normalized eigenvector for C and i such that ‖vi‖ is maximal. We have
λvi = PSi

∑
k∈S A∗i Akvk , and consequently

λ‖vi‖2 = 〈vi, PSi

∑

k∈S
A∗i Akvk〉 =

∑

k∈S
k �=i

〈Aivi, Akvk〉
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≤
∑

k∈S
k �=i

μσσ
block(A)‖vi‖‖vk‖ ≤ (s − 1)μσσ

block(A)‖vi‖2.

In the second step, we have used that vi = PSi vi , since v ∈ V . In the penultimate
step, we have used that vi and vk all are σ -sparse and that each index k in the
sum is different from i. In the final step, we have used the optimality of i. This
proves that λ ≤ (s − 1)μσσ

block(A) and therefore the claim.
Finally, the addition of the theorem follows from the claim with (1.5). ��

The above result can be applied to construct a large family of operators that
have suitably small HiRIP constants without exhibiting RIP in this regime. Consider
N pairwise orthogonal, p-dimensional subspaces of K

m, and Ei : K
p → K

m

isometric embeddings onto them. Let further C ∈ K
p×n be a fixed matrix with

δσ (C) = δ < 1. We consider the operator

A : KN ⊗K
n → K

m, x �→
N∑

i=1

EiCxi.

The block operators of A are given by EiC, i ∈ [N ], and each of them is
compressively encoding K

n into one of the mutually orthogonal subspaces. Due
to the fact that the Ei are isometric, δσ (Ai) = δσ (C) for each i. The pairwise
orthogonality of the subspaces implies that A∗i Aj = 0 for i �= j , so that μσσ

block(A) =
0. Theorem 1.3 then implies that δs,σ (A) ≤ δ(C) for any s.

The above construction will generically not result in an operator with small
δsσ (A). To this end, suppose that sσ ≤ n and p ≤ n − sσ . Then, there exists an
sσ -sparse w ∈ K

n with Cw = 0. Now the vector x = (w, 0, . . . , 0) is sσ -sparse,
but
∣∣‖Ax‖2 − ‖x‖2

∣∣ = ∣∣‖0‖2 − ‖x‖2
∣∣ = ‖x‖2. We conclude that δsσ (A) ≥ 1.

A disadvantage of this construction is that necessarily m ≥ Np ≥ Nσ . This is
a considerably worse scaling than we found for Gaussian random matrices, which
exhibit the HiRIP for m � sσ up to log-factors. The scaling in N as opposed to
the sparsity parameter on the block-level s arises from the encoding into mutually
orthogonal subspaces. The idea of ‘mixing’ block operators can, however, be driven
a lot further to avoid this overhead as we will see in the next section.

1.4.3 Hierarchical Measurement Operators

As we saw above, a measurement operator on K
N ⊗ K

n can always be thought of
as a mixture of block operators, say

B(x) =
N∑

i=1

Bixi .



16 J. Eisert et al.

The inequalities in Theorem 1.3, part 1 imply that in order for B to have a small
HiRIP constant, we need each block operator to be well-conditioned, and in addition
that the blocks are incoherent. What can we do when they are not?

Assume that instead of just observing Bx, we are allowed to sample a few
different linear combinations of the vectors Bixi ,

y =
(

N∑

i=1

ai,jBixi

)

j∈[M]
=

N∑

i=1

ai ⊗ Bixi,

with ai = (aj,i)j∈[M] ∈ K
M . Can this make recovery easier? Let us define such

measurement operators that act hierarchically on the block structure of the vectors
as hierarchical measurement operators.

Definition 1.4 (Hierarchical Measurement Operators) Let A ∈ K
M,N and Bi ∈

K
m,n, i = 1, . . . , N , be given and denote the ith column of A by ai . We call the

operator

H : KN ⊗K
n → K

M ⊗K
m, x �→

N∑

i=1

ai ⊗ Bixi,

the hierarchical measurement operator defined by A and (Bi)i∈[N ].

The structure and naming of hierarchical operators makes it easy to believe that
they are an excellent fit for hierarchically sparse recovery. They are, however, by no
means only of academic interest. We will discuss this more thoroughly in Sect. 1.6.
For now, the practical interest might already become apparent by noting that an
important special case of hierarchical measurement operators is the following: in the
case of Bi = B being equal, the hierarchical operator is the same as the Kronecker
product A⊗B of the matrices A and B. How do the hierarchical isometry constants
ofH relate to the ones of A and the Bis? In order to discuss this question, we begin
by proving the following lemma.

Lemma 1.1 (RIP Implies Nuclear Norm Isometry) Let X ∈ K
N×N have the

property that for some sets S and S of cardinality s, Xi,j = 0 if either i /∈ S or
j /∈ S.

1. If X is positive-definite Hermitian, which in particular implies S = S,

∣∣〈A∗A,X〉 − ‖X‖∗
∣∣ ≤ δs(A)‖X‖∗ .

2. If S and S are disjoint,

|〈A∗A,X〉| ≤ δ2s(A)‖X‖∗ .
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Here, ‖X‖∗ denotes the nuclear norm, also known as the trace norm, of X, i.e. the
sum of its singular values.

Proof Consider a singular value decomposition of X, X = ∑N
i=1 σiviu

∗
i . We have

〈A∗A,X〉 = ∑N
i=1 σi〈Aui,Avi〉. Due to the assumption, for all i with σi �= 0,

supp(vi) ⊂ S and supp(vi) ⊂ S.

1. For X positive-definite, the σi are the eigenvalues of X, and ui = vi . Since each
ui is s-sparse, it holds that

∣∣〈A∗A,X〉 − ‖X‖∗
∣∣ ≤

N∑

i=1

σi |〈Aui,Aui〉 − 1| ≤
N∑

i=1

σi · δs(A) = δs(A)‖X‖∗.

2. Ref. [19, Prop. 6.3] states that since the supports of ui and vi are disjoint, we
have |〈Aui,Avi〉| ≤ δ2s(A). This in turn implies

|〈A∗A,X〉| ≤
N∑

i=1

σi |〈Aui,Avi〉| ≤
N∑

i=1

σiδ2s(A) = δ2s(A)‖X‖∗ .
��

We now prove thatH inherits the HiRIP from the RIP of its constituent matrices,
in that δs,σ (H) can be bounded in terms of δs(A) and the constants δσ (Bi).

Theorem 1.4 (Hierarchically Inherited HiRIP) Let H be the hierarchical oper-
ator defined by A and (Bi)i∈[N ]. We have for s, σ arbitrary

δs,σ (H) ≤ δs(A)+ sup
i

δσ (Bi)+ δs(A) · sup
i

δσ (Bi).

Proof Let x be normalized and (s, σ )-sparse and S such that ai = 0 for i /∈ S. We
have

‖H(x)‖ =
N∑

i,j=1

〈ai ⊗ (Bixi), aj ⊗ (Bj xj )〉 =
N∑

i,j=1

〈ai , aj 〉〈Bixi , Bj xj 〉 = 〈A∗A,G〉,

where G ∈ K
N×N denotes the matrix with non-vanishing entries Gi,j =

〈Bixi, Bjxj 〉 for i ∈ S and j ∈ S. By Lemma 1.1, part 1,

|〈A∗A,G〉 − ‖G‖∗| ≤ δs(A)‖G‖∗. (1.6)

It remains to estimate ‖G‖∗. In order to do this, consider the operator M :
K
|S| → K

m, c �→ ∑
i∈S ciBixi . By construction, G = M∗M , and therefore,

‖G‖∗ = ‖M‖2 = ∑i∈S ‖Bixi‖2, where ‖ · ‖ here refers to the Frobenius norm.
Consequently,
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∣∣∣‖G‖∗ − ‖x‖2
∣∣∣ ≤
∑

i∈S

∣∣∣‖Bixi‖2 − ‖xi‖2
∣∣∣ ≤
∑

i∈S
δσ (Bi)‖xi‖2. (1.7)

Combining (1.6) and (1.7), we obtain

∣∣
∣〈A∗A,G〉 − ‖x‖2

∣∣
∣ ≤ ∣∣〈A∗A,G〉 − ‖G‖∗

∣
∣+
∣∣
∣‖G‖∗ − ‖x‖2

∣∣
∣

≤ δs(A)

(
1+ sup

i

δσ (Bi)

)
‖x‖2 + sup

i

δσ (Bi)‖x‖2,

which proves the claim. ��
The theorem shows that hierarchical operators are a rich class of operators which

much more often have the HiRIP than the RIP. To make this precise, we take a look
at the special case of Kronecker products A⊗ B. Theorem 1.4 implies that if δs(A)
and δσ (B) are small, δs,σ (A⊗ B) is also small. This is in stark contrast to the RIP
of Kronecker products. Indeed, Ref. [25] derived that

δs(A⊗ B) ≥ max(δs(A), δs(B)).

That is, in order for A ⊗ B to have the s-RIP (nota bene, not the sσ -RIP), both
A and B must have it. This obstacle leads to demanding performance bounds in
applications [40].

The total number of measurements measured by a hierarchical operator is equal
to mM . Together with the classical results on the RIP of Gaussian operators, the
theorem implies that by choosingA andB Gaussian, we can hence build hierarchical
operators having the (s, σ )-HiRIP using only

const · sσ log
( n
σ

)
log

(
N

s

)

many measurements. This scaling is up to log-factors identical to the result Eq. (1.3)
we established for fully Gaussian matrices. This is noteworthy, since while fully
Gaussian matrix consists of MN ·mn independent parameters, a Kronecker product
A⊗B only has MN +mn. This constitutes a considerable de-randomization of the
measurements, which can be e.g. exploited to reduce the storage complexity or to
speed up calculations. We refer to Refs. [34, 35] for an extended discussion and an
alternative direct proof of HiRIP for Kronecker product measurements.

Theorem 1.4 tells us that operators with small RIP constants can be combined to
obtain an operator with a small HiRIP constant. We now take a look at the contrary
question: To what extend are small RIP constants of the constituent operators
required to bound the HiRIP constants of the hierarchical measurement operator?

In order to get a simple formulation of our first result, let us first note that there
is an ambiguity in the definition of a hierarchical measurement operator. We can
always simultaneously rescale ai and Bi since ai ⊗ Bi = (λai) ⊗ (λ−1Bi). We
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may thus w.l.o.g. assume that ‖ai‖ = 1 for all i. Under this assumption, a small
(s, σ )-HiRIP constant ofH indeed implies small σ -RIP constants of all Bi .

Proposition 1.1 (σ -RIP Bound from (s, σ )-HiRIP) Let H be a hierarchical
measurement operator given by A and (Bi)i∈[N ]. Assume that the columns of A
fulfil ‖ai‖ = 1 for all i. Then, it holds that

sup
i

δσ (Bi) ≤ δ1,σ (H).

Proof The ith block operator Hi of H is given by ai ⊗ Bi ∈ K
Mm×N . The

normalization implies that ‖(ai ⊗ Bi)x‖2 = ‖ai‖2 · ‖Bix‖2 = ‖Bix‖2 for each
x ∈ K

N . Thus, δσ (Bi) = δσ (Hi ), and the result follows from Theorem 1.3, part 1.
��

The above result in essence states that for H to have the (s, σ )-HiRIP, it is
necessary that all Bi have the corresponding σ -RIP. Intriguingly, for the RIP
requirement of A, the situation is very different. Indeed, if the Bi are mapping into
incoherent subspaces, A does not need to have the RIP. The precise result is as
follows.

Theorem 1.5 (HiRIP with Block Incoherence) For a family (Bi)i∈[N ], define the
operator

B : KN ⊗K
n → K

m, x �→
N∑

i=1

Bixi .

LetA ∈ K
M×N and natural numbers s, σ , and t be given. The hierarchical operator

H given by A and (Bi)i∈[N ] fulfils

δts,σ (H) ≤ sup
i

δσ (Bi)+ δs(A) · sup
i

δσ (Bi)+ t
√
s · δ2s(A) · μ(2σ,2σ)

block (B) .

Proof Let x = ∑i ei ⊗ xi be a (ts, σ )-sparse, normalized vector and S ⊂ [N ] be
such that xi = 0 for i /∈ S. We may subdivide S into t disjoint sets S1, . . . , St with
cardinality s each. For each pair (k, �) ∈ [t]× [t], we define a matrix Gk,� ∈ K

N×N
with non-vanishing entries Gk,�

i,j = 〈Bixi, Bjxj 〉 for i ∈ Sk and j ∈ S�. We may use
the same reasoning as in the proof of Theorem 1.4 to argue that

‖H(x)‖2 =
〈∑

k=1

A∗A,Gk,k〉 +
∑

k �=�
〈A∗A,Gk,�〉 .

Now, each matrix Gk,� fulfils the assumption of Lemma 1.1, part 1 for k = � and
Lemma 1.1, part 2 for k �= �. Hence,
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∣∣∣
∣∣
‖H(x)‖2 −

t∑

k=1

∥∥
∥Gk,k

∥∥
∥∗

∣∣∣
∣∣
≤ δs(A) ·

N∑

k=1

∥∥
∥Gk,k

∥∥
∥∗ + δ2s(A) ·

∑

k �=�

∥∥
∥Gk,�

∥∥
∥∗ .

Still in analogy to the proof of Theorem 1.4, we find that
∣∣ ∥∥Gk,k

∥∥∗ − ‖xk‖2
∣∣ ≤

supi δσ (Bi)‖xk‖2, and consequently

∣∣∣H(x)− ‖x‖2
∣∣∣ ≤ δs(A)

(
1+ sup

i

δσ (Bi)

)
+ δ2s(A) ·

∑

k �=�

∥∥∥Gk,�
∥∥∥∗ .

It remains to bound the terms with k �= l. First, let us note that, since Gk,� has
rank at most s, ‖Gk,�‖∗ ≤ √s‖Gk,�‖. We now use the definition of the intra-block
coherence to argue that

∥∥∥Gk,�
∥∥∥ =
√ ∑

i∈Sk,j∈S�
|〈Bixi, Bjxj 〉|2 ≤ μ

(2σ,2σ)
block

√ ∑

i∈Sk,j∈S�
‖xi‖2 · ‖xj‖2 .

Finally with

∑

k �=�

√∑

i∈Sk,
‖xi‖2 ·

√∑

j∈S�
‖xj‖2 ≤

⎛

⎝
∑

k

√∑

i∈Sk
‖xi‖2

⎞

⎠

2

≤ t‖x‖2 ,

where we have used the Cauchy–Schwarz inequality in the final step, the claim
follows. ��

Note that the above result shows that A does not need to have the ts-RIP in
order for the hierarchical operator to exhibit the corresponding HiRIP. We may in
particular choose t = N/s and obtain an operator that acts isometrically on any
vector with sparse blocks. In terms of sample complexity, the above result is still a
bit opaque. By making a particular choice of t and using the methods of Gaussian
random matrices discussed in Sect. 1.4.1, one can derive the following result (see
Ref. [16] for a proof).

Proposition 1.2 (Sample Complexity) Let (Bi)i and B be as in Theorem 1.4.3.
Assume that

(
tμ

(2σ,2σ)
block (B)

)2 ≤ N

log(N)
,

and choose A ∈ K
M×N as a Gaussian matrix. Let δ, ε > 0. Provided that
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M ≥ C

⎛

⎜
⎝
(
tμ

(2σ,2σ)
block (B)

)2 · 1
δ2 log

⎛

⎜
⎝
N
(
1+ supi δσ (Bi)

)2
(
tμ

(2σ,2σ)
block (B)

)2

⎞

⎟
⎠+ log

(
1
ε

)
⎞

⎟
⎠ ,

where C is a universal numerical constant, the hierarchical measurement operator
H defined by A and (Bi)i∈N obeys

δt,σ (H) ≤ δ + sup
i

δσ (Bi)

with a probability at least 1− ε.

This proposition shows that if μ(2σ,2σ)
block (B) is small enough, the number of ‘Gaussian

linear combinations’ we take with A does not have to grow linearly in t in order to
establish a (t, σ )-RIP—instead, only (tμ

(2σ,2σ)
block (B))2 is needed.

The square dependence here on (tμ(2σ,2σ)) is of course inferior compared to the
linear dependence of the sparsity we can achieve with the help of Theorem 1.4. It is
unclear whether this is merely an artefact of the proof.

These results end our discussion of the hierarchical operators and with that our
theoretical results on hierarchical restricted isometry properties.

1.5 Sparse De-mixing of Low-Rank Matrices

Generally, hierarchically sparse vectors arise from recursively assuming nested
groupings of the vector entries to be sparsely non-vanishing. Another generalization
of hierarchically structured vectors arises when we replace the sparsity assumption
with another structure assumption such as a low rank when suitably reshape. One of
the simplest of such examples is the de-mixing of a sparse sum of low-rank matrices
from linear measurements. For i ∈ [N ], let Ai : Kn×n → K

m be linear maps and
ρi ∈ K

n×n be matrices of rank at most r . The problem of de-mixing low-rank
matrices is to reconstruct the matrices ρi given data of the form

y =
N∑

i=1

Ai (ρi) .

A further structure assumption might be that out of the N matrices ρi actually only
a number of s are non-vanishing, giving rise to the problem of de-mixing a sparse
sum. We can straightforwardly cast the problem as the reconstruction problem of
a hierarchically structured vector. To this end, we set X = ∑N

i=1 ei ⊗ ρi . We can
regard X as a ‘vector’ in K

Nn×n of matrix-valued blocks of rank-r and at most s
vanishing blocks.
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Algorithm 4: SDT algorithm
input : Data y, measurementA, sparsity s and rank r of signal
initialize: X0 = 0.

1 repeat
2 Calculate step-widths μl

3 Xl+1 = T̄s,r

(
Xl + diag(μl)PT

Xl

(
A∗
(
y −A(Xl)

)))

4 until stopping criterion is met at l = l∗
output : Recovered signal Xl∗

Compared to (s, σ )-sparse vectors, we have replaced the non-vanishing σ -sparse
blocks by low-rank matrices. The de-mixing problem of a sparse sum of low-rank
matrices then is the task to reconstruct such a hierarchically (block) sparse, (block-
wise) low-rank vector X from linear measurements.

The principle strategy of hierarchical hard thresholding of Sect. 1.3 carries over
to hierarchically sparse, low-rank vectors. The projection onto the set of rank-r
matrices is given by the hard thresholding of the singular values. Let ρ ∈ K

n×n
have singular value decomposition U diag(�)V ∗ with a vector of singular values
� ∈ K

n. We define

Pr(ρ) = U diag(Tr (�))V ∗ .

Basically, replacing the application of Tσ in the hierarchically thresholding Algo-
rithm 1 yields a projection onto hierarchically sparse, low-rank vectors which we
will refer to as T̄s,r .

Modifying the projective gradient descent of the HiIHT algorithm with this
projection yields the so-called sparse de-mixing thresholding (SDT) algorithms,
Algorithm 4 [38]. In contrast to the structure of a union of subspaces of sparse
vectors, the set of rank r matrices constitutes an embedded differential manifold in
the linear vector space of all matrices. The geometrical structure can be exploited in
iterative hard-thresholding algorithms by projecting the gradient of the embedding
space in the descent step onto the tangent space of the manifold at the current iterate
[1, 47, 49]. At point ρ, the tangent space of the manifold of rank-r matrices is the
linear span of the set of matrices that have the same row or column space as ρ

[1]. For a hierarchically sparse, low-rank vector X = ∑N
i=1 ei ⊗ ρi , we use the

projection onto the tangent space for each block. We denote by PVi and PUi
the

projection onto the row and column space of ρi , respectively. For ρi vanishing,
we set the projections to be the identity. We define PTX : KNn×n → K

Nn×n as
G = ∑N

i=1 ei ⊗ gi �→ ∑N
i=1 ei ⊗ [gi − (Id−PUi

)gi(Id−PVi )]. The particularity
of the SDT algorithm is that we allow for a different step size for each matrix
block. We refer to Ref. [38] for more details on the algorithm and Ref. [50] for
an implementation. The SDT algorithm without the sparse thresholding operation
to determine the block support coincides with the algorithm proposed in Ref. [45].
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Fig. 1.4 The figure (taken from Ref. [38]) displays the recovery rate for the SDT in different
variants for different values of m for random Gaussian measurements. DT refers to the SDT
algorithms without the sparsity constraint (SD) and informed DT to the SDT algorithm restricted
to the correct support. A signal is considered successfully recovered, if the algorithm output
deviates from the true signal by less than 10−3 in Frobenius norm. Each point is averaged over
50 iterations and signal instances with r = 1, n = 16, N = 10, and s = 3. One observes nearly
coinciding recovery performances for the informed DT and the SDT algorithm. In comparison, the
DT algorithm requires significantly more samples for recovery

Following the blueprint of model-based compressed sensing, one can also
establish a recovery guarantee based on a RIP condition custom-tailored to the
hierarchical structure at hand. For random Gaussian measurement ensembles, this
gives rise to a sampling complexity of

δ−2[s log(N/s)+ (2n+ 1)rs log 1
δ
]

to guarantee the correct recovery of X ∈ K
Nn×n with at most s non-vanishing

blocks of rank r [38, Theorem 6]. Many results derived in Sect. 1.4 that establish the
HiRIP for hierarchically sparse vectors for different measurement ensembles can be
generalized to hierarchically sparse, low-rank vectors. This allows one to guarantee
recovery by the SDT algorithm for a large class of measurement ensembles.

Compared to an algorithm that does not exploit the sparsity of the de-mixing
problem, the SDT algorithm can exhibit a significant improvement in the sampling
complexity in relevant parameter regimes, Fig. 1.4.

Hierarchically sparse, low-rank vectors certainly constitute another important
class of hierarchically structured signals as it encodes the de-mixing problem of
a sparse sum of low-rank matrices. The theme of hierarchically combining low-
rank and sparse structure assumptions in nested grouping of entries gives rise to a
plethora of structures all of which can be efficiently reconstructed using recursive
combinations of the hierarchical thresholding method introduced above.
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1.6 Selected Applications

1.6.1 Channel Estimation in Mobile Communication

In mobile communication, a lot of users are simultaneously communicating with
a base station through electromagnetic waves. Let us model the messages a user
wants to transmit with a sequence c ∈ K

n. To send this message, the user
must first translate the message to a wave. A popular scheme for this is so-
called OFDM (Orthogonal Frequency-Division Multiplexing). This scheme can be
imagined as each ck giving rise to a complex exponential, a so-called tone, b(ω) =
[1, e−iωt1 , . . . e−iωtn−1 ] ∈ K

1×n, where ω is the frequency and t1, . . . , tn−1 are some
discretization times. In OFDM, a fixed grid of the formωk = 2πkω, k ∈ [n], is used,
where ω is the normalized frequency. Mathematically, this corresponds to applying
the discrete Fourier transform to c.

As the electromagnetic waves travel from the user to the base station, they scatter
on random features, e.g. buildings and trees, in the environment. This scattering
causes random phase and amplitude shifts, modelled by so-called complex gains
ρp. It also means that a single transmission results in several incoming wave-fronts,
each with a different angle of arrival. This situation can be utilized if the base station
has several antennas arranged in an array: when the wave-front arrives at the antenna
array, the wave-front travels slightly different distances before arriving at each
antenna, i.e. if a ‘1’ arrives at antenna 0, antenna k will receive an ‘ak(θ)’, where θ
denotes the angle of the wave-front. Here, a = [a0, . . . , an−1] : [−π, π ] → K

1×n is
a function, often referred to as the antenna manifold in the communication literature.
For the popular uniform linear array (ULA), in which the antennas are placed at a
uniform separation d along a straight line, the antenna manifold is after a change of
variables u = d sin(θ) given by

a(u) = [1, e2πdiu, e4πdiu, . . . , e2(n−1)πdiu
]
.

The parameter u actually takes on values in the entirety of [−d, d], but let us for
now assume that it lies on some grid {− d

2N , . . . , d
2N }.

Combining these two models, we see that for a specific user, all transmitted
signals result in a collective measurement of the form

∑L
�=1 ρpa(up)

∗〈b(ωp)
∗, c〉

where (ωp, up) is given by the delay and angle of the kth wave-front. The
communication is thus characterized by the channel matrix [9]

H =
L∑

p=1

ρpa(up)
∗b(ωp) ∈ K

N×n .

Once we know H , the base station can easily decode any number of sent messages.
Note that as long as the environment and the position of the user do not change
drastically, H is expected to stay roughly constant.
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Fig. 1.5 Comparison of HiIHT and IHT performances for channel matrix reconstruction. ©2019
IEEE. Reprinted, with permission, from Ref. [53]

Now suppose that we are only given a low-dimensional sample of H . To be
concrete, define sub-sampling operators Pu ∈ K

M×N, Pω ∈ K
m×n in angle

and delay, and assume that we only observe PuHP�ω . Can we still recover the
entire matrix? To do this, we may utilize that, according to the above discussion,
it has a sparse representation in the delay-angle domain. Indeed, defining A =
[e2kπiuj ]k,j∈[N ] ∈ K

N×N and B = [e−itkω� ]k,�∈[n] ∈ K
n×n, we get

PuHP�ω = PuA

⎛

⎝
∑

p∈[L]
ρpeujp ⊗ eω�p

⎞

⎠B∗P�ω = (PuA⊗ PωB)X,

with X =∑L
p=1 ρpeujp⊗eω�p

. Note that X is not only sparse but also hierarchically
sparse: only a few angle blocks are active, and for each such angle, only a few
delays ωk are utilized and vice versa. In fact, it is a reasonable assumption that
the angles for the L paths are distinct, leading to a (1, L)-sparse ground truth. We
further observe that sampledH is a Kronecker product measurement ofX, where the
terms of the Kronecker product are sub-sampled Fourier matrices. Thus, the results
of Sect. 1.4.3 imply that the recovery indeed is possible and provide an explicit
sampling complexity.

In Fig. 1.5, the performance of HiIHT and IHT is compared for m = n = 256
and N = 1024. We generate data synthetically and inject the measurement with
Gaussian noise of an SNR of 10dB. The recovery quality is measured in terms of
the mean per-entry square error 1

nN
‖H − Ĥ‖2 between the actual channel matrix

H and the estimate Ĥ . This error is plotted against the sub-sampling factor M/N
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for different values of L. We see that HiIHT handles a small sub-sampling factor
considerably better than IHT. Indeed, only accessing one percent of the available
antennas is enough to achieve reasonable performance with HiIHT, whereas IHT
fails when less than about 10 percent of the antennas are utilized.

The communication setting presented here can be extended in several directions:
first, we may drop the assumptions on the delays and angles to be on a grid—in
the off-the-grid case, the vector X is arguably still approximately sparse. Second,
we can model the case of multiple users by adding a third level to the hierarchical
signal. On this level, sparsity naturally emerges assuming a sporadic user activity.
We refer to Ref. [53] for details.

1.6.2 Secure Massive Access

With the rise of new communication technologies such as the Internet of Things
(IoT) and Tactile Internet (TI), the amount of devices virtually explodes, and with it
the amount of sensitive information gathered from various sensors and transmitted
over the air. This development poses significant challenges on the security of
communication channels and demands for new physical layers of security. In
particular, it calls for fast and scalable low-overhead security schemes suitable for
the frequent burst of spontaneous communication between low-complexity devices
with a base station. Here, we use the hierarchical measurement framework to design
a secure massive access procedure based on blind deconvolution, see also the
discussion on bisparse structures in Sect. 1.2. More details can be found in Ref.
[52].

A base station sends out known pilots to enable all user equipments (UEs) to
measure the channel between the station and the UE. The channel is here modelled
as a filter in K

N , where N is the length of the delay period. For each transmitting
UE p ∈ [Nd ] and receiving base station antenna q ∈ [Nr ], there is one filter

hp,q = (hp,q,1, . . . , hp,q,i , . . . , hp,q,N ) ∈ K
N.

The concrete appearance of the filters is again determined by delays caused
by reflections on random physical features in the environment. Therefore, it is
reasonable to assume that each hp,q is sparse, and, for fixed UE q, all channels
hp,q for p = 1, . . . , Nt share the same sparsity pattern.

As in the previous section, the UE transmits their sequences cp ∈ K
E by first

linearly encoding them into signals xp = Bpcp using a codebook Bp ∈ K
N×E and

then sending them over the channel. In an IoT scenario, the messages typically are
very short, so that it can be assumed that they can be encrypted as sparse sequences
cp. During transmissions, these are convolved with the channel vectors, so that each
of the base station’s antennas receives a superposition of the UEs’ signals,
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yq =
Nr∑

p=1

hp,q � (Bpcp)+ zq

with q = 1, . . . , Nt and � denoting the circular convolution. We may now lift [29]
the bilinear operation (cp, hp,q) → hp,q � Bpcp to a linear operation convp :
K
E×N → K

N on the matrix bph
�
p,q ∈ K

E×N resulting in

yq =
Nr∑

p=1

convp(bph
�
p,q)+ zq . (1.8)

We observe that the channel estimation task at the base station becomes the problem
of simultaneously performing a blind deconvolution and de-mixing, naturally
formalized as the linear reconstruction of a signal

Xq = (b1h
�
1,q , . . . , bNd

h�Nd,q
) ∈ (KE×N)Nd ∼ K

Nd ·E·N.

The signal further exhibits the following structure: our assumptions of σ -
sparse channels and s-sparse messages imply that the matrices bph

�
p,q are all

(s, σ )-bisparse. As discussed in Sect. 1.2, we may relax this to simple hierarchical
(s, σ )-sparsity. Additionally assuming a sparse user activity at a given time, i.e.
bp �= 0 only for μ users, the vector Xq is a three-level (s, σ, μ)-sparse vector. Note
that the operator convp has a structure that is not covered by our theoretical results.
Still, we may try to recover it using the HiHTP algorithm.

We conduct simulations with Nt = 1 receive antenna and Nr = 10 total UEs.
We set N = 1024 and N = E = 128. For each of the Nr users, a σ -sparse channel
hk ∈ R

E is drawn with the locations of the non-zeros distributed uniformly and
entries drawn from the standard normal distribution. The signals are computed as
xk = Bck , where B ∈ R

N×E is a Gaussian random matrix and ck ∈ R
E is s-sparse

with values in {−1, 1} if the user is active and 0 if the user is not active. This results
in the data y1 ∈ R

N as defined in (1.8).
We vary the number of active users μ, as well as the sparsities s and σ .

Figures 1.6 and 1.7 show the rate of successful recovery for varying number of active
users, averaged over 20 runs per setup. The x- and y-axis show the channel sparsity
μ and the signal sparsity s, respectively. As can be seen, the HiHTP algorithm is
indeed capable of recovering the ground truth, as long as the sparsity levels are low
enough.

An interesting feature of the model is that it can be used to generate a secure
communication scheme. To this end, we make use of the reciprocity of the channel:
the channel h↑p,q for transmission from UE q to base station antenna p is equal to

the channel h↓p,q for transmission in the other direction. This reciprocity condition
is fulfilled for modern off-the-shelf WiFi devices [48]. Due to the reciprocity,
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Fig. 1.6 Recovery rate for 2 of 10 active users. ©2018 IEEE. Reprinted, with permission, from
Ref. [52]
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Fig. 1.7 Recovery rate for 5 of 10 active users. ©2018 IEEE. Reprinted, with permission, from
Ref. [52]

the channel itself can serve as a source of shared randomness for the secret key
generation. The communication protocol consists of two phases:

Phase 1

1. The base station sends a predefined pilot signal to all UEs.
2. Each UE q measures the complex-valued channel gains h↓q = (h

↓
p,q)p∈[Nr ].

3. Each UE encrypts his/her message m to a sequence cp = f (m, h
↓
q ), using some

encryption scheme f and h
↓
q as a random encryption key.
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Phase 2

1. All the UEs q send their encrypted sequences cq to the base station using the
scheme discussed above. The encoding operators Bp are left public.

2. The base station receives the superposition of all the convolutions of the cipher
text with the respective channels. With a hierarchical thresholding algorithm,
the station inverts (1.8) and, thus, gains knowledge of the cipher texts cp and

channels h↑p,q .

3. Due to reciprocity h
↑
p,q = h

↓
p,q , the base station thereby obtains the encryption

keys h↓q and decrypts the cipher texts.

The security of the scheme relies on the assumption that the channels of different
users are independent of each other and cannot be inferred from another position.
Unless a man in the middle has access to the antenna of a UE, the eavesdropper
cannot use his/her channel coefficients to recover the message of another user.

We note that small variations between both channels, i.e. small violations of
reciprocity, can be tolerated by adjusting the key generation process. One can for
example quantize the channel gain sufficiently coarse to equalize the keys. Here,
the hierarchical framework is applied to solve a blind deconvolution and de-mixing
problem. Refs. [16, 51] present further examples of the hierarchical measurement
framework applied to massive random access without a built-in security scheme.

1.6.3 Blind Quantum State Tomography

Quantum communication allows for the transmission of data under unprecedented
levels of security [21]. Here, the security proofs are neither based on assumptions on
the computational hardness of certain mathematical problems nor on the feasibility
of practically reverting or predicting the randomness of physical processes: instead,
there are proofs of security available based on the fundamental laws of nature
themselves. Under mild assumptions, quantum key distribution can be proven
secure under the most general attacks allowed by physics, within a paradigm
of closed laboratories. Simultaneously, the advent of novel quantum computing
devices promises solving certain tasks with a significantly improved computational
complexity compared to classical computing devices. These tasks include NP prob-
lems at the heart of established and universally employed cryptographic schemes.
It is beyond the scope of the present article to introduce the various applications
of the quantum technologies [2]. Instead, we here focus on a particular context in
which hierarchical compressed sensing naturally comes into play: this is the task
of semi-device dependently identifying the state of a quantum device. Methods for
such characterization and certification tasks are important diagnostic tools in the
development of quantum technologies. We refer to Refs. [11, 27] for details.

The problem at hand here is the identification of quantum states prepared in some
physical prescription. The recovery of unknown quantum states is called quantum
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state tomography. A general quantum state is described by a trace-normalized,
positive-definite complex matrix. Of particular interest are unit rank, so-called
pure quantum states or more generally low-rank quantum states. Ideally, devices
in quantum technologies operate or are envisioned to operate in pure quantum states
of large dimensions. Quantum states of higher rank encode ‘classical’ statistical
mixtures of pure states typically produced by noisy operations. We denote the set of
rank-r quantum states byDn

r ⊂ C
n×n.

An important diagnostic task for quantum devices is, thus, to learn the low-
rank quantum state of the device from linear measurements. Exploiting the rank
constraint on the quantum states in the recovery task is crucial to devise quantum
tomography protocols working in state spaces of sizeable dimension. This renders
compressed sensing method of crucial importance for quantum tomography [15, 22,
23, 26, 33, 37, 39, 44].

That said, the apparatus with which one performs the measurements can espe-
cially for near-term devices not be reasonably assumed to be fully characterized:
commonly, there are calibrating parameters that are not fully known. An important
practical problem is, thus, the recovery of a low-rank quantum state ρ by means of
measurement devices that are simultaneously themselves characterized by a handful
of parameters, giving rise to sparse vectors ξ .

In a linear approximation of the measurement device calibration, this leads to the
problem of blind (self-calibrating) quantum state tomography: let A : Cnd×d →
R
m be a linear map describing the measurement and calibration model. Given data

y = A(X) ∈ R
m and the linear mapA, recover X under the assumption that

X ∈ {ξ ⊗ ρ | ξ ∈ K
N s-sparse, ρ ∈ Dn

r } ⊂ C
Nn×n . (1.9)

The blind quantum state tomography problem can be regarded as a non-
commutative analogon of bisparse recovery problems where the data is bilinear in
two sparse vectors both to be recovered. Similarly to the vector case, already the
projection onto the set of structured signal is an NP-hard problem. In fact, one can
encode the sparse PCA problem [31] and thereby CLIQUE into the task of finding
the closest element of the form ξ⊗ρ with ξ ∈ K

N , ρ ∈ Dn
r to a given X ∈ K

Nn×n in
Frobenius norm, Ref. [38, Theorem 3]. For this reason, it is not possible to directly
derive an efficient algorithm based on a hard-thresholding operation for the blind
quantum tomography problem.

However, the problem of de-mixing a sparse sum of low-rank matrices intro-
duced in Sect. 1.5 can be seen as a relaxation to the closest hierarchically structured
signal class that still allows for an efficient projection. The analogy to the relation
of bisparsity and hierarchical sparsity is imminent.

Consequently, the SDT algorithm is a natural candidate to efficiently tackle the
blind tomography problem. Figure 1.8 shows numerical simulations of the perfor-
mance of the SDT algorithms in the blind quantum tomography task for a random
calibration model motivated by quantum technologies in comparison to a standard
low-rank tomography algorithm. The relaxation to the hierarchical structured prob-
lem, however, comes at the cost of a sub-optimal scaling in complexity theory. While
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Fig. 1.8 The figure (taken from Ref. [38]) displays the trace-norm reconstruction error for the
SDT algorithm compared to a standard low-rank tomography algorithm for a different number
of measurements m of sub-sampled random Pauli measurements. Each point depicts 30 random
measurement and signal instances with r = 1, d = 8, n = 10, and s = 3. The dotted lines indicate
the median. The inline figure shows the mean �2-norm reconstruction error of the calibration
coefficients for the SDT algorithm

a parameter counting of the original blind tomography problem hints at an optimal
scaling of O(max{s logN, nr}), the sparse de-mixing problem introduces already in
parameter count an additional factor of s to the second term O(max{s logN, snr}).
Due to the sparsity assumption on the calibration parameters, the total number
of calibration parameter N still only enters logarithmically. For this reason, the
scheme remains highly scalable in practically relevant parameter regimes despite
the relaxation. At the same time, using the framework of hierarchical compressed
sensing outlined above provides a rich toolkit to equip the SDT with flexible
guarantees for many ensembles of measurement and calibration models. Another
algorithmic approach to bilinear structured problems such as the blind tomography
problem is constraint alternating minimization. We refer to Ref. [38] for further
details.

1.7 Conclusion and Outlook

In this chapter, we have introduced a framework for hierarchically compressed
sensing with a focus mostly on the reconstruction of hierarchically sparse signals.
In its core, standard approaches of compressed sensing naturally generalize to
hierarchically structured signals, giving rise to recovery algorithms equipped with
theoretical guarantees. Thereby, the successful recovery of hierarchically sparse
signals via hard-thresholding algorithms can be established under a custom-tailored
restricted isometry assumption. There are, however, a number of specific features
that separate the hierarchical framework from its more generic counterparts.
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At the heart of the approach is the fact that the projection operator onto the set
of hierarchically structured signals is efficiently calculable via hierarchical hard
thresholding. Unlike for, e.g., the bisparse structure, it can be computed in linear
time and is highly amenable to parallelization. This in turn renders the simple
recovery algorithm interesting in realistic parameter regimes and under practical
demands.

Furthermore, within the hierarchical framework, there is a large family of opera-
tors that obey the hierarchical, but not the standard restricted isometry property. This
makes the framework potentially applicable in settings where standard compressed
sensing is infeasible.

On a more theoretical level, the hierarchically sparse structure can be used as
a relaxation of the complicated bisparse structure. In particular, we have presented
numerical evidence that instances of the sparse blind deconvolution problem can
be solved using HiHTP. And we have invoked the same strategy for the quantum
tomography problem and other related questions. While in this context theoretical
guarantees are expected to be sub-optimal, the simplicity and flexibility of the
hierarchical framework might still be of merit in order to analyze complicated
measurement settings. We leave further exploring these matters to future research.
A particularly interesting question is to analyze the HiRIP properties of the blind
deconvolution operator.

Indeed, we have at the end of this chapter seen several exemplary applications
where the hierarchical approach facilitates recovery. This brings us to the arguably
most important feature of the framework: hierarchically structured signals naturally
emerge in many applications. From our own background and past research, we can
conclude this with some confidence. But of course, we very much suspect that
there are many applications we are unaware of where the hierarchical framework
is readily applicable. For the sake of clarity, we have mainly focused our exposition
on the set of two-level hierarchically sparse vectors and merely hinted at the gen-
eralizations towards multiple levels potentially mixing low-rankness and sparsity
and potentially even further structures that for themselves come with an efficient
projection. We hope that we have conveyed that the approach, and even most of the
results we presented, can be rather straightforwardly generalized to this rich family
of hierarchical signal structures, leaving the playing field wide open.
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Chapter 2
Proof Methods for Robust Low-Rank
Matrix Recovery

Tim Fuchs, David Gross, Peter Jung, Felix Krahmer, Richard Kueng,
and Dominik Stöger

2.1 Introduction

Computationally tractable data acquisition in high dimensions is a fundamental
problem in various real-world applications in signal processing, data science, and
physics. Nyquist sampling or scanning the data in full is often unfeasible. This
motivates the use of compressive observation schemes, which employ regularization
methods to recover as much of the signal as possible from seemingly incomplete
observations. Thus, quantifying the trade-off between sample complexity and recon-
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struction accuracy has become a key task for identification of feasible regimes and
the design of efficient approaches for sensing and reconstruction. These questions
have been central in the area of inverse problems for many years. However, starting
in the early 2000s, a highly successful novel viewpoint has emerged. Namely
initiated by the influential works on compressed sensing [15, 17], various authors
have studied the problem of what can be gained when the measurements can be
optimized over all vectors or within a structural measurement framework [31].
Commonly, the term compressed sensing is used nowadays also for more general
sensing scenarios beyond the initial setup that follow this paradigm.

In this generality, compressed sensing is therefore concerned with the recovery
of structured data, i.e., data that lives on a low-dimensional subset embedded in a
high-dimensional space, from a number of observations that scale with the intrinsic
dimension, rather than the ambient dimension. As it turns out, for a large class
of different measurement models combined with various structural constraints,
choosing the free parameters of the measurement scheme at random leads to near-
optimal performance.

Initially, the model of a nontrivial but relevant low-dimensional set was given
by sparse vectors. For matrices, a natural basis independent notion of sparsity is
“sparsity in the eigenbasis,” i.e., low rank, and we are thus led to studying the low-
rank matrix recovery problem: estimate an unknown n1 × n2-matrix X0 from m

observations of the form

y = A (X0)+ e ∈ C
m, (2.1)

where A is a known linear measurement operator and e is additive noise. Here and
in the following, we will use the notation

A(X0)(i) := 〈Ai,X0〉, Ai ∈ C
n1×n2, (2.2)

which expresses the ith component of the measurement as the Frobenius inner
product with a matrix Ai . The problem is interesting in the regime

rk(X0)max{n1, n2} ≤ m� n1n2,

where rk(X0) denotes the matrix rank. Assume for concreteness that we have the
bound ‖e‖2 ≤ τ on the noise strength (‖ · ‖2 denotes the �2-norm of a vector).
As X0 has low-rank, one could naively try to estimate X0 by solving the following
minimization problem:

minimize
X∈Cn1×n2

rk (X)

subject to ‖A (X)− y‖2 ≤ τ.

Unfortunately, problems of this type are NP-hard in general, as minimizing the
support size of a vector (i.e., finding the sparsest solution) can be considered as
a special case [74]. Therefore, in [26], it was proposed to use the nuclear norm ‖ · ‖∗
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(the sum of singular values) as a proxy for the rank. For this reason, the following
approach has been suggested [14, 18, 20, 36, 76] for matrix completion:

minimize
X∈Cn1×n2

‖X‖∗

subject to ‖A (X)− y‖2 ≤ τ.

(2.3)

It is the analysis of this semi-definite program (SDP) we are concerned with in the
present chapter. Before tackling the technical details, we briefly list three important
applications of the framework of low-rank matrix recovery.

2.1.1 Sample Applications

In this section, we highlight three famous applications of low-rank matrix recovery
which have been investigated intensively in the last years.

2.1.1.1 Matrix Completion

Maybe the most natural instantiation of the general model (2.2) is the case where
the measurements reveal individual matrix elements

A (X) (i) :=
√

n1n2
m
〈X, eai e∗bi 〉F =

√
n1n2
m

Xai,bi , (2.4)

where {eai } and {ebi } denote the standard basis of Cn1 and C
n2 , respectively. This is

the matrix completion problem. Since it arises in many different applications such as
multiclass learning [3], collaborative filtering [77], and distance matrix completion
problem in sensor localization tasks [44], see here also Fig. 2.1, it has become very
popular in the last decade and has been studied intensively in the statistics, machine
learning, and signal processing literature.

Assume that the matrix elements (ai, bi) for i ∈ [m] := {1 . . . m} to be
revealed are chosen independently and uniformly among all n1 × n2 possibilities.
It is clear that not all low-rank matrices can be efficiently recovered from few
such measurements. For example, if X has a single non-zero entry, then unless
m = O(n1n2), the probability that any non-zero information is obtained is small.

To identify a set of well-behaved instances, Ref. [14] introduced the following
two coherence parameters:

μ (U) :=
√

n1
r

max
i∈[n1]

‖U∗ei‖2

μ (V ) :=
√

n2
r

max
i∈[n2]

‖V ∗ei‖2,
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Fig. 2.1 Distance matrix completion: one source of low-rank matrices is Gram matrices which
encode the Euclidean geometries of point sets. The task of recovering Gram matrices is related
to the one of finding distance matrices from few pairwise distances. This problem appears, for
example, in sensor localization; see, e.g., [44]. Wireless sensors are distributed in an area (indoor
room, industry hall, etc.) and measure individual signal strengths, but obstacles like walls block
certain path directions (red). The goal is to complete the matrix of pairwise distances and compute
the sensor locations. Recall that given n points {xi}ni=1 ⊂ R

d , the Gram matrix Gi,j = 〈xi , xj 〉 has
rank upper bounded by d, independent of n

where X0 = U�V ∗ with U ∈ C
n1×r and V ∈ C

n2×r denotes the singular value
decomposition (SVD). Indeed, it was shown in [18] that

m � n1r log n1 max
{
μ2 (U) , μ2 (V )

}
(2.5)

observations are necessary for a rank-r matrix X0 to be uniquely determined from
the revealed entries.

Subsequently, a series of works [36, 76] established that this sampling rate is
almost sufficient as well. Compared to Eq. (2.5), an additional log(n)-factor and
a third incoherence parameter suffice to ensure exact recovery via nuclear norm
minimization (2.3). See Sect. 2.3 for a detailed statement and proof sketch.

2.1.1.2 Blind Deconvolution

Blind deconvolution [41] refers to the problem of recovering a signal x ∈ C
L from

the noisy convolution w ∗ x + e ∈ C
L, where w ∈ C

L is an unknown kernel
and e ∈ C

L refers to additive noise. When using appropriate cyclic extensions or
considering zero padding, the convolution can rewritten as a circular convolution

(w ∗ x)(i) :=
L∑

j=1

wjxi−j for i ∈ [L]. (2.6)

The difference i − j is considered modulo L. As prototypical example of a bilinear
inverse problem, blind deconvolution refers to recovering (x,w) from a noisy
version of w ∗ x and the precise role of x and w depends on the underlying



2 Proof Methods for Robust Low-Rank Matrix Recovery 41

Fig. 2.2 Blind deconvolution: a wireless device transmits a signal x received by the base station.
Due to reflections in the environment, the signal experiences an unknown channel distortion,
represented by a convolution w ∗ x with the impulse response w

application. In imaging, for example, one considers such a problem for the two-
dimensional convolution. The signal x typically represents the image and w is an
unknown blurring kernel [79]. In communication engineering, the discrete model
above describes the effective convolution in complex baseband. Hence, w represents
the sampled impulse response of the transmission channel and the task is to
demodulate and decode information from the signal vector x, only having access
to the noisy channel output w ∗ x + e, see Fig. 2.2. The conventional coherent
approach in this application is to send known pilot signals, to first estimate w and
then demodulate later information-bearing signals x. However, this approach is not
feasible for short signals x and for communication at low latency or high mobility.
For communication engineers, the important question is then how much overhead
is required for coping with the unknown impulse response w of the communication
channel [34] when using non-coherent strategies [87].

Of course, blind deconvolution is a highly underdetermined bilinear inverse
problem. Without further assumptions, recovery is only possible up to inherent
ambiguities [23, 88]. To avoid nontrivial ambiguities, one has to further constrain
the vectors, for example, by assuming that x and w lie in N and K-dimensional
subspaces, respectively. As we will outline below, this yields to the problem of
recovering N × K matrices from L observations. To be more compliant with
existing works in the literature, we will stick to this notation implying that n1 = N ,
n2 = K , and m = L. In formulas, we assume that w = Bh0 and x = Cm0 for
given B ∈ C

L×K , C ∈ C
L×N , and unknown h0 ∈ C

K , m0 ∈ C
N . Then, the

measurement operator acting on h0 and m0 is known to be generically injective up
to the unavoidable scaling ambiguity if and only if L ≥ 2(N+K−4) [49, 68]. That
is, one aims for sampling complexities that are near-linear in N +K .

Following [1], we consider the case that B is a fixed matrix such that B∗B = Id

and C is a random matrix with i.i.d. complex normal entries Cij
iid∼ CN(0, 1/

√
L).

The choice of the random matrix C is motivated by the success of randomization
in compressed sensing as well as by applications in wireless communications. Here
m0 contains a message to be transmitted and C is a coding matrix. The signal x =
Cm0 gets transmitted through a time-invariant channel, which can be modeled as
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a circular convolution with impulse response w when using an appropriate cyclic
prefix.

In many applications, it is reasonable to assume that only the first few entries
of w are non-zero as the path delays are often much shorter than the length of the
signals x. In this case, B would be the matrix which extends h0 ∈ C

K by zeros.
Hence, the receiver observes w ∗ x + e, where e represents additive noise, and the
goal is to reconstruct the original message contained in the vector m0.

Now let F ∈ C
L×L be the unitary discrete Fourier transformation matrix. It is

well known that F diagonalizes the circular convolution, i.e.,

ŵ ∗ x := F (w ∗ x) = √Ldiag (FBh0) FCm0.

Let b� denote the �th row of FB, and let c� denote the �th row of
√
LFC. Note

that this implies that all the entries of {c�}L�=1 are jointly independent and have
distribution CN (0, 1). Moreover, we obtain that

(
ŵ ∗ x)

�
= b∗�h0m

∗
0c� = 〈b�c∗� , h0m

∗
0〉.

We observe that ŵ ∗ x is linear in the K × N matrix h0m
∗
0. This motivates the

definition of the linear operatorA : CK×N → C
L by

(A (X)) (�) := 〈b�c∗� , X〉 where � ∈ [L]. (2.7)

Hence, we obtain the model

y := ŵ ∗ x + e = A (X0)+ e,

where X0 = h0m
∗
0 and e ∈ C

L represents noise with ‖e‖2 ≤ τ . Note that X0
is a rank-one matrix. This reformulation effectively reduces blind deconvolution to
a low-rank matrix recovery problem, where measurement matrices correspond to
outer products A� = b�c

∗
� .

If, in addition, a sparsity constraint is to be imposed, the problem becomes con-
siderably more difficult. In particular, linear combinations of the convex regularizes
no longer lead to sample-efficient recovery guarantees [75] even when using optimal
tuning [52]. Only under additional structural assumptions, recovery guarantees are
available using an alternating minimization approach [33, 67]. This, however, is
beyond the scope of this chapter.

2.1.1.3 Phase Retrieval

Another instance of a challenging inverse problem is phase retrieval—an important
problem with a long history that dates back to the 60s [89]. It occurs naturally in X-
ray crystallography [40, 73], astronomy [28], ptychography [42, 78], and quantum
tomography [61, 64]. We refer to Fig. 2.3 for a visual illustration. Mathematically
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detector in image plane

X-ray

probe

illumination mask

Fig. 2.3 Phase retrieval: in diffraction imaging, a probe is illuminated by coherent X-ray light.
The resulting diffraction pattern is first modulated by an illumination mask and recorded at
detectors in the 2D image plane. Importantly, these detectors can only record intensities, not
phases: yk = |〈fk,D∗x0〉|2, where x0 ∈ C

n encodes the microscopic structure of the probe,
D = diag(d1, . . . , dn) describes the illumination mask, and fk ∈ C

n is a Fourier vector
(Fraunhofer approximation to the diffraction equation)

speaking, the discrete phase retrieval problem asks for inferring a complex signal
vector x0 ∈ C

n from m measurements of the form (noiseless for simplicity)

ỹi = |〈ai, x0〉| , i ∈ [m]. (2.8)

This problem cannot be solved unless the measurement system is overcomplete
because all phase information is lost in the measurement process. More precisely,
it has been shown that one needs m ≥ 4n − 4 generic measurements to ensure that
there is a unique solution [24].

If, in contrast, one instead had access to the complex phases φk of 〈ak, x0〉, this
problem would reduce to solving a linear system of equations:

�ỹ = Ax0, (2.9)

where � =∑m
k=1 φ̄keke

∗
k and A =∑m

k=1 eka
∗
k subsumes the measurement process.

Crucially, for phase retrieval, we do not know � in (2.9). One intuitive approach to
recovering x0 is performing a least-squares minimization over both unknowns:

minimize
�∈U(m),x∈Cn

‖�ỹ − Ax‖2 , (2.10)

� ∈ U(m) is unitary and diagonal in the standard basis. Although NP-hard in
general, heuristic approaches exist for solving non-convex problems of this form.
One such heuristics is alternating minimization, see, e.g., [29, 72]. This is an
iterative algorithm, where one alternates between keeping x fixed and minimizing
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� and vice versa: fixing � and optimizing over x. Very few theoretical guarantees
regarding its performance are known.

Given the importance of the problem and the lack of mathematical understanding,
obtaining theoretical guarantees for phase retrieval is highly desirable. In order to do
so, we will follow a different direction pioneered by Balan, Bodmann, Casazza, and
Eddidin [4]: lift the quadratic phase retrieval problem to a linear inverse problem on
positive semidefinite n× n matrices:

yi = |〈ai, x0〉|2 = tr〈aia∗i X0〉 where X0 = x0x
∗
0 ∈ C

n×n (2.11)

is proportional to the orthoprojector onto span(x0) ⊂ C
n. By construction, the

desired solution is a Hermitian n × n matrix with minimal rank (rk(X0) = 1).
Following Refs. [8, 16], we can exploit this intrinsic rank constraint via constrained
nuclear norm minimization (2.3). This approach effectively reduces the phase
retrieval problem to a Hermitian low-rank matrix recovery problem, where each
linear measurement (2.2) must only involve (Hermitian) outer products:

yi = A
(
x0x

∗
0

)
(i) = 〈Ai, x0x

∗
0 〉, where Ai = aia

∗
i ∈ Hn and i ∈ [m].

The reformulation of phase retrieval as a low-rank matrix recovery problem has led
to the establishment of rigorous recovery guarantees. By and large, these apply to
randomly selected measurement vectors that are sufficiently “generic.” Exemplary
is the main result from Ref. [9]: already m � n standard complex Gaussian

measurements a1, . . . , am
iid∼ CN(0, I ) suffice to ensure correct recovery. Subse-

quent research has led to similar recovery guarantees for phaseless measurements
that are less generic [10, 38, 48]. We will present two such arguments further
below. In Sect. 2.2.3, we partially derandomize the recovery guarantee for Gaussian
measurements by executing a descent cone analysis.

We conclude by emphasizing that the phase retrieval problem admits a clean
reformulation in terms of low-rank matrix recovery. This is an ideal starting point
for developing rigorous convergence guarantees but might come with a considerable
algorithmic overhead. After all, we have replaced a non-convex problem over n-
dimensional vectors by a convex problem over (Hermitian) n × n matrices (2.3).
General purpose solvers, like CVX, quickly run into storage issues as the problem
dimension n increases. This motivated the development and rigorous analysis
of non-convex phase retrieval algorithms. These include gradient descent-type
algorithms on C

n [7, 11, 21], as well as non-convex approaches based on matrix
factorization [6, 42]. In parallel, the development of matrix sketching algorithms
led to substantial storage and runtime improvements for solving certain convex
optimization problems [86, 91]. Importantly, these also apply to lifted phase retrieval
and ensure algorithmic tractability even for moderate to large problem sizes [91]. So,
recovery guarantees for lifted phase retrieval—like the ones presented in this book
chapter—are also of algorithmic relevance.
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2.1.2 This Work

In this book chapter, we take a look back at more than a decade of rapid progress
concerning randomized inverse problems for matrix recovery. A complete treatment
of all interesting developments would go way beyond the scope of a single chapter
and we choose to focus on one aspect: mathematically rigorous recovery guarantees
for the reconstruction of low-rank matrices from generic as well as structured
measurements.

With the benefit of hindsight, we review two versatile proof techniques and put
them into context, namely the descent cone analysis, as well as the construction of
approximate dual certificates.

Section 2.2 deals with the descent cone analysis. That is, low-rank matrix
recovery guarantees are obtained by analyzing the relative geometric orientation
of the optimization problem’s feasible space with respect to the objective function’s
descent cone anchored at the signal X0 of interest. Exact and unique recovery hap-
pens if and only if the intersection of these two convex objects only contains a single
point. Deep results from high-dimensional probability theory show that this desir-
able event happens with overwhelming probability, provided that the measurements
are sampled independently from sufficiently generic ensembles. Prominent example
applications include optimal generic low-rank matrix recovery (Sect. 2.2.2), as
well as phase retrieval from generic measurement vectors (Sect. 2.2.3). Although
geometrically appealing, this proof technique is not without limitations. It struggles
to handle less generic problems, where additional structure—like incoherence of the
unknown signals—is essential to rule out exceptional problem instances where the
reconstruction must necessarily fail. Moreover, this technique does not always give
precise insights into the noise robustness of the reconstruction schemes (Sect. 2.2.4).

Section 2.3 introduces an alternative proof technique based on duality of
convex optimization. Convex optimization problems—like nuclear norm minimiza-
tion (2.3)—come in pairs and the two problems have a duality gap: objective
function values of the primal problem are always smaller than or equal to objective
function values of the dual problem. Equality occurs if and only if both primal
and dual solutions are optimal. This, in turn, implies that optimality of a certain
feasible point, say X0, can be certified by constructing a dual feasible point that
achieves the same objective function value. What is more, exact feasibility is not
required to certify optimality of X0 for constrained nuclear norm minimization.
An approximate dual certificate suffices, provided that the measurement operator
fulfills certain additional properties (Sect. 2.3.1).

We will then describe how to construct approximate dual certificates via a
probabilistic method—the so-called golfing scheme (Sect. 2.3.2). A key advantage
of the golfing scheme is that it can be applied to problems with incoherence
constraints, where it is not immediately clear how to apply the methods described in
Sect. 2.2. Concrete example applications are matrix completion (Sect. 2.3.3), blind
deconvolution and demixing (Sect. 2.3.4), and phase retrieval with incoherence
(Sect. 2.3.5).
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Approximate dual certificates do also have their downsides, however. Chief
among them is noise robustness. In Sect. 2.4, we refine the descent cone arguments
introduced in Sect. 2.2. This leads to near-optimal blind deconvolution guarantees in
the high-noise regime (Sect. 2.4.1), as well as novel insights into the phase retrieval
problem (Sect. 2.4.2).

2.2 Recovery Guarantees via a Descent Cone Analysis

2.2.1 Descent Cone Analysis

Recalling the linear inverse problem (2.1) y = A (X0) + e ∈ C
m, there is usually

a large set of possible solutions for which A does not deviate too much from y.
Further properties, such as low rank, can be obtained by minimizing an appropriate
function f : Cn1×n2 → R over this set. If f yields low values only for a small
subset of {X ∈ C

n1×n2 : ‖A (X)− y‖2 ≤ τ } (or {X ∈ C
n1×n2 : A (X) = y} in the

noiseless case), recovery guarantees can be obtained. This motivates descent cone
analysis.

The descent cone D(f,X0) of a proper convex function f : Cn1×n2 → R at a
point X0 ∈ C

n1×n2 is the conic hull of directions in which f decreases near X0:

D(f,X0) := {Z ∈ C
n1×n2 : f (X0 + εZ) ≤ f (X0) for some ε > 0}.

Descent cone analysis can facilitate the estimation of probability of success
for solving linear inverse problems with optimization. Consider the following two
convex optimization problems (left: noiseless and right: noisy measurements)

minimize f (X)

subject to A (X) = y.

(2.12)

minimize f (X)

subject to ‖A (X)− y‖2 ≤ τ.

(2.13)

Let us first discuss the noiseless case. If X0 is the ground truth of the measure-
ments A (X0) = y, any minimizer X̂ of (2.12) has to fulfill f (X̂) ≤ f (X0) and

A
(
X̂
)
= y and therefore can be decomposed as the sum of X0 and a perturbation

Z ∈ D(f,X0) ∩ ker(A). If the intersection between the nullspace ker(A) and the
descent cone D(f,X0) only contains the zero element, X0 is the unique optimal
solution of (2.12). This is illustrated in Fig. 2.4 (left).

This clean geometric picture can be extended to the noisy case. In this setting,
exact recovery cannot be expected. Therefore, we will bound the reconstruction
error ‖X̂−X0‖F = ‖Z‖F between a feasible minimizer X̂ = X0+Z of (2.13) and
the ground truth X0. Since ‖A (X0 + Z) − y‖2 ≤ τ implies that ‖A (Z) ‖2 ≤ 2τ ,
the intersection of D(f,X0) and {Z : ‖A (Z) ‖2 ≤ 2τ } has to be analyzed, see
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ker(A)

0

D( 0)

‖A( ) ‖2 ≤ 2

2
0

D( 0)

Fig. 2.4 Illustration of a descent cone analysis: the intersection between the nullspace ofA (resp.,
the set for which ‖A(Z)‖2 is low) with the descent cone D(f,X0), i.e., the set of directions Z in
which f is decreasing at X0, contains all perturbations Z such that X0 + Z is a minimizer of the
noiseless (resp., noisy) convex optimization problem (left: noiseless and right: noisy)

Fig. 2.4 (right). In order to control the size of this intersection, we will need the
following quantity, which we refer to as smallest conic singular value:

λmin (A,D(f,X0)) := inf
Z∈D(f,X0)\{0}

‖A(Z)‖2‖Z‖F .

If the conic singular value is larger, we expect the intersection to be smaller, and,
hence, we should obtain stronger noise bound. This intuition is made precise by the
following lemma by [19], see also [85].

Lemma 2.1 [19, Proposition 2.2] LetA : Cn1×n2 → R
m be a linear operator and

assume that y = A (X0) + e with ‖e‖2 ≤ τ . Then, any minimizer X̂ of the convex
optimization problem (2.13) satisfies

‖X̂ −X0‖F ≤ 2τ
λmin(A,D(f,X0))

.

Proof Sketch By definition, λmin (A,D(f,X0)) ≤ ‖A(Z)‖2‖Z‖F ≤ 2τ
‖Z‖F for any

feasible Z. The first inequality follows from the definition of λmin (A,D(f,X0))

and Z ∈ D(f,X0), and the second inequality follows from ‖A(Z)‖2 ≤ 2τ , which
concludes the proof. ��

In the following, we will discuss applications with various underlying random
operators A. We will show how one can obtain lower bounds for the minimum
conic singular value, which by Lemma 2.1 will yield recovery guarantees, both in
the noise-free and in the noisy case.

2.2.2 Application 1: Generic Low-Rank Matrix Recovery

Low-rank matrix recovery describes the problem of recovering a low-rank matrix
X0 ∈ R

n1×n2 from measurements of the form

yi = 〈Ai,X0〉 where Ai ∈ R
n1×n2 and i ∈ [m].
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It is useful to introduce the measurement operatorA : Rn1×n2 → R
m by

A(X)(i) := 〈Ai,X〉 where Ai ∈ R
n1×n2 and i ∈ [m] (2.14)

for X ∈ R
n1×n2 .

(This setting can be extended to the complex-valued setting. However, for
simplicity of the exposition, we will only discuss the real-valued setting in this
section.) In this subsection, we will focus on independent random measurement
matrices Ai with independent standard normal entries. In order to recover a low-rank
matrix X0, we will consider the convex optimization problems (2.12) and (2.13)
with f = ‖ · ‖∗.

Recall from the last section that by setting E := {Z ∈ D(‖ · ‖∗, X0) : ‖Z‖F =
1} and bounding infZ∈E ‖A (Z) ‖2, the smallest conic singular value from below
would guarantee that D(‖ · ‖∗, X0) ∩ ker(A) only contains the zero element and,
therefore, exact recovery in the noiseless scenario.

Adjusting Fourcart’s and Rauhut’s formulation of Gordon’s escape through a
mesh [31, Theorem 9.21] (originally due to Gordon [35]) to the real-valued vector
space R

n1×n2 , one obtains a powerful lower bound that can exploit the randomness
ofA.

Theorem 2.1 (Gordon’s Escape Through a Mesh) Let A : Rn1×n2 → R
m be a

Gaussian measurement operator as defined in (2.14), and let E be a subset of the
Frobenius unit sphere SF (Rn1×n2) := {Z ∈ R

n1×n2 : ‖Z‖F = 1}. Furthermore,
define the Gaussian width of E as

�(E) := E sup
Z∈E

〈A,Z〉, (2.15)

where A ∈ R
n1×n2 is a standard normal matrix (Aij

iid∼ N(0, 1)). Then, for t>0,

inf
Z∈E ‖A(Z)‖2 ≥

√
m− 1− �(E)− t

with probability at least 1− e−t2/2.

The Gaussian width is actually a reasonable summary parameter for the size of a
convex cone. It is also closely related to the statistical dimension [2]. If �(E) does
not exceed

√
m− 1, recovery guarantees can be obtained.

Theorem 2.1 only requires E to be a subset of the Frobenius unit sphere, and,
therefore, one is not restricted to a specific descent cone, but one can instead choose
the union over all possible descent cones corresponding to rank-r matrices in order
to obtain uniform recovery guarantees:

Er = SF (R
n1×n2) ∩Kr and Kr =

⋃

X∈Rn1×n2 :rk(X)=r
D (‖ · ‖∗, X) .
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Hölder’s inequality yields supZ∈Er
〈A,Z〉 ≤ ‖A‖ supZ∈Er

‖Z‖∗. Tight bounds
on the operator norm of a standard Gaussian matrix are readily available (more
on that later), but it seems plausible that the largest nuclear norm of Z ∈ Er

could scale unfavorably with the ambient dimension (‖Z‖∗ ≤ √min {n1, n2}‖Z‖F
which is sharp). The geometry of descent cones, however, excludes such worst-case
instances. The following lemma highlights that the effective rank of descent cone
elements is proportional to the rank of the anchor point. It is a generalization of [64,
Lemma 10] to rectangular matrices. To increase accessibility, we write x � y if
there is a positive constant C > 0 such that x ≤ Cy.

Lemma 2.2 Suppose that Z ∈ C
n1×n2 is contained in the nuclear norm descent

cone of a rank-r matrix X ∈ C
n1×n2 . Then,

‖Z‖∗ �
√
r‖Z‖F .

The suppressed proportionality constant is small (C ≤ 1+√2), but probably not
optimal. The proof is novel and uses ideas from dual certificates (Sect. 2.3), as well
as pinching, see, e.g., [5, Problem II.5.4]. We refer to appendix for details. With this
lemma at hand, we can bound the Gaussian width of Er .

Corollary 2.1 The Gaussian width of Er , the union over all possible descent cones
with an anchor point of rank-r , can be bounded by

�(Er) �
√
r
(√

n1 +√n2
)
.

Furthermore, let A : R
n1×n2 → R

m be a Gaussian measurement operator as
defined in (2.14). Then, λmin (A,D(f,X)) is bounded away from zero for any rank-
r matrix X w.h.p. if

m � r(n1 + n2).

Proof Sketch Using Hölder’s inequality and Lemma 2.2, the Gaussian width �(Er)

can be bounded in terms of the expected operator norm of a standard Gaussian
matrix:

�(Er) = E sup
Z∈Er

〈A,Z〉 ≤ sup
Z∈Er

‖Z‖∗ E‖A‖ �
√
rE‖A‖.

A tight upper bound E‖A‖ ≤ (
√
n1 + √n2) can be found, e.g., in [31, p.292]. By

Theorem 2.1,

inf
X∈Er

‖A(Z)‖2 = inf
X∈Rn1×n2 :rk(X)=r

λmin (A,D(‖ · ‖∗, X0)) ≥
√
m− 1− �(E)− t

with probability at least 1−e−t2/2. Therefore, if m � r(n1+n2), we can pick t > 0,
such that infX∈Er ‖A(Z)‖2 is positive w.h.p. ��
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Even when measuring multiple matrices of rank-r via the same measurement
operator A, Corollary 2.1 uniformly bounds λmin (A,D(‖ · ‖∗, X)) from below
and, therefore, gives a uniform recovery guarantee for recovering not only one but
all possible rank-r matrices.

2.2.3 Application 2: Phase Retrieval

Recall that Hn ⊂ C
n×n denotes the (real-valued) vector space of Hermitian n × n

matrices. The lifted reformulation of the phase retrieval problem is based on the
measurement operator

A(X0)(i) = 〈Ai,X0〉 Ai = aia
∗
i ∈ Hn, X0 = x0x

∗
0 ∈ Hn, i ∈ [m] .

This bears strong similarities with the measurement operator for generic low-rank
matrix recovery (2.14), but there is one crucial distinction. Each measurement
matrix Ai = aia

∗
i is itself a rank-one orthoprojector. These are everything but

generic random matrices (cf. a matrix with standard normal entries is almost surely
not rank-deficient), and a clean descent cone analysis based on Gordon’s escape
through a mesh (Theorem 2.1) seems out of reach. Fortunately, Mendelson and co-
authors [55, 71] developed a weaker variant of Theorem 2.1. Known as Mendelson’s
small ball method, this result only requires i.i.d. measurement matrices that also
obey a small ball property. We refer to Tropp [85] for a user-friendly exposition and
proof and state it directly in terms of measurement operators on Hermitian n × n

matrices.

Theorem 2.2 (Mendelson’s Small Ball Method) Suppose that A : Hn → R
m

is a measurement operator (2.2) whose measurements correspond to independent
realizations of a Hermitian random matrix A ∈ Hn. Fix a subset E ⊂ Hn, and for
ξ > 0, define

Qξ(E;A) = inf
Y∈E Pr [|〈A, Y 〉| ≥ ξ ] ,

Wm(E;A) =E sup
Y∈E

〈Y,H 〉 H = 1√
m

m∑

i=1

εiAi,

where ε1, . . . , εm
iid∼ {±1} is a Rademacher sequence. Then, for any ξ > 0 and

t > 0,

inf
Y∈E ‖A(Y )‖2 ≥ ξ

√
mQ2ξ (E;�)− 2Wm(E;�)− ξ t (2.16)

with probability at least 1− e−2t2 .
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In fact, this statement is valid for all real-valued1 inner product spaces with
finite dimensions. It is worthwhile to point out that for standard normal random
matrices �1, . . . , �m ∈ R

n1×n2 and subsets E of the Frobenius unit sphere, this
result recovers Theorem 2.1 up to constants. Fix ξ > 0 of appropriate size. Then,
E ⊂ {Y ∈ Hn : ‖Y‖2 = 1} ensures that ξQ2ξ (A;E) is constant. What is more,
Wm(A,E) reduces to the usual Gaussian width (2.15).

We obtain a recovery guarantee for phase retrieval by appropriately analyzing
both contributions to Eq. (2.16). Similar to before, we can actually obtain a uniform
recovery guarantee by taking into account all possible descent cones in one go:

E1 = {Y ∈ Hn : ‖Y‖F = 1} ∩K1, where K1 =
⋃

x∈Cn

D
(‖ · ‖∗, xx∗

)
.

(2.17)
Let us start with controlling the empirical width.

Lemma 2.3 (Empirical Width for Non-generic Phase Retrieval) Let E1 ⊂ Hn

be the union of descent cones defined in Eq. (2.17) and suppose that a ∈ C
n is an

isotropic, sub-normalized random vector, i.e., Eaa∗ = Id, ‖a‖2 ≤
√

2n. Then,

Wm(E1) �
√
n log(n) provided that m � n log(n). (2.18)

The assumption m � n log(n) is not essential but will simplify exposition
later on. Similar arguments apply to standard complex Gaussian measurement
vectors g ∈ C

n (which are not sub-normalized) and produce tighter bounds [64]:
Wm(E1, aa

∗) � √
n (no log(n)-factor), provided that m � n. The following proof

sketch summarizes arguments presented in Ref. [64].
Proof Sketch (Lemma 2.3) We will show the slightly more general bound

E‖H‖ � √max {m, n log(n)}.

Apply Lemma 2.2 to obtain

Wm(E1, A) = E sup
Y∈E1

〈Y,H 〉 � sup
Y∈E1

‖Y‖∗E‖H‖ ≤
√
rE‖H‖.

The remaining expression is an operator norm of a random matrix H =
1√
m

∑m
i=1 εiaia

∗
i that features two types of randomness. The matrix Khintchine

inequality, see, e.g., [31, Exercise 8.6(d)], allows us to trade the Rademacher
randomness against an additional square root. More precisely,

E‖H‖ = EaEε‖H‖ � Ea

√
log(n)
m

∥∥∥
m∑

j=1

(aj a
∗
j )

2
∥∥∥

1/2
�
√

n log(n)
m

Ea

∥∥∥
m∑

j=1

aja
∗
j

∥∥∥
1/2

,

1 Extensions to complex-valued inner product spaces are also possible, see, e.g., [46].
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where the last inequality follows from (aj a
∗
j )(aj a

∗
j ) = ‖aj‖2 aja

∗
j � √

n aja
∗
j .

We now face an operator norm of a sum of random matrices Xj = aja
∗
j that are

positive semidefinite and obey ‖Xi‖ = ‖aj‖2
2 ≤ 2n each. Isotropy also asserts∥

∥∥
∑m

j=1 EXj

∥
∥∥ = ‖mId‖ = m, and we can apply the matrix Chernoff inequality

[84] to obtain for any τ > 0

Ea

∥
∥∥

m∑

j=1

aja
∗
j

∥
∥∥ ≤ eτ−1

τ
m+

√
2
τ
n log(n) � max {m, n log(n)} .

��
The empirical width bound (2.18) suggests that an order of n log(n) non-generic

phaseless measurements may suffice to establish strong uniform recovery guaran-
tees for phase retrieval via low-rank matrix reconstruction. However, this is only true
if the measurement matrices aia∗i are not too spikey. More precisely, we need that
Q2ξ (aa

∗, E1)—the second quantity in Mendelson’s small ball method (2.16)—is
lower bounded by a constant.

Lemma 2.4 (Marginal Tail Function for Non-generic Phase Retrieval) Suppose
a ∈ C

n is a random vector that obeys E〈a, Ya〉2 � 〈Y, Y 〉 and E〈a, Ya〉4 �
(
E〈a, Ya〉2)2 for all Y ∈ E1. Then,

Q2ξ (E1; aa∗) �
(

1− 4ξ2

const

)2
for all 0 < ξ <

√
const/4.

Proof Fix Y ∈ E1 and use E〈a, Ya〉2 � 〈Y, Y 〉 = const to apply a Paley–Zygmund
type argument:

Pr
[∣∣〈aa∗, Y 〉∣∣ ≥ 2ξ

] ≥ Pr
[
〈a, Ya〉2 ≥ 4ξ2

constE〈a, Ya〉2
]
≥
(

1− 4ξ2

const

)2 (
E〈a,Ya〉2)2
E〈a,Y,a〉4 .

The moment assumption E〈a, Ya〉4 �
(
E〈a, Ya〉2)2 ensures that the final ratio is

lower bounded by a constant. Such a lower bound is valid, regardless of Y ∈ Er .
Hence, it also applies to the infimum Q2ξ = infY∈E1 Pr

[|〈aa∗, Y 〉| ≥ 2ξ
]
. ��

We now have gathered all the auxiliary statements we need to carry out a descent
cone analysis for phase retrieval with non-generic measurements.

Theorem 2.3 (Phase Retrieval from Non-generic Measurements) Let a ∈ C
n be

a random vector that is isotropic (Eaa∗ = Id) and sub-normalized (‖a‖2 ≤
√

2n)
and also obeys

E〈a, Ya〉2 � 〈Y, Y 〉, as well as
(
E〈a, Ya〉2

)2
� E〈a, YA〉4, (2.19)

for every Y ∈ K1. Then, with high probability, a total of
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m � n log(n)

randomly selected phaseless measurements a1, . . . , am ∼ a ∈ C
n suffice to

reconstruct signals x0 ∈ C
n via constrained nuclear norm minimization (2.3).

In fact, this recovery guarantee is actually uniform. That is, with high probability,
a single collection of randomly sampled phaseless measurements allows for recon-
structing all phaseless signals via nuclear norm minimization (2.3). Conditioned on
this event, the actual reconstruction is also stable with respect to noise corruption.
Suppose that y = A(xx∗) + e, where ‖e‖�2 ≤ τ and the noise bound is known.
Then, the solution X̂ of the convex optimization problem (2.3) is guaranteed to
obey ‖X̂ − x0x0

∗‖F � τ/
√
m. Up to constants, this assertion is on par with some

of the strongest stability guarantees for low-rank matrix reconstruction in general
[9, 13, 47].
Proof Sketch (Theorem 2.3) Let us start by reformulating phase retrieval as a low-
rank matrix recovery problem (r = 1). The general descent cone analysis presented
in Sect. 2.2.1 identifies the minimum conic singular value as an important summary
parameter. If it is positive, the current set of measurements allows to recover X0 =
x0x

∗
0 via nuclear norm minimization under idealized circumstances (no noise). The

size of the minimum conic singular value also captures noise robustness (the larger
the better). Theorem 2.2 (Mendelson’s small ball method) achieves just that. Fix
ξ = const sufficiently small and insert the bounds from Lemma 2.4 and Lemma 2.3
into the assertion of Theorem 2.2:

inf
Y∈E1

‖A(Y )‖2 ≥ξ√mQ2ξ
(
E1; aa∗

)− 2Wm

(
E1; aa∗

)− ξ t

�
√
m− const

(√
n log(n)+ t

)
,

with probability at least 1 − e−2t2 . Assigning m = Cn log(n) and t = γ /2
√
m,

where C > 0 (γ > 0) is a sufficiently large (small) constant, allows us to conclude
infY∈E1 ‖A(Y )‖2 � √m with probability at least 1− e−γ

√
m. This ensures that the

minimum conic singular value is of (optimal) order
√
m.

There is one additional twist. In Eq. (2.17), we have defined the set E1 as the
union of all possible descent cones anchored at all possible lifted signals X = xx∗.
Consequently, Theorem 2.2 produces a lower bound of

√
m on the infimum over all

possible descent cones, not just a single one. This allows us to effectively treat all
possible signals at once and establish a uniform recovery guarantee. ��

Let us conclude this section with discussing the extra assumptions (2.19).
They formulate conditions on the second and fourth moments of the measurement
matrices A = aa∗. The second moment condition ensures that the expected
measurement operator is non-singular on the union K1 of all descent cones:

1
m
E〈Y,EA∗A(Y )〉 = E〈aa∗, Y 〉F = E〈a, Ya〉2 � 〈Y, Y 〉 for all Y ∈ K1.

(2.20)
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Viewed from this angle, it actually captures (sub-)isotropy on the relevant parts
of Hn—a natural requirement for any low-rank matrix recovery procedure. Alas,
by itself, it is not sufficient to derive nontrivial recovery guarantees [37, 62] and
extra assumptions are required. Theorem 2.3, for instance, requires that (certain)
fourth moments of A = aa∗ are comparable to their second moment squared. It
should be viewed as a relaxation of (sub-)Gaussian moment growth conditions, but
only up to order four. Suitable measurement ensembles only need to mimic (outer
products of) Gaussian measurement vectors up to fourth moments. This condition is
much weaker than sub-Gaussianity, and vector distributions that satisfy Eq. (2.19)
can admit a lot of structure. A concrete example is orbits of certain symplectic
symmetry groups that arise naturally in quantum information (Clifford group) and
time–frequency analysis (oscillator group) [65]. A more refined analysis also allows
for replacing constrained nuclear norm minimization (2.3) by a simple least-squares
or �p-fit over the cone of positive semidefinite matrices [47], such as the convex
optimization problem

minimize
m∑

i=1

∣∣tr
(
ξ (i)(ξ (i))∗X

)
− yi
∣∣

subject to X ∈ Sn+,
(2.21)

where Sn ⊂ R
n×n denotes the set of real-valued symmetric matrices and Sn+ ⊆ Sn

its positive definite subset. Such reformulations have the added benefit of being
tuning-free. In particular, no a priori noise bound τ is required, see [63] for related
arguments addressing sparse vector recovery and [27] sparse covariance matching.

2.2.4 Limitations

As we have seen, a descent cone analysis combined with probabilistic tools such
as Mendelson’s small ball method yields essentially near-optimal uniform recovery
results for low-rank matrix recovery from Gaussian measurement matrices or phase
retrieval measurements with Gaussian measurement vectors. A key observation of
the proof is that the union of all descent sets is contained in a suitably large nuclear
norm ball, so it suffices to estimate the Gaussian width of this ball.

This approach, however, has significant limitations when it comes to problems
with more structure such as matrix completion and blind deconvolution. The
reason is that in these problems, as explained in Sect. 2.1.1.1, recovery guarantees
will necessarily fail for some exceptional signals that violate certain incoherence
conditions. Thus it will necessarily be impossible to bound the minimum conic
singular values for the descent cones anchored at these signals and estimating a
general superset cannot be sufficient.



2 Proof Methods for Robust Low-Rank Matrix Recovery 55

However, one may wonder whether it is possible to obtain a comparable result
to Corollary 2.1 and Theorem 2.3 by considering the union of all descent cones
of all incoherent rank-r matrices instead. However, this turns out to be more
delicate. In particular, it is unclear how to mathematically formulate a property that
captures the fact that matrices in the descent cone anchored at incoherent signals
are better conditioned with respect to the measurements. A direct connection to
the notion of incoherence is difficult, as matrices in the descent cone anchored
at incoherent signals will not necessarily be incoherent. As a consequence, also
the minimum conic singular values can become provably very small [58, 60],
which makes it difficult to bound them from below, which would be necessary for
recovery guarantees based on the strategy explained above even for the noiseless
case.

In the next section, we present an alternative analysis strategy that is better suited
to deal with incoherence conditions, as it is based on (approximate) dual certificates
rather than the descent cone and relies on the signal alone rather than differences
to alternative solutions. In certain cases, however, as we will see in Sect. 2.4, it will
also be possible to adapt the descent cone analysis to such scenarios.

2.3 Recovery Guarantees via the Golfing Scheme

2.3.1 Recovery Guarantees via Dual Certificates

Maybe the most natural way of proving that a convex optimization attains its optimal
value at a given argument is by exhibiting a dual certificate – the generalization
to possibly non-smooth convex functions of the familiar gradient condition for
optimality. Let us start by considering the noiseless nuclear norm problem (τ = 0)

minimize
X∈Cn1×n2

‖X‖∗

subject to A(X) = y,

(2.22)

see also Eq. (2.12) with f (X) = ‖X‖∗. Let X ∈ C
n1×n2 be a rank-r matrix with

singular value decomposition (SVD) X = U�V ∗. That is, � ∈ R
r×r is a diagonal

matrix with nonnegative entries and U ∈ C
n1×r and V ∈ C

n2×r are isometries, i.e.,
U∗U = V ∗V = Idr . The tangent space of the variety of rank-r matrices at the point
X can be checked to be given by

TX :=
{
UA∗ + BV ∗ : A ∈ C

n2×r , B ∈ C
n1×r} . (2.23)

Denote by PTX the (Hilbert-Schmidt) orthogonal projection onto the tangent space
and by PT ⊥X the projection onto its orthocomplement. The subdifferential ∂‖·‖∗ (X)
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of the nuclear norm at X is the set of affine lower bounds to the nuclear norm that
coincide with the norm at X. A simple application of the matrix Hölder inequality
[5] shows that [90]

∂‖ · ‖∗ (X) =
{
W ∈ C

n1×n2 : PTXW = UV ∗, ‖PT ⊥X W‖ ≤ 1
}
. (2.24)

With these notions, it is straightforward to see that a sufficient condition for X0
being the minimizer of (2.22) is given by the following lemma, first formulated in
Ref. [14].

Lemma 2.5 ([14]) Let X0 ∈ C
n1×n2 be such thatA (X0) = y ∈ C

m. Suppose that
the following two conditions hold:

1. There exists a vector z ∈ C
m such that Y = A∗ (z) satisfies

PTX0
Y = UV ∗ and ‖PT ⊥X0

Y‖ < 1.

2. The linear operatorA is injective when restricted to the tangent space TX0 .

Then, X0 is the unique minimizer of (2.22).

In Ref. [14], it was shown in the context of low-rank matrix completion from a
sufficient number of uniformly sampled matrix elements that such a dual certificate
exists with high probability. A refined (and fairly involved) analysis in Ref. [18]
showed that the number of measurements can be reduced to the order of the
information-theoretic limit, up to logarithmic factors.

Reference [36] introduced a new approach—the golfing scheme—for construct-
ing dual certificates. In the original paper, and commonly in works referring to
it, the result is presented as being based on the observation that the conditions
in Lemma 2.5 can be relaxed and that the existence of an approximate dual
certificate suffices to establish uniqueness. Approximate dual certificates are easier
to construct using randomized processes, which in their natural formulations will
give results that are correct only approximately and up to a small probability of
failure.

In this chapter, we aim to present the story from a different point of view. Namely,
we will show that a minor tweak of the golfing scheme actually gives an explicit
randomized construction for an exact dual certificate, using no more measurements
than the original argument. In this sense, it is inaccurate to say that constructing
exact certificates is harder than constructing approximate ones. While this point of
view does not seem to impact the headline result on recovery guarantees, we feel
that it represents a conceptually clearer way of thinking about the argument. To the
best of our knowledge, this approach has not appeared elsewhere in the literature
before.
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2.3.2 Golfing with Precision

Here, we recall the basic logic behind the golfing scheme, in preparation of
presenting the putting proposition, Proposition 2.2. We start with two definitions.

The analysis uses the fact that the measurement operator A is an approximate
isometry when restricted to the subspace TX. The precise notion employed is this:

Definition 2.1 Let X ∈ C
n1×n2 . We say that A fulfills the δ-restricted isometry

property (δ-RIP) on TX, if for all matrices Z ∈ TX, it holds that

(1− δ) ‖Z‖2
F ≤ ‖A (Z) ‖2

2 ≤ (1+ δ) ‖Z‖2
F .

As the name suggests, approximate dual certificates obey condition 1 in
Lemma 2.5 approximately. This is captured by the following formal definition.

Definition 2.2 Given a measurement operatorA : Cn1×n2 → C
m, a vector z ∈ C

m,
giving rise to a matrix Y = A∗ (z), is an approximate dual certificate at X0 =
U�V ∗ if it satisfies the following properties:

‖z‖2 ≤ 2, (2.25)

α = ‖UV ∗ − PTX0
A∗(z)‖F ≤ 1

8‖A‖ , (2.26)
∥∥∥PT ⊥X0

(
A∗ (z)

) ∥∥∥ < 1
2 . (2.27)

With these definitions, the central result reads as follows:

Proposition 2.1 [12, 36] Let X0 ∈ C
n1×n2 with SVD X0 = U�V ∗, and suppose

that y = A (X0)+e with ‖e‖2 ≤ τ . Suppose that the following two conditions hold:

1. There exists an approximate dual certificate Y = A∗(z)
2. The measurement operator A satisfies the δ-restricted isometry property on TX0

with constant δ = 3/4

Then, every minimizer X̂ of (2.22) satisfies

‖X0 − X̂‖F � ‖A‖τ. (2.28)

Here, ‖A‖ = sup‖z‖2=1 ‖A(z)‖F is the operator norm of the measurement
operator. The requirement (2.25) on the norm of z is only necessary in the noisy
case ‖e‖2 > 0.

The bound (2.28) is not always tight. For example, let A be the Gaussian
measurement operator defined in Sect. 2.2.2. For m � n1n2, ‖A‖ � √n1n2 with
high probability. This is larger than the optimal error scaling ‖X0− X̂‖F ∝ √m for
this regime and measurement model.
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Fig. 2.5 Construction of an approximate dual certificate via golfing: for the pth leg, we start with
a current best guess Yp (cf. panels (1) and (2) above). On the tangent space TX0 , we aim to express
the difference �p := Yid − PTXo Yp (dotted line) in terms of rows from the partial measurement
matrix Ap . Here, Yid = UV ∗ is the “ideal” dual certificate, which is an element of the tangent
space. If the rows ofAp were an orthonormal basis, then �p = (Ap)∗Ap(Yid) would give an exact
solution. If Ap is subsampled from an orthonormal basis, standard measure concentration results
imply that on the tangent space, we will obtain a relatively decent approximation for �p (solid
line). In fact, if the number of rows inAp is sufficient, one can easily show that the distance to the
ideal certificate will be reduced by a constant factor with high probability. It is then natural to just
iterate the scheme (panel (3)). This results in a random process which converges in Frobenius norm
to the ideal certificate (on the tangent space) exponentially quickly. At the same time, on the space
orthogonal to the tangent space, we have that E

(
PT ⊥X0

(A∗ (z))
) = 0. Again using concentration of

measure results, one can show that, during the logarithmically many legs of the golfing procedure,
the spectral norm of these terms remains small

Before proving this statement, we sketch the idea behind the golfing scheme [36]
for the construction of an approximate dual certificate (cf. Fig. 2.5).

The ensemble of measurement vectors will often be isotropic in the sense that
E
[
A∗A

] = Id. This motivates the choice z̃1 = A (UV ∗) and Ỹ1 = A∗ (z) =
A∗A (UV ∗) for z and Y , as it leads to the correct result E

[
A∗(z̃1)

] = UV ∗
in expectation. Consequently, one could then hope to show properties (2.25),
(2.26), and (2.27) using measure concentration around the mean. Unfortunately, this
approach does not usually work directly. One problem is that the operator norm ‖A‖
can be quite large (for blind deconvolution ‖A‖, it is of the order

√
KN/L). This,

in turn, means that
∥∥
∥UV ∗ − PTX0

A∗ (z)
∥∥
∥
F

needs to be small, smaller than typical

fluctuations. The idea behind the golfing scheme is to iteratively refine this initial
guess until condition (2.26) is satisfied:

• Step 1: Choose a partition of [m] into Q disjoint sets
{
�1, . . . , �Q

}
of size

roughly |�q | ≈ m/Q, such that QE
[
(Aq)∗Aq

] ≈ Id, where Aq := Q�qA.
(Here, Q�q : Cm → C

m denotes the coordinate projection onto �q .)
• Step 2: Set

Y0 = 0 and

Yq = Yq−1 +Q(Aq)∗Aq
(
UV ∗ − PTX0

Yq−1

)
where 1 ≤ q ≤ Q.
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The corresponding z ∈ C
m is then given by

z := Q

Q∑

q=1

Aq
(
UV ∗ − PTX0

Yq−1

)
.

Note that a consequence of the sample splitting in Step 1 is that the golfing scheme
is set up in such a way that the distribution of Aq is independent of Yq−1. This
simplifies the analysis but is not essential [39].

The precise convergence properties of this random process depend on the
parameters (partition size, incoherence, etc. [36]) and is, in any case, beyond
the scope of this article. Instead, we want to make precise the following new
observation—which, in keeping with the theme, we call the putting proposition.
For more context, see the discussion at the end of Sect. 2.3.1.

Proposition 2.2 (“Putting Proposition”) Assume that the approximate dual cer-
tificate properties (2.25)-(2.27) hold and that A fulfills the δ-restricted isometry
property on TX0 for δ < 3/4. Then, there exists an exact dual certificate for X0.

Proof Using the variational characterization of the operator norm of a Hermitian
linear map, as well as the definition of the δ-RIP, we get

∥∥∥PTX0
A∗APTX0

− PTX0

∥∥∥ = sup
Z∈TX0 ,‖Z‖F=1

∣∣(Z,A∗AZ)− 1
∣∣

= sup
Z∈TX0 ,‖Z‖F=1

∣
∣‖AZ‖2

F − 1
∣
∣ ≤ δ.

Hence, as a linear map on the tangent space, PTX0
A∗APTX0

is invertible and
satisfies

∥
∥(PTX0

A∗APTX0

)−1∥∥ ≤ 1
1−δ .

Set

x = APTX0

(
PTX0
A∗APTX0

)−1 (
UV ∗ − PTX0

A∗(z)
)
.

Together with (2.26), this gives

‖x‖2 ≤ 1√
1−δ
∥∥UV ∗ − PTX0

A∗(z)
∥∥
F
≤ 1

8
√

1−δ‖A‖ .

But then, with Y ′ = A∗(z+ x) = Y +A∗(x), we have that

PTX0
(Y ′) = UV ∗
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and
∥
∥∥∥PT ⊥X0

Y ′
∥
∥∥∥ ≤
∥
∥∥∥PT ⊥X0

Y

∥
∥∥∥+
∥
∥∥∥PT ⊥X0

A∗(x)
∥
∥∥∥

≤ 1
2 +
∥∥∥
∥PT ⊥X0

A∗(x)
∥∥∥
∥
F

≤ 1
2 + ‖A‖‖x‖2

≤ 1
2 + 1

8
√

1−δ < 1.

��

2.3.3 Application 3: Matrix Completion

Using dual certificate-based proof techniques, the nuclear norm minimization
approach to matrix completion has been studied extensively [14, 18, 20, 36, 76].
A typical result for the noiseless case (τ = 0) reads as follows:

Theorem 2.4 ([20]) Assume that n1 ≥ n2. Consider measurements of the form
y = A (X0), where X0 ∈ R

n1×n2 is a rank-r matrix and A is given by (2.4).
Assume that

m ≥ C max
{
μ2 (U) , μ2 (V )

}
rn1 log2 n1.

Then, with high probability, the matrix X0 is the unique minimizer of SDP (2.22)
(see also SDP (2.3) with τ = 0).

Further variants have been studied in the literature. For example, if the noise
term is drawn randomly instead of adversarially, improved results can be given, see
Refs. [53, 54] for subexponential and Ref. [22] for sub-Gaussian noise. Non-convex
algorithms with rigorous performance guarantees can be found in Refs. [30, 32, 43,
50, 51, 66, 70, 83]).

2.3.4 Application 4: Simultaneous Demixing and Blind
Deconvolution

Simultaneous blind deconvolution and demixing is a generalization of the blind
deconvolution problem introduced in Sect. 2.1.1.2. It is motivated by wireless
communication scenarios that involve multiple senders, but only one receiver. Each
sender wants to transmit a signal mi using a linear encoder Ci . The encoded signal
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Fig. 2.6 A multi-user wireless (uplink) communication scenario: wireless devices i = 1, . . . , r
simultaneously transmit messages mi to the base station which are individually encoded with a
linear code Ci and experience individual convolutional channels hi

xi = Cimi is sent through an unknown convolution channel wi to the receiver.
Because there are multiple senders, the receiver obtains the superposition of r

convolutions, where the goal is to reconstruct all messages {mi}ri=1.
In mathematical terms, this leads to an inverse problem of the form

y =
r∑

i=1

wi ∗ xi + e ∈ C
L, (2.29)

where ∗ denotes the (circular) convolution introduced in Eq. (2.6). The goal is to
simultaneously reconstruct all signals xi , as well as all channel descriptions wi .
As in the randomized blind deconvolution framework, we have to use some prior
knowledge on wi and xi in order to be able to reconstruct these signals. We are
going to adopt the framework introduced in Ref. [69]. Assume that wi and xi are
elements of known subspaces. Hence, we can write wi = Bhi and xi = Cimi for all
i ∈ [r], where B ∈ C

L×K and Ci ∈ C
L×N , see Fig. 2.6. We assume that B∗B = Id

and, moreover, that for each i ∈ [r], the entries of the matrix Ci are i.i.d. samples
from the complex normal distribution CN (0, 1).

Similar to the randomized blind deconvolution setting, we note that for each
i ∈ [r] there is a unique linear operatorAi : CK×N → C

L such that for all u ∈ C
K

and v ∈ C
N it holds that

Ai

(
uv∗
) = Bu ∗ Civ.

Hence, we can rewrite Eq. (2.29) as
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y =
r∑

i=1

Ai

(
him

∗
i

)+ e.

We emphasize that each outer product him∗i comes with a unique linear operator
Ai . This allows us to recast Eq. (2.29) as a low-rank matrix recovery problem on a
larger space. Our goal is to recover the block-diagonal rank-r matrix

X0 = h1m
∗
1 ⊕ h2m

∗
2 ⊕ · · · ⊕ hrm

∗
r

from a linear measurement operator that decomposes accordingly (A(Z1 ⊕ · · · ⊕
Zr) =∑r

i=1Ai (Zi)). Adapting SDP (2.3) to this problem structure yields

minimize
X1,...,Xr∈CK×N

r∑

i=1

‖Xi‖∗

subject to ‖y −
r∑

i=1

Ai (Xi) ‖2 ≤ τ,

(2.30)

see [69]. Furthermore, denote by μ2
max and μ2

h the coherence parameters, which are
similar to the ones defined in Sect. 2.1.1.2. (For a precise definition, we refer to
[45].) In [69], it has been shown that if

L � r2
(
Kμ2

max +Nμ2
h

)
log3 L (2.31)

holds, then in the noiseless scenario, i.e., e = 0, the convex relaxation (2.30)
recovers the ground truth matrix X0 with high probability.

However, we observe that the number of degrees of freedom in this problem is
r (K +N − 1), which raises the question, whether the quadratic dependence on r

in (2.31) is necessary. Indeed, numerical experiments in [69] indicate that the true
dependence of the sample complexity in r should rather be linear (see [69, Section
IV] as well as [45, Section III]).

The main result in [45] shows that the required simple complexity is indeed linear
in r . Hence, nuclear norm minimization can recover the ground truth signal X0 at
near-optimal sample complexity.

Theorem 2.5 ([45] and see also [80–82]) Let y ∈ C
L be given by (2.29) with

‖e‖2 ≤ τ . Assume that

L/ log3 L � r
(
Kμ2

max log
(
Kμ2

max

)
+Nμ2

h

)
.

Then, with high probability, every minimizer X̂ = X̂1 ⊕ . . . ⊕ X̂r of SDP (2.30)
satisfies
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√√√
√

r∑

i=1

∥∥∥X̂i − him
∗
i

∥∥∥
2

F
� τ

√
rN.

In the following, we are going to describe the main technical ingredient, which
allowed for linear scaling in r . In both [69] and [45], the proofs establish the
existence of an approximate dual certificate with high probability. One ingredient
is to show that the measurement operator acts as an approximate isometry operator
on the tangent space of X0, see Definition 2.1. To make this precise in the blind
demixing scenario, define, for i ∈ [r], the tangent space Ti of rank-1 matrices at
him

∗
i :

Ti =
{
hiu

∗
i + vim

∗
i : ui ∈ C

K, vi ∈ C
N
}
.

Then, we can define the tangent space at X0 by

T̃ := {X1 ⊕ . . .⊕Xr : Xi ∈ Ti for all i ∈ [r]} .

In both [69] and [45], one part of the proof consists in showing that, with high
probability, the collection of measurement operators {Ai}ri=1 fulfills a local isometry
property on T̃ . That is, for a sufficiently small δ > 0,

(1− δ) ‖X‖2
F ≤
∥∥
∥

r∑

i=1

Ai (Xi)

∥∥
∥

2

2
≤ (1+ δ) ‖X‖2

F for allX = X1⊕. . .⊕Xr ∈ T̃ .

(2.32)

In [69], the restricted isometry property is first shown individually on each Ti and
after that is shown that the images of the subspaces Ti under the operator Ai are
sufficiently near-orthogonal to each other. Combining these two properties yields
(2.32). However, the second step requires that L scales quadratically in r .

In contrast, our analysis establishes the restricted isometry property directly on
T̂ . For that, we define

T̂ :=
{

X1 ⊕ . . .⊕Xr ∈ T̃ :
r∑

i=1

‖Xi‖2
F = 1

}

.

Next, we observe that (2.32) is equivalent to

δ ≥ sup
X1⊕...⊕Xr∈T̂

∣∣∣
∥∥∥

r∑

i=1

Ai (Xi)

∥∥∥
2

2
−

r∑

i=1

‖Xi‖2
F

∣∣∣

= sup
X1⊕...⊕Xr∈T̂

∣
∣∣
∥
∥∥

r∑

i=1

Ai (Xi)

∥
∥∥

2

2
− E

[∥∥∥
r∑

i=1

Ai (Xi)

∥
∥∥

2

2

]∣∣∣.
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The key idea is that the last expression can be interpreted as a suprema of chaos
processes, and we can use deep results from empirical process theory [57] to bound
this expression with high probability.

2.3.5 Phase Retrieval with Incoherence

Recall that in the phase retrieval problem we are interested in reconstructing a signal
x0 from measurements of the form

yk = |〈ak, x0〉|2 + ek. (2.33)

We have seen in Sect. 2.2.3 that this problem can be solved not only for Gaussian
measurement vectors {ai} but also for measurement vectors that are less generic.
Nevertheless, the required assumptions are somewhat more restrictive than, for
example, in compressive sensing. In particular, for measurement vectors with
unimodular entries, the problem does not even have a unique solution.

To see that, assume that for all k, the entries of the vector ak have all the same
modulus, i.e.,

| (ak)1 | = | (ak)2 | = . . . = | (ak)n |. (2.34)

In this case, both the vectors

x1 := (1, 0, . . . , 0) ∈ R
n

x2 := (0, 1, . . . , 0) ∈ R
n

(2.35)

lead to the same measurements, i.e.,

|〈ai, x1〉|2 = |〈ai, x2〉|2 for all i ∈ [m] .

Hence, x1 and x2 cannot be distinguished based on phaseless measurements alone.
We want to stress that condition (2.34) holds for several interesting classes of
measurement vectors. For example, this condition is fulfilled if the entries ak are
Rademacher random variables, i.e., (ak)i is either 1 or −1, each with probability
1/2. Moreover, if each entry (ak)i is a random variable with uniform distribution
over S1 ⊂ C, this condition would also be fulfilled.

Another example, which is important for certain applications, is given by random
masks [10, 38]. That is, the measurement vector ak is of the form

ak = diag (εk) flk ,

where εk ∈ {−1, 1}n is a Rademacher vector and flk is the lkth column of the DFT
matrix F ∈ C

n×n.
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A first step to address these issues was taken in [56]. The key idea is to impose
an incoherence condition of the form

‖x0‖∞‖x0‖2
≤ μ < 1, (2.36)

which prevents counterexamples of the form (2.35). Under such incoherence
condition, one can obtain recovery guarantees for all centered random vectors
with i.i.d. real-valued sub-Gaussian entries of unit variance, including the case of
Rademacher random vectors that was previously excluded. More precisely, [56,
Theorem V.1] yields that with high probability, all signals satisfying (2.36) for μ =

1√
8

can be recovered via (2.21) from an order-optimal number of measurements.
The proof combines the golfing scheme with stability bounds of [25], confirming
that the golfing scheme is well suited to deal with incoherence.

We note that the incoherence condition (2.36) is much weaker than the inco-
herence conditions in matrix completion and blind deconvolution because it is
dimension-free. At the same time, this approach is limited to the real case, as the
underlying stability results from [25] exploit that the phase factors to be recovered
are actually signs and hence belong to a finite candidate set. Thus for the complex
case, one needs different tools, which will be discussed in Sect. 2.4.2 below.

2.4 More Refined Descent Cone Analysis

2.4.1 Application 5: Blind Deconvolution

In Sect. 2.2.4, we have discussed why the descent cone analysis framework
described in Sect. 2.2.1 cannot be directly applied to the matrix completion and blind
deconvolution scenario. In the following, we want to outline how one can refine
those methods to obtain novel insights into low-rank matrix recovery problems. For
that, we are going to revisit the blind deconvolution setting, see Sect. 2.1.1.2, and
demonstrate how to combine a descent cone analysis with incoherence constraints to
prove near-optimal bounds in settings which are relevant in practice. This improves
over existing error bounds (see, e.g., [1]), which depend polynomially on K and N

and hence are quite pessimistic.
More precisely, recall from Sect. 2.2.4 that we only expect to obtain reasonable

bounds for matrices with low incoherence, as described by the set

Hμ :=
{
h0 ∈ C

K : √L|〈b�, h0〉| ≤ μ‖h0‖2 for all � ∈ [L]
}
.

Even if the signal is contained in the set, not all principal components of a
descent direction need to be incoherent as well. The key observation underlying
the following theorem is that these “coherent” descent directions only allow for
very small decrements and will hence only play a significant role for very small
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noise levels. Thus even under mild lower bounds on the noise level, one obtains
near-optimal recovery guarantees.

Theorem 2.6 ([60, Theorem 3.7]) Let α > 0 and B ∈ C
L×K such that B∗B = Id.

Assume that

L � μ2

α2 (K +N) log2 L.

Then, with high probability, the following statement holds for all h0 ∈ Hμ \ {0}, all
m0 ∈ C

N \ {0}, all τ > 0, and all e ∈ C
L with ‖e‖2 ≤ τ :

Any X̂ minimizing the nuclear norm subject to a data fidelity term of at most τ
satisfies

‖X̂ − h0m
∗
0‖F � μ2/3 log2/3 L

α2/3 max
{
τ, α‖h0m

∗
0‖F
}
. (2.37)

Note that the error estimate in (2.37) depends only logarithmically on L. To illustrate
this result, assume that the noise level τ = εμ−2 log−2 L for some ε > ε0. Then,
by setting α � ε0μ

−2 log−2 L, we obtain near-linear error bounds with a required
sample complexity at the order of

L ≥ C1
μ6

ε2
0
(K +N) log6 L.

This improves over existing noise bounds as in [1] and shows that for large enough
noise near-optimal recovery bounds are possible.

Proof Sketch As discussed in Sect. 2.2.4, the minimum conic singular value of
the descent cone at the point h0m

∗
0 is ill-conditioned, i.e., there exists a matrix

Z ∈ C
K×N such that ‖A(Z)‖2‖Z‖F is small. The key observation in the proof is that

only matrices Z, which are near-orthogonal to the ground truth, can be poorly
conditioned. This observation gives rise to the following proof strategy. Namely, we
partition the descent cone of the nuclear norm at the point h0m

∗
0 into two cones K1

and K2, where the cone K1 contains all the directions, which are almost orthogonal
to the ground truth matrix h0m

∗
0. The coneK2 contains all the remaining directions.

It turns out that matrices in the descent coneK2 inherit certain coherence properties
from the matrices h0m

∗
0, which allows us to apply Mendelson’s small ball method

to obtain a lower bound for the minimum conic singular value λmin (A,K2), which
is at the order of a constant (up to log-factors and ignoring the μ-dependence).
Then, using Lemma 2.1, we can control the error, which arises from the directions
contained in the cone K2. In order to control the error, which can arise from
directions in K1, we use the observation that for those directions, the nuclear norm
ball around h0m

∗
0 behaves locally like a Euclidean ball. In particular, if the noise

level τ is small, only a short segment in this direction will have smaller nuclear
norm than h0m

∗
0. Hence, only a small error can occur from these near-orthogonal

directions Z ∈ K1. ��
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2.4.2 Application 6: Phase Retrieval with Incoherence

The strategy of splitting the descent cone into two parts can also be applied to
the phase retrieval problem with measurements consisting of arbitrary i.i.d. sub-
Gaussian entries as introduced in Sect. 2.3.5, allowing to generalize the results of
[56] to complex-valued measurements. This is a key step toward understanding
real-world applications such as ptychography, which typically do not give rise
to real-valued measurements. For complex-valued measurements of real-valued
signals, one obtains recovery guarantees exactly analogous to those discussed in
Sect. 2.3.5, where this time one requires the incoherence constraint (2.36) with
parameter μ = 1

81 , see [59, Theorem 2].
The proof of these guarantees proceeds via a descent cone analysis of the cone

of all admissible directions

Mμ := cone
{
Z ∈ Sn : ∃x0 ∈ Xμ such that x0x

∗
0 + Z ∈ Sn+

}
,

where

Xμ :=
{
x0 ∈ R

n \ {0} : ‖x0‖∞ ≤ μ‖x0‖2
}
.

In order to observe how incoherence is useful, it is instructive to consider the signal
x0 = e1 = (1, 0, . . . , 0) ∈ R

n. Note that the matrix Z = e2e
T
2 − e1e

T
1 is an

admissible direction, that is, x0x
∗
0+tZ ∈ Sn+ for a sufficiently small t > 0. However,

if the measurement vector ak satisfies

| (ak)1 | = | (ak)2 | = . . . = | (ak)n |.

we have tr(a∗kZak) = 0. The problem here is that all the mass of Z is concentrated
on its diagonal. The proof in [59] shows that this cannot be the case, if x0 is
incoherent.

To extend the recovery guarantees to complex-valued signals, one needs to
address an additional difficulty. Namely, the phases of the entries of the measure-
ment vector must be well distributed on the unit circle in C. To see this, consider
real measurements of a complex signal x. Then, x and x̄ give rise to the same
phaseless measurements and hence cannot be distinguished. Such ambiguities can
be addressed by an additional constraints on the measurements; then, the proof tech-
niques sketched above carries over. We refer the interested reader to [59] for details.

2.5 Conclusion

Although many inverse problems admit a reformulation as a low-rank matrix
recovery problem, as we have seen, even for the benchmark reconstruction approach
via nuclear norm minimization, the structure imposed by the applications can
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make a significant difference. This is true both in terms of how to analyze the
reconstruction performance and in terms of the robustness results that can be
expected. A key concept in this context is the role of incoherence that distinguishes
problems with comparable performance for different signals from problems where
for some signals the solution is not even unique. The golfing scheme has proven
to be a useful tool to derive signal-dependent recovery guarantees for incoherent
signals but has several shortcomings such as limited geometric interpretations. Some
of these shortcomings can be addressed by a refined descent cone analysis that
partitions the descent cone into multiple parts that can be analyzed separately. To
date, however, this approach has only been applied to very few scenarios, in all
of which the underlying signal is of rank one. Generalizing this analysis to higher
rank and also precisely analyzing the performance in the small noise regime would
be of great importance for generating a more comprehensive understanding of the
potential and limitation of low-rank matrix recovery via nuclear norm minimization.

Acknowledgments This work was prepared as part of the Priority Programme Compressed
Sensing in Information Processing (SPP 1798) of the German Research Foundation (DFG). The
authors would like to thank Julia Kostina for finding a minor mistake in the first version of the
manuscript.

Appendix: Descent Cone Elements Are Effectively Low Rank

Lemma 2.2 Suppose that Z ∈ C
n1×n2 is contained in the nuclear norm descent

cone of a rank-r matrix X ∈ C
n1×n2 . Then,

‖Z‖∗ ≤
(

1+√2
)√

r‖Z‖F .

The constant 1 + √2 is not optimal and could be further improved by a more
refined analysis. The argument presented here is novel and inspired by dual certifi-
cate arguments reviewed in Sect. 2.3. It also requires a rectangular generalization of
the pinching inequality for Hermitian matrices, see, e.g., [5, Problem II.5.4]

Theorem 2.13 ((Hermitian) Pinching Inequality) Let P1, . . . , PL ⊂ Hn be a
resolution of the identity (P 2

l = Pl and
∑

l Pl = Id). Then,

‖X‖∗ ≥
L∑

l=1

‖PlXPl‖∗ for every X ∈ Hn.

We can extend pinching to general rectangular matrices by embedding them
within a larger block matrix. The self-adjoint dilation of Z ∈ C

n1×n2 is

T(Z) =
(

0 Z

Z∗ 0

)
∈ Hn1+n2 .
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Dilations preserve spectral information. In particular,

‖T(Z)‖∗ =tr
(√
T(Z)∗T(Z)

)
= tr

(√
ZZ∗ 0
0

√
Z∗Z

)

=tr(
√
ZZ∗)+ tr(

√
Z∗Z) = 2‖Z‖∗. (2.38)

For simplicity, we only formulate and prove our generalization of the Hermitian
pinching inequality for identity resolutions with two elements each. Statement and
proof do, however, readily extend to more general resolutions with compatible
dimensions.

Corollary 2.3 (Pinching for Non-symmetric Matrices) Let P,P⊥ ∈ Hn1 and
Q,Q⊥ ∈ Hn2 be two resolutions of the identity. Then,

‖X‖∗ ≥ ‖PXQ‖∗ +
∥∥∥P⊥XQ⊥

∥∥∥∗ for all X ∈ C
n1×n2 .

Proof (Corollary 2.3) Use Eq. (2.38) to relate the nuclear norm of X to the nuclear
norm of its self-adjoint dilation:

2‖X‖∗ = ‖T(X)‖∗ =
∥∥∥∥

(
0 X

X∗ 0

)∥∥∥∥
∗
.

Next, we combine P,P⊥ ∈ Hn1 and Q,Q⊥ ∈ Hn2 to obtain a resolution of the
identity with compatible dimension:

(
P 0
0 Q

)
,

(
P⊥ 0
0 Q⊥

)
∈ Hn1+n2 .

Since everything is Hermitian, we can apply Theorem 2.13 (original pinching) with
respect to this resolution of the identity to the nuclear norm of the s.a. dilation:

∥
∥∥
∥∥

(
0 X

X∗ 0

)∥∥∥
∥∥∗
≥
∥
∥∥
∥∥

(
P 0

0 Q

)(
0 X

X∗ 0

)(
P 0

0 Q

)∥∥∥
∥∥∗
+
∥
∥∥
∥∥

(
P⊥ 0

0 Q⊥

)(
0 X

X∗ 0

)(
P⊥ 0

0 Q⊥

)∥∥∥
∥∥∗

=
∥
∥∥
∥∥

(
0 PXQ

QX∗P 0

)∥∥∥
∥∥∗
+
∥
∥∥
∥∥

(
0 P⊥XQ⊥

Q⊥X∗P⊥ 0

)∥∥∥
∥∥∗

.

We can now recognize self-adjoint dilations of two rectangular matrices. Using
Eq. (2.38) implies

‖T(X)‖∗ ≥‖T(PXQ)‖∗ + ‖T(P⊥XQ⊥)‖∗ = 2‖PXQ‖∗ + 2‖P⊥XQ⊥‖∗.

��
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Next, the concept of sign functions of real numbers is extendable to non-
Hermitian matrices. Let X ∈ C

n1×n2 be a rectangular matrix with SVD X =
U�V ∗. We define its sign matrix to be sign(X) = UV ∗ ∈ C

n1×n2 . Note that this
sign matrix is unitary and obeys

〈sign(X),X〉F = tr
(
(UV ∗)∗U�V ∗

) = tr(�) = ‖X‖∗.

The last ingredient is the dual formulation of the nuclear norm:

‖X‖∗ = max‖U‖≤1
|〈U,X〉| = max

Uunitary
|〈U,X〉| .

Proof (Lemma 2.2) By assumption, Z ∈ C
n1×n2 is contained in the descent cone of

a rank-r matrixX. This implies that there exists τ > 0 such that ‖X‖∗ ≥ ‖X+τZ‖∗.
Apply an SVD X = U�V ∗ and use it to define r-dimensional orthoprojectors P =
UU∗ ∈ Hn1 , Q = VV ∗ ∈ Hn2 , as well as their orthocomplements P⊥ = Id − P

and Q⊥ = Id−Q. Use them to define the matrix-valued projections

P⊥TX : Z �→ P⊥ZQ⊥ and PTX : �→ Z − P⊥TX(Z) = PZ + ZQ− PZQ

such that Z = P⊥TX(Z) + PTX(Z) = Z⊥TX + ZTX and, in particular, X⊥TX = 0 and
XTX = X. In words, PTX projects C

n1×n2 onto a subspace whose compression to
the kernel of X vanishes identically, namely the tangent space of X (as defined in
(2.23)). Moreover, for every Z ∈ C

n1×n2 ,

rk
(
ZTX

) = rk
(
PZ + (P + P⊥)ZQ− PZQ

)
= rk

(
PZ + P⊥ZQ

)

≤ rk (PZ)+ rk
(
P⊥ZQ

)
≤ rk(P )+ rk(Q) = 2r, (2.39)

because matrix rank is subadditive and cannot increase under matrix products.
Corollary 2.3 (pinching)—with respect to P and Q—and the descent cone property
of Z together imply

‖X‖∗ ≥ ‖X + τZ‖∗ ≥ ‖P(X + τZ)Q‖∗ +
∥∥∥P⊥(X + τZ)Q⊥

∥∥∥∗

= ‖X + τPZQ‖∗ + τ

∥∥∥P⊥ZQ⊥
∥∥∥∗

= |〈sign(X + τPZQ),X + τPZQ〉F | + τ

∥
∥∥P⊥ZQ⊥

∥
∥∥∗

≥ |〈sign(X),X〉F + τ 〈sign(X), PZQ〉F | + τ‖P⊥ZQ⊥‖∗
≥‖X‖∗ + τ

(
− |〈sign(X), PZQ〉F | +

∥∥∥P⊥ZQ⊥
∥∥∥∗

)
.
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Since τ > 0, this chain of inequalities can only be valid if

∥
∥
∥Z⊥TX

∥
∥
∥∗ =

∥
∥
∥P⊥ZQ⊥

∥
∥
∥∗ ≤ |〈sign(X), PZQ〉F | ≤ ‖sign(X)‖‖PZQ‖∗ ≤

√
r‖PZQ‖F

because both P and Q are rank-r projectors. We can combine this with a
decomposition Z = Z⊥TX + ZTX and Eq. (2.39) to conclude

‖Z‖∗ ≤
∥∥∥Z⊥TX

∥∥∥∗ +
∥∥ZTX

∥∥∗ ≤
√
r‖PZQ‖F +

√
rank(ZTX)‖ZTX‖F

≤√r‖Z‖F +
√

2r‖Z‖F =
(

1+√2
)√

r‖Z‖F

because both Z �→ PZQ and Z �→ ZTX are contractions with respect to the
Frobenius norm. ��
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Chapter 3
New Challenges in Covariance
Estimation: Multiple Structures and
Coarse Quantization

Johannes Maly, Tianyu Yang, Sjoerd Dirksen, Holger Rauhut,
and Giuseppe Caire

3.1 Introduction

The key objective in covariance estimation is simple to state: given n ∈ N i.i.d.

samples X1, ...,Xn d∼ X of a random vector X ∈ R
p, compute a reliable estimate

of the covariance matrix E[XX�] = � ∈ R
p×p (without loss of generality, we

restrict ourselves here to mean-zero distributions, i.e., E[X] = 0). For this purpose,
a natural estimator is the sample covariance matrix

�̂n = 1

n

n∑

k=1

Xk(Xk)� (3.1)

as it converges to �, for n → ∞, by the law of large numbers. Nevertheless, an
asymptotic result is of limited use from practical perspective. Given n ∈ N, it
provides no information on the reconstruction error ‖�̂n − �‖ measured in the
operator norm ‖ · ‖. (Although other norms or error metrics might be considered
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as well, e.g., the Frobenius norm, we mainly restrict ourselves in this chapter on
operator norm bounds as the most common representative.)

In the last two decades, numerous works on non-asymptotic analysis of covari-
ance estimation showed that reliable approximation of � by �̂n becomes feasible
for sub-Gaussian distributions if n � p, where a � b denotes a ≤ Cb for some
absolute constant C > 0. For instance, if X has a Gaussian distribution, then it is
well known [61] that with probability at least 1− 2e−t

‖�̂n −�‖ � ‖�‖
(√

p + t

n
+ p + t

n

)

. (3.2)

This classical result exhibits various weaknesses. For instance, it requires strong
concentration of the distribution of X around its mean. The estimator in (3.1) is
sensitive to outliers and not reliable if concentration fails [12, 34]. Furthermore,
in applications the ambient dimension can easily exceed the number of accessible
samples such that even if concentration may be assumed, the estimate in (3.2) is
void.

3.1.1 Outline and Notation

In Sect. 3.2, we briefly discuss massive MIMO as one specific modern application
of covariance estimation. The massive MIMO setting originates from wireless
communications research and will serve as a motivation for investigating multiple
structures and quantized samples in a mathematical framework. Section 3.3 then
surveys recent theoretical advances on estimation of structured covariance matrices,
and Sect. 3.4 shows the impact of coarse sample quantization on estimation guar-
antees. Having the theoretical results from Sects. 3.3 and 3.4 in mind, in Sect. 3.5,
we finally return to the details of massive MIMO and present our recent approach
in engineering literature. We conclude in Sect. 3.6 by discussing the gap between
existing theoretical guarantees and practical solutions. Some technical details of
Sect. 3.3 are deferred to the Appendix.

We denote [n] = {1, ..., n}. For any absolute constant C > 0, we abbreviate
a ≤ Cb (resp., ≥) as a � b (resp., �). We furthermore write a �L b (resp., �L) if
C only depends on the quantity L. Whenever we use absolute constants c, C > 0,
their values may vary from line to line. Scalar-valued functions act component-wise
on vectors and matrices. For a set S, the indicator function χS is 1 on S and 0 on
its complement Sc. We denote the all ones-matrix by 1 ∈ R

p×p and the identity by
I ∈ R

p×p. In particular,

[sign(x)]i =
{

1 if xi ≥ 0

−1 if xi < 0,
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for all x ∈ R
p and i ∈ [p]. For Z ∈ R

p×p, we denote the operator norm (the
maximum singular value) by ‖Z‖ = supu∈Sp−1 ‖Zu‖2, the nuclear norm (the sum of
singular values) by ‖Z‖∗ = tr(

√
Z�Z), the Frobenius norm (trace norm) by ‖Z‖2

F =
tr(Z�Z) =∑p

i,j=1 Z
2
i,j , the max norm by ‖Z‖∞ = maxi,j |Zi,j |, and the maximum

column norm ‖Z‖1→2 = maxj∈[p] ‖zj‖2, where zj denotes the j -th column of Z.
We use % for the Hadamard (i.e., entry-wise) product of two matrices. The uniform
distribution on a set S is denoted by Unif(S). The multivariate Gaussian distribution
with mean μ ∈ R

p and covariance matrix � ∈ R
p×p is denoted by N(μ,�). The

sub-Gaussian (ψ2-) and subexponential (ψ1-) norms of a random variable X are
defined by

‖X‖ψα = inf
{
t > 0 : E

[
exp
( |X|α

tα

)]
≤ 2
}

A mean-zero random vector X on R
n is called K-sub-Gaussian if

‖〈X, x〉‖ψ2 ≤ K E[〈X, x〉2]1/2 for all x ∈ R
n.

3.2 Motivation: Massive MIMO

Multiple-input multiple-output (MIMO) is a method in wireless communication to
enhance the capacity of a radio link by using multiple transmission and multiple
receiving antennas. It has become an essential element of wireless communication
standards for Wi-Fi and mobile devices [24, 50]. Massive MIMO equips the base
station (BS) with a large number of antennas to further increase bandwidth and
potential number of users [44, 45].

In a classical massive MIMO communication system, the BS is equipped with
a uniform linear array (ULA) of M antennas and communicates with multiple
users through a scattering channel, e.g., wave reflection on buildings or objects. See
Fig. 3.1 for an exemplary setup. During uplink (UL), the BS receives user pilots and
aims at estimating the respective channel covariance matrices, which characterize

Fig. 3.1 An exemplary
multipath propagation
channel, where the user signal
is received at the BS through
two scattering clusters

User

BS ULA
Scattering Channel
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each transmission channel. By assuming mutual orthogonality of all UL pilots, it
suffices to focus on a single user channel. We denote the corresponding UL channel
vector at time–frequency resource s by h(s) ∈ C

M (standard block-fading model,
e.g., [59]). Furthermore, we assume that the user transmits a single pilot per channel
coherence block such that the channel vectors h(s) are i.i.d. complex Gaussian
vectors, for s ∈ [N ] [27, 28].

The received pilot signal at the BS at resource block s is then given as

y(s) = h(s)x(s)+ z(s), (3.3)

for s ∈ [N ], where x(s) ∈ C is the known pilot symbol and z(s) ∼ CN(0, N0I) =
N(0, N0

2 I) + jN(0, N0
2 I) models additive white Gaussian noise (AWGN). Without

loss of generality, one may assume that the pilot symbols are normalized, i.e.,
x(s) = 1. The core problem of massive MIMO channel estimation is now to
estimate the channel covariance matrix

�h = E[h(s)h(s)H] (3.4)

from N noisy samples y(s), s ∈ [N ]. Since the number of samples N is limited
due to time constraints of the UL phase, one expects for massive MIMO that N ≈
M . Translating this into our initial theoretical setting, i.e., identifying the ambient
dimension p with the number of antennas M , the number of samples n with the
number of independent time–frequency resources N , and the sample vectors Xk

with the channel vectors h(s), we see that the sample covariance matrix will not
provide a reliable estimate of �h in this case, cf. Eq. (3.2) for n ≈ p. Nevertheless,
a closer look into the channel model reveals that �h naturally exhibits intrinsic
structures such as low-rankness and Toeplitz structure, cf. Sect. 3.5.

Structure and Quantization Let us highlight two crucial points. First, whereas
engineers are successful in boosting the sample covariance matrix by using special
features of their problem setting, cf. Sect. 3.5, it might simplify existing approaches
if alternatives to the sample covariance matrix are used that automatically leverage
intrinsic structure(s) of the covariance matrix. As Sect. 3.3 will show, the last decade
substantially improved our theoretical understanding in this regard. Second, if the
above methods are used in real applications, one has to take into account that
the sample vectors y(s) have to be quantized to finite alphabets before digital
processing. Especially, in massive MIMO, the information loss due to quantization
can be significant since fine quantization at a multitude of antennas leads to
enormous energy consumption. The results presented in Sect. 3.4 can be seen as a
first theoretical step into understanding the non-asymptotic behavior of covariance
estimators under coarse quantization of the samples. Since we concentrate on
memoryless quantization schemes (each vector entry is quantized independently of
all others), our model should be applicable to massive MIMO in a straightforward
way.
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3.3 Estimation of Structured Covariance Matrices and
Robustness Against Outliers

As we have already seen in Sect. 3.2, there are several structures of interest
that � might exhibit in applications. We concentrate here on three important
instances—sparsity, low-rankness, and Toeplitz structure—that naturally emerge
in engineering, biology, and data science, e.g., [42, 53]. Parts of the results we
review below are not restricted to Gaussian random vectors but allow to treat
heavy-tailed distributions that only satisfy assumptions on their lower moments.
Techniques for robust covariance estimation include median of means [31, 49],
element- and spectrum-wise truncation [12, 47], and M-estimators [47, 48]. The
recent work [46] even constructs a “sub-Gaussian” estimator that only requires a
finite kurtosis assumption (L4–L2-norm equivalence). In this context, an estimator
is called sub-Gaussian if it performs on non-Gaussian distributions as well as the
sample covariance matrix applied to Gaussian distributions, for further discussion
see [46]. Although the proposed construction is computationally intractable, it
illustrates the potential of robust estimation. For further information on early and
recent approaches to robust covariance estimation, we refer the reader to [29, 34].

3.3.1 Sparse Covariance Matrices

We begin with the assumption that � is a sparse matrix, i.e., only few entries of
� are relevant and hence non-zero. If X models ordered variables, the non-zero
entries of �, for instance, might cluster around the diagonal such that � is a banded
or tapered matrix. A straightforward way to estimate such covariance matrices is
to band/taper the sample covariance matrix �̂n [6, 11, 23]. If the variables are
not ordered and the non-zero entries of � do not cluster, thresholding of �̂n is a
viable alternative [5, 19]. As remarked in [40], the aforementioned approaches can
be treated in a unified way by introducing a mask M ∈ [0, 1]p×p and considering
the masked sample covariance matrix M % �̂n. The masked formulation allows to
decompose the estimation error

‖M% �̂n −�‖ ≤ ‖M% �̂n −M% �‖ + ‖M% � − �‖

into a variance term that behaves well if M is (close to) sparse and a bias term
that is small whenever M encodes the support of �. The bias term is deterministic
and solely depends on a proper choice of M. For understanding the influence of
sparsity on the required sample size, it thus suffices to control the variance term.
The corresponding state-of-the-art result can be found in [13] which extends [40]
from Gaussian distributions to general distributions of finite fourth moment and
strengthens [40] if applied to Gaussian distributions. To facilitate the comparison
with (3.2), we present the result only in the Gaussian case.
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Theorem 3.1 ([13, Theorem 1.1]) Let M ∈ [0, 1]p×p, for p ≥ 3, be fixed and
X ∼ N(0,�) with � ∈ R

p×p. Then,

(
E‖M% �̂n −M% �‖2

) 1
2

� ‖�‖
⎛

⎝

√
‖�‖∞
‖�‖ · ‖M‖

2
1→2 log(p)

n
+ ‖�‖∞‖�‖ · ‖M‖ log(p) log(np)

n

⎞

⎠ .

Theorem 3.1 only bounds the second moment of the variance term, which
yields high-probability estimates via Markov’s inequality. However, the same
proof techniques apply to higher moments of the variance term as well such that
exponential tail bounds can be achieved for Gaussian X, cf. [13, Section 3.3].

Let us compare Theorem 3.1 with (3.2). For general covariance estimation, i.e.,
M = 1, we have ‖M‖2

1→2 = ‖M‖ = p, which implies that up to log-factors both

results are of the same order O(
√

p
n
+ p

n
). If M encodes sparsity, however, meaning

that only up to s � p columns and rows are non-zero and ‖M‖2
1→2 = ‖M‖ = s,

the estimation error is considerably reduced when applying Theorem 3.1. A similar
error reduction occurs if M% �̂n is a banded estimator of bandwidth B.

Estimation via Thresholding While the masked framework provides a unified
understanding of the intrinsic complexity of sparse covariance estimation, in
practice the mask M is unknown. A more realistic approach to the problem is hence
thresholding procedures as, e.g., [5]. To allow for non-ordered covariance matrices,
i.e., general sparsity and not only limited bandwidth of the matrix, the authors of [5]
introduce the set of bounded and (effectively) sparse covariance matrices

U(q, s,M) :=
⎧
⎨

⎩
� : �i,i ≤ M and

p∑

j=1

|�i,j |q ≤ s, for all i ∈ [p]
⎫
⎬

⎭
,

for q ∈ [0, 1) and s,M > 0. If q = 0, the matrices in U(q, s,M) have at most
s non-zero entries per row; if q > 0, the rows are close to s-sparse vectors. To
estimate � ∈ U(q, s,M), the thresholded estimator Tτ (�̂n) is considered, where

[Tτ (A)]i,j =
{
Ai,j if |Ai,j | ≥ τ,

0 else,
(3.5)

for any τ > 0 and A ∈ R
p×p.

Theorem 3.2 ([5, Theorem 1]) Let X ∼ N(0,�), for � ∈ U(q, s,M), andM ′ >
0 be sufficiently large (depending onM). If
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τ = M ′
√

log(p)

n
,

for n � log(p), then with probability at least 1− e−cnτ 2

‖Tτ (�̂n)−�‖ = O
⎛

⎝s
(

log(p)

n

) 1−q
2

⎞

⎠ .

Theorem 3.2 does not require knowledge on the support of � and respects
sparsity defects. However, if we once more consider the case q = 0, we see that the
estimate in Theorem 3.2 is suboptimal since the error behaves (up to log-factors)

like O
(√

s2

n

)
and not like O(

√
s
n
) as one would expect.

3.3.2 Low-Rank Covariance Matrices

When working with high-dimensional random vectors, another commonly con-
sidered structural prior is to assume that the distribution concentrates around a
low-dimensional manifold. This may manifest itself in � being a low-rank matrix.
Interestingly, the sample covariance matrix in (3.1) intrinsically leverages low-
rankness of �. To understand this phenomenon, we consider the effective rank of �

defined as

r(�) = ‖�‖∗
‖�‖ .

It is straightforward to verify that 1 ≤ r(�) ≤ rank(�). In contrast to the rank of �,
the quantity r(�) is small even if � is only close to a low-rank matrix, e.g., consider
� to be a full rank matrix with exponentially decaying spectrum.

Theorem 3.3 ([37, Corollary 2]) Let X ∼ N(0,�), for � ∈ R
p×p, and n � r(�).

Then with probability at least 1− e−t the sample covariance matrix satisfies

‖�̂n −�‖ � ‖�‖
(√

r(�)

n
+ r(�)

n
+
√
t

n
+ t

n

)

.

The authors of [37] further show that the bound in Theorem 3.3 is tight up to
constants. If we compare the result to (3.2), we see that both estimates agree for
(effectively) full rank matrices like � = I. If � is of low rank, however, Theorem 3.3
controls the estimation error even in the case n < p.

Low-Rank Estimators We could stop at this point since �̂n apparently meets our
requirements. Nevertheless, two questions remain. First, if one assumes � to be
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low rank, one would wish for an estimator that is low rank itself, and, second,
Theorem 3.3 fails if X does not exhibit strong concentration around its mean. The
first point can be addressed by using the LASSO estimator

�̂
λ

n = arg min
S�0

‖S− �̂n‖2
F + λ‖S‖∗ , (3.6)

where λ > 0 is a tunable parameter. Initially introduced in [43] to estimate
covariance matrices from incomplete observations, the result reads in our setting
as follows.

Theorem 3.4 ([43, Corollary 1]) Let X ∼ N(0,�), for � ∈ R
p×p, and n �

r(�) log(2p + n)2. If

λ = C

√
tr(�̂n)‖�̂n‖

√
log(2p)

n
,

for a sufficiently large absolute constant C > 0, then with probability at least 1− 1
2p

the estimator in (3.6) satisfies

‖�̂λ

n − �‖ � ‖�‖
√

r(�) log(2p)

n
.

The nuclear norm regularization in (3.6) induces (effective) low-rankness on

�̂
λ

n [21, 51] and the order of estimation error reflects up to log-factors the one in

Theorem 3.3. Furthermore, the construction of �̂
λ

n can easily be adapted to heavy-
tailed distributions by replacing �̂n with an appropriate robust counterpart, e.g., the
spectrum-wise truncated sample covariance matrix [34]. A corresponding version
of Theorem 3.4 that is not restricted to (sub)-Gaussian distributions is [34, Theorem
5.2].

3.3.3 Toeplitz Covariance Matrices and Combined Structures

The third structure we discuss here in detail naturally arises in various engineering
problems. If the entries of X resemble measurements on a temporal or spatial grid
whose covariances only depend on the distances of measurements (in time or space)
but not their location, � is a symmetric Toeplitz matrix, i.e.,
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� =

⎛

⎜⎜⎜⎜
⎝

σ1 σ2 · · · σp
σ2

. . .
. . .

...
...
. . . σ2

σp · · · σ2 σ1

⎞

⎟⎟⎟⎟
⎠
,

and the first column σ ∈ R
p determines � via �i,j = σ|i−j |+1. (For simplicity,

we identify Toeplitz matrices with their first column in the following.) Such a
structure appears, for instance, in Direction-Of-Arrival (DOA) estimation [38] and
medical/radar imaging processing [9, 56]. For further examples, we refer the reader
to [53]. Since Toeplitz structure reduces the degrees of freedom in � from p2 to p,
leveraging this structure can lead to a notable reduction in sample complexity.

The authors of [10] propose to average, the sample covariance matrix along its

diagonals to obtain the Toeplitz estimator �̂
Toep
n defined as

[σ̂Toep
n ]r = 1

(p + 1)− r

∑

i−j=r−1

[�̂n]i,j , for r ∈ [p]. (3.7)

They derive error estimates for Gaussian distributions with banded Toeplitz covari-
ance matrices.

The more recent work [33] extends these results to non-Gaussian distributions
and general masks as introduced in Sect. 3.3.1. To be more precise, the authors
of [33] assume that the distribution of X has the so-called convex concentration
property.

Definition 3.1 A random vector X ∈ R
p has the convex concentration property

with constant K if for any 1-Lipschitz function φ : Rp → R, one has E[φ(X)] <∞
and

Pr [|φ(X)− E[φ(X)]| ≥ t] ≤ 2e
− t2

K2 , for all t > 0.

By setting φ(·) = 〈·, x〉, for x ∈ R
p, one easily sees that all distributions that have

the convex concentration property are sub-Gaussian. For the sake of consistency, we
therefore restrict ourselves here to Gaussian distributions as their most prominent
representative. For a symmetric Toeplitz mask M ∈ [0, 1]p×p characterized by its
first column m ∈ [0, 1]p, we furthermore define the weighted �1- and �2-norms of
m as

‖m‖1,∗ =
p∑

r=1

mr

(p + 1)− r
and ‖m‖2,∗ =

(
p∑

r=1

m2
r

(p + 1)− r

) 1
2

.
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Theorem 3.5 ([33, Theorem 3]) Let M ∈ [0, 1]p×p be a symmetric Toeplitz mask
and X ∼ N(0,�) with � ∈ R

p×p symmetric and Toeplitz. Then,

E‖M% �̂
Toep
n −M% �‖ � ‖�‖

(√‖m‖2,∗ log(p)

n
+ ‖m‖1,∗ log(p)

n

)

.

As Theorem 3.1, the result is not restricted to an estimate of the expected error
but includes respective high probability bounds with exponential tail decay. Let us
compare Theorem 3.5 to Theorem 3.1. If we ignore log-factors and assume that
M is a banding or tapering mask with support bandwidth B ≤ p

2 , i.e., only the
B innermost diagonals of M are non-zero, Theorem 3.5 guarantees an estimation

error of order O(
√

B
pn
+ B

pn
), cf. [33, Corollary 2], which improves the estimate

O(
√

B
n
+ B

n
) of Theorem 3.1 by a factor p. This improvement corresponds to the

reduction in degrees of freedom when comparing Toeplitz to general matrices. Note,
however, that the additional assumption B ≤ αp, for α ∈ (0, 1), is required for such
a reduction since estimation of the outermost diagonals of � is hardly enhanced
by averaging over the Toeplitz structure. This is expressed by Theorem 3.5 since
‖m‖1,∗ and ‖m‖2,∗ areO(1) and notO( 1

p
) if the tail entries of m are not of vanishing

magnitude.

Estimation via Thresholding Theorem 3.5 differs from the previously discussed
results in the sense that it allows to simultaneously leverage two structures of
�, sparsity and Toeplitz structure. Nevertheless, as in Sect. 3.3.1, the masked
framework leaves open the question of how to choose M in practice. By combining
the thresholded approach in Theorem 3.2 with the techniques of Theorem 3.5,
one can obtain a thresholded Toeplitz estimator which profits from both structural
priors. To state a corresponding estimate, let us define the set of bounded Toeplitz
covariance matrices with (effectively) sparse first column σ by

UToep(q, s,M) :=
{

� : �i,j = σ|i−j |+1 ≤ M, for σ ∈ R
p with

p∑

r=1

|σr |q ≤ s

}

.

We furthermore denote by Bαp(�) the matrix � restricted to bandwidth αp, i.e.,
[Bαp(�)]i,j = �i,j if |i − j | + 1 ≤ αp and [Bαp(�)]i,j = 0 else.

Theorem 3.6 There exists an absolute constant C > 0 such that the following
holds. Let X have the convex concentration property with constantK . Let E[X] = 0
and E[XX�] = �, for � ∈ UToep(q, s,M). For all α ∈ (0, 1) and c > 1, we have
with probability at least 1− (2αp)−(c−1) that if

τ =
√

2c

(1− α)
max{CK2,

√
CK}

√
log(p)

np
, (3.8)
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then

∥
∥
∥Tτ (Bαp(�̂

Toep
n ))−�

∥
∥
∥ � s

(
max{C2K4, CK2} c

1− α

log(p)

np

) 1−q
2 + ‖Bαp(�)−�‖,

where Tτ is the thresholding operator from (3.5).

Two comments are in order here. To gain from the Toeplitz structure, Theo-
rem 3.6 requires � to be close to a banded matrix. This is as in Theorem 3.5 before
and has been discussed previously. Moreover, by adapting the proof strategy of
Theorem 3.2, the result inherits the slightly suboptimal error decay in the sparsity
level s, cf. the discussion of Theorem 3.2 for the case q = 0. The proof, which
combines ideas from [5] and [33], can be found in the Appendix.

Combining Toeplitz Structure and Low-Rankness Sparsity is not the only
structure that can be imposed on Toeplitz matrices. For instance, in massive MIMO,
see Sect. 3.2, low-rankness of � may naturally be assumed in addition to Toeplitz
structure [28]. The recent works [20, 39] propose several algorithms to estimate low-
rank Toeplitz covariance matrices from partial observations by a technique called
“sparse ruler.” In particular, the authors can show that the sufficient number of
samples to approximate � scales (up to log-factors) polynomial in the (effective)
rank of �.

Remark 3.1 Before closing this section, let us briefly comment on the three types
of structures discussed above and their mutual relation:

Sparsity: The concept of sparsity is the maybe most fundamental way of theoreti-
cally describing intrinsic “low-complexity” of points in a vector space. Whereas
we only introduced sparsity of vectors in R

n with respect to the canonical basis,
it is straightforward to generalize the definition to arbitrary vector spaces and
other bases (or even frames). Note, however, that sparsity strongly depends on
the chosen representation of objects in space, i.e., a point that is sparse in one
basis need not be sparse in another.

Low-rankness: One can view low-rankness as a special case of sparsity since a
matrix is low rank if and only if the vector of its singular values is sparse
in the canonical basis. Stated differently, a matrix is low rank if its induced
linear mapping only acts on low-dimensional subspaces of the ambient input
and output space. This second characterization shows that, in contrast to sparsity,
low-rankness is not representation dependent. Furthermore, one can generalize
the concept to higher dimensional linear operators as well, e.g., tensor spaces.

Toeplitz structure: Just as low-rankness, Toeplitz structure is a special type of
sparsity that requires matrix structure of the points in space. Its low-dimensional
structure lies in the fact that only (2n − 1) parameters are necessary to charac-
terize an R

n×n Toeplitz matrix. In contrast to low-rankness, Toeplitz structure
is representation dependent. Nevertheless, Toeplitz matrices naturally appear as
covariance matrices of stationary random processes, i.e., if the covariance of two
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events does not depend on their localization in time but only their distance in
time.

For further discussion and literature on the subject, we refer the interested reader to
[22].

3.4 Estimation from Quantized Samples

All results stated above assume that the sample vectors Xk are real-valued, i.e.,
one has access to infinite precision representations of the samples. In applications,
this assumption is not always fulfilled. Especially in signal processing, samples are
collected via sensors and, hence, need to be quantized to finitely many bits before
they can be digitally transmitted and processed. Engineers have been examining
the influence of coarse quantization on correlation and covariance estimation for
decades, e.g., [2, 14, 30, 41, 54]. However, in contrast to classical covariance
estimation from unquantized samples, so far only asymptotic estimation guarantees
have been derived in the quantized setting. To improve our understanding on the
effect of quantization on covariance estimation, we analyzed two memoryless one-
bit quantization schemes in our recent work [16]. We call a quantizer memoryless
if it quantizes each entry of Xk independently of all remaining entries. This is
fundamentally different from feedback systems, e.g., ��-quantization [4, 55],
and of particular interest for large-scale applications like massive MIMO where
the entries of Xk correspond to inputs from different antennas, cf. Sect. 3.2. We
conclude by providing a detailed discussion of the models and results in [16].

3.4.1 Sign Quantization

In the first setting, we assume to receive one-bit quantized samples

sign(Xk) ∈ {−1, 1}p, (3.9)

for k ∈ [n], instead of Xk itself. (Recall that we apply scalar functions like sign
entry-wise to vectors and matrices.) Since the quantizer sign is scale-invariant, i.e.,
sign(z) = sign(Dz) for any diagonal matrix D ∈ R

p×p with strictly positive entries
and z ∈ R

p, we can only hope to recover the correlation matrix of the distribution,
i.e., a normalized version of � with entries

[ �i,j√
�i,i

√
�j,j

]
i,j

. We thus assume that

X ∼ N(0,�), where � has ones on its diagonal.
It has been known for decades that
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�̃n = sin

(
π

2n

n∑

k=1

sign(Xk)sign(Xk)�
)

(3.10)

is well suited to approximate � from the quantized samples, cf. [30]. Note that the
specific form of �̃n is motivated by Grothendieck’s identity (see, e.g., [61, Lemma
3.6.6]), also known as “arcsin-law” in the engineering literature [30, 60], which
implies that

� := E[sign(Xk)sign(Xk)�] = 2

π
arcsin(�) (3.11)

if X ∼ N(0,�). Applying the strong law of large numbers and the continuity of
the sine function to (3.10), one easily obtains with (3.11) that �̃n is a consistent
estimator of �.

The two key quantities for understanding the non-asymptotic performance of �̃n

are � and

A := cos(arcsin(�)) = cos(π2 �).

Furthermore, we define

σ(Z)2 := Z2 % � − (Z% �)2 = 2

π
Z2 % arcsin(�)− 4

π2

(
Z% arcsin(�)

)2
,

for symmetric Z ∈ R
p×p.

Theorem 3.7 ([16, Theorem 1]) There exist constants c1, c2 > 0 such that the

following holds. Let X ∼ N(0,�) with �i,i = 1, for i ∈ [p], and X1, ...,Xn d∼ X
be i.i.d. samples of X. Let M ∈ [0, 1]p×p be a fixed symmetric mask. Then, for all
t ≥ 0 with n ≥ c1 log2(p)(log(p) + t), the biased sign estimator �̃n fulfills with
probability at least 1− 2e−c2t

‖M% �̃n −M% �‖ � ‖σ (M% A)‖
√

log(p)+ t

n

+ (max {‖M% A‖, ‖M%�‖}) log(p)+ t

n
.

(3.12)

The right-hand side in Theorem 3.7 (for convenience, we only consider the case
M = 1 here) can be trivially estimated to get

‖�̃n −�‖ � max{‖ cos(arcsin(�))‖, ‖�‖}
(√

log(p)+ t

n
+ log(p)+ t

n

)

,



90 J. Maly et al.

Fig. 3.2 The experiment from [16] depicts average estimation error of �̂n and �̃n in operator
norm, for p = 20, n varying from 10 to 300 and three different choices of the ground truth � with
ones on the diagonal and off-diagonal entries equal to c = 0.5, c = 0.9, and c = 0.99

which is up to the additional dependence on cos(arcsin(�)) comparable to the error
bound in (3.2) for �̂n. This is remarkable since �̃n accesses considerably less
information on the samples than �̂n.

Theorem 3.7 even suggests that for strongly correlated distributions of X, i.e.,
� ≈ 1, the dominant first term on the right-hand side of (3.12) vanishes. In other
words, the bound in (3.12) predicts �̃n to outperform �̂n if the entries of X strongly
correlate. Numerical experiments from [16] confirm this counter-intuitive fact, cf.
Fig. 3.2. A possible explanation is that by construction, �̃n implicitly uses the
assumption that � has ones on its diagonal which is not provided to �̂n.

Furthermore, a corresponding lower bound on the second moment of the
estimation error shows that the unconventional term ‖σ(M % A)‖ is factual and
not an artifact of the proof, cf. [16, Proposition 14].

3.4.2 Dithered Quantization

The results of Sect. 3.4.1 are restricted to the estimation of correlation matrices of
Gaussian distributions. Both limitations stem from the chosen quantization model:
first, (3.9) is blind to the rescaling of variances and, second, Grothendieck’s identity
only holds for Gaussian distributions. Nevertheless, by introducing a dither in the
one-bit quantizer in (3.9), we can fully estimate the covariance matrix of general
sub-Gaussian distributions. Dithering means adding artificial random noise (with
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a suitably chosen distribution) to the samples before quantizing them to improve
reconstruction from quantized observations, cf. [25, 26, 52]. In the context of one-
bit compressed sensing, the effect of dithering was recently rigorously analyzed in
[3, 17, 18, 32, 36], see also the survey [15].

To be precise, we require two bits per entry of each sample vector where each bit
is dithered by an independent uniformly distributed dither, i.e., we are given

sign(Xk + τ k), sign(Xk + τ̄ k)�, k = 1, . . . , n, (3.13)

where the dithering vectors τ 1, τ̄ 1, . . . , τn, τ̄n are independent and uniformly
distributed in [−λ, λ]p, with λ > 0 to be specified later. From the quantized
observations in (3.13), we construct the estimator

�̃
dith
n = 1

2 �̃
′
n + 1

2 (�̃
′
n)
�, (3.14)

where

�̃
′
n =

λ2

n

n∑

k=1

sign(Xk + τ k)sign(Xk + τ̄ k)�. (3.15)

Theorem 3.8 ([16, Theorem 3]) Let X be a mean-zero, K-sub-Gaussian vector

with covariance matrix E[XX�] = �. Let X1, ...,Xn d∼ X be i.i.d. samples of X.
Let M ∈ [0, 1]p×p be a fixed symmetric mask. If λ2 �K log(n)‖�‖∞, then with
probability at least 1− e−t ,

‖M% �̃
dith
n −M% �‖

�K ‖M‖1→2(λ‖�‖1/2 + λ2)

√
log(p)+ t

n
+ λ2‖M‖ log(p)+ t

n
.

In particular, if λ2 ≈K log(n)‖�‖∞, then

‖M% �̃
dith
n −M%�‖

�K log(n)‖M‖1→2

√‖�‖ ‖�‖∞(log(p)+ t)

n
+ log(n)‖M‖‖�‖∞ log(p)+ t

n
.

(3.16)

The error bound (3.16) coincides (up to different logarithmic factors) with the
best known estimate for the masked sample covariance matrix in Theorem 3.1, even
though the sample covariance matrix requires direct access to the samples Xk . This
performance, however, heavily depends on the choice of λ, cf. [16]. Furthermore, it
should be mentioned that there are cases where the performance of the dithered



92 J. Maly et al.

estimator is significantly worse than the performance of the sample covariance
matrix. Let us consider for simplicity the case M = 1. If the samples Xk are
Gaussian, then [37] shows that

E‖�̂n − �‖ &
√‖�‖Tr(�)

n
+ Tr(�)

n
,

whereas (3.16) yields

E‖�̃dith
n −�‖ � log(n)

√
p‖�‖ ‖�‖∞ log(p)

n
+ log(n)

p‖�‖∞ log(p)

n

via tail integration. Since Tr(�) ≤ p‖�‖∞, the second estimate is worse in general.
Numerical experiments in [16] have shown that this difference is not an artifact of

proof. Simply put, �̂n and �̃
dith
n perform similarly if � has a constant diagonal,

whereas �̂n performs significantly better whenever Tr(�)� p‖�‖∞.
Theorem 3.8 can be extended to heavier-tailed random vectors. This, however,

requires a larger choice of λ and thus more samples to reach the same error.
For a sub-exponential random vector X, one would already need λ2 � log(n)2 ·
maxi∈[p] ‖Xi‖2

ψ1
. The dependence of λ on n, both in the latter statement and in

Theorem 3.8, can be observed in numerical experiments [16] as well.
Let us finally mention that the quantized estimators in (3.10) and (3.14) are

not necessarily positive semi-definite as one expects from covariance matrices.
In applications, one would thus replace both estimators by their projection onto
the cone of positive semi-definite matrices, which is efficiently computed via the
singular value decomposition [8, Section 8.1.1]. The obtained estimates also apply
to the projected estimators since convex projections are 1-Lipschitz.

3.5 The Underlying Structures of Massive MIMO
Covariance Estimation

Having the just surveyed theoretical insights on covariance matrix estimation in
mind, let us return to the massive MIMO setup of Sect. 3.2. To understand the
intrinsic structure of �h in (3.4) and consequent approaches in engineering literature
to leverage it, we have to dive deeper into the underlying model and its physical
interpretation. We thus follow the notational conventions of engineering literature
in this section. Recall that the number of antennas M can be identified with the
ambient dimension p, the number of time–frequency resources N with the number
of samples n, and the channel vectors h(s) correspond to samples Xk .

Under the assumptions stated in the beginning of Sect. 3.2, i.e., the BS is
equipped with M antennas in a ULA, the channel vector h(s) can be written
explicitly as
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h(s) =
∫ 1

−1
ρ(ξ, s) a(ξ) dξ,

for s ∈ [N ]. Here, ξ = sin(θ)
sin(θmax)

are the normalized angles of arrival (AoA) with
θmax ∈ [0, π2 ] being the maximum array angular aperture (cf. Fig. 3.1), the vectors
a(ξ) ∈ C

M denote the respective array response at the BS, and the channel gain
ρ(ξ, s) is a complex Gaussian process with zero mean. By assuming the antenna
spacing to be d = λ

2 , where λ = c0
f0

denotes the wavelength with c0 being the speed
of light and f0 the carrier frequency, we obtain

a(ξ) = (1, ejπξ , . . . , ejπ(M−1)ξ
)�

,

where j denotes the imaginary unit. With the additional assumption of wide
sense stationary uncorrelated scattering (WSSUS), the second-order statistics of the
Gaussian process ρ(ξ, s) are time invariant and uncorrelated across AoAs so that

E[ρ(ξ, s)ρ∗(ξ ′, s)] = γ (ξ) δ(ξ − ξ ′),

where γ : [−1, 1] → R≥0 is the real and non-negative measure that represents the
angular scattering function (ASF) and δ is the Dirac delta function. In particular,
this implies that

�h = E[h(s)h(s)H] =
∫ 1

−1
γ (ξ) a(ξ)a(ξ)H dξ. (3.17)

Building upon this explicit representation of h(s) and structural assumptions on γ ,
one can refine the estimate obtained from the sample covariance matrix of y defined
in (3.3).

A Hands-on Approach In [35], we choose the following approach. First note that
by (3.17) the channel covariance matrix belongs to the set

M =
{∫ 1

−1
γ (ξ) a(ξ)a(ξ)H dξ : γ ∈ A

}
,

where A denotes the class of typical ASFs in wireless propagation. If one assumes
sparse scattering propagation, the set A consists of sparse ASFs. In particular, we
assume that γ (ξ) can be decomposed as the sum of a discrete spike component γd
(modeling the power received from line-of-sight (LOS) paths and narrow scatterers)
and a continuous component γc (modeling the power received from wide scatterers).
Mathematically, we can write

γ (ξ) = γd(ξ)+ γc(ξ) =
r∑

k=1

ckδ(ξ − ξk)+ γc(ξ), (3.18)
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where γd consists of r � M Dirac deltas with AoAs ξ1, . . . , ξr and strengths
c1, . . . , cr > 0 corresponding to r specular propagation elements. Furthermore,
by sparsity assumptions on γ , we have that meas(γc) � meas([−1, 1]), where
meas(γc) denotes here the measure of the support of γc. Combining (3.17) and
(3.18), we decompose the channel covariance matrix as

�h = �d
h +�c

h =
r∑

k=1

ck a(ξk)a(ξk)H +
∫ 1

−1
γc(ξ) a(ξ)a(ξ)H dξ, (3.19)

where �d
h is rank-r and positive semi-definite and �c

h is full rank and positive semi-
definite with few dominant singular values. We can approximate �h now in three
consecutive steps:

(i) Spike Location Estimation for γd : Applying the MUltiple SIgnal Classification
(MUSIC) algorithm [58], we estimate the AoAs ξk of the spike component γd
from the noisy samples y(1), . . . , y(N), cf. [35, Theorem 1]. Since this step
is fairly standard, we do not discuss the details here but refer the interested
reader to [35]. Let us only mention that the number of spikes is estimated by
the number of dominant eigenvalues of �y := E[y(s)y(s)H] (where one can
naturally assume a corresponding gap in the spectrum since the power received
via LOS paths in γd dominates the power received from wide scatterers in γc).
As a result, we obtain estimated spike locations ξ̂k , for k ∈ [r̂], and define an
approximation of γd

γ̃d(ξ) =
r̂∑

k=1

c̃k δ(ξ − ξ̂k),

where the coefficients c̃1, . . . , c̃r̂ ≥ 0 still need to be estimated.
(ii) Sparse Dictionary-Based Method: We approximate the continuous component

γc over a finite dictionary of densities Gc := {ψi : [−1, 1] → R, i ∈ [G]}
that are suitably chosen, e.g., Gaussian, Laplacian, or rectangular kernels, cf.
Fig. 3.3. We hence define

γ̃c(ξ) =
G∑

i=1

b̃iψi(ξ),

where only the coefficients b̃1, . . . , b̃G ≥ 0 need to be estimated.
(iii) Non-Negative Least Square (NNLS) estimator: Collecting the coefficients in a

single vector u = (b̃1, . . . , b̃G, c̃1, . . . , c̃r̂ )
� ∈ R

G+r̂
≥0 and recalling (3.19), we

define our coefficient-dependent estimate of the channel covariance
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Fig. 3.3 Example of a Gaussian dictionary that might be used to express γc

�h(u) =
r̂∑

k=1

c̃k a(ξ̂k)a(ξ̂k)H +
G∑

i=1

b̃i

∫ 1

−1
ψi(ξ) a(ξ)a(ξ)H dξ =:

G+r̂∑

i=1

uiSi ,

(3.20)

where

Si =
{∫ 1
−1 ψi(ξ) a(ξ)a(ξ)H dξ if 1 ≤ i ≤ G

a(ξ̂i−G)a(ξ̂i−G)H if G < i ≤ G+ r̂ .

All that remains is to determine the coefficient vector u. Since �y = �h +
N0I, we can do so by fitting (3.20) to the sample covariance matrix �̂y of
y(1), . . . , y(N), i.e.,

u∗ = arg min
u≥0

∥∥∥�̂y −
G+r̂∑

i=1

uiSi −N0I
∥∥∥

2

F
. (3.21)

Since �h is Hermitian Toeplitz, one can incorporate the structure in (3.21) by
replacing �̂h = �̂y − N0I with its projection �̃h onto the space of Hermitian
Toeplitz matrices (which can be done by averaging the diagonals as in (3.7)).
Denoting the first column of �̃h by σ̃ ∈ C

M and collecting the first columns
of the matrices Si in a matrix S̃ ∈ C

M×(G+r̂), we may instead solve

u∗ = arg min
u≥0

∥∥∥W(S̃u− σ̃ )

∥∥∥
2

F
, (3.22)

where W = diag
(
(
√
M,
√

2(M − 1),
√

2(M − 2), ...,
√

2)�
)

is a weight
matrix compensating the averaging process.

A Hands-on Approach: Empirical Evaluation Let us empirically compare the
NNLS estimator to the sample covariance matrix right away. We consider a ULA
with M = 128 antennas, where the spacing between two consecutive antenna
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elements is set to d = λ
2 . We produce random ASFs in the following general format:

γ (ξ) = γd(ξ)+ γc(ξ)

= α

r

r∑

i=1

δ(ξ − ξi)+ 1− α

Z

⎛

⎝
nr∑

j=1

rectμj ,σj (ξ)+
ng∑

k=1

Gaussianμk,σk (ξ)

⎞

⎠ ,

(3.23)

where we set the number of delta, rectangular, and Gaussian functions to be
r := 2, nr := 2, and ng := 2, respectively. The spike locations are chosen
uniformly at random from [−1, 1], i.e., ξi ∼ Unif([−1, 1]) for i ∈ [2]. The
rectangular functions are defined as

rectμj ,σj (ξ) = χ[
μj−σj

2 ,μj+σj
2

](ξ),

where μ1 ∼ Unif([−1, 0]), μ2 ∼ Unif([0, 1]), and σj ∼ Unif([0.1, 0.3]), for
j ∈ [2]. The Gaussian functions Gaussianμk,σk are densities ofN(μk, σk), where
μk ∼ Unif([−0.7, 0.7]) and σk ∼ Unif([0.03, 0.04]), for k ∈ [2]. Moreover,
α := 0.5 is set to present the power contribution of discrete spikes. The constant
Z = ∫ 1

−1 γc(ξ)dξ normalizes γc in measure. The signal-to-noise ratio (SNR) is set
to 10 dB.

In addition to the sample covariance, we compare our NNLS estimator to sparse
iterative covariance-based estimation (SPICE) [57]. This method also exploits the
ASF domain to fit a covariance matrix. Note that SPICE can only be applied with
Dirac delta dictionaries and that it does not include a step of spike support detection
as in our method.

Denoting a generic covariance estimate as �̄, we consider two metrics to evaluate
the estimation quality. The first metric, the normalized Frobenius-norm error, is

defined as ENF = ‖�h−�̄‖F‖�h‖F
. The second metric, the power efficiency, evaluates the

similarity of dominant subspaces between the estimated and true matrices, which is
an important factor in various applications of massive MIMO such as user grouping
and group-based beamforming. Specifically, let d ∈ [M] denote a subspace
dimension parameter, and let Ud ∈ C

M×d and Ūd ∈ C
M×d be the d dominant

eigenvectors of �h and �̄ corresponding to their largest d eigenvalues, respectively.

Then, the power efficiency based on d is defined as EPE(d) = 1− 〈�h,Ūd ŪH
d 〉

〈�h,UdUH
d 〉

. Note

that EPE(d) ∈ [0, 1] where a value closer to 0 means that more power is captured
by the estimated d-dominant subspace.

SPICE and the proposed NNLS estimators are applied with G = 2M Dirac
delta dictionaries for the continuous partGc. The resulting Frobenius-norm error and
power efficiency are depicted in Fig. 3.4. All results are averaged over 20 random
ASFs and 200 random channel realizations for each ASF. The proposed NNLS
method outperforms the sample covariance matrix and SPICE for both metrics.
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Fig. 3.4 Frobenius-norm error (left) and power efficiency with N
M
= 0.5 (right)

Finally, one can observe a similar outcome for smaller sample sizes as well, e.g.,
N/M = 0.125, which occur naturally in massive MIMO.

3.6 Conclusion

The present chapter shows that in the last decade good progress has been made on
understanding the influence of intrinsic structure of covariance matrices on the non-
asymptotic performance of suitably designed estimators. As we have seen, such
estimators with strong guarantees are available for sparse, low-rank, and Toeplitz
covariance matrices. At the same time, the chapter illustrates that practitioners still
continue to tweak the basic sample covariance matrix using their specific knowledge
of the application at hand—seemingly unaware of the progress in theory. We hope
that this essay helps mathematicians and practitioners alike to gain an overview of
recent theoretical developments on structural and quantized covariance estimation
and that it motivates mathematicians to look deeper into the underlying physical
models of concrete applications to better understand the structures of interest.
Furthermore, our recent theoretical progress on quantized covariance estimation
suggests that reliable reconstruction of the covariance matrix is possible even under
heavy loss of information during sampling. The use of coarse quantization might
thus lead to a considerable increase in capacity in massive MIMO systems and
related applications.
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Appendix: Proof of Theorem 3.6

To prove Theorem 3.6, we need two technical lemmas. In the remaining section, σ

always refers to the first column of � and σ̂ to the first column of �̂
Toep
n .

Lemma 3.1 Under the assumptions of Theorem 3.6, we have for α ∈ (0, 1) and
0 < u < 1 that

Pr

[
max
r≤αp |σ̂r − σr | ≥ √u

]
≤ 2αpe

−(1−α)min
{

1
CK4 ,

1
CK2

}
npu

,

where C > 0 is an absolute constant.

Proof We proceed similar as in [33]. First note that, for all k ∈ [n], r ∈ [αp], we
can write

|σ̂r − σr | = 1

(p + 1)− r

∣∣∣
∣∣∣

∑

j−i=r−1

(
Xk
i X

k
j − σr

)
∣∣∣
∣∣∣

=
∣∣∣〈MrXk,Xk〉 − E[〈MrXk,Xk〉]

∣∣∣ ,

(3.24)

where the mask Mr is defined by [Mr ]i,j = 1
(p+1)−r if j − i = r − 1 and

[Mr ]i,j = 0 else, i.e., only the r-th co-diagonal of M is non-zero. By using a version
of the Hanson–Wright inequality for random vectors with the convex concentration
property [1], we get that

Pr
[∣∣〈MrXk,Xk〉 − E[〈MrXk,Xk〉]
︸ ︷︷ ︸

=:Zr
i

∣∣ ≥ u
] ≤ 2e

−min

{
u2

CK4‖Mr ‖2F
, u

CK2‖Mr ‖

}

,

which, by integration, leads to

E[|Zr
i |2q ] ≤ 2q(2CK4‖Mr‖2

F )
q�(q)+ 4q(CK2‖Mr‖)2q�(2q)

≤ q!(4CK4‖Mr‖2
F )

q + (2q)!(2CK2‖Mr‖)2q,

for any q ≥ 1. The random variables Zr
i are thus sub-gamma with variance

parameter ν = 16K4(C‖Mr‖2
F + C2‖Mr‖2) ≤ CK4‖Mr‖2

F and scale parameter
γ = 4CK2‖Mr‖2 [7, Theorem 2.3]. By independence, we get for all 0 < μ < 1

γ

E

[
eμ
∑n

i=1 Z
r
i

]
=

n∏

i=1

E[eμZr
i ] ≤ e

μ2nν
2(1−γμ)
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(and the same holds for −Zr
i ) such that

∑n
i=1 Z

r
i is sub-gamma with variance

parameter νn and scale parameter γ [7, Chapter 2.4]. Consequently,

Pr

[∣∣∣∣
∣
1

n

n∑

i=1

Zr
i

∣∣∣∣
∣
≥ CK2

(
‖Mr‖F

√
u

n
+ ‖Mr‖u

n

)]

≤ Pr

[∣∣∣∣
∣

n∑

i=1

Zr
i

∣∣∣∣
∣
≥ √2νnu+ γ u

]

≤ 2e−u,

for any u > 0 [7, Chapter 2.4]. Recalling (3.24) and noting that ‖Mr‖2
F = ‖Mr‖ =

1
(p+1)−r yield with the choice u = min

{ 1
C2K4 ,

1
CK2

}
((p + 1)− r)nũ that

Pr
[
|σ̃r − σr | ≥ 2

√
ũ
]
≤ Pr

[
|σ̃r − σr | ≥

√
ũ+ ũ

]

≤ 2e
−min

{
1

C2K4 ,
1

CK2

}
((p+1)−r)nũ

.

A union bound over r ∈ [αp] and the bound r ≤ αp conclude the proof. ��
The second lemma follows along the lines of [5, Theorem 1].

Lemma 3.2 Under the assumptions of Theorem 3.6, assume in addition that � has
a bandwidth of at most αp, i.e., Bαp(�) = � and thus supp(σ ) ⊂ [αp] and that

max
i,j∈[p] |Bαp(�̂

Toep
n )i,j −�i,j | = max

r≤αp |σ̂r − σr | ≤ (1− γ )τ, (3.25)

for some γ ∈ (0, 1). Then,

‖Tτ (Bαp(�̂
Toep
n ))− �‖ �γ τ 1−qs.

Proof For convenience, let us abbreviate �̃ := Bαp(�̂
Toep
n ) and denote its first

column by σ̃ . We write

‖Tτ (�̃)−�‖ ≤ ‖Tτ (�)−�‖ + ‖Tτ (�̃)− Tτ (�)‖.

Since � ∈ UToep(q, s,M),

p∑

j=1

|�i,j |χ{|�i,j |≤τ } =
p∑

j=1

|�i,j |q |�i,j |1−qχ{|�i,j |≤τ } ≤ τ 1−q
p∑

j=1

|�i,j |q

and Gershgorin’s disc theorem imply
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‖Tτ (�)−�‖ ≤ max
i

p∑

j=1

|�i,j |χ{|�i,j |≤τ } ≤ τ 1−qs. (3.26)

Moreover,

‖Tτ (�̃)− Tτ (�)‖ ≤ max
i

p∑

j=1

|�̃i,j |χ{|�̃i,j |≥τ, |�i,j |<τ }

+max
i

p∑

j=1

|�i,j |χ{|�̃i,j |<τ, |�i,j |≥τ }

+max
i

p∑

j=1

|�̃i,j −�i,j |χ{|�̃i,j |≥τ, |�i,j |≥τ }

= (I )+ (II )+ (III ).

First recall that by assumption supp(σ ) ⊂ [αp] and supp(σ̃ ) ⊂ [αp]. Hence, using
the observation that σ̃r = σ̂r , for r ≤ αp, and

p∑

j=1

χ{|�i,j |≥τ } =
p∑

j=1

τqτ−qχ{|�i,j |≥τ } ≤
p∑

j=1

|�i,j |qτ−q, (3.27)

we may estimate with (3.25) and � ∈ UToep(q, s,M)

(III ) ≤ max
r≤αp |σ̂r − σr | ·max

i

p∑

j=1

|�i,j |qτ−q ≤ sτ 1−q .

Furthermore,

(I ) ≤ max
i

p∑

j=1

|�̃i,j −�i,j |χ{|�̃i,j |≥τ, |�i,j |<τ } +max
i

p∑

j=1

|�i,j |χ{|�̃i,j |≥τ, |�i,j |<τ }

= (IV )+ (V ).

By (3.26), we know that (V ) ≤ τ 1−qs. Furthermore, we get that

(IV ) ≤ max
i

p∑

j=1

|�̃i,j −�i,j |χ{|�̃i,j |≥τ, |�i,j |<γτ }
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+max
i

p∑

j=1

|�̃i,j −�i,j |χ{|�̃i,j |≥τ, γ τ≤|�i,j |<τ }

≤ max
r≤αp |σ̃r − σr | ·max

i
Ni(1− γ )+ s(γ τ)−qτ,

where we defined Ni(1−γ ) :=∑p

j=1 χ{|�̃i,j−�i,j |>(1−γ )τ } and reused the bound on
(III ) for the second term (replacing τ with γ τ in the summation). Since we have
by (3.25) that Ni(1− γ ) = 0, for i ∈ [p], we get that (IV ) �γ sτ 1−q . Hence,

(I ) �γ sτ 1−q .

Finally, note that by (3.27) and � ∈ UToep(q, s,M),

(II ) ≤ max
i

p∑

j=1

(|�̃i,j −�i,j | + |�̃i,j |)χ{|�̃i,j |<τ, |�i,j |≥τ }

≤ max
r≤αp |σ̃r − σr | ·max

i

p∑

j=1

χ{|�i,j |≥τ } + τ max
i

p∑

j=1

χ{|�i,j |≥τ }

≤ sτ 1−q + sτ 1−q .

Combining the bounds for (I ), (II ), and (III ) yields the claim. ��
Proof of Theorem 3.6 Note that

‖Tτ (Bαp(�̂
Toep
n ))−�‖ ≤ ‖Tτ (Bαp(�̂

Toep
n ))− Bαp(�)‖ + ‖Bαp(�)− �‖.

(3.28)

By Lemma 3.1, we get with probability at least 1− (2αp)−(c−1) that

max
r≤αp |σ̂r − σr | ≤

√
c

1− α
max{CK2,

√
CK}

√
log(p)

np
= (1− γ )τ, (3.29)

where c > 1 and 1 − γ = 1√
2

. The claim now follows by applying Lemma 3.2 to
the first term on the right-hand side of (3.28). ��
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Chapter 4
Sparse Deterministic and Stochastic
Channels: Identification of Spreading
Functions and Covariances

Alihan Kaplan, Dae Gwan Lee, Götz E. Pfander, and Volker Pohl

4.1 Motivation and Introduction

Many physical and technical systems in science and engineering are well described
by linear systems. In practical applications, it is important to identify the parameters
describing the linear system at hand. If the system is time-invariant, the channel is
uniquely determined from the impulse response of the channel. For time-varying
systems, the identification problem becomes much more challenging and it is even
not obvious whether a given time-invariant system can actually be identified or
not. It is necessary to identify time-varying systems in many areas of science and
engineering and especially in communications, control, and system theory. For
concreteness, we will focus the discussions in this chapter on the identification of
time-varying communication channels.

The transmission of a continuous-time signal x over a dispersive and time-
varying channel H can be described formally by the relation

(Hx) (t) =
∫∫

R2
ηH (τ, ν) x(t − τ)e2πi(t−τ)νdτdν, t ∈ R. (4.1)
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The so-called (delay-Doppler) spreading function ηH : R×R̂ → C completely
describes the channel H [2, 9, 19, 34], and identifying a channel of the form (4.1)
is then equivalent to the problem of determining the spreading function ηH from
the channel response Hg to a known test signal g. In particular, one asks which
spreading functions can be identified by such a probing scheme and how one
has to design the test signal g in order to identify the channel. This channel
identification problem has a long history starting in the 1960s with groundbreaking
works of Kailath and Bello [2, 9] that lead to fundamental results in [12, 23];
it remains an active field of research to date. In recent years, for example, the
channel identification problem has been considered for multiple-input multiple-
output (MIMO) channels [15, 20], for sparse [7, 24] and stochastic channels
[26–28], or for channels with satisfying linear side constraints [17]. For an overview
on the fascinating history of this problem, ranging back to the cold war, we refer to
the overview article [35].

It is known [7, 22] that the identification problem for continuous-time chan-
nels (4.1) can be solved by reducing it to an identification problem for time-discrete,
finite-dimensional channels of the form

Hx =
L−1∑

k=0

L−1∑

�=0

η(k, �)M�T kx (4.2)

for a signal x ∈ C
L, with spreading coefficients η(k, �), and where M and T stand

for the modulation and translation operators on C
L, respectively. See Definition 4.1

for details. Because of this close relation between (4.1) and (4.2), we will discuss
mainly the time-discrete model.

This chapter reviews some recent result concerning the channel identification
problem paying particular attention to the question whether linear side constraints
will help for identifying the channel. With respect to the channel model (4.2), we
may assume that the spreading coefficients ηH satisfy one or more equations of the
form

L−1∑

k,�=0

an(k, �) ηH (k, �) = bn, n = 1, 2, . . . , N,

with known coefficients an(k, �) and bn. Does the knowledge of such side con-
straints help to identify the channel? In general, the answer depends (of course) on
the coefficients an(k, �) and bn, but, as we will see, knowing such side constraints
will enable us to identify channels which cannot be identified without these side
constraints.

The parameters of a communication channel, i.e., the spreading coefficients ηH ,
can change very rapidly since they depend strongly on the position of the transmitter
and receiver as well as on the environment (i.e., scatterer such as landscape,
buildings, cars, etc.). If the transmitter and/or the receiver move, these scattering
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coefficients will change. While formally, such channels can be described by a
deterministic spreading function, it is frequently beneficial to model the coefficients
ηH (k, �) as random variables. In addition, random spreading coefficients are used
to describe an ensemble of communication channels, for example, described by a
particular application or setting.

In this case, channel identification does not aim to identify the spreading
coefficients ηH (τ, �) itself, but their statistical properties and especially their
autocorrelation

RηH (k, �, k
′, �′) = E

{
ηH (k, �) ηH (k′, �′)

}
,

where E{·} denotes the expectation. For such stochastic channels, one can ask
similar questions as in the deterministic case. Which channels are identifiable?
How should we choose the identifier? Do linear side constraints satisfied by the
autocorrelation RηH improve the ability to identify the channel? In this chapter,
we focus again on the last question, and we will show that similarly as in the
deterministic case, known side constraints on the autocorrelation of the scattering
coefficients are usually beneficial for the identification of stochastic channels.

This chapter is structured as follows. The finite-dimensional model for determin-
istic and stochastic channels is discussed in detail in Sect. 4.2. Section 4.3 is devoted
to deterministic channels. Along with a review of known results for identification
of deterministic channels, we discuss the problem of utilizing some known linear
constraints between and within subchannels and also discuss the application of
transmitting messages with unidentified channels. Section 4.4 is devoted to the
problem of identifying stochastic channels, where we also consider the situation
of knowing some linear relations between the covariance entries.

4.2 Channel Identification and Estimation

While continuous-time channels of the form (4.1) are useful in modeling a larger
class of dispersive operators, finite-dimensional channels of the form (4.2) are pre-
ferred for applications in communications engineering. In this section, we review the
finite-dimensional model for deterministic and stochastic channels and in particular
discuss the respective channel identification problem. Thereby, we consider two
kinds of communication channels: (1) deterministic channels that are characterized
by a set of fixed (deterministic) spreading coefficients and (2) stochastic channels
whose associated spreading coefficients are random variables. We will discuss these
channels in detail after recalling some basic notions in the time–frequency analysis.
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4.2.1 Time–Frequency Analysis in Finite Dimensions

Vectors in C
L will be denoted by boldface letters and their entries will be indexed

by the cyclic group ZL = {0, 1, . . . , L − 1}, that is, we write a vector in C
L as

x = (x0, x1, . . . , xL−1)
T ∈ C

L, where (·)T denotes the transpose of a vector.

Definition 4.1 For L ∈ N, cyclic translation and modulation on C
L are defined,

respectively, as

T : CL → C
L, (x0, x1, . . . , xL−1) �→ (xL−1, x0, . . . , xL−2) and

M : CL → C
L, (x0, x1, . . . , xL−1) �→ (ω0x0, ω

1x1 . . . , ω
L−1xL−1) ,

where ω = e2πi/L. We define the time–frequency shift operator π(k, �) = M�T k

for (k, l) ∈ ZL×ZL. Moreover, the short-time Fourier transform of x ∈ C
L with

respect to a window c ∈ C
L is defined as Vcx(k, �) = 〈x, π(k, �)c〉 for (k, �) ∈

ZL×ZL.

The non-commutativity of T and M plays a crucial role in time–frequency analysis.
The (non-)commutation relation is given by M�T k = ωk� T kM� for k, � ∈ ZL.

Definition 4.2 The Gabor matrix generated by a window c ∈ C
L is the L×L2

matrix

G(c) = [ c, Mc, . . . , ML−1c
∣∣ T c, MT c, . . . , ML−1T c

∣∣

. . .
∣∣ T L−1c, MT L−1c, . . . , ML−1T L−1c

]
.

(4.3)

It is easy to compute that the rows of G(c) are mutually orthogonal, and in fact,
it holds G(c)G(c)∗ = L‖c‖2IL, which corresponds to the fact that for c ∈ C

L\{0},
the set {M�T kc : (k, �) ∈ ZL×ZL} of all time–frequency shifts of c forms a tight
C
L-frame with frame bound L‖c‖2 (see [13, Proposition 2]).
We will often deal with matrices that have more columns than rows. For such

matrices, the degree of linear independence between columns is quantized by the
so-called spark.

Definition 4.3 For a matrix A ∈ C
M×N with M ≤ N , the spark of A is the

cardinality of the smallest linearly dependent subset of columns in A, that is,

spark(A) = min
{‖z‖0 : Az = 0, z ∈ C

N\{0}},

where ‖z‖0 = |{n ∈ ZN : zn �= 0}| denotes the number of nonzero entries in z. We
say that A has full spark if spark(A) = M + 1, that is, if every M columns of A are
linearly independent.

In particular, the Gabor matrix G(c) ∈ C
L×L2

has full spark for some windows
c ∈ C

L:
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Proposition 4.1 (Theorem 1 in [13] for L Prime and [18] for General L ∈ N)
Given L ∈ N, the matrix G(c) has full spark for almost every c ∈ C

L. Moreover,
the set of all such c is a dense open subset UL of CL, whose complement set is a
finite union of manifolds with zero Lebesgue measure.

This result is quite involved, it took 10 years to resolve the case for composite L.
Quite useful, and much simpler, is the following characterization.

Proposition 4.2 (Theorem 2 in [13]) Let L ∈ N and c ∈ C
L\{0}. The matrix G(c)

has full spark if and only if for each x ∈ C
L\{0}, the short-time Fourier transform

Vcx ∈ C
L2

has at most L− 1 zero entries.

Proposition 4.2 implies that the set UL in Proposition 4.1 is given by

UL = {c ∈ C
L : Vcx has at most L− 1 zero entries for every x ∈ C

L\{0} }.

We will use this set UL later when discussing the identification of SISO channels.
For the case of MIMO channels, we require the following generalization of
Proposition 4.1.

Proposition 4.3 (Theorem 7 in [17]) For every L,N ∈ N, there exists a dense
open subset UL,N ⊂ (CL)N with full measure such that the matrix

G(c(1), . . . , c(N)) := [G(c(1))
∣∣ G(c(2))

∣∣ · · · ∣∣ G(c(N))
] ∈ C

L×NL2
(4.4)

has full spark for (c(1), . . . , c(N)) ∈ UL,N .

4.2.2 Deterministic Channels

A SISO communication channel is modeled as a linear map H : CL → C
L. It

is well known that the set of all time–frequency shifts {π(k, �)}(k,�)∈ZL×ZL
is a

basis for the space L(CL,CL) of all linear operators on C
L. Therefore, every H ∈

L(CL,CL) can be written as

H =
L−1∑

k,�=0

η(k, �)M�T k (4.5)

with unique coefficients η = {η(k, �)}
(k,�)∈ZL×ZL

called the spreading coefficients
of H which encode all the characteristics of H . We will often write η = ηH ={
ηH (k, �)

}
(k,�)∈ZL×ZL

when it is necessary to specify the dependence of η on H . In
the context of communications, each coefficient η(k, �) can be understood as a gain
factor associated with a transmission path with time delay k (due to the traveling
distance) and frequency shift � (due to the Doppler effect). Note that for an input
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signal x ∈ C
L, we have

y = Hx =
L−1∑

k,�=0

η(k, �)M�T kx = G(x) η , (4.6)

which relates the channel output Hx to the Gabor matrix G(x) discussed in
Sect. 4.2.1.

It is straightforward to extend the above SISO model to MIMO channels. A
MIMO communication channel with N ∈ N inputs and M ∈ N outputs is described
by a linear map H : (CL)N → (CL)M with MN subchannels Hmn : CL → C

L,
m = 1, . . . ,M , n = 1, . . . , N , where each Hmn is of the form (4.5) and describes
the transmission associated with the n-th input and the m-th output. For an input
signal x = {x(n)

}N
n=1 ∈ (CL)N , the m-th output of H is then given by

ym = Hm x =
N∑

n=1

Hm,n x(n), m = 1, 2, . . . ,M. (4.7)

Note that H can represented by the M×N block matrix

H =
⎡

⎢
⎣

H 1,1 · · · H 1,N
...

...

HM,1 · · · HM,N,

⎤

⎥
⎦ (4.8)

where each Hm,n ∈ C
L×L is the matrix representation of Hm,n ∈ L(CL,CL).

The spreading coefficients of each subchannel Hm,n will be denoted by ηm,n =
[ηm,n(k, �)]L−1

k,�=0 ∈ C
L2

, and their collection will be denoted by η = {ηm,n}Mm=1
N
n=1.

Substituting the expression (4.6) for individual SISO subchannels into (4.7) yields

ym = Hm x =
N∑

n=1

G(x(n)) ηm,n =
[
G(x(1)) | G(x(2)) | · · · | G(x(N))

]
ηm

= G
(
x(1), . . . , x(N)

)
ηm

with ηm =
(
ηm,1, . . . , ηm,N

) ∈ (CL2
)N . This expression relates the signal at the

m-th output with the concatenated Gabor matrix G
(
x(1), . . . , x(N)

) ∈ C
L×NL2

discussed in Proposition 4.3.
Note that both SISO and MIMO channels are essentially linear maps from C

L1

to C
L2 . The case of SISO channels corresponds to L1 = L2 = L, and the case of

N -input M-output channels corresponds to L1 = NL and L2 = ML.
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Definition 4.4 A class of operatorsH ⊂ L(CL1 ,CL2) is identifiable if there exists
a vector c ∈ C

L1 such that the map �c : H→ C
L2 , H �→ Hc is injective. Such a

vector c is called an identifier forH.

Note that if H is an identifiable linear space of L(CL1 ,CL2), then it is necessarily
of dimension at most L2.

4.2.3 Stochastic Channels

We now consider channels that vary rapidly and unpredictably over time and channel
ensembles, both of which are modelled as so-called stochastic channels. Such
channels can be obtained by replacing the spreading coefficients in the deterministic
channel model with some random variables. Adapting the expression (4.6) for
deterministic SISO channels, we model stochastic SISO channels as

y(ξ) = Hx(ξ) =
∑

(k,�)∈ZL×ZL

ηH (k, �; ξ)M�T kx

= G(x) ηH (ξ) for x ∈ C
L,

(4.9)

where each ηH (k, �; ·) is a complex-valued random variable with zero mean and
finite second moments. We denote the space of all such random variables by V,
so that the family ηH = {ηH (k, �; ·)}(k,�)∈ZL×ZL

of L2 random variables can be

understood as an element of VL2
.

For a (deterministic) input signal x in (4.9), both ηH (ξ) and the output y(ξ)

are zero mean random vectors. The second moments of these vectors, i.e., the
corresponding covariance matrices, are then given by

RηH (λ, λ
′) := E{ηH (λ; ξ) ηH (λ′; ξ)} for λ, λ′ ∈ ZL×ZL ,

Ry(m,m
′) := E{ym(ξ) ym′(ξ)} for m,m′ ∈ ZL ,

(4.10)

respectively, where ym(ξ) denotes the m-th coordinate entry of y(ξ), that is, y(ξ) =(
y1(ξ), . . . , yL(ξ)

)T. It is apparent from these definitions that both matrices RηH ∈
C
L2×L2

and Ry ∈ C
L×L are Hermitian, that is,

RηH (λ, λ
′) = RηH (λ

′, λ) and Ry(m,m
′) = Ry(m,m′) , (4.11)

respectively. Moreover, using (4.9), we see that these matrices are related by

Ry = E{y(ξ) y(ξ)∗} = E{G(x) ηH (ξ) ηH (ξ)
∗G(x)∗} = G(x)RηH G(x)∗,
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which can be vectorized to obtain

vec Ry =
(
G(x)⊗G(x)

)
vec RηH . (4.12)

Here, the matrices Ry and RηH are of dimension L×L and L2×L2, respectively,

and the vectorization operator vec : CN×N → C
N2

for N ∈ N is defined as

vec X(k) = X(k mod N, (k/N�) for k = 0, 1, . . . , N2 − 1, (4.13)

that is, vec X is the vector formed by stacking the columns of X ∈ C
N×N .

Stochastic MIMO channels are modeled as in (4.8) with each subchannel Hmn

being a stochastic SISO channel of the form (4.9). Note that as for the deterministic
channels, both SISO and MIMO stochastic channels are essentially linear maps from
C
L1 to VL2 for some L1, L2 ∈ N. Indeed, a SISO channel corresponds to L1 =

L2 = L, and an N -input M-output channel corresponds to L1 = NL and L2 =
ML.

Definition 4.5 A class of stochastic operatorsH ⊂ L(CL1 ,VL2) is identifiable (up
to second-order statistics), if there exists a vector c ∈ C

L1 such that operators in
H with different covariances RηH

= E
{
vec ηH (vec ηH )∗

}
yield different output

covariances RHc = E {Hc(Hc)∗}; more formally, if there exists a vector c ∈ C
L1

such that the map1

�c,H : (H/ ∼)→ C
L2×L2 , [H ] �→ RHc

is injective, where H/ ∼ denotes the set of all equivalence classes of H by the
equivalence relation ∼ defined as H ∼ H ′ if and only if RηH

= RηH ′ . Such a
vector c is called an identifier forH.

It is easily seen that the full class of stochastic SISO channels H of the form (4.9)
is not identifiable. Indeed, the map �c,H : (H/ ∼) → C

L×L in this case is
essentially described by Eq. (4.12) with x = c, which is an underdetermined linear
system associated with the L2×L4 matrix G(c)⊗G(c), and hence �c,H cannot be
injective. Considering the degrees of freedom, one would need to by far restrict the
class of stochastic SISO channels to achieve the identifiability.

Remark 4.1 (Transition to Continuous-Time Setting) It should be noted that all
results established in the finite-dimensional (discrete-time) setting can be carried
over to the continuous-time setting in a straightforward way. For more details, we
refer to [17, Sect. 5] and also [15, 25].

1 The map �c is well defined due to the relation (4.12).
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4.3 Results in Deterministic Setting

This section is dedicated to deterministic channels. In Sect. 4.3.1, we give a short
review of known results on identification of SISO/MIMO channels. In Sect. 4.3.2,
we discuss how to utilize some known linear constraints between and within
subchannels. Section 4.3.3 addresses the application of transmitting messages
through channels that are not identified in advance.

4.3.1 Classical Results on Channel Identification

4.3.1.1 Identification of SISO Channels

Recalling that every H ∈ L(CL,CL) can be expressed in the form of (4.5) with
unique spreading coefficients ηH = {ηH (k, �)

}
(k,�)∈ZL×ZL

supported in ZL×ZL,
we define the following class of operators with restricted spreading support � ⊂
ZL×ZL.

Definition 4.6 For � ⊂ ZL×ZL, the single-input single-output (SISO) operator
Paley–Wiener space on � is defined as

OPW(�) = span
{
M�T k : (k, �) ∈ �

} = {H ∈ L(CL,CL) : suppηH ⊂ �
}
.

For instance, the class of operators which consists of linear combinations of
translations T k , k = 0, 1, . . . , L − 1, corresponds to the space OPW(�) with
� = ZL×{0}.

According to Definition 4.4, the space OPW(�) is identifiable if and only if
there is a vector c ∈ C

L such that for H ∈ OPW(�) the equation

y = Hc =
∑

(k,�)∈�
ηH (k, �)M

�T kc (4.14)

is uniquely solvable in ηH ,� = {ηH (k, �)}(k,�)∈� ∈ C
�. With G(c) ∈ C

L×L2

denoting the Gabor matrix generated by c ∈ C
L (see Sect. 4.2.1), one can

rewrite (4.14) as

y = Hc = G(c)|� η|�.

This implies that OPW(�) is identifiable if and only if the matrix G(c)|� has
linearly independent columns. Note that by Proposition 4.1, there exists a vector
c ∈ C

L such that G(c) has full spark, that is, every L columns of G(c) are
linearly independent. Consequently, we have the following characterization for
identifiability of OPW(�) given only in terms of the size of �.
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Corollary 4.1 ([13, 18]) For � ⊂ ZL×ZL, the space OPW(�) is identifiable if
and only if |�| ≤ L.

4.3.1.2 Identification of MIMO Channels

As discussed in Sect. 4.2.2, deterministic channels with N -inputs and M-outputs
are modeled as linear maps from (CL)N to (CL)M . Recall from Definition 4.4 that a
class of operatorsH ⊂ L ((CL)N, (CL)M

)
is identifiable if and only if there exists

a vector c ∈ (CL)N such that the mapH→ (CL)M , H �→ Hc is injective.

Definition 4.7 For 	 = [�m,n]Mm=1
N
n=1 with �m,n ⊂ ZL×ZL, the MIMO operator

Paley–Wiener space on 	 is defined as

OPW(	) = {H : Hmn ∈ OPW(�m,n), m = 1, . . . ,M, n = 1, . . . , N
}
.

The space OPW(	) is identifiable if and only if there exists a vector c =
(c(1), . . . , c(N)) ∈ (CL)N such that the map H �→ Hc is injective on OPW(	).
Using the full sparkness of the concatenated Gabor matrices in Proposition 4.3, we
obtain the following characterization for identifiability of OPW(	).

Corollary 4.2 ([20]) For 	 = [�m,n]Mm=1
N
n=1 with �m,n ⊂ ZL×ZL, the space

OPW(	) is identifiable if and only if
∑N

n=1 |�m,n| ≤ L for all m = 1, . . . ,M .

Corollary 4.2 implies that OPW(	) is identifiable if and only if for each m the
space OPW(	m) with 	m =

{
�m,n

}N
n=1 is identifiable. This reflects the fact that

N -input M-output channels can be separated into M systems of N -input single-
output channels.

4.3.2 Linear Constraints

The necessary and sufficient condition for identifiability of OPW(	) presented in
Corollary 4.2 is based on the assumption that all subchannels and their components
are independent. If some linear relationship between and within subchannel is
known, for instance, if transmission antennas (or receiving antennas) are not well
separated, one could take advantage of such information in channel identification.

Let us formalize the concept of such relationship in terms of linear constraints.
In the SISO setting, we express the linear relations between the entries of η ={
η(k, �)

}
(k,�)∈ZL×ZL

by the equation b = Aη, where b ∈ C
P and A ∈ C

P×L2
for

some P ∈ N. Combining with (4.6), we obtain

[
y

b

]
=
[
G(c)

A

]
η.
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If η ∈ C
L2

is known to be supported in a set � ⊂ ZL×ZL, the system reduces to

[
y

b

]
=
[
G(c)|�
A|�

]
η|�. (4.15)

In the MIMO setting, writing (see (4.6))

Hm,n c(n) = G(c(n)) ηm,n for m = 1, . . . ,M, n = 1, . . . , N,

yields the equation

[ y1

...
yM

]

= Hc =
⎡

⎢
⎣

H 1,1 · · · H 1,N
...

...

HM,1 · · · HM,N

⎤

⎥
⎦

⎡

⎢
⎣

c(1)

...

c(N)

⎤

⎥
⎦ =

⎡

⎢
⎣

∑N
n=1 G(c(n)) η1,n

...∑N
n=1 G(c(n)) ηM,n

⎤

⎥
⎦

=

⎡

⎢⎢⎢
⎣

G(c(1), . . . , c(N)) 0 · · · 0
0 G(c(1), . . . , c(N)) · · · 0
...

...
. . .

...

0 0 · · · G(c(1), . . . , c(N))

⎤

⎥⎥⎥
⎦

⎡

⎢⎢⎢
⎣

η1

η2
...

ηM

⎤

⎥⎥⎥
⎦
,

where G(c(1), . . . , c(N)) := [G(c(1)) | · · · |G(c(N)) ] ∈ C
L×NL2

and ηm =
{
ηm,n
}N
n=1 ∈ (CL2

)N for m = 1, . . . ,M . Similarly, linear relations between and
within the vectors ηm, m = 1, . . . ,M , are expressed by the equation

b =∑M
m=1 Am ηm,

where b ∈ C
P and Am ∈ C

P×L2
for some P ∈ N. Combining the above equations,

we obtain

⎡

⎢⎢
⎢⎢⎢⎢
⎣

y1

y2
...

yM

b

⎤

⎥⎥
⎥⎥⎥⎥
⎦

=

⎡

⎢⎢
⎢⎢⎢⎢
⎣

G(c(1), . . . , c(N)) 0 · · · 0
0 G(c(1), . . . , c(N)) · · · 0
...

...
. . .

...

0 0 · · · G(c(1), . . . , c(N))

A1 A2 · · · AM

⎤

⎥⎥
⎥⎥⎥⎥
⎦

⎡

⎢
⎢⎢
⎣

η1

η2
...

ηM

⎤

⎥
⎥⎥
⎦
.

If each ηm = {ηm,n}Nn=1 ∈ (CL2
)N is supported in �m = {�m,n}Nn=1 ⊂ (ZL×ZL)

N ,
the equation reduces to
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⎡

⎢⎢⎢⎢⎢
⎢
⎣

y1

y2
...

yM

b

⎤

⎥⎥⎥⎥⎥
⎥
⎦

=

⎡

⎢⎢⎢⎢
⎣

G(c(1),...,c(N))|�1 0 ··· 0

0 G(c(1),...,c(N))|�2 ··· 0

...
...

. . .
...

0 0 ··· G(c(1),...,c(N))|�M

A1|�1 A2|�2 ··· AM |�M

⎤

⎥⎥⎥⎥
⎦

⎡

⎢⎢⎢
⎣

η1|�1

η2|�2
...

ηM |�M

⎤

⎥⎥⎥
⎦
.

(4.16)

The constraints b = A|� η|� in the SISO case, and b =∑M
m=1 Am|�m ηm|�m in the

MIMO case, are referred to as the side constraints associated with OPW(�) and
OPW(	), respectively.

The discussion above immediately leads to the following result.

Proposition 4.4

(a) For � ⊂ ZL×ZL and A ∈ C
P×L2

with some P ∈ N, the space OPW(�)

with side constraints of the form b = A|� η|� is identifiable if and only if there
exists c ∈ C

L such that the matrix

[
G(c)|�
A|�

]
(4.17)

is injective.
(b) For 	 = [�m,n]Mm=1

N
n=1 with �m,n ⊂ ZL×ZL and matrices Am ∈ C

P×L2
,

m = 1, . . . ,M , with some P ∈ N, the space OPW(	) with side constraints
of the form b = ∑M

m=1 Am|�m ηm|�m is identifiable if and only if there exists
c = (c(1), . . . , c(N)) ∈ (CL)N such that the matrix

⎡

⎢
⎢⎢⎢⎢⎢
⎣

G(c(1), . . . , c(N))|	1 0 · · · 0
0 G(c(1), . . . , c(N))|	2 · · · 0
...

...
. . .

...

0 0 · · · G(c(1), . . . , c(N))|	M

A1|	1 A2|	2 · · · AM |	M

⎤

⎥
⎥⎥⎥⎥⎥
⎦

(4.18)

is injective. Here, G(c(1), . . . , c(N)) := [G(c(1)) | · · · |G(c(N))] ∈ C
L×NL2

and 	m =
{
�m,n

}N
n=1 ⊂ (ZL×ZL)

N .

Clearly, choosing the empty set of side constraints would reduce the matrix
in (4.17) to G(c)|�, which, for an appropriate choice of c ∈ C

L, is injective
whenever |�| ≤ L (see Corollary 4.1). Likewise, for an appropriate choice of
c ∈ (CL)N , the matrix (4.18) without the last row is injective if

∑N
n=1 |�m,n| ≤ L

for all m = 1, . . . ,M (see Corollary 4.2).
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Proposition 4.4 converts the problem of identifiability of SISO/MIMO operator
Paley–Wiener spaces with side constraints, into injectivity of certain matrices,
namely, the matrix (4.17) in the SISO case and the matrix (4.18) in the MIMO
case. In the SISO case, we will show that if A ∈ C

P×L2
consists of a single row,

i.e., if P = 1, then for each � ⊂ ZL×ZL with |�| = L + 1 the matrix (4.17) is
injective for some c ∈ C

L, and hence, the space OPW(�) with side constraints of
the form b = A|� η|� is always identifiable. Compared to Corollary 4.1, this result
overcomes the fundamental restriction on the size of � by exploiting the additional
constraints.

Theorem 4.1 ([16, 17]) For any� ⊂ ZL×ZL with |�| = L+1 and a ∈ C
L+1\{0},

there exists a vector c ∈ C
L for which the (L + 1)×(L + 1) matrix

[
G(c)|�

a∗
]

is invertible. Moreover, such vectors c form a dense open subset of CL with full
measure.

The proof of this theorem is based on the following lemma.

Lemma 4.1 ([16, 17]) Let � ⊂ ZL × ZL with L + 1 ≤ R := |�| ≤ 2L. Then
span
{
kerG(c)|� : c ∈ UL

} = C
R, where UL is the set of all c ∈ C

L so that G(c)

has full spark (see Proposition 4.1).

Unfortunately, to obtain an identifiability result from this lemma requires to
restrict ourselves to |�| = L+ 1 as in Theorem 4.1.

Theorem 4.1 does not allow us to draw conclusions for the case of linear
constraints with multiple equations. Indeed, if A ∈ C

P×L2
has multiple rows, i.e.,

if P ≥ 2, the intersection of the row spaces of A|� and G(c)|� may depend on the
choice of c. Below we give an example of � ⊂ ZL×ZL with size L+ 2 and linear

constraints of two equations such that the matrix
[

G(c)|�
A|�
]

is singular for all c ∈ C
L.

Example 4.1 Let L = 3 and � = {(0, 0), (0, 1), (0, 2), (1, 0), (1, 1)}. For every
c = (c0, c1, c2)

T ∈ C
3, the matrix

[
G(c)|�
A|�

]
=

⎡

⎢⎢⎢⎢
⎢
⎣

c0 c0 c0 c1 c1

c1 ωc1 ω2c1 c2 ωc2

c2 ω2c2 ω4c2 c0 ω2c0

1 1 1 0 0
0 0 0 1 1

⎤

⎥⎥⎥⎥
⎥
⎦

is singular because the first row is a linear combination of the fourth and fifth rows.

We also provide a matrix A ∈ C
L×L2

with the property that the matrix
[

G(c)|�
A|�
]

is not injective for all c ∈ C
L and � ⊂ ZL×ZL with size 2L.

Example 4.2 Let A = [ IL |M−1 | · · · |M−(L−1) ] ∈ C
L×L2

. The 2L×L2 matrix[
G(c)
A

]
is rank deficient for all c ∈ C

L.



118 A. Kaplan et al.

We now extend Lemma 4.1 and Theorem 4.1 to the MIMO setting.

Lemma 4.2 ([16, 17]) Let L ≥ 2, N ≥ 1, and �(1), . . . , �(N) ⊂ ZL×ZL with
L+ 1 ≤ R =∑N

n=1 |�(n)| < 2L. Then,

span
{
ker
[
G(c(1))|�(1) · · · G(c(N))|�(N)

]
: (c(1), . . . , c(N)) ∈ UL,N

}
= C

R,

whereUL,N is the set of all (c(1), . . . , c(N)) ∈ (CL)N such that [G(c(1)) · · · G(c(N))]
has full spark (see Proposition 4.3).

Theorem 4.2 ([16, 17]) Let L ≥ 2, M,N ≥ 1, 	 = [�m,n]Mm=1
N
n=1 with

�m,n ⊂ ZL×ZL and
∑M

m=1
∑N

n=1 |�m,n| = L + 1, and a = (a1, . . . , aM)T ∈
C
L+1\{0}, where am is a vector of dimension

∑N
n=1 |�m,n|. There exists a vector

(c(1), . . . , c(N)) ∈ (CL)N such that the (L+ 1)×(L+ 1) matrix

⎡

⎢⎢
⎢⎢⎢⎢
⎣

G(c(1), . . . , c(N))|�1 0 · · · 0
0 G(c(1), . . . , c(N))|�2 · · · 0
...

...
. . .

...

0 0 · · · G(c(1), . . . , c(N))|�M

a∗1 a∗2 · · · a∗M,

⎤

⎥⎥
⎥⎥⎥⎥
⎦

(4.19)

where �m = {�m,n

}N
n=1 ⊂ (ZL×ZL)

N , is invertible. Moreover, such vectors

(c(1), . . . , c(N)) constitute a dense open subset of (CL)N with full measure. Hence,
the MIMO operator Paley–Wiener spaceOPW(	) = [OPW(�m,n) ]Mm=1

N
n=1 with

side constraints b = ∑M
m=1 a∗m ηm|�m , where b ∈ C and ηm = {ηm,n

}N
n=1 ∈

(CL2
)N for m = 1, . . . ,M , is identifiable.

Concerning side constraints with multiple equations, Example 4.1 in the SISO
case clearly implies that Theorem 4.2 cannot be generalized to linear side constraints
with two or more equations.

We remark that our results are in the fully deterministic setting: for a given set of
linear constraints, we seek generators c for which the associated matrix is invertible.
It would be interesting to consider the case where the linear constraints are chosen
randomly. For generic linear constraints, the situation like Example 4.1 could be
ignored and therefore larger support sets could be considered.

4.3.3 Message Transmission Using Unidentified Channels

In this section, we discuss the topic of transmitting messages with unknown
channels where the primary goal is to transmit messages exactly and the secondary
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goal is to identify the channel if possible. In communications, one usually tests a
communication channel with a pilot signal to identify/estimate the channel before
using it to transmit messages. The receiver is then able to recover messages based on
the channel information [6, 31]. However, such a two-step method is not so useful
for rapidly varying channels. There are several known methods in the literature
on how to improve the reliability of transmission scheme [32, 33], but there is
little work in the direction of simultaneous message transmission and channel
identification [8, 10, 11, 14].

4.3.3.1 Problem Formulation

We consider deterministic SISO channels H ∈ OPW(�) with � ⊂ ZL×ZL (see
Definition 4.6). The standard approach for message transmission using H is in two
steps: first, the channel H is tested with a pilot signal c ∈ C

L to identify/estimate
the channel, and then messages z ∈ Z are transmitted through H and the receiver
decodes the received signal based on the channel information. Our strategy is to
combine these two steps and to rather send z + c into the channel H without
identifying H in advance.

Message Transmission Problem We assume that � ⊂ ZL×ZL and Z ⊂ C
L are

given, while the choice of c ∈ C
L is up to the user. What conditions on � ⊂ ZL×ZL

and Z ⊂ C
L are necessary and/or sufficient so that there exists a vector c ∈ C

L

with the property that every z ∈ Z can be recovered uniquely from y = H (z + c)

with H ∈ OPW(�) unknown? Certainly, one may also consider the case where
� ⊂ ZL×ZL is unknown.

4.3.3.2 Message Transmission with Known Support

We first consider the case where � ⊂ ZL×ZL is known. A naive approach to the
problem is to first identify the channel H ∈ OPW(�) and then use the channel
information to transmit the message z ∈ Z. Our goal, however, is to successfully
transmit and recover the message, so identifying the channel H is in principle
not necessary. Let us clearly define what we mean by the message being uniquely
recoverable.

Definition 4.8 Let H = OPW(�) with � ⊂ ZL×ZL, and let Z ⊂ C
L and

c ∈ C
L. We say that every z ∈ Z is uniquely recoverable from the measurement

y = H (z+ c) with H ∈ H\{0} unknown if

H (z+ c) = H ′(z′ + c) for some H ,H ′ ∈ H\{0} and z, z′ ∈ Z implies z = z′.

For the input signal z+ c, the channel output of H ∈ OPW(�) is given by

y = H (z+ c) = G(z+ c)|� ηH ,� = G(z)|� ηH ,� +G(c)|� ηH ,� , (4.20)
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where ηH ,� = {ηH (k, �)}(k,�)∈�. If ran G(z)|� ∩ ran G(c)|� = {0}, one could
immediately write y = y′ + y′′ with unique components y′ = G(z)|�ηH ,� ∈
ran G(z)|� and y′′ = G(c)|�ηH ,� ∈ ran G(c)|�. This would then allow to identify
ηH ,� from y′′ (provided that G(c)|� is an injective matrix) and, in turn, to recover
z from y′ = Hz (provided that H is injective onZ).

Let us consider the case where Z ⊂ C
L is a one-dimensional subspace of CL,

say,Z = span{x} for some fixed x ∈ C
L\{0}. Then (4.20) becomes

y = H (z+ c) = [G(x)|� G(c)|�
] [uηH ,�

ηH ,�

]
. (4.21)

and recovering the message vector z = ux with u ∈ C is equivalent to recovering its
coefficient u. To this end, it is desirable that dim ran G(x)|� is as small as possible
so as to reserve enough space for ran G(c)|�. Note that G(c)|� needs to have
linearly independent columns for the exact recovery of ηH ,� from G(c)|�ηH ,�.
Note however that the problem depends on the choice of x and � (while c ∈ C

L

can be chosen by the user), and there is no general solution for the recovery of u.
The following theorem appeared in [14] without proof and provides a solution

to our problem in the case that ran G(x)|� is a one-dimensional subspace of CL

and |�| ≤ L − 1 (for instance, consider z = (1, 1, . . . , 1) and � = {0, . . . , L −
2}×{0}). Indeed, if ran G(x)|� = span{a}, then there exists a vector c ∈ C

L such
that ran G(z)|� ∩ ran G(c)|� = {0} and so one can use the arguments described
above.

Theorem 4.3 ([14]) Let � ⊂ ZL×ZL with 1 ≤ |�| ≤ L − 1 and a ∈ C
L\{0}.

There exists a vector c ∈ C
L\{0} such that the matrix [G(c)|�, a ] ∈ C

L×(|�|+1)

has full rank.

Here we provide a short proof of Theorem 4.3, which relies on the following lemma
whose detailed proof is given in section “Proof of Lemma 4.3”.

Lemma 4.3 ([14]) Let � ⊂ ZL×ZL with 1 ≤ R = |�| ≤ L − 1. Then
span
{
ker (G(c)|�)∗ : c ∈ S} = C

L, where UL is the set of all c ∈ C
L such

that G(c) has full spark.

Proof of Theorem 4.3 By Lemma 4.3, we have

⋂

c∈UL

ran G(c)|� =
⋂

c∈UL

(
ker (G(c)|�)∗

)⊥ = {0}.

This implies that for each a ∈ C
L\{0}, there exists a vector c ∈ UL satisfying

a /∈ ran G(c)|�. Since G(c) has full spark, the matrix G(c)|� has full column rank,
and hence we conclude that [G(c)|�, a ] has full rank. ��
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Remark 4.2 Theorem 4.3 and Lemma 4.3 are in analogy with Theorem 4.1
and Lemma 4.1 which are concerned with having an additional row to the Gabor
submatrix G(c)|�.

The previous discussion relies on the condition ran G(z)|� ∩ ran G(c)|� = {0}.
This, however, is often more than what is needed. For instance, if Z ⊂ C

L is an
R-dimensional subspace of CL, then requiring ran G(z)|� ∩ ran G(c)|� = {0} for
all z ∈ Z\{0} would imply |�| · (R + 1) ≤ L, which is a very tough restriction. It
turns out that only |�| + R ≤ L is necessary for the recovery of z ∈ Z, as we will
see in Proposition 4.6 below.

For � ⊂ ZL×ZL, we define B(�) = {M�T k : (k, �) ∈ �}, which is a basis for
OPW(�). In particular, for the cyclic subgroups

�s =
〈
(1, s)

〉 = {(0, 0), (1, s), . . . , (L− 1, (L− 1)s)} for s = 0, . . . , L− 1,

�∞ =
〈
(0, 1)

〉 = {(0, 0), (0, 1), . . . , (0, L− 1)},

it follows from the commutation relation M�T k = ωk� T kM�, k, � = 0, . . . , L− 1,
that all elements in each family B(�s) commute. Therefore, they are simultaneously
diagonalizable.2 The next proposition provides the common eigenvectors for B(�s).

ForL ∈ N, the Fourier vectors in C
L are defined as vj = 1√

L

(
1, ωj , . . . , ω(L−1)j

)T

for j = 0, . . . , L − 1, where ω = e2πi/L. Let D ∈ C
L×L be the diagonal matrix

with Dn,n = ω0+1+···+n = ωn(n+1)/2 for n = 0, 1, . . . , L− 1.

Proposition 4.5 Let L ∈ N be an odd integer.

(a) The family B(�s) with s ∈ {0, . . . , L − 1} has common eigenvectors Dsvj ,
j = 0, . . . , L− 1, which form an orthonormal basis of CL.

(b) The family B(�∞) = {I,M, . . . ,ML−1} has common eigenvectors ej , j =
0, . . . , L− 1.

The proof of Proposition 4.5 follows easily from the following lemma.

Lemma 4.4 (Cf. Lemma 2 in [11]) Let L ∈ N be an odd integer. Then, for all
j, s ∈ ZL, one has

T kDsvj = ω−jk+
k(k−1)s

2 Dsvj−ks for k ∈ ZL

M�Dsvj = Dsvj+� for � ∈ ZL.

2 It is well known that a family S of diagonalizable square matrices is simultaneously diagonaliz-
able, that is, there exists an invertible matrix U such that U−1AU is a diagonal matrix for every
A ∈ S, if and only if all matrices in S commute.
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Consequently, for all j, k, s ∈ ZL, one has

MksT kDsvj = ω−jk+
k(k−1)s

2 Dsvj . (4.22)

Remark 4.3 In Lemma 4.4, we require L ∈ N to be an odd integer to ensure that
D0,0 = DL,L = ω0+1+···+L = (ωL)(L+1)/2 = 1.

Proposition 4.6 Let L ≥ 3 be a prime number, and let s ∈ {0, 1, . . . , L − 1,∞}.
If � ⊂ �s and if Z ⊂ C

L is spanned by R common eigenvectors of B(�s) with
|�| + R ≤ L, then any message z ∈ Z can be uniquely recovered after sending
through the above transmission scheme.

A proof of Proposition 4.6 is given in section “Proof of Proposition 4.6”. In the
proof, the condition that L ∈ N is odd is required for applying Lemma 4.4, while
the condition L ∈ N prime is needed when applying Chebotarev’s theorem on roots
of unity.

4.3.3.3 Message Transmission with Unknown Support

Before addressing the message transmission problem for channels with unknown
support, let us recall some necessary notions. The coherence for a matrix � =
[ϕ1, . . . , ϕN ] with �2-normalized columns, i.e., ‖ϕn‖2 = 1 for all n, is defined as

μ(�) = max
i �=j
∣∣〈ϕi, ϕj

〉∣∣ .

In compressed sensing, the coherence is often used as a simple measure for the
quality of measurement matrices, since recovery algorithms perform better for
measurement matrices with smaller coherence [5]. There are known constructions of
deterministic Gabor matrices with small coherence. For instance, the Gabor matrix
G(c) generated by the Alltop window c ∈ C

L with L ≥ 5 prime,3 defined as (see
[1])

c(n) = 1√
L
e2πin3/L for n ∈ ZL , (4.23)

has coherence μ (G(c)) = 1√
L

which is very close to the optimal lower bound
1√
L+1

, i.e., the Welch bound for L×L2 matrices (see [5, Proposition 5.13] for a
computation of the coherence). Later, we will use the Alltop window as the pilot
signal c.

3 For composite numbers L ∈ N, the Alltop window c ∈ C
L does not guarantee small coherence

of G(c). See, for instance, [21].
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For an odd integer L ∈ N, Lemma 4.4 implies for all j, k, �, r ∈ ZL,

M�T kD2rvj = ωrk2−(r+j)k D2rvj+�−2rk . (4.24)

In particular, setting � = 2rk gives

M2rkT kD2rvj = ωrk2−(r+j)k D2rvj , (4.25)

where ω = e2πi/L and D2rvj (n) = 1√
L
ωrn2+(r+j)n for n ∈ ZL. To simplify the

notation, we define the chirp signal xmL+r ∈ C
L with base frequency m ∈ ZL and

chirp rate r ∈ ZL as

xmL+r (n) = 1√
L
ωrn2+mn for n ∈ ZL .

Setting m = r + j , one has xmL+r = D2rvj , and thus (4.24) and (4.25) can be
written as

M�T kxmL+r = ωrk2−mkx(m+�−2rk)L+r (4.26)

and

M2rkT kxmL+r = ωrk2−mkxmL+r , (4.27)

respectively. We collect all the L2 chirp signals in C
L as columns of the matrix E =

[X0,X1, . . . ,XL−1] ∈ C
L×L2

, where each Xr =
[
xr , xL+r , . . . , x(L−1)L+r

]
is

the unitary matrix with columns consisting of all chirp signals with chirp rate r .

Lemma 4.5 (Lemma 4 in [11]) Let L ≥ 5 be a prime, and let c ∈ C
L be the

Alltop window defined in (4.23). The coherence of the matrix [G(c) E] ∈ C
L×2L2

is bounded above by 2/
√
L.

We are now ready to address the message transmission problem for channels
H ∈ OPW(�) with unknown support � ⊂ ZL×ZL. Let u = {ur}R−1

r=0 ∈ C
R be a

message vector of size R. The signal to be sent through H will be designed as

x =∑R−1
r=0 urxr + c, (4.28)

where c ∈ C
L is the Alltop window and xr , r = 0, . . . , R − 1, are chirp signals

with base frequency m = 0 and chirp rate r . Note that since all xr are linearly
independent, the message vector u = {ur}R−1

r=0 encoded in z = ∑R−1
r=0 urxr ∈ Z

can be retrieved uniquely from z.
As the exact spreading support � ⊂ ZL×ZL of H ∈ OPW(�) is not

known, we will simply employ the representation (4.5) for general linear maps
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H ∈ L(CL,CL), but with the assumption that η = {η(k, �)}
(k,�)∈ZL×ZL

is sparse.
Substituting (4.28) into H yields (cf. (4.6))

y = H (z+ c) =
∑

(k,�)∈ZL×ZL

η(k, �)M�T k
(

c+∑R−1
r=0 urxr

)

=
∑

(k,�)∈ZL×ZL

η(k, �)M�T kc+
R−1∑

r=0

∑

(k,�)∈ZL×ZL

η(k, �) ur ω
rk2

x(�−2rk)L+r

= G(c) η +
R−1∑

r=0

L−1∑

m=0

( L−1∑

k=0

η(k,m+ 2rk) ωrk2
ur

)
xmL+r

= G(c) η +Es = [G(c) E]
[
η

s

]
,

(4.29)
where s = {sr,m}(r,m)∈ZL×ZL

is given by

sr,m =
{∑L−1

k=0 η(k,m+ 2rk) ωrk2
ur if 0 ≤ r ≤ R − 1 and m ∈ ZL ,

0 if R ≤ r ≤ L− 1 and m ∈ ZL.

This corresponds to an underdetermined linear system consisting of L equations in
the 2L2 variables [η, s]T, and the associated L×2L2 matrix [G(c) E] is guaranteed
to have small coherence by Lemma 4.5. If [η, s]T is known to be sparse, one could
apply compressed sensing methods to recover it from (4.29). Note that for H ∈
OPW(�), we have |supp (s)| ≤ R |�| and thus |supp ([η, s]T)| ≤ (1 + R) |�|. If

R ≤
√
L

4|�| − 1, then

|supp ([η, s]T)| ≤ (1+ R) |�| ≤
√
L

4 ≤ 1

2μ
(
[G(c) E]

) ≤ 1
2

(
1+ 1

μ
(
[G(c) E]

)
)
,

so one could immediately apply [4, Theorems 4.3 and 4.5] (also see [5, Corollary
5.4 and Theorems 5.14 and 5.15]) to obtain the following result.

Theorem 4.4 (Theorem 5 in [11]) Let L ≥ 5 be a prime, and let H ∈ OPW(�)

with unknown� ⊂ ZL×ZL. If R ≤
√
L

4|�| −1, then any message vector of size R can
be transmitted through H and be recovered exactly via orthogonal matching pursuit
(OMP) or basis pursuit.

Figure 4.1 shows a simulation result for Theorem 4.4 with randomly generated
channels and messages. The x-axis is the size of � ⊂ ZL×ZL and the y-axis is the
size R of messages. The �2-error of the recovered messages is shown in grayscale
with black and white meaning small and large error, respectively. The green line
R|�| = L is a fundamental threshold due to degrees of freedom. Message recovery
is in principle not possible in the region above this threshold. We refer to [11] for
more details.
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Fig. 4.1 Message recovery error rates for L = 307

4.4 Results in Stochastic Setting

We now turn to the case of stochastic channels. In contrast to deterministic
channels whose identifiability depends only on the size of the spreading support
(see Corollaries 4.1 and 4.2), we will see that identifiability of stochastic channels
(in the sense of Definition 4.5) relies not only on the size but also on the geometry
of the support set of the covariance RηH . In Sect. 4.4.1, we discuss some support
patterns which allow for channel identification (called permissible patterns) and
those which do not (called defective patterns). As in the deterministic setting, we
consider in Sect. 4.4.2 the problem of utilizing known linear side constraints in the
stochastic setting. Some numerical experiments supporting our results are presented
in Sect. 4.4.3.

A stochastic SISO channel is described by (4.9), and using a pilot input signal
c ∈ C

L yields

y(ξ) = Hc(ξ) = G(c) ηH (ξ) , (4.30)

where ηH (ξ) = {ηH (k, �; ξ)}(k,�)∈ZL×ZL
is a random vector in C

L2
and G(c) is the

Gabor matrix generated by c. Recall from Sect. 4.2.3 that the covariance matrices
RηH

∈ C
L2×L2

and Ry ∈ C
L×L, of the random vectors ηH (ξ) and y(ξ), are

defined by (4.10), and they are related by the equation Ry = G(c)RηH
G(c)∗.

This equation can be vectorized to obtain

vec Ry =
(
G(c)⊗G(c)

)
vec RηH

, (4.31)
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which is an underdetermined linear system with the L2×L4 matrix G(c) ⊗ G(c).
So for (4.31) to be uniquely solvable, the covariance matrix RηH ∈ C

L2×L2
has to

be sparse with at most L2 nonzero entries.

Reduction of Variables Assume that there is a set � ⊆ ZL×ZL such that
ηH (k, �; ξ) = 0 a.e. ξ for (k, �) /∈ �. Then the linear system (4.30) reduces to

y(ξ) = G(c)|� ηH ,�(ξ) , (4.32)

where ηH ,�(ξ) = {ηH (k, �; ξ)}(k,�)∈� is the restriction of ηH (ξ) to the set �.
Correspondingly, the linear system (4.31) reduces to

vec Ry =
(
G(c)⊗G(c)

)∣∣
�×� vec RH ,�, (4.33)

which is a linear system with the L2×|�|2 matrix G(c) ⊗ G(c)|�×� with the
vectorization vec R of a matrix R ∈ C

N×N as defined in (4.13). Note that for
R ∈ C

N×N ,

suppR = {(m, n) ∈ ZN×ZN : R(m, n) �= 0} ⊆ ZN×ZN,

supp(vec R) = {� ∈ ZN2 : vecX(�) �= 0} ⊆ ZN2 .

Through the vectorization, each support pattern � in ZN×ZN is converted into a
support pattern �̃ in ZN2 , and vice versa. For brevity, we will often abuse notations
and not distinguish the sets � and �̃.

Covariance matrices have a particular structure which should be reflected by the
support pattern. Therefore, a set � ⊆ ZN×ZN is called a positive semi-definite
(psd) pattern if

(i, j) ∈ � implies (i, i), (j, i), (j, j) ∈ �. (4.34)

4.4.1 Permissible and Defective Support Patterns

Motivated by Eq. (4.33), we consider matrices G ∈ C
M×N with M ≤ N and seek

for support patterns � ⊆ ZN×ZN such that the matrix G ⊗ G|� is injective for
some G ∈ C

M×N . Note in particular that injectivity of the matrix G ⊗ G|� with
� = �×� and G = G(c) for some c ∈ C

L would allow us to solve Eq. (4.33)
uniquely in RH ,�.

Definition 4.9 For M,N ∈ N with M ≤ N , a pattern � ⊆ ZN×ZN is called
(M,N)-defective if for every G ∈ C

M×N the matrix G ⊗ G|� is not injective;
otherwise, � is called (M,N)-permissible.
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We start with a lemma that provides several equivalent conditions for injectivity
of G⊗G|� for general non-structured matrices G ∈ C

M×N and psd patterns � ⊆
ZN×ZN .

Lemma 4.6 (Lemma 10 in [27]) Let G ∈ C
M×N with M,N ∈ N, M ≤ N , and

let � ⊆ ZN×ZN be a psd pattern. The following are equivalent:

(a) X �→ GXG∗ is injective on the (nonlinear) cone {X ∈ C
N×N : X ≥

0, suppX ⊆ �}.
(b) X �→ GXG∗ is injective on the subspace {X ∈ C

N×N : X∗ = X, suppX ⊆
�}.

(c) X �→ GXG∗ is injective on the subspace {X ∈ C
N×N : suppX ⊆ �}.

(d) G⊗G is injective on the subspace {w ∈ C
N2 : suppw ⊆ �}, that is, G⊗G|�

is injective.

In the case of tensor structured psd patterns, i.e., � = �×� with � ⊆ ZN , the
injectivity of G⊗G|� is simply characterized by the injectivity of G|�.

Proposition 4.7 Let G ∈ C
M×N with M,N ∈ N, M ≤ N , and � ⊆ ZN with

|�| ≥ 1. Let diag(�) = {(n, n) : n ∈ �} ⊂ ZN×ZN . The following are equivalent:

(a) The matrix G|� ∈ C
M×|�| is injective, i.e., the columns of G|� are linearly

independent.
(b) The matrix G⊗G|�×� ∈ C

M2×|�|2 is injective.
(c) There exist nonempty disjoint subsets�1,�2 ⊂ � with�1∪�2 = � such that

G⊗G|(�1×�1)∪(�2×�2) is injective.
(d) There exist nonempty disjoint subsets�1,�2 ⊂ � with�1∪�2 = � such that

G⊗G|(�1×�2)∪(�2×�1)∪diag(�) is injective.

(e) There exists an element n ∈ � such that G ⊗ G|({n}×�)∪(�×{n})∪diag(�) is
injective.

Moreover, in this case, |�| ≤ rk(G) (≤ M) and G ⊗ G|� is injective for every
� ⊆ �×�.

Remark 4.4 All permissible patterns in (b)–(e) are psd patterns which are
contained in �×�.

We refer to section “Proof of Proposition 4.7” for a proof of Proposition 4.7.
Note that injectivity of G ⊗ G|� for � = �×� and its subpatterns appearing in
Proposition 4.7 (b) − (e) depend only on the injectivity of G|�. This argument
however does not apply to patterns that are more distributed in ZN×ZN . An extreme
case is the diagonal pattern � = diag := {(n, n) : n ∈ ZN } ⊂ ZN×ZN , which will
be discussed in Propositions 4.8 and 4.9 below.

As a direct consequence of Proposition 4.7, we also obtain some fundamental
limitations on the patterns � for which G⊗G|� is injective.
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Two squares Butterfly Arrow (Arrowhead)

Fig. 4.2 Examples of (4, 16)-defective patterns due to Corollary 4.3

Corollary 4.3 (cf. Propositions 15 and 17 in [27])
Let G ∈ C

M×N withM,N ∈ N andM ≤ N .

(i) Let �1,�2 ⊆ ZN be disjoint sets. If G|�1∪�2 is not injective (in par-
ticular, if |�1|+|�2| > rkG), then G ⊗ G|(�1×�1)∪(�2×�2) and G ⊗
G|(�1×�2)∪(�2×�1)∪diag(�) are not injective.

(ii) Let � ⊆ ZN . If G|� is not injective (in particular, if |�| > rkG), then
for each n ∈ � the matrix G ⊗ G|({n}×�)∪(�×{n})∪diag(�) is not injective.
Consequently, if a psd pattern� ⊆ ZN×ZN contains more than rk(G) elements
in a row/column, then G⊗G|� is not injective.

Corollary 4.3 provides three types of defective patterns which are illustrated in
Fig. 4.2. The defective patterns of the form (�1×�1) ∪ (�2×�2) and (�1×�2) ∪
(�2×�1) ∪ diag(�) are, respectively, called the two squares pattern and the
butterfly pattern (see [26, Definition 5.1]). The defective patterns of the form
({n}×�)∪(�×{n})∪diag(�) with n ∈ � are called the arrow (arrowhead) pattern.

Considering the channel model (4.30) in which Gabor matrices G(c) ∈ C
L×L2

arise naturally, we will now restrict G to L×L2 dimensional matrices. The following
result (whose proof is given in section “Proof of Proposition 4.8”) provides some
necessary conditions for injectivity of G⊗G|diag with G ∈ C

L×L2
.

Proposition 4.8 Let G = [Gj,k]L−1
j=0

L2−1
k=0 ∈ C

L×L2
with L ≥ 2. The matrix G ⊗

G|diag ∈ C
L2×L2

is singular if one of the following conditions holds:

(i) There exist two rows ofG that are linearly dependent when the entrywise phase
factors are removed, that is, there exist some j1 �= j2 and a constant η ≥ 0
satisfying |Gj1,k| = η |Gj2,k| for all k.

(ii) There exist two rows of G such that all entries in each row have the same
magnitude, that is, there exist some j1 �= j2 and constants rj1, rj2 ≥ 0
satisfying |Gj1,k| = rj1 and |Gj2,k| = rj2 for all k.

(iii) The matrix G has all real-valued entries or all imaginary-valued entries, that
is, the entries Gj,k are all real or all imaginary.
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In the case of Gabor matrices G = G(c) with c ∈ C
L, we have the following

criterion for invertibility of G⊗G|diag ∈ C
L2×L2

given in terms of the short-time
Fourier transform Vcc.

Proposition 4.9 (Theorem 16 in [27] and Theorem II.2 in [28]) Let diag =
{(λ, λ) : λ ∈ ZL×ZL} be the diagonal pattern on the L2×L2 grid. Then �(c) :=
G(c)⊗G(c)|diag ∈ C

L2×L2
is invertible if and only if c is in the set

VL = {c ∈ C
L : Vcc has no zero entries},

which is a dense open subset of CL with full measure. Moreover, the singular values
of �(c) are given by

√
L · |Vcc(k, �)| =

√
L · |〈c, π(k, �)c〉|, k, � = 0, . . . , L− 1.

Remark 4.5

(a) If c = (c0, . . . , cL−1)
T ∈ C

L with |c0| = . . . = |cL−1| > 0, then all entries
in G(c) are identical in magnitude, and therefore �(c) must be singular by
Proposition 4.8. This is indeed confirmed with Proposition 4.9 by observing
that Vcc(0, �) = 〈c,M�c〉 = 0 for all � ∈ ZL\{0}.

(b) The columns of �(c) cannot form an orthogonal basis for C
L2

. Indeed, the
columns of �(c) being orthogonal would imply that for any (k′, �′) �= (k, �),

|〈c, π(k′ − k, �′ − �)c〉|2 = |〈π(k, �)c, π(k′, �′)c〉|2

= 〈π(k, �)c ⊗ π(k, �)c, π(k′, �′)c ⊗ π(k′, �′)c〉 = 0,

while the invertibility of �(c) would imply |〈c, π(k, �)c〉| �= 0 for all (k, �) ∈
ZL×ZL by Proposition 4.9, yielding a contradiction.

(c) It is easily seen that VL is not a subset of the set UL in Proposition 4.1,
and vice versa. For instance, c = (1, eπi/4)T belongs to U2\V2, while c =
(3,−e2πi/3,−2e4πi/3)T belongs to V3\U3. Furthermore, the set UL ∩ VL is a
dense open subset of CL with full measure.

From Propositions 4.7 and 4.9, we conclude that all L×L tensor patterns and
the diagonal pattern are (L,L2)-permissible (see Fig. 4.3 for an illustration of these
patterns).

4.4.2 Linear Constraints in Stochastic Setting

A special type of stochastic channel operators, which has important applications in
engineering and physics, is the so-called WSSUS channels.
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4×4 tensor 4×4 tensor Diagonal

Fig. 4.3 Examples of (4, 16)-permissible patterns: tensor structured psd patterns (Proposition 4.7)
and the diagonal pattern (Proposition 4.9)

Definition 4.10 A stochastic SISO channel H is called wide-sense stationary with
uncorrelated scattering (WSSUS) if its covariance matrix RηH

is diagonal, that is,
RηH

(λ, λ′) = 0 for all λ �= λ′ in ZL×ZL. In this case, we have RηH
(λ, λ′) =

δλ,λ′ CηH
(λ) for some CηH

= {CηH
(λ)}λ∈ZL×ZL

∈ C
L2

which is called the
scattering function of H .

For WSSUS channels, the linear system (4.31) reduces to

vec Ry =
(
G(c)⊗G(c)|diag

)
CηH

, (4.35)

which is an exactly determined linear system associated with the L2×L2 matrix
G(c) ⊗ G(c)|diag. Proposition 4.9 guarantees that this linear system is uniquely

solvable for all c in the set VL, which is a dense open subset of CL with full measure.
Hence, the class of WSSUS channels is identifiable up to second-order statistics in
the sense of Definition 4.5.

4.4.2.1 WSSUS Pattern with Additional Off-diagonal Contributions

Let us now weaken the WSSUS condition in Definition 4.10 to allow for some
additional off-diagonal contributions, i.e., we assume that the covariance matrix
RηH

∈ C
L2×L2

satisfies

RηH
(λ, λ′) = δλ,λ′ CηH

(λ)+ extra off-diagonal components.

Note that RηH is Hermitian and satisfies (4.11). Therefore, RηH (λ, λ
′) �= 0 implies

RηH (λ
′, λ) �= 0 and so we will always have an even number of off-diagonal

elements. Moreover, since the
∣
∣suppRηH

∣
∣ > L, it is clear that such a channel will

not be identifiable up to second-order statistics. Only if RηH is known to satisfy
additional side constraints, it might become identifiable and it is clear that one needs
at least as many side-constraints as RηH has nonzero off-diagonal elements.
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The following proposition shows that two (symmetric) nonzero off-diagonal
elements in the covariance matrix RηH can always be compensated by two linear
side constraints that are chosen appropriately.

Proposition 4.10 Let λ, λ′ ∈ ZL×ZL with λ �= λ′, and let a ∈ R
L2
, b1, b2 ∈ R be

such that the vectors (aT, b1, b2) and (aT, b1, b2) are linearly independent, i.e.,

�0 =
[
aT b1 b2

aT b2 b1

]
∈ C

2×(L2+2) has full row rank. (4.36)

There exists a vector c ∈ C
L such that the (L2 + 2)×(L2 + 2) matrix

� =
⎡

⎢
⎣

G(c)⊗G(c)|diag π(λ)c ⊗ π(λ′)c π(λ′)c ⊗ π(λ)c

aT b1 b2

aT b2 b1

⎤

⎥
⎦ (4.37)

is invertible. Moreover, the set of all such vectors c ∈ C
L is a dense open subset of

C
L with full measure.

Proposition 4.10 shows that for almost WSSUS channels, one has a very similar
behavior as in Theorem 4.1 for deterministic channels with side constraints. It shows
that one additional (symmetric) support component of the covariance can always be
compensated by an additional linear side constraint. A proof of Proposition 4.10 is
given in section “Proof of Proposition 4.10”.

We would like to mention that the complex-valued case a ∈ C
L2

, b1, b2 ∈ C is
not fully resolved, as we are missing a rigorous proof for the determinant of � being
a nontrivial polynomial in the variables c0, . . . , cL−1 and its complex conjugates
c0, . . . , cL−1. A rigorous argument would require similar techniques as in [13, 18].
Precisely, we wish to prove following statement: let λ, λ′ ∈ ZL×ZL with λ �= λ′,
and let a ∈ C

L2
, b1, b2 ∈ C be such that

�0 =
[
aT b1 b2

aT b2 b1

]
∈ C

2×(L2+2) has full row rank.

There exists a vector c ∈ C
L such that the (L2 + 2)×(L2 + 2) matrix

� =
⎡

⎢
⎣

G(c)⊗G(c)|diag π(λ)c ⊗ π(λ′)c π(λ′)c ⊗ π(λ)c

aT b1 b2

aT b2 b1

⎤

⎥
⎦

is invertible. Moreover, the set of all such vectors c ∈ C
L is a dense open subset of

C
L with full measure.
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4.4.2.2 Tensor Product Pattern with Additional Contributions

We now assume that the covariance matrix RηH
∈ C

L2×L2
is supported in a tensor

product pattern with some additional contributions, that is, suppRηH
⊂ (�×�)∪�

with � ⊂ ZL×ZL, |�| = L, and � ⊂ (ZL×ZL)
2\(�×�).

The case where � = {(λ, λ)} with λ ∈ (ZL×ZL)\� is resolved by the following
proposition. Note that if c is chosen from the set UL in Proposition 4.1 (so that G(c)

has full spark), then G(c)|� ∈ C
L×L is invertible and thus G(c) ⊗ G(c)|�×� =

G(c)|� ⊗G(c)|� ∈ C
L2×L2

is invertible.

Proposition 4.11 Given a subset � ⊂ ZL×ZL with |�| = L, an element λ ∈
(ZL×ZL)\�, and any a ∈ C

L2
, b ∈ C with ‖a‖2

2 + |b|2 �= 0, there exists a vector
c ∈ C

L such that the matrix

� =
[
G(c)⊗G(c)|�×� π(λ)c ⊗ π(λ)c

aT b

]
∈ C

(L2+1)×(L2+1)

is invertible. Moreover, the set of all such vectors c ∈ C
L is a dense open subset of

C
L with full measure.

A proof of Proposition 4.11 is given in section “Proof of Proposition 4.11”.
The problem of extending Proposition 4.11 to the general case � =
{(λ1, λ1), . . . , (λK, λK)} with K ≥ 2 distinct elements λ1, . . . , λK in (ZL×ZL)\�
is left open.

As a final remark, we note that most of the results in Sect. 4.4 are for stochastic
SISO channels. While some results extend directly to stochastic MIMO channels
(for instance, Proposition 4.9 can be extended immediately to WSSUS MIMO
channels), the others require a careful modification and more involved proofs. We
leave the investigation on stochastic MIMO channels as a future work.

4.4.3 Numerical Simulations

In Sect. 4.4.2, we have shown that the matrices � in Propositions 4.10 and 4.11 are
invertible if the generating vector c ∈ C

L belongs in a certain open dense subset of
C
L with full measure. This indicates that the matrix � with a randomly generated

window c ∈ C
L and randomly generated additional rows must be invertible with

high probability. Although we have only treated some particular cases of patterns
with additional contributions in Propositions 4.10 and 4.11, we believe that these
results extend to general cases with more additional contributions. To verify this
claim, we made some numerical experiments described below.

As in Propositions 4.10 and 4.11, we generated matrices of the form
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� =
(

G(c)⊗G(c)|� G(c)⊗G(c)|�
A B

)
, (4.38)

where � ⊂ (ZL×ZL)
2 with |�| = L2 is a permissible support pattern in the sense

of Definition 4.9, and � ⊂ (ZL×ZL)
2\� with |�| = N is the support of additional

N contributions chosen so that � ∪̇� is a psd pattern (i.e., satisfies (4.34)). The
matrices A ∈ C

N×L2
and B ∈ C

N×N represent additional side constraints, and the
full matrix � is therefore of dimension (L2+N)×(L2+N). In the simulations, we
considered the two cases: (i) � is the diagonal set (WSSUS) and (ii) � is a random
tensor product set.

(i) First, when � is the diagonal set, i.e., � = {(λ, λ) : λ ∈ ZL×ZL}, we picked
� ⊂ (ZL×ZL)

2\� in a way that � ∪̇� is a psd pattern and then generated 20
pilot vectors c ∈ C

L with each vector chosen uniformly from theL-dimensional
complex unit ball. For each c, we generated 20 pairs of A and B. The matrix A
is generated by choosing its rows uniformly from the L2-dimensional complex
unit ball, and the matrix B is generated by choosing its entries uniformly from
the set {x + iy : −1 ≤ x, y ≤ 1} independently. Thus, for each dimension L,
we generated 400 instances of � and computed the smallest singular value of
each matrix �. The average of the smallest singular value is shown in Fig. 4.4.

Fig. 4.4 Illustrated is the empirical expected value of the minimal singular value of the matrix �

in (4.38) for different support sets and with different number of side constraints. Additionally, the
theoretical lower bound on the expectation of the minimal singular value of squared matrices [3]
with i.i.d. Gaussian random variable entries with zero mean and variance one is depicted
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(ii) Next, we generated a tensor product set � ⊂ (ZL×ZL)
2 in a random way

and then picked � ⊂ (ZL×ZL)
2\� so that � ∪̇� is a psd pattern. For each

generated psd pattern, we chose c, A, and B similarly as before and generated
400 instances of the matrix �. The smallest singular value of each matrix is
computed and their average is shown in Fig. 4.4.

In Fig. 4.4, the described two cases with |�| = N = 6 are compared with
the expected smallest singular value of (L2+N)×(L2+N) random Gaussian
matrices (whose entries are i.i.d. Gaussian random variables with mean zero
and variance one) [3].

Figure 4.4 indicates that the matrix � is always invertible for generic vectors
c and matrices A and B. The comparison of minimum singular values implies
that recovery for the WSSUS case is more stable than the tensor product case.
Certainly, the minimum singular value of � decreases as its dimension grows,
that is, as L grows and as more additional support components are considered.
It is interesting to note that the minimum singular value for the WSSUS case is
larger than Gaussian matrices, while that for the tensor product case is smaller
than Gaussian matrices. Note also that the decay rate for the WSSUS case is
much slower than Gaussian matrices and the tensor product case.

Based on the experiments above, one could expect that matrices � of the
form (4.38) are almost always invertible in practical scenarios, and hence the
knowledge of linear side constraints would help to overcome the fundamental
limitation due to degrees of freedom when recovering the covariance matrix
RηH

∈ C
L2×L2

from Ry ∈ C
L×L in Eq. (4.31).

Appendix

Proof of Lemma 4.3

Let us label the elements of � by � = {(k1, �1), . . . , (kR, �R)} ⊂ ZL×ZL and
fix any d ∈ UL so that G(d) has full spark. Then G(d)|� ∈ C

L×R has the full
rank R ≤ L − 1, and therefore ker (G(c)|�)∗ ⊂ C

L is an L − R ≥ 1-dimensional
subspace of CL. Fix any nontrivial vector, x ∈ ker (G(c)|�)∗.

For 0 ≤ p, q ≤ L−1, the (non-)commutation relation M�T k = ωk� T kM� with
ω = e2πi/L gives

M�T k(MqT pd) = ω�p−kq MqT p(M�T kd), k, � = 0, . . . , L− 1,

and since G(d) has full spark, it follows that G(MqT pd) has full spark as well, that
is, MqT pd ∈ UL. Collecting the equation for (k, �) ∈ �, we have

G(MqT pd)|� =MqT p G(d)|� D(p,q)
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with D(p,q) := diag(ω�1p−k1q, . . . , ω�Rp−kRq) ∈ C
R×R , so that

(
G(MqT pd)|�

)∗ = D(p,q)
(
G(d)|�

)∗
M−qT −p.

Since x ∈ ker (G(c)|�)∗, it follows that for p, q = 0, . . . , L− 1,

MqT px ∈ ker (G(MqT pd)|�)∗ where MqT pd ∈ UL.

To prove that span
{
ker (G(c)|�)∗ : c ∈ UL

} = C
L, it suffices to show that

span{MqT px : p, q = 0, . . . , L − 1} = C
L. But this is always true since

{MqT pz : p, q = 0, . . . , L − 1} with any nontrivial vector z ∈ C
L is a tight

frame for CL with frame bound L ‖z‖2
2.

Proof of Proposition 4.6

We first assume that s ∈ {0, 1, . . . , L−1}, and write� = {(k1, k1s), . . . , (kN , kNs)}
for some 0 ≤ k1 < . . . < kN ≤ L− 1. LetZ = span{Dsvj1, . . . ,D

svjR } for some
0 ≤ j1 < . . . < jR ≤ L − 1, where N + R ≤ L, and we label the elements in
ZL\{j1, . . . , jR} as jR+1 < . . . < jL.

For a message vector u = {ur}Rr=1 of length R, we set z = ∑R
r=1 ur Dsvjr and

c =∑L
r=R+1 Dsvjr . Then for H =∑N

n=1 aknM
knsT kn ∈ OPW(�), we have

y = H (z+ c) =
N∑

n=1

aknM
knsT kn

( R∑

r=1

ur Dsvjr +
L∑

r=R+1

Dsvjr

)
(4.39)

=
R∑

r=1

ur

( N∑

n=1

aknω
−jr kn+ kn(kn−1)s

2

)
Dsvjr+

L∑

r=R+1

( N∑

n=1

aknω
−jr kn+ kn(kn−1)s

2

)
Dsvjr .

Since the vectors Dsvj , j = 0, . . . , L − 1, form an orthonormal basis of CL, we
immediately obtain the basis representation coefficients in (4.39) by taking the inner
product of y with Dsvj , j = 0, . . . , L− 1:

〈y,Dsvjr 〉 =: br =
⎧
⎨

⎩
ur

(∑N
n=1 akn ω

−jr kn+ kn(kn−1)s
2

)
for r = 1, . . . , R,

∑N
n=1 akn ω

−jr kn+ kn(kn−1)s
2 for r = R+1, . . . , L.

(4.40)
Note that since N ≤ L− R, the linear system
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⎡

⎢
⎣

bR+1
...

bL

⎤

⎥
⎦ =

⎡

⎢
⎣

ω−jR+1k1 · · · ω−jR+1kN

...

ω−jLk1 · · · ω−jLkN

⎤

⎥
⎦

⎡

⎢
⎢
⎣

ak1ω
k1(k1−1)s

2

...

akN ω
kN (kN−1)s

2

⎤

⎥
⎥
⎦

is a (over-)determined system. In fact, the coefficients ak1 , . . . , akN can be recovered
uniquely due to Chebotarev’s theorem on roots of unity (see, for instance, [29] and
[30, Lemma 1.3]), which asserts that for L ∈ N prime, every square submatrix of
the L×L discrete Fourier matrix (e−2πik�/L)L−1

k,�=0 formed by eliminating arbitrary
rows and columns is invertible. Once the coefficients ak1 , . . . , akN are recovered, it
is straightforward to compute the message values u1, . . . , uR from (4.40), provided

that
∑N

n=1 akn ω
−jr kn+ kn(kn−1)s

2 �= 0 for r = 1, . . . , R.
Now we assume that s = ∞, meaning that � = {(0, �1), . . . , (0, �N)} for some

0 ≤ �1 < . . . < �N ≤ L− 1. LetZ = span{ej1 , . . . , ejR } for some 0 ≤ j1 < . . . <

jR ≤ L − 1, where N + R ≤ L, and we label the elements in ZL\{j1, . . . , jR} as
jR+1 < . . . < jL.

For a message vector u = {ur}Rr=1 of length R, we set z = ∑R
r=1 ur ejr and

c =∑L
r=R+1 ej . Then for H =∑N

n=1 a�nM
�n ∈ OPW(�), we have

y = H (z+ c) =
R∑

r=1

ur

( N∑

n=1

a�n ω
jr�n
)

ejr +
L∑

r=R+1

( N∑

n=1

a�n ω
jr�n
)

ejr .

The rest of the proof is similar to the case s ∈ {0, 1, . . . , L− 1}.

Proof of Proposition 4.7

(a) ⇔ (b): Note that rk(G ⊗ G|�×�) = rk(G|� ⊗ G|�) = (rk G|�)2. If G|� is
injective, i.e., if rk G|� = |�| ≤ M , then rk(G ⊗ G|�×�) = |�|2 and hence
G⊗G|�×� is injective. Conversely, assume that G⊗G|�×� is injective. If a vector
v ∈ C

N with suppv ⊆ � satisfies Gv = 0, then Gvv∗G∗ = Gv(Gv)∗ = 0 and
since supp(vv∗) ⊆ �×�, we have from Lemma 4.6 that vv∗ = 0 which implies
v = 0. Hence, G|� is injective.

(b) ⇒ (c), (d), (e): These implications are obvious, since the index sets
(�1×�1) ∪ (�2×�2), (�1×�2) ∪ (�2×�1) ∪ diag(�), ({n}×�) ∪ (�×{n}) ∪
diag(�), with �1 ⊆ � and n ∈ �, are subsets of �×�.

(c) ⇒ (a): Suppose to the contrary that v ∈ C
N is a nontrivial vector with

suppv ⊆ � and Gv = 0. Let �1,�2 ⊂ � be nonempty disjoint sets such that
�1 ∪�2 = � and G⊗G|(�1×�1)∪(�2×�2) is injective. We write 0 �= v = v1 + v2
with suppv1 ⊆ �1 and suppv2 ⊆ �2. Then Gv1 = G(−v2), which implies
Gv1v

∗
1G

∗ = Gv2v
∗
2G

∗ and thus GZG∗ = 0, where Z = v1v
∗
1 − v2v

∗
2 ∈ C

N×N
is a nontrivial (Hermitian) matrix supported in (�1×�1) ∪ (�2×�2). The matrix
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Z is nontrivial because at least one of its diagonal entries is nonzero. However, in
view of Lemma 4.6, this contradicts with the injectivity of G⊗G|(�1×�1)∪(�2×�2).
Therefore, such a vector v ∈ C

N must not exist which means that G|� is injective.
(e) ⇒ (d): If n ∈ �, then (n, n) ∈ diag(�), so that ({n}×�) ∪ (�×{n}) ∪

diag(�) = ({n}×�\{n}) ∪ (�\{n}×{n}) ∪ diag(�). Therefore, the condition (e)
implies (d) with �1 = {n} and �2 = �\{n}.

(d) ⇒ (a): Suppose to the contrary that v ∈ C
N is a nontrivial vector with

suppv ⊆ � and Gv = 0. Let �1,�2 ⊂ � be nonempty disjoint sets such that
�1 ∪ �2 = � and G ⊗ G|(�1×�2)∪(�2×�1)∪diag(�) is injective. As before, we
write 0 �= v = v1 + v2 with suppv1 ⊆ �1 and suppv2 ⊆ �2 and consider the
following three cases:

(i) If v1 �= 0 and v2 = 0, then choose any n2 ∈ �2 and set

A = [0 . . . 0 v1︸︷︷︸
n2-th

0 . . . 0] ∈ C
N×N.

Then Z = A + A∗ ∈ C
N×N is a nontrivial (Hermitian) matrix supported in

(�1×{n2}) ∪ ({n2}×�1) satisfying GZG∗ = 0.
(ii) If v1 = 0 and v2 �= 0, then choose any n1 ∈ �1 and set

B = [0 . . . 0 v2︸︷︷︸
n1-th

0 . . . 0] ∈ C
N×N.

Then Z = B + B∗ ∈ C
N×N is a nontrivial (Hermitian) matrix supported in

(�2×{n1}) ∪ ({n1}×�2) satisfying GZG∗ = 0.
(iii) Otherwise, if both v1 and v2 are nontrivial, then Gv1 = G(−v2) which implies

Gv1v
∗
2G

∗ = Gv2v
∗
1G

∗, and thus we have GZG∗ = 0 where Z = v1v
∗
2 −

v2v
∗
1 ∈ C

N×N is a nontrivial (Hermitian) matrix supported in (�1×�2) ∪
(�2×�1).

In all three cases, we deduce from Lemma 4.6 that G ⊗ G|(�1×�2)∪(�2×�1) is not
injective, yielding a contradiction. Therefore, such a vector v ∈ C

N must not exist
which means that G|� is injective.

Proof of Proposition 4.8

For each k = 1, . . . , L2, let vk = {vk(j)}L−1
j=0 = {Gj,k}L−1

j=0 ∈ C
L be the k-th

column vector of G. Note that G⊗G|diag = {vk⊗ vk}L2

k=1 = {vkv∗k}L
2

k=1 ∈ C
L2×L2

is not injective if and only if there exists a nontrivial vector a = {ak}L2

k=1 ∈ C
L2

satisfying
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∑L2

k=1 ak vkv
∗
k = 0, (4.41)

which can be understood as a linear system with L2 equations in the L2 variables
a1, . . . , aL2 . Note that the L equations reflecting the diagonal entries of the square
matrices vkv

∗
k are of the form

∑L2

k=1 ak ·
∣∣vk(j)

∣∣2 = 0, j = 0, . . . , L− 1. (4.42)

(i) If there exist some j1 �= j2 and a constant η ≥ 0 satisfying |Gj1,k| = η |Gj2,k|
for all k, that is, |vk(j1)| = η |vk(j2)| for all k, then Eq. (4.42) for j = j1
and j = j2 is identical up to a multiplicative factor. The linear system (4.41)
is then underdetermined, so there exists a nontrivial vector a = {ak}L2

k=1
satisfying (4.41).

(ii) Assume that there exist some j1 �= j2 and constants rj1, rj2 ≥ 0 satisfying
|Gj1,k| = |vk(j1)| = rj1 and |Gj2,k| = |vk(j2)| = rj2 for all k. Equation (4.42)

for j = j1 and j = j2 is then given by rj1

∑L2

k=1 ak = 0 and rj2

∑L2

k=1 ak = 0,

respectively. Note that for each n = 1, 2, the equation rjn
∑L2

k=1 ak = 0 is

void if rjn = 0 and reduces to
∑L2

k=1 ak = 0 if rjn �= 0. In any case, the
linear system (4.41) is underdetermined, so there exists a nontrivial vector a =
{ak}L2

k=1 satisfying (4.41).
(iii) Assume that all entries of G are real-valued. Then (4.41) is simply

∑L2

k=1 ak vkv
T

k = 0. (4.43)

Since all matrices vkv
T

k ∈ R
L×L are symmetric, the equation read off from the

(p, q)-th entry of (4.43) is identical to that read off from the (q, p)-th entry
of (4.43). This implies that the linear system (4.43) has kernel of dimension
at least L(L − 1)/2 ≥ 1, so there exists a nontrivial vector a = {ak}L2

k=1
satisfying (4.43).

Now, assume that all entries of G are imaginary-valued. Writing the column
vectors of G as vk = iwk with wk ∈ R

L for k = 1, . . . , L2, Eq. (4.41) becomes

− ∑L2

k=1 ak wkw
T

k = 0. (4.44)

By the same arguments as above, there exists a nontrivial vector a = {ak}L2

k=1
satisfying (4.44).

Hence, in all cases (i)–(iii), the matrix G⊗G|diag ∈ C
L2×L2

is singular.
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Proof of Proposition 4.10

To prove Proposition 4.10, we need the following technical lemma.

Lemma D.7 Let c ∈ C
L be such that �(c) := G(c) ⊗ G(c)|diag ∈ C

L2×L2

is invertible. Fix any λ �= λ′ in ZL×ZL. If π(λ)c ⊗ π(λ′)c = �(c) v for some
v ∈ C

L2
, then π(λ′)c ⊗ π(λ)c = �(c) v.

Proof Since �(c) is invertible, there exist unique vectors v,w ∈ C
L2

such that
π(λ)c⊗π(λ′)c = �(c) v and π(λ′)c⊗π(λ)c = �(c)w. For any (m, n) ∈ ZL×ZL,
we have

(
π(m, n)c ⊗ π(m, n)c

)∗
π(λ)c ⊗ π(λ′)c = 〈π(m, n)c, π(λ)c〉 · 〈π(λ′)c, π(m, n)c〉

= 〈π(m, n)c, π(λ′)c〉 · 〈π(λ)c, π(m, n)c〉 = (π(m, n)c ⊗ π(m, n)c
)∗

π(λ′)c ⊗ π(λ)c

so that

�(c)∗
(
π(λ)c ⊗ π(λ′)c

) = �(c)∗
(
π(λ′)c ⊗ π(λ)c

)
,

and thus, �(c)∗�(c) v = �(c)∗�(c)w. However, the Gram matrix of �(c) given
by

�(c)∗�(c) =
[(
π(m, n)c ⊗ π(m, n)c

)∗
π(k, �)c ⊗ π(k, �)c

]

(m,n),(k,�)∈ZL×ZL

= [|〈π(m, n)c, π(k, �)c〉|2]
(m,n),(k,�)∈ZL×ZL

is positive definite and has real-valued entries, so we obtain v = w, that is, w = v.
��

Proof of Proposition 4.10 If a = 0, then condition (4.36) is equivalent to having
b2

1 �= b2
2, and thus

det � = det
(
G(c)⊗G(c)|diag

) · (b2
1 − b2

2).

Hence, for any vector c in the set VL from Proposition 4.9, we have that � is
invertible.

Now assume that a �= 0. Then by a Gaussian elimination, we see that
condition (4.36) is equivalent to b1 �= b2. With c ∈ C

L chosen from the set VL
in Proposition 4.9, and v = {v(j)}L2

j=1 ∈ C
L2

satisfying π(λ)c ⊗ π(λ′)c = �(c) v,
we have
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� ∼
⎡

⎢
⎣

�(c) 0 0

aT b1 + b2 −∑L2

j=1 a(j)
(
v(j)+ v(j)

)
b2 −∑L2

j=1 a(j) v(j)

0 0 b1 − b2

⎤

⎥
⎦ ,

which implies that � is invertible if and only if

b1 + b2 �=
L2∑

j=1

a(j)
(
v(j)+ v(j)

)
. (4.45)

Here, the right-hand side can be written as

L2∑

j=1

a(j)
(
v(j)+ v(j)

) = 2 Re
(
aT
(
G(c)⊗G(c)|diag

)−1(
π(λ)c ⊗ π(λ′)c

))
.

It is therefore enough to show that there is a vector c ∈ VL satisfying (4.45). Suppose
that d ∈ VL is a vector satisfying

b1 + b2 = 2 Re
(
aT
(
G(d)⊗G(d)|diag

)−1(
π(λ)d ⊗ π(λ′)d

))
(4.46)

and

aT
(
G(d)⊗G(d)|diag

)−1(
π(λ)d ⊗ π(λ′)d

) �= 0. (4.47)

Using the (non-)commutation relation M�T k = ωk�T kM� with ω = e2πi/L, we
have

π(k, �)MqT pd =MqT pπ(k, �)d · ω�p−kq for k, �, p, q ∈ ZL.

Writing λ = (k, �) and λ′ = (k′, �′) in ZL×ZL, we thus obtain that for any p, q ∈
ZL,

(
G(MqT pd)⊗G(MqT pd)|diag

)−1
π(k, �)MqT pd ⊗ π(k′, �′)MqT pd

=
(
G(d)⊗G(d)|diag

)−1
π(k, �)d ⊗ π(k′, �′)d · ω(�′−�)p−(k′−k)q .

Since λ = (k, �) and λ′ = (k′, �′) are distinct in ZL×ZL, there is an element
(p, q) ∈ ZL×ZL with (�′−�)p−(k′−k)q �≡ 0 mod L, that is, ω(�′−�)p−(k′−k)q �=
1. It is then easily seen that condition (4.45) holds for c = MqT pd ∈ VL. Hence,
we conclude that there exists a vector c ∈ VL such that � is invertible. ��
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Proof of Proposition 4.11

Note that for each c ∈ UL, the matrix G(c) ∈ C
L×L2

has full spark, i.e.,
spark(G(c)) = L + 1 (see Definition 4.3), so its submatrix G(c)|� ∈ C

L×L is
invertible. The vector zc := (G(c)|�)−1π(λ)c ∈ C

L has no zero entries, since
otherwise the equation G(c)|�∪{λ}

[
zc

1

] = (G(c)|�) zc − π(λ)c = 0 would hold
with

∥∥ [ zc

1

] ∥∥
0 ≤ L implying that spark(G(c)) ≤ L.

We will also need the following observation. Fix any c ∈ UL. Since zc ∈ C
L

has no zero entries, the set {d ∈ C
L : (G(d)|�) zc = π(λ)d} is a zero measure

manifold in C
L containing c. Pick any vector c1 ∈ C

L outside the manifold; then
clearly zc1 �= zc. Again, the set {d ∈ C

L : (G(d)|�) zc1 = π(λ)d} is a zero measure
manifold in C

L containing c1. Pick any vector c2 ∈ C
L outside the two manifolds;

then clearly zc2 �= zc, zc1 . Inductively, we obtain a sequence of vectors c1, c2, . . .

in UL such that zc, zc1 , zc2 , . . . are all distinct vectors in C
L. Since each zcn ∈ C

L

has no zero entries, it follows that the vectors zc ⊗ zc, zc1 ⊗ zc1 , zc2 ⊗ zc2 , . . . are

all distinct in C
L2

. In turn, the vectors (zcn ⊗ zcn − zc ⊗ zc) �= 0 for n = 1, 2, . . .

are all distinct in C
L2

.
Noting that π(λ)c ⊗ π(λ)c = (G(c)|�) zc ⊗ (G(c)|�) zc = (

G(c)|� ⊗
G(c)|�

)
(zc⊗ zc) =

(
G(c)⊗G(c)|�×�

)
(zc⊗ zc), we apply a column operation on

� to obtain

� ∼
[
G(c)⊗G(c)|�×� 0

aT b − aT(zc ⊗ zc)

]
,

which gives

det � = det
(
G(c)⊗G(c)|�×�

) · (b − aT(zc ⊗ zc)
)

= ∣∣ det(G(c)|�)
∣∣2L

︸ ︷︷ ︸
�= 0

· (b − aT(zc ⊗ zc)
)
.

Step 1 (Existence of a vector c ∈ UL such that det � �= 0).
We only need to show that there exists a vector c ∈ UL satisfying aT(zc ⊗ zc) �=

b.

(i) If a = 0, then b �= 0 by the assumption, so aT(zc⊗zc) = 0 �= b for all c ∈ UL.
(ii) If a �= 0, then the set {x ∈ C

L2 : b − aTx = 0} is an affine hyperplane in C
L2

.
We need to show that there is a vector c ∈ UL such that zc⊗zc does not belong
in this affine hyperplane. Suppose to the contrary that {zc ⊗ zc : c ∈ UL} is
contained in the affine hyperplane. Since b − aTx = 〈(x, 1), (−a, b)〉CL+1 for

x ∈ C
L2

, this means that the nonzero vector (−a, b) ∈ C
L+1 is orthogonal to[

zc⊗zc

1

]
for all c ∈ UL; thus, showing
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span

{[
zc ⊗ zc

1

]
: c ∈ UL

}
= C

L2+1 (4.48)

would give a desired contradiction.

By Gaussian elimination, we see that (4.48) holds if there is a vector c ∈ UL

satisfying

span
{
zc′ ⊗ zc′ − zc ⊗ zc : c′ ∈ UL

} = C
L2
.

The left-hand side is equal to

span
{
zc′ ⊗ zc′ − zc ⊗ zc, zc′′ ⊗ zc′′ − zc ⊗ zc : c′, c′′ ∈ UL

}

= span
{
zc′ ⊗ zc′ − zc′′ ⊗ zc′′ , zc′′ ⊗ zc′′ − zc ⊗ zc : c′, c′′ ∈ UL

}

⊃ span
{
zc′ ⊗ zc′ − zc′′ ⊗ zc′′ : c′, c′′ ∈ UL

}

⊃ span
{
zc′ ⊗ zc′ − zc ⊗ zc : c′ ∈ UL

}
,

so in order to prove (4.48), it suffices to show that

span
{
zc′ ⊗ zc′ − zc′′ ⊗ zc′′ : c′, c′′ ∈ UL

} = C
L.

But this can be seen easily because UL is a dense open subset of C
L (see

Proposition 4.1).

Step 2 (The set of all c ∈ C
L with det � �= 0 is a dense open subset of CL). We

now write

b − aT(zc ⊗ zc) = b − aT

(
(G(c)|�)−1π(λ)c ⊗ (G(c)|�)−1π(λ)c

)

= b − 1

| det(G(c)|�)|2 aT

(
adj (G(c)|�)π(λ)c ⊗ adj (G(c)|�)π(λ)c

)
,

where adj (A) denotes the adjugate matrix of A, which appears in Cramer’s rule
A−1 = 1

det A adj (A). Then

det � = ∣∣ det(G(c)|�)
∣∣2L−2

(
b · ∣∣ det(G(c)|�)

∣∣2

− aT

(
adj (G(c)|�)π(λ)c ⊗ adj (G(c)|�)π(λ)c

))
,

which is nonzero for all c in a dense open subset of CL, namely the subset of UL

excluding a manifold of measure zero in C
L. The manifold here is expressed by

the equation det � = 0, where we know from Step 1 that det � is a nontrivial
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polynomial in the variables c0, . . . , cL−1 and its complex conjugates c0, . . . , cL−1.
Hence, there exists a vector c ∈ C

L such that � is invertible. ��
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Chapter 5
Analysis of Sparse Recovery Algorithms
via the Replica Method

Ali Bereyhi, Ralf R. Müller, and Hermann Schulz-Baldes

5.1 Introduction

Statistical mechanics deals with the analysis of very large many-particle systems
and seeks the following ultimate goal: Starting from the microscopic behavior of
individual particles, it tries to find out the macroscopic properties of the system.
The system size is, however, so large that it is not possible to solve the microscopic
equations of motion. Statistical mechanics follows an alternative approach: It
describes the microscopic behavior of the system particles via a stochastic model
and extracts the desired deterministic properties via statistical analysis.

The goal and techniques of statistical mechanics are in various aspects similar
to those of information theory. This connection has been widely investigated in the
literature; see for instance [37]. In addition to all interesting theoretical aspects of
this connection, the links between the two theories lead to a key achievement: The
analytical tools of statistical mechanics can be used to address asymptotic analysis
in information theory and its applications.

In this chapter, we use one particular statistical mechanical tool, namely the
replica method, to investigate the asymptotic performance of a large class of sparse
recovery algorithms. The interest in characterizing the asymptotic performance
has several origins: The most natural one is to have an analytic bound on the
performance of a given recovery scheme. This is however not the only application.
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Sparse recovery is used in several other applications in which the asymptotic
performance characterization is useful for system design. In Sect. 5.7, we give two
particular instances; namely, the example of deriving error bounds in distributed
compressive sensing and tuning algorithms used for detection of spatially modulated
signals.

The focus of this chapter is on the asymptotic analysis of a generic compressive
sensing setting via the replica method. As a result, the contents of this chapter give
a comprehensive overview on the replica method and its applications to asymptotic
analyses in communications and signal processing. Details on most aspects of the
discussion are given in [2].

5.2 A Multi-terminal Setting for Compressive Sensing

We consider a generic multi-terminal sensing setting. The setting includes the
classical single-terminal compressive sensing setting, as well as other scenarios of
sparse recovery.

Consider a distributed sensing network (DSN) with J correlated sparse source
signals, namely xj (t) ∈ X ⊆ R for j ∈ [J ]. Here, the notation [J ] is defined as

[J ] := {1, . . . , J } , (5.1)

and is used through the chapter to shorten the presentation. The source signals are
sampled at the time instances, t = tn for n ∈ [N ]. Let xj ∈ X

N×1 for X ⊂ R

denote the vector of samples collected from the j -th source signal. We assume that
the sampling is performed, such that the temporal correlation among different time
samples is negligible.1 As the result, the sample vectors are statistically modeled as
follows: x1, . . . , xJ are independent and identically distributed (i.i.d.), such that the
time samples of the source signals at t = tn are spatially correlated.

The spatial correlation of the time samples at t = tn is modeled via the joint
probability distribution pX

(
xJn
)
, where we define

xJn := (x1n, . . . , xJn) . (5.2)

The joint distribution of the all signal samples is given by

p
(
xJ
)
=

N∏

n=1

pX
(
xJn

)
, (5.3)

where the notation xJ is defined as

1 This is typically the case in classic signal sampling techniques.
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xJ := (x1, . . . , xJ ) . (5.4)

Considering source signal j , an individual sensing unit collects Mj linear (and
potentially noisy) observations of the samples. Denoting the vector of observations
by yj ∈ R

Mj×1, we can write

yj = Ajxj + zj . (5.5)

Here, Aj ∈ R
Mj×N denotes the sensing matrix of unit j that describes the linear

transform from the signal samples to the observations, and zj ∈ R
Mj×1 is the

measurement noise at terminal j .
The observations, as well as the sensing matrices, are given to a single data-fusion

center. The data-fusion center recovers the signal samples using a joint recovery
algorithm, i.e., it finds the estimates x̂

J = (x̂1, . . . , x̂J

)
as

x̂
J = g

(
y1, . . . , yJ |A1, . . . ,AJ

)
, (5.6)

via some recovery algorithm g (·|A1, . . . ,AJ ). At this point, we consider a generic
form for the recovery algorithms. We will later focus on a specific (but broad) class
of sparse recovery algorithms that use the method of least squares.

5.2.1 Characterization of the Recovery Performance

Before illustrating the details of the system model, let us clarify the ultimate goal
of this chapter, i.e., the asymptotic analysis of sparse recovery algorithms. To this
end, we first need to define a metric that characterizes the performance of a recovery
algorithm g (·|A1, . . . ,AJ ). This metric is defined in the following definition:

Definition 5.1 (Average Distortion) Consider the distortion function

�(·; ·) : RJ × R
J �→ R. (5.7)

Using this function, the distortion between the source samples xJ and their
corresponding estimates x̂

J is determined as

�v
(
x̂
J ; xJ

)
=

N∑

n=1

�
(
x̂Jn ; xJn

)
. (5.8)

The average distortion is then given by

DN = 1

N
E

{
�v
(
x̂
J ; xJ

)}
, (5.9)

where E {·} indicates statistical expectation.
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The average distortion describes the quality of the recovery algorithm. Depend-
ing on the choice of the distortion function, the average distortion determines
different forms of estimation errors. For example, by setting

�
(
x̂Jn ; xJn

)
=

J∑

j=1

|x̂jn − xjn|2, (5.10)

the average distortion reduces to the well-known mean squared error (MSE).
It is important to keep in mind that the average distortion explicitly depends on

the recovery algorithm. In fact, depending on the choice of g (·|A1, . . . ,AJ ), the
estimated samples x̂

J change, and consequently, DN varies.
The ultimate goal of this chapter is to find the average distortion for a large class

of sparse recovery algorithms when the number of signal samples per each terminal,
i.e., N , is very large. For most known sparse recovery algorithms, this is a hard task
to do, due to reasons that we explain in Sect. 5.4.

In order to address this goal, we need to specify a model for every component of
the setting. We do this in the following section.

5.2.2 Stochastic Model of System Components

A typical model for the noise processes is the additive white Gaussian noise
(AWGN) model. This follows from the fact that noise in sensing devices is
physically caused by several random independent processes whose spectral density
in the bandwidth of interest is well approximated by that of AWGN. Considering
the AWGN model, zj is considered to be an i.i.d. Gaussian random vector whose
entries are zero mean with variance σ 2

j .
We also model the sensing matrices as they are generated by a random process.

Although stochastic modeling of noise is widely accepted, considering such a model
for sensing matrices requires a bit of illustration. A stochastic model for sensing
matrices assumes that each sensing matrix Aj is taken at random from a predefined
ensemble. The logic behind considering such a model is as follows: From the
compressive sensing literature, we know that sensing matrices require to satisfy
some specific properties, such that a certain recovery performance is guaranteed
[23]. Many random ensembles are shown to satisfy these properties. This means
that by generating a sensing matrix from these ensembles at random, the anticipated
recovery performance is achieved with a high probability. To incorporate this fact
into the analysis, the classical approach is to assume that the sensing matrices are
given by a random ensemble. From the mathematical viewpoint, such an assumption
does not harm the generality of the analysis, as most structured sensing matrices can
be described by a random ensemble as well.

In this chapter, we assume that the sensing matrices are right rotationally
invariant random matrices. This is generic assumption since it includes most well-
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known random ensembles, e.g., the class of i.i.d. sensing matrices. We introduce
this random ensemble in the sequel. However, before defining that, let us first define
the density of states for a given matrix.

Definition 5.2 (Density of States) Let S ∈ R
N×N be a self-adjoint square matrix

whose eigenvalues are given by λ1, . . . , λN ∈ R. The density of states for this
matrix is defined as the empirical cumulative distribution function (CDF) of its
eigenvalues,2 i.e., for λ ∈ R

FN
S (λ) = 1

N

N∑

n=1

1 {λn < λ} . (5.11)

We are now ready to define right rotationally invariant random matrices.

Definition 5.3 (Right Rotationally Invariant Matrices) Aj ∈ R
Mj×N is right

rotationally invariant if its Gramian Jj = AT
j Aj has the decomposition

Jj = UjDjUT
j , (5.12)

where Uj and Dj have the following properties:

1. The matrix Uj ∈ R
N×N is a Haar-distributed matrix.3

2. The matrix Dj ∈ R
N×N denotes the diagonal matrix of eigenvalues whose

density of states converges as N →∞, i.e., limN→∞ FN
Dj

(λ) = Fj (λ).

The class of right rotationally invariant matrices includes the most well-known
random ensembles in compressive sensing; for instance, the class of i.i.d. random
matrices, i.e., random matrices whose entries are generated i.i.d. from a distribution
with bounded variance.4 Note that different forms of random matrices will have
different densities of states. We clarify this point further in Sect. 5.4 when we
formally formulate the asymptotic analysis of a sparse recovery algorithm.

5.2.3 Stochastic Model for Jointly Sparse Signals

As indicated, we assume that there exists a spatial correlation among the signals for
various sources. Noting that the signals are sparse, we interpret this spatial coupling
as joint sparsity. To give an intuition on joint sparsity, we focus in the sequel on a

2 Note that for random S, the density of state is random.
3 A Haar matrix is a random matrix generated from the rotation-invariant measure on the set of all
orthonormal matrices.
4 Another well-known example in compressive sensing is the row-orthonormal random sensing
matrix; see [39] and references therein for the exact definition and further examples.
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special joint sparsity model in which the sample n of signal j is written as

xjn = cnw0n + s0nwjn + sjnujn. (5.13)

Here, s0n, w0n, cn, wjn, sjn, and ujn are independent i.i.d. sequences whose
distributions are as follows:

1. In (5.13), the random variable w0n, as well as the random variables wjn and ujn
for j ∈ [J ], are defined to be in set X, and their probabilities of being zero are
equal to zero.

2. Random variables s0n, cn, and sjn are Bernoulli-distributed and

Pr {cn = 1} = 1− Pr {cn = 0} = μc (5.14a)

Pr {s0n = 1} = 1− Pr {s0n = 0} = μ0 (5.14b)

Pr
{
sjn = 1

} = 1− Pr
{
sjn = 0

} = μj . (5.14c)

In this model, the samples of a terminal are given as the superposition of three
sparse components. The first component, whose n-th entry is given by cnw0n,
is a sparse vector that is common among all the terminals. The second sparse
component, represented by s0nwjn for n ∈ [N ], has a common support5 across
all the terminals; however, the values of the non-zero entries are drawn from
independent processes. The last component contains a sparse signal whose support
and non-zero entries are independently generated for each terminal.

Although the given model for joint sparsity is not the most general one, it
includes the most well-known sparse recovery settings in the literature. In the sequel,
we address the main settings for sparse recovery. These settings are derived from our
system model as special cases.

5.2.4 Special Cases

The three main settings for sparse recovery are classical compressive sensing, the
problem of multiple measurement vectors (MMV), and distributed compressive
sensing (DCS). In the sequel, we briefly go through these settings and illustrate
how they are derived from our generic multi-terminal setting.

5.2.4.1 Classical Compressive Sensing

In classical compressive sensing, also called the single measurement vector prob-
lem, a sparse signal is observed linearly via a single terminal and is to be recovered

5 By support, we refer to the indices of non-zero entries in a vector.
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from this underdetermined set of observations. This setting is simply derived by
setting J = 1 in our model. As spatial correlation among terminals has no meaning
in this case, one can further set cn = s0n = 0 for n ∈ [N ] in the sparsity model.

5.2.4.2 Multiple Measurement Vectors

In MMV, multiple sparse signals are observed with a common sensing matrix and
recovered at a single data-fusion center. This setting is straightforwardly derived
from our model by letting

A1 = . . . = AJ . (5.15)

In general, the joint sparsity model given in Sect. 5.2.3 is a valid model in MMV.
Nevertheless, in many applications of MMV, it is common to assume the common
support model for the spatial correlation. This model assumes that the samples of
different terminals have common support; however, the non-zero entries are drawn
from independent processes. The common support model is derived from the joint
sparsity model in Sect. 5.2.3 by setting sjn = cn = 0 for n ∈ [N ].

5.2.4.3 Distributed Compressive Sensing

DCS describes the most generic setting that fits to our model. In this problem, the
jointly sparse signals of different terminals are observed with different matrices and
recovered at a common fusion center. Similar to MMV, the joint sparsity model in
Sect. 5.2.3 is generally valid for DCS. A common model is however the common-
innovation model in which the signal of each terminal is given as a common sparse
component superposed by an independent sparse innovation term. This model is
derived from the one given in Sect. 5.2.3 by setting s0n = 0 for n ∈ [N ].

5.3 Sparse Recovery via the Regularized Least-Squares
Method

We focus on the class of regularized least-squares (RLS)-based recovery algorithms.
These algorithms recover the signal samples by minimizing a penalized residual sum
of squares. In general, an RLS-based algorithm is of the following form:

g
(
y1, . . . , yJ |A1, . . . ,AJ

) = argmin
v1,...,vJ∈XN

J∑

j=1

1

2λj
‖yj−Ajvj‖2+uv

(
vJ
)
. (5.16)
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Here, vJ := (v1, . . . , vJ ), and uv (·) : RN×J �→ R
+ is the regularization function

that penalizes the residual sum of squares, and ‖·‖ denotes the Euclidean norm. In
the sequel, we assume that uv (·) decouples, i.e., there exists u (·) : R1×J �→ R

+,
such that

uv(vJ ) =
N∑

n=1

u
(
vJn

)
. (5.17)

Furthermore, λ1, . . . , λJ are tunable factors, referred to as regularization parameters.

5.3.1 Some Well-Known Forms

The interest in the class of RLS-based recovery schemes comes from its broadness.
In fact, the recovery scheme in (5.16) includes a diverse set of sparse recovery
algorithms. In the sequel, we discuss two well-known examples, namely �p-norm
minimization for classical compressive sensing and �p,q -norm minimization for
DCS.

5.3.1.1 
p-Norm Minimization

Most algorithms in compressive sensing with a single terminal recover the sparse
signal by finding a vector of samples whose residual sum of squares is bounded,
i.e., finding v, such that6

‖y − Av‖2 ≤ ε (5.18)

for some ε, and whose �p-norm for some p is minimum. The most common choice
of p is p = 1, which results in the least absolute shrinkage and selection operator
(LASSO), also called basis pursuit algorithm.

Using the method of Lagrange multipliers, it is shown that there exists a
regularization parameter λ, for which the RLS-based algorithm with decoupled
regularization function u (vn) = |vn|p performs identical to this algorithm; see, for
example, [2].

6 Note that the index j is dropped, as we consider a single-terminal setting.
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5.3.1.2 
p,q -Norm Minimization

For multi-terminal settings, the classic �p-norm minimization techniques are often
extended to �p,q -norm minimization techniques. The feasible set in this case is
constructed with the same approach, i.e., finding v1, . . . , vJ for which

‖yj − Ajvj‖2 ≤ εj (5.19)

with some εj for j ∈ [J ]. The recovered samples are then found by searching the
feasible set for vectors whose �p,q -norm is minimum. For a collection of J vectors
v1, . . . , vJ , the �p,q -norm is defined as

‖v1, . . . , vJ ‖p,q =
⎛

⎜
⎝

N∑

n=1

⎛

⎝
J∑

j=1

|vjn|p
⎞

⎠

q/p
⎞

⎟
⎠

1/q

. (5.20)

The most well-known �p,q -norm minimization technique is the group LASSO
technique in which p = 2 and q = 1.

Similar to �p-norm minimization, one can invoke the method of Lagrange
multipliers and show that there exist regularization parameters λ1, . . . , λJ , for which
the RLS-based algorithm with decoupled regularization function u

(
vJn
) = ‖vJn ‖pq

performs identical to �p,q -norm minimization.

5.3.2 Bayesian Interpretation

In the Bayesian framework, an RLS-based algorithm is interpreted as a mismatched
maximum-a-posteriori (MAP) estimator. This estimator postulates the following
assumptions:

1. The prior joint distribution of samples at tn is proportional to exp {−u (·)}. This
means that pX

(
xJn
)

is assumed to be

pX
(
xJn

)
= exp {−u (·)}

Z
(5.21)

for some normalization factor Z.
2. The noise processes are Gaussian.
3. The variance of noise at terminal j is proportional to λj .

It then calculates the posterior distribution of the signal samples, i.e., it finds the
conditional distribution p

(
xJ |y1, . . . yJ ,A1, . . . ,AJ

)
, and determines its maximizer

as the estimate. Note that the postulated parameters are not necessarily matched to
the true ones. This is in fact why the MAP estimator is called mismatched.
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Using the Bayes’ rule, it is shown that the posterior distribution, given the
postulated model, is of the following form:

p
(
xJ |y1, . . . yJ ,A1, . . . ,AJ

)
= C exp

⎧
⎨

⎩
−

J∑

j=1

1

2λj
‖yj − Ajvj‖2 − uv

(
vJ
)
⎫
⎬

⎭

(5.22)

for some constant C. The MAP estimation hence reduces to the maximization of the
exponent term that recovers the RLS-based recovery.

Given the Bayesian interpretation, one concludes that most MAP estimators used
in classical signal processing and machine learning models can be reformulated as
an RLS-based algorithm. As the result, the analysis in this chapter can be directly
extended to Bayesian estimation7 in other applications.

5.4 Asymptotic Characterization

Now that the system model and recovery algorithm are presented, we are ready to
formally formulate the asymptotic performance of a sparse recovery algorithm. For
the asymptotic analysis, we consider a sequence of settings. The number of signal
samples N and the number of measurements at terminal j , i.e., Mj , in this sequence
grow large, such that Mj is a deterministic function of N . We assume that N grows
unboundedly large, and Mj grows with N linearly. This means that there exists a
fixed ρj (typically ρj ≤ 1) for each j ∈ [J ], such that

ρj := lim
N↑∞

Mj

N
<∞. (5.23)

We refer to ρj as the j -th terminal compression ratio.
For every DSN in the sequence, we use an RLS-based algorithm to recover

the signal samples. Let DN denote the average distortion between the true signal
samples and their estimates in the DSN whose index is N ; see (5.9). The asymptotic
analysis intends to find the asymptotic limit of this sequence of distortions, i.e.,

D := lim
N↑∞DN. (5.24)

The derivation of D and its dependence on the various model parameters are
not straightforward from both analytical and computational points of view. In fact,
depending on the regularization function, the derivation of D deals with one or two
of the following issues:

7 Or to learning algorithms in a Bayesian framework.
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• For some regularization functions, the RLS-based algorithm solves a convex
optimization problem that can be posed as standard convex programming.
Hence, it is performed in polynomial time. Although RLS-based recovery in
this case is computationally tractable, there is no guarantee that the problem is
also analytically tractable. For asymptotic analysis, one needs to determine the
sequence of average distortions for any integer index N and take the limit when
N goes to ∞. For some particular RLS-based algorithms, this task can be done
via basic analytic tools; nevertheless, there are several forms whose limit is not
known analytically via the basic tools.

• Several RLS-based algorithms are not only analytically, but also computation-
ally intractable. An example is the �0-norm minimization algorithm in which
the regularization function is proportional to the �0-norm. For this choice of
regularization function, the recovery algorithm reduces to a decision problem
that belongs to the class of nondeterministic polynomial time (NP)-complete
problems and hence is NP-hard [23]. Another instance is the case in which RLS
is used for recovery of a signal whose samples are drawn from a discrete support,
i.e., X be a discrete set. Similar to �0-norm minimization, RLS-based recovery in
this case is NP-hard since it deals with integer programming.8 Clearly, for these
forms, asymptotic characterization is not computationally tractable.

The above analytical and computational issues can be addressed via the replica
method. As it becomes clear later, the replica method invokes several non-rigorous
tricks to bypass the analytical obstacles of the problem. The term non-rigorous tricks
will be clarified in the next sections of this chapter, while we illustrate how the
replica method exactly does that.

Now that the asymptotic analysis is formulated in principle, we can state
explicitly our main purpose as follows: The main purpose is to illustrate how the
asymptotic distortion D is derived for an RLS-based algorithm via the replica
method.

5.4.1 Stieltjes and R-Transforms

Before we start with the illustration of the replica method, we give some basic
definitions that are used throughout the derivations via the replica method. These
definitions enable us to compactly represent the statistics of the sensing matrices.

To start with the definitions, consider the sequence of DSNs indexed by N . For
each terminal, there exists a corresponding sequence of densities FN

j (λ) that for a

given index N describes the density of states for Jj = AT
j Aj . We assume that this

sequence converges as N → ∞ to a deterministic density of states Fj (λ) for each

8 Note that this is the case for any choice of the regularization function.
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j ∈ [J ]. For these asymptotic densities, the Stieltjes and R-transforms are defined
as follows [53]:

Definition 5.4 (Stieltjes Transform) For the asymptotic CDF Fj (λ), the Stieltjes
transform is given by

Gj (s) =
∫ +∞

−∞
1

λ− s
dFj (λ) (5.25)

for some complex s with Im s ≥ 0, where Im s is the imaginary part of s.

Definition 5.5 (R-Transform) For the asymptotic density Fj (λ), the R-transform is
defined as

Rj (w) = G−1
j (−w)− 1

w
, (5.26)

where G−1
j (·) denotes the inverse of the Stieltjes transform with respect to composition.

If G−1
j (·) has multiple solutions, a solution is selected whose corresponding calculation

of R-transform satisfies the following conditions:

1. The following limit exists:

lim
w→0

Rj (w) =
∫ +∞

−∞
λdFj (λ) . (5.27)

2. Rj (w) is an increasing function on the real axis.9

The definition of the R-transform is further extended to matrix arguments:
Consider a self-adjoint matrix SN×N with the eigendecomposition

S = W	W−1. (5.28)

For this matrix, we use the notation Rj (S) to refer to

Rj (S) := W Diag
{
Rj (λ1) , . . . ,Rj (λn)

}
W−1, (5.29)

where Diag {a1, . . . , aN } denotes an N × N diagonal matrix whose diagonal entries
are a1, . . . , aN .

9 More precisely, if Fj (λ) is different from a step function at a single mass point, i.e., derivative
of Fj (λ) is different from a Dirac impulse at a single mass point, Rj (w) is strictly increasing; for
details, see [59, Appendix E].
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5.5 Building a Bridge to Statistical Mechanics

As mentioned before, the replica method was initially developed in statistical
mechanics for the analysis of spin glasses. Nevertheless, it found its way to several
other fields, such as coding, information theory, and signal processing. The key point
in employing the replica method for asymptotic analysis is to make a connection
between the problem at hand and the theory of spin glasses. In this section,
we illustrate how this connection is made. To this end, we need first to give a
quick overview on basic definitions in statistical mechanics. The contents of this
section are discussed with details in [2, Chapter 3]. For further discussions on
fundamentals of statistical mechanics and its connections to information theory and
signal processing, see [37] and the references therein.

5.5.1 Introduction to Statistical Mechanics

A thermodynamic system consists of N particles with each having a microscopic
parameter vn ∈ V for n ∈ [N ] and some set V. This parameter describes a
macroscopic property of the corresponding particle, e.g., the velocity. In general,
a microscopic parameter could be a vector of continuous or discrete entries. For
sake of brevity, we assume that vn is a continuous scalar. The extension to cases
with discrete vn can be followed in [2, Chapter 3]. For this system, the microstate is
defined as a vector in V

N that collects microscopic parameters of all the particles,
i.e.,

v = [v1, . . . , vN ]T . (5.30)

Corresponding to this system, a Hamiltonian E (·) is defined, which describes
the physical properties of the system. The Hamiltonian is a function that assigns to
microstate v a non-negative energy level E (v).

Remark 5.1 Here, we have defined the Hamiltonian in an abstract form. For a physical
system, the explicit form of the Hamiltonian is derived from the physical theories that
describe the interactions of microscopic parameters in the system.

For a thermodynamic system, the explicit calculation of macroscopic parameters
is intractable.10 To address this issue, statistical mechanics follows a stochastic
approach. In this approach, the microstate is considered to be a random vector whose
distribution depends on the temperature. We denote this distribution by pβ (v), where
β is the inverse temperature, i.e., β = 1/T with T being the temperature.

10 This follows the same reasons given in Sect. 5.4 for the asymptotic analysis of RLS-based
algorithms.
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Using stochastic analysis, statistical mechanics derives physical features of the
thermodynamic system from this stochastic model. These physical features are
known as macroscopic parameters of the system. Mathematically, a thermodynamic
system can be described via the following two macroscopic parameters: entropy and
free energy.11 These parameters are defined as follows:

Definition 5.6 (Normalized Entropy) For a given thermodynamic system with N

particles, the normalized entropy at inverse temperature β is defined as

HN (β) := − 1

N

∫

VN

pβ (v) log pβ (v) dv. (5.31)

Definition 5.7 (Normalized Free Energy) Consider a thermodynamic system with N

particles and Hamiltonian E (·). At inverse temperature β, the normalized free energy is
defined as

FN (β) := 1

N
E {E(v)} − 1

β
HN (β) , (5.32)

where the expectation is taken with respect to pβ (v).

5.5.1.1 Second Law of Thermodynamics

The fundamental rule in stochastic analysis of thermodynamic systems is the
second law of thermodynamics. This law indicates that the microstate in thermal
equilibrium12 is distributed such that the free energy is minimized. Since FN (β) is
convex with respect to pβ (v), it is concluded that the microstate is distributed with
the Boltzmann–Gibbs distribution. This means that at thermal equilibrium

pβ (v) =
exp {−βE (v)}
ZN (β)

(5.33)

at inverse temperature β. In the denominator,ZN (β) is a normalization factor, i.e.,

ZN (β) =
∫

VN

exp {−βE (v)} dv, (5.34)

11 In fact, the main two macroscopic parameters of a thermodynamic system are entropy and
energy. The free energy is derived by applying the second law of thermodynamics as the Lagrange
dual function. We however use directly the free energy in our formulation, for sake of brevity.
12 This means that there is no energy flow.
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and is called the partition function. The distribution pβ (v) reduces to some well-
known distributions for several choices of the Hamiltonian, e.g., it reduces to the
Gaussian distribution when E (v) ∝ ‖v‖2.

Remark 5.2 The stated form of the second law of thermodynamics is a simplified
interpretation of the original form. In fact, the law states that the entropy in an isolated
system grows constantly. This is interpreted as a constrained optimization problem in
which the normalized entropy is maximized subject to an energy constraint. Using the
method of Lagrange multipliers, the free energy is derived as the objective function of
the dual unconstrained optimization. It is then shown that the Lagrange multiplier is in
fact the temperature.

Substituting the Boltzmann–Gibbs distribution in the definition of the free
energy, it is concluded that

FN (β) = − 1

βN
logZN (β) . (5.35)

This is a fundamental identity indicating that the free energy of a system in thermal
equilibrium is calculated explicitly from the partition function. Starting from this
equation, it is shown that all other macroscopic parameters of the system are directly
derived from FN (β). For instance,

HN (β) = β2 d
dβ
FN (β) . (5.36)

Therefore, the partition function completely describes the macroscopic features of
the system in thermal equilibrium.

5.5.1.2 Spin Glasses

Spin glasses are thermodynamic systems whose particles choose to interact ran-
domly. This means that the Hamiltonian of a spin glass is not only a function of the
microstate, but also a randomizer. This randomizer is realized once from a random
ensemble and remains fixed as the system is in thermal equilibrium.13

Similar to thermodynamic systems, the stochastic analysis of spin glasses follows
the second law of thermodynamics. Let � denote the randomizer of a spin glass. The
Hamiltonian of this spin glass is given by

E (·|�) : VN �→ R
+. (5.37)

13 In statistical mechanics, this randomizer is known to have quenched randomness. This is
different from the type of randomness considered for the microstate.
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In other words, for every realization of �, we have a specific Hamiltonian
function. By the same lines of derivations explained in Sect. 5.5.1.1, one can show
that, conditioned on the randomizer, the microstate of the spin glass in thermal
equilibrium is distributed with the Boltzmann–Gibbs distribution. This means that

pβ (v|�) = exp {−βE (v|�)}
ZN (β|�)

, (5.38)

with random partition function

ZN (β|�) =
∫

VN

exp {−βE (v|�)} dv. (5.39)

The normalized free energy in thermal equilibrium is hence written as

FN (β|�) = − 1

βN
logZN (β|�) , (5.40)

and the conditional entropy is determined from the free energy by

HN (β|�) = β2 d
dβ
FN (β|�) . (5.41)

In the remaining parts of this chapter, we focus on spin glasses. This is due to the
fact that our problem is formulated in terms of a spin glass.

5.5.1.3 Thermodynamic Limit

Spin glasses are studied in the thermodynamic limit. This means that the macroscopic
parameters are derived for the case, in which the number of particles tends to
infinity, i.e., the asymptotic limit N ↑ ∞. Suggested by physical intuition, in
the thermodynamic limit, a spin glass has deterministic macroscopic parameters.
This means that in the asymptotic limit, the free energy FN (β|�) converges to its
expected value.14 This property of spin glasses is known as self-averaging; more
discussions in this respect can be followed in [25, 26, 43].

Following the self-averaging property, the free energy of a spin glasses in the
thermodynamic limit is calculated as follows:

1. Determining the sequence of expected free energies F̄N (β|�) indexed byN as

F̄N (β) = E {FN (β|�)} , (5.42)

14 Here, the expectation is taken over the randomizer �.
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where the expectation is taken with respect to �.
2. Taking the asymptotic limit of the expected sequence, i.e., calculating

F̄ (β) = lim
N↑∞ F̄N (β) . (5.43)

5.5.1.4 Averaging Trick

Before we start with the derivations, let us illustrate the key averaging trick in
statistical mechanics. Consider a function ψN (·) that for each microstate v ∈ V

N

determines a scalar parameter. The macroscopic parameter corresponding to this
function is defined as

ψ̄N = 1

N
E {ψN (v)} , (5.44)

where the expectation is taken first with respect to the conditional Boltzmann–Gibbs
distribution, i.e., pβ (v|�), and then with respect to �.

The classic approach for determining ψ̄N in statistical mechanics is to use the
averaging trick. This trick modifies the partition function with a dummy factor h as
follows:

ZN (β, h|�) =
∫

v∈VN

exp {−βE (v|�)+ hψN (v)} dv. (5.45)

For this modified partition function, the normalized free energy, conditioned on a
realization of the randomizer, is

FN (β, h|�) = − 1

βN
logZN (β, h|�) , (5.46)

and its expected value F̄N (β, h) is determined by calculating the expectation over
�, i.e., as in (5.42).

By standard derivations, it is readily shown that

ψ̄N = −β ∂

∂h
F̄N (β, h) |h=0. (5.47)

Exchanging limiting procedures, one has in the thermodynamic limit

ψ̄ := lim
N↑∞ ψ̄N (5.48a)

= −β ∂

∂h
F̄ (β, h) |h=0. (5.48b)
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5.5.2 Corresponding Spin Glass

The connection between the sparse recovery problem and the statistical mechanics
is illustrated by introducing the concept of corresponding spin glass. In fact, for
an RLS-based recovery algorithm, we can define an imaginary spin glass whose
macroscopic parameters are the asymptotic performance metrics of the recovery
algorithm. We clarify this connection in the sequel.

Remember the system model in Sect. 5.2 with sensing matrices A1, . . .AJ and
observation vectors y1, . . . , yJ . We define the corresponding spin glass as follows:

Definition 5.8 (Corresponding Spin Glass) The corresponding spin glass is a spin
glass whose microstate is described by vJ = (v1, . . . , vJ ), where vj ∈ X

N for j ∈ [J ].
The randomizer of this spin glass is

� = {A1, . . . ,AJ , y1, . . . , yJ

}
, (5.49)

and its Hamiltonian is

E
(
vJ |�

)
=

J∑

j=1

1

2λj
‖yj − Ajvj‖2 + uv

(
vJ
)
. (5.50)

From our earlier discussions, we know that at inverse temperature β, the
microstate in thermal equilibrium is conditionally distributed with

pβ
(
vJ |�

)
= exp

{−βE (vJ |�)}
ZN (β|�)

, (5.51)

where the partition function ZN (β|y,A) reads

ZN (β|�) =
∫

vj∈XN

exp
{
−βE

(
vJ |�

)}
dvJ . (5.52)

The key property of this spin glass that connects it to our sparse recovery problem
is its ground-state property.

Theorem 5.1 (Ground-State Property) For a given realization of �, assume that the
Hamiltonian has a unique minimizer denoted by vJ� (�). Then, as the temperature goes
to zero, i.e., β ↑ ∞, the microstate of the corresponding spin glass converges in
distribution to the deterministic vector vJ� (�). This means that for every realization
of �

lim
β↑∞ pβ

(
vJ |�

)
=
{

1 vJ = vJ� (�)

0 vJ �= vJ� (�)
. (5.53)
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In fact, this is a well-known property in statistical mechanics: At zero temper-
ature, the microstate converges in distribution to a realization whose energy level
is minimized. The appellation follows the fact that this realization, i.e., vJ� (�), is
called the ground state of the system.

The ground-state property clarifies the connection between our problem and this
spin glass: In fact, the ground state is what the RLS-based algorithm recovers, i.e.,

vJ� (�) = x̂
J
. (5.54)

In other words, as the temperature goes to zero, the microstate of the corresponding
spin glass converges to the signal samples that are recovered via the algorithm,
i.e., x̂

J . Hence, the performance metrics of this sparse recovery algorithm, e.g., the
asymptotic distortion, are given as the macroscopic parameters of this spin glass at
zero temperature.

The corresponding spin glass shows several other interesting properties. Inter-
ested readers are referred to [2, Chapter 3].

5.5.2.1 Asymptotic Distortion as a Macroscopic Parameter

The main purpose of this chapter is to determine the asymptotic distortion. As indi-
cated, this metric can be defined as a macroscopic parameter of the corresponding
spin glass. To show that, consider the following macroscopic function:

ψN

(
vJ
)
= �v

(
vJ ; xJ

)
, (5.55)

where xJ refers to the true signal samples. The macroscopic parameter defined by
this function is

ψ̄ = lim
N↑∞

1

N
E {ψN (v)} (5.56a)

= lim
N↑∞

1

N
E

{
�v
(
vJ ; xJ

)}
. (5.56b)

As the temperature goes to zero, β ↑ ∞, the microstate vJ converges to x̂
J . Hence,

at zero temperature, we have

ψ̄ → lim
N↑∞

1

N
E

{
�v
(
x̂
J ; xJ

)}
(5.57a)

= lim
N↑∞DN (5.57b)

= D. (5.57c)
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The last equation clarifies how the asymptotic distortion is derived from the
corresponding spin glass.

Using the averaging trick, we can find D from the following expected modified
free energy in the thermodynamic limit

F̄ (β, h) = − lim
N↑∞

1

βN
E {logZN (β, h|�)} , (5.58)

at zero temperature as

D = − lim
β↑∞β

∂

∂h
F̄ (β, h) |h=0, (5.59)

where the partition function is given by

ZN (β, h|�) =
∫

vj∈XN

exp
{
−βE

(
vJ |�

)
+ h�v

(
vJ ; xJ

)}
dvJ . (5.60)

5.5.3 The Replica Method

The variational problem derived in terms of the corresponding spin glass suffers
from the same analytical intractability issue we observed in the original problem.
In the original problem, we are unable to find the solution of the optimization
problem in an analytical form.15 This is now transformed to a logarithmic expectation
in (5.58). This is not a trivial task and, hence, keeps the problem still very
challenging.

One should note that from the complexity viewpoint, transforming the original
problem into the variational form does not change the order of complexity. In
fact, for those cases in which the RLS-based algorithm reduces to an NP-hard
problem, the calculation of the corresponding free energy also lies in the class of
NP-hard problems. One can check this fact by considering the simple example
of using an RLS-based algorithm to recover discrete-valued signal samples, i.e.,
when X is discrete. In this case, both the original and variational problems are
NP-hard. Consequently, transforming the original problem into its variational form
only enables us to use the replica method that finds a prediction of the asymptotic
performance without directly solving the problem.

The replica method tries to calculate this logarithmic expectation with a series of
tricks. The first trick is to use the Riesz identity [45]:

Theorem 5.2 (Riesz Identity) For a non-negative random variable X, we have

15 Remember that for some choices of regularization function, e.g., �0-norm, this problem is not
even numerically solvable.
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E {logX} = lim
θ↓0

logE
{
Xθ
}

θ
. (5.61)

Using this identity, one can rewrite the logarithmic expectation of (5.58) as

E {logZN (β, h|�)} = lim
θ↓0

logE
{
Zθ

N (β, h|�)
}

θ
. (5.62)

The right-hand side deals with the logarithm of an expectation. The problem is
however still challenging since θ on the right-hand side of the identity is a real
scalar: The intractability of logarithmic expectation is now transformed to the
challenge of calculating real moments. Here, the second trick is applied:

Definition 5.9 (Replica Continuity) We assume that the moment function16

fM (θ) = E
{
Zθ

N (β, h|�)
}

(5.63)

is analytic on the real axis and that this function is analytically continued from the set of
natural numbers to the set of positive reals, i.e., (0,∞).

This second trick is not mathematically rigorous. This is why the replica method
is often called the replica trick. The available results suggest that this is a valid
assumption; however, the proof is still an open problem.

Assuming θ to be an integer finally resolves the intractability issue at the expense
of losing mathematical rigor. We now can write the moment function as17

fM (θ) = E
{
Zθ

N (β, h|�)
}

(5.64a)

= E

{
θ∏

a=1

∫
exp
{
−βE

(
vJa |�

)
+ h�v

(
vJa ; xJ

)}
dvJa

}

(5.64b)

=
∫

E

{

exp

{
θ∑

a=1

−βE
(
vJa |�

)
+ h�v

(
vJa ; xJ

)
}}

dvJ1 . . . dvJθ . (5.64c)

Note that the expectation in (5.64c) should be taken with respect to the stochastic
model given in Sect. 5.2.2.

The latter integral is complicated but tractable. The main remaining task is to
calculate this integral and find it as an analytic function in θ . We then plug it into
the Riesz identity and take the limits. In the sequel, we give a quick overview on the
derivations.

16 Note that the expectation is taken with respect to all random variables.
17 In the notation, we drop the integration set for sake of compactness.
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5.6 The Replica Analysis

The detailed derivation of fM (θ) from (5.64c) takes many pages and is out of the
scope for this chapter. We hence present the derivation steps and skip the details.
Interested readers are referred to [2, Appendices A-D].

We start the derivation by taking expectation with respect to noise. This task
is done via basic properties of Gaussian integrals. We then use the results in [27,
32, 33] on the asymptotic limit of spherical integrals to calculate the expectation
with respect to the sensing matrices. Some short notes on spherical integrals and
their asymptotic limits are found in [2, Apendix E]. Finally, we use the law of large
numbers to take the expectation with respect to the true signal samples xJ .

After taking the expectations, we finally conclude that

fM (θ) =
∫

exp
{
−NEM

(
QJ ,SJ

)
+ εN

}
dQJ dSJ , (5.65)

where the exponent function EM
(
QJ ,SJ

)
is defined as

EM
(

QJ ,SJ
)
=

J∑

j=1

[
Gj
(
TjQj

)+ tr{SjQj }
]−M

(
SJ
)
. (5.66)

The matrices QJ and SJ are further defined as

QJ = (Q1, . . . ,QJ ) (5.67a)

SJ = (S1, . . . ,SJ ) (5.67b)

with Qj and Sj being symmetric θ × θ matrices for j ∈ [J ]. The exact definitions
of integral measures dQj and dSj are given in [2, Appendix A]. Moreover, εN is a
bounded sequence in N that converges to zero as N grows large, and the matrix Tj

is defined as

Tj = 1

2λj

[

Iθ −
βσ 2

j

λj + θβσ 2
j

1θ

]

, (5.68)

where Iθ and 1θ denote θ × θ identity and all-one matrices, respectively. The
components of the exponent function EM

(
QJ ,SJ

)
are further defined as follows:

• The function Gj (·) is given by

Gi (M) :=
∫ β

0
tr{MRj (−2Mw)}dw (5.69)

for a θ × θ matrix M.
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• The functionM
(
SJ
)

is defined as

M
(

SJ
)
= E

⎧
⎪⎨

⎪⎩
log

∫

vj∈Xθ

exp
{
�
(

vJ , xJ |SJ
)
+ h�v

(
vJ ; xJ

)}
dvJ

⎫
⎪⎬

⎪⎭
, (5.70)

where the function �
(
vJ , xJ |SJ ) is given by

�
(

vJ , xJ |SJ
)
=

J∑

j=1

(
xj − vj

)T Sj
(
xj − vj

)− βuv
(

vJ
)
. (5.71)

In these equations, the notations vJ and xJ are defined as vJ = (v1, . . . , vJ ) and
xJ = (x1, . . . , xJ ), respectively, where vj ∈ X

θ and xj = xj1θ×1 for j ∈ [J ]. The
vector 1θ×1 denotes the θ × 1 vector of all ones, and x1, . . . , xJ are correlated
random variables distributed jointly with pX (x1, . . . , xJ ). It is worth mentioning
that the term uv

(
vJ
)

decomposes as

uv
(

vJ
)
=

θ∑

a=1

u
(

vJa
)

(5.72)

using the decoupling property of the regularization function uv (·). Here, vJa =
(v1a, . . . , vJa) with vja denoting the a-th entry of vj .

Remark 5.3 The definition of fM (θ) contains integrals over N -dimensional vectors.
These integrals are transformed into integrals over θ -dimensional vectors in the final
expression. This transform follows several steps and assumptions, e.g., assuming limit
exchange and using the asymptotic limit of spherical integrals. The detailed derivations
can be followed in [2, Appendix A].

5.6.1 General Form of the Solution

The final form of the moment function in (5.65) enables us to apply the saddle-point
method to derive the free energy in the thermodynamic limit. After some lines of
derivation, we conclude that the asymptotic distortion is given by

D = lim
θ↓0

lim
β↑∞

∫

vj∈Xθ

E

{
�v
(

vJ ; xJ
)

qβ
(

vJ |xJ
)}

dvJ . (5.73)
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The conditional distribution qβ
(
vJ |xJ ) in this equation is a Boltzmann–Gibbs

distribution over the reduced dimension and is defined as

qβ
(

vJ |xJ
)
= exp

{−βE0
(
vJ , xJ

)}
∫

vj∈Xθ

exp
{
−βE0

(
vJ , xJ

)}
dvJ

, (5.74)

where the exponent function is defined as

E0

(
vJ , xJ

)
=

J∑

j=1

(
xj − vj

)T Rj

(
xj − vj

)+ uv
(

vJ
)
, (5.75)

and the expectation is taken with respect to xJ . The matrix Rj in the exponent
function is further defined as

Rj := TjRj

(
−2βTjQ�

j

)
, (5.76)

where the symmetric θ × θ matrix Q�
j for j ∈ [J ] is calculated from the following

fixed-point equation:

Q�
j =

∫

vj∈Xθ

E

{(
xj − vj

) (
xj − vj

)T qβ
(

vJ |xJ
)}

dvJ . (5.77)

Remark 5.4 To see how (5.77) describes a fixed-point equation, note that the condi-
tional distribution qβ

(
vJ |xJ ) depends on Q�

j . As a result, the right-hand side of this
identity is calculated as a function of Q�

j , and (5.77) describes a fixed-point equation in
Q�
j .

5.6.2 Constructing Parameterized Q�
j

The general solution of the replica method is given in terms of the θ×θ matrices Q�
j .

The reason for having such a solution is simply the replica continuity assumption. In
this assumption, we postulate that θ is an integer. For an integer θ , having a θ × θ

matrix is completely reasonable. Nevertheless, we aim to find the final solution as
an analytic function in θ , so that we can use it also for real choices of θ .

To find an analytic solution, there exists a classic trick: Assuming a structure
on Q�

j . In this trick, we limit the search to a set of parameterized matrices. The
parameterization is considered such that the solution of the fixed-point equation
leads to an analytic moment function in θ .
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In order to clarify this trick, consider the following illustration: We assume that
Q�
j is a θ×θ matrix that is parameterized by L parameters q(1), . . . , q(L). This means

that

Q�
j = Wj

(
q(1), . . . , q(L)

)
, (5.78)

where Wj (·) is a deterministic function that determines a θ × θ matrix for given
scalar arguments q(1), . . . , q(L). Note that L is an integer whose value is fixed and
does not vary by changing θ . By inserting this matrix into the fixed-point equation,
a system of L coupled equations in terms of q(1), . . . , q(L) is derived. We insert the
solution of this equation system into the replica solution and calculate the limits
analytically.

With respect to this trick, the following question arises: What is a meaningful
structure for Q�

j? The answer to this question is based on physical intuitions and
mathematical investigations of the energy model. These discussions are out of
the scope of this overview; however, their results can be directly applied to our
study. The investigations in the theory of spin glasses suggest a set of recursively
extendable structures drawn from the assumption of replica symmetry (RS). These
structures start with a simple symmetric parameterization, known as RS, and then
extend to more advanced structures by recursively perturbing RS.

5.6.2.1 Replica Symmetric Solution

RS considers the most basic structure on Q�
j , which depends only on two parameters

qj and χj , and is given by

Q�
j =

χj

β
Iθ + qj1θ . (5.79)

A compact way to represent the RS solution is to invoke the equivalent tunable scalar
setting that is defined below:

Definition 5.10 (Replica Symmetric Equivalent Scalar Setting) Let qj and χj be
given for j ∈ [J ]. For these parameters, the scalars ξ2

j

(
χj , qj

)
and τj

(
χj
)

are defined
as

ξ2
j

(
χj , qj

) =
[

Rj

(
−χj

λj

)]−2
∂

∂χj

[(
σ 2
j χj − λjqj

)
Rj

(
−χj

λj

)]
, (5.80)

τj
(
χj
) = λj

Rj

(
−χj

λj

) . (5.81)

The RS equivalent scalar setting consists of random variables xJ = (x1, . . . , xJ )
distributed with pX

(
xJ
)

and their noisy observations yj
(
χj , qj

)
for j ∈ [J ] that are

given by
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yj
(
χj , qj

) = xj + zj
(
χj , qj

)
(5.82)

with zj
(
χj , qj

)
being independent Gaussian random variable with zero mean and

variance ξ2
j

(
χj , qj

)
. The estimation of xJ from its noisy observations is given by

x̂J
(
χj , qj

) = argmin
vJ∈XJ

J∑

j=1

1

2τj
(
χj
)
(
yj − vj

)2 + u
(

vJ
)
. (5.83)

For this setting, the average distortion is determined as

D
(
χj , qj

) = E

{
�
(

x̂J
(
χj , qj

) ; xJ
)}

, (5.84)

where the expectation is taken over all random variables.

The RS equivalent scalar setting describes a multi-terminal scalar setting in
which the variances of noise terms are tuned by qj and χj . The scalar samples
x1, . . . , xJ in this setting are estimated from the noisy observations via a single-
dimension RLS-based algorithm whose regularization parameter is tuned by χj .
This means that by changing χj and qj , the statistics of this setting and hence
its average distortion D

(
χj , qj

)
are changed. The RS solution states that when

χj and qj are set to specific values, D
(
χj , qj

)
determines the asymptotic average

distortion of the RLS-based algorithm with decoupled regularization function u (·)
and regularization parameters λ1, . . . , λJ . These specific values are determined
through fixed-point equations stated below:

Proposition 5.1 (Replica Symmetric Solution) Consider the RS equivalent scalar

system. The RS solution for asymptotic distortion is given by D
(
χ�
j , q

�
j

)
, where χ�

j

and q�j satisfy the following fixed-point equations:

q�j = E

{(
x̂j
(
χ�
j , q

�
j

)
− xj
)2
}

(5.85a)

θ2
j χ

�
j = τj

(
χ�
j

)
E

{(
x̂j
(
χ�
j , q

�
j

)
− xj
)
zj
(
χ�
j , q

�
j

)}
. (5.85b)

The expectation is taken over all random variables, i.e., xJ and zJ
(
χ�
j , q

�
j

)
.

It is important to note that the right-hand side of fixed-point equations in (5.85) is

deterministic functions of χ�
j and q�j . In fact, x̂j

(
χ�
j , q

�
j

)
and zj

(
χ�
j , q

�
j

)
are random

variables whose statistics are specified by χ�
j and q�j . As a result, after taking the

expectation, the remaining terms are deterministic expressions containing χ�
j and q�j .

The RS solution is calculated readily. In fact, (5.83) is a J -dimensional opti-
mization that can be solved analytically in various cases. For most well-known
RLS-based recovery algorithms, such as convex �p and �p,q -norm minimizations,
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the RS solution gives a valid prediction of the asymptotic distortion.18 Nevertheless,
there are a few particular cases in which the RS solution is invalid.19 This
inconsistency is due to the simplicity of the RS structure. For those cases, one needs
to break RS.

5.6.2.2 Replica Symmetry Breaking

For scenarios in which the RS solution is not valid, e.g., �0-norm minimization, the
search for Q�

j is extended to a wider set of parameterized matrices via the replica
symmetry breaking (RSB) scheme. This scheme was introduced by Parisi in [42].
The scheme perturbs the RS gradually via a recursive technique. This perturbation
is called breaking.

Definition 5.11 (Replica Symmetry Breaking) Let θ be an integer multiple of an
integer ζ and Q� represent a ζ × ζ matrix. RSB finds the new θ × θ matrix Q�+1 as

Q�+1 = I θ
ζ

⊗Q� + q�+11θ (5.86)

for some real scalar q�+1. Here, ⊗ denotes the Kronecker product.

By letting Q0 be an RS matrix, the RSB structures are recursively generated.
The RSB solutions are of more complicated form. We hence skip them and refer
interested readers to [2, Chapter 4].

5.7 Applications and Numerical Results

The asymptotic characterization of RLS-based recovery algorithms enables us to
address several tasks that rise in various applications of sparse recovery. In this
section, we briefly go through a few of them. The scope of these applications
however is not limited to these instances. We have given more discussions in this
respect in [1, 2, 4–16, 46–48].

18 There are in general various ways to test the validity. The most common test is the zero-
temperature entropy test; see [2]. For computationally feasible approaches, one can compare
the given solution with large-dimensional (but still finite-dimensional) simulations; for instance,
see the consistency the RS solution with numerical simulations in [2, Chapter 6] for �1-norm
minimization.
19 The invalidity of the solution in these cases is shown by the zero-temperature entropy test. For
some particular cases, the RS solution violates the known rigorous bounds.
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5.7.1 Performance Analysis of Sparse Recovery

The most relevant application of the results is to employ them for asymptotic
investigation of sparse recovery algorithms. A long discussion in this respect is
found in [2, Chapter 6], as well as [5, 8, 13]. As a particular instance, we employ
the asymptotic results to study the impact of spatial correlation in multi-terminal
compressive sensing.

For sake of visualization, we consider a simple setting with two terminals. These
terminals observe signals x1 (t) and x2 (t) that are jointly sparse. We assume that the
joint sparsity follows the common-innovation model; see Sect. 5.2.4.3.

The fusion center can recover the sparse signal via two alternative approaches:

1. Since each signal is sparse, the fusion center can use two separate sparse recovery
algorithms to recover each sparse signal individually.

2. A joint recovery algorithm can be used to take into account the spatial correlation
among the terminals.

The Slepian–Wolf theorem suggests that joint recovery outperforms an individual
scheme [22]. This is in fact a well-known behavior that has been observed in several
respects in the context of compressive sensing; see, for example, [18, 21, 24, 31]. To
investigate this issue, we consider a sample RLS-based recovery algorithm for each
approach and compare their performances using the asymptotic characterization.
For the individual approach, we consider the well-known LASSO algorithm. This
algorithm is realized by setting the regularization function to

uv (v1, v2) = ‖v1‖1 + ‖v2‖1. (5.87)

As a comparable joint recovery, one can use an RLS-based joint recovery scheme
with convex utility, e.g., the group LASSO algorithm in which

uv (v1, v2) = ‖v1, v2‖2,1. (5.88)

In the sequel, we use the two-dimensional LASSO technique proposed initially in
[8]. This algorithm extends the individual LASSO recovery approach by modifying
the regularization function as

uv (v1, v2) = ‖v1‖1 + ‖v2‖1 + φ‖v1 + αv2‖1 (5.89)

for some scalars φ and α. The intuition behind this algorithm is that any linear
combination of jointly sparse signals is also sparse, and its sparsity level depends on
the spatial correlation. The study in [8] has shown that this approach outperforms the
classic group LASSO technique for the common-innovation joint sparsity model.

Using the RS solution, we can calculate the asymptotic MSE for both approaches.
The asymptotic MSE is determined from the RS solution by setting the distortion
function to the squared Euclidean distance between the true and recovered pairs.
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Fig. 5.1 Rate-distortion
region for both joint and
individual LASSO schemes,
i.e., (5.87) and (5.89),
respectively

Using the asymptotic MSE, we plot the rate-distortion region for both schemes. It
is found by fixing a threshold MSE and finding all pairs of compression rates, i.e.,
(ρ1, ρ2) for which the achievable MSE is smaller than the threshold. This region is
shown in Fig. 5.1 for a particular example in which the common part is 30% sparse
and each terminal has a 10% sparse innovation component. The tunable factors in
both algorithms are optimized to achieve minimal MSE. As the figure shows, using
a spatially coupled regularization improves the recovery performance significantly.
The Bayesian viewpoint illustrates this observation as follows: The postulated prior
distribution of an RLS-based algorithm with spatially coupled regularization takes
into account the spatial correlation and hence outperforms the individual approach.

5.7.2 Tuning RLS-Based Algorithms

Compressive sensing is not the only application of sparse recovery. In fact, sparse
recovery is used in various applications, such as communications, networking, and
machine learning; see some instances in [1, 2, 6, 7, 9–12, 14–16, 40, 46–48]. In
these applications, there is often a tuning task: Find the regularization parameters
of an RLS-based algorithm, such that the performance is optimized. This task is
readily addressed via the asymptotic characterization of the RLS-based recovery
algorithms.

We can illustrate this application by considering a simple example of spatial
modulation. The details on this example can be followed in [11, 16]. In spatial
modulation, the information is encoded in the support of the transmit signal: In
each symbol interval, based on the data bits, a subset of available transmit antennas
is set on and the remaining are turned off. As a result, the transmit signal is sparse,
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and hence, an effective detection scheme at the receiver is to use a sparse recovery
algorithm.20

The common sparse recovery algorithms used in spatial modulation are for-
mulated as RLS-based recovery schemes. Examples are the classic LASSO and
box-LASSO techniques. We already know the classic LASSO scheme from the
previous section. The box-LASSO technique is moreover an extension of LASSO
in which the set X is restricted to a box, e.g., X = [−B,B] for some real B. This box
restriction is shown to enhance the performance, when we detect discrete-valued
signals [34, 51].

One of the challenges in these techniques is to find the optimal regulariza-
tion parameters, which result in minimum bit error rate. Such a task is usually
addressed via iterative tuning techniques. Nevertheless, in high data rates, the
tuning techniques impose extra processing load on the system. The asymptotic
characterization enables us to address this task analytically and hence avoid the
extra load. An instance of tuning via the asymptotic characterization is shown
in Fig. 5.2. In this figure, a multiuser uplink scenario is considered in which the
LASSO and box-LASSO techniques are used for detection. Here, P denotes the
transmit power and σ 2 is the noise variance at the receiver. The sparsity of the
transmit signal is assumed to be 12.5%. The figure shows the optimal regularization
parameter, denoted by λ�, against logP/σ 2. Although these results are derived
via the asymptotic characterization, the study in [16] shows that they closely
track the simulation results. Further discussions regarding the tuning of RLS-based
algorithms via asymptotic results can be followed in [2, Chapters 6 and 7], as well
as [15].

Fig. 5.2 Optimal
regularization parameter for
LASSO and box-LASSO

20 For sake of brevity, we skip the detailed system model. Interested readers are referred to [11, 16]
and the references therein.
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5.8 Summary and Final Discussions

The replica method is a powerful tool for large system analysis, as seen in this
chapter. Following the prescription suggested by the replica method, we have found
an analytic expression for the asymptotic distortion. The result could not be derived
via basic analytical tools. This demonstrates the power of the replica method. To
keep the contents of this chapter straightforward, we have dropped the detailed
derivations and only presented the major steps. The details can be found in [2].

The presented analysis is extendable in various respects and results in various
further interesting conclusions. Going through all of these extensions and conclu-
sions is not possible within a single chapter. We hence skip them here and refer
interested readers to [2] and the references therein. Nevertheless, to give you a flavor,
we conclude this chapter with a few highlights.

5.8.1 Decoupling Principle

Although this chapter focused on the derivation of asymptotic distortion, the result
can be further used to prove the so-called decoupling principle. This principle
indicates that in the asymptotic regime the joint distribution of xJn and x̂Jn converges
to the one described via an equivalent scalar setting, often called the decoupled
setting. This decoupled setting is shown to consist of an equivalent additive noise
term and a decoupled recovery scheme; see [2, Chapter 5]. The interesting point is
that the decoupled recovery scheme remains the same for all solutions, i.e., the RS
and RSB solutions, and it is only the distribution of the equivalent noise term that
changes. A comprehensive illustration of the decoupling principle and its detailed
derivations are given in [2, Chapter 5].

5.8.2 Nonuniform Sparsity Patterns

In various applications, the sparsity of signals varies over time. This form of sparsity
is often called nonuniform, whereas the normal form is considered uniform. For
nonuniform sparse signals, the stochastic model of samples is not i.i.d. anymore.
They are still independent;21 however, the joint distribution changes through time.
The analysis in this chapter extends to nonuniform patterns by some modifications.
Some results in this direction can be followed in [3, 9].

21 Since temporal correlation is usually avoided by classic sampling approaches.
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5.8.3 Extensions to Bayesian Estimation

In the Bayesian framework, the considered RLS-based algorithms are seen as MAP
estimators. This is however not the only approach for Bayesian inference. In many
other applications, e.g., signal processing and machine learning, other forms of
Bayesian inference are used, e.g., the minimum MSE estimator or more generally,
estimators with minimal posterior distortion; see, for example, [40].

The replica-based analysis in this chapter is readily extended to these estimators
as well. The derivations follow the same steps as illustrated in this chapter, i.e.,
finding a corresponding spin glass and interpreting the desired metrics as its
macroscopic parameters. The key difference here is that for other estimators, the
desired metrics might be a macroscopic parameter at a non-zero temperature.

5.9 Bibliographical Notes

Asymptotic analysis of signal recovery schemes roots back to early studies on
linear recovery techniques, e.g., studies in [28, 49]. The findings indicate that the
asymptotic properties of linear recovery schemes are equivalently described by a
simple scalar setting. Müller and Gerstacker conjectured later that similar behavior
extends to most nonlinear schemes, as well [38]. This conjecture was originated
from the analytic results reported in a series of studies that employed the replica
method to derive the asymptotic performance of multiuser detectors. This series of
works start with the study by Tanaka in [52]. A key milestone in this direction is
achieved in [29], where the authors determine the asymptotic performance metrics
of a mismatched minimum MSE recovery scheme. This result is extended to MAP
estimators in [44] using standard large deviations techniques.

Early analytic investigations in compressive sensing follow rigorous approaches.
An instance is the studies by Donoho and Tanner in [19, 20], in which random
geometry is utilized to show the phase transition of linear programming when
it is used to perform sparse recovery. A similar approach is taken [17, 50] to
study the performance of �1-norm minimization for sparse recovery. To address
the fundamental limits in compressive sensing, an alternative information-theoretic
approach is followed by Wu in [57]; see also [58] and the references therein.

The strong connection between sparse recovery and multiuser detection was
initially illustrated in several lines of work; see for example [30]. The study
in [44] further extends the replica-based characterizations to address MAP-type
sparse recovery algorithms. These initial asymptotic analyses rely on the earlier
derivations and hence enclose restricted system models, e.g., single terminal and
i.i.d. sensing matrix. These restrictions are addressed in the later lines of work by
two different approaches: They either develop a framework by which the results are
extended to wider system models, e.g., university laws [41], or they deviate from
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the earlier derivations and use the replica method explicitly to derive the asymptotic
characteristics; see for instance [35, 36, 54–56].

These analyses were however limited to RS investigations. The complete replica
analysis of RLS-based algorithms was given in a series of works in [2, 4, 5, 13]
providing both the RS and RSB solutions.
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Chapter 6
Unbiasing in Iterative Reconstruction
Algorithms for Discrete Compressed
Sensing

Robert F. H. Fischer and Carmen Sippel

6.1 Introduction

Undoubtedly, compressed sensing (CS) [12, 15, 19] is meanwhile a well-established
and widespread method in various fields of mathematics, signal processing, and
engineering. Thereby, the interest in compressed sensing first arose from a theo-
retical (mathematical) point of view, but this line of research was closely followed
by the study of the use and of the performance of compressed sensing in various
practical applications. In this chapter, we study reconstruction algorithms from a
communications theory point of view and for the use in communication scenarios.

6.1.1 Compressed Sensing Problem and Reconstruction
Algorithms

We consider the following compressed sensing problem: based on the observation
y = [y1, y2, . . . , yM ]T ∈ R

M , which is obtained via the known sensing matrix
A = [aji] ∈ R

M×N , M < N , by1

y = Ax+ n , (6.1)

1 Notation: Random variables and random vectors are typeset in sans-serif font; realizations in
conventional italic (math) font. Vectors are displayed in bold lower-case letters, matrices in bold
upper-case letters. The transpose and the inverse of A are denoted by AT and A−1, respectively. A
diagonal matrix of appropriate size with the entries of the vector a as diagonal elements is denoted
by diag(a). I is the identity matrix. The �p norm is written as || · ||p . Ex{ · }: (element-wise)
expectation w.r.t. random vector x. fx(x): probability density function of random variable x.
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the vector x = [x1, x2, . . . , xN ]T ∈ R
N should be recovered. Thereby, it is

assumed that x is sparse, meaning that only a few non-zero components are present.
The elements are drawn i.i.d. from a known marginal probability density function
(pdf) fx(x), i.e., fx(x) =∏N

i=1 fx(xi); a Dirac component at x = 0 accounts for the
sparsity.

In practice, no noise-free measurements will be available. This fact is modeled
by the additive noise term n ∈ R

M . We follow the usual presumptions that the
elements of n are i.i.d. Gaussian (marginal pdf fn(n)) with mean zero, variance σ 2

n
per component, and that they are independent of the signal x.

Although the standard compressed sensing problem is non-convex due to its
sparsity constraint, it can be relaxed to an �1-based problem [13], which can
efficiently be solved by convex optimization techniques, see [9].

Apart from �1-based optimization, in the literature, there is a vast amount of
algorithms for signal recovery in compressed sensing, such as orthogonal matching
pursuit (OMP) [49], compressive sampling matching pursuit (CoSaMP) [43, 44],
iterative hard thresholding (IHT) [5, 6], iterative soft thresholding (IST) [14],
approximate message passing (AMP) [3, 17], and vector AMP (VAMP) [53, 54]
(similar, but not identical approaches are orthogonal AMP (OAMP) [38] and
iterative MMSE estimation and soft feedback (IMS) [63]) to mention only the most
prominent ones.

6.1.2 Discrete Setting

In the vast majority of the literature on compressed sensing the non-zero elements
of x are drawn from the real numbers. However, in a number of communication
applications the non-zero elements are deliberately, by design, drawn from a finite
set with real-valued elements (e.g., an amplitude-shift keying constellation [50]).

We will discuss iterative reconstruction algorithms and the required processing
steps for the general setting, i.e., arbitrary marginal pdfs fx(x). However, we
will eventually give the respective cost functions and show results from extensive
numerical simulations for the particular discrete setting where xi ∈ {−1, 0, +1}
with probabilities {p1, p0, p1} (2p1 + p0 = 1 and p1 = s/(2N) when s denotes
the sparsity). The signal pdf is hence given by (δ(x) denotes the Dirac function)

fx(x) = p1 δ(x + 1)+ p0 δ(x)+ p1 δ(x − 1) . (6.2)

Notice that for real-valued sensing matrices A ∈ R
M×N , the measurements y ∈ R

M

are still real-valued.
Particular examples where discrete-valued sparse signals may beneficially be

exploited in communications are sensor networks, where N low-activity sensors
independently transmit binary data and a fusion center with M antennas has to
reconstruct which sensors were active and which data has been transmitted [68].
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Further applications are peak-to-average power reduction in orthogonal frequency-
division multiplexing [23], the detection of pulse-width-modulated signals in
radar [20], code-book excited linear prediction (CELP) source coding [18], and
compressed-sensing-based cryptography [21].

This discrete compressed sensing is related to model-based compressed sensing
[1]; the signal model is given in form of the distribution of the discrete signal
elements. However, it should not be confused with 1-bit compressed sensing where
the elements of the measurement vector are quantized, e.g., y ∈ {±1}M , but still
x ∈ R

N , e.g., [8, 31, 70]. This is of particular interest when cheap (one-bit) analog-
to-digital (A/D) converters are employed in the acquisition of measurements.

Naturally, the knowledge on the discrete nature of the signal should be utilized in
the signal reconstruction. Meanwhile most classical recovery algorithms have been
adapted for discrete compressed sensing, e.g., [26, 34, 60–63]. The estimation of
a discrete-valued vector is a combinatorial problem in general; it is non-convex,
even if the �0 constraint is relaxed to an �1 one. In [47], an extension of the simplex
algorithm, called branch-and-cut algorithm, has been proposed. Unfortunately, these
algorithms have a prohibitively high computational complexity and in their analysis
typically bounded noise is assumed, for a detailed discussion see [45].

The signal recovery problem in compressed sensing has also been tackled from a
channel coding perspective, e.g., [11, 65, 69]. The relations are particularly obvious
when dealing with discrete compressed sensing. AMP [3, 16, 17, 40] is derived
from the generic concept of message passing, which, in the form of the sum-product
algorithm, is very successfully utilized for the decoding of low-density parity-check
codes [35] (or other sparse graphical models, e.g., [29]). The message-passing
approach can be adapted to the situation where an a-priori distribution of the sparse
vector is known, cf. [17, 36]. This resulting algorithm is often denoted as Bayesian
AMP (BAMP) [2, 51], cf. also generalized AMP (GAMP) [52]. BAMP/GAMP can
be used straightforwardly for the discrete scenario.

Typically, in communication scenarios, no perfect signal reconstruction is
required but only some tolerable error ratio should not be exceeded. Consequently,
in the numerical examples we assess the error rate; as typical in digital
communications, the order of magnitude which can be achieved is relevant.

6.1.3 Outline of the Chapter

In this chapter, we discuss iterative algorithms for compressed sensing. We give
an overview over the relevant approaches available in the literature and introduce
improved processing steps—which we show to be unbiasing operations—for the
information exchange between the building blocks of the iterative schemes. Unless
otherwise stated, the exposition is valid for general a-priori pdfs but we will give
numerical results for the discrete case. The comparison of the continuous and
discrete case is beyond the scope of this chapter.
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The chapter is organized as follows. We review message-passing approaches
from the literature in Sect. 6.2 and have a look at how the problem can be separated
into feasible parts. In Sect. 6.3, this leads us to known iterative (“turbo”) algorithms,
where two problems are alternatingly solved. Thereby, the information exchange
between both parts is of importance. In Sect. 6.4, this step is discussed and we
represent it as an unbiasing operation. Using this knowledge, we propose improved
VAMP-type algorithms and assess them in Sect. 6.5 by means of numerical simula-
tions. The characterization of the reliability by an average variance or by individual
variances is studied.

6.2 Problem Statement and Iterative Algorithms

The task of reconstruction algorithms is to produce an estimate x̂ given the observa-
tion y, i.e., to infer x from y, knowing the sensing matrix A. The optimum estimate
in the minimum mean-square error (MMSE) sense is given by the conditional mean2

[33, 48]

x̂ = E{x | y} =
∫

x fx|y(x) dx , (6.3)

where fx|y(x) is the posterior (conditional) pdf induced by model (6.1). Alterna-
tively, the maximum-a-posteriori (MAP) estimate may be sought, which is given
by

x̂ = argmax
x

fx|y(x) . (6.4)

Since fx|y(x) ≥ 0, w.l.o.g. we can write (β is a positive constant)

fx|y(x) = 1
Z

e−β Ey (x) , (6.5)

where Z = ∫ e−β Ey (x) dx is the so-called partition function, which normalizes the
distribution. The MAP estimate is then equivalently given as the minimization of
some energy function

x̂ = argmin
x

Ey(x) . (6.6)

In this section, we review message-passing approaches available in the literature
and the underlying factorization of the problem at hand in order to solve (6.3)

2 If no limits are given for integrals, the lower and upper limits are −∞ and∞, respectively.



6 Unbiasing in Iterative Reconstruction Algorithms for Discrete Compressed Sensing 185

or (6.4) in practice. The concept of exponential families, which is required in the
following sections, is also briefly summarized.

6.2.1 Factorization and Message-Passing Approaches

Problems (6.3) and (6.4) cannot be solved straightforwardly if the dimensions M

and N are large. Reasonable approaches can be derived when considering the
structure of the problem more closely.

Due to the above assumptions (i.i.d. data, additive i.i.d. noise, independent of the
data), the conditional pdf can be written as

fx|y(x) = 1

fy(y)
fy|x(y) fx(x)

= c · fn(y −Ax) fx(x)

= c ·
∏M

j=1
fn(yj − aT

j x) ·
∏N

i=1
fx(xi) , (6.7)

where c is a constant and aT
j is the j th row of the sensing matrix A = [a1 · · · aM

]T.

Moreover, assuming Gaussian noise, i.e., fn(y−Ax)= 1√
2πσ 2

n
M e−||y−Ax||22/(2σ 2

n ),
the MAP estimate is equivalently given by

x̂ = argmin
x

(
1

2σ 2
n
||y −Ax||22 − log(fx(x))

)
. (6.8)

When a Laplacian prior pdf is assumed − log(fx(x)) = const+ λ ||x||1 and (6.8) is
specialized to LASSO (least absolute shrinkage and selection operator) [66]. Only
when assuming a Gaussian prior pdf, (6.8) is a least-squares problem with Tikhonov
regularization [10], or a linear MMSE equalization problem, which can be solved
analytically.

6.2.1.1 Message-Passing Approaches

The factorization (6.7) into M +N factors immediately leads to approaches widely
used in practice. We now give a brief overview over the main ideas; for the details
the reader is referred to the literature.

Pdf-Based Message Passing In [39] it is shown that when neglecting the depen-
dencies of one element xi on the other elements of x (and yj on y), the problem
can be dissected into two coupled equations for updating (conditional) pdfs. This
first step establishes a pdf-based message passing which is tackled with the sum-
product algorithm [35, 37]: the nodes are the elements of x accompanied by a
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“variable node” update and the elements of y accompanied by a “measurement
node” update, respectively. Noteworthy, at all variable nodes, for each measurement
node an individual message (pdf) is calculated and sent back (and vice versa) leading
to a huge complexity. This approach is still impractical but it leads to interpretations
which can subsequently be exploited.

In [67] it is shown that (on cycle-free graphs) the sum-product algorithm
converges to a solution x̂ which corresponds to stationary points of the (Bethe)
free energy in an associated system (x is the state of N particles, Ey(x) is
the corresponding Hamiltonian). Alternatively, the Helmholtz free energy FH =
− log(Z), where Z is the partition function in (6.5), may be considered which
describes the problem from a different point of view, cf. [32]. Having tractable
approximations of these energy quantities may, thus, provide approximations of the
initial problem.

Mean and Variance-Based Message Passing When (implicitly, in the large-system
limit) assuming Gaussian random variables, within the iterations only (conditional)
means and variances have to be updated. Moreover, for Gaussian pdfs MMSE and
MAP criterion coincide; the sum-product algorithm coincides with the max-product
algorithm [37]. Defining the edge-dependent residuum rj,i

def= yj −∑l �=i aj,lxl ,
the problem is dissected into “variable nodes” and “residuum nodes” (instead of
measurement nodes) [39]. This procedure still has high complexity as individual
messages (mean and variance) per edge in the factor graph have to be calculated.
These updates follow the philosophy of message passing, where each node passes
extrinsic information back, i.e., the information gained via the other messages.

This second step is the core idea of many practical inference techniques, such
as expectation propagation (EP) [41] or expectation-consistent (EC) approximate
inference [46]. On the one hand, the pdfs to be handled are replaced by pdfs
from some family; then only parameters representing the sufficient statistics have
to be specified. Of special interest are exponential families (cf. Sect. 6.2.2), since
Gaussian pdfs are special cases thereof. On the other hand, all factors in (6.7), except
the currently (in the respective node in the message-passing algorithm) considered
one, are replaced by a pdf from the chosen family. Thereby, the local calculations
become feasible.

Approximate Message Passing Finally, two main modifications lead to the practical
algorithm of “approximate” message passing (AMP). First, the edge-dependent
messages are written as node-dependent (averaged) versions plus some deviation.
Second, approximating these deviations via a first-order Taylor series expansion,
simple update equations are obtained. For details see [39]. Now, iterations between
approximative “variable nodes” and approximative “residuum nodes” are carried
out. Only averaged (node-, not edge-dependent) message are passed and only
average reliabilities (variances) are tracked. The messages are no longer exact
extrinsics but averaged and approximated versions and also not the posteriors of
the nodes. AMP is a well performing, low-complexity algorithm; its convergence is
well understood via state evolution. However, since only approximate quantities are
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tracked, no intuitive understanding is possible, cf. [55]. In particular, the Onsager
term [39], known from statistical physics, has no direct interpretation.

Although being derived from the “message-passing” philosophy—where the
processing is done fine-grained and based on a very local view of the node—, AMP
iterates between two parts in a “turbo” fashion—a very global view on the vectors
x and r is taken; no per-edge messages are calculated. This third step is viewed in
a more general way in the following.

6.2.1.2 Partitioning of the Problem

The above discussion reveals the general principle that an intractable problem is
transformed into a tractable one by (i) treating groups of factors in the factoriza-
tion (6.7) jointly and (ii) substituting such groups by a pdf from a chosen family.
By iterating over the factors in a message-passing approach, the desired solution is
found iteratively.

Besides treating all factors individually (as done in mean- and variance-based
message passing), the most obvious partitioning of the problem is to combine either
all M factors belonging to the observations into fn(n) or all N factors pertaining
to the variables into fx(x). The extreme case of considering both combinations
and resorting to the two-factor representation (6.7) lead to the “turbo” view and
is studied in detail subsequently. The corresponding factor graphs are depicted in
Fig. 6.1. These graphical tools visualize the dependencies of the factors (rectangular
nodes) of the variables (circle nodes); an edge symbolizes that the variable is an
argument of the factor [35]. The factors corresponding to the prior knowledge of the
signal (signal constraints) are shown on the top of the figures, whereas the factors
corresponding to the observations (channel constraints) are shown at the bottom.

The “mixed” approaches, not shown in the figure and not discussed in this
chapter, enable some degree of freedom in the order the factors are processed
(scheduling). This can be utilized for an optimized sequential update.

Fig. 6.1 Factor graphs corresponding to the message-passing view (left: all factors are treated
individually) and to the turbo view (right: the factors corresponding to signal and channel
constraints, respectively, are combined)
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For example, when the prior factors are kept separately while combining the
factors belonging to the observations, a sequential processing of the variables xi is
enabled, e.g., [58]. Compared to the factorization with only two factors, where a
single variable xi is processed at the same time as all other variables, this has the
advantage that the reliability of this variable can benefit from insight into previously
considered variables leading to faster convergence. This also means that the variance
cannot be tracked on average for the signal vector, but, instead, individually per xi .

In cases where the prior pdf is not completely factorizable, see, e.g., [4], this
factorization does not go down to the individual variables; nevertheless, it can be
applied to the respective compounds of variables.

6.2.2 Exponential Families

We now give a brief review of exponential families, which are well-suited for the
use as substitute pdfs in iterative schemes.

A pdf of an N -dimensional random vector x is member of an exponential family
if it can be written as [42]

fx(x) = 1

Z(θ)
f (x) eθTg(x) . (6.9)

Thereby, f (x) can be any non-negative real-valued function, θ ∈ R
n represents

the natural parameters, g(x) ∈ R
n is a vector-valued function of x which reflects

the sufficient statistics of x, and Z(θ) is the so-called partition function which
normalizes the pdf. This important class of pdfs encompasses a wide range of
common distributions, in particular, the Gaussian one.

If we specify first- and second-order moments by choosing (� > 0)

g(x) = [x1, . . . , xN , − 1
2

∑
i x

2
i

]T
, (6.10)

θ = [λ1, . . . , λN , �
]T

, (6.11)

for f (x) = 1 a Gaussian pdf which is rotationally invariant about the mean is
specified; the N -dimensional mean and a single (average) variance characterize the
pdf—we call this case average variance (AvgV). Alternatively, we can choose (�i >

0)

g(x) = [x1, . . . , xN , − 1
2x

2
1 , . . . , − 1

2x
2
N

]T
, (6.12)

θ = [λ1, . . . , λN , �1 , . . . , �N

]T ; (6.13)
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here (for f (x) = 1) a Gaussian pdf with individual variances per dimension is
specified; the N -dimensional mean and the N individual variances characterize the
pdf—we call this case individual variances (IndV). Conveniently, we define

λ = [λ1, . . . , λN
]T

,
	 = �I , AvgV

	 = diag(�1, . . . , �N) , IndV
. (6.14)

Please note that exponential families have the convenient property that [42]

μ
def= Ex

{
g(x)
} = ∂ log(Z(χ))

∂χ

∣∣∣∣
χ=θ

. (6.15)

Hence, the vector μ contains the means mi = E{xi}, i = 1, . . . , N , and
quantities from which either the average variance σ 2

avg = 1
N

∑N
i=1 E{(xi −mi)

2} or
the individual variances σ 2

i = E{(xi − mi)
2} can be deduced. Moreover, natural

parameters and variances are connected by

λi = mi

�
, � = 1

σ 2
avg

, AvgV

λi = mi

�i

, �i = 1

σ 2
i

, IndV

. (6.16)

Remarkably, for Gaussian pdfs fx|y(x), i.e., pdfs from an exponential family with
parameterization (6.10), (6.11) or (6.12), (6.13), MMSE and MAP criterion coincide
as

Ex{x|y} = argmax
x

fx|y(x) . (6.17)

Finally, we note that a given pdf can be projected onto an exponential family; the

pdf is assumed to be of the form ex(x) = 1
Z(θ)

h(x)eθTg(x). Thereby, the projection
is done such that the Kullback–Leibler divergenceD(·||·) between fx|y(x) and ex(x)
is minimized, i.e.,

θ∗ = argmin
θ

D(fx|y(x)||ex(x)) = argmin
θ

∫
fx|y(x) log

(fx|y(x)
ex(x)

)
dx . (6.18)

It is straightforward to show that this minimization is equivalent to adjusting θ

such that the moments (defined by g(x)) of ex(x) coincide with the ones of the
initial pdf fx|y(x). This fact also holds the other way round: if the moments match,
the Kullback–Leibler divergence between the two involved pdfs is minimized [56].
Exponential families thus give the best representation under a moment constraint.
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6.3 Expectation-Consistent Approximate Inference

As shown in the last section, the simplest way of factorizing the posterior pdf is
given by separating the “signal” and the “channel” part, i.e., (6.7) can be rewritten
as ( 1

Z
= c exp

(||y||22/(2σ 2
n )
)
)

fx|y(x) = 1

Z

∏N

i=1
fx(xi)

︸ ︷︷ ︸
fs(x)

exp
(
xTFx + f T

yx
)

︸ ︷︷ ︸
fc(x)

, (6.19)

where f y
def= 1

σ 2
n
ATy and F

def= − 1
2σ 2

n
ATA, and Z is the partition function.

For a factorization into two general factors, Opper and Winther [46] proposed a
framework called expectation-consistent (EC) approximate inference; subsequently
it was generalized in [25]. Applying this framework to our compressed sensing
problem, diverse practical recovery algorithms result.

In this section, we briefly review the derivation of the algorithms and address the
consequences. Two classes of recovery schemes which emerge from the framework
are discussed in more detail. The exposition is valid for any prior pdf fx(x);
however, the associated cost functions are eventually stated for the particular
discrete setting (6.2). Results from numerical simulations are postponed to Sect. 6.5.

6.3.1 Derivation and Optimization Procedure

As motivated in the above review of message-passing approaches, instead of
calculating Ex{x | y} directly, the partition function Z is often considered. To
that end, we choose a vector-valued function g(x) which represents the moments
(usually mean and variance) we want to estimate/track within the algorithm (cf.
Sect. 6.2.2). Then, by expanding with 1, the partition function can be written as

Z =
∫

fs(x) fc(x) dx

= Zs(θ s)

∫
fc(x) e−θT

s g(x) 1
Zs(θ s)

fs(x) eθT
s g(x) dx . (6.20)

As Z is also intractable, a manageable approximation is desired. To that end, the
signal part 1

Zs(θ s)
fs(x)eθT

s g(x) of the integrand is replaced by 1
Zo(θo)

eθT
o g(x), which

is called the overlap [46] (both are valid pdfs). This leads to

Z ≈ ZEC,s(θ s, θo) = Zs(θ s)

∫
fc(x)e

−θT
s g(x) 1

Zo(θo)
eθT

o g(x) dx



6 Unbiasing in Iterative Reconstruction Algorithms for Discrete Compressed Sensing 191

with θc
def= θo − θ s

= Zs(θ s)

Zo(θo)

∫
fc(x)e

θT
c g(x) dx = Zs(θ s) Zc(θc)

Zo(θo)
, (6.21)

where 1
Zc(θc)

fc(x)eθT
c g(x) is the channel part. The partition functions of the

three involved pdfs (which are all members of an exponential family and, thus,
characterized by the parameter vectors θ s, θc, and θo, respectively) are given by

Zs(θ s) =
∫

fs(x) eθT
s g(x) dx , (6.22)

Zc(θc) =
∫

fc(x) eθT
c g(x) dx , (6.23)

Zo(θo) =
∫

eθT
o g(x) dx . (6.24)

Instead of treating the partition function, the negative log-partition function

− log(ZEC,s(θ s, θo)) = − log
(
Zs(θ s)

)− log
(
Zc(θo − θ s)

)+ log
(
Zo(θo)

)
(6.25)

may be considered. Since θc = θo − θ s, only two free parameters are present.
Noteworthy, instead of approximating the signal part in the integrand, one can

alternatively replace the channel part by the overlap. This leads to the adequate
expression

− log(ZEC,c(θc, θo)) = − log
(
Zs(θo−θc)

)− log
(
Zc(θc)

)+ log
(
Zo(θo)

)
. (6.26)

Obviously, ZEC,s and ZEC,c—and thus the therefrom calculated estimate—are
only sensible approximations if the parameters θ s, θo (or θc, θo) are tuned suitably.
In [46] it is argued that the parameters should be adjusted such that − log(ZEC,s)

(− log(ZEC,c)) is stationary.
A practical approach is to do this optimization iteratively. First, given θo, as the

negative log-partition function is a concave function in θ s (or θc), a maximization
w.r.t. θ s (or θc) has to be performed—the unique maximizer is searched (subse-
quently we consider ZEC,s; for ZEC,c the procedure is the same)

θ∗s = argmax
θ s

{− log
(
Zs(θ s)

)− log
(
Zc(θo − θ s)

)

︸ ︷︷ ︸
Ls(θ s)

+ log
(
Zo(θo)

)}

= argmax
θ s

{
Ls(θ s)} , (6.27)
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with the obvious definition of the cost function Ls(θ s). A necessary condition is
∂
∂θ s

Ls(θ s)
!= 0, which, considering the property (6.15) of exponential families,

actually requires

∂

∂θ s
Ls(θ s) = ∂

∂θ s

(
− log

(
Zs(θ s)

)− log
(
Zc(θo − θ s)

))

= −μs(θ s)+ μc(θo − θ s)
!= 0 . (6.28)

Hence, the optimization problem (6.27) is equivalent to matching the moments of
the signal and channel part. Contrary to what is stated in [46], the moment matching
is not an additional constraint. In summary, in the first step, θ s (or θc) is adjusted
either such that Ls(θ s) (analogously Lc(θc)) is maximized or, alternatively, such
that the moments of the signal and channel part match.

Second, given θ∗s (or θ∗c ), the parameter θo has to be adjusted such that
− log(ZEC,s) (or − log(ZEC,c)) is stationary. This leads to

∂

∂θo

(
− log

(
ZEC,s(θ

∗
s , θo)

)) = ∂

∂θo

(
const− log

(
Zc(θo − θ∗s )

)+ log
(
Zo(θo)

))

= 0− μc(θo − θ∗s )+ μo(θo)

and obeying (6.28) = −μs(θ
∗
s )+ μo(θo)

!= 0 . (6.29)

Again, as above, the optimization problem is equivalent to matching the moments
of the signal part and the overlap. Since μs is given and the expectation parameters
and the natural parameters of the overlap have a simple connection (cf. (6.16)), this
can be done immediately. For example, when g(x) and θo are chosen according
to (6.10) and (6.11), we have

�o = 1

σ 2
s
, λo,i = ms,i

σ 2
s

, i = 1, . . . , N . (6.30)

Finally, the means give the desired estimate

x̂ = [ms,1, . . . , ms,N ]T . (6.31)

Noteworthy, any function g(x) which defines the exponential family can be used
in principle. Of special interest are the parameterizations (6.10) and (6.12), which
in [46] are called “uniform diagonalization” and “vector-valued diagonalization,”
respectively. Here, Gaussian pdfs are utilized and either an average variance σ 2

avg or

individual variances σ 2
1 , . . ., σ 2

N are tracked to characterize reliabilities.
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6.3.2 Algorithms

The steps for adjusting the parameters θ s (or θc) and θo directly lead to two
classes of algorithms which are subsequently discussed in more detail and which
are specialized to the discrete setting.

6.3.2.1 Optimization: ECopts, ECoptc and ECseqs, ECseqc

The maximization of the concave cost function Ls(θ s) (or Lc(θc)) may be replaced
by a minimization of the convex function −2Ls(θ s) (the scaling by the factor 2 is
introduced for convenience). To that end, any convex optimization algorithm can be
applied, see, e.g., [9]. For model (6.1)/pdf (6.19), the function to be minimized in
the first step either reads

− 2Ls(θ s) = 2 log
(
Zs(θ s)

)− log
(

det(	o −	s + F )
)

+ (λo−λs + fy)
T(	o−	s + F )−1(λo−λs +fy) , (6.32)

or − 2Lc(θc) = 2 log
(
Zs(θo − θc)

)− log
(

det(	c + F )
)

+ (λc + f y)
T(	c + F )−1(λc + f y) . (6.33)

Since gradients (w.r.t. θ s and θc, respectively) can easily be calculated, first-order
minimization algorithms are preferable over zeroth-order algorithms (gradient-free
optimization). However, this optimization step has significant numerical complexity.

For the discrete compressed sensing setup with prior pdf (6.2), after some
manipulations, the signal-pdf-dependent term on the right-hand side of (6.32)
and (6.33) specializes to

log
(
Zs(θ s)

) =
N∑

i=1

log
(
p0 + 2p1e−�s,i /2 cosh(λs,i )

)
(6.34)

or log
(
Zs(θo−θc)

) =
N∑

i=1

log
(
p0+2p1e−(�o,i−�c,i )/2 cosh(λo,i−λc,i )

)
. (6.35)

Having θ s, in the second step

μs = Ex{g(x)} =
∫

g(x) 1
Zs(θ s)

eθT
s g(x)fs(x) dx (6.36)
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has to be calculated and (6.30) is evaluated to obtain the overlap (equivalent
calculations are carried out when having θc). As fs(x) factorizes, only one-
dimensional integrals have to be solved. Hence, this step has only minor numerical
complexity. These two steps are then iterated.

In [46], this strategy is called “double-loop” algorithm. We prefer the denomi-
nations ECopts (when using Ls(θ s)) and ECoptc (when using Lc(θc)), respectively.

The costly numerical minimization can approximately be done coordinate-wise,
i.e., by adjusting only the pair λs,i , �s,i belonging to the variable xi and going
over the variables i = 1, . . . , N (maybe in some optimized ordering). The 2N -
dimensional optimization problem is broken down to N two-dimensional ones.
This procedure is only possible if individual variances are treated (vector-valued
diagonalization). The cost function −2Ls(θ s) in (6.32) can be reduced after some
manipulations to a function for the variable xi only (for details see [46]), and reads

− 2Ls,i (λs,i , �s,i )
def= const− 2 log

(
p0 + 2p1e−�s,i /2 cosh(λs,i )

)

+ log
(
�o,s,i − (�s,i −�◦s,i )

)−
(
λo,s,i−(λs,i−λ◦s,i )

)2
(
�o,s,i−(�s,i−�◦s,i )

) , (6.37)

where λ◦s,i and �◦s,i have to be understood as the current (obsolete, non-optimized)
values and λo,c,i and �o,c,i correspond to μc. Alternatively, the function −2Lc(θc)

in (6.33) reduces to

− 2Lc,i (λc,i , �c,i )
def= const− 2 log

(
p0 + 2p1e−(�o,c,i−�c,i )/2 cosh(λo,c,i − λc,i )

)

+ log
(
�o,c,i − (�◦c,i −�c,i )

)−
(
λo,c,i − (λ◦c,i − λc,i )

)2
(
�o,c,i − (�◦c,i −�c,i

) , (6.38)

where λ◦c,i and �◦c,i are the current values. In (6.37) and (6.38) only the first term on
the right-hand side is specific for the discrete case; in the general case the first term
in (6.37) would read log

( ∫
fx(xi) eλs,i xi−�s,i x

2
i /2 dxi

)
.

We denote these strategies by ECseqs and ECseqc, respectively.

6.3.2.2 Vector Approximate Message Passing: VAMP

As we will see later on in the numerical examples, the optimization procedure leads
to very good performance, however, at the cost of numerical complexity. A much
simpler strategy can be derived from the fact that the moments μs and μc have to
match. In [46] this procedure is called “single-loop” algorithm.

Here, in the first step

μc = Ex{g(x)} =
∫

g(x) 1
Zc(θc)

fc(x) eθT
c g(x) dx (6.39)
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is calculated; then, via (6.30), the overlap θo,c is obtained. Since the distribution
parameters are coupled, one can calculate

θ s = θo,c − θc . (6.40)

This value is then used in the second step, which is identical to (6.36) in the above
approach. Again, having μs the overlap parameter θo,s is calculated using (6.30).
Then,

θc = θo,s − θ s (6.41)

is updated and the two steps are iterated. This algorithms coincides with VAMP
proposed in [54].

Noteworthy, in the calculation of μc, the overlap takes the role of the prior
pdf fs(x) and in the calculation of μs it takes the role of the channel pdf fc(x).
These approximations make the calculation of the means computable at all. For the
compressed sensing setup,

• the calculation of (6.39) amounts to a joint linear MMSE (LMMSE) estimator
treating the action of the channel but ignoring the prior pdf—we abbreviate this
operation by “LE” (for linear estimator)—, whereas

• the calculation of (6.36) amounts to individual non-linear MMSE (NLMMSE)
estimators obeying the signal pdf but ignoring the coupling via the sensing
matrix—we abbreviate this operation by “NLE” (for non-linear estimator).

These two steps are dual w.r.t. even more aspects; for more details see [59]. For
the LMMSE step (6.39) and for a large class of prior pdfs fx(x) in the NLMMSE
step (6.36) analytic expressions can be given, cf. [4, 54, 59].

These steps can also be interpreted as a projection of the pdfs onto exponential
families. The pdf o(x) = 1

Zo(θo)
eθT

o g(x) shall approximate the pdf fx|y(x). In the first
step, the pdf

o(x)

1
Zc(θc)

fc(x)

eθT
s g(x)

= 1

Zc(θc)
fc(x) eθT

c g(x) (6.42)

is projected onto o(x). Using (6.40), θ s is calculated and, in the second step, the pdf

o(x)

1
Zs(θ s)

fs(x)

eθT
c g(x)

= 1

Zs(θ s)
fs(x) eθT

s g(x) (6.43)

is projected onto o(x). Then, θc is calculated via (6.41). Since the moments
are matched, the projection is done in such a way that the Kullback–Leibler
divergence between the involved pdfs is minimized. The projections are iterated
until convergence is reached. This is the main approach of expectation propagation
[41].
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LE

LE

θc NLE

VAMP

θs θc

NLE

μc μs

θsθc

Tune

ECoptc

θo,c

θo,c θo,s

Fig. 6.2 Partitioning of the function blocks in iterative algorithms derived from the EC framework.
Top: Optimization approach (double-loop algorithm); Bottom: VAMP

6.3.2.3 Discussion

Figure 6.2 shows the conceptual splitting of the function blocks of EC-based
iterative algorithms for CS. In the top row the calculation steps of one iteration of the
optimization approach ECoptc are visualized. Given θo,c, this algorithm optimizes
(tunes) θc such that μc = μs (via the minimization of (6.33) or in the sequential
way employing (6.38)). If a new parameter vector θc is obtained, the corresponding
μc determines the new θo,c. The alternative approach ECopts is obvious and not
shown.

In the second row, the calculation steps of one iteration of VAMP are shown. In
sequence, μc and μs are calculated; both blocks are separated by the updates (6.40)
and (6.41).

6.3.3 Alternative Partitioning of the Problem

Up to now, we have considered the obvious partitioning of the conditional pdf and,
thus, of the problem into a “signal” and a “channel” part. In [57], a different, very
flexible factorization has been proposed. Here, (6.19) is written as

fx|y(x) = 1

Z

∏N

i=1
fx(xi) exp

(
(1− γ )fy,ixi

)

︸ ︷︷ ︸
fs(x)

exp
(
xTFx + γf T

yx
)

︸ ︷︷ ︸
fc(x)

, (6.44)

where f T
y = [fy,1, . . . , fy,N ] and γ ∈ [0, 1] is a trade-off parameter. For γ =

1, the above separation (used in VAMP) is obtained. Noteworthy, for γ = 0, the
influence of the observations y is completely taken into account in the signal part.
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The surprising, analytic result of [57] is that using an appropriate initialization
(depending on γ ), the performance of the algorithm is independent of the choice
of γ . This enables some degree of freedom in the implementations of the estima-
tors (6.36) and (6.39). The details can be found in [57].

6.4 Unbiasing of MMSE Estimators

In iterative schemes, i.e., feedback loops, the passing of the results of one process-
ing/decoding block to the next is a crucial point. In principle, suited processing of
the results has to ensure that positive feedback is avoided and thus amplification
and instable behavior are circumvented. This basic principle emerges in different
settings and is known under various denominations. In connection with (V)AMP it
is termed Onsager correction [54] or decoupling [7]. In iterative (turbo) algorithms
(e.g., for channel decoding) this is called the calculation of extrinsic information
[35], which means that only the information gained in the respective step has to
be passed on. Here, we will pursue the signal processing/estimation view that a
systematic offset in an estimate, a bias, has to be removed, i.e., unbiasing has to be
performed [64]. In [38], bias-free estimators are called divergence-free.

In this section, we derive our view of unbiasing; parts have been published in [24,
64]. In view of the functions blocks in EC-based iterative algorithms (see Sect. 6.3),
we will address two settings: joint linear estimators (the “LE” block in Fig. 6.2)
and scalar non-linear estimators (the “NLE” block in Fig. 6.2), respectively. First
the basic principles and conditions of unbiasing are studied separately, then, the
unbiasing procedures are applied to a VAMP-type recovery scheme.

6.4.1 Joint Linear Estimators

We first consider the joint linear estimation, i.e., the block treating the “channel,”
part. To that end we follow the observation model

y = Ax+ n , (6.45)

where the measurement (channel) matrix A is known. Typically, the MMSE estimate
is desired—in general it is given by [33, 48] (the index “B” indicates that the
estimate is biased, see below)

x̂c,B = Ex{x | y} . (6.46)

In case the random vectors are (assumed to be) jointly Gaussian, this conditional
mean estimator reduces to a linear (affine) one. If x is i.i.d. Gaussian with mean xc
and variance (per component) σ 2

c and the noise n is zero-mean i.i.d. Gaussian with



198 R. F. H. Fischer and C. Sippel

variance (per component) σ 2
n , independent of x, the estimate specializes to3 [33]

x̂c,B = xc +
(
ATA+ σ 2

n
σ 2

c
I
)−1

AT(y −Axc
)

(6.47)

=
( 1

σ 2
n

ATA+ 1

σ 2
c

I
)−1( 1

σ 2
n

ATy + 1

σ 2
c

xc

)
. (6.48)

Per construction—as the orthogonality principle is obeyed—the estimation error
ec,B

def= x̂c,B − x is orthogonal to the observation y and the error covariance matrix
reads

�c,B = σ 2
n

(
ATA+ σ 2

n
σ 2

c
I
)−1 = σ 2

c

(
I −K

)
, (6.49)

where we have used the end-to-end cascade (channel + estimator)

K = [Kij ] def=
(
ATA+ σ 2

n
σ 2

c
I
)−1

ATA . (6.50)

The average error variance is given by

σ 2
c,B =

1

N
tr(�B,c) = σ 2

c

(
1− 1

N
tr(K)

)
. (6.51)

Like all MMSE estimates, x̂c,B is biased (hence, the index “B”) in the sense
that—as per basic principle the error is orthogonal to the observation [48]—part of
the useful signal is accounted to the error [27]. Unbiasing leads to an error that is
orthogonal to the desired quantity; it may be done by scaling the second part of the
estimate x̂c,B in (6.47) suitably, i.e.,

x̂s = xc + C
(
ATA+ σ 2

n
σ 2

c
I
)−1

AT(y −Axc
)
. (6.52)

For the joint linear estimator, we have two main principles how to adjust the scaling
matrix C, average and individual unbiasing.

6.4.1.1 Average Unbiasing

For an average unbiasing we restrict ourselves to C = cc I and demand

3 We continue the notation of Fig. 6.2. The biased estimate (corresponding to the “overlap”) is
denoted by the respective estimation step. The unbiased estimate—which is the input to the other
estimator—is not denoted by the block where it is produced, but by the block where it is input.
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tr(C K) = tr(cc K)
!= N , (6.53)

which is achieved by

cc = N

tr(K)
= σ 2

c

σ 2
c − σ 2

B,c

, (6.54)

where the last form follows from (6.51).
It can be shown that data and unbiased error es

def= xs − x are orthogonal on
average, i.e.,

1

N
E
{
xTes
} = 1

N

∑N

i=1
E
{
xies,i

} = 0 , (6.55)

and, after some manipulations, that the average variance of es is given by

σ 2
s =

1

N

∑N

i=1
E
{
e2

s,i

} =
( 1

σ 2
B,c

− 1

σ 2
c

)−1 = σ 2
c

( 1

MA(Ki,i)
− 1
)
, (6.56)

where MA(·) denotes the arithmetic mean. The unbiased estimate (6.52) can be
written as (cf. also [28])

x̂s = ccx̂c,B − (cc − 1)xc = σ 2
s

( x̂c,B

σ 2
c,B

− xc

σ 2
c

)
. (6.57)

6.4.1.2 Individual Unbiasing

Alternatively, the components may be scaled individually such that the components
of the unbiased error are individually orthogonal to the data, i.e., E

{
xies,i

} = 0, ∀i.
This is achieved when choosing

C = diag(1/K11, . . . , 1/KNN) . (6.58)

It can be shown that the individual variances and the average variance of es amount
to [22]

σ 2
s,i = E

{
e2

s,i

} = σ 2
c

1−Ki,i

Ki,i

(6.59)

σ 2
s =

1

N

∑N

i=1
E
{
e2

s,i

} = 1

N

∑N

i=1
σ 2

c
1−Ki,i

Ki,i

= σ 2
c

( 1

MH(Ki,i)
−1
)
, (6.60)

where MH(·) denotes the harmonic mean.
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Noteworthy, the two unbiasing strategies (average unbiasing vs. individual
unbiasing) are not identical. Since the elements Ki,i of the end-to-end cascade are
all positive and real, the relation MA(Ki,i) > MH(Ki,i) holds. This means that the
average estimation variance is smaller if only orthogonality on average is demanded;
the more strict demand of individual orthogonality of the error components and data
leads to a (somewhat) larger average variance. However, the individual variances
can be utilized profitably in the next processing step of an iterative algorithm leading
finally to a gain.

6.4.2 Scalar Non-linear Estimators

We now consider the individual non-linear estimation, i.e., the block treating the
“signal,” part. In this scalar case, the channel model is given by

y = x+ w , (6.61)

where x is drawn according to some known prior pdf fx(x) (with mean zero and
variance σ 2

x ), and the noise (disturbance) w is zero-mean Gaussian with variance σ 2
w

and independent of the data x; hence, x and w are orthogonal, i.e., E{xw} = 0.
Again, we are interested in an estimate x̂ which is calculated such that the mean-

squared error is minimized. The corresponding conditional mean estimator

x̂s,B = Ex{x | y} def= S(y) (6.62)

is the optimum solution [33, 48]. Sometimes we may explicitly indicate the
dependency of the estimate on the observation, i.e., write x̂s,B(y). The conditional
variance of the estimation error es,B(y)

def= x− x̂s,B(y), and the mean-squared error
calculate to

ς2
s,B(y) = Ex{e2

s,B(y) | y} = σ 2
w

d

dy
S(y) , (6.63)

σ 2
s,B = Ey{ς2

s,B(y)} . (6.64)

The right expression in (6.63) holds since the noise is Gaussian and, thus, a member
of an exponential family [42].

Whenever x is not Gaussian, the characteristic curve of the estimator is not a
linear function, S(y) �= a · y, and the conditional variance is dependent on the
observation y. Only for linear estimators, conditional variance and mean-squared
error coincide.

The considered setting is depicted as a block diagram in Fig. 6.3. The observation
y (given by model (6.61)) is fed to the estimation function S(y) which provided
the biased estimate x̂s,B. The processing for the subsequently discussed unbiasing
strategies (6.67) and (6.71) is also shown.
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Fig. 6.3 Situation of scalar non-linear estimation and unbiasing (reproduced from [24])

w

y

x̂ c,no

χ̂
s,B

e s,
B

x

x̂s,B
x̂c,si

Fig. 6.4 Visualization of the relations of the random variables in three-dimensional vector space;
orthogonal dimensions x, w, and v (reproduced from [24])

The relation between random variables can conveniently be visualized through
vectors in a vector space [48]. Thereby, the lengths of the vectors correspond to
the standard deviations of the random variables and the angles to the covariances—
uncorrelated random variables correspond to perpendicular vectors. A visualization
of the present situation is given in Fig. 6.4 in a three-dimensional space. Baseline
is the horizontal x-w-plane; since x (blue) and w (gray) are uncorrelated we have
σ 2

y = σ 2
x + σ 2

w. A third dimension v is required to represent the action of the non-
linear device S(y). Per basic estimation principle, the error es,B (black) is orthogonal
to the observation y and to the estimate x̂s,B(y). As the error is not orthogonal to the
data x, a bias is present.

For the scalar non-linear estimator, since we operate in a three-dimensional
vector space, two main principles how to do the unbiasing are possible, signal-
oriented and noise-oriented unbiasing.

6.4.2.1 Signal-Oriented Unbiasing

The general principle to derive the bias compensation is the decomposition of the
estimate (the output of the non-linear estimator device S(y)) into a scaled (scaling
factor kx) version of x plus an uncorrelated distortion wx, i.e.,

x̂s,B(y) = S(y) != kx x+ wx , (6.65)
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where the gain kx is adjusted such that x and wx are orthogonal, i.e., E{x wx} = 0.
This is obtained by

kx = Ex{S(y) x}
Ex{x2} = σ 2

x − σ 2
s,B

σ 2
x

= σ 2
x

σ 2
x + σ 2

w
. (6.66)

Noteworthy, the same result is achieved from geometric considerations: the scaling
factor kx corresponds to the projection of x̂s,B onto x (blue dashed line and blue dot
in Fig. 6.4). Using basic geometry of right triangles, (6.66) is obtained.

When performing “signal-oriented” unbiasing (SoU) (upper branch in Fig. 6.3),
the estimate (green) is then given by [64]

x̂c,si = 1

kx
x̂s,B = σ 2

x
σ 2

x − σ 2
s,B

x̂s,B . (6.67)

Here, the error ec,si
def= x− x̂c,si (light gray) is orthogonal to the data x; it lies parallel

to the w-v-plane. It can be shown that conditional variance and MSE calculate to

ς2
c,si(y) = Ex{ec,si(y) | y} = ς2

s,B(y)+
( σ 2

s,B

σ 2
x − σ 2

s,B

)2
x̂2

s,B(y) , (6.68)

σ 2
s,si = Ey{ς2

c,si(y)} =
( 1

σ 2
s,B

− 1

σ 2
x

)−1
. (6.69)

6.4.2.2 Noise-Oriented Unbiasing

In case of non-linear estimators, alternatively, a “noise-oriented” unbiasing (NoU)
can be performed [64]. Here, the noise estimate χ̂s,B = Ew{w | y} = Ex{y − x |
y} = y− x̂s,B (cyan in Fig. 6.4) is considered. By basic geometry, the scaling factor
kw corresponding to the projection of χ̂s,B onto w (gray dashed line and gray dot) is
given by

kw =
σ 2

w − σ 2
s,B

σ 2
w

= σ 2
w

σ 2
w + σ 2

x
. (6.70)

We are finally interested in the unbiased estimate x̂c,no (golden), given by

x̂c,no = y − 1

kw
χ̂s,B = y + σ 2

w
σ 2

w − σ 2
s,B

(x̂s,B(y)− y) . (6.71)

Here, the error ec,no(y)
def= x− x̂c,no(y) (light gray) is orthogonal to w and lies in the

x-v-plane. Direct calculations reveal that conditional variance and MSE calculate to



6 Unbiasing in Iterative Reconstruction Algorithms for Discrete Compressed Sensing 203

ς2
s,no(y) = Ex{ec,no(y) | y} = ς2

s,B(y)+
( σ 2

s,B

σ 2
w − σ 2

s,B

)2
(x̂s,B(y)−y)2 , (6.72)

σ 2
s,no = Ey{ς2

c,no(y)} =
( 1

σ 2
s,B

− 1

σ 2
w

)−1
. (6.73)

6.4.3 Iterative Schemes with Individual and Average Variances

Having derived the unbiasing approaches, we now apply them to iterative VAMP-
type algorithms. Thereby, either an average variance or individual variances can
be employed to represent the reliability of the estimates. Noteworthy, the biased
estimates treated in this section are synonymous to the overlap treated in Sect. 6.2.

For the joint linear estimator, unbiasing causes no problems. If an average
variance is desired, unbiasing on average (Sect. 6.4.1.1) is performed and the
average variance calculates to (6.56). When individual variances are desired,
individual unbiasing (Sect. 6.4.1.2) is carried out and the individual variances (6.59)
are passed to the next stage in the iterative algorithm (from “LE” to “NLE” in
Fig. 6.2).

In terms of normalized mean and precision (natural parameters), the unbiasing
operations are simply given by

λs = λo,c − λc ,
�s = �o,c −�c , AvgV

	s = 	o,c −	c , IndV
, (6.74)

which is nothing else than the subtraction between the “LE” and the “NLE” block
in Fig. 6.2 (cf. the definition of θ in Sect. 6.2.2).

The situation for the parallel scalar non-linear estimators is more involved.
When an average variance is desired, first the biased MSE σ 2

s,B has to be calcu-
lated. Thereby, the statistical expectation in (6.64) is replaced by the empirical
average over the parallel branches. Then, the unbiased variances σ 2

s,si or σ 2
s,no

are obtained via (6.69) or (6.73). Finally, the unbiasing of the elements is done
using (6.67) or (6.71) where the scaling factors can be written compactly as
σ 2

x /(σ
2
x − σ 2

s,B) = σ 2
s,si/σ

2
s,B and σ 2

w/(σ
2
w − σ 2

s,B) = σ 2
s,no/σ

2
s,B, respectively [64].

When individual variances are passed to and should be produced by the parallel
scalar non-linear estimators, an additional problem occurs. The biased MSE σ 2

s,B
cannot be calculated as an empirical average. As this quantity (given fx(x)) is
a function of the noise variance σ 2

w only, it may be precalculated and tabulated
or approximated by simple functions (e.g., a polynomial). Then, unbiasing is
performed according to (6.67) or (6.71) and the conditional variances ς2

c,si(y) or

ς2
s,no(y) according to (6.68) or (6.72) are passed individually per branch to the next

stage.
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When using

λo,s,i
def=x̂s,B,i/ς

2
s,B,i ,

�o,s,i
def=1/ς2

s,B,i ,

λb,i
def=x̂s,B,i/σ

2
s,B,i ,

�b,i
def=1/σ 2

s,B,i ,

λs,i
def=y/σ 2

w ,

�s,i
def=1/σ 2

w , �x
def=1/σ 2

x ,
(6.75)

the signal-oriented unbiasing operations (per element i) read in terms of the natural
parameters

λc,i = λo,s,i , �c = �o,s −�x , AvgV

λc,i = �c,i
�b,i ,−�x

λb,i , �c,i =
( 1

�o,s,i
+
( �x

�b,i −�x

λb,i

�b,i

)2)−1
, IndV

(6.76)

and for noise-oriented unbiasing

λc,i = λo,s,i − λs,i , �c = �o,s −�s , AvgV

λc,i = �c,i
�b,i−�s,i

(
λb,i − λs,i

)
, �c,i =

(
1

�o,s,i
+
(

�s,i
�b,i−�s,i

(
λb,i
�b,i

− λs,i
�s,i

))2)−1
. IndV

(6.77)

As can be seen, only the noise-oriented average unbiasing corresponds to the
conventional update in the EC approach—the simple subtraction between the
“NLE” and the “LE” block in Fig. 6.2. Using this straightforwardly for individual
variances is not optimum. Indeed, as shown in [24], �c,i will become frequently
negative leading to unusable results which have to be clipped and, thus, to non-
optimum performance of the reconstruction algorithm. The present new derivation
from estimation theory, however, guarantees meaningful parameters and improved
performance.

6.5 Numerical Results and Discussion

The discussed iterative signal recovery approaches are now assessed and compared
by means of numerical simulations. We thereby restrict ourselves to discrete
compressed sensing; specifically, the signal pdf (6.2) is employed. The elements of
the sensing matrix A are assumed to be i.i.d. unit-variance Gaussian. The columns
of A are then scaled to unit �2 norm, which in communications corresponds to a
transmitter-side power control. Two different dimensionalities of the problem are
investigated: the choice N = 258, M = 129 with sparsity s = 12 (Scenario A), and
N = 64, M = 32 with sparsity s = 4 (Scenario B).

We first consider schemes where the reliability over the iterations is characterized
by an average variance. Then, schemes utilizing individual variances are studied.
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6.5.1 Average Variance

For assessing the schemes, we plot the symbol error ratio (SER), i.e., the ratio of
erroneously recovered signal elements xi and total number of symbols, over the
iterations. These plots cover the convergence behavior of the algorithm and the
steady-state performance. As usual in communications, the SER is displayed in
logarithmic scale because we are interested in the order of magnitude of the residual
error ratio.

In Fig. 6.5, the SER is shown for Scenario A and for algorithms utilizing an
average variance. AMP [17, 39] is compared with VAMP [54] (which employs
noise-oriented average unbiasing according to (6.77)); in addition VAMP using
signal-oriented average unbiasing according to (6.76) is shown. For stability
reasons, the precision parameters � are clipped to the interval � ∈ [10−8, 108].
The signal-to-noise ratio is adjusted to 10 log10(1/σ

2
n ) =̂ 17 dB.

It can be seen that VAMP outperforms AMP slightly; essentially a somewhat
faster convergence is achieved. For the present setting of sufficiently large dimen-
sions (even still short for a number of applications) the steady-state performance is
reached after a few iterations and differs not too much.

It is apparent that noise-oriented unbiasing outperforms the signal-oriented
variant. This is explained by the dual operations in the two estimation steps in VAMP
(see Fig. 6.2). The one block performs joint linear estimation (concentrating on the
channel action), the other block performs individual non-linear estimation (taking
only the signal statistics into account). Dual to signal-oriented (average) unbiasing
after the linear estimation, noise-oriented (average) unbiasing after the non-linear
estimation should be used. For more details see [59].

Fig. 6.5 Symbol error ratio (SER) over the iterations. 10 log10(1/σ
2
n ) =̂ 17 dB, N = 258, M =

129, s = 12. Clipping of � to [10−8, 108]
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Fig. 6.6 Symbol error ratio (SER) over the iterations. 10 log10(1/σ
2
n ) =̂ 20 dB, N = 64, M = 32,

s = 4. Clipping of � to [10−8, 108]

The results for Scenario B are displayed in Fig. 6.6. Again, the SER is shown over
the iterations for AMP and VAMP. In addition, the results of ECopts and ECoptc are
given. Here, the signal-to-noise ratio is adjusted to 20 dB.

In case of small dimensions, AMP and VAMP converge poorly; when carrying
out some hundred iterations, some improvements for both algorithms are possible;
in the present case, both converge to error ratios around 2 · 10−4. ECopts and, in
particular, ECoptc offer a much better performance. Note that the all-zero vector is
chosen as starting point for ECopts, whereas in ECoptc the joint linear estimate is
calculated first and used as initialization for θo,c (cf. Fig. 6.2). This “warm start”
leads to the advantage (horizontal shift of the curve) of ECoptc over the other
variant; except this fact both versions perform similar.

Noteworthy, the improvement in SER comes at the cost of increased complexity.
Even though the curves are plotted over the iteration number, significant differences
in the complexity per iteration are present. AMP and VAMP perform simple matrix
operations and scalar non-linear estimation only, whereas ECopt uses a convex
optimization algorithm on a (N + 1)-dimensional cost function (6.33) or (6.32)
per iteration.

6.5.2 Individual Variances

We now turn to the case of using individual variances within the algorithms
to characterize the reliabilities. Thereby, a more fine-grained knowledge on the
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Fig. 6.7 Symbol error ratio (SER) over the iterations. 10 log10(1/σ
2
n ) =̂ 17 dB, N = 258, M =

129, s = 12. Clipping of � to [10−8, 108]

estimation quality of the symbols may be exploited, potentially leading to a
better performance. However, it has to be admitted that the numerical complexity
increases. For average variances, where 	 in (6.14) is a diagonal matrix, the inverse
(	 + F )−1 in (6.32), (6.33) can be efficiently calculated using a singular-value
decomposition, cf. [54]. This is not possible for general diagonal matrices.

The results for Scenario A are collected in Fig. 6.7. As above, the SER is shown
over the iterations. For reference, the results for AMP and VAMP from above (aver-
age variance) are repeated in gray. We compare VAMP with individual variance,
where the update after the non-linear estimators is done in the straightforward way
(analogously to (6.74), which, in each case, is employed after the linear estimator),
with the unbiasing strategies derived in Sect. 6.4.2.

Apparently, straightforwardly applying the EC framework with vector-valued
diagonalization to the compressed sensing setup does not lead to satisfactory
performance. Even AMP and VAMP with average variance outperform this vari-
ant. However, when employing the unbiasing rules derived in Sect. 6.4.2, an
improvement over classical VAMP can be achieved. Here, noise-oriented unbiasing
performs only slightly better than the signal-oriented variant.

Noteworthy, for the unbiasing rules (6.76) and (6.77), the biased mean-squared
error σ 2

s,B (which depends on N/s, i.e., p1 in (6.2), only), or equivalently the
precision �b = 1/σ 2

s,B, is required; it cannot be calculated by averaging within the
algorithm. Hence, either �b is precalculated (as a function of �s) and tabulated
or an approximation is used. The SER curves when using a fine-grained table
cannot be distinguished from that when using the simple approximation �b =
exp(0.1330�s + 2.754) which holds for the present ratio N/s.
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Fig. 6.8 Contour plot of �c over |λs| and �s. Left: discrete pdf according to (6.2), s = 12; Right:
Bernoulli–Gauss pdf; the non-zero elements are zero-mean, unit-variance Gaussian, s = 12

The poor performance of the straightforward approach can be explained by
studying the precision �c (after the non-linear estimator and the update �c =
�o,s −�s) as a function of |λs| and �s (cf. Fig. 6.2). To that end, a contour plot of
�c is shown in Fig. 6.8. Within the gray-shaded area �c becomes negative and, thus,
it does not have any sensible meaning. This circumstance can only be handled by
clipping. This effect has already been observed in [54]—however, when employing
average variances, negative precision parameters occur very rarely and clipping does
(almost) not hurt. In case of individual variances negative quantities occur much
more often; in [24] we have shown that up to 5 % of the components of x are
affected in case of the discrete prior (6.2). In [30] this problem is treated for ECseq
by incorporating additional constraints in the optimization. In order to show that this
is not an effect of the discrete prior, on the right-hand side the contour plot is shown
for a Bernoulli–Gauss pdf; there the effect is even more pronounced.

The respective results for Scenario B are depicted in Fig. 6.9. The curves for
AMP, VAMP, and ECoptc employing average variances are repeated in gray for
reference.

First, we note that in case of small dimensions, the use of individual variances
leads to more performance gains than in case of larger dimension. However, the
straightforward application in the EC framework is outperformed by the derived
unbiasing from Sect. 6.4.2.

Here, ECopts does not perform as well as ECoptc. This effect is again explained
by the incorrect unbiasing. In ECopts the parameter vector θ s is tuned and θc =
θo,s − θ s is employed within the cost function; see also Fig. 6.2. However, this
is exactly the stage where negative precisions occur very likely. Clipping these
negative values deteriorates the performance. In contrast, in ECoptc only the
unbiasing/update θ s = θo,c − θc is required, which is the correct procedure. As a
consequence, this version outperforms the alternative version. Noteworthy, contrary
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Fig. 6.9 Symbol error ratio (SER) over the iterations. 10 log10(1/σ
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n ) =̂ 20 dB, N = 64, M = 32,
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to the statement in [46], the partitioning of the problem is not symmetric and the
factors are not equivalent.

Finally, the sequential optimization approach ECseqc almost performs the
same as when performing full optimization. However, only N two-dimensional
optimizations per iteration instead of a 2N -dimensional one have to be carried out
leading to a much smaller complexity. The alternative approach ECseqs does not
perform well (not shown) due to the reasons discussed above. For sensing matrices
of moderate sizes, ECseqc is an interesting scheme offering very good performance
at manageable numerical complexity.
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Chapter 7
Recovery Under Side Constraints

Khaled Ardah, Martin Haardt, Tianyi Liu, Frederic Matter,
Marius Pesavento, and Marc E. Pfetsch

7.1 Introduction

Compressed sensing (CS) is a signal processing technique for efficient acquisition
and reconstruction of signals based on an underlying model sparsity, which allows
to recover the signal of interest from far fewer samples than required by traditional
acquisition systems operating at Nyquist rate. Theoretical recovery guarantees on
the number of observations required can be further enhanced if side information
on the measurement system and the signal representation is incorporated in the
form of additional side constraints that are enforced in the recovery process. The
measurement system may be subject to various types of side constraints that can
be exploited and may originate from: i) the structure of the sensing matrix (shift-
invariance, block structure, sparse co-array structures [60], etc.), ii) the structure of
the sparse representation vector (integrality, variable bounds, unit-modulus, etc.), iii)
the sparsity structure in the multiple snapshot case (block- and group-sparsity, rank-
sparsity, etc.), as well as iv) the structure of the measurements (quantization effects,
K-bit measures, magnitude-only measurements, etc.). A fundamental question that
arises in this context is, in which sense structural information can be incorporated
into the CS problem and how it affects the existing algorithms and theoretical
results.
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Moreover, recovery from nonlinear measurements with sparse models has
recently been investigated, e.g., in the classical phase retrieval problem, where
different forms of redundancy have been incorporated through the use of known
or unknown linear mixing networks. Redundancy can further enhance recovery in
this case.

A large variety of applications involve data recorded from large-scale sensor
arrays or massive multiple-input multiple-output (MIMO) arrays, which consist of
an assembly of wideband sensors to meet the corresponding high-throughput and
high-resolution requirements. In this context, sparsity naturally arises in the angular
domain, e.g., in the form of discrete propagation models and a small number of
impinging signals from different directions. Similarly, in sensor array and MIMO
applications, the structure of the array, the properties of the constellation signal
and the transmitted signal provide important prior information. In order to keep
hardware costs in these large-scale systems at a reasonable scale while retaining
high performance, mixed analog–digital sensing system designs are employed to
reduce the number and the sampling rates of the analog-to-digital converters as well
as the quality requirements (e.g., w.r.t. linearity, dynamic range) of the hardware
components.

This chapter reviews recent developments on sparse recovery guarantees and
efficient recovery algorithms in CS networks under the aforementioned side con-
straints in the context of multi-antenna systems. First, CS with linear and nonlinear
measurement models and the corresponding recovery problems are introduced
in Sect. 7.2. Theoretical results on the recoverability of linear CS measurements
under side constraints are presented in Sect. 7.3. Recovery algorithms for sparse
measurements under side constraints are addressed in Sect. 7.4, and a new linear
mixing matrix design is proposed in Sect. 7.5. Finally, phase retrieval for known
and unknown dictionaries is discussed in Sect. 7.6, before conclusions are drawn in
Sect. 7.7.

7.2 Sparse Recovery in Sensor Arrays

Consider, as one prominent example application, the following sparse one-dimen-
sional narrow-band array processing model that is frequently encountered in the
context of direction-of-arrival (DoA) estimation [2, 6, 18, 30, 59, 70] and multiple-
input multiple-output (MIMO) communication [15] and that will be used as a
generic example in subsequent sections. We assume that K far-field narrow-band
source signals impinge on a sensor array composed of M omni-directional sensors
as depicted in the right-hand side of Fig. 7.1. The t-th time sample of the array
output vector y(t) = [y1(t), . . . , yM(t)]T ∈ C

M is given by

y(t) = A(θ (0)) x(0)(t)+ n(t), t = 1, . . . , D, (7.1)
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T {ỹ(1), . . . , ỹ(D)}
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Fig. 7.1 Sparse array processing model with linear and nonlinear mixing network

where x(0)(t) = [x(0)1 (t), . . . , x
(0)
K (t)]T ∈ C

K is the vector of signals emitted by
the K sources, n(t) ∈ C

M contains the spatially and temporally white circular
Gaussian sensor noise, and D is the number of available time samples. The matrix
A(θ (0)) = [a(θ1), . . . , a(θK)] ∈ C

M×K denotes the true array steering matrix,
whose i-th column is the array response vector a(θi) corresponding to the i-
th source with DoA θi ∈ !, where ! defines the field of view. The steering
vector a(θ) describes a manifold denoted as M

M . For example, for a uniform
linear array (ULA) with half-wavelength inter-element spacing, a(θ) is given by
a(θ) = [1, e−jπ sin(θ), . . . , e−j (M−1)π sin(θ)]T. We denote θ (0) = [θ(0)1 , . . . , θ

(0)
K ]T

as the true DoA parameter vector.

7.2.1 Compressive Data Model for Sensor Arrays

The model in (7.1) presumes a dedicated radio frequency (RF) receiver chain
for each individual antenna element including an LNA, filters, down-conversion,
analog-to-digital converter (ADC), etc. In many applications, however, such sep-
arate RF chains for each antenna element come at a high cost in terms of the
overall receiver complexity and power consumption. To reduce the number of RF
channels (and time samples) without loss in the array aperture, compressed sensing
can be applied, where the antenna outputs are linearly combined in the analog
domain and then passed through a reduced number of RF chains to obtain the
digital baseband signals as illustrated in the left-hand side of Fig. 7.1. This can
be realized in hardware, e.g., by using configurable hardware components such
as tunable phase shifters, a bank of fixed analog beamformers combined with a
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fast switching network that enables analog beamformer selection, and/or a band of
(tunable) bandpass filters. This way, N ≤ M RF receiver channels are used for
signal processing in the digital domain.

Let �(0)(t) ∈ C
N×M denote the complex analog mixing matrix of a compressive

array at time t , which compresses the output of M antenna elements to N active RF
channels. Then, the complex (baseband) array output (7.1) after combining can be
expressed as

ỹ(t) = �(0)(t)
(
A(θ (0)) x(0)(t)+ n(t)

)+ w(t), t = 1, . . . , D, (7.2)

where [�(0)(t)]n,m = αn,m(t) · ejϕn,m(t), n = 1, . . . , N, m = 1, . . . ,M with
αn,m(t) ∈ [0, 1], ϕn,m(t) ∈ [0, 2π ], and w(t) ∈ C

N contains the spatially and
temporally white circular Gaussian measurement noise. Signals may be subject to
additive noise that acts before (i.e., in the form of n(t)) or after the mixing network
(i.e., in the form of w(t)). Defining the effective array steering matrix Ã(θ (0), t) =
�(0)(t)A(θ (0)), Model (7.2) becomes

ỹ(t) = Ã(θ (0), t) x(0)(t)+ ñ(t), (7.3)

where ñ(t) = �(0)(t)n(t)+ w(t) is the effective noise vector.
Cost-efficient analog hardware devices and data acquisition systems generally

involve nonlinear transformations that can perform further compression. Such
nonlinear transformations are indicated by the operator T, which performs a
nonlinear mapping from C

N×D to C
L×D as depicted in Fig. 7.1. The types of

nonlinearity consist, for instance, of nonlinear transformations introduced from low-
cost power amplifiers, magnitude-only, and sub-band power measurements that are
often used in cellular communications, C-bit quantization, the more aggressive 1-bit
quantization (sign-only measurements), hard-thresholding, and soft-thresholding, or
modulo operations. Considering the D time samples simultaneously, the resulting
measurement matrix Z = [z(1), . . . , z(D)] ∈ C

L×D recorded at the output of the
nonlinear mixing network is given by

Z = T{�(0)(1)A(θ (0)) x(0)(1), . . . ,�(0)(D)A(θ (0)) x(0)(D)
}+ N, (7.4)

where N ∈ C
L×D combines the various noise contributions. If the mixing matrix

�(0)(t) is time-invariant, i.e., �(0)(t) = �(0), the model (7.4) reduces to

Z = T{�(0)A(θ (0))X(0)}+ N, (7.5)

where X(0) = [x(0)(1), . . . , x(0)(D)] ∈ C
K×D comprises the D time snapshots.
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7.2.2 Sparse Recovery Formulations for Sensor Arrays

Based on (7.5), we aim to solve the sparse recovery problem that allows for a robust
and efficient estimation of the frequencies of the K sources x(0)k (t) from the set of
measurements z(t) while exploiting potential structure in �(t), Ã, A, and x(0)(t),
or specific properties of T. Specifically, we will address variations of the general
multiple-measurement �p,q mixed norm minimization problem

min
X,�

1
2

∥
∥Z− T{�A(θ)X

} ∥∥2
F + λ‖X‖p,q : side constraints, (P0)

where at this point � is assumed to be time-invariant for simplicity of description
(i.e., considering (7.5)), A(θ) ∈ C

M×P with P � M is a “fat” sensing matrix
corresponding to the P -dimensional DoA grid vector θ that appropriately samples
the field of view !, and X ∈ C

P×D is the row-sparse (joint-sparse) signal matrix
of interest, i.e., its columns share the same support. The support of the non-zero
rows of X corresponds to the DoAs on the spatial grid. Moreover, the regularization
parameter λ > 0 controls the trade-off between the data-fitting term and the sparsity
level in X. The joint-sparsity in x is induced by the �p,q mixed norm defined as

‖X‖p,q =
( P∑

k=1

‖xk‖qp
)1/q

, (7.6)

for p, q ≥ 1, which applies an inner �p-norm to the rows xk , k = 1, . . . , P in
X = [x1, . . . , xP ]T and an outer �q -norm to the �p-row-norms. Ideally, we aim
to solve (P0) using the �p,0-pseudo-norm ‖X‖p,0, which is the cardinality of the
non-zero �p-norms of the rows of X. If D = 1, the model reduces to the single-
measurement case and the �p,1-mixed-norm reduces to the �1-norm.

In the absence of the various noise contributions, i.e., N = 0, the general
minimization problem (P0) can be equivalently written as

min
X,�

{‖X‖p,q : T {�A(θ)X} = Z, additional side constraints
}
. (7.7)

7.3 Recovery Guarantees Under Side Constraints

In this section, we consider the uniform recovery of sparse solutions with additional
side constraints on the solutions/signals. We use the signal model (7.1) without noise
in the single-measurement case, i.e., n = 0 and D = 1. More precisely, consider the
equation system Ax = y for A ∈ R

m×n, y ∈ R
m. The side constraints for x can be

expressed by requiring that x ∈ C ⊆ R
n. This leads to optimization models
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min {‖x‖0 : Ax = y, x ∈ C}, (7.8)

i.e., variants of (7.7) in the single-measurement case without nonlinearities, which
promise to be able to uniquely recover sparse solutions for a larger set of right-hand
side vectors y. This is illustrated by the following very simple toy example.

Example 7.1 Consider the following recovery problem for n = 2. Let A = [1,−1]
and y = 1. The system Ax = y has two sparse solutions, namely x1 = (1, 0)T

and x2 = (0,−1)T. Since ‖x1‖1 = ‖x2‖1 = 1, it is not possible to uniquely recover
either point by �1-minimization or that by �0-minimization. But by exploiting
nonnegativity, x1 can indeed be uniquely recovered.

Another example of a whole family of sensing matrices showing that exploiting
side constraints leads to weaker recovery conditions can be found in [22, Theo-
rem 4.5]. This shows that side constraints are not only of theoretical interest but
should be exploited in the recovery process. The price to pay may of course be that
the recovery problems become harder to solve.

7.3.1 Integrality Constraints

One particular example of an interesting side constraint is the integrality of x.
Applications include discrete tomography [31] or massive MIMO with constellation
signals [20, 21]. A notable special case of this setting includes the recovery of binary
vectors, which has applications in digital or wireless communication systems.

The corresponding general recovery problem can be formulated as

min {‖x‖0 : Ax = Ax(0), x ∈ [
,u]Z}, (7.9)

where x(0) ∈ [
,u]Z := {x ∈ Z
n : �i ≤ xi ≤ ui, i ∈ [n]} is an s-sparse vector and

A ∈ R
m×n. Note that we can assume 
 ∈ Z

n ∪ {−∞} and u ∈ Z
n ∪ {∞}. As in the

case of classical sparse recovery, we consider the �1-relaxation of (7.9), namely

min {‖x‖1 : Ax = Ax(0), x ∈ [
,u]Z}. (7.10)

In the literature, recovery of binary and integral sparse vectors using (7.10) has
been considered for example in [26, 62], where the nonconvex integrality condition
was relaxed to x ∈ [
,u] := {x ∈ R

n : 
 ≤ x ≤ u}. In this case, the prior
knowledge of x being integral does not help for recovery: uniform recovery of all
sparse bounded integral x is equivalent to uniform recovery of all sparse bounded x,
see [26]. This already shows that in order to exploit integrality, one has to take
this into account in the recovery program. Note that (7.10) is nonconvex but can
be formulated as a mixed-integer (linear) program (MIP). Furthermore, note that
both (7.9) and (7.10) are NP-hard [34].
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It turns out that in case of rational measurement matrices A and no bounds on the
variables, there is again no difference between integral and general x [34]. However,
in the presence of additional bounds, this is no longer true. In this case, it is possible
to formulate null space properties depending on the bounds 
, u that characterize
uniform recovery of integral (bounded) sparse vectors x using (7.10), see [34].
To this end, define the following two null space properties (NSP) depending on
a set V ⊆ R

n. Let A ∈ R
m×n and S ⊆ [n] := {1, . . . , n} and define

NSP(V ) : ‖vS‖1 < ‖vS‖1 ∀ v ∈ (V ∩N(A)) \ {0},

NSP+(V ) : vS ≤ 0 1⇒
n∑

i=1

vi < 0 ∀ v ∈ (V ∩N(A)) \ {0},

where S denotes the complement of a set S, vS denotes the vector of elements
indexed by S, and N(A) denotes the null space of the matrix A.

Then, NSP(Rn) is the classical null space property [14, 16] that characterizes
uniform recovery of sparse vectors x by �1-minimization, and NSP+(Rn) is the well-
known nonnegative null space property [27, 87] characterizing uniform recovery via
nonnegative �1-minimization.

For integral vectors without bounds, i.e., �i = −∞ and ui = ∞ for all i ∈ [n],
and integral nonnegative vectors, the results for uniform recovery are completely
analogous to the classical case with the only exception that for satisfying the
NSP, only integral vectors in the null space of A are of interest, see [34] for the
exact statements. This observation also shows that for A ∈ Q

m×n, the classical
(nonnegative) NSP and the corresponding integral (nonnegative) NSP coincide,
since for A ∈ Q

m×n, all vectors in the null space of A can be scaled to integrality.
Thus, for rational data, exploiting integrality does not lead to improved recovery
conditions.

If the bounds 
, u are nontrivial, the situation changes fundamentally. The first
difference is that for classical recovery, bounds on x do not influence recovery
properties since vectors in the null space of A can be scaled accordingly. For integral
vectors in the presence of bounds −∞ ≤ �i ≤ 0 ≤ ui ≤ ∞ for all i ∈ [n],
however, a new NSP arises. It turns out that the condition NSP([
 − u,u − 
]Z) is
only sufficient but not necessary for uniform recovery using (7.10). Nevertheless,
we can use a variable split into positive and negative parts to obtain an NSP that
characterizes uniform recovery in the following statement.

Theorem 7.1 ([34]) Let A ∈ R
m×n and s ≥ 0. Then every s-sparse vector x(0) ∈

[
,u]Z is the unique solution of (7.10) if and only if

−(vS,wS)
T ∈ K 1⇒

n∑

i=1

vi + wi < 0,
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holds for all (v,w)T ∈ N((A,−A)) ∩ (K + (−K)) with (v,w)T �= (0, 0)T and
all S ⊆ [n], |S| ≤ s, where

K :=
{(

x
y

)
∈
[(

0

0

)
,

(
u
−


)]

Z

: xi · yi = 0, i ∈ [n]
}
.

The complementarity constraints xi · yi = 0 in K are due to the split into
positive and negative parts. This already shows that the introduction of bounds
leads to different recovery conditions, in contrast to the situation of classical sparse
recovery over Rn. For testing the NSP in Theorem 7.1, one needs to take care of the
complementarity constraints xi · yi = 0. This can be done by, e.g., using methods
from [11, 12]. For nonnegative integral vectors with upper bounds, the variable
split is not needed, and it can be shown that NSP+([−u,u]Z) characterizes uniform
recovery [34].

Besides using (7.10) for recovery of sparse integral vectors, one can also use the
exact recovery problem (7.9), which can be formulated as a MIP if there are finite
bounds by expressing the nonconvex �0-objective using binary variables (recall
that (7.9) and (7.10) areNP-hard [34]). In this case, it is also possible to characterize
when solving (7.9) recovers any s-sparse integral vector with or without bounds. The
condition for classical sparse recovery using �0-minimization is spark(A) > 2s,
where spark(A) denotes the smallest number of linear dependent columns in A. The
corresponding statements for integral sparse recovery using (7.9) appear in [34].

7.3.2 General Framework for Arbitrary Side Constraints

In the previous section, we have explicitly considered integrality constraints as
one specific side constraint that can be added to the recovery problem to obtain
stronger recovery guarantees. The corresponding recovery conditions resemble the
well-known null space properties that exist for various other settings such as sparse
(nonnegative) recovery [14, 16, 27, 87], block-sparse recovery [63], or low-rank
(positive semidefinite) matrix recovery [28, 45]. Thus it seems reasonable to search
for a general setting and null space property that unifies the cases already considered
in the literature. Such a general framework is presented in [25] that comprises all the
previously mentioned settings but does not handle additional side constraints such
as nonnegativity, integrality, and positive semidefiniteness. Sparsity in this general
framework is expressed using projections. Recently, this general framework was
extended in [22] to also cover additional side constraints. Under mild assumptions
on the side constraints and the measurement process, it is possible to state an NSP
for the corresponding general recovery problem. It turns out that this general NSP
specializes to the already known NSPs in the various special cases mentioned above.
In the following, we will shortly describe this general recovery framework and
provide an application in order to evaluate the influence of side constraints.
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For the general framework, we need two finite-dimensional Euclidean spaces X
and E. A linear sensing map A : X → R

m is used for acquiring signals x ∈ X,
and a linear representation map B : X → E is used for mapping a signal to an
appropriate representation. We will denote the image of x under a linear operator F
as Fx. Additional side constraints are modeled using a set C ⊆ X with 0 ∈ C. The
image of C under the map B is denoted withD. Finally, let ‖·‖ be a norm on E.

Sparsity in this general framework is expressed using projections onto appropri-
ate subspaces. Therefore, let P be a set of matrices representing linear maps on E.
Each P ∈ P is assigned a nonnegative real weight by ν : P → R+ and another
linear map P : E → E. Then, for s ∈ R+, an element x ∈ X is called s-sparse, if
there exists a linear map P ∈ P with ν(P ) ≤ s and PBx = Bx. Furthermore, let
Ps = {P ∈ P : ν(P ) ≤ s} be the set of linear maps that induce s-sparse elements.

The corresponding generalized recovery problem for a given right-hand side y ∈
R
m can be formulated as

min {‖Bx‖ : Ax = y, x ∈ C}. (7.11)

Note that this is convex if C is convex. Using this general framework, it is possible to
state two NSPs that can be used to characterize uniform recovery using the general
recovery problem (7.11).

Definition 7.1 The linear sensing map A satisfies the general null space property of
type I and type II of order s for the setC if and only if for all v ∈ (N(A)∩(C+(−C)))
with Bv �= 0 and all P ∈ Ps , it holds that

−PBv ∈ D 1⇒ ∃ v(1), v(2) ∈ C, v = v(1) − v(2), ‖PBv(1)‖ − ‖PBv(2)‖ < ‖PBv‖,
(NSP-IC)

−PBv ∈ D 1⇒ ∀ v(1), v(2) ∈ C, v = v(1) − v(2) : ‖PBv(1)‖ − ‖PBv(2)‖ < ‖PBv‖,
(NSP-IIC)

respectively, where N(A) := {v ∈ X : Av = 0} is the null space of A.

Example 7.2 (Recovery of Sparse Nonnegative Vectors by �1-Minimization) For
the recovery of nonnegative vectors, let X = E = R

n, B be the identity, and
‖·‖ = ‖·‖1. The set of side constraints is C = R

n+, implying D = R
n+. Let P

be the set of orthogonal projectors onto all coordinate subspaces of Rn, and define
P := In−P , where In denotes the identity mapping on R

n. Define the nonnegative
weight ν(P ) := rk(P ), so that ν(P ) is the number of non-zero components of the
subspace P projects onto. The notion of general sparsity reduces to the classical
sparsity of non-zero entries in a vector x ∈ R

n+, and the recovery problem (7.11)
becomes nonnegative �1-minimization with PBx = xS and PBx = xS . In this case,
it can be shown that the general null space property (NSP-IC) of order s for the set
C is equivalent to the known nonnegative null space property [27, 87]



222 K. Ardah et al.

vS ≤ 0 1⇒
∑

i∈S
vi < ‖vS‖1, ∀ v ∈ N(A) \ {0}, ∀ S ⊆ [n], |S| ≤ s,

(NSP≥0)

where S denotes the index set of components on which P projects.

Under mild assumptions, the null space properties (NSP-IC) and (NSP-IIC) can
be proven to characterize uniform recovery using (7.11). Which NSP is needed
depends on which assumptions are satisfied; see [22] for the formal statement. More
examples of how the various settings already considered in the literature turn out to
be special cases of this general recovery statement can also be found in [22]. At
this point, it is important to notice that already in the special case of sparse vectors,
checking whether A satisfies the classical NSP is NP-hard [65].

The two NSPs characterizing uniform recovery in a very general framework
already indicate that a stronger, i.e., more restrictive side, constraint leads to weaker
conditions that need to be satisfied to guarantee uniform recovery.

In [22], an NSP for the recovery of positive semidefinite block-diagonal matrices
is derived, which has not been considered before. Let X ∈ Sn+ be a (symmetric)
positive semidefinite matrix and A : Sn → R

m, A(X) = (A1 • X, . . . ,Am • X)T

be a linear operator, where A1, . . . ,Am ∈ Sn are symmetric matrices and “•”
denotes the component-wise inner product. In order to define a block-diagonal form,
let k ≥ 1 and B1, . . . , Bk �= ∅ be a partition of [n]. The matrix X and the linear
measurement operator A(X) are in block-diagonal form with blocks B1, . . . , Bk ,
if Xs,t = (Ai)s,t = 0 for all (s, t) /∈ (B1 × B1) ∪ · · · ∪ (Bk × Bk) and all i ∈ [m].
Let XB be the submatrix containing rows and columns of X indexed by B. The
corresponding norm is given by the �∗,q -norm defined as

‖X‖∗,q := ‖(‖XB1‖∗, . . . , ‖XBk
‖∗)T‖q,

and the block support BS(X) is given by the indices of those blocks XBi
�= 0.

By using an appropriate linear representation map to encode the block-diagonal
structure, (NSP-IC) simplifies to

VBi
3 0 ∀ i ∈ S 1⇒

∑

i∈S
1Tλ(VBi

) <
∑

i∈S
‖VBi

‖∗, (NSP∗∗,1,40)

for all V ∈ (N(A) ∩ Sn) \ {0} and all S ⊆ [k], |S| ≤ s, where λ(VBi
) is the vector

of eigenvalues of VBi
, and 1 is a vector of ones. The general uniform recovery

statement [22, Theorem 2.7] yields the following theorem.

Theorem 7.2 ([22]) Let A(X) be a linear operator in block-diagonal form and s ≥
1. Then, every positive semidefinite X(0) ∈ Sn+ with ‖X(0)‖∗,0 ≤ s is the unique
solution of min {‖X‖∗,1 : A(X) = b, X 4 0} with b = A(X(0)) if and only if A(X)

satisfies (NSP∗∗,1,40) of order s.
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As a conclusion, the general framework presented above can answer many
interesting questions concerning uniform recovery in the presence of side con-
straints using the optimization problem (7.11). The two general null space prop-
erties (NSP-IC) and (NSP-IIC) can be used to analyze and quantify the exact impact
of various side constraints in the recovery process. Given a specific setting, the NSPs
can decide whether additional side information is needed or which side constraints
need to be exploited in the recovery process to guarantee uniform recovery. For
instance, this framework explains why there are two seemingly different NSP
formulations for classical sparse recovery and nonnegative sparse recovery and their
connection.

7.4 Recovery Algorithms Under Different Side Constraints
for the Linear Measurement Model

7.4.1 Constant-Modulus Constraints

In this section, we consider a variation of Problem (7.8) for the case of noisy
measurements s and for side constraints on the sparse representation vector of the
form {x ∈ C

N : |xn| ∈ {0, c} ∀ n ∈ [N ]}. This problem emerges, e.g., in multi-
user massive MIMO hybrid precoding systems with antenna selection and strict per
antenna magnitude requirements [13]. In this application, let A denote the MIMO
N × K channel matrix, y denote the symbol vector of the K users, and x denote
the transmitted signal vector. To limit nonlinearity effects in the power amplifiers,
the magnitudes of non-zero signals xn transmitted from the selected antennas are
restricted to a constant c. The optimization problem can be formulated as [13]

min
X∈CN

‖x‖0 (7.12a)

s.t. ‖y− ATx‖2 ≤
√
δ, (7.12b)

|xn| ∈ {0, c}, ∀n ∈ [N ], (7.12c)

where ‖x‖0 = |{n ∈ [N ] : xn �= 0}| denotes the number of non-zero entries
of x, i.e., the number of active antennas. We assume without loss of generality
that c = 1. In order to reformulate the constant-modulus constraint (7.12c), we
split vector x into real and imaginary parts Re[x] and Im[x], respectively. Let
b = [b1, b2, . . . , bN ]T ∈ {0, 1}N denote a vector of binary variables. Problem (7.12)
can then be written as
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min
x∈CN ,b∈{0,1}N

N∑

n=1

bn (7.13a)

s.t.
K∑

k=1

(
Re[yk] −

(
Re[ak]Tw− Im[ak]Tz

))2

+
(

Im[yk] −
(

Re[ak]Tz+ Im[ak]Tw
))2 ≤ δ, (7.13b)

Re[xn]2 + Im[xn]2 ≤ bn, ∀ n ∈ [N ], (7.13c)

Re[xn]2 + Im[xn]2 ≥ bn, ∀ n ∈ [N ], (7.13d)

bn ∈ {0, 1}, ∀ n ∈ [N ]. (7.13e)

In (7.13), we have replaced the modulus constraints |xn|2 = Re[xn]2 + Im[xn]2 =
bn, n ∈ [N ], by the two inequality constraints (7.13c) and (7.13d), which will be
treated differently in the following. The mixed-integer nonlinear program (7.13)
will be solved by employing a spatial branching method [71] in which branching
is performed on both integral and continuous variables. In this branch-and-bound
procedure, the binary constraints bn ∈ {0, 1} at each node of the tree are relaxed to
linear inequality constraints 0 ≤ bn ≤ 1.

In the case that the solution (x̂, b̂) of the LP relaxation of Problem (7.13) does
not satisfy the condition Re[x̂n]2 + Im[x̂n]2 ≥ b̂n for some n ∈ [N ], this violation
will be resolved by one of the following steps:

1. If the binary variable b̂n is already fixed to zero, inequality (7.13c) also implies
that x̂n is set to zero.

2. If the bounds of the continuous variables Re[xn] and Im[xn] are not yet restricted
to one of the orthants w.r.t. Re[xn]×Im[xn], four branching nodes can be created,
the first with the additional constraints Re[xn] ≥ 0, Im[xn] ≥ 0, the second with
Re[xn] ≥ 0, Im[xn] ≤ 0, the third with Re[xn] ≤ 0, Im[xn] ≤ 0, and the fourth
with Re[xn] ≤ 0, Im[xn] ≥ 0. This partitions the feasible solution set into these
four orthants.

3. If the bounds of the continuous variables Re[xn] and Im[xn] are already restricted
to one of these four orthants, the following steps are performed. Assume w.l.o.g.
that (x̂n, b̂n) is feasible for the first orthant, i.e., Re[x̂n] ≥ 0 and Im[x̂n] ≥ 0.
Propagation: Let �r ≤ Re[xn] ≤ ur, �i ≤ Im[xn] ≤ ui denote the current lower
and upper bounds of the variables Re[xn] and Im[xn], respectively. Compute the
four points (�r, f (�r)), (ur, f (ur)), (f (�i), �i), and (f (ui), ui) on the unit circle
that correspond to the respective lower and upper bounds of Re[xn] and Im[xn],
where f (x) = √

1− x2. These four points can now be used to strengthen the
lower and upper bounds of Re[xn] and Im[xn], as depicted in the left-hand side
of Fig. 7.2. If the binary variable bn is not yet fixed to one, the lower bounds
are not propagated, as bn could be set to zero in an optimal solution, implying
Re[xn] = Im[xn] = 0 as well. As an example, consider the situation depicted in
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Fig. 7.2 Left: Inequalities that are added to the sub-nodes. Right: Bound propagation for the
continuous variables

Fig. 7.2. In order for an optimal solution (x�,b�) to fulfill the modulus constraint
Re[xn]2 + Im[xn]2 ≥ bn, the point (Re[x�n], Im[x�n]) needs to lie on or above
the arc between the two points (f (ui), ui) and (ur, f (ur)) if b�n = 1, so that the
lower bounds of Re[xn] and Im[xn] can be tightened.
Separation: If Re[x̂n] + Im[x̂n] < b̂n, add the cut Re[xn] + Im[xn] ≥ bn to the
LP relaxation. Note that each solution in this orthant on the unit circle satisfies
this inequality.
Branching: If Re[x̂n] + Im[x̂n] ≥ b̂n, create two branching nodes defined by
linear inequalities of the form fn Re[xn] + gn Im[xn] ≥ bn, as visualized in the
left-hand side of Fig. 7.2.

Computationally efficient suboptimal heuristic solutions for problem (7.12) and
simulation results from numerical experiments can further be found in [13].

7.4.2 Row- and Rank-Sparsity

In this section, we consider row- and rank-sparse recovery from noisy mea-
surements. The idea to exploit a common sparsity structure among multiple
measurements as prior information was proposed in [23, 29, 41, 67, 69, 85], where
the mixed-norm (7.6) is used to enforce row-sparsity. The corresponding row-
sparse data model is illustrated in Fig. 7.3. The classical row-sparse recovery
problem corresponds to a least-squares data-fitting problem with �2,1-mixed-norm
minimization:

min
X

1

2
‖AX− Y‖2

F + λ
√
D ‖X‖2,1, (7.14)

where X = [x(1), . . . , x(D)]. This problem emerges, e.g., in the context of
direction-of-arrival (DoA) estimation, where the columns of the dictionary A
represent the array responses for difference directions and the support of the
matrix X, i.e., the indices of the non-zero rows indicate the source DoAs. The
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Fig. 7.3 Multiple
measurement problem with
row sparsity

=

Y = A(ν) X

dimension of problem (7.14) grows with the number of measurements D and the
size of the dictionary and can become computationally intractable. To reduce the
computational cost, it was suggested in [41] to reduce the dimension of the M ×D

measurement matrix Y by matching only the signal subspace in the form of an
M × K matrix YSV, leading to the prominent �1-SVD method. A drawback of the
�1-SVD method is that it requires knowledge of the number of source signals and
that the estimation performance may deteriorate in the case of correlated source
signals. To overcome this limitation, a convenient equivalent problem reformulation
was derived in [54] as stated in the following theorem.

Theorem 7.3 (Problem Equivalence 1) The row-sparsity inducing �2,1 mixed
norm minimization problem (7.14) is equivalent to the convex problem

min
S∈D+

tr
(
(ASAH + λ IM)−1R̂

)+ tr(S), (7.15)

with R̂ = YYH/D denoting the sample covariance matrix and D+ describing the
set of nonnegative diagonal matrices, in the sense that minimizers X� and S� for
problems (7.14) and (7.15), respectively, are related by

X� = S�AH(AS�AH + λIM)−1Y. (7.16)

Conversely, S� = diag(s�1, . . . , s
�
K) contains the row-norms of the sparse signal

matrix X� = [x�1, . . . , x�K ]T on its diagonal according to

s�k =
1√
D
‖x�l ‖2, (7.17)

for k = 1, . . . , K , such that the union support of X� is equivalently represented by
the support of the sparse vector of row norms [s�1, . . . , s�K ]T.
Problem (7.15) is known as the SPARse ROW-norm reconstruction (SPARROW)
reformulation. It reveals several interesting properties of the underlying multiple
measurement problem, and it can be reformulated as a semidefinite program. Unlike
Problem (7.14), the dimension of (7.15) does not grow with the number of mea-
surements [54]. Gridless variants of the method for uniform linear arrays (ULAs),
shift-invariant arrays, and augmentable arrays are reported in [3, 53, 54, 64, 72].
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Fig. 7.4 Multiple measurement problem with block sparsity

In the case of DoA estimation in partly calibrated subarray systems with unknown
DoAs ν and subarray position parameters η, the recovery problem can be formulated
as a rank- and block-sparse regularization problem [50]. The corresponding data
model is illustrated in Fig. 7.4, where B(ν) contains the subarray steering vectors,
�(ν, η) = [ϕ(ν1, η), . . . ,ϕ(νK, η)] contains the inter-subarray array responses,
and X contains the row-sparse signal waveforms. We observe that the matrix Z =
[ZT

1 , . . . ,ZT
K ]T enjoys a special block- and rank-sparse structure as it is composed

of K-stacked rank-one matrices Zk = ϕ(νk, η) xT
k , for k = 1, . . . , K . The block-

and rank-sparse recovery problem is given by

min
Z

1

2
‖BZ− Y‖2

F +
K∑

k=1

‖Zk‖∗, (7.18)

where the nuclear norm regularization ‖Zk‖∗ = tr
(
(ZH

k Zk)
1/2
)

encourages block-
rank-sparsity, i.e., the solution blocks Zk shall either be zero or low-rank [32,
33, 52, 77]. Similar to Problem (7.14) also Problem (7.18) admits a convenient
reformulation with a significantly reduced number of optimization variables, as
provided by the following theorem [50, 51].

Theorem 7.4 (Problem Equivalence 2) The rank- and block-sparsity inducing
�∗,1-mixed-norm minimization Problem (7.18) is equivalent to the convex problem

min
S∈S+K

tr
(
(BSBH + λI)−1R̂

)+ tr(S), (7.19)

with R̂ = YYH/D and S+K denoting the sample covariance matrix and the set
of positive semidefinite block-diagonal matrices composed of K blocks of size
P × P , respectively. The equivalence holds in the sense that a minimizer Z� for
Problem (7.18) can be factorized as

Z� = S�BH(BS�BH + λI)−1Y, (7.20)

where S� is a minimizer for Problem (7.19).
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7.4.3 Block-Sparse Tensors

In [7], block-sparse core tensors were considered as the natural multidimensional
extension of block-sparse vectors or matrices (as illustrated in Fig. 7.4) in the context
of multidimensional data acquisition. Such block-sparse tensors arise naturally
in a wide range of applications as, for instance, in magnetic resonance imaging
(MRI), hyper-spectral imaging, multidimensional inpainting, missing data problems
for electroencephalogram (EEG), super-resolution imaging, or MIMO wireless
communications. The (M1, . . . ,MQ) block sparsity for a tensor assumes that Q
support sets, characterized by Mq indices corresponding to the non-zero entries,
fully describe the sparsity pattern of the considered tensor. In the context of
compressed sensing with Gaussian measurement matrices, the Cramér-Rao bound
(CRB) on the estimation accuracy of a Bernoulli-distributed block-sparse core
tensor was also derived in [7]. This prior assumes that each entry of the core
tensor has a given probability to be non-zero, leading to random supports of
truncated Binomial-distributed cardinalities. Based on the limit form of the Poisson
distribution, an approximated CRB expression is provided for large dictionaries and
a highly block-sparse core tensor. Using the property that the n-mode unfoldings of
a block-sparse tensor follow the multiple-measurement vectors (MMV) model with
a joint sparsity pattern, a fast and accurate estimation scheme, called Beamformed
mOde-based Sparse Estimator (BOSE), is proposed in the second part of [7]. The
main contribution of BOSE is to exploit the structure by mapping the MMV model
onto the single-measurement vector (SMV) model, via beamforming techniques.
Finally, the proposed performance bounds and BOSE are applied in the context
of compressed sensing to non-bandlimited multidimensional signals with separable
sampling kernels and for multipath channels in a MIMO wireless communication
scheme.

7.4.4 Non-circularity

Recently, three different sparse recovery strategies have been proposed [55, 57, 58]
for exploiting the strict non-circularity property of the impinging signals x(0)(t)
in (7.1) [56, 61], i.e., the received complex symbols x(0)(t) result from real-valued
constellations rotated by an arbitrary phase φ. These strictly non-circular signals
may represent real-valued modulation schemes such as BPSK (binary phase shift
keying), PAM (pulse amplitude modulation), ASK (amplitude shift keying), or
Offset-QPSK (offset-quadrature phase shift keying, after an appropriate derotation).
As the rotation phase φ (that may be due to the propagation environment) is usually
unknown, the estimation problem becomes a two-dimensional (2-D) sparse recovery
problem, which requires estimating the support in the spatial domain as well as in
the rotation phase domain.
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In [55], a combined 2-D finite dictionary was introduced for both dimensions,
and the resulting 2-D sparse recovery problem was solved by a �2,1-mixed-norm
relaxation using multiple-measurement vectors (MMV). Thereby, the known ben-
efits associated with strictly non-circular (NC) sources [56, 61], e.g., an improved
estimation accuracy and a doubling of the number of resolvable signals, can also be
achieved via sparse recovery. In order to handle the resulting 2-D off-grid problem,
an off-grid estimation procedure was introduced by means of local interpolation.

Article [58] addresses the prohibitive computational complexity required for
solving the 2-D mixed-norm problem as a result of sampling both dimensions,
significantly increasing the size. Thus, in [58], a sparse optimization framework
was proposed based on nuclear norm (rank) minimization after lifting the original
optimization problem to a semidefinite programming (SDP) problem in a higher-
dimensional space. To this end, the 2-D estimation problem is reduced to a
1-D estimation problem only in the sampled spatial domain, which automatically
provides gridless estimates of the rotation phases. As a result, the proposed method
requires a significantly lower computational complexity while providing the same
performance benefits. Additionally, an off-grid estimator for the spatial domain has
been proposed.

In [57], a gridless sparse recovery algorithm for NC signals has been proposed
based on atomic norm minimization (ANM). After the NC preprocessing step,
the ANM-equivalent SDP problem provides a solution matrix with a two-level
Hermitian Toeplitz structure. It was shown that by using the multidimensional gen-
eralization of the Vandermonde decomposition, the desired direction estimates can
be uniquely extracted from the two-level Hermitian Toeplitz matrix via NC Standard
ESPRIT or NC Unitary ESPRIT [17] in closed form. Due to the exploitation of
the NC signal structure, the proposed NC ANM procedure provides a superior
estimation accuracy as compared to the original methods for arbitrary signals. In
this case, the number of estimated sources can exceed the number of sensors in the
array.

7.5 Mixing Matrix Design

In this section, we consider a noiseless time-invariant version of (7.2) given as

y = �Ax = �x ∈ C
N, (7.21)

where � = �A ∈ C
N×P is the total sensing matrix, � ∈ C

N×M is the mixing
matrix (a.k.a., the projection/compression matrix), A ∈ C

M×P is the dictionary
matrix with P ≥ M , and x ∈ C

P is the signal vector of interest with ‖x‖0 ≤ s, i.e., x
is s-sparse. To enhance recoverability of x, the sensing matrix � should be designed
carefully so that it satisfies a certain property (e.g., the NSP or the restricted isometry
property (RIP) [8, 9]). Among them, the mutual coherence property of the sensing
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matrix �, denoted hereafter as μmax(�), provides an easy measure with respect to
recoverability, which is defined as [48]

μmax(�) = max
i �=j

|ψH
i ψj |

‖ψ i‖2 ‖ψj‖2
, (7.22)

with columns ψk = [ψk,1, . . . , ψk,N ]T ∈ C
N , k ∈ {1, . . . , P }. Clearly, a large

coherence μmax(�) means that there exist, at least, two highly correlated columns
in �, which may confuse any pursuit technique, such as basis pursuit (BP) and
orthogonal matching pursuit (OMP). However, it has been shown that if s <
1
2

(
1 + 1/μmax(�)

)
, the above techniques are guaranteed to recover x with high

probability [8, 48]. Due to its simplicity, several sensing matrix design methods via
mutual coherence minimization have been proposed recently, e.g., in [1, 84, 86].
In general, the results provided by [1, 84, 86] confirm that a well-designed sensing
matrix always leads to a better recoverability. However, we note that the achievable
mutual coherence by the aforementioned methods is, in general, far from the known
theoretical Welch lower bound, as we will also show in Sect. 7.5.3. Moreover, in
the scenarios where the mixing matrix is realized using a network of phase shifters,
none of the existing methods, to the best of our knowledge, have considered the
constant-modulus constraints imposed by the mixing matrix hardware that involves
cost-efficient analog phase shifters.

Formally, by assuming that the dictionary matrix A ∈ C
M×P is given and

fixed, sensing matrix design reduces to finding the mixing matrix � with constant-
modulus entries so that the coherence μmax(�) is minimized, which can be
expressed as

min
�∈CN×M

μmax(�) s.t. ‖ψk‖2 = 1, ∀k, and |φn,m| = 1, ∀n,m, (7.23)

where φn,m is the (n,m)-th entry of �, n ∈ {1, . . . , N}, and m ∈ {1, . . . ,M}.
Problem (7.23) is a nonconvex and NP-hard optimization problem [40]. In the
following, we propose two solution methods. Section 7.5.1 presents the sequential
mutual coherence minimization (SMCM) we proposed in [4] for the case of P = M .
In Sect. 7.5.2, we propose a new method termed enhanced gradient descent (EGD)
for the more general case of P ≥ M .

7.5.1 Sensing Matrix Design: P = M Case

In this subsection, we present our first solution to problem (7.23) for unconstrained
mixing matrix design, i.e., by neglecting the constant-modulus constraints. Specif-
ically, for a given dictionary matrix A ∈ C

M×P , we assume that P = M and
the columns of A are linearly independent so that the condition of AA−1 = IM is
guaranteed. In this case, for a given sensing matrix � ∈ C

N×P with a coherence
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μmax = μmax(�), the optimal unconstrained mixing matrix that preserves μmax can
be obtained as �uncon = �A−1 ∈ C

N×M , i.e., μmax(�unconA) = μmax. Therefore,
the main task here is to find a low-coherence sensing matrix � ∈ C

N×P .
Let us assume that the columns of � are normalized so that ‖ψk‖2 = 1,∀k, and

let G = �H� ∈ C
P×P be the so-called Gram matrix of �. Moreover, let Gsqr-abs ∈

R
P×P be a matrix so that its (k, j)-th entry is given as G[k,j ]sqr-abs = |G[k,j ]|2. By

expanding Gsqr-abs, it can be expressed as

Gsqr-abs =
⎡

⎢
⎣

|ψH
1 ψ1|2 . . . |ψH

1 ψP |2
...

. . .
...

|ψH
Pψ1|2 . . . |ψH

PψP |2

⎤

⎥
⎦ =

⎡

⎢
⎣

1 . . . |ψH
1 ψP |2

...
. . .

...

|ψH
Pψ1|2 . . . 1

⎤

⎥
⎦ , (7.24)

which is a symmetric matrix with all ones on its main diagonal. Since all vectors in
� have unit norm, we have G[k,j ]sqr-abs = |ψH

k ψj |2 ≤ 1,∀k �= j , and the maximum
among them represents the squared coherence of the matrix �. According to [36,
68], μmax(�) has a theoretical lower bound given as μmax(�) ≥ √β, where β =
P−N

N(P−1) . This means that, at the best, we have μmax(�) = √
β. Noting that the

k-th column vector ψk appears only in the k-th column/row of Gsqr-abs (due to its
symmetry), we propose to solve problem (7.23) in an alternating fashion by iterating
over the following P subproblems, where the k-th subproblem for updating ψk is
given as

find ψk ∈ C
N s.t. |ψH

j ψk|2 ≤ β ∀j �= k, and ‖ψk‖2 = 1. (7.25)

Problems (7.23) and (7.25) are related in the sense that both aim to minimize
the maximum off-diagonal entry in (7.24). However, the strict unit-norm constraint
‖ψk‖2 = 1 in Problem (7.25) may result in infeasibility for poorly initialized
vectors ψj ,∀j �= k, especially with a tight lower bound β. To avoid such a scenario,
we propose to relax (7.25) by dropping the unit-norm constraint and only impose
it after a solution is obtained, i.e., we first seek a solution to the following relaxed
problem

find ψk ∈ C
N s.t. |ψH

j ψk|2 ≤ β ∀j �= k, (7.26)

which, unlike (7.25), is guaranteed to be feasible. To obtain a solution of prob-
lem (7.26), a suitable objective function is needed. One possible approach is as
follows

ψk ∈ arg max
vk∈CN

|ψH
k vk|2 s.t. |ψH

j vk|2 ≤ β ∀j �= k. (7.27)

In problem (7.27), we borrow the notion from the beamforming design in
wireless communication systems, see Fig. 7.5, where we interpret vk ∈ C

N as
the beamforming vector of the k-th mobile station (MS) that we wish to design
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. . .
A BS with antennas

single-antenna MSs

MS 1 MS

1

Fig. 7.5 A P -user interference-channel (IC) system model in wireless communication systems,
where a base station (BS) with N antennas serves P single-antenna mobile stations (MSs)
simultaneously so that the data transmission to the k-th MS causes interference to the remaining
P − 1 MSs

so that the desired transmit signal to the k-th MS, i.e., |ψH
k vk|2, is maximized and

the interference signals to the remaining P − 1 MSs, i.e., |ψH
j vk|2 ≤ β,∀j �= k,

are minimized for given channel vectors {ψ1, . . . ,ψP }. Due to its convexity,
Problem (7.27) can be efficiently solved using the existing techniques, e.g., using
the proposed method in [46], as we have shown in [4, 5]. Alternatively, we can
resort to the relaxed semidefinite programming (SDP) approach, by dropping the
rank-one constraint, and write Problem (7.27) as

max
Vk∈CN×N

tr{�cov
k Vk} s.t. tr{�cov

j Vk} ≤ β ∀j �= k, and Vk 4 0, (7.28)

where �cov
k = ψkψ

H
k ∈ C

N×N and Vk = vkvH
k ∈ C

N×N . Problem (7.28) is
convex and can be efficiently solved using off-the-shelf solvers, e.g., the CVX
toolbox. Let Vk denote the obtained solution of (7.28). Then, ψk is given by the
eigenvector corresponding to the dominant eigenvalue of Vk , i.e., ψk = λmax{Vk}.
In summary, the proposed mixing matrix design method is given by Algorithm 1.
Note that a naïve approach to obtain a constrained mixing matrix, i.e., one with
constant-modulus entries, is given as �con = �(�uncon), where �(·) is a projection
function that imposes the constant-modulus constraints on �uncon element-wise,
i.e., �(z) = z/|z|. The performance of such an approach will also be evaluated
in Sect. 7.5.3.

7.5.2 Sensing Matrix Design: The General Case

In this subsection, we propose a new solution to (7.23) for the more general case of
P ≥ M . Similarly to [1], we propose to solve (7.23) indirectly by solving

min
�∈CN×M

η(�) s.t. ‖ψk‖2 = 1, ∀k, and |φn,m| = 1, ∀n,m, (7.29)
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Algorithm 1: Sequential mutual coherence minimization (SMCM)

input : �(0) ∈ C
N×P , εth

initialize: β = P−N
N(P−1) and n = 1

1 for n = 1, 2, . . . do
2 for k = 1 to P do
3 Compute Vk(n) by solving problem (7.28).
4 Update the k-th column vector of �(n) as ψk(t) = λmax{Vk(n)}.
5 end
6 if ε = |μmax(�(n))− μmax(�(n−1))|2 ≤ εth then
7 Break
8 end
9 end

output : the sensing matrix � and the corresponding mixing matrix �uncon = �A−1.

where η(�) = ‖AH�H�A − IP ‖2
F. To obtain a solution for (7.29), we propose

a constrained gradient-descent (GD) method, which updates the mixing matrix �

iteratively as

�(n) = �

(
�(n−1) − ζ · ∂η(�(n−1))

∂�(n−1)

)
, (7.30)

where n is the iteration index, ζ is the step size, and ∂η(�(n−1))

∂�(n−1)
is the gradient of

η(�(n−1)) with respect to �(n−1), which is given as [1]

∂η(�(n−1))

∂�(n−1)
= �(n−1)A(AH�H

(n−1)�(n−1)A− IP )AH = �(n−1)E(n−1)AH,

(7.31)

where �(n−1) = �(n−1)A and E(n−1) = �H
(n−1)�(n−1) − IP . The update step

in (7.30) is a direct extension of the proposed unconstrained GD method in [1]
to account for the constant-modulus constraints. Our results show that both the
unconstrained and the constrained GD-based methods achieve a mutual coherence
that is far from the known theoretical Welch lower bound, as it is shown in Table 7.1.
To enhance their performance, we propose to apply a shrinking operator on the error
matrix E(n−1) entry-wise to get Ẽ(n−1) such that the (k, j)-th entry of Ẽ(n−1) is
obtained as

Ẽ[k,j ](n−1) =
{

0,
∣
∣E[k,j ](n−1)

∣
∣ < α · √β,

sgn{E[k,j ](n−1)} ·
(∣∣E[k,j ](n−1)

∣∣− α · √β), otherwise,
(7.32)

where α ≥ 1 is an uncertainty measure and β is as defined above. After a closer look
at (7.32), one can see that for a very tight threshold β̄ = α · √β, the resulting error
matrix Ẽ(n−1) becomes a sparse matrix, where some of its entries that are smaller
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Algorithm 2: Enhanced gradient descent (EGD)

input : �(0) ∈ C
N×M , A ∈ C

M×P , εth, and ζ .
initialize: β = P−N

N(P−1) and n = 1.

1 Normalize the columns of �(0) = �(0)A so that ‖ψ (0),k‖2 = 1,∀k.
2 for n = 1, 2, . . . do
3 Calculate the error matrix E(n−1) = �H

(n−1)�(n−1) − IP .

4 Apply the shrinking operator (7.32) on E(n−1) to get Ẽ(n−1).
5 if mixing matrix should be unconstrained (i.e., �uncon) then
6 Compute �(n) = �(n−1) − ζ ·�(n−1)Ẽ(n−1)AH.
7 else if mixing matrix should be constrained (i.e., �con) then
8 Compute �(n) = �

(
�(n−1) − ζ ·�(n−1)Ẽ(n−1)AH

)
.

9 end
10 Normalize the columns of �(n) = �(n)A so that ‖ψ (n),k‖2 = 1,∀k.
11 if ε = |μ(�(n))− μ(�(n−1))|2 ≤ εth then
12 Break
13 end
14 end

output : Mixing matrix ��

than β̄ will be set to zero. The direct implication of such a shrinking operator is that
the new mixing matrix �(n) will be updated so that it mainly minimizes the entries
that are larger than β̄. In summary, the proposed enhanced GD (EGD) method for
mixing matrix design is given by Algorithm 2. In Sect. 7.5.3, we will investigate in
detail the impact of α on the performance of EGD method.

7.5.3 Numerical Results

In this subsection, we present some numerical results for the proposed sensing
matrix design methods. In all the simulation results, we set N = 16, M = 64, and
design the dictionary matrix as A = [a1, . . . , aP ] ∈ C

M×P such that its k-th column
is given as ak = [1, ejνk , . . . , ejνk(M−1)]T ∈ C

M , where νk = (2π(k − 1))/P .
For comparison, we include results for a mixing matrix � obtained by using the
proposed closed-form method in [86],1 the proposed methods in [84] and [1], as well
as averaged over 10,000 random realizations, where the entries of � are chosen from
a zero-mean circularly symmetric complex Gaussian distribution, termed EVD, Itr-
SVD, GD, and Random, respectively. We show the simulation results in terms of
the maximum mutual coherence μmax(�) defined in (7.22) and the average mutual
coherence μavg(�) defined as

1 Let U	UH be the eigenvalue decomposition of AHA. Then, the unconstrained mixing matrix
is obtained as �uncon = 	

−1/2
N UH

N , where 	N and UN contain the leading N eigenvalues and
eigenvectors, respectively. For constrained mixing matrix scenarios, simply �con = �(�uncon).
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Table 7.1 Coherence μmax(�) (μavg(�)) versus P (N = 16 and M = 64)

P Random EVD Itr-SVD GD EGD SMCM

�uncon 64 0.64 (0.32) 0.56 (0.30) 0.24 (0.23) 0.56 (0.31) 0.26 (0.25) [α = 1.2] 0.24 (0.23)

96 0.74 (0.33) 0.74 (0.32) 0.34 (0.25) 0.67 (0.33) 0.32 (0.30) [α = 1.4] 0.53 (0.28)

128 0.85 (0.34) 0.81 (0.33) 0.50 (0.27) 0.84 (0.34) 0.44 (0.32) [α = 1.7] 0.73 (0.32)

�con 64 0.64 (0.32) 0.74 (0.32) 0.51 (0.29) 0.64 (0.31) 0.31 (0.27) [α = 1.3] 0.57 (0.30)

96 0.74 (0.33) 0.75 (0.33) 0.67 (0.31) 0.68 (0.33) 0.47 (0.30) [α = 1.5] 0.68 (0.33)

128 0.85 (0.34) 0.82 (0.34) 0.79 (0.33) 0.84 (0.34) 0.72 (0.33) [α = 1.9] 0.80 (0.33)

μavg(�) = 1

Nβ

( ∑

(k,j)∈Sβ

∣∣G[k,j ]
∣∣
)
, (7.33)

where Sβ = {(k, j) : |G[k,j ]∣∣ > √
β}, Nβ is the number of elements in the set

Sβ , and G = �H� is the normalized-diagonal Gram matrix. Table 7.1 shows the
obtained results for different values of P . Moreover, Fig. 7.6 shows the convergence
behavior of the iterative methods for the scenarios with P = 64 and P = 128.
For the GD method [1], we use the step size ζ = 5 × 10−4/n, while for the EGD
method, we use ζ = 5× 10−2/n, where n is the iteration index.

From Table 7.1, when P = M = 64, we can see that the SMCM and the
Itr-SVD methods achieve similar performance, where the only difference is that
SMCM has a faster convergence rate compared to Itr-SVD, as can be seen from
Fig. 7.6. However, as expected, when the ratio P/M increases above 1, the SMCM
performance decreases, since the naïve approach of calculating the mixing matrix �

from the designed sensing matrix � incurs a performance loss. On the other hand, it
can be seen that the proposed EGD method has the best performance in almost all of
the considered scenarios. Here, we note that the introduced uncertainty measure α

has a big impact on the EGD performance and the convergence rate, as can be seen
from Fig. 7.7. In general, for a sufficiently large α, the EGD converges faster, but
its performance degrades and approaches that of the GD. On the other hand, from
Fig. 7.7, we can also note that α should not be too small since in this case most of the
entries within the resulting error matrix Ẽ will be set to zero. From our simulation
results in Table 7.1, we observe that α should be selected so that it is approximately
equal to P/M .

In this section, we have proposed the two mixing matrix design methods SMCM
and EGD via mutual coherence minimization. For the unconstrained mixing matrix
and P = M , we have shown that the original nonconvex problem can be relaxed
and divided into P convex subproblems, which are updated iteratively using an
alternating optimization technique. However, SMCM incurs some performance
loss for the constrained case and for P > M . To overcome this issue, we
have proposed the EGD method, which enhances the classical GD-based method
of [1] by introducing a shrinking operator on the error matrix. Using computer
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Fig. 7.6 Coherence μmax(�) versus the iteration index

Fig. 7.7 Coherence μmax(�) versus the iteration index

simulations, we have shown that the proposed SMCM and EGD methods have a
faster convergence rate and a lower mutual coherence compared to the benchmark
methods.

7.6 Recovery Algorithms for the Nonlinear Measurement
Model

This section is devoted to recovery techniques that explicitly consider the specific
structure of the measurements z themselves. More specifically, we consider the
special case of magnitude-only measurements. Hence, we use the information that
measurements are nonnegative, and we intend to uniquely recover the phase of the
measurement signal along with the sparse representation vector.
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7.6.1 Sparse Phase Retrieval

In this subsection, we consider the sparse phase retrieval problem [19, 24, 35, 42,
44, 47, 49, 73, 82], which aims to reconstruct an unknown complex-valued sparse
signal x ∈ C

K from M noise-corrupted magnitude-only measurements:

z = |Ax| + n, (7.34)

where A is a designed sensing matrix, n ∈ C
M is an additive noise vector, and |·|

is applied element-wise. The measurement model (7.34) can be viewed as a special
case of the system depicted in Fig. 7.1, where � is the identity and T{·} = |·|.
The recovery problem can be formulated as the following �1-regularized nonlinear
least-squares [47, 82]:

min
x∈CK

h(x) = 1
2 ‖z− |Ax|‖2

2︸ ︷︷ ︸
f (x)

+ λ ‖x‖1︸ ︷︷ ︸
g(x)

. (7.35)

It is a very challenging optimization problem due to the fact that g is nonsmooth
and, more notably, f is nonsmooth and nonconvex. Besides, the original signal x
can only be recovered up to a global phase ambiguity as x · ejφ preserves both the
magnitude measurements and the sparsity pattern.

We solve problem (7.35) using the STELA algorithm in [82], which is built on
the majorization-minimization (MM) techniques in [47] and the block successive
convex approximation (BSCA) framework in [75, 83]. The algorithm finds a
stationary point of (7.35) according to a generalized concept of stationarity via
a sequence of approximate problems that can be solved in parallel [88]. As f in
the objective function of (7.35) is nonconvex and nonsmooth, in each iteration we
first construct a smooth upper bound function for f . Then, a descent direction of
the upper bound function is obtained by solving a separable convex approximate
problem, and a step size along the descent direction is computed efficiently by exact
line search. A decrease of the original objective function h is ensured as its upper
bound is decreased. Let x(l) be the current point in the l-th iteration. Specifically,
the algorithm performs the following three steps in each iteration:

1. Smooth majorization. The quadratic function f in (7.35) can be expanded as

f (x) = 1
2

(‖z‖2
2 + ‖Ax‖2

2

)− zT|Ax|. (7.36)

Further, we note that for any x ∈ C and φ ∈ [0, 2π)

|x| = |x · ejφ | ≥ Re{x · ejφ}, (7.37)
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and equality holds for φ = − arg(x). Thus, defining z(l) = z % ej arg(Ax(l)),
where e(·) and arg(·) are applied element-wise and % denotes the Hadamard
multiplication, we obtain the following smooth and convex upper bound for f
in the l-th iteration [47]:

f̄ (l)(x) = 1
2

(‖z‖2
2 + ‖Ax‖2

2

)− zT Re
{
Ax% e−j arg(Ax(l))} = 1

2‖z(l) − Ax‖2
2,

(7.38)

which is tight at x(l), i.e., f̄ (l)(x(l)) = f (x(l)). Consequently, function h̄(l)(x) =
f̄ (l)(x)+g(x) is also an upper bound of the objective function h and tight at x(l).

2. Descent direction computation. Departing from the conventional MM algo-
rithm, we minimize a separable convex approximation of h̄(l) because h̄(l) is
computationally too expensive to minimize exactly for our present purpose.
Based on the Jacobi algorithm [75], the convex approximate problem in the l-th
iteration around point x(l) is constructed as

x̃(l) = argmin
x∈CK

K∑

k=1

f̄ (l)
(
xk, x(l)−k

)+ g(x), (7.39)

where x−k is a (K−1)-dimensional vector obtained by removing the k-th element
xk from x. Problem (7.39) is decomposed into K independent subproblems,
which can be solved in parallel with suitable hardware [74]. Each subproblem is a
Lagrangian form of single-variate LASSO, which admits a closed-form solution.
According to [75, Prop. 1], the vector x̃(l)− x(l) represents a descent direction of
h̄(l). This motivates us to update x(l) as follows:

x(l+1) = x(l) + γ (l)(̃x(l) − x(l)), (7.40)

where γ (l) ∈ [0, 1] is the step size. When x̃(l) = x(l), the algorithm has
converged to a stationary point of h̄(l), which is also stationary for the original
problem (7.35) [83, Thm. 1].

3. Step size computation. To efficiently find a proper step size γ (l) for the update
in (7.40), we perform an exact line search on a differentiable upper bound of
h̄(l) [75]. Thus, the computation of step size γ (l) is formulated as

γ (l) = argmin
0≤γ≤1

f̄ (l)
(
x(l)+γ (̃x(l)−x(l))

)+g(x(l))+γ (g(̃x(l))−g(x(l))). (7.41)

The line search (7.41) corresponds to minimizing a convex quadratic function
in the interval [0, 1], which can be solved in closed form. Using the step size γ (l)

obtained by the line search (7.41) in the update (7.40), a monotonic decrease of
the original objective function h in problem (7.35) is ensured, cf. [82].
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The mathematical expressions for the solutions of approximate problem (7.39)
and line search (7.41) can be further found in [82]. Simulation results with Gaussian
random sensing matrix A are also provided in [82]. The convergence analysis
of the BSCA framework is presented in [83]. Besides, several other applications
of the BSCA framework can be found in [37, 38, 76, 78, 79, 81]. Furthermore,
nonconvex regularization functions can be employed to resolve the defect that the
�1-regularization tends to produce biased estimates when the sparse signal has large
coefficients [80]. In addition, a comprehensive review of recent advances in phase
retrieval from a numerical perspective is presented in [10]. The conditions for unique
and stable reconstruction in sparse phase retrieval are discussed in [24, 43].

7.6.2 Phase Retrieval with Dictionary Learning

In the previous subsection, we considered the phase retrieval problem for signals that
are sparse in the standard basis. However, in some cases, the signals that need to be
recovered may only be sparse with respect to an unknown dictionary. Therefore, in
this subsection, we consider the phase retrieval with dictionary learning problem,
which jointly learns a dictionary and sparse representations for reconstructing
unknown signals. This recovery problem is involved in several applications such as
diffraction imaging [47, 66] and blind channel estimation in multi-antenna random
access network [39, 88].

We consider a special case of the system depicted in Fig. 7.1 with a known mixing
matrix � and T{·} = |·|:

z(t) = |�Ax(t)| + n(t), t = 1, . . . , D. (7.42)

Given D time samples Z = [z(1), . . . , z(D)], the objective is to jointly recover the
unknown sensing matrix A and sparse transmitted signals X = [x(1), . . . , x(D)].
The recovery problem is then formulated as the following phase retrieval with
dictionary learning problem [39, 88]:

min
A∈A,X∈CK×D

h(A,X) = 1
2 ‖Z− |�AX|‖2

2︸ ︷︷ ︸
f (A,X)

+ λ ‖X‖1,1︸ ︷︷ ︸
g(X)

. (7.43)

To avoid scaling ambiguities, we restrict A to be in the convex set A = {A ∈
C
M×K : ‖ak‖2 ≤ 1,∀k = 1, . . . , K}. Also, D > K is required to avoid trivial

solutions.
Analogously, a stationary point of problem (7.43) according to a generalized

concept of stationarity can be found by using the majorization technique in (7.37)
and the BSCA framework [88]. In addition to the procedure described in Sect. 7.6.1,
we also partition the variables into two blocks, i.e., A and X, and select a given
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number kB ∈ {1, 2} of block variables to update in each iteration. The block
variables can be selected by cyclic or random update rules [83].

Let
(
A(l),X(l)

)
be the current point in the l-th iteration. We first consider the

case where both block variables A and X are selected to update. Then, the three
main steps that are performed in each iteration by the BSCA-based algorithm for
problem (7.43) are outlined as follows:

1. Smooth majorization. Exploiting the same majorization technique given
in (7.37), we construct a smooth upper bound for f in (7.43). Defining
Z(l) = Z % ej arg(�AX(l)), we can obtain the following smooth upper bound
for f in the l-th iteration:

f̄ (l)(A,X) = 1
2‖Z(l) −�AX‖2

F, (7.44)

which is tight at (A(l),X(l)). Similarly, we construct function h̄(l)(A,X) =
f̄ (l)(A,X) + g(X) as an upper bound of the objective function h that is tight
at
(
A(l),X(l)

)
. However, we remark that, unlike in Sect. 7.6.1, the upper-bound

function f̄ (l) in (7.44) is nonconvex due to the bilinear terms AX. Therefore, the
convex approximation in the next step becomes necessary for efficiently finding
a descent direction.

2. Descent direction computation. Based on the Jacobi algorithm [75], the
separable convex approximation for the minimization of h̄(l) is constructed as

(
Ã(l), X̃(l)

) ∈ argmin
A∈A,X

{∑M
m=1
∑K

k=1 f̄
(l)
(
xmk,A(l),X(l)

−mk
)

+∑M
m=1 f̄

(l)
(
ak,A(l)

−k,X(l)
)+ g(X)

}

, (7.45)

where A−k is an M × (K − 1) matrix obtained by removing the k-th column
ak from A and X−mk denotes the collection of all entries of X except the
(m, k)-th entry xmk . Problem (7.35) can be decomposed into K + (K × D)

independent subproblems. Each subproblem can be solved either in closed form
or by an efficient algorithm. Then, the difference

(
Ã(l) − A(l), X̃(l) − X(l)

)

represents a descent direction of h̄(l) in the domain of problem (7.43). Defining
�A = Ã(l)−A(l) and �X = X̃(l)−X(l), the following simultaneous update rule
can be applied:

A(l+1) = A(l) + γ (l)�A and X(l+1) = X(l) + γ (l)�X, (7.46)

with a proper step size γ (l) ∈ [0, 1]. When
(
Ã(l), X̃(l)

) = (A(t),X(l)
)
, the

algorithm has converged to a stationary point of h̄(l), which is also stationary
for the original problem (7.43) [83, Thm. 1].
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3. Step size computation. We perform an exact line search on a differentiable upper
bound of h̄(l) to efficiently find a step size γ (l) that ensures a monotonic decrease
of the original objective function h in (7.43). The computation of step size γ (l)

is then formulated as

γ (l) = argmin
0≤γ≤1

{
f̄ (l)
(
A(l) + γ�A,X(l) + γ�X

)

+g(X(l)
)+ γ

(
g
(
X̃(l)
)− g

(
X(l)
))
}
. (7.47)

Problem (7.47) can be solved by rooting its derivative, a third-order polynomial,
which admits a closed-form expression.

In contrast to the above joint update case, if only one block variable is selected to
update in the l-th iteration, then we solve the approximate problem (7.45) only with
respect to the selected block variable, which requires solving only the corresponding
subproblems. Moreover, the update (7.46) is also performed only on the selected
block variable, which is equivalent to setting the difference of the non-selected block
variable to be all zero. Further, when either of the matrices �A and �X is all zero,
the line search problem (7.47) reduces to a simple convex quadratic program.

Details of the BSCA-based algorithm for phase retrieval with dictionary learning
and results from numerical experiments can be further found in [39].

7.7 Conclusions

Compressed sensing (CS) is a powerful technique for estimating sparse signals,
which can be recovered, under mild conditions, from far fewer samples than
otherwise indicated by the Nyquist-Shannon sampling theorem. Moreover, it was
observed that incorporating side constraints not only improves the recovery guar-
antees but also reduces the required number of samples. This chapter builds on
this important observation by addressing sparse signal reconstruction under various
types of structural side constraints, including integrality, constant-modulus, row-
and rank-sparsity, and strict non-circularity constraints. Moreover, this chapter
addresses the measurement system design for linear and nonlinear measurements of
sparse signals. For the linear measurement systems, two mixing matrix design meth-
ods based on mutual coherence minimization are proposed, where constant-modulus
constraints are imposed element-wise to satisfy the mixing matrix hardware that
involves cost-efficient analog phase shifters. For nonlinear measurement systems,
parallel optimization design algorithms are proposed to efficiently compute the
stationary points in the sparse phase retrieval problem with and without dictionary
learning.
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Chapter 8
Compressive Sensing and Neural
Networks from a Statistical Learning
Perspective

Arash Behboodi, Holger Rauhut, and Ekkehard Schnoor

8.1 Introduction

Learning representations of, or extracting features from, data is an important aspect
of deep neural networks. In the past decade, this approach has led to impressive
results and achieved state-of-the-art performances, e.g., for various classification
tasks. However, due to the black-box nature of the end-to-end learning of neural
networks, such features are usually abstract and difficult to interpret. On the other
hand, algorithms such as the iterative soft-thresholding algorithm (ISTA) can be
regarded as neural networks. Thus, with the help of modern deep learning software
libraries, they can easily be implemented and optimized, such that the trained
parameters can adapt to datasets of interest. When such algorithms are well-
understood, it can be possible to transfer results shown for the classical variant
to their neural network variant and in this way increase our understanding of deep
neural networks. A class of neural networks that we discuss in the present work aims
at joint reconstruction and dictionary learning problem based on unfolding iterative
soft-thresholding algorithm. Here, unfolding means that each step of an iterative
algorithm constitutes a neural network layer whose parameters can be learned from
data.

Here, the learned representation (a dictionary) is a very well-understood model
in image and signal processing, which can be easily interpreted and visualized. As
a practical application, one may think of reconstructing images from measurements
taken by a medical imaging device. Instead of only trying to reconstruct the image,
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we would also like to implicitly learn a meaningful representation system that
is adapted to the image class of interest and leads to good generalization (e.g.,
when taking measurements of new patients). More generally, this is the approach
of solving inverse problems in a data-driven way, e.g., by training neural networks
[3, 16].

The natural question arises how well these learned reconstruction methods work.
We take the viewpoint of statistical learning theory and assume the data (signals,
images, etc.) to be generated independently by some unknown distribution. Gener-
alization bounds give probabilistic estimates on the difference between the true error
(with respect to the unknown distribution) and the empirical error for a hypothesis
function. Thereby, such bounds predict how well a learned neural network performs
on yet unseen data. By now, classical results bound the generalization error in terms
of the VC dimension or based on the Rademacher complexity [4, 41]. More recent
methods include a compression approach [2] and a PAC Bayesian approach [36].
So far, generalization properties of neural networks have been studied mostly in the
context of classification using feed-forward neural networks, see, e.g., [5, 15, 36].
Especially, in the overparameterized scenario with more network parameters than
samples that is common in deep learning, it is still a mystery why learned networks
generalize very well, and the present bounds cannot yet explain their success
[21, 33, 54], although some works attribute this to the so-called implicit bias of
learning algorithms [8, 34, 35, 37] such as the commonly used (stochastic) gradient
descent. We will, however, not pursue this direction further in this chapter.

The case studied here, a recurrent neural network used for a regression problem,
has received less attention so far from the perspective of generalization.

Due to the weight sharing, this is a non-overparameterized network. However,
it is straightforward to decouple the layers and thus obtain a network that is
more similar to standard feed-forward neural networks. Furthermore, we impose
an orthogonality constraint on the dictionary, which in fact constitutes the learned
parameters of the network. We derive generalization bounds for such thresholding
networks with orthogonal dictionaries. In order to upper bound the Rademacher
complexity of the hypothesis class consisting of such deep networks, we apply a
generalization of Talagrand’s contraction principle [28] for vector-valued functions,
which is typically not needed when considering real-valued hypothesis classes, e.g.,
with the ramp loss (applied to the margin) in a multiclass classification problem
[5]. A similar idea for multiclass classification tasks has been tried in [37]. We
further estimate the resulting expectation of the supremum of a certain Rademacher
process via Dudley’s integral (which in particular involves covering numbers) to
upper bound the Rademacher complexity of hypothesis classes consisting of such
deep networks.

Sample complexity of dictionary learning has been studied before in the literature
[14, 18, 19, 40, 46]. The authors in [46] also use a Rademacher complexity analysis
for dictionary learning, but they aim at sparse representation of signals rather
than reconstruction from compressed measurements, and moreover, they do not
use neural network structures. Fundamental limits of dictionary learning from an
information-theoretic perspective have been studied in [22, 23]. Uniqueness about
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our perspective and different to the cited papers is our approach for determining the
sample complexity based on learning a dictionary by training a neural network.

This chapter is structured as follows. In Sect. 8.2, we introduce learned soft
iterative thresholding architecture, define the generalization error, and review some
of the related works. We discuss works on generalization bounds for deep neural
networks in Sect. 8.3 and introduce Rademacher complexity analysis. The main
result of this chapter with detailed proofs is given in Sect. 8.4. Finally, we present
the numerical results in Sect. 8.5.

8.1.1 Notation

Vectors x ∈ R
N and matrices A ∈ R

n×N are denoted with bold letters, unlike
scalars λ ∈ R. We will denote the spectral norm by ‖A‖2→2 and the Frobenius norm
by ‖A‖F . The N × m matrix X contains the data points, x1, . . . , xm ∈ R

N as its
columns, analogously Y ∈ R

n×m to collect the measurements y1, . . . , ym ∈ R
n. As

a short notation for indices, we use [m] := {1, . . . , m}. To make the notation more
compact, with a slight abuse of notation, for functions f : Rn → R

N , we denote
by f (Y) the matrix whose i-th column is f (yi ). The unit ball of the n-dimensional
normed space R

n is denoted by Bn‖ · ‖ := {x ∈ R
n : ‖x‖ ≤ 1}. The covering number

N (M, d, ε) of a metric space (M, d) at level ε is defined as the smallest number of
balls of radius ε with respect to d required to coverM. When the metric is induced
by some norm, we writeN (M, ‖ · ‖, ε). We denote the N -dimensional orthogonal
group by O(N).

8.2 Deep Learning and Inverse Problems

During recent years, many works studied the application of neural networks in
solving inverse problems (see, for example, [9, 13]). In this chapter, we focus on
joint dictionary learning and sparse recovery using neural networks. Compressive
sensing using dictionaries has been studied before, but, in contrast to the scenario
discussed here, typically using a fixed (and possibly even redundant) dictionary and
a random measurement matrix [39]. The idea of interpreting thresholded gradient
steps of iterative algorithms such as ISTA [11] for sparse recovery as layers of
neural networks is well-known since [17] and has since then been an active research
topic, see, e.g., [7, 24, 30, 32, 49, 50]. Thresholding networks fall into the larger
class of proximal neural networks studied in [20]. The key aspect is to learn
weight matrices for an unfolded version of ISTA. Different works focus on different
parameterizations of the network for faster convergence and better reconstructions.
Learning the dictionary can also be implicit in these works. In this chapter, we
consider algorithms that try to find a dictionary suitable for reconstruction. Some of
the examples of these algorithms are the recently suggested Learning ISTA (LISTA)
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[17], Ada-LISTA [1], and convolutional sparse coding [44] that learn efficient sparse
and low-rank models [43]. Like many other related papers, such as ISTA-Net [53],
these methods are mainly motivated by applications such as inpainting [1].

Instead of novel algorithmic aspects, our contribution is to conduct a generaliza-
tion analysis for these algorithms, which to the best of our knowledge has not been
addressed in the literature before in this particular setting. In this way, we connect
this line of research with recent developments [5, 15] in the study of generalization
of deep neural networks.

8.2.1 Learned Iterative Soft Thresholding

Let us begin by recalling the well-known iterative soft-thresholding algorithm
(ISTA) and how it can be interpreted as a neural network. Given a high-dimensional
s-sparse signal x ∈ R

N and a measurement matrix A ∈ R
n×N (i.e., taking n linear

measurements, with typically s � N ), we would like to recover x from given
y = Ax. Although this is an under-determined linear system of equations, under
certain conditions on the signal (typically, as already mentioned above: sparsity) and
(random) measurement matrix (null space property, restricted isometry property),
the true signal x can be recovered [12]. A well-known reconstruction method is �1-
minimization, which consists in computing a minimizer of the convex optimization
problem

min
x∈RN

1

2
‖Ax− y‖2

2 + λ‖x‖1, (8.1)

where ‖x‖1 = ∑N
�=1 |x�| is the �1-norm and λ > 0 is a regularization parameter.

An actual algorithm for computing such minimizer is ISTA [11], where we initialize
x0 = 0 and then recursively compute

xk+1 = Sτλ

[
xk + τA�(y− Axk)

]

= Sτλ

[(
I− τA�A

)
xk + τA�y

]
, (8.2)

where λ and τ are parameters of the algorithm, and Sλ (applied entrywise) is the
shrinkage operator defined as

Sλ : R→ R, x �→
{

0 if |x| ≤ λ,

x − λ sign(x) if |x| > λ,
(8.3)

which can also be expressed in closed form as Sλ(x) = sign(x) · max(0, |x| − λ)

for any x ∈ R. It is well-known, see, e.g., [11], that xk converges to a minimizer of
(8.1) under the condition
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τ‖A‖2
2→2 ≤ 1. (8.4)

Note that (8.2) can be interpreted as a layer of a neural network with weight
matrix I − τA�A, bias τA�y and activation function Sτλ. As a side remark, let us
observe that Sλ can be written as the sum of two rectified linear units via Sλ(x) =
ReLU(x − λ) − ReLU(−x − λ). Here, ReLU(x) = max(0, x) is one of the most
popular activation functions used by deep learning practitioners, so that it is also
often the default choice for theoretical investigations. While this may be regarded
as a natural connection between ISTA and neural networks, we will make no more
use of it, as it turned out to be convenient enough to work with Sλ as the activation
function itself.

This interpretation of ISTA as an unfolded neural network has been studied for
the first time in [17] leading to the introduction of LISTA. Since then, it has inspired
research at the intersection of neural networks and inverse problems in recent years,
and many variants of neural-network-enhanced iterative thresholding algorithms
have been proposed by now.

Note that in the current form ISTA only takes the form of a neural network but
has no trainable parameters. To introduce trainable parameters, one may consider the
following scenario. Namely, let us be given a class of signals x ∈ R

N that are not
necessarily sparse themselves but sparsely representable with respect to a dictionary
�o ∈ R

N×N . In other words, for each x, there is a sparse vector z ∈ R
N such that

x = �oz. The dictionary �o is assumed to be unknown. It is possible to extend to
overcomplete dictionaries, but we will stick to bases for the sake of simplicity.

We would like to learn a dictionary suitable for sparse reconstruction from
a training sequence S = ((xi , yi ))i=1,...,m with i.i.d. samples drawn from an
(unknown) distribution D. Formally, this is a distribution over the xi , and then the
corresponding measurements yi are given by yi = Axi , with A being fixed. We
assume that the signals x in the class are bounded by a value, say Bin, in the �2-
norm.

While taking the measurements y = Ax =: encA(x) may be interpreted as
encoding the signal x into y, corresponding to a shallow, one-layer linear neural
network (which is deterministic, when the measurement matrix A is considered to be
fixed), the decoder is based on the unfolded version of the iterative soft-thresholding
algorithm (ISTA) with L iterations as follows. For a fixed stepsize τ > 0, and a
fixed λ > 0, the first layer is defined by f1(y) = Sτλ(τ (A�)�y). For the iteration
(or layer, respectively) l > 1, the output is given by

fl(z) = Sτλ

[
z+ τ(A�)�(y− (A�)z)

]

= Sτλ

[(
I− τ��A�A�

)
z+ τ(A�)�y

]
, (8.5)

which again can be interpreted as a layer of a neural network with weight matrix
I − τ��A�A�, bias τ(A�)�y and activation function Sτλ, where the trainable
parameters are the entries of �. Note that for l > 1, all fl coincide as functions
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on R
N . The index then refers to the iteration step or layer of the neural network,

respectively. Then we denote the concatenation of l such layers as f l
�, i.e., for � in

every layer and given by

f L
� (y) = fL ◦ fL−1 · · · ◦ f1(y). (8.6)

Note that, strictly speaking, the vector y will also be an input to the subsequent
layers f2, f3, etc., but to simplify the notation, we do not write it explicitly after
each layer. This point will not be of major importance for our derivations throughout
this chapter.

For an actual reconstruction, we need to apply the dictionary � again after the
final layer. This means that a decoder (for a fixed number of layers L) is a neural
network with shared weights

decL�(y) = �fL ◦ fL−1 · · · ◦ f1(y) = �f L
� (y).

For technical reasons that will become apparent later in the proofs in Sect. 8.3, we
will add an additional function σ after the final layer. Different choices are possible
here; we consider the choice

σ : RN → R
N, x �→

{
x if ‖x‖2 ≤ Bout,

Bout
x
‖x‖2

if ‖x‖2 > Bout,
(8.7)

with some fixed constant Bout. Obviously, this ensures ‖σ(x)‖2 ≤ Bout. Further-
more, note that σ is norm-contractive and 1-Lipschitz, i.e.,

‖σ(x)‖2 ≤ ‖x‖2 and ‖σ(x1)− σ(x2)‖2 ≤ ‖x1 − x2‖2 (8.8)

for any x and x1, x2 ∈ R
N . The role of σ is to push the output of the network inside

the �2-ball of radius Bout, which in many applications is approximately known.
The prior knowledge about the range of the outputs (boundedness) can improve
the reconstruction performance and generalization [49]. The constant Bout may be
simply chosen to be equal to Bin.

To formulate this as a statistical learning problem, we will formally introduce
a hypothesis class and a loss function. The hypothesis set consists of all functions
that can be expressed as L-step soft thresholding, where the dictionary matrix �

parameterizes the hypothesis class, and with an additional σ after the final layer
added. That is,

HL
1 = {σ ◦ h : Rn → R

N : h(y) = �f L
� (y),� ∈ O(N)}. (8.9)

The assumption that � ranges over the orthogonal group O(N) and is shared
across the layers leads to a recurrent neural network with a moderate number of
weights. Using weight sharing enables a straightforward interpretation of learning
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a dictionary for reconstruction. Much more general scenarios are discussed later,
including models without weight sharing (or different degrees thereof), and models
where also the threshold λ and the stepsize τ may be trainable and even be altered
from layer to layer.

Based on the training samples S and given the hypothesis space HL
1 , a learning

algorithm yields a function hS ∈ HL
1 that aims at reconstructing x from the

measurements y = Ax. The empirical loss of a hypothesis h is the reconstruction
error on the training sequence, i.e., the difference between xi and x̂i = h(yi ), that is

L̂(h) = 1

m

m∑

j=1

�(h, xj , yj ).

Different choices for the loss function � to measure the reconstruction error are
possible. A typical choice is the mean squared error (MSE)

�MSE(h, x, y) = ‖h(y)− x‖2
2. (8.10)

The true loss, i.e., the risk of a hypothesis h, is accordingly defined as follows:

L(h) = Ex,y∼D (�(h, x, y)) .

The generalization error of the hypothesis hS based on the training samples S is
given as the difference between the empirical loss and the true loss,

GE(hS) =
∣∣∣L̂(hS)−L(hS)

∣∣∣ .

Note that some references denote the true loss L(hS) as the generalization error.
However, the above definition is more convenient for our purposes.

This motivating example explains how iterative reconstruction algorithms such
as ISTA can be unfolded as a neural network, which is then trained on some training
data. By this transformation into a machine learning problem, this raises the question
of generalization, i.e., how well the trained decoder works on unseen data (from
the same distribution of interest). We will return to the problem of bounding the
generalization error in the third section, after giving a more detailed overview on
LISTA and its variants in the remainder of this section, and discussing different
approaches to and challenges of generalization in deep learning in the next section.

8.2.2 Variants of LISTA

Before moving to the generalization analysis, we review some of the variants of
LISTA algorithms. The original paper [17] focuses on sparse coding applications
where a sparse representation of data needs to be learned. Since �1-based methods
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are slow and do not scale to larger datasets, the authors propose a time unfolded
version of ISTA with a fixed number of iterations. The first layer of the network is
simply given by

x0 = Sλ [Wy] .

The next layers are formulated as

xt = Sλ

[
Wy+ Sxt−1

]
.

LISTA learns (λ,W,S) by back-propagation. These parameters can be common or
different across layers.

Following LISTA, many works explored the similar idea of unfolding iterative
thresholding algorithms [30, 43, 49, 50, 52, 53]. For example, the authors of [49]
address two problems of ISTA-type methods. First, the convergence of LISTA
requires higher thresholds in the shrinkage operator to produce sparse vectors. This
comes at the cost of shrinkage of the output with respect to the original vector.
The authors in [49] introduce a gain gate to increase output values and compensate
this effect. They additionally introduce an overshoot gate that tries to improve the
convergence by learning to boost the estimated vector close to the ground truth.

As mentioned before, it is possible to change further the structure of LISTA
and possibly improve the performance. For example, in analytic LISTA (ALISTA)
[30], only thresholds and stepsize parameters are learned. The update rule (8.5) is
modified into fl(z) = Sλ(l)

[
z+ τ (l)W�(y− Axl )

]
, where the matrix W is chosen

without using data, namely as a minimizer of the coherence with respect to A.
Instead of learning the same stepsizes and thresholds for all the samples as in
ALISTA, these parameters are updated based on the output of the previous layer
in neurally augmented ALISTA [6].

8.3 Generalization of Deep Neural Networks

The generalization error of machine learning algorithms is the gap between
their performance averaged over the samples of training data and the expected
performance computed using the actual distribution. In this chapter, we define the
generalization error as the absolute difference between these two losses.

A machine learning algorithm A returns a function h : X → Y from a set of
choice functions called hypothesis class H based on the training data defined as m
i.i.d. samples zi = (xi , yi) from a distribution D on X × Y. (Since yi may often
refer to labels, we do not use a boldface notation.) If the hypothesis class is large, it
may contain complex enough functions that match the training data perfectly with
zero training error. These functions, however, do not necessarily generalize well to
new, yet unseen data (or the test data in experiments). Statistical learning theory
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aims at bounding the generalization error in terms of the complexity of hypothesis
class and training set size. There are different notions of complexities available in
the literature such as Vapnik–Chervonenkis (VC) dimension [47, 48], Rademacher
complexity [4, 26], stability [38, 42], and robustness [51]. In this chapter, we focus
on the Rademacher complexity framework for bounding the generalization error.

8.3.1 Rademacher Complexity Analysis

In order to bound the generalization error, we use the Rademacher complexity. Con-
sider a class G of real-valued functions g. The empirical Rademacher complexity is
defined as

RS(G) = Eε sup
h∈G

1

m

m∑

i=1

εig(xi ), (8.11)

where ε is a Rademacher vector, i.e., a vector of independent Rademacher variables
εi , i = 1, . . . , m, taking the values ±1 with equal probability. The Rademacher
complexity is then given as Rm(G) = ES∼DmRS(G). We will exclusively work
with the empirical Rademacher complexity. The Rademacher complexity provides
a complexity measure that can bound the generalization error. Suppose that the
training samples are given by S = (z1, . . . , zm), where zi ∈ Z = X × Y. The
hypothesis class H consists of function h : X → Y. Consider a loss function
� : H× Z→ R. The empirical loss of a function h is defined by

L̂(h) = 1

m

m∑

j=1

�(h, zj ).

This is the performance of h on the training data. We can write the true loss of h as

L(h) = Ez∼D (�(h, z)) .

Given a loss function � and a hypothesis class H, we are interested in the
Rademacher complexity of the class G = � ◦ H = {g(z) = � ◦ h(z) : h ∈ H}.
We rely on the following theorem that bounds the generalization error in terms of
the empirical Rademacher complexity.

Theorem 8.1 ([41, Theorem 26.5]) Let H be a family of functions, S the training
set drawn fromDm, and � a real-valued bounded loss function satisfying |�(h, z)| ≤
c for all h ∈ H, z ∈ Z. Then, for δ ∈ (0, 1), with probability at least 1− δ, we have,
for all h ∈ S,
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L(h) ≤ L̂(h)+ 2RS(� ◦H)+ 4c

√
2 log(4/δ)

m
. (8.12)

For real-valued functions h, i.e., when Y = R, the Rademacher complexity of
� ◦H can be bounded using the so-called contraction lemma [41, Lemma 26.9].

Lemma 8.1 (Contraction Lemma) Let S be the training sequence and the func-
tions fi be K-Lipschitz from R to R for i ∈ [m]. Then, for a class of real-valued
functionsH, we have

Eε sup
h∈H

m∑

i=1

εifi ◦ h(xi ) ≤ KEε sup
h∈H

m∑

i=1

εih(xi ). (8.13)

With the contraction lemma, we can remove the loss function and work only with
the hypothesis class.

8.3.2 Generalization Bounds for Deep Neural Networks

Many recent works aim at explaining the excellent generalization properties of deep
neural networks. In order to provide a brief review of this body of literature, we
consider an L-layer neural network

fW1,...,WL
(y) = σ(WL · σ(· · · σ(W1y) · · · ))

with weight matrices Wj ∈ R
nj−1×nj , j = 1, . . . , L (n0 = n), and an elementwise

activation function σ : R → R. All the works to be mentioned below consider
the matrices Wj as free parameters of the hypothesis class; hence, they aim at
an overparameterized setting. Moreover, they consider classification problems. In
contrast, our work considers regression problems and networks with shared weights,
leading to a non-overparameterized setting.

The Rademacher complexity was used in [5] to obtain norm-based generalization
error bounds for the probability of misclassification via the argmax of a neural
network in a multiclass problem with K classes. The margin-type bound in [5] states
that, with probability at least 1− δ over the i.i.d. samples (xi , yi ) ∈ R

N × [K],

P(argmax fW1,...,WL
(x) �= y) ≤ R̂γ (fW1,...,WL

)

+ C
‖X‖F log(maxj nj )

γm

⎛

⎝
L∑

i=�

(
‖WT

� ‖2,1

‖W�‖2→2

)2/3
⎞

⎠

3/2
L∏

�=1

(ρ‖W�‖2→2)+
√
C log(1/δ)

m
,
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where γ > 0 is a suitable parameter, ρ > 0 the Lipschitz constant of σ , and
‖WT

� ‖2,1 is the sum of �2-norm of rows of WT
� . Furthermore, the empirical margin-

type risk is defined as

R̂γ (f ) = 1

m

m∑

i=1

1[f (xi )yi ≤ γ +max
j �=yi

f (xi )j ].

Noting that in general ‖WT
� ‖2,1 = ‖W�‖2→1 ≤ √n�‖W�‖2→2, and assuming that

all data points xi are bounded in �2, i.e., ‖X‖F ≤ √mB, the first term in the second
line of the bound can be estimated by

L3/2 max
j

√
nj log(nj )

(
ρ max

�
‖W�‖2→2

)L
B

γ
√
m
.

A similar, but slightly worse, norm-based bound was obtained [36] using a PAC
Bayesian approach, which leads to a completely different analysis.

A bound with potentially better dimension dependence was obtained in [15]. As
an example, the result of [5] can be improved to a generalization error bound scaling
in the following way, for any p ≥ 1,

Õ

⎛

⎜⎜
⎝

L∏

�=1

M(�)min

⎧
⎪⎪⎨

⎪⎪⎩

log
(

1
�

∏L
�=1 Mp(�)

) 1
p+ 2

3

m
1

2+3p

,

√
L3

m

⎫
⎪⎪⎬

⎪⎪⎭

⎞

⎟⎟
⎠ , (8.14)

where M(�) and Mp(�) are, respectively, upper bounds on ‖W�‖2→2 and p-
Schatten norm of W�, and � is a lower bound on

∏L
�=1 ‖W�‖2→2. This result can

remove the dependence on L if the norms are well behaved. Note that this comes at
the price of a worse sample efficiency. For instance, for p = 1, the dimension-free
bound scales as m1/5 in contrast with m1/2 (however, note that a minimum with√
L3/m is taken).
Instead of continuing the discussion on the existing generalization bounds for

deep networks, we invite the interested reader to refer to [21] for a detailed
experimental account and [33] for some shortcomings of existing bounds, for
example, they tend to grow with training data size.

In the remainder of this chapter, we will show a generalization error bound for
regression (reconstruction) with the introduced thresholding networks that shows
linear dimension dependence and linear dependence on the number of layers, see
Theorem 8.2. Our proof uses different techniques than in the works mentioned
above. In fact, it is not straightforward to apply those techniques due to the weight
sharing between different layers in our case.
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8.4 Generalization of Deep Thresholding Networks

In this section, we return to the original problem introduced already in the beginning
of this chapter. We will prove the following result on the generalization error of the
class of neural networksH1 introduced in Sect. 8.2.1 with a learned orthogonal dic-
tionary. We state our theorem here under the simplifying but reasonable assumption
that τ‖A‖2

2 ≤ 1, see (8.4). A more general version of the result will be presented in
Sect. 8.4.6. We continue to use the notation introduced in Sect. 8.2.1.

Theorem 8.2 Consider the hypothesis space HL
1 defined in (8.9) and assume the

samples xi , i = 1, . . . , m, to be drawn i.i.d. at random according to some (unknown)
distribution such that ‖xi‖2 ≤ Bin almost surely with Bin = Bout in (8.7). Let
yi = Axi , and assume that τ‖A‖2

2→2 ≤ 1. Then with probability at least 1− δ, for
all h ∈ HL

1 , the generalization error is bounded as

L(h) ≤ L̂(h) + 8Bout

√
Nn log(2+ 8L(L+ 3))

m
+ 8Bout

N
√

log(e + 8eL)√
m

+Bout

√
128 log(4/δ)

m
. (8.15)

Further details and a slightly simplified bound for L ≥ 2 can be found in
Corollary 8.3 and the discussion thereafter.

Of course, the idea is to choose an h that minimizes the empirical loss L̂(h),
i.e., the first term on the right-hand side of (8.15), but in principle any h (computed
by some algorithm) can be inserted into this bound. Since the samples are available,
both L̂(h) and the other terms can be computed (assuming Bin is known), so that the
theorem allows to provide a concrete bound of the true riskL(h). Roughly speaking,
i.e., ignoring constants, the generalization error can be bounded as

|L(h)− L̂(h)| �
√
Nn log(L)+N2 log(L)

m
. (8.16)

In other words, once the number of training samples scales like m ∼ (Nn +
N2) log(L), the generalization error is guaranteed to be small with high probability.

Remarkably, the number L of layers only enters logarithmically, while some
of the previously available bounds for deep neural networks (in the context of
classification, however) scale even only exponentially with L (at least in many
interesting settings).

The remainder of this section is devoted to the proof of the above statement.
We will use the approach based on the Rademacher complexity as described in
Sect. 8.3.1, in particular Theorem 8.1. Hence, we need to estimate the Rademacher
complexity
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Rm(� ◦HL
1 ) = E sup

h∈HL
1

1

m

m∑

i=1

εi‖σ(h(yi )− xi )‖2. (8.17)

As explained in Sect. 8.3.1, the so-called contraction principle is often applied in
such situations. However, since we are dealing with a hypothesis class of vector-
valued functions, it is not applicable in its standard form. The following result [31,
Corollary 4] is a generalization to this situation, and it is a crucial tool for our proof.

Lemma 8.2 Suppose thatH is a set of functions h : X→ R
N and that f : RN →

R
N is K-Lipschitz. Let S = (xi )i∈[m] be the training sequence. Then

E sup
h∈H

m∑

i=1

εif ◦ h(xi ) ≤
√

2KE sup
h∈H

m∑

i=1

N∑

k=1

εikhk(xi ), (8.18)

where (εi) and (εik) are both Rademacher sequences.

As both the �2-norm and the function σ (the latter by assumption) are 1-Lipschitz,
applying Lemma 8.2 yields

Rm(� ◦HL) ≤ √2E sup
h∈HL

1

m

m∑

i=1

N∑

k=1

εikhk(xi ), (8.19)

where HL denotes either HL
1 or the hypothesis class HL

2 to be defined in the
next section. In order to derive a bound for the Rademacher complexity, we use
chaining techniques. Roughly speaking, this refers to bounding the expectation of
a stochastic process by geometric properties of its index set (covering numbers at
different scales), equipped with an appropriate norm (or metric). We briefly provide
the necessary results in the next section; for a more detailed introduction to the topic,
we refer the reader to [28, 45].

8.4.1 Boundedness: Assumptions and Results

For technical reasons that will become apparent, we will introduce a separate
dictionary for the linear transformation after the very final layer and consider the
enlarged hypothesis class

HL
2 = {σ ◦ h : Rn → R

N : h(y) = �f L
� (y),�,� ∈ O(N)}. (8.20)

In order to apply Theorem 8.1, the loss function needs to be bounded. Therefore,
and as commonly done in the machine learning literature, we assume (as already
mentioned) that the input is bounded in the �2-norm by some constant Bin, i.e.,
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‖x‖2 ≤ Bin. (8.21)

Furthermore, let us recall from (8.8) that the function σ is bounded by Bout. In
particular, this means that every h ∈ HL

2 (analogously forHL
1 ) is also bounded by

‖h(y)‖2 =
∥∥
∥σ
(
�f L

� (y)
)∥∥
∥

2
≤ Bout (8.22)

independently of � and �. By passing to the matrix notation (i.e., considering the
matrix Y collecting all measurements, instead of a single measurement y), we obtain
the similar estimate

‖h(Y)‖F ≤
√
mBout, (8.23)

where the additional term of
√
m takes the number of training points into account.

By combining (8.21) and (8.22), we find that the loss function is bounded by

�(h, y, x) = ‖h(y)− x‖2 ≤ ‖x‖2 + ‖h(y)‖2

≤ Bin + Bout, (8.24)

so that Bin + Bout plays the role of c in Theorem 8.1. Besides these boundedness
assumptions, we can also upper bound the output f l

�(Y) with respect to the
Frobenius norm after any number of layers l (in particular for l < L, when the
layer is not directly followed by an application of the σ function) as follows. This
will be used later in the main technical result, Theorem 8.5.

Lemma 8.3 For any � ∈ O(N), l ∈ N, and arbitrary τ, λ > 0 in Sτλ in the
definition (8.3) of f l

�, we have

∥∥∥f l
�(Y)

∥∥∥
F
≤
∥∥∥τ(A�)�Y

∥∥∥
F

l−1∑

k=0

∥∥∥I− τ��A�A�

∥∥∥
k

2→2
(8.25)

≤ τ‖A‖2→2‖Y‖F
l−1∑

k=0

∥∥∥I− τA�A
∥∥∥
k

2→2
. (8.26)

We will encounter the expression ‖I − τA�A‖2→2 more often in the sequel.
The following remark is useful and shows it can be easily bounded under realistic
assumptions. In particular, we can use it to simplify the above estimate to obtain
for arbitrary �,� ∈ O(N). Namely, under the condition of τ‖A‖2

2→2 ≤ 1 and
assuming yi = A(xi ), we have

∥∥∥�f L
� (Y)

∥∥∥
2
=
∥∥∥f L

� (Y)

∥∥∥
2
≤ Lτ‖A‖2→2‖Y‖F= Lτ‖A‖2→2‖AX‖F

≤ L‖X‖F ≤ L
√
mBin, (8.27)
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i.e., a linear growth with L. Note that this is a worst-case bound, and might possibly
be improved under additional assumptions.

Remark 8.1 Assume τ‖A‖2
2→2 ≤ 1. Then ‖I−τA�A‖2→2 ≤ 1. In the compressive

sensing setup (n < N ), the N × N—matrix A�A is rank-deficient so that even
‖I− τA�A‖2→2 = 1 holds in this case.

Proof Note that the second inequality (8.26) immediately follows from (8.25) due
to the orthogonality of �. We will prove (8.25) via induction. Clearly, for l = 1, we
have

∥∥f 1
�(Y)

∥∥
F
= ∥∥τ(A�)�Y

∥∥
F

. Assuming the statement is true for l, we obtain
it for l+1 by the following chain of inequalities, using in particular the contractivity
Sτλ with respect to the Frobenius norm,

∥
∥∥f l+1

� (Y)

∥
∥∥
F
=
∥
∥∥Sτλ

[(
I− τ��A�A�

)
f l

�(Y)+ τ(A�)�Y
]∥∥∥

F

≤
∥∥∥
(

I− τ��A�A�
)
f l

�(Y)‖F + ‖τ(A�)�Y
∥∥∥
F

≤
∥
∥∥I− τ��A�A�

∥
∥∥

2→2

∥
∥∥f l

�(Y)

∥
∥∥
F
+
∥
∥∥τ(A�)�Y

∥
∥∥
F

≤
∥∥∥τ(A�)�Y

∥∥∥
F

(
l−1∑

k=0

∥∥∥I− τ��A�A�

∥∥∥
k+1

2→2

)

+
∥∥∥τ(A�)�Y

∥∥∥
F

=
∥∥
∥τ(A�)�Y

∥∥
∥
F

l∑

k=0

∥∥
∥I− τ��A�A�

∥∥
∥
k

2→2
,

where we have used the induction hypothesis to arrive at the fourth line. ��

8.4.2 Dudley’s Inequality

We use the following version of Dudley’s inequality [12, Theorem 8.23]. To state
the theorem, we require additional definitions. Consider a stochastic process (Xt )t∈T
with the index set T in a space with pseudo-metric d given by

d(s, t) =
(
E|Xs −Xt |2

)1/2
.

A zero-mean process Xt for t ∈ T is called sub-Gaussian, if

E exp(θ(Xs −Xt)) ≤ exp
(
θ2d(s, t)2/2

)
∀ s, t ∈ T, θ > 0.

Finally, define the radius of T as �(T) = supt∈T
√
E|Xt |2. Dudley’s inequality,

which will be used to bound the Rademacher complexity term, is stated as follows.
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Theorem 8.3 (Dudley’s Inequality) Let (Xt )t∈T be a centered (i.e., EXt = 0 for
every t ∈ T) sub-Gaussian process with radius �(T). Then,

E sup
t∈T

Xt ≤ 4
√

2
∫ �(T)/2

0

√
logN(T, d, u) du. (8.28)

8.4.3 Bounding the Rademacher Complexity

Recalling our hypothesis spaces introduced above, obviously HL
1 is embedded in

HL
2 , i.e., we have the inclusion

HL
1 ⊂ HL

2 . (8.29)

For a fixed number of layers L ∈ N and i = 1, 2, define the setMi ⊂ R
N×m as

follows:

Mi =
{
(h(y1)| . . . |h(ym)) ∈ R

N×m : h ∈ HL
i

}
. (8.30)

For the case i = 2, the setM2 corresponding to the hypothesis spaceHL
2 reads as

M2 =
{
σ
(
�f L

� (Y)
)
∈ R

N×m : �,� ∈ O(N)
}
. (8.31)

Note that M2 is parameterized by �,� ∈ O(N) (as the hypothesis space HL
2

is), such that we can rewrite (8.19) as

Rm(� ◦HL
2 ) ≤ E sup

M∈M2

1

m

m∑

i=1

N∑

k=1

εikMik. (8.32)

We use Dudley’s inequality and a covering number argument to bound the
Rademacher complexity term. The Rademacher process defined in (8.32) is a
sub-Gaussian process, and therefore, we can apply Dudley’s inequality. For the set
of matricesM2 defined above, the radius can be estimated as

�(M2) = sup
h∈HL

2

√√√
√√E

(
m∑

i=1

N∑

k=1

εikhk(yi )

)2

≤ sup
h∈HL

2

√√√√
E

m∑

i=1

N∑

k=1

(hk(yi ))2

≤ sup
h∈HL

2

√√√√
m∑

i=1

‖h(yi )‖2 ≤ √mBout,
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where the last inequality has already been stated in (8.23). Plugging this bound
in Dudley’s inequality, we obtain the following upper bound for the Rademacher
complexity,

Rm(� ◦HL
2 ) ≤

4
√

2

m

∫ √mBout/2

0

√
logN(M2, ‖ · ‖F , ε) dε. (8.33)

We only need to find the covering numbers inside the integral. For that, we
bound the covering number of the hypothesis classes by the covering number of
its parameter spaces. This is done using a perturbation analysis argument.

8.4.4 A Perturbation Result

The following theorem relates the effect of perturbation of the parameters on the
function outputs. This result will be used to bound their covering numbers.

Theorem 8.4 Consider the functions f l
� defined as in (8.6) with L ≥ 2 and

dictionary � in O(N). Then, for any �1,�2 ∈ O(N), we have

∥∥∥f L
�1
(Y)− f L

�2
(Y)

∥∥∥
F
≤ KL‖A�1 − A�2‖2→2, (8.34)

where KL is given by

KL = τ‖Y‖F ‖I− τA�A‖L−1
2→2

+ τ‖Y‖F
L∑

l=2

‖I− τA�A‖L−l2→2

(

1+ 2τ‖A‖2
2→2

l−2∑

k=0

‖I− τA�A‖k2→2

)

.

(8.35)

If τ‖A‖2
2→2 ≤ 1, we have the simplified upper bound

KL ≤ τ‖Y‖FL(L+ 3). (8.36)

The bound (8.36) follows from the observation in Remark 8.1.
Proof We formally set f 0

�1
(Y) = f 0

�2
(Y) = Y for a unified treatment of all layers

l ≥ 1. Using the fact that Sτλ is 1-Lipschitz, we obtain

∥∥∥f l
�1
(Y)− f l

�2
(Y)

∥∥∥
F

≤
∥∥∥
(

I− τ(A�1)
�A�1

)
f l−1

�1
(Y)+ τ(A�1)

�Y
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−
(

I− τ(A�2)
�A�2

)
f l−1

�2
(Y)− τ(A�2)

�Y
∥∥∥
F

≤
∥∥∥
(

I− τ(A�1)
�A�1

)
f l−1

�1
(Y)−

(
I− τ(A�2)

�A�2

)
f l−1

�2
(Y)

∥∥∥
F

+
∥
∥∥τ(A�1)

�Y− τ(A�2)
�Y
∥
∥∥
F

≤
∥∥∥
(

I− τ(A�1)
�A�1

)
f l−1

�1
(Y)−

(
I− τ(A�2)

�A�2

)
f l−1

�2
(Y)

∥∥∥
F

(8.37)

+2τ ‖Y‖F ‖A�1 − A�2‖2→2 .

The term (8.37) is estimated further as follows:
∥
∥∥
(

I− τ(A�1)
�A�1

)
f l−1

�1
(Y)−

(
I− τ(A�2)

�A�2

)
f l−1

�2
(Y)

∥
∥∥
F

≤
∥∥∥
(

I− τ(A�1)
�A�1

)
f l−1

�1
(Y)−

(
I− τ(A�1)

�A�2

)
f l−1

�1
(Y)

+
(

I− τ(A�1)
�A�2

)
f l−1

�1
(Y)−

(
I− τ(A�2)

�A�2

)
f l−1

�1
(Y)

∥∥
∥
F

+
(

I− τ(A�2)
�A�2

)
f l−1

�1
(Y)−

(
I− τ(A�2)

�A�2

)
f l−1

�2
(Y)

∥∥∥
F

≤
∥∥∥
(

I− τ(A�1)
�A�1

)
f l−1

�1
(Y)−

(
I− τ(A�1)

�A�2

)
f l−1

�1
(Y)

+
(

I− τ(A�1)
�A�2

)
f l−1

�1
(Y)−

(
I− τ(A�2)

�A�2

)
f l−1

�1
(Y)

+
(

I− τ(A�2)
�A�2

) (
f l−1

�1
(Y)− f l−1

�2
(Y)
)∥∥∥

F

≤
∥∥∥τ(A�1)

�A�1f
l−1
�1

(Y)− τ(A�1)
�A�2f

l−1
�1

(Y)

+τ(A�1)
�A�2f

l−1
�1

(Y)− τ(A�2)
�A�2f

l−1
�1

(Y)

∥∥∥
F

+
∥∥∥
(

I− τ(A�2)
�A�2

)∥∥∥
2→2

∥∥∥f l−1
�1

(Y)− f l−1
�2

(Y)

∥∥∥
F

≤
∥∥
∥τ(A�1)

�
∥∥
∥

2→2

∥∥
∥(A�1 − A�2)f

l−1
�1

(Y)

∥∥
∥
F

+ τ

∥∥∥(A�1)
� − (A�2)

�
∥∥∥

2→2

∥∥∥A�2f
l−1
�1

(Y)

∥∥∥
F

+
∥∥∥
(

I− τ(A�2)
�A�2

)∥∥∥
2→2

∥∥∥f l−1
�1

(Y)− f l−1
�2

(Y)

∥∥∥
F

≤τ ‖A‖2→2 ‖A�1 − A�2‖2→2

∥∥∥f l−1
�1

(Y)

∥∥∥
F
+ τ ‖A‖2→2 ‖A�1 − A�2‖2→2

∥∥∥f l−1
�1

(Y)

∥∥∥
F

+
∥∥∥
(

I− τ(A�2)
�A�2

)∥∥∥
2→2

∥∥∥f l−1
�1

(Y)− f l−1
�2

(Y)

∥∥∥
F

=2τ ‖A‖2→2 ‖A�1 − A�2‖2→2

∥∥∥f l−1
�1

(Y)

∥∥∥
F
+
∥∥∥I− τA�A

∥∥∥
2→2

∥∥∥f l−1
�1

(Y)− f l−1
�2

(Y)

∥∥∥
F
.

Plugging this back into (8.37) gives us
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∥∥∥f l
�1
(Y)− f l

�2
(Y)

∥∥∥
F

(8.38)

≤
∥∥∥I− τA�A

∥∥∥
2→2

∥∥∥f l−1
�1

(Y)− f l−1
�2

(Y)

∥∥∥
F

+τ
(

2 ‖Y‖F + 2 ‖A‖2→2

∥
∥∥f l−1

�1
(Y)

∥
∥∥
F

)
‖A�1 − A�2‖2→2

≤ A

∥∥∥f l−1
�1

(Y)− f l−1
�2

(Y)

∥∥∥
F
+ Bl ‖A�1 − A�2‖2→2 , (8.39)

where A and Bl in the previous estimate (8.39) are given by

A =
∥
∥∥I− τA�A

∥
∥∥

2→2
,

Z0 = 0, Zl =
l−1∑

k=0

∥∥∥I− τA�A
∥∥∥
k

2→2
, l ≥ 1,

Bl = τ‖Y‖F
(

2+ 2τ ‖A‖2
2→2 Zl−1

)
, l ≥ 1.

Using these abbreviations, the general formula for KL in (8.35) has the compact
form

KL =
L∑

l=1

AL−lBl, L ≥ 1. (8.40)

Based on (8.39), we prove via induction that (8.34) holds for any number of layers
L ∈ N with KL given by (8.40). For L = 1, we can directly calculate the constant
K1 via

∥∥∥f 1
�1
(Y)− f 1

�2
(Y)

∥∥∥
F
=
∥∥∥Sτλ(τ (A�1)

�Y)− Sτλ(τ (A�2)
�Y)

∥∥∥
F

≤τ‖Y‖F ‖A�1 − A�2‖2→2 ,

so that τ‖Y‖F ≤ 2τ‖Y‖F = B1 = K1, as claimed in (8.40).
Now we proceed with the induction step, assuming formula (8.40) to hold for

some L ∈ N. Applying the estimate after (8.38) for the output after layer L+ 1, we
obtain
∥∥∥f L+1

�1
(Y)− f L+1

�2
(Y)

∥∥∥
F
≤A
∥∥∥f L

�1
(Y)− f L

�2
(Y)

∥∥∥
F
+ BL+1 ‖A�2 − A�1‖2→2

≤AKL‖A�2 − A�1‖2→2 + BL+1‖A�2 − A�1‖2→2

≤(AKL + BL+1)‖A�2 − A�1‖2→2,

and therefore,
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KL+1 = AKL + BL+1 = A

L∑

l=1

AL−lBl + BL+1 =
L+1∑

l=1

A(L+1)−lBl.

This is the desired expression for KL+1 and finishes the proof of (8.34). It
remains to prove the upper bound (8.36). In Remark 8.1, we have observed that
‖I− τA�A‖2→2 = 1 when τ‖A‖2

2→2 ≤ 1. Therefore, we obtain

KL =
L∑

l=1

AL−lBl ≤
L∑

l=1

Bl = τ‖Y‖F
L∑

l=1

(
2+ 2τ ‖A‖2

2→2 Zl−1

)

≤ 2Lτ‖Y‖F + 2τ‖Y‖F
L∑

l=1

Zl−1 ≤ 2Lτ‖Y‖F + 2τ‖Y‖F
L∑

l=1

l

= τ‖Y‖FL(L+ 3),

finishing the proof of the theorem. ��
The following result is an adaptation of the previous theorem to take the special

form of the final layer into account (a final linear transformation, followed by
applying the function σ ).

Corollary 8.1 Consider the thresholding networks �f L
� ∈ HL

2 as defined in
Sect. 8.4.3, with L ≥ 2 and �,� ∈ O(N). Then, for any �1,�2 ∈ O(N) and
�1,�2 ∈ O(N), we have

∥∥
∥σ(�1f

L
�1
(Y))− σ(�2f

L
�2
(Y))

∥∥
∥
F

≤ ML‖�1 −�2‖2→2 +KL‖A�1 − A�2‖2→2,

(8.41)

with KL as in Theorem 8.4 and

ML = τ‖A‖2→2‖Y‖F
L−1∑

k=0

∥∥∥I− τA�A
∥∥∥
k

2→2
. (8.42)

Under the additional assumption that τ‖A‖2
2→2 ≤ 1, we have

∥
∥∥σ(�1f

L
�1
(Y))− σ(�2f

L
�2
(Y))

∥
∥∥
F

≤ τ‖Y‖F (L‖A‖2→2‖�1 −�2‖2→2 + L(L+ 3)‖A�1 − A�2‖2→2) .

Proof Let us begin with the following estimates, which now include the application
of the measurement and the respective dictionary after the final layer. By the 1-
Lipschitzness of σ , adding mixed terms and applying the triangle inequality, and
finally using Theorem 8.4 for the second summand in the last step, we obtain
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∥∥∥σ
(
�1f

L
�1
(Y)
)
− σ
(
�2f

L
�2
(Y)
)∥∥∥

F

≤
∥∥∥�1f

L
�1
(Y)−�2f

L
�1
(Y)+�2f

L
�1
(Y)−�2f

L
�2
(Y)

∥∥∥
F

≤
∥
∥∥�1f

L
�1
(Y)−�2f

L
�1
(Y)

∥
∥∥
F
+
∥
∥∥�2f

L
�1
(Y)−�2f

L
�2
(Y)

∥
∥∥
F

≤
∥∥∥f L

�1
(Y)

∥∥∥
F
‖�1 −�2‖2→2 +

∥∥∥f L
�1
(Y)− f L

�2
(Y)

∥∥∥
F

≤
∥
∥∥f L

�1
(Y)

∥
∥∥
F
‖�1 −�2‖2→2 +KL ‖A�1 − A�2‖2→2 .

Now, (8.41) follows from Lemma 8.3. The additional simplified bounds then easily
follow from the respective ones in Theorem 8.4 as well as in (8.27). ��

Remark 8.2 One may try a similar computation like in the proof above for the
hypothesis space HL

1 instead HL
2 . However, after the analog estimate for �1,�2 ∈

O(N),

∥∥∥�1f
L
�1
(Y)−�2f

L
�2
(Y)

∥∥∥
F
≤
∥∥∥f L

�1
(Y)

∥∥∥
F
‖�1 −�2‖2→2 +KL ‖A�1 − A�2‖2→2 ,

we need to consider both ‖A�1 − A�2‖2→2 and ‖�1 −�2‖2→2 for later covering
number arguments. Using HL

2 helps to obtain more concise covering numbers for
the class. Therefore, we decouple the single dictionary applied after the final layer
from the previous layers (which all appear together with A).

8.4.5 Covering number estimates

Our proof is built on Dudley’s integral in (8.33). We need to compute covering
numbers N (M2, ‖ · ‖F , ε) at different scales ε > 0 to evaluate the integral for the
spaceM2. We start from the following lemma [12, Proposition C.3] and adapt it to
our problem.

Lemma 8.4 Let ε > 0, and let ‖ · ‖ be a norm on a n-dimensional vector space V .
Then, for any subset U ⊆ B‖·‖ := {x ∈ V : ‖x‖ ≤ 1}, it holds

N (U, ‖ · ‖, ε) ≤
(

1+ 2

ε

)n
.

The next lemma provides a bound for product spaces, based on individual
covering numbers.

Lemma 8.5 Consider two metric spaces (S1, d1), (S2, d2). We define the product
metric S, equipped with the metric d by
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S = (S1 × S2, d), d(x, y) =
2∑

k=1

dk(xk, yk), (8.43)

where x = (x1, x2), y = (y1, y2) ∈ S. Then, we have the covering number estimate

N (S, d, ε) ≤
2∏

k=1

N (Sk, dk, ε/2) . (8.44)

Proof Suppose that, for k = 1, 2, we have individual coverings of Sk at level ε/2
of cardinality N (Sk, dk, ε/2). We will show that the product of all these ε/2-nets
is an ε-net for the product space S. Indeed, let x = (x1, x2) ∈ S, i.e., xk ∈ Sk .
Then, for each xk ∈ Sk , there exists some element yk in the ε/2-net of Sk , i.e.,
dk(xk, yk) ≤ ε/2. Then, y = (y1, y2) is an element of the product of all nets, and
by the definition of the metric d, there is d(x, y) ≤ ε/2+ ε/2 = ε. ��

The following lemma provides a covering number estimate of A applied to the
orthogonal group.

Lemma 8.6 For a fixed matrix A ∈ R
n×N , consider the setW defined by

W = {A� : � ∈ O(N)} ⊂ R
n×N, (8.45)

i.e., A applied to the orthogonal group. The covering number estimate is given by

N (W, ‖ · ‖2→2, ε) ≤
(

1+ 2‖A‖2→2

ε

)nN
.

Proof First note thatW can be rewritten as

W =
{
‖A‖2→2

A�

‖A‖2→2
: � ∈ O(N)

}
. (8.46)

For the covering numbers of the orthogonal group (O(N), ‖ · ‖2→2) Equipped with
the spectral norm, we have

N (O(N), ‖ · ‖2→2, ε) ≤
(

1+ 2

ε

)N2

.

This follows from the fact that the orthogonal group O(N) is contained in BN×N
‖ · ‖2→2

,
and therefore, Lemma 8.4 applies. This bound then gives

N (W, ‖ · ‖2→2, ε) = N ({A�/‖A‖2→2 : � ∈ O(N)} , ‖ · ‖2→2, ε/‖A‖2→2)



8 Compressive Sensing and Neural Networks from a Statistical Learning Perspective 269

≤
(

1+ 2‖A‖2→2

ε

)nN
.

��
Recall that for Dudley’s inequality, we need to estimate the covering numbers

N (M2, ‖ · ‖2→2, ε) of the setM2 defined in (8.31). In Corollary 8.1, we showed
we can estimate distances inM2 via distances of the underlying parameters, ‖�1−
�2‖2→2 and ‖A�1 − A�2‖2→2. We make use of this in the next corollary, which
prepares the application of Dudley’s inequality afterward.

Corollary 8.2 The covering numbers of the setM2 are bounded by

log (N (M2, ‖ · ‖2→2, ε))

≤ N2 · log

(
1+ 4ML

ε

)
+ nN · log

(
1+ 4‖A‖2→2KL

ε

)
.

Proof Using the definition of the set (8.45), we have

N (KL{A� : � ∈ O(N)}, ‖ · ‖2→2, ε) = N ({A� : � ∈ O(N)}, ‖ · ‖2→2, ε/KL)

≤
(

1+ 2‖A‖2→2KL

ε

)nN
.

Furthermore, since O(N) ⊂ BN×N
‖ · ‖2→2

, and by Lemma 8.4 (with ε/2 instead of ε)

N (ML ·O(N), ‖ · ‖2→2, ε/2) = N (O(N), ‖ · ‖2→2, ε/(2ML))

≤
(

1+ 4ML

ε

)N2

.

Applying Lemma 8.5 and the previous estimates, we can now bound the covering
number ofM2 by

N (M2, ‖ · ‖F , ε) ≤ N (ML ·O(N)×KL ·W, ‖ · ‖2→2, ε)

≤ N (ML ·O(N), ‖ · ‖2→2, ε/2)N (KL ·W, ‖ · ‖2→2, ε/2)

≤
(

1+ 4ML

ε

)N2 (
1+ 4‖A‖2→2KL

ε

)nN
,

which immediately gives us the desired statement. ��
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8.4.6 Main result

Finally, we are able to state and prove the main result of this section.

Theorem 8.5 Consider the hypothesis spaceHL
2 defined in (8.20). With probability

at least 1− δ, for all h ∈ HL
2 , the generalization error is bounded as

L(h) ≤ L̂(h)+ 8Bout

√
Nn

m

√

log e

(
1+ 8KL‖A‖2→2√

mBout

)

+8Bout
N√
m

√

log e

(
1+ 8ML√

mBout

)
+ 4(Bin + Bout)

√
2 log(4/δ)

m
,

where KL is the constant in (8.35).

Proof For the proof, it remains to bound the Rademacher complexity via Dudley’s
integral (8.33), for which in turn we use the covering number arguments from the
previous subsection (Corollary 8.2) as follows:

Rm(� ◦HL
2 ) = E sup

M∈M2

1

m

m∑

i=1

N∑

k=1

εikMik

≤ 4
√

2

m

∫ √mBout/2

0

√
logN (M2, , ‖ · ‖F , ε) dε

≤ 4
√

2

m

∫ √mBout/2

0

√

N2 · log

(
1+ 4ML

ε

)
dε

+4
√

2

m

∫ √mBout/2

0

√

nN · log

(
1+ 4‖A‖2→2KL

ε

)
dε

≤ 4
√

2N

m

∫ √mBout/2

0

√

log

(
1+ 4ML

ε

)
dε

+4
√

2nN

m

∫ √mBout/2

0

√

log

(
1+ 4‖A‖2→2KL

ε

)
dε

≤ 2
√

2Bout
N√
m

√

log

(
e

(
1+ 4ML√

mBout/2

))

+2
√

2Bout

√
Nn

m

√

log

(
e

(
1+ 4KL‖A‖2→2√

mBout/2

))
,

where we have used the following inequality for the last step [12, Lemma C.9]
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∫ α

0

√

log

(
1+ β

t

)
dt ≤ α

√
log (e(1+ β/α)) for α, β > 0. (8.47)

The theorem is obtained using Theorem 8.1 with the upper bound c = Bin + Bout
for the functions output from (8.23) and bounding the Rademacher complexity
term (8.19) with the generalized contraction principle Lemma 8.2, which in turn
is bounded using Dudley’s integral as above. ��

Let us make the reasonable assumption that τ‖A‖2→2 ≤ 1. Taking into account
that ML ≤ τ‖A‖2→2‖Y‖FL, see also (8.27), i.e., ML scales at most linearly in L

(which remains inside the logarithm), and since KL depends quadratically on L, see
(8.36), we have

L(h)− L̂(h) � N√
m

√
log(L)+

√
Nn

m

√
log(L) ∼

√
log(L)N(N + n)

m
∼
√

log(L)N2

m
,

(8.48)

where the last relation holds under the reasonable assumption that 1 ≤ n ≤ N . This
estimate is stated more rigorously in the following corollary.

Corollary 8.3 Consider the hypothesis spaceHL
2 defined in (8.20) and assume that

τ‖A‖2
2→2 ≤ 1. With probability at least 1 − δ, for all h ∈ HL

2 , the generalization
error is bounded as

L(h) ≤ L̂(h)+ 8Bout

√
Nn

m

√

1+ log

(
2+ 8L(L+ 3)τ‖Y‖F ‖A‖2→2√

mBout

)

+8Bout
N√
m

√

log e

(
1+ 8τL‖A‖2→2‖Y‖F√

mBout

)
+ 4(Bin + Bout)

√
2 log(4/δ)

m
,

where KL is the perturbation bound in (8.35).

Theorem 8.2 follows immediately from Theorem 8.5 and Corollary 8.3. Indeed,
we have seen in (8.27) that

τ‖A‖2→2‖Y‖F ≤ √mBin. (8.49)

Using that Bin = Bout by assumption, and, for simplicity also assuming that
L ≥ 2 such that 2+ 8L(L+ 3) ≤ (5L)2, we therefore have

log

(
2+ 8L(L+ 3)τ‖Y‖F ‖A‖2→2√

mBout

)
≤ log(2+ 8L(L+ 3)) ≤ 2 log(5L).

Plugging in these estimates and using that HL
1 ⊆ HL

2 give the statement of
Theorem 8.2.
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As already pointed out above, the deep thresholding network we analyze is,
due to the weight sharing, a recurrent neural network. The authors of [10] derive
VC dimension bounds of recurrent networks for recurrent perceptrons with binary
outputs. The VC dimension of recurrent neural networks for different classes of
activation functions has been studied by the authors of [25]. However, their results
do not immediately apply to our setup since they focus on one-dimensional inputs
and outputs, which of course do not suit our vector-valued regression problem
and, moreover, would correspond to taking just one single measurement. Even in
the scenario that is closest to ours, namely, fixed piecewise polynomial activation
functions with n = 1, their VC dimension bound scales between O(Lw) and
O(Lw2), where L is the number of layers and w is the number of trainable
parameters in the network. In our case, the number of trainable parameters is equal
to the dimension of the orthogonal group O(N), which is N(N − 1)/2. Therefore,
their bounds scale between O(LN2) and O(LN4). In contrast, if n = 1, our bound
scales only like O(N

√
log(L)). Besides, we only make use of Lipschitzness of the

activation function.

8.5 Thresholding Networks for Sparse Recovery

In Theorem 8.2 and Corollary 8.3, we have provided a worst-case bound on the
sample complexity that holds uniformly over the hypothesis space and for any
arbitrary data distribution. It is interesting to see if this bound can be improved
for data distributions limited to low-complexity sets distributions, for example over
the set of sparse vectors. ISTA is used mainly in sparse coding and recovery tasks;
therefore, it is reasonable to ask if the generalization error behaves similarly when
it is applied to sparse recovery tasks.

We consider a synthetic dataset as well as the MNIST dataset [27]. For both
cases, the measurement matrix is a random Gaussian matrix properly normalized
to guarantee convergence of soft-thresholding algorithms. The synthetic data is
generated for different input and output dimensions and sparsity level. The original
dictionary is a random orthogonal matrix. The default parameters are N = 120,
n = 80, and sparsity equal to 10. Sparse vectors are generated by choosing their
support uniformly randomly and then picking non-zero values according to the
standard normal distribution. The experiments for the synthetic data are repeated at
least 50 times, and the results are averaged over the repetitions. For both the MNIST
and synthetic datasets, we sweep over L,N , and n to see how the generalization
error behaves.

There are different ways to implement the orthogonality constraint for weight
matrices. One way [29] is based on the fact that the matrix exponential mapping
provides a bijective mapping from the skew-symmetric matrices onto the special
orthogonal group SO(N). However, we use the alternative method of adding a
regularization term ‖I − ���‖F (or another matrix norm) to the loss function,
which means to penalize � that is far from being orthogonal.
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Fig. 8.1 MNIST dataset. (a) Absolute reconstruction error for different measurements of MNIST.
(b) Generalization error for different measurements of MNIST

We choose different number of measurements and layers for both datasets. For
each one, the network is trained for a few epochs. Mostly not more than 10 epochs
are required to get first promising results, and often times, the loss goes down very
slowly after 10 epochs.

All experiments (see Fig. 8.1a) show that it is possible to recover the original
vectors x with as few as 10 layers, which is less than typical when using ISTA
(see supplementary materials for some visuals). Note that the error in the MNIST
experiments is the pixel-based error normalized by the image dimension, and
MNIST pixels are all normalized between 0 and 1. We have chosen ISTA with
a similar structure and 5000 iterations. The result warrants the applicability of
dictionary learning for sparse reconstruction.

Figure 8.2a confirms the dependence of the generalization error on the number
of layers L. Increasing the number of layers increases the generalization error for
a fixed number of measurements n. However, the generalization error decreases
by increasing the number of layers for MNIST dataset. For both synthetic and
MNIST datasets, it seems that increasing the number of measurements decreases the
generalization error. See Figs. 8.1b, 8.2a,b. Besides, Fig. 8.2b shows that increasing
N increases the generalization error. Therefore, our bound scales correctly with
the input dimension and the number of layers but incorrectly with the number
of measurements. Although not predicted by our theoretical results, this is not
unexpected. Note that the number of measurements n is not essential here since
it can always be upper bounded by N . Therefore, the theoretical bound on the
generalization error (see (8.16), and Theorem 8.2 as well as Corollary 8.3 for more
details) can be lower and upper bounded via

√
log(L)

m
N ≤

√
log(L)

m
(N +√Nn) ≤ 2

√
log(L)

m
N.

Furthermore, as mentioned above, the sample complexity is supposed to apply to
all possible input distributions. If we restrict ourselves to distributions over low-
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Fig. 8.2 Generalization error for synthetic dataset. (a) Generalization error for different measure-
ments of synthetic data (N = 120). (b) Generalization error for different input dimensions of
synthetic data (n = 80)

complexity sets, then various worst-case bounds in our analysis might be improved.
The experiments seem to confirm this intuition. Namely, for the MNIST dataset,
there is a clear improvement with increasing the number of measurements and the
number of layers. This is intuitive from a compressive sensing standpoint, as more
number of layers in ISTA leads to better results and more measurements provide
more information about the input.

On the other hand, the synthetic dataset shows that the generalization error
increases with the input dimension and the number of layers. Note that the bound
of this chapter is obtained for a very general setting where nothing is assumed
on the data structure. Additional assumptions on the structure of the problem,
i.e., sparsity, can be used to improve the current bound. Nonetheless, the linear
dimension dependency of the current bound makes it a very good baseline for future
comparisons.

The model that is used for our experiments shares the weights across layers
conforming to our theoretical setup. However, we can improve the performance of
this method by using ideas similar to LISTA literature. Many works on LISTA use
a different dictionary at each layer, which eases the training procedure and can lead
to potentially better results.

8.6 Conclusion and Outlook

In this chapter, we have derived a generalization bound for an unfolded ISTA
algorithm where, similar to LISTA, the dictionary is learned via learning the
reconstruction algorithm and interpreted as neural network with shared layers. To
the best of our knowledge, this is the first result of its kind. Our proof utilizes a
Rademacher complexity analysis and obtains generalization bounds with only linear
dependence on the dimension. The comparison of our theoretical results and the
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numerical results suggests that we might be able to obtain tighter generalization
bounds of neural networks for structured input data. Future works also consist of
considering more intricate structures with more flexible weight sharing between
the layers and also learning parameters such as the stepsizes and thresholds
simultaneously.
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Chapter 9
Angular Scattering Function Estimation
Using Deep Neural Networks

Yi Song and Giuseppe Caire

9.1 Introduction

Massive multiple-input multiple-output (MIMO) systems are a building block of
the next generation of wireless networks, promising unprecedented increase in
spatial multiplexing capability, data rate, and link reliability [5, 15, 17]. Employing
multiple-antenna elements at the base station (BS), the Angles of Arrival (AoA)
of each signal component is associated with a random gain that depends on the
scattering properties of the environment. Following the well-known and widely
accepted uncorrelated scattering assumption, the angular stochastic process is
uncorrelated in the angle domain, and its power density as a function of the AoA
variable is referred to as the angular scattering function (ASF) of the channel.1

The ASF encapsulates highly valuable information about the propagation envi-
ronment. It can be used for the purpose of channel sounding, to determine the
angular position of scatterers and reflectors and to measure their relative gain power
[8, 24, 28]. It can also facilitate user grouping and spatial multiplexing. Given the
ASF information of a set of users in a cell, the BS can partition the user population
into groups with (approximately) the same angular power profile to simplify user
scheduling and to design channel precoders that alleviate inter-user interference (see

1 Notice that a non-uniform ASF in the angle domain induces a correlation of the elements of
the channel vector in the antenna domain, in analogy to the classical theory of time-domain
processes, where a non-uniform power spectral density in the frequency domain corresponds to
a certain autocorrelation function in the time domain via Fourier transformation. In the context of
antenna/angle domain, the transform is related to the antenna array manifold.
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[1, 2] and references therein). In this chapter, the ASF is also directly related to the
channel covariance through an integral transform, and exploiting certain properties
of the ASF (such as non-negativity over the angular range) results in an improved
estimate of the channel covariance in noisy and limited pilot dimension scenarios
[14]. In addition, the ASF proves to be an invariant property of the channel over
close frequency bands, for example, the frequency bands dedicated to uplink (UL)
and downlink (DL) transmission in a frequency-division duplex (FDD) system. This
property is known as angular channel reciprocity and can be used both for UL–
DL covariance transformation and, in special cases, for FDD channel prediction
[13, 18].

However, in this chapter, we do not focus specifically on the above-mentioned
applications but consider the following general ASF estimation problem: during
the training phase, the BS receives a number of (noisy) pilot symbols from a user.
Using these pilot observations, the BS has to compute a high-resolution estimate of
the ASF, i.e., the distribution of the received signal power over a fine grid of angular
bins. The number of such bins can be several times larger than the array dimension.
This suggests that ASF estimation can be seen as a type of inverse problem where
a high-dimensional vector has to be recovered from low-dimensional observations.
Various methods in the literature attempt to solve this inverse problem, the most
relevant of which are mentioned in the sequel.

9.1.1 Related Work

The problem of estimating the ASF from a set of noisy pilot samples can be seen as
a spectral estimation problem. Conventional methods of spectral estimation include
MUSIC, ESPRIT, Prony and Pisarenko’s harmonic estimation techniques [22, 23],
which rely on the assumption that the spectrum contains only spectral lines (i.e.,
Dirac delta functions in the angle domain). Besides, compressive sensing techniques
are able to estimate the spectrum either over the continuous angular domain [4,
25] or over a fine discrete angular grid [9, 26]. These methods, however, do not
generalize to cases where the ASF is not sparse. Exploiting the non-negativity of the
spectrum is a natural leverage for lifting and replacing the sparsity assumption. A
recent method suggests estimating the ASF via a non-negative least-squares (NNLS)
convex program that minimizes the least-squares error while enforcing the non-
negativity on the parametric coefficients vector associated with the ASF [10, 14].
A drawback of using NNLS is that, despite the absence of any explicit sparsity
constraint, it tends to result in sparse estimates of the [21] and hence may fail in
accurately estimating a non-sparse ASF. The authors of [18] have instead proposed
to estimate the ASF by solving a feasibility problem. The feasibility set is non-
negative, and enforces the set of functions that generate a given covariance, and
feasiblity problem can be solved using an ietrative method. A recent publication has
further improved this method based on a prior information on the shape of the ASF
[7]. In this case, one assumes that in addition to the covariance, the estimator has
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access to a set of i.i.d. ASF realizations (the data set). An algorithm is developed
that, among all feasible spectra, selects the one with the minimum distance to the
expected value of the data set.

9.1.2 Outline and Notation

In Sect. 9.2, we explain the detail information of MIMO system and describe the
relationships between noisy sample channel covariance matrix and ASF. In order
to make a better use of ASF, then in Sect. 9.3, we come up with a parametric form
of approximating ASF especially for diffuse ASF using density functions. Then we
introduce the two-step algorithm for ASF estimation in Section and Sect. 9.5. Last,
in Sect. 9.6, we summarize the technical details of the another two methods and
compare them to our proposed estimator.

We use small and capital bold-faced letters (x and x) to denote vectors and
matrices, respectively. We denote the i-th element of x by [x]i . The complex
Gaussian distribution with mean μ and covariance � is denoted by (μ,�). rectI
with argument x is a function that is equal to one for x ∈ I and is equal to zero for
x /∈ I. SM×M+ denotes the set of positive semidefinite (PSD) matrices of size M , and
the space of functions with bounded �2-norm is represented by L2. Moreover, we
denote Hadamard product as %, so (A% B)ij = (A)ij (B)ij .

9.2 System Model

Consider a BS equipped with a uniform linear array (ULA) of M � 1 antennas,
serving a single-antenna user as shown in Fig. 9.1. We assume the popular block-
fading channel model [27], where the M-dimensional channel vector at a specific
resource block s is given by a superposition of signals impinging on the array over
a continuum of Angles of Arrival (AoAs):

h(s) =
∫ θmax

−θmax

w(dθ; s) a(θ), (9.1)

where θ ∈ [−θmax, θmax] is the AoA parameter, θmax ∈ [0, π2 ] is the maximum array
aperture, w(dθ; s) is the random channel gain over the infinitesimal angular interval
[θ, θ+dθ ], and a(θ) ∈ C

M is the array response vector whose m-th element is given

as [a(θ)]m = ej
2πd
λ

m sin(θ), where d denotes the antenna spacing and λ is the carrier
wavelength. For convenience, we assume the antenna spacing to be d = λ

2 sin(θmax)

and introduce the change of variables ξ = sin(θ)
sin(θmax)

. The array response in terms of
the “normalized” AoA, ξ ∈ [−1, 1], is given by
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Line of Sight

di use scattering

di use scattering

BS

d user

Fig. 9.1 An example of a propagation environment with various types of scattering

a(ξ) = [1, ejπξ , ej2πξ , . . . , ejπ(M−1)ξ ]T ∈ C
M. (9.2)

The channel representation in (9.1) is more general than the one typically assumed
in the literature, in which the AoAs are restricted to belong to a finite, discrete, and
not the continuum, implying that the channel is a superposition of signals coming
from discrete, separable AoAs corresponding to specular and narrow scattering. In
contrast, we further consider the possibility that diffuse scattering components exist
in the environment that are associated with subsets of the angular continuum.

We take the channel gain w(dξ ; s) to be a complex, circularly symmetric
Gaussian process over the angular domain, with zero mean E[w(dξ)] = 0 and an
autocorrelation function2

E[w(dξ)w(dξ ′)∗] = γ (ξ)δ(ξ − ξ ′), (9.3)

where γ (ξ) : [−1, 1] → R+∪{0} denotes the ASF, representing the power received
at the array from the angular interval [ξ, ξ + dξ ]. The physical meaning of (9.3) is
that the scattering gains over angles ξ and ξ ′ are uncorrelated. Using (9.3), we can
compute the channel covariance matrix as follows:

2 The parameter s both in w(dθ; s) and h(s) highlights the fact that the coefficients may vary
from one resource block to another. We assume the statistical properties of these random variables,
such as mean and covariance, to be constant over a much longer time horizon i the order of tens
or hundreds of resource blocks. Hence, when we study the statistical properties of these random
variables, we drop the parameter s from the argument.
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� = E[hhH] = E

[∫ 1

−1

∫ 1

−1
w(dξ)w(dξ ′)∗a(ξ)a(ξ ′)H

]
(9.4)

=
∫ 1

−1
γ (ξ)a(ξ)a(ξ)Hdξ. (9.5)

Note how the ASF γ is mapped to the covariance � through an integral transform.
More concretely, we have M(γ ) = �, where M : D → S

M×M+ , f →
∫ 1
−1 f (ξ)a(ξ)a(ξ)

Hdξ is a mapping that takes a distribution from the space of
generalized functions D as input and outputs a PSD M × M covariance matrix
through the integral transform in (9.4). Unfortunately, the inverse map M−1 from
the covariance to the ASF is non-unique, which means that multiple ASFs can
generate the same covariance. Nevertheless, with additional information on the
ASFs, given the covariance, one can single out the true ASF. Broadly speaking,
our goal in this work is to “learn” an inverse mapping from the channel covariance
to the ASF by assuming the ASF to belong to a certain class of distributions. This
class is not fixed and can be modified from one environment to another and from
time to time.

In practice, the covariance must be estimated by the BS through observing the
pilot signals received from the user that are given by y(s) = h(s)xs + z(s), s ∈ [T ],
where T is the total pilot dimension, xs = 1 is the pilot symbol here assumed to be
equal to one for simplicity, and z ∼ (0, N0I) is the additive white Gaussian noise
(AWGN). Pilots are transmitted on resource blocks with sufficiently large separation
in time and frequency so that we can safely assume the channel realizations h(s) s ∈
[T ] to be statistically independent. Given the noise variance N0, a simple estimate
of the channel covariance is given by the sample covariance matrix as

�̃ = 1

T

∑

s∈[T ]
y(s)y(s)H −N0I. (9.6)

In the case of a ULA, one can improve the sample covariance estimator by imposing
additional structure on the estimated covariance. The covariance of a ULA channel
is a Toeplitz, Hermitian PSD matrix that is fully expressed by its first column, i.e.,
� = T (σ ), where T is an operator that outputs the Toeplitz, Hermitian matrix
whose first column is the input σ ∈ C

M . Therefore, an improved estimate can be
computed by solving the following semidefinite program:

minimize
σ∈CM

‖T (σ )− �̃‖F , subject to T (σ ) 4 0. (9.7)

Denoting the solution of (9.7) with σ̂ , we have an estimate of the covariance from
noisy pilot observations as �̂ = T (σ̂ ). In what follows, we consider the problem of
estimating the ASF γ from the channel covariance estimate �̂.
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9.3 The Parametric Form of ASF

In order to learn the inverse mapping from the estimated channel covariance to the
ASF, we should impose some structure on the ASF to restrict the set of admissible
solutions. In general, the ASF is made up of two types of components: (1) discrete
components, representing the power coming from Line-of-Sight (LoS) and specular
scattering, denoted as spikes at specified locations and (2) continuous components,3

associated with the diffuse scattering, denoted as a certain power distribution within
the regime in theta domain. Therefore, we consider a decomposition of the ASF in
the form

γ (ξ) = γc(ξ)+ γd(ξ), (9.8)

where γc and γd denote continuous and discrete ASF components, respectively.

9.3.1 The Continuous ASF Component

The continuous component of the ASF can be expressed as a superposition of
functions that do not contain delta impulses. Therefore, this component takes on
the following form:

γc(ξ) =
K∑

k=1

fk(ξ), (9.9)

where, as explained, each component function fk, k ∈ [K] is associated with a
diffuse scattering element (see Fig. 9.2).

In order to obtain a finite-dimensional representation of γc, we can approximate
it with a linear combination of pre-defined, limited-support densities (kernels) and
establish an equivalence between γc and the coefficients of the approximation.
Specifically, let us define a family of densities as Ψ = {ψi : i ∈ [Gc]} with
cardinality Gc. One can design such a family in various ways, and we choose
the following simple option. Let ψ� : [−1, 1] → R+ ∪ {0} be a real, positive
function whose most support is limited to [0, 2

Gc
], and define the density family to

be consisting of shifted versions of ψ�, i.e., ψi(ξ) = ψ�(ξ+1− 2i
Gc

), i ∈ [Gc], ξ ∈
[−1, 1]. In particular, we use one density function, i.e.,

3 We refer to the part of ASF not containing delta functions as “continuous component” in analogy
with the probability density function of continuous random variables. This does not mean that the
density is continuous (e.g., a rectangular function is not), but that its anti-derivative function (i.e.,
the corresponding cumulative distribution function) is continuous.
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discrete
components

0 11

continuous
components

ξ

Fig. 9.2 An example ASF with discrete components (the two spikes) and continuous components
(the bell-shaped and rectangular functions)

• Rectangular densities: In this case, we define ψ� as a rectangular pulse over
[0, 2

Gc
], that is, ψ�(ξ) = Gc

2 I{ξ∈[0, 2
Gc
]}.

Now, given that the function is large enough (Gc � 1), we can closely approximate
γc as

γc(ξ) ≈
∑

i∈[Gc]
biψi(ξ), (9.10)

where bi, i ∈ [Gc] are appropriate approximation coefficients.

Generating Approximation Coefficients
We can compute the continuous component’s approximation coefficients by solving
the following optimization problem:

minimize
bi

‖γc −
Gc∑

i

biψi‖2 (9.11)

subject to bi ≥ 0, i = 1, . . . ,Gc. (9.12)

When kernel functions ψ are orthogonal, such as rectangular kernel, we can obtain
the continuous component’s coefficients simply by computing the inner product of
the generated continuous ASF with each element of the density family. In other
words, we have

bi = 〈γc, ψi〉
〈ψi, ψi〉 =

1

‖ψi‖2

∫ 1

−1
γc(ξ)ψi(ξ)dξ, (9.13)

where bi denotes the energy of ASF in i-th grid.
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9.3.2 The Discrete ASF Component

Unlike the continuous component, the discrete ASF component has a finite-
dimensional parametric expression as a train of weighted spikes, each representing
the power coming from an LoS or specular scattering element. Formally, it can be
written as

γd(ξ) =
∑

�∈[L]
ρ�δ(ξ − ξ�), (9.14)

where ρ� ≥ 0, � ∈ [L] are real, non-negative scalar coefficients and ξ�, � ∈ [L]
represent the discrete AoAs.

The decomposition of the ASF into discrete and continuous components, as given
by (9.10) and (9.14), results in a decomposition of the corresponding covariance
matrix, given by (9.4). Due to the Hermitian, Toeplitz structure of the channel
covariance of a ULA, we can reformulate the matrix identity (9.4) to the vector
identity

σ =
∫ 1

−1
γ (ξ)a(ξ)dξ (9.15)

≈
∑

i∈[Gc]
bi ãi +

∑

�∈[L]
ρ�a(ξ�), (9.16)

where σ = �:,1 is the first column of the covariance matrix, and the vector ãi ∈ C
M

is defined as ãi =
∫ 1
−1 ψi(ξ)a(ξ)dξ .

A difference between the two representations in (9.10) and (9.14) is that the
density functions ψi, i ∈ [Gc] (correspondingly, the vectors ai , i ∈ [Gc]) are
known a priori, while the discrete AoAs ξ�, � ∈ [L] (correspondingly, the vectors
a(ξ�)) are not known. Given the discrete AoAs, the ASF estimation problem reduces
to the task of estimating the coefficients bi, i ∈ [Gc] and ρ�, � ∈ [L] from an
estimate of σ , obtained from the noisy pilot measurements. In order to realize this
simple form of the problem, as a pre-processing step, we propose first estimating
the discrete AoAs.

9.4 Pre-processing: Discrete AoA Estimation via MUSIC

In order to estimate the support of the discrete ASF component γd , from the
pilot measurements y(s), s ∈ [T ], we employ the well-known multiple signal
classification (MUSIC) method [20, 22]. As a super-resolution method, MUSIC
is typically used for estimating the frequencies of multiple sinusoids from their
(possibly noisy) mixture. Similarly, here we use MUSIC to estimate the angular
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tones ξ�, � ∈ [L]. Recall the expression of the sample covariance matrix in (9.6) and
define its eigendecomposition as �̃ = ŨΛ̃ŨH, where Ũ = [̃u1, . . . , ũM ] denotes
the eigenvectors matrix, and Λ̃ is the diagonal eigenvalue matrix, with its diagonal
elements ordered as λ̃1 ≥ λ̃2 ≥ . . . ≥ λ̃M . Assume that an estimate of the number
of discrete AoAs (L̂) is given (normally, we can set L̂ > L4). Then, we can define
the so-called noise subspace as the subspace spanned by the columns of the (M−L̂)

eigenvectors in Ũ corresponding to the smallest (M − L̂) eigenvalues in Λ̃, namely
the columns of Ũnoise =

[
ũL̂+1, . . . , ũM

]
MUSIC estimate the discrete AoAs by

finding the L̂ dominant minimizers of the pseudo-spectrum function

η(ξ) = ‖ŨH
noisea(ξ)‖2 =

M∑

�=L̂+1

∣∣
∣̃uH

� a(ξ)
∣∣
∣
2
. (9.17)

We denote the estimated discrete AoAs as ξ̂�, � ∈ [L̂].
When the observations are generated by a noisy superposition of a finite number

of weighted tones, MUSIC asymptotically gives consistent estimates of the tones.
In the context of our problem, this scenario translates to the case in which the ASF
consists of only a discrete component, and the tones are the discrete AoAs. However,
in general, the channel is not only a product of the discrete ASF component, but
a mixture of discrete and continuous components. A recent asymptotic result has
shown that also in this case, under some mild conditions on the energy distribution
of the discrete and continuous parts as well as the signal dimension, MUSIC is
able to consistently estimate the discrete AoAs [19]. The following theorem states a
slightly modified version of this result to justify the expected success of MUSIC in
identifying discrete ASF AoAs from the noisy pilot observations.

Theorem 9.1 Consider an ASF γ (ξ) = γd(ξ)+ γc(ξ) :=∑L
�=1 ρ

(M)
� δ(ξ − ξ�) +

γc(ξ) and assume that the weights {ρ(M)
� : � ∈ [L]} may depend on the number

of antennas (M). Consider a scaling regime where the number of antennas M

and the sample size T both approach infinity such that T
M
→ ν > 0. Then,

MUSIC is asymptotically consistent, i.e., max�∈[L]M ‖̂ξ� − ξ�‖ → 0 provided that

lim supM→∞ min�∈[L]Mρ
(M)
� ≥ ω0(ν, γc), where ω0(ν, γc) is a finite parameter

that depends on ν and the continuous component γc.

Proof Further proof is presented in [14]. ��
Given an estimate of the discrete AoAs ξ�, � ∈ [L], we have a model that relates

the (Gc + L̂)-dimensional vector of real, positive coefficients to the covariance
matrix via (9.15). The goal now is to find the reverse mapping, mapping from
the first column of the covariance matrix to the (Gc + L̂)-dimensional coefficients
vector.

4 Since Remark 1 in the next section to see why our method can easily tolerate the a priori
overestimation of the number of spikes in the MUSIC pre-processing phase.
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Estimating the Number of Discrete AoAs
We employ a heuristic method for estimating the number of discrete AoAs [14]. This
method uses the spectrum of the sample covariance matrix �̃ to find the number of
discrete AoAs. First, let us normalize the eigenvalues of �̃ to their largest and define

the new variables βi = (
λ̃i
λ̃1
)

1
2 ∈ [0, 1] for i = 1, . . . ,M . The exponent 1

2 has the
role of inducing a separation between large and small eigenvalues. The reason is

that the function f : [0, 1] → R, x → x
1
2 does not affect the largest eigenvalue or

smallest eigenvalue but “soft-truncates” the eigenvalues by mapping them closer to
f (1) = 1.

We apply the K-means clustering algorithm with K = 2 clusters to the set of
(scalar) normalized parameters βi : i = 1, ...,M . The cluster centers are initialized
to two values uniformly drawn at random from the interval [0, 1]. Assume that K-
means converges to clusters with centers c(∞)

1 ≤ c
(∞)
2 . We estimate the number of

discrete AoAs by the cardinality of the cluster associated with the larger center c(∞)
2 ,

i.e.,

L̂ =
∣∣
∣{i ∈ [M] : |βi − c

(∞)
2 | ≤ |βi − c

(∞)
1 |}

∣∣
∣ . (9.18)

We repeat the K-means algorithm with newly generated initial centers, each time
calculating a new L̂, and eventually we take the mode (most repeated member) of
this sequence of estimates as the ultimate estimate of the number of discrete AoAs.

Remark 9.1 Note that the precise estimation of the number of discrete AoAs is not
critical, and in particular, it is better to overestimate the number of discrete AoAs,
than to underestimate it. If we overestimate the number of discrete AoAs, there will
be “fake” spikes identified in the support of the discrete ASF component. However,
the network (as will be introduced shortly) will assign small coefficients to the fake
spikes, which practically means that there is no spike. Underestimating the number
of discrete AoAs can be more harmful since some of the existing spikes will not be
represented to the network. Nevertheless, even in this case, the network can assign
a non-zero coefficient to an element of the density dictionary Ψ that has the highest
correlation with the “missed” spike. This is obviously sub-optimal, due to the poor
approximation of the delta function with a continuous density, but the induced error
will be controlled.

9.5 A Deep Learning Approach to ASF Estimation

We address the problem of estimating the ASF parameters using a novel deep learn-
ing approach. Recall that the BS receives a number of T noisy pilot observations
in the form y(s) = h(s) + z(s), s ∈ [T ], upon which it computes an estimate of
the first column of the covariance using (9.7). In addition, the discrete AoAs are
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estimated using MUSIC, as explained in the previous section. Therefore, we can
naturally consider a network that takes as input the estimated covariance column σ̂

plus the estimated discrete AoAs ξ�, � ∈ [L̂] and outputs the coefficient parameters
that approximate the ASF, namely the variables bi, i ∈ [Gc] and ρ�, � ∈ [L̂].
For simplicity, we define a new vector variable that contains all the coefficients as

c = [b1, . . . , bGc , ρ1, . . . , ρL̂]T ∈ R
Gc+L̂+ .

Recently, deep neural networks have been studied as tools for solving inverse
problems by applying encoder–decoder network or generative adversarial network
[3, 6, 16]. Therefore, a deep network can also be employed for the purpose of ASF
estimation. Such a network takes in the covariance column as well as estimated
locations of the discrete AoAs as input and outputs the ASF coefficients vector γ .
In what follows, we describe the details of the network architecture and the method
used for constructing data (for training and validation).

9.5.1 Training Phase

In the training phase, the true locations of spikes are given as input in DNN, while
in the testing phase, the estimated locations of the spikes are provided by MUSIC
as explained before. Therefore, the training examples consist of input–output pairs

(
{σ̂ (t), {ξ (t)� }L̂�=1}, γ (t)

)
, t = 1, . . . , Ttrain, (9.19)

where the superscript t denotes the example index and L̂ is a suitably chosen
integer, which will be discussed shortly. Moreover, when L̂ > L, some spurious
locations other than the actual spikes generating σ̂ are given to the network, with
corresponding power set to zero. This allows the DNN to learn also the cases when
MUSIC overestimates the number of spikes. In order to generate an input–output
training pair, we take the following steps:

1. Generating an ASF: We generate an example ASF in a semi-random fashion:

• Discrete ASF: The discrete ASF component γ (t)
d is produced by choosing L

locations uniformly at random over the interval [−1, 1] plus L̂ − L spurious
locations with zero power. L is chosen between Lmin and Lmax, where Lmin,
Lmax denote a presumed value for the minimum and maximum numbers of
discrete AoAs present in the ASF. To each random AoA, we assign a real, non-
negative coefficient that is generated uniformly at random over [ρmin, ρmax],
where ρmax is a pre-defined bound on the maximum amplitude for a single
discrete ASF component, and ρmin is the bound for minimum amplitude. More
concretely, we have
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γ
(t)
d (ξ) =

L∑

�=1

ρ
(t)
� δ(ξ − ξ

(t)
� ), (9.20)

where ξ
(t)
� ∼ U([−1, 1]) and ρ

(t)
� ∼ U([ρmin, ρmax]), independently for � =

1, . . . , L.
• Diffuse ASF: The continuous ASF component γ (t)

c is generated according to
(9.9), i.e., by using the synthesis expression γ

(t)
c (ξ) =∑K

k=1 f
(t)
k (ξ). Similar

to L, the integer K is a pre-defined parameter on the number of diffuse
scatterers ranging from Kmin to Kmax. The functions fk are arbitrary non-
negative, real, continuous functions. However, for the sake of training the
network, it is practically easier to assume f (t)

k to take on a certain parametric

shape. A natural choice is to allow f
(t)
k to be either a rectangular or a Gaussian

distribution. For each k, an equi-probable Bernoulli random variable decides
whether f (t)

k has a rectangular or a Gaussian form. If f (t)
k is decided to be

Gaussian, then we have

f
(t)
k (ξ) = a

(t)
k e

−
(
ξ−μ(t)

k

)2

2σ(t) 2
k , (9.21)

where a
(t)
k ∼ U([amin, amax]) is a random, uniformly generated, non-

negative coefficient, μ
(t)
k ∼ U([μmin, μmax]) is the randomly generated

distribution mean, and σ
(t) 2
k ∼ U([σ 2

min, σ
2
max]) is the distribution variance.

The parameters amax and σ 2
max represent the maximum coefficient amplitude

and the maximum variance, respectively. In contrast, the minimum are defined
as amin and σ 2

min. Similarly, if f (t)
k is decided to be rectangular, we have

f
(t)
k (ξ) = a

(t)
k I{ξ∈[μ(t)

k −σ (t)
k /2,μk+σ (t)

k /2]}, (9.22)

where in this case I is an indicator function; if the condition is fulfilled, it
is one; otherwise, it is zero. a(t)k ∼ U([amin, amax]) is a random coefficient

as before, σ (t)
k denotes the width of the rectangular function, generated as

σ
(t) 2
k ∼ U([σ 2

min, σ
2
max]), and μ

(t)
k ∼ U([μmin, μmax]) is its support mean.

We can set the parameters involved in the semi-random generation of the
ASF based on a priori information about the communication environment.
For example, the BS can learn the number of LoS and specular scattering
paths and set a value for Lmax. Also, an upper bound on the sparsity order of
the channels in an environment translates to a bound on Kmax as well as the
maximum scatterer (effective) width σk .

• Normalization: Once γ
(t)
d and γ

(t)
c are generated, we normalized them to a

scalar factor such that they both have unit integral over the interval [−1, 1]. In
other words, we have

∫ 1
−1

1
Zd
γ
(t)
d (ξ)dξ = 1 and

∫ 1
−1

1
Zc
γ
(t)
c (ξ)dξ = 1, where
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Zd and Zc are the normalization factors for the discrete and continuous ASF
components, respectively. For simplicity, we drop the normalization factors
from here onward, assuming that each component is normalized.

• Finally, the ASF is given by the superposition of the discrete and continuous
parts as

γ (t)(ξ) = α(t)γ (t)
c (ξ)+ (1− α(t))γ

(t)
d (ξ), (9.23)

where α(t) ∈ [αmin, αmin] is a parameter that controls the contribution of each
component: if α(t) = 0, the ASF is purely discrete, and if α(t) = 1, the ASF is
purely continuous, and for all other values, the ASF is a convex combination
of discrete and continuous parts.
In this way, there are a variety of examples, where in some the discrete
component is dominant, in some the continuous component is dominant, and
in the two components, they have a balanced contribution to the overall ASF.

2. Generating the Associated Coefficients Vector: According to section “Gen-
erating Approximation Coefficients”, the coefficient vectors can be computed,
and then [c(t)]i = b

(t)
i for i = 1, . . . ,Gc and [c(t)]i = ρi−Gc for i =

Gc+1, . . . ,Gc+L̂. In this way, after normalization, it is determined that the sum

of each components in c(t) is 1, i.e.,
∑Gc+L̂

i [c(t)]i = 1.
3. Generating the Noisy Covariance Column: With the generated ASF, the

covariance column σ (t) corresponding to it can be computed by simply using
(9.15), but with the true ASF instead of dictionary-based ASF. The corresponding
noisy sample covariance based on sample number T can be computed from (9.6).
In order to reduce the complexity of DNN, the transformed column σ̂ of noisy
sample covariance matrix is obtained from (9.7), which is the part of input in
DNN.

With these three steps, the training input–output examples in (9.19) can be produced.

9.5.2 Network Architecture

We propose a fully connected neural network with three components for ASF
estimation, as illustrated in Fig. 9.3. First, we learn an intermediate represen-
tation from noisy sample covariance matrix by a linear transformation f :
R

2×M+L̂ → R
N , which is made of one-layer neural network with input denoted

as [Real(σ̂ ), Imag(σ̂ )] ∈ R
2M plus the estimated locations of spikes, and then the

intermediate representation is denoted as

v = f (σ̂ , {ξ�}L̂�=1)
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Fig. 9.3 A schematic of our proposed network

= Wi ∗ [σ̂ , {ξ�}L̂�=1] + bi . (9.24)

The second component is the residual learning block, a small modification in the
network architecture introduced in [11], which consists of two-layer non-linear
function h : RN → R

N and an addition operation. Therefore, the output of residual
block can be denoted as R(x) = ReLU(x + h(x)), where ReLU is an activation
function as max(x, 0). Specifically, the non-linear function h can be denoted as

h(x) = BN(W2 ∗ (ReLU(BN(W1 ∗ x)))), (9.25)

where BN represents the batch normalization [12], which first normalizes the output
into standard Gaussian distribution and rescales the output during training. In the
experiment, we will use two residual blocks.

Last, the estimated coefficients ĉ can be obtained from output layer denoted as

ĉ = g(v) = Sigmoid(Wo ∗ y+ bo), (9.26)

where y is the output of residual block, and g : RN → R
Gc+L̂ represents one-

layer transformation function with sigmoid activation function as Sigmoid(x) =
1

exp(−x)+1 . Moreover, we apply sigmoid function to obtain estimate coefficients
ranging between 0 and 1.

Furthermore, the binary cross-entropy loss function is applied to the output layer
to compare the differences between ĉ and c, as shown in

Loss =
Gc+L̂∑

i

−ci ∗ log(ĉi )− (1− ci) ∗ log(1− ĉi ). (9.27)

During training, we use the widely adopted batch gradient descent (Batch GD)
for optimizer, and Adam optimizer proposed in [26] to update model parameters,
whose learning rate is 0.0002.
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9.5.3 Test Phase

Once the network parameters are optimized, we test it by feeding input examples
designed in the following way. First, a number of T noisy pilot samples are
received y(s) = h(s) + z(s), s = 1, . . . , T , where h(s) ∼ (0,�) and z(s) ∼
(0, N0I), where the component-wise noise variance N0 relates to the SNR as
N0 = trace(�)/(M SNR). Assuming that the noise variance is known, we estimate
the channel covariance by first computing the sample covariance �̂ according to
(9.6) and then improving the estimate via (9.7). The outcome is an estimate of
the first column of the channel covariance, which we denote by σ̂ . Besides the
covariance column, we use the sample covariance matrix to obtain estimates of the
discrete AoAs, using the MUSIC method as explained in Sect. 9.4. The number
of estimated discrete AoAs is upper-bounded by L̂, which is a fixed network
parameter. Therefore, the input to the network during testing is the set of parameters(
σ̂ , {̂ξ�}L̂�=1

)
.

The output of the network is an estimate of the ASF coefficient parameters,
namely the vector γ of dimension Gc+ L̂, where the first Gc elements are estimates
of the coefficients in the approximation formula (9.10) and the last L̂ elements are
estimates of the spike coefficients in (9.14). The ASF estimate is then given as

γ̂ (ξ) =
Gc∑

i=1

[ĉ]iψi(ξ)+
L̂∑

�=1

[ĉ]Gc+�δ(ξ − ξ̂�). (9.28)

We assess the performance of the network in terms of quantitative and qualitative
measures with respect to this estimate of the ASF.

9.6 Simulation Results

In this section, we provide empirical results to compare the performance of
our proposed DNN-based ASF estimator with the state-of-the-art methods in the
existing literature.

1. Non-negative Least Squares (NNLS) In the method proposed in [14] by some
of the authors of the present paper, given σ , the vector of ASF coefficient parameters
γ is estimated by solving the following NNLS program:

minimizex ‖WDx− w % σ‖ subject to x ≥ 0, (9.29)

where D = [ã1, . . . , ãM, a(̂ξ1), . . . , a(̂ξL̂)
]
, where ãm =

∫ 1
−1 ψm(ξ)a(ξ)dξ, m =

1, . . . ,M and {̂ξ�}L̂�=1 are the discrete AoAs estimated by MUSIC. Moreover,
since σ refers to the first column of channel covariance matrix, in order to
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reconstruct the whole matrix, some weights w are added in the optimization
problem. Therefore, w = [√M,

√
2 ∗ (M − 1),

√
2 ∗ (M − 2), ...,

√
2]], and W is

a diagonal matrix whose diagonal entries are w. Then the estimated ASF is given

by γ̂ =∑M
i=1[x]mψm(ξ)+∑L̂

�=1[x]M+�δ(ξ − ξ̂�).

2. Convex Projection Method As mentioned in Sect. 9.1, in [18] a method for the
ASF estimation is proposed by solving a convex feasibility problem of the form

γ̂ = find μ subject to γ ∈ S, (9.30)

where

S = {γ :
∫ 1

−1
γ (ξ)ejπmξdξ = [̂σ ]m, m = 0, . . . ,M − 1, (9.31)

γ (ξ) ≥ 0 for all ξ ∈ [−1, 1]},

which can be solved by applying an iterative projection algorithm. Such algorithms
produce a sequence of functions in L2 that converges to a function that satisfies
the constraints of (9.30), namely, consistency with the estimated covariance column
derived from (9.7) and non-negativity.

9.6.1 Metrics for Comparison

In order to access the reconstruction performance of ASF, on one hand, we can
compare those methods directly by computing the Wasserstein distance between
estimate ASF and true ASF. On the other hand, we can map estimate ASF into
the channel covariance and compare the estimate channel covariance by computing

normalized Frobenius norm error, denoted as ‖�−�̂‖2‖�‖2
.

9.6.2 Performance with Different SNRs

In order to evaluate the performance of reconstructing ASF based on different SNRs,
we generate 5000 pairs of data when sample number T = 1 × M , and SNR =
{5, 10, 15, 20} dB. Moreover, the estimate ASFs obtained by our proposed algorithm
are produced by a pre-trained model that is trained on T/M = 1 and SNR = 10 dB.
As illustrated in Fig. 9.4, where Fig. 9.4a shows the Wasserstein distance on estimate
ASFs and Fig. 9.4b depicts the normalized Frobenius norm on reconstructed channel
covariance matrix produced by estimate ASFs, it shows that when sample number is
M , our proposed algorithm based on rectangular dictionary outperforms others not
only in Wasserstein distance but also for the performance of reconstructed channel
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Fig. 9.4 ASF estimation quantitative comparison when sample number T = 1 × M , and SNR
= {5, 10, 15, 20} dB: (a) Wasserstein distance for estimating ASFs, (b) normalized Frobenius norm
error for reconstructed channel covariance matrix

covariance matrix. Besides, compared with NNLS, projection method is better at
reconstructing channel covariance matrix.

ASF Test Sample
We take one sample from test set as an example to visually find out how the
performance of ASF estimation is. As illustrated in Fig. 9.5, the first row is from
DNN based on rectangular dictionary, where the red line is the true ASF needed to
reconstruct, the green line is the approximate ASF adopting rectangular dictionary,
and the blue line is the estimate ASF from DNN. The latter two rows are estimate
ASF from NNLS and projection method, respectively. It is shown that MUSIC
algorithm is able to detect the locations of spikes even if in the regime of low sample
number and low SNR. Furthermore, since projection is targeted at reconstructing
continuous function, it is hard to reconstruct spikes in the exact location but to
spread energy in regime of spike locations with large amplitudes, where we only
show its truncated version. In general, compared with NNLS and projection method,
our proposed algorithm is able to distinguish between diffuse ASF and discrete ASF
and thus can have a better estimate ASF.

9.6.3 Performance with Different Sample Numbers

In order to evaluate the performance of reconstructing ASF based on different
sample numbers T , we generate 5000 pairs of data when SNR = 5 dB and T

M
=

{0.125, 0.25, 0.5, 1, 2}, where the estimate ASFs of our proposed algorithm come
from a pre-trained model trained on SNR = 10 dB, and T

M
= 1. As illustrated

in Fig. 9.6, it shows that our proposed algorithm outperforms other methods in
low sample number regime. However, as sample number is increasing, the other
approaches are getting better.
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Fig. 9.5 One sample from test set, consisting of two Gaussian diffuse scatterings and one
rectangular scattering as well as three spikes, is estimated from different approaches, when sample
number T = 1×M and SNR= {5, 10} dB. (a) SNR = 5dB. (b) SNR = 10dB. (c) SNR = 5dB.
(d) SNR = 10dB. (e) SNR = 5dB. (f) SNR = 10dB

ASF Test Sample
In this section, one example from test set is illustrated in Fig. 9.7 when SNR =
5 dB, and sample number T = {1, 2} ×M . In the experiment, MUSIC will produce
L̂ = 4 locations of spikes, while there are only L = 3 spikes. As we can see, our
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Fig. 9.6 ASF estimation quantitative comparison when SNR=5 dB, and the number of noisy
samples T = [0.125, 0.25, 0.5, 1, 2] × M: (a) Wasserstein distance for ASF estimation,
(b) normalized Frobenius norm error for reconstructed channel covariance matrix. (a) T

M
=

[0.125, 0.25, 0.5, 1, 2]. (b) T
M
= [0.125, 0.25, 0.5, 1, 2]

proposed algorithm is able to set the energy of extra location as close as to zero,
while in NNLS, a small amount of energy will be assigned to the extra locations,
thus suppressing the energy of diffuse part when the location is within the diffuse
scattering. However, as sample number is increasing, the ASF estimation for NNLS
is more accurate. However, even if in the small sample number and noisy case,
our proposed algorithm is still able to distinguish the diffuse part and discrete part
separately. It is visually shown that our proposed algorithm outperforms others in
the low sample regime.

9.7 Conclusion

In this chapter, a DNN-based algorithm is proposed for ASF estimation in MIMO
systems. Unlike conventional approaches, we consider there are not only Line-of-
Sight signals, or specular reflections, but also diffuse scatterings during propagation.
Therefore, we introduce a two-step method for high-resolution ASF estimation.
After the locations of spikes are estimated from MUSIC algorithm in the first step,
DNN is applied for estimating the coefficients of diffuse ASF as well as the energy
of spikes with estimate locations and noisy sample covariance matrix as input.
Moreover, we make a solid comparison, and it shows that our proposed method
outperforms other methods in low sample number regime in both qualitative and
quantitative terms.
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Fig. 9.7 One sample from test set, which consists of two Gaussian diffuse scatterings, one
rectangular scattering, and three spikes, is estimated from different approaches when SNR=5 dB,
and the number of noisy samples T = [1, 2] ∗M . (a) T

M
= 1. (b) T

M
= 2. (c) T

M
= 1. (d) T

M
= 2.

(e) T
M
= 1. (f) T

M
= 2
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Chapter 10
Fast Radio Propagation Prediction with
Deep Learning

Ron Levie, Çağkan Yapar, Giuseppe Caire, and Gitta Kutyniok

10.1 Introduction

In wireless communications, the pathloss is a quantity that measures the loss of
signal strength (reduction in power or attenuation) between a transmitter (Tx) and a
receiver (Rx) due to large-scale effects. The signal power attenuation may be caused
by different factors, such as free-space propagation loss, reflections and diffraction
from buildings, waveguide effects in street canyons, and obstacles blocking line of
sight between Tx and Rx. The pathloss function (sometimes referred to as path gain
function or radio map) is a function that assigns to each Tx–Rx pair of locations
x, y the corresponding large-scale signal attenuation G(x, y).

In this chapter, we introduce RadioUNet [27, 28]—a deep learning method for
estimating radio maps, based on UNets. UNets are a special type of convolution
networks, ubiquitous in imaging and computer vision applications. Radio maps
can be represented as images, in which the pixels represent spatial locations and
the pixel values represent pathloss values. From this point of view, the radio map
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estimation task can be seen as the problem of generating a radio map image
from some information about the physical environment in which the wireless
communication system operates. Hence, the idea of using UNets for estimating
radio maps, which was first introduced in [27, 28], is quite natural, and the follow-
up works repeated the idea under slightly different assumptions and with slightly
different methodologies [37, 44, 64].

10.1.1 Applications of Radio Maps

Many applications in wireless communication explicitly rely on the knowledge of
the pathloss function, and thus, estimating pathloss is a crucial task. For example,
in device-to-device (D2D) link scheduling, there exists a set of wireless devices that
transmit signals to each other in pairs. A pair of devices that communicate defines a
Tx–Rx link. The signal sent by a Tx is generally received by multiple Rx’s beyond
its intended destination, creating mutual interference between the links. While the
general information-theoretic setting for this problem is the Gaussian interference
channel, whose capacity region and optimal coding techniques are still an open
problem in general, a huge amount of work have been devoted to the problem of
scheduling subsets of links to be active on the same time slot and frequency sub-
band, such that their mutual interference is sufficiently weak and the multiuser
interference can be treated as Gaussian noise. It turns out that in a particular
regime of weak interference, Treating Interference as Noise (TIN) is information-
theoretic approximately optimal [14]. Furthermore, efficient link scheduling and
power control combined with TIN yield very good performance in comparison
with classical interference avoidance schemes such as CSMA [6]. A practical such
link scheduling algorithm developed by Qualcomm is FlashLinQ [59]. Recent
works on information-theoretic inspired D2D link scheduling include [34, 61],
which significantly improve upon FlashLinQ. A recent more direct approach based
on fractional programming optimization is provided in [52]. All these schemes
somehow assume that the pathloss function between every Tx–Rx location is known
or can be accurately estimated via some probing scheme. A deep learning approach
to D2D link scheduling is proposed in [12], which is implicitly based on the fact
that interference is a decreasing function of distance and therefore that the pathloss
function has a radial symmetry. Therefore, such scheme does not directly apply to
more complicated urban propagation scenarios as considered in the present chapter.
From the above works, it is clear that an accurate knowledge of the radio map for a
specific environment is very important for efficient D2D links scheduling.

Another classical use-case example of radio maps is base station assignment, or
user-cell site association, where the goal is to assign a set of wireless devices to a set
of cellular base stations. In order to decide which device to assign to which station,
it is important to know the radio map (e.g., see [5] and references therein).

Some additional applications that rely on the knowledge of the pathloss function
are fingerprint-based localization [35], physical-layer security [57], power control
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in multi-cell massive MIMO systems [9], user pairing in MIMO–NOMA systems
[40], precoding in multi-cell large-scale antenna systems [2], path planning [63],
and activity detection [8].

10.1.2 Radio Map Prediction

A multitude of approaches for estimating the pathloss function have been proposed
in the literature. For the sake of clarity, we can group these approaches into three
categories.

Data-driven interpolation methods assume that some measurements of the
pathloss function are given at certain locations. These methods estimate the pathloss
function at non-measured locations via some signal processing approach (e.g.,
Kriging [55]) and do not rely—or rely only lightly—on a model of the physical
phenomenon. Beyond Kriging, other examples of such approaches are radial
basis function interpolation [7, Sect 5.1], tensor completion [50], support vector
regression [56], and matrix completion [10].

Model-based data-fitting methods combine measurements of the pathloss func-
tion with a priori assumptions on the physical system to estimate the pathloss
function at non-measured locations. For example, in tomography methods, the
attenuation due to shadowing can be derived under some modeling assumptions
from the so-called spatial loss field (SLF), which in turn can be estimated from the
measurements. Here, various assumptions on the underlying SLF can be imposed,
e.g., low-rank structure [25], sparsity [47], and piecewise homogeneity [24, 26].

Last, model-based prediction estimates the pathloss function based only on
the available prior knowledge, e.g., physical considerations, without taking any
measurements from the area of interest. We focus in this chapter on simulations
based on tracking the signal along rays. One well-known class of methods is ray
tracing [46], where the signal is modeled as rays that are cast from the transmitter,
travel in straight lines in homogeneous medium (such as free space), and undergo
rules of reflection, refraction, and diffraction when the medium changes (e.g., when
hitting an obstacle). One efficient ray-tracing method is called intelligent ray tracing
(IRT). This algorithm starts with a pre-processing step that takes the considered
city map, and structures the data in a manner that allows later on to compute the
interactions of the rays with the geometry efficiently. Dominant path model [58] is a
simplification of ray tracing, where only diffractions are considered, which allows a
more efficient implementation. Another class of methods are empirical models, e.g.,
[65].
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10.1.3 Radio Map Prediction Using Deep Learning

Two recent papers proposed deep learning approaches for estimating radio maps
[19, 49]. There, the neural network is a function that returns an estimate of the
pathloss for each input Tx–Rx location. The network is trained on a fixed map and
simulated pathloss values at a set of Tx–Rx locations. This procedure is a data-
fitting method for the 4-dimensional (4D) function G(x, y).1 Different city maps
require re-training the network, and each trained network describes a specific map.
In contrast, our RadioUNet learns to estimate the underlying physical phenomenon
and executes a type of implicit simulation, given by the operations of its underlying
convolution network, which interacts with any Tx source and city map. Even when
the map is fixed, we show that RadioUNet significantly outperforms previous deep
learning proposed methods.

There are several more papers on pathloss prediction that use fully connected
neural networks, which do not take the city map information into consideration,
and use additional information such as the height of the transmitter/receiver or the
distance between them. For example, see the survey [43], and the papers [42, 53, 54].

Another recent work based on data fitting to radio maps via deep learning, in
the above fashion, is [39]. The authors of [39] also proposed a transfer learning
approach to learn a radio map estimator corresponding to some antenna tilt TB from
a radio map estimator of another tilt TA. There, it is assumed that there is a large
amount of data to train the tilt TA and a small amount of data for the tilt TB . We also
consider a transfer learning approach, in which we train a radio map estimator on a
large dataset of simulations, and transfer it to real life with the aid of a small dataset
of real-life measurements.

10.2 Introduction to Radio Map Prediction with RadioUNet

In this chapter, we propose several versions of a radio map estimation method based
on deep learning, which we term RadioUNet.2 In our setting, we consider mobile
devices/base stations in an urban environment. Our deep-learning-based methods
are efficient, estimating the whole radio map within an area of 2562m2 in an order
of 10−3sec to 10−2sec, with root mean square accuracy of order 1 dB, where the
range of pathloss values from the noise floor to the maximal gain is 100 dB. This is
a mean accuracy of 1% (RMSE divided by the range).

1 Notice that when x and y are points on the plane R
2, the function G(·) has domain in R

4.
2 The source code of RadioUNet can be found at https://github.com/RonLevie/RadioUNet.
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10.2.1 RadioUNet Methods

Our radio map estimation methods are based on UNets [48] and their compositions.
One version of RadioUNet (called RadioUNetC) only uses as input the geometry of
the urban environment, which may be perturbed, the Tx location, and no pathloss
measurements. Thus, this method can be categorized as model-based simulation.
However, as opposed to classical-model-based simulation, our model is learned
from training data and does not have an explicit physically interpretable formulation.
Another model that we propose (called RadioUNetS, with S for samples) takes as
an additional input variable some measurements of the pathloss at a few locations.
Thus, this method can be categorized as a model-based data-fitting method. Another
optional input variable are the locations of cars along the streets, which help predict
the shadowing effect due to the penetration of the signal through cars.

10.2.2 The Training Data

We present a new dataset, called RadioMapSeer,3 of 56,000 simulated radio maps
in different city locations and different Tx locations. Each simulation has a number
of versions, generated using different types of coarse simulations. The coarse
simulations we use are dominant path model (DPM) [58] and intelligent ray tracing
[45] based on 2 interactions of the rays with the geometry, called IRT2. The coarse
simulations are saved as dense measurements of the radio map in a 2D dense grid of
256×256 m2. We also consider two more coarse simulation types, based on DPM
and IRT2, in which cars are generated along the streets, and affect the simulation.
The cars serve as unpredictable obstacles perturbing the received signal strength.
Alongside each simulation, the map of the city, the Tx locations, and cars are also
provided.

In addition, we present a smaller dataset of 1400 high-accuracy simulations,
called IRT4 (IRT with 4 interactions). In our setting, IRT4 serves as a surrogate
for real-life measured radio maps, i.e., the effective ground truth with respect
to which we calculate the prediction error. A second version of this dataset has
IRT4 simulations including the effect of cars. To imitate a realistic scenario where
the 1400 IRT4 simulations represent real-life measurements collected during a
measurement campaign, or even in real time from user devices, we suppose that each
of the 1400 radio maps is only measured sparsely, e.g., we only have 300 receiver
locations per map. We note that we are not trying to study the accuracy of IRT4, and
we do not even have to assume that IRT4 is a high-accuracy method. The idea is
that DPM, IRT2, and IRT4 all share a basic coarse behavior, namely, they roughly
represent the basic underlying propagation phenomenon, but IRT4 has additional

3 The dataset can be found at https://RadioMapSeer.github.io.
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finer details not present in DPM or IRT2. IRT4 shares this property with real-life
radio maps. One goal is then to develop methods to predict the fine details of IRT4,
even though in training we have access to a large dataset of DPM and IRT2, but
only to a small set of sparse measurements of IRT4. Of course, when RadioUNet is
employed in practice, the refined phenomenon should be taken as the actual real-life
measurements.

10.2.3 Generalizing What Was Learned to Real-Life Scenarios

As discussed above, one important aspect that we address in this chapter is how to
generalize the RadioUNet, trained on coarse simulations, to real life. To assess the
performance of a trained RadioUNet in real life, we test it on the small dataset of
high-accuracy IRT4 simulations, serving as a surrogate to real-life measurements.
The ultimate goal is to transfer what RadioUNet learned to real-life deployment.
Our methods learn the “big-picture” coarse phenomenon from the large DPM
and IRT2 dataset and use the additional IRT4 sparse samples to refine and adapt
the RadioUNet from simulation to “real-life,” using a relatively small number of
trainable parameters. We thus demonstrate that a RadioUNet, trained on coarse
simulations, can learn to estimate the fine details of a more complex phenomenon.
When RadioUNet is employed in practice, the refined phenomenon should be taken
as real-life measurements.

A second approach for transferability is training a RadioUNet that estimates radio
maps from three input feature channels, the city map data, the Tx location, and some
pathloss measurements. The method is trained to estimate coarse simulations by
combining the data from the city map and the measurements. However, once trained,
the RadioUNet can be employed in real life, where real-life input measurements of
the pathloss are now taken.

10.2.4 Applications

Our RadioUNet can be directly applied to any of the problems mentioned before,
where an accurate knowledge of the pathloss function between any Tx–Rx pair of
locations is useful. In a dynamic environment, the set of refined measurements can
be provided in real time from the mobile devices, along with their position. For the
sake of space limitation, in this chapter, we demonstrate the potential of our radio
map estimation method with two applications.

Coverage Classification We show how to predict the service area of a Tx,
and conversely, show how to estimate the domain where the Tx creates small
interference with other devices. This example is taken from [28].
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Pathloss Fingerprint-Based Localization Using the estimated radio maps of a set
of devices/base stations with known location, the location of some other device d

can be accurately computed if d reports the received signal gains from the base
stations. An extension of the approach presented here can be found in [60].

10.3 Background and Preliminaries

10.3.1 Wireless Communication

The pathloss function assigns to each Tx–Rx pair of locations x, y the corresponding
large-scale signal attenuation G(x, y). Notice that in addition to the large-scale
effects, wireless propagation is also subject to small-scale fading, due to the
superposition of scattered wavefronts with different phases at the Rx location. Such
small-scale effects are typically modeled as a Gaussian random variable H that,
without loss of generality, can be normalized with unit second moment. Therefore,
if we denote by Y = √G(x, y)HX+Z a signal sample at the Rx baseband output,
where X is the transmitted signal sample with power PTx, H is the normalized
small-scale fading, and Z is the additive noise with power spectral density N0, the
received energy per sample is generally given by E[|Y |2] = G(x, y)PTx/W + N0.
Here, W is the signal bandwidth, and the signal-to-noise ratio (SNR) at the input of
the Rx baseband processor is given by SNR = G(x,y)PTx

N0W
.

Consider a general Gaussian interference network with K Tx and N Rx devices
located over a certain region of the 2D plane. Following the generalized degrees of
freedom (GDoF)-oriented model in [14], it is useful to normalize the received signal
such that the variance of the noise samples N0 and the signal energy per symbol
PTx/W are both equal to 1, and define a parameter P such that the normalized
received signal at each j -th Rx is given by

Yj =
K∑

i=1

√
Pαi,j Xi + Zj , (10.1)

where αi,j = log SNRi,j

logP and SNRi,j is the SNR between Tx i and Rx j as
defined in Sect. 10.1. It turns out that the GDoF region of the underlying Gaussian
interference network (i.e., a high-SNR representation of the capacity region) is
defined by the exponents αi,j . Furthermore, under certain conditions (see [14, 61]),
the GDoF region yields the actual capacity region within a one bit gap. These facts
provide a strong evidence that the relevant scale to estimate the pathloss function is
logarithmic, i.e., on a dB scale. Furthermore, from the theory in [14], it follows that
negative values of these exponents are irrelevant, that is, for the GDoF region, it is
sufficient to take the positive part of the αi,j ’s. In practice, this means that we do
not have to spend much effort in estimating very large negative values (in dB) of the
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pathloss function. As a matter of fact, it makes sense to truncate such function such
that the received signal power is not too much smaller than the noise floor.

Driven by the above considerations, we define the pathloss in dB scale as PL =
(PRx)dB − (PTx)dB, where PTx and PRx denote the transmitted power and received
power at the Tx and Rx locations, respectively. The truncation and rescaling of the
pathloss function in dB scale in order to make it suitable for the proposed deep
learning estimation method are given in Sects. 10.4.2 and 10.4.3.

10.3.2 Deep Learning

In this subsection, we go over the required material from deep learning.

10.3.2.1 An Interpretation of Deep Learning

In this chapter, we use a deep learning approach for simulating radio maps. To
explain what deep learning is, let us present one point of view that we find
constructive, namely, seeing deep learning as an approach for algorithm design.

Traditional algorithms are designed “manually,” where each step is specified to
the last detail to achieve the end goal of the algorithm. In contrast, deep learning can
be seen as the practice of designing algorithms by laying down the general outline
of the different steps and specifying the types of computational tools to be used
in the algorithm. The choice of the general blueprint of the algorithm is called the
architecture. In deep learning, the fine details of the algorithm are automatically
tuned by optimization to achieve the end goal of the algorithm and not explicitly
designed by humans. This optimization is called training in the machine learning
jargon.

In this interpretation, a layer in a deep learning architecture means a step in
the algorithm. The term deep in deep learning means that there are many layers, or
equivalently many steps. The number of layers is called the depth of the architecture.
The fine details to be optimized in each layer are given as free parameters of
the architecture and are called the learnable parameters, or weights in some
architectures. A deep learning algorithm receives inputs and produces outputs. The
algorithm is written down, or unfolded in the deep learning jargon, as the end-to-end
function that transforms the input to the output [17, 38]. This function is sometimes
called the network. Unfolding is done by composing the different steps, or layers,
one on top of the other.

The vast majority of deep learning methods are trained using some variant of
gradient descent on the learnable parameters (e.g., see [21]). One step in gradient
descent is called an Euler step. Since in gradient descent the gradient of the network
is computed at each Euler step, and the network is the composition of all of the
layers, the chain rule plays an imported role. Using the chain rule in gradient descent
is called back-propagation in the deep learning jargon.
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A deep learning architecture keeps enough parameters free to be able to express a
large class of algorithms. This is called the expressive capacity of the network. The
more expressive the network, the more versions of the algorithm there are to explore
during training, and thus the harder optimization is. On the other hand, if the network
is not expressive enough, there might not be any choice of the parameters that
constitutes an adequate algorithm. A good deep learning architecture is designed
by choosing general steps that are suitable to the specific problem. Choosing steps
that are natural for solving the problem means that the network does not have to
learn these steps as combinations of more basic steps. This helps in reducing the
amount of learnable parameters. The idea that a network is predisposed to certain
algorithmic approaches, or has some built-in functionalities, is sometimes called the
innateness of the network [31].

10.3.2.2 Convolutional Neural Networks

A convolutional neural network (CNN) is a popular deep learning architecture,
typically used in machine learning applications in imaging science [22, 23]. In our
context, a feature map is a function from a 2D grid to some R

N , where N is called
the number of feature channels of the feature map. If N = 1, we call the feature
map a gray-level image. A CNN is defined by aggregating the following five basic
computational steps as the layers of the network.

A convolution layer is a step where an input feature map is convolved with a
filter kernels and added to some scalars called the bias. The numbers of input feature
channels and output feature channels need not coincide. More accurately, let N be
the number of input feature channels and M the number of output feature channels.
Let f1, . . . , fN be the feature channels of the input feature map. Note that each fn
is a gray-level image, not a scalar. The feature channels of the output feature map,
gm, are defined for every m = 1 . . . ,M by

gm =
N∑

n=1

fn ∗ yn,m + bm, (10.2)

where ∗ denotes convolution, and for each m = 1, . . . ,M and n = 1, . . . , N , yn,m
is a gray-level filter kernel, and bm is the m-th component of the bias. We emphasize
here that for each (n,m), yn,m is a filter kernel, not a scalar.

An activation function is any function applied on the entries of a feature map,
and a typical choice is ReLU, defined by r(z) = max{0, z}. A pooling layer takes a
feature map and downsamples it, e.g., by assigning the maximal entry of each 2× 2
patch to the corresponding entry of the down-sampled feature map. An up-sampling
layer upsamples lower-resolution feature maps to higher-resolution ones. Last, a
fully connected layer is a general linear operator/matrix applied on the feature map
and added to some pre-defined bias. A CNN architecture is defined by choosing
how to combine the above layers, choosing the number of feature channels, and
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choosing the shapes of the filter kernels. The trainable parameters are the filters, the
fully connected matrices, and the biases.

10.3.2.3 UNets

UNet is a special CNN architecture, introduced in [48], and used in a multitude of
applications, including image segmentation [3, 11, 33, 51], video predicting [32],
super-resolution/image inpainting [29], inverse problems in imaging [20], image-
to-image translation [62], and medical image analysis [30] to name a few.

UNets consist of convolution, pooling, up-sampling, and activation function
layers, without fully connected layers. The UNet architecture is divided into two
paths. The first portion of the layers gradually contracts the image as the layers
deepen and gradually increases the number of feature channels. This path—also
called the encoder—is interpreted as a procedure for extracting “concepts” that
become more complex/high level and less spatially localized along the layers. The
second portion of the layers—also called the decoder—expands the image as the
layers deepen and reduces the number of feature channels gradually. This path is
interpreted as a procedure of combining/synthesizing the concepts, layer by layer,
to lower-level concepts, and eventually to an output image. The decoder layers
are derived by up-sampling lower-resolution images and thus lack high-resolution
information on their own. To provide high-resolution information to the decoder
layers, the feature map in the feature channels of the encoder layers is copied and
concatenated to the corresponding feature channels of the decoder layers having
the same resolution. This copying between non-neighboring layers is called skip
connection.

We write down UNets explicitly as follows. Consider a UNet U based on L

layers. Let pl denote the vector of all learnable parameters of layer l of the UNet.
Namely, pl is a list that concatenates all of the entries of the different filters and
the different biases of layer l. For any l = 1, . . . , L, denote by Ul the function that
maps the feature map of layer l to the feature map of layer l+1. Namely, Ul applies
a convolution plus bias step of the form (10.2), followed by an activation function
and optionally pooling or up-sampling. To emphasize the reliance of Ul on pl , we
denote Ul

pl , and Ul
pl applied on the feature map f of layer l is denoted by Ul

pl (f).
Let p = (p1, . . . ,pL) denote the concatenation of all learnable parameters of the

UNet. The end-to-end unfolded UNet can be written as the composition

Up = U1
p1
◦ U2

p2
◦ . . . ◦ UL

pL.

The output of the UNet on the input feature map f is given by

Up(f) = UL
pL

(
UL−1

pL−1

(
. . . U1

p1
(f) . . .

))
. (10.3)
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10.3.2.4 Supervised Learning of UNets via Stochastic Gradient Descent

In supervised learning, a training set of many example input images fk and the
corresponding desired output images gk are given, where k = 1, . . . , K and K

is the size of the dataset. The goal is to finetune the parameters p of Up so that
Up(fk) ≈ gk for every k = 1, . . . , K . The hope is that if the dataset is a good
enough representation of the distribution of all possible input–output pairs, the UNet
will successfully predict the correct output of examples outside of the training set.
Namely, for unseen inputs f and desired output g, we will have Up(f) ≈ g. The
success of the network on new examples is called generalization. If the network
performs well on the training set but not on new examples, we say that the network
overfits the training set.

In practice, a finite dataset of examples {(fk, gk)}Kk=1 is given and is split
artificially into three subsets. The first subset serves as the training set. The
validation set is a subset on which training is not performed and is used for assessing
the generalization capability of the network during the research and development
process. The test set is saved aside, and generalization is tested on it only for the
finalized architecture. The reason the test set is separate from the validation set is
that during development the researcher, or some automated system, makes design
choices to maximize the performance of the network on the validation set. It is thus
possible that the final version of the network overfits both the training and validation
sets.

The loss function to be optimized is typically of the form

L(p) = 1

K

K∑

k=1

∥∥gk − Up(fk)
∥∥p (10.4)

for some norm, e.g., the root mean square norm, and power p > 0, which is
typically 2. In stochastic gradient descent (SGD), a stochastic version ofL is given.
Namely, for some J � K , let {k1, . . . , kJ } denote a random selection of J indices
in {1, . . . , K} and define the random variable

LJ (p) = 1

J

J∑

j=1

∥∥gkj − Up(fkj )
∥∥p . (10.5)

Here, J is called the batch size. In optimization, LJ (p) is realized at each Euler
step independently, and the gradient with respect to p is computed for this specific
realization of LJ (p). The random selection of indices is constructed in such a way
that after 5K/J 6 iterations the batches go through the whole training set.

The gradient is computed using the chain rule on the sum of norms and the
composition representation of the UNet (10.3), which gives a so-called back-
propagation formula for the Euler step. When implementing UNets in modern deep
learning libraries, such as PyTorch [41] or TensorFlow [1], there is no need to derive
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a closed-form formula for the gradient of the loss function. Instead, if the loss
function is written using built-in operations, the gradient is computed automatically.

10.3.2.5 Curriculum Learning

The SGD optimization procedure (and its variants) explores configurations of the
parameters only along the 1D path of descent, which might miss good config-
urations. Namely, SGD searches the parameter space in a highly non-exhaustive
manner. This observation supports the principle that high expressive capacity does
not guarantee converges of the deep network to a good solution. Thus, the expressive
capacity of a network does not guarantee high-quality trained networks. It is
thus often important to lead gradient descent in a more deliberate way and in
some sense to “micro manage” the exploration of parameter configurations in the
optimization process. One approach for achieving this is called curriculum learning
[4]. In curriculum learning, training is divided into a curriculum, namely, a list
of optimization problems, where the optimal solution of the previous problem is
used as the initial guess for the next optimization problem. The idea is to first
teach the network how to solve an easy-to-learn simplified version of the problem
and gradually to increase the complexity of the problem until reaching the original
formulation of the loss function.

10.3.2.6 Out-of-Domain Generalization

In some learning scenarios, the training data does not represent real-life data
completely faithfully. It is thus important to know whether the network, trained
on one data distribution, performs well for another data distribution. The idea of
training in one domain and testing in another domain is called out-of- domain
generalization. The capacity of a network to perform well in new domains is called
its transferability.

10.4 The RadioMapSeer Dataset

In this section, we introduce RadioMapSeer, a dataset of city maps with correspond-
ing simulated radio maps that we have created and made available for this work.

10.4.1 General Setting

The RadioMapSeer dataset consists of 700 maps, 80 transmitter locations per
map, and corresponding coarsely simulated radio maps (using DPM and IRT2).
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Fig. 10.1 RadioMapSeer examples. Buildings are blue, cars red, and pathloss yellow. (a) DPM.
(b) DPM with cars. (c) IRT4. (d) IRT4 with cars

The fine simulations (IRT4) are given for the first two transmitters of each map.
Maps are taken from OpenStreetMap [36] in the cities Ankara, Berlin, Glasgow,
Ljubljana, London, and Tel Aviv. We set the heights of the transmitters, receivers,
and buildings as 1.5 m, 1.5 m, and 25 m, respectively, which is relevant to device-to-
device scenarios (see Sect. 10.4.2 for more details). All simulations were computed
using the software WinProp [18]. Some example radio maps from the dataset are
shown in Fig. 10.1. All simulations are saved as dense measurements of the radio
map in a 2D dense grid of 256× 256 m2.

10.4.1.1 Maps and Transmitters

Each map covers 256 × 256 m2 where buildings and roads are saved in the dataset
as polygons. Each map is also converted into a morphological 2D image (namely,
binary black and white) of 256×256 pixels, where each pixel represents one square
meter. The interior of the buildings is white (pixel value = 1), and the exterior
of the buildings is black (pixel value = 0). The transmitter locations are stored as
numerical 2D values and also given as morphological images, where the pixel in
which the transmitter is located is white and the rest is black.

Along with the city maps, roads are given both as polygonal lines and as
morphological images with 1 on the road and 0 outside. Cars are generated
along and aside roads, to represent driving and parking car, and given as separate
morphological images.

10.4.1.2 Coarsely Simulated Radio Maps

The simulated radio maps were generated using two types of simulations, namely,
dominant path model (DPM) and intelligent ray tracing (IRT2), with the radio
network planning software WinProp [18]. IRT2 is performed with two interactions
of the rays. Each simulated radio map stores at each pixel the pathloss between the
pixel location and the transmitter location in dB.
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To represent uncertainty in the dataset, we consider two cases. First, a set of
simulations on all city maps including the cars is produced using DPM and IRT2.
These simulations are perturbations of the simulations based on the city map alone.
We moreover provide separate datasets of perturbed city maps, where in each map
of the original dataset m buildings are missing. We provide four such datasets with
m = 1, . . . , 4.

10.4.1.3 Higher-Accuracy Simulations

An additional smaller dataset of higher-accuracy simulations is provided. Here, for
each of the 700 maps, we consider two transmitter locations and simulate the radio
map using IRT with 4 interactions of the rays (IRT4).

The goal of the higher-accuracy simulations is to provide means of testing
whether the network, trained on simulations, performs well in real life. Hence,
the high-accuracy simulation serves as a surrogate for the real-life physical phe-
nomenon.

10.4.1.4 Pathloss Scale

The pathloss values PL are converted into gray-level pixel values between 0 and 1
(see Sect. 10.4.3). Hence, each radio map is represented as a gray-level image of
size 256× 256.

10.4.2 System Parameters

In this chapter, we stick to the current regulations for safety-related communications
in intelligent transportation systems (ITS), which is based on the IEEE 802.11p
standard. Accordingly, we consider a signal bandwidth W of 10 MHz in the 5.9 GHz
band. We choose the transmitter power and thermal noise power spectral density as
(PTx)dB = 23 dBm and N0 = −174 dBm/Hz in compliance with IEEE 802.11p and
assume an idealistic noise figure of 0 dB at receivers (cf. Table 10.1 for a summary
of the system parameters).

We express by (N)dB = 10 log10 W + N0 + NF the noise floor in dB, with
NF being the noise figure. We consider the points where the received signal power
(PRx)dB = PL + (PTx)dB yields a signal-to-noise ratio above a desired SNR level,
i.e., the points where (SNR)dB = (PRx)dB − (N)dB ≥ SNRthr holds. Solving this
for PL, we get the threshold PL,thr for the pathloss

PL ≥ PL,thr = −(PTx)dB + SNRthr + (N)dB. (10.6)
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Table 10.1 RadioMapSeer
Dataset parameters

Parameter Value

Number of transmitters 80

Frequency 5.9 GHz

Bandwidth 10 MHz

Pixel length 1 meter

Noise power spectral density −174 dBm/Hz

Transmit power 23 dBm

Noise figure 0 dB

We call PL,thr the pathloss threshold. Consider for example the SNR requirement
that the received signal power should be above the noise floor, i.e., when SNRthr =
0. With the choice of parameters in Table 10.1, we find PL,thr = −127 dB.

One task of RadioUNet is to extract the area in the city map above the noise floor,
given an input city map and transmitter location. To do this, the network must learn
the physical phenomenon both above and below the noise floor. We thus truncate
the pathloss values below another threshold PL,trnc < PL,thr. We choose PL,trnc such
that the difference between the maximum pathloss M1 in the dataset and PL,thr is
approximately four times greater than the difference between PL,thr and PL,trnc, i.e.,
M1 − PL,thr = 4(PL,thr − PL,trnc). The maximum and minimum pathlosses in the
dataset are −47.84 dB and −186.41 dB, respectively. Note that the maximum is
−47.84 dB and not 0 dB since the pathloss is integrated over 1m2 pixels. To meet the
previously mentioned condition, we set PL,trnc = −147 dB. Since any signal below
PL,thr cannot be detected in practice and is only used in simulation for theoretical
reasons, we call PL,trnc the analytic noise floor. Note that by (10.6) we have PL,thr =
−PTx + SNRthr + N0 + NF+ 10 log10 W . Hence, any choice of the parameters on
the RHS that results in the same pathloss threshold PL,thr has the same radio map.

10.4.3 Gray-Level Conversion

We convert the pathloss values PL into pixel values between 0 and 1 as follows.
Denote by M1 the maximal pathloss in all radio maps in the dataset, and define
f = max{ PL−PL,trnc

M1−PL,trnc
, 0}. Here, f = 0 represents anything below the analytic noise

floor, and f = 1 represents the maximal gain at the transmitter. Any intermediate
value is referred to as a gray level.

Let us explain the importance of our gray-level conversion when evaluating
the performance of any pathloss estimation. We evaluate performance of any
approximation f̃ : D → R of a signal/image f : D → R, where D = {xn}n
is some finite grid in R

2, via the relative error

E =
∑

n |f̃ (xn)− f (xn)|2∑
n |f (xn)|2

. (10.7)
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We also call (10.7) normalized mean square error (NMSE). The numerator in (10.7)
represents the absolute error, and the denominator represents the global magnitude
of f . The coefficients |f̃ (xn)−f (xn)|2 and |f (xn)|2 having larger values affect the
outcome of E the most, and small values are negligible. It is thus crucial to express
the signal f in a representation in which the important parts of the signal obtain
large values.

In our case, the representation of the radio map should be constructed in such a
way that small powers contribute small values toE. Indeed, locations of small power
represent a weak signal. If we represent the radio map as standard pathloss, in dB,
the smaller the power in a certain location, the higher the magnitude of the pathloss,
with negative sign. When the power goes to zero, the pathloss diverges to −∞. In
this representation, locations of a weak signal dominate the global magnitude of the
radio map and in general define a misleading concept of the “size” of the radio map.
A similar situation occurs for the absolute error (the numerator of (10.7)).

As discussed in Sect. 10.3.1, motivated by the GDoF region of a Gaussian
interference network, we know that very large negative values of the pathloss are
effectively irrelevant and should not dominate the overall error. Our gray-level
conversion resolves this issue. Indeed, anything below the noise floor, or more
generally, below PL,trnc, is deemed to be “too small to be interesting,” and set to zero.
In contrast, the values of higher power, which are most important, are transformed to
levels close to 1. We note that papers like [10, 25, 50] suffer from the aforementioned
shortcoming, and it is thus difficult to interpret their reported performance.

When root mean square error (RMSE) is used, the gray-level error is simply a
scaling of the RMSE of the pathloss in dB (up to the truncation below the analytic
noise floor). More precisely, we have

√∑

n

|P̃L(xn)− PL(xn)|2 = C

√∑

n

|f̃ (xn)− f (xn)|2,

where PL is the pathloss in dB. For SNRthr = 0, we have C = 80.

10.5 Estimating Radio Maps via RadioUNets

In this section, we introduce a number of methods, collectively called RadioUNet,
that learn to estimate radio maps in different scenarios. We evaluate the accuracy of
the proposed methods and compare them to state of the art.
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10.5.1 Motivation for RadioUNet

UNets have been extensively applied to imaging problems in the past few years with
resounding success and are considered to be a baseline method for image-to-image
tasks [16]. Our problem can be seen as mapping an image representing the city
and Tx to an image representing the radio map, and hence using UNets is a natural
choice. One advantage in using UNets in our case is that they respect the translation
invariance symmetry of the physical phenomenon. Namely, this symmetry is built
into RadioUNet and requires no training. Another strong point of UNets is the
encoder–decoder interpretation, as we discuss next.

In Fig. 10.2, we show an example of a ground truth radio map generated
by simulation and the estimated radio map computed by the RadioUNetC and
RadioUNetS. Aside from the low quantitative error, RadioUNet seems to synthesize
radio maps from the urban geometry that qualitatively captures the correct shadow
patterns. Note that the results in Fig. 10.2 are representative of the general quality

Fig. 10.2 Comparison of RadioUNet with RBF with four missing buildings in the input. Top left:
ground truth radio map. Top right: RadioUNetc with all buildings. Bottom left: RadioUNetS with
missing buildings. Bottom right: RBF. The measured 127 locations for both RadioUNetS and RBF
are marked in red. For RBF, the transmitter is also a measurement, and the known buildings are set
to zero post-processing. Known buildings are marked in blue
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of RadioUNet. One might naively interpret the success of the RadioUNet by
postulating that it learns to mimic a physical model, such as ray tracing, or some
differential equation such as Maxwell’s equations. However, we believe that this is
a misleading viewpoint. A more reasonable interpretation follows from the encoder–
decoder description of general UNets. In the encoder path, the RadioUNet extracts
complicated concepts about the geometry of the urban environment and the mutual
relationship between the different geometric features, their location, and the location
of the transmitter. Then, in the decoder path, the RadioUNet uses these concepts to
synthesize the radio map. Thus, RadioUNet is based on extracting and analyzing
global information about the urban environment, as opposed to classical physical
models that are based on local information, such as collisions with the geometry
in ray tracing and derivatives in differential equations. In this viewpoint, it is more
fitting to compare RadioUNet to a highly skilled artist that draws radio maps from
his/her perception of the urban environment as a whole, rather than comparing to a
classical local physical model.

10.5.2 Different Settings in Radio Map Estimation

We consider the following scenarios for the input of the UNet, the map of the city,
the learning setting, and the properties of the simulated dataset. The problem setting
can be any combination of the choices presented in Sects. 10.5.2.1 and 10.5.2.2. We
remind here again that, in the following, the term “feature channel” is understood in
the deep learning sense as a gray-level image, not to be confused with the notion of
communication channel.

10.5.2.1 Network Input Scenarios

City Map and Transmitter Location In the first case, the UNet receives as input
the map of the city and the Tx location as morphological images. The Tx feature
channel is an image where the pixel in which the Tx is located is white, and the
rest is black. From these two input feature channels, the network estimates the radio
map.

In this accurate map scenario, if the simulated dataset without cars is used,
then the map without cars is given as input, while if the simulated dataset includes
cars, then the map without cars is given as one feature channel, and the cars in an
additional feature channel.

When the map is accurate and the simulated data used for training is assumed to
represent reality accurately, the radio map is uniquely determined by the map and
the Tx location. Thus, these two input feature channels are sufficient for high-quality
radio map reconstruction.
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City Map, Transmitter Location, and Measurements In the second case, the
UNet receives as input the two/three feature channels of map and Tx location as
before, and an additional feature channel of measurements of the “true” radio map.
The measurements are taken at some locations on the true map, i.e., their values
are sampled from the target “ground truth.” This third feature channel is given
as a gray-level image, where in the pixels corresponding to the locations of the
measurements the gray-level value is the measurement. Non-measured pixels are
set to zero. The network simulates/estimates the radio map from these three/four
input feature channels.

This scenario is useful when the “nominal” map given as input feature channel
does not represent reality completely accurately. Hence, the network learns a hybrid
of a radio map estimation method based on the given map, which is not completely
reliable, and an interpolation method of the accurate pathloss measurements. In this
non-accurate maps scenario, a perturbed version of the ground truth maps is given
as input to the UNet. We consider two types of perturbations: (1) the map is given
with a one to four missing buildings; (2) the map is given without cars, but the
ground truth simulation is computed with the cars.

Another source of inaccuracy, for which relying on measurements is useful, is
the fact that training is done against simulations, which are only approximations of
reality, or in our setting, approximations of IRT4.

10.5.2.2 Learning Scenarios

Large and Dense Simulation Dataset Here, the network is trained in supervised
learning to predict a large dataset of 2D gray-level images representing dense
measurements of radio maps on a fine grid. The images are the DPM simulations,
the IRT2 simulations, both with or without cars, or random combinations of DPM
and IRT2. In particular, the goal in the randomized simulation is to push the network
to learn that it can only rely on the simulations for the big-picture behavior of radio
maps, shared both by DPM and IRT2, but not on the fine details. This pushes the
network to use additional information for refining the estimations, such as the input
measurements if given, or the smaller dataset of sparse IRT4 if given.

Transferring the trained network to the ground truth (representing real-life maps)
is a zero-shot generalization. Namely, the network only learned to estimate the
coarser simulations, not ever seeing the ground truth phenomenon, and we rely on
the accuracy of the simulations, and optionally on the measurements, to predict the
ground truth radio maps.

In case measurements are given as an input feature channel to the RadioUNet,
real-life measurements would be given to the RadioUNet in the real-time operations,
even though measurements from the crude simulation are used in training. Real-life
measurements can be provided in real time directly from the deployed devices, e.g.,
from the beacon signals of the transmitters, in the same way current systems report
“Channel Quality Indicators” as measurements of the received signal strength.
Hence, no costly measurement campaign is needed for training. The network
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can generalize well to real-life radio maps since it learned to interpolate the
measurements, which are now accurate, while what was learned from the crude
simulations roughly guides the interpolation procedure to be physically feasible.
We demonstrate this experimentally by training on coarse simulations and using
IRT4 samples and targets (as a proxy for real-life measurements) in testing.

Large and Dense Simulation Dataset + Small Sparse Measured Dataset Here,
in addition to the large dataset of dense measurements, we also assume that we
have a small dataset of sparse measurements taken from real life (in our case, the
high-accuracy ground truth IRT4 simulations). For each of the 700 maps of the
RadioMapSeer dataset, we consider two transmitter locations and measurements in
K receiver locations, where K is fixed, e.g., K = 300. Higher K leads to better
performance, but also to a more extensive and costly measurement campaign. The
choice of K = 300 was taken to crudely balance the trade-off.

In this scenario, we first train a large network that estimates the crude simu-
lations, using the large simulation dataset. Then, we improve the network output,
using a smaller network, to match the small dataset of real-life measurements.

10.5.3 RadioUNet Architectures

The simplest RadioUNet comprises one UNet. The input of the UNet has two, three,
or four feature channels, depending on if measurements and cars are used, and
the output is the one feature channel-estimated radio map. In most architectures
of RadioUNet, we compose a second UNet on the first one. We call such an
architecture a WNet (U+U makes a W). The inputs of the second UNet are the same
as the inputs of the first UNet, plus an additional feature channel, the output of the
first UNet. The architectures of our proposed UNets are reported in Table 10.2. The
second UNet can be used for three different purposes, summarized in the following
three subsections.

10.5.3.1 Retrospective Improvement

The idea here is to give RadioUNet a chance to improve its estimation in retro-
spective. The first UNet learns implicitly an algorithm for estimating the radio map
from the input, by extracting high-level concepts from the map and synthesizing a
radio map from them. The philosophy here is that it would be beneficial to inspect
the resulting estimation and correct visible inconsistencies with the map and with
the physical phenomenon. To inspect the output of the first UNet, a second UNet
extracts high-level concepts from the estimated radio map and the city map and
synthesizes from these concepts an improved estimation of the radio map. We
observe that the retrospective improvement yields better performance especially
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when the first UNet is small (see Fig. 10.3a). This WNet is thus a technique for
reducing the size of the RadioUNet without degrading performance.

The WNet is trained in a curriculum. The first UNet is trained first to estimate
the coarse radio maps, with MSE loss. In the second phase, the weights of the first
UNet are frozen, and the second UNet is trained to estimate the ground truth radio
maps with MSE loss.

10.5.3.2 Adaptation to Real Measurements

Here, we first train the first UNet to estimate coarse simulations from the large
dataset with MSE loss. The simulations may be randomized or deterministic. After
training, the weights of the first UNet are frozen, and the second UNet is trained to
improve the estimation of the first UNet on the small dataset of IRT4.

The IRT4 training consists of sparse images, namely, for each map, there are K

Rx locations {xk}Kk=1, and the pathloss f (xk) is only known for these locations. We
typically take K = 300. The loss function for the second UNet is the weighted MSE,
with weights Wk = 1

K
for the points {xk}Kk=1, and weight 0 for the unmeasured

points. We train the adaptation UNet in two steps. First, we train a retrospective
improvement UNet on the coarse dataset, and then we further train this UNet on the
sparse IRT4 dataset.

10.5.3.3 Thresholder

A thresholder second UNet is used in the service area classification method. The
goal of the second UNet here is to take the estimated radio map of the first UNet
and to produce a service map from it. The service map is, roughly speaking, the area
in the city in which the signal strength is high enough to be detected. More details
are given in Sect. 10.7.1.

10.5.4 Training

The 700 maps of the RadioMapSeer dataset are split into 500 training maps, 100
validation maps, and 100 test maps. The realization of the random split is fixed
and available in the project web page.4 We perform supervised learning on the
RadioMapSeer dataset. The loss function is the MSE between the inferred radio
maps by RadioUNet and the simulation radio maps from the training set. Training of
all methods was performed with Adam [21], with a learning rate of 10−4. We take 50
epochs for each UNet, no regularization, and batch size 15. To alleviate overfitting,

4 https://github.com/RonLevie/RadioUNet.
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out of the 50 epochs, we pick the model with smallest error in the validation set.
Lastly, the models are tested either on the coarse simulations on the test maps or on
the IRT4 simulations on the test maps. Performance is evaluated by RMSE on the
gray levels and by NMSE (normalized MSE). Note that the RMSE in dB is 80 times
the RMSE of gray level.

10.5.5 RadioUNet Performance

In Table 10.3, we report the results in all of the above settings. Recall that
RadioUNetC and RadioUNetS denote the RadioUNet based on no input measure-
ments and input measurements, respectively. From the table, we can observe that
both the adaptation method to sparse IRT4 samples and the training with randomized
coarsely simulated maps promote transferability. All accuracies are given in both
NMSE and RMSE. RMSE is the square root of the MSE on the whole test set. The
pathloss threshold is taken as PL,thr = −127 dB. The best results on IRT4 for each
category are marked in bold face. RadioUNetS was trained and tested with a random
number of input measurements between 1 and 300. Zero-shot IRT4 means testing the
methods, trained on coarse simulations, on IRT4. Adaptation to IRT4 means training
a second small UNet to match the sparse IRT4 measurements. All architectures are
based on the WNets of Table 10.2, where for zero-shot transfer, the second UNet is
a retrospective improvement, and for adaptation to sparse IRT4, the second UNet is
the adaptor. The receiver points of the sparse IRT4 dataset are randomly generated
for each map and fixed forever. For RadioUNetC , the sparse IRT4 dataset has 300
receivers per transmitter. For RadioUNetS , the sparse IRT4 dataset has 600 receivers
per transmitter, and out of them 1 to 300 random points are taken as input points of
the RadioUNetS . The training loss is computed for all 600 points. To show that the
higher transferability of the random simulations is not simply because IRT2 is closer
to IRT4 than DPM, we also include the scenario where the deterministic simulation
is IRT2. This produces inferior results to the random simulations.

In Fig. 10.3a, we compare RadioUNetC with and without retrospective improve-
ment for different pathloss thresholds. The results demonstrate that the retrospective
improvement UNet is effective when the first UNet is small, thus making it a useful
strategy for reducing the network size for the same accuracy. In Fig. 10.3b, we
compare the performance of different RadioUNetS methods on maps with various
numbers of missing buildings. We observe that the strategy of combining random
coarse simulations with an adaptor UNet to IRT4 promotes transferability.

In Fig. 10.4, we show some examples of RadioUNetS with input maps missing 4
buildings and adapted to sparsely measured IRT4 simulations.
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Fig. 10.3 RadioUNet performance. (a) Test error in RadioUNetC of difference network sizes and
different pathloss thresholds PL,thr. The small network has 6,109,271 parameters, and large has
25,411,831 parameters. We plot the error of the RadioUNets with and without the retrospective
improvement. Small networks outperform large networks when both have retrospective improve-
ment. The error of RadioUNet with pathloss thresholds at pixel value 0.6 is comparable to the
quantization error of the .png image file. (b) Test error in RadioUNetS with different numbers of
missing buildings, different types of coarse simulations, and different transfer methods to sparse
IRT4

10.6 Comparison of RadioUNet to State of the Art

In Fig. 10.5, we present the performance of different methods of radio map estima-
tion. For methods that depend on samples, we use an input map with four missing
buildings, and for methods that do not rely on samples, we use the full map. Apart
from the fact the RadioUNet outperforms the data-driven interpolation methods,
the tomography method, and the previously proposed deep learning approach
significantly, these other methods need a separate training/optimization to fit the
model to each map. Particularly, variations in the environment, such as moving
cars, require re-computing the methods, which is not efficient. RadioUNets, in
comparison, are trained offline only once and are then employed in any environment
very efficiently. RadioUNet can deal with cars by using the measurements input,
where the network is trained on a dataset of simulations with cars. All GPU methods
ran on Nvidia Quadro GP100, and CPU methods on Intel Core i7-8750H.

10.6.1 Comparison to Model-Based Simulation

We compare the run time of RadioUNet5 with DPM, IRT2, and IRT4. To penalize
RadioUNet, we compare run time on an Intel Core i7-8750H CPU, which is a highly

5 Notice that the run time is the computation time of the trained network. This does not include the
training, which is done offline and once for all.
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Fig. 10.4 RadioUNetS test results on four missing buildings and adaptation to IRT4 simulation.
The input buildings are in blue and measurements in red. (a) IRT4 target. (b) IRT4 prediction. (c)
IRT4 target. (d) IRT4 prediction

non-optimal platform for convolution networks. RadioUNet estimates radio maps
roughly one to three orders of magnitude faster than the simulation methods. In our
experiments, WinProp completes a DPM simulation in roughly an order of 1 s on
the CPU, and IRT2 and IRT4 take orders of 10 s and 102 s, respectively. RadioUNet
takes an order of 10−1 s on the CPU, and 10−3 s to 10−2 s on NVIDIA Quadro
GV100 GPU.

10.6.2 Comparison to Data-Driven Interpolation

Next, we compare RadioUNetC and RadioUNetS with data-driven interpolation
methods: radial basis function (RBF) interpolation using multiquadric function [7,
Sect 5.1] and tensor completion [50]. For the data-driven methods, we set to zero
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Fig. 10.5 Estimation error of the radio map reconstruction methods as a function of the number of
measurements. We chose Map 12 from the test set, on which RadioUNet performs worse than the
average test map (three times the average NMSE). RadioUNetC, tomography, and deep learning
one step (FCN) are based on no samples and are given as horizontal baselines

the gray-level values inside the known buildings of the map post-processing, thus
using the urban geometry data. Without this step, data-driven interpolation methods
obtain a very poor accuracy since they are not able to recover the sharp building
edges. In Fig. 10.5, we plot the average NMSE over 80 Tx’s of RadioUNetS and of
the two data-driven interpolation methods as a function of the number of samples.
Both versions of RadioUNet clearly outperform state of the art. Aside from that,
RadioUNet is roughly three orders of magnitude faster than RBF interpolation and
five orders of magnitude faster than tensor completion interpolation.

10.6.3 Comparison to Model-Based Data Fitting

We compare RadioUNet with a tomography method. In general, tomography
methods model the attenuation in the channel strength as the sum of a distance-
dependent pathloss and a shadowing term that models the attenuation due to
obstructions. To model shadowing, a spatial loss field L : R2 → R (SLF) is defined.
For each spatial location y, the value L(y) in a sense models the transparency of
y, where L(y) = 0 models free space, and L(y) > 0 represents a “translucent”
obstacle. The shadowing term from the Tx location x to the Rx location y is
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computed as the integral of L in a narrow oval for which the transmitter and receiver
sit on the edges of the largest diameter. More generally, the oval can be replaced by
some other shape, which may be trainable.

Note that as opposed to ray-tracing methods, tomography methods do not
consider at all wave propagation phenomena such as diffraction and reflections and
only model the attenuation due to the penetration of the signal through material. For
high-frequency signals, the attenuation due to penetration in urban environments is
very large, which make tomography method less realistic than DPM and IRT.

In tomography methods (e.g., [15, 24–26, 47]), the SLF is typically estimated
from observed pathloss values between samples’ transmitter–receiver pairs, by
solving an inverse problem. In our situation, the problem is easier, since we are
given the city map. Thus, the SLF outside the buildings, in free space, is known to
be zero. Moreover, the building material is constant, and thus it is natural to consider
an SLF with value f inside buildings and 0 outside. Hence, the computation of the
SLF is reduced to finding the scalar f for which the tomography method gives a
radio map as close as possible to the ground truth radio map. This method takes an
order of 102 s to run.

10.6.4 Comparison to Deep Learning Data Fitting

We compare RadioUNet to the deep learning one-step prediction approach of [49].
We note that the two-step prediction approach of [49] did not perform well in our
setting. As explained in Sect. 10.1.3, this method is a data fitting of a fully connected
neural network to a 4D radio map of a specific city map. The network receives the
transmitter and receiver 2D locations and returns the estimation of the pathloss for
this pair. The network architecture is reported in Table 10.4. For a fixed map, the
80 transmitters are split into 60 training, 10 validation, and 10 test transmitters. The
network is trained and tested against all receiver locations in the 256×256 grid.
This method takes an order of 10sec to estimate all 256×256 pixels, which must be
computed separately.

Table 10.4 Architecture of the fully connected network of [49]

Fully connected radio map network

Layer In 1 2 3 4 5 6 7 Out

Neurons 4 64 200 2000 4000 4000 2000 64 1
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10.7 Applications

In this section, we demonstrate the usefulness of RadioUNet with two simple
applications and also discuss some future applications as future work.

10.7.1 Coverage Classification

Service area classification shows up in two situations. In the first problem, given a
Tx–Rx link, we would like to know if the received signal strength is large enough.
In the second problem, given two Tx–Rx links, we would like to know if the
interference caused by one link on the other is low enough. In both cases, the goal
is to classify if the pathloss of a certain Tx is above or below some threshold at the
location of some Rx. For a fixed Tx location x, let f (y) denote the radio map at
location y. We define the coverage map as the thresholding function

C(y) =
{

0 if f (y) ≤ T ,

1 if f (y) > T,
(10.8)

where T is a threshold in gray scale. For the first problem, depending on the system
requirements, T is some value above the noise floor. For example, for high bit rates,
the signal has to arrive with high SNR, so a typical value for T might be pixel value
0.5 (see, e.g., [13]). For the second problem, a typical choice for T is the noise floor,
which is pixel value 0.2 for us.

Our goal is to predict the coverage map from the input city and transmitter
location. Note that in principle UNets are expressive enough to predict coverage
maps, since coverage maps are a sub-phenomenon of radio maps, and UNets
are expressive enough to predict radio maps. However, this naive point of view
disregards the fact that the gradient descent optimization procedure is highly non-
exhaustive and only searches parameter configurations along a 1D path. As it
turns out, simple UNets fail to learn meaningful predictions of coverage maps.
Intuitively, radio maps are more predictable than coverage maps since shadow
patterns are always associated with simple concepts such as building corners and
spatial relations between buildings, receiver locations, and the location of the
transmitter. In contrast, in the coverage map, most shadow edges disappear and are
“absorbed” by one of the domains above or below T .

For the architecture to successfully predict the coverage map, it must first
understand the underlying phenomenon of radio maps. We thus consider a WNet
architecture. The first UNet is RadioUNet, which predicts the radio map from the
city and transmitter inputs. The second UNet receives the predicted radio map as
input, along with the map and the transmitter location, and computes the coverage
map from them. We call the second UNet the thresholding UNet or TUNet. We call
this architecture the Coverage WNet, or CWNet in short.
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Fig. 10.6 Left: Localization result. Green +: true Rx position, red X: estimated Rx position,
yellow: pixels of the localization intersection, magenta circles: Tx’s of the best localization result
out of the R, green circles: the rest of the Tx’s. Middle: Coverage map results with threshold 0.5.
Red: coverage map. Blue: city map. Yellow: transmitter. Right: accuracy of service map estimation
for different thresholds in RMSE. (a) Localization. (b) True truth coverage map. (c) Estimated
coverage map. (d) Accuracy of service map estimation

To train the CWNet, we use curriculum learning. We first train the RadioUNet
as before. We then freeze the RadioUNet and train the TUNet in a curriculum as
explained next. As it turns out, the discontinuous nature of the coverage map is still
too challenging for the TUNet to learn directly. Instead, we relax the coverage map

to a soft coverage map Cα(y) = sigmoid
(
α
(
f (y) − T

))
, where α is a parameter

that determines how soft the transition between 0 and 1 is. We interpret Cα(y) as
the probability of location y being in the coverage area. In the curriculum, we first
train the TUNet to predict Cα(y) with α = 1 and gradually increase α. We end up
with α = 128, which we judge to be high enough to represent a sharp transition.

The accuracy of SWNet for different thresholds and an example service map are
presented in Fig. 10.6.

10.7.2 Pathloss-Based Fingerprint Localization

Suppose that a device is simultaneously in the coverage area of several base stations
located at Tx points x1, . . . , xK and reports the strengths gk (converted into gray
scale) of their corresponding beacon signals. Let fk(y) denote the estimated radio
map for Tx location x = xk , for k = 1, . . . , K . For some ε > 0, we define the
ε-level set for level gk as

Lε
k = {z ∈ � : |fk(z)− gk| ≤ ε}, (10.9)

where � is the discrete grid (domain of the radio map, in our case the 256×256
grid). Then, in order to identify the location of the receiver y, we can consider the
intersection of the ε-level sets S = ⋂K

k=1 L
ε
k . If this set is localized about a single

point, then we have located y with high probability.
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Assuming that the reported values {gk}k are equal to the true radio map values, if
for some k the radio map prediction error satisfies |fk(y)−gk| > ε, then y /∈ Lε

k and
y will not be contained in the intersection S. We call such k an outlier. In contrast,
if we choose K too small, then S will contain multiple points and the localization
is ambiguous. Hence, the method works well when the estimated radio maps are
accurate and the number of reported signal strengths K is large enough but not too
large.

To alleviate the effect of outliers, instead of computing a single intersection,
we can select random subsets of J < K Tx’s and consider the intersection of
the corresponding ε-level sets. We also take random ε values for each map since
different maps have different unknown accuracies. Repeating this random selection
R times, we generate R candidate sets, some of which may be empty and some of
which may contain multiple points. For the R′ non-empty outcomes, we compute
a score for the quality of the result and pick the outcome with the best score. For
example, we use the variance of the localization outcome. Let St be the localization
outcome of sample t , where t = 1, . . . R′. Then, we define the expected position
given St as ŷt =∑z∈St

z
|St | , and the associated variance

Vt =
∑

z∈St

|z− ŷt |2
|St | ,

where |z − ŷ| is the Euclidean distance between z and ŷt in R
2 and |St | is the

area of St . Since smaller variance means better localization, we pick the non-
empty localization outcome with smallest variance. In this chapter, we mention
this approach just as an example of the use of accurate radio map estimation. In
future work, we will deal with improving the pathloss-based localization with more
sophisticated localization extraction and using additional signal fingerprints.

In Fig. 10.6a, we present an example localization result with K = 10, J = 5,
R = 5, ε = 0.03. The best outcome has a standard deviation of 0.5 meters. The
distance between the estimated and true receiver location is 1.58 meters.

10.8 Conclusion

In this chapter, we introduced RadioUNet, a deep learning method for simulating
radio maps given a city geometry, Tx location, and optionally some pathloss mea-
surements and car locations. For training RadioUNet, we introduced the new dataset
RadioMapSeer, which we hope will be used for developing deep learning methods
for pathloss prediction by other researchers as well. We developed approaches for
transferring what was learned on the large dataset of coarsely simulated radio maps
to real life and demonstrated the superior performance of our methods with respect
to state of the art, both in run time and accuracy.
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Chapter 11
Active Channel Sparsification: Realizing
Frequency-Division Duplexing Massive
MIMO with Minimal Overhead

Mahdi Barzegar Khalilsarai, Saeid Haghighatshoar, Xinping Yi ,
Giuseppe Caire, and Gerhard Wunder

11.1 Introduction

Multiuser multiple-input multiple-output (MIMO) consists of exploiting multiple
antennas at the base station (BS) side, in order to multiplex over the spatial-
domain several data streams to a number of users sharing the same time–frequency
transmission resource (channel bandwidth and time slots). For a block-fading
channel with spatially independent fading and a coherence block of T symbols,1 the
high-SNR sum capacity behaves as C(SNR) = M∗(1 −M∗/T ) log SNR + O(1),
where M∗ = min{M,K, T /2}, M denotes the number of BS antennas, and K

denotes the number of single-antenna users [1, 39, 61]. When M and the number

1 This is the number of signal dimensions over which the fading channel coefficients can be
considered constant over time and frequency [56].
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of users are potentially very large, the system pre-log factor2 is maximized by
serving K = T/2 data streams (users). While any number M ≥ K of BS antennas
yields the same (optimal) pre-log factor, a key observation made in [40] is that,
when training a very large number of antennas comes at no additional overhead
cost, it is indeed convenient to use M � K antennas at the BS. In this way,
at the cost of some additional hardware complexity, very significant benefits at
the system level can be achieved. These include: (i) energy efficiency (due to
the large beamforming gain); (ii) inter-cell interference reduction; (iii) a dramatic
simplification of user scheduling and rate adaptation, due to the inherent large-
dimensional channel hardening [34]. Systems for which the number of BS antennas
M is much larger than the number of DL data streams K are generally referred to as
massive MIMO (see [34, 40, 41] and references therein). Massive MIMO has been
the subject of intense research investigation and development and is expected to be
a cornerstone of the 5th generation of wireless/cellular systems [5].

In order to achieve the benefits of massive MIMO, the BS must learn the
downlink (DL) channel coefficients for K users and M � K BS antennas. For time-
division duplexing (TDD) systems, due to the inherent UL–DL channel reciprocity
[39], this can be obtained from K mutually orthogonal UL pilots transmitted by the
users. Unfortunately, the UL–DL channel reciprocity does not hold for frequency-
division duplexing (FDD) systems, since the UL and DL channels are separated in
frequency by much more than the channel coherence bandwidth [56]. Hence, unlike
TDD systems, in FDD, the BS must actively probe the DL channel by sending a
common DL pilot signal and request the users to feed their channel state back.

In order to obtain a “fresh” channel estimate for each coherence block, T dl out
of T symbols per coherence block must be dedicated to the DL common pilot.
Assuming (for simplicity of exposition) a delay-free channel-state feedback, the
resulting DL pre-log factor is given by K × max{0, 1 − T dl/T }, where K is the
number of served users, and max{0, 1 − T dl/T } is the penalty factor incurred by
DL channel training. Conventional DL training consists of sending orthogonal pilot
signals from each BS antenna. Thus, in order to train M antennas, the minimum
required training dimension is T dl = M . Hence, with such scheme, the number of
BS antennas M cannot be made arbitrarily large. For example, consider a typical
case taken from the LTE system [53], where groups of users are scheduled over
resource blocks spanning 14 OFDM symbols× 12 subcarriers, for a total dimension
of T = 168 symbols in the time–frequency plane. Consider a typical massive
MIMO configuration serving K ∼ 20 users with M ≥ 200 antennas (e.g., see [37]).
In this case, the entire resource block dimension would be consumed by the DL
pilot, leaving no room for data communication. Furthermore, feeding back the M-

2 With this term, we indicate the number of spatial-domain data streams supported by the system,
such that each stream has spectral efficiency that behaves as an interference-free Gaussian channel,
i.e., log SNR + O(1). In practice, although the system may be interference-limited (e.g., due to
inter-cell interference in multicell cellular systems), a well-designed system would exhibit a regime
of practically relevant SNR for which its sum rate behaves as an affine function of log SNR [36].
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dimensional measurements (or estimated/quantized channel vectors) also burdens
the system with a significant UL feedback overhead [7, 27, 32, 35, 60].

While the argument above is kept informal on purpose, it can be made
information-theoretically rigorous. The central issue is that, if one insists to estimate
the K×M channel matrix in an “agnostic” way, i.e., without exploiting the channel
fine structure, a hard dimensionality bottleneck kicks in and fundamentally limits the
number of data streams that can be supported in the DL by FDD systems. It follows
that gathering “massive MIMO gains” in FDD systems is a challenging problem.
On the other hand, current wireless networks are mostly based on FDD. Such
systems are easier to operate and more effective than TDD systems in situations
with symmetric traffic and delay-sensitive applications [9, 26, 47]. In addition,
converting current FDD systems into TDD would represent a non-trivial cost for
wireless operators. With these motivations in mind, a significant effort is recently
dedicated to reduce the common DL training dimension and feedback overhead in
order to materialize the numerous benefits of massive MIMO also for FDD systems.

The focus of this chapter is to put forth an efficient scheme for massive MIMO
in FDD systems. Our goal is to be able to serve as many users as possible even with
a very small number of DL pilots, compared to the inherent channel dimension.
Similar to previous works [11, 15, 47], we consider a scheme where each user sends
back its T dl noisy pilot observations per slot, using non-quantized analog feedback
(see [7, 32]). Hence, achieving a small T dl yields both a reduction of DL training
and UL feedback overhead. It turns out that we have to artificially reduce each
user channel dimension in a clever way, such that a single common DL pilot of
assigned dimension T dl is sufficient to estimate a large number of user channels. In
the CS-based works mentioned above, the pilot dimension depends on the channel
sparsity level s (the number of non-zero components in the angle/beam domain). In
fact, standard CS theory states that stable sparse signal reconstruction is possible
using T dl = O(s logM) measurements.3 In a rich scattering environment, s is
large or may in fact vary from user to user or in different cell locations. Even if the
channel support is known, one needs at least s measurements for a stable channel
estimation. Hence, these CS-based methods (including the ones having access to
support information) may or may not work well, depending on the propagation
environment. In order to allow channel estimation with a given pilot dimension T dl,
we use the DL covariance information in order to design an optimal sparsifying
precoder. This is a linear transformation that depends only on the (estimated)
channel covariances that impose that the effective channel matrix (including the
precoder) has large rank and yet each of its columns has sparsity not larger than T dl.
In this way, our method is not at the mercy of nature, i.e., it is flexible with respect to
various types of environments and channel sparsity orders. We cast the optimization

3 As commonly defined in the CS literature, we say that a reconstruction method is stable
if the resulting MSE vanishes as 1/SNR, where SNR denotes the signal-to-noise ratio of the
measurements.
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of the sparsifying precoder as a mixed-integer linear program (MILP), which can be
efficiently solved using standard off-the-shelf software.

We note that the material of this chapter is based on a number of publications by
the authors [22, 29, 30].

Notation
We denote scalars, vectors, matrices, and sets by lower case letters, lower case
bold letters, upper case bold letters, and calligraphic letters, i.e., x, x, X, X,
respectively. We refer to the i-th element of a vector x by [x]i , and to the (i, j)-
th element of a matrix X by [X]i,j . For a non-negative integer M , we define the
set [M] = {0, 1, . . . ,M − 1}. Superscripts (·)∗, (·)T, (·)H, (·)−1, and (·)† represent
the complex conjugate, transpose, conjugate transpose, inverse, and Moore–Penrose
pseudoinverse, respectively. For a vector x, the symbol diag(x) denotes a matrix
with x as its main diagonal. The �p-norm of a vector x is referred to as ‖x‖p, where
for simplicity we drop the subscript for the case of p = 2. The Frobenius norm
of a matrix X is denoted by ‖X‖F. We denote a bipartite graph as, for example,
G = (V1,V2,E), where V1 and V2 are the two color classes and E is the edge
set. For a vertex x, the degree of x refers to the number of edges in E incident on x

and is denoted by degG(x). The neighbors of x, NG(x), are those vertices that are
connected to x.

11.2 System Model

Consider a BS equipped with a uniform linear array (ULA) with M antennas,
operating in FDD mode: UL transmission from a user to the BS takes place over
a frequency band

Ful = [f ul − BWul

2
, f ul + BWul

2
]

with carrier frequency f ul and a bandwidth BWul, and downlink (DL) transmission
from the BS to the user takes place over a band

Fdl = [f dl − BWdl

2
, f dl + BWdl

2
]

with carrier frequency f dl and a bandwidth BWdl. For example, one mode of
operation in the 3GPP standard uses the F ul = [1920, 1980]MHz band for UL and
the F dl = [2110, 2170]MHz band for DL transmission, so that f ul = 1950 MHz,
f dl = 2140 MHz, and BWul = BWdl = 60 MHz [53]. The gap between UL and
DL bands is larger than the channel coherence bandwidth. For example, the gap
between UL and DL bands in the example above is equal to 190 MHz, while the
coherence bandwidth in a macrocell is in the order of 1 MHz [48]. Therefore, for
an FDD system, channel reciprocity does not hold, which means that UL and DL



11 Active Channel Sparsification for FDD Massive MIMO 341

instantaneous channels are not the same. As a result, to transmit data, the BS has
to first obtain the DL CSI. This is done by sending a number of T dl pilot symbols
to the user and receiving measurement feedback from the user, which enables the
BS to estimate the DL CSI and design the beamformer. If there exist multiple users,
this is done simultaneously for each one of them, and the beamformer is designed
depending on all estimated channels, using one of the various methods such as zero-
forcing beamforming [59].

In a massive MIMO system, this proves to be a challenge, due to the high channel
dimension (M � 1). In order to train M antennas, a conventional scheme requires
a minimum pilot dimension of T dl = M . Hence, with such a scheme, the number
of BS antennas cannot be made arbitrarily large, since the pilot dimension is limited
to the dimension of the time–frequency coherence block. For example, consider
a typical scenario in LTE, where groups of users are scheduled over resource
blocks spanning 14 OFDM symbols × 12 subcarriers, for a total dimension of
T = 168 symbols in the time–frequency plane [53], and a typical massive MIMO
configuration serving K ∼ 20 users with M ≥ 200 antennas (see, e.g., [37]). In
this case, since M ≥ T , the entire resource block dimension would be consumed by
the DL pilot, leaving no room for data communication. Designing a massive MIMO
system that operates in FDD mode requires developing methods that overcome these
dimensionality issues.

11.2.1 Related Work

Several works have proposed to reduce both the DL training and UL feedback
overheads by exploiting the sparse structure of the massive MIMO channel. In
particular, these works assume that propagation between the BS array and the
user antenna occurs through a limited number of scattering clusters, with limited
support in the angle-of-arrival/angle-of-departure (AoA–AoD) domain.4 A common
model is to represent the channel as a superposition of the array response to the
electromagnetic wave incoming from a small number of AoAs (p � M), i.e.,

h =
p∑

i=1

cpa(θp) ∈ C
M,

where cp are complex coefficients and a(θp) ∈ C
M is the vector containing array

element responses to a wave coming from the AoA θp. Hence, by decomposing the
angle domain into discrete “virtual beam” directions, the M-dimensional channel h
admits a sparse representation in the beam domain [3, 52]. Building on this idea,

4 From the BS perspective, AoD for the DL and AoA for the UL indicate the same domain. Hence,
we shall simply refer to this as the “angle domain,” while the meaning of departure (DL) or arrival
(UL) is clear from the context.
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a large number of works (see, e.g., [11, 15, 19, 47, 54, 57]) have proposed to use
“compressed pilots,” i.e., a reduced DL pilot dimension T dl < M , in order to
estimate the channel vectors using compressed sensing (CS) techniques [8, 16].
For example, in [3], the sparse representation of channel multipath components
in angle, delay, and Doppler domains was exploited to propose CS methods for
channel estimation using far fewer measurements than required by conventional
least-square (LS) methods. In [19], the authors note that the angles of the multipath
channel components are common among all the subcarriers in the OFDM signaling.
Then they propose to exploit the common sparsity pattern of the channel coefficients
to further reduce the number of required pilot measurements. This gives rise to a
so-called multiple measurement vector (MMV) setup, which is typically applied
when multiple snapshots of a random vector with common sparse support can be
acquired and jointly processed [10, 17]. This was adapted to FDD in the massive
MIMO regime, where the frequent idea is to probe the channel using compressed
DL pilots, receiving the measurements at the BS via feedback and performing
channel estimation there. A recent work based on this approach was presented in
[47], starting with the observation that, as shown in many experimental studies
[18, 24, 28, 33], the propagation between the BS antenna array and the users occurs
along scattering clusters that may be common to multiple users, since they all
belong to the same scattering environment. In turn, this yields that the channel
sparse representations (in the angle/beam domain) share a common part of their
support. Then, [47] considers a scheme where the users feed back their noisy DL
pilot measurements to the BS, and the latter runs a joint recovery algorithm, coined
as joint orthogonal matching pursuit (J-OMP), able to take advantage of the common
sparsity. It follows that in the presence of common sparsity, J-OMP improves upon
the basic CS schemes that estimate each user channel separately.

More recent CS-based methods, in addition, make use of the angular reciprocity
between the UL and DL channels in FDD systems to improve channel estimation.
Namely, this refers to the fact that the directions (angles) of propagation for the
UL and DL channel are invariant over the frequency range spanning the UL and
DL bands, which is generally very small with respect to the carrier frequency
(e.g., UL/DL separation of the order of 100 MHz, for carrier frequencies ranging
between 2 and 6 GHz) [2, 25, 58]. In [57], the sparse set of AoAs is estimated
from a preamble transmission phase in the UL, and this information is used for
user grouping and channel estimation in the DL according to the well-known joint
spatial division and multiplexing (JSDM) paradigm [1, 44]. In [15], the authors
proposed a dictionary learning-based approach for training DL channels. First, in a
preliminary learning phase, the BS “learns” a pair of UL–DL dictionaries that are
able to sparsely represent the channel. Then, these dictionaries are used for a joint
sparse estimation of instantaneous UL–DL channels. An issue with this method
is that the dictionary learning phase requires off-line training and must be re-run
if the propagation environment around the BS changes (e.g., due to large moving
objects such as truck and buses, or a new building). In addition, the computation
involved in the instantaneous channel estimation is prohibitively demanding for real-
time operations with a large number of antennas (M > 100). In [11], the authors
propose estimating the DL channel using a sparse Bayesian learning framework,
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aiming at joint-maximum a posteriori (MAP) estimation of the off-grid AoAs and
multipath power coefficients by observing instantaneous UL channel measurements.
This method has the drawback that it fundamentally assumes discrete and separable
(in the AoA domain) multipath components and that the number of signal paths (the
number of channel AoAs) is known a priori. Hence, the method simply cannot be
applied in scenarios with diffuse (continuous) scattering, where the scattering power
is distributed over an interval of the angular domain with non-negligible width. Such
scattering is observed and modeled for various types of communication channels,
and they do not necessarily admit a sparse angular representation [45, 49, 50, 55].

11.2.2 Contribution

The main problem shared among all the methods above is that they are not robust
with respect to the channel sparsity assumption and, as we will show in our simu-
lation results, can lead to poor channel estimates when this assumption is violated.
Throughout this chapter, we develop the idea of active channel sparsification (ACS),
which aims at DL data multiplexing with any pilot dimension that is available at the
BS for channel training. This is done by designing a joint precoder that projects
the user channels onto a lower-dimensional subspace such that the sparsity order
(the �0 pseudo-norm) of each projected channel is less than the pilot dimension.
We argue that such a projection comprises a necessary step for interference-free DL
data transmission. Among all precoders satisfying this condition, we select one that,
in a certain probabilistic sense, maximizes the projected channel matrix rank. As is
well-known, the channel matrix rank is equivalent to the channel multiplexing gain,
i.e., the number of independent data streams that can be simultaneously multiplexed
on the communication link [56]. Then the BS estimates the projected channel
matrix (and not the full-dimensional channel matrix), and it communicates with the
users through it. Figure 11.1 graphically sketches the idea. The projection enables
stable estimation of the “effective channels,” and its rank maximization capability
results in maximization of the multiplexing gain and (implicitly) the DL sum rate.
We emphasize that our scheme does not rely on channel sparsity and in fact is
specifically designed to induce it in a clever way despite the channels being of
arbitrary sparsity orders. In this sense, it is a solution to the FDD massive MIMO
problem in its generality.

11.3 Channel Model

Consider a BS equipped with a uniform linear array (ULA) of M antennas, serving
K users in a cell.5 The channel of user k is assumed to be a zero-mean, complex
Gaussian vector hk ∈ C

M with covariance �k = E
[
hkhH

k

]
. There are a number

5 An extension of the idea to general arrays will follow later in this chapter.
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channel matrix (beam-domain)

Fig. 11.1 Schematic of the idea of active channel sparsification. The dotted shape in the middle
represents the beam-domain channel matrix, in which the columns associate with user channels and
rows with (virtual) beams, and filled dots represent non-zero channel coefficients. The precoder is
designed to select a set of beams (and users) over which the BS transmits data in the DL

of ways to obtain the DL channel covariance of a user in MIMO FDD systems
[11, 13, 43, 51], including one proposed by some of the authors of this chapter
[22]. For example, the BS can first estimate the UL covariance from UL pilots that
are naturally received from the users. Then it can estimate the DL covariance by
“transforming” the UL covariance. We do not discuss the details of DL covariance
estimation, and in order to isolate the problem of channel training from the effects
of an covariance estimation, here we assume that the covariances are known to the
BS.

Denoting the channel of a generic user with h ∈ C
M , it can be expressed as

h =
∫ θmax

−θmax

dW(θ)a(θ), (11.1)

where θ ∈ [−θmax, θmax] stands for the AoA, θmax is the maximum array angular
aperture (e.g., θmax = π/3), W is a zero-mean, complex Gaussian stochastic process
that represents the random angular gains, and thereby the right-hand side (RHS) of
(11.1) is understood as an stochastic integral [31]. In addition, a(θ) ∈ C

M is the
far-field array response to a wave impinging from the AoA θ , whose m-th element
is given as

[a(θ)]m = exp

(
j

2πd

λ
m sin θ

)
, (11.2)

where λ is the carrier wavelength and d denotes the antenna spacing. We consider
the latter to be taking the standard value d = λ

2 sin θmax
. To simplify notation, we

can introduce the normalized AoA ξ by making the change of variables ξ =
sin θ/ sin θmax. This results in the element response (11.2) to turn into [a(ξ)]m =
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exp (jπmξ) for m ∈ [M], and the channel vector in (11.1) to be expressed as

h =
∫ 1

−1
dW(ξ)a(ξ). (11.3)

Assuming uncorrelated scattering, the autocorrelation of W is given as

E[dW(ξ)dW(ξ ′)] = δ(ξ − ξ ′)γ (ξ)dξ, (11.4)

in which γ is non-negative and known as the angular scattering function (ASF). The
channel covariance is then given as

� = E[hhH] =
∫ 1

−1
γ (ξ)a(ξ)a(ξ)Hdξ. (11.5)

It is easy to show that for a ULA, the channel covariance is Toeplitz Hermitian. This
results in a nice property that will be outlined below.

Approximate Common Eigenspace of ULA Channels
Let γ be a function over [−1, 1] bounded to [γmin, γmax] with 0 ≤ γmin ≤ γmax,
whose Fourier transform samples over the integer set [M] are equal to the sequence
[σ ]m = [�]n,n−m, i.e.,

[σ ]m =
∫ 1

−1
γ (ξ)ejπmξdξ. (11.6)

According to the Szegö theorem, the Toeplitz covariance � can be approximated by
a circulant matrix �̊ whose first column is given as [20]

[σ̊ ]m =
{

[σ ]0, m = 0,

[σ ]m + [σ ]m−M, m = 1, . . . ,M − 1,
(11.7)

where for a negative index i < 0, we define [σ ]i = [σ ]∗−i . The approximation of
the Toeplitz matrix with the circulant matrix is understood in the following senses
[1]:

1. The set of eigenvalues of � and �̊ denoted as {λm} and {̊λm} are asymptotically
equally distributed. This means that for any continuous function f defined over
[γmin, γmax], we have

lim
M→∞

1

M

M−1∑

m=0

f (λm) = lim
M→∞

1

M

M−1∑

m=0

f (̊λm). (11.8)
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2. The eigenvectors of � are approximated by those of �̊ in the following sense.
Define the asymptotic cumulative distribution function (CDF) of the eigenvalues
of � as F(λ) = ∫ 1

−1 1{γ (ξ)≤λ}dξ . Define U = [u0, . . . ,uM−1] and Ů =
[̊u0, . . . , ůM−1] as the eigenvector matrices of � and �̊ corresponding to the
descendingly ordered eigenvalues {λm} and {̊λm}, respectively. For any interval
[a, b] ⊆ [γmin, γmax] such that F is continuous on [a, b], define two sets
of indices as I[a,b] = {m : λm ∈ [a, b]} and I̊[a,b] = {m : λ̊m ∈
[a, b]}, corresponding to those eigenvalues that lie in [a, b]. Also define the
column-wise submatrices of U and Ů associated with these indices as U[a,b] =(
um : m ∈ I[a,b]

)
and Ů[a,b] =

(
ům : m ∈ I̊[a,b]

)
. Then

lim
M→∞‖U[a,b]U

H[a,b] − Ů[a,b]ŮH[a,b]‖2
F = 0. (11.9)

Besides the points above, we know that the eigenvectors of a circulant matrix
are given by the DFT basis F ∈ C

M×M of the same dimension, whose (m, n)-th
entry is given by [F]m,n = 1√

M
e−j2π mn

M , m, n ∈ [M]. This highly simplifies the
precoder design, since now the user channels can all be (asymptotically) expressed
in a shared eigenspace that is given by the DFT columns.

For a user k, let �k = Uk	kUH
k be its channel covariance eigendecomposition

and 	k = diag(λk) its diagonal matrix of ordered eigenvalues and Uk its unitary
matrix of eigenvectors. The Karhunen–Loéve (KL) expansion of a random channel
realization is given by Grimmett et al. [21]

hk = Ukg′k, (11.10)

where g′k ∼ CN(0,	k) is a complex Gaussian-distributed vector. As a consequence
of Szegö’s theorem, we have that asymptotically as M → ∞, this channel
realization is equal to

hk = F gk, (11.11)

where gk ∼ CN(0, 	̃k) and where 	̃k = diag(�kλk) for some permutation matrix
�k ∈ C

M×M . In this decomposition, the columns of F give the eigenvectors (KL
basis vectors), and unlike the eigenvectors matrix Uk in (11.10), they do not depend
on the user index. The product �kλk simply reorders the eigenvalues in λk so
that they match with their eigenvectors ordered as in F. For any user k, the exact
eigenvectors converge to the DFT columns f0, . . . , fM−1, that is to say in the sense
of Point 2 above, we have

{u(k)0 , . . . ,u(k)M−1} → {f0, . . . , fM−1},

for all k ∈ [K]. Later we exploit this property in designing the sparsifying precoder.
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Furthermore, note that the columns of F are similar to array response vectors, and
in fact, each column with index m ∈ [M] of the DFT matrix can be seen as the array
response to an angular direction θ = sin−1( m

M
sin θmax), where [λk]m can be seen

as the power of the channel vector associated with user k along that direction. Due
to the presumably limited number of local scatterers as seen at the BS and the large
number of antennas of the array, one can hypothesize that only a few entries of λk are
significantly large, implying that the DL channel vector hk is sparse in the Fourier
basis. This sparsity in the beam-space domain is precisely what has been exploited
in the CS-based works discussed in Sect. 11.2.1, in order to reduce the DL pilot
dimension T dl. As seen in the next section, our proposed approach does not rely on
any intrinsic channel sparsity assumption but adopts a novel artificial sparsification
technique that smartly reduces the effective channel dimension to enable channel
estimation regardless of its sparsity.

11.4 Active Channel Sparsification and DL Channel Training

In order to perform multiuser communication, the BS needs to train instantaneous
DL channels of the users. This is done by transmitting a pilot matrix � ∈ C

T dl×M ,
where T dl represents the pilot dimension. To obtain a good configuration for �, we
first decompose it as the product

� = �B, (11.12)

where B ∈ C
M ′×M is the to-be-designed sparsifying precoder with M ′ ≤ M being

an intermediate dimension that will be determined within the precoder design, and
� ∈ C

T dl×M ′
is a matrix that can be chosen from a random ensemble, e.g., i.i.d.

Gaussian or random unitary. Note that the design of B and � does not depend on
instantaneous channel realizations, which in fact must be estimated via the closed-
loop DL probing and channel-state feedback mechanism.

The precoded DL training length (in time–frequency symbols) spans T dl dimen-
sions, and the DL training phase is repeated at each fading block of dimension
T . Collecting the T dl training symbols in a column vector, the corresponding
observation at user k receiver is given by

yk = �hk + zk

= �Bhk + zk = �h̃k + zk,
(11.13)

where B is the precoding matrix, hk is the channel vector of user k, and we have
defined h̃k := Bhk as the effective channel vector, formed by the concatenation
of the actual DL channel (antenna-to-antenna) with the precoder B. We consider
additive white Gaussian noise (AWGN) with distribution zk ∼ CN(0, N0IT dl). The
training and precoding matrices are normalized such that
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tr(�BBH�H) = T dlPdl, (11.14)

where P dl denotes the total BS transmit power, and we define the DL signal-to-noise
ratio as SNR= Pdl/N0.

Most works on channel estimation focus on the estimation of the actual channels
{hk}. This is recovered in our setting by letting B = IM . However, our goal here
is to design the sparsifying precoder such that each effective channel h̃k becomes
sparse enough to be “stably” estimated from the measurements taken �, and yet the
collection of all effective channels forms a matrix H̃ = [̃h0, . . . , h̃K−1] that has a
high rank. In this way, each user’s channel can be partly estimated using a small
pilot overhead T dl, but the BS is still able to serve many data streams using spatial
multiplexing in the DL (in fact, as many as the rank of the effective channel matrix).

11.4.1 Necessity and Implication of Stable Channel Estimation

Suppose that the channel representation (11.11) holds exactly and that the eigen-
value vectors λk, k ∈ [K] have support Sk = {m : [λk]m �= 0} with sparsity order
sk = |Sk|. We hasten to point out that the above are convenient design assumptions,
made in order to obtain a tractable problem, and that the eventual precoder is applied
to the actual physical channels.

Definition 11.1 (Stable Estimation) Consider the noisy, linear measurement
model y = �h + z as introduced in (11.13), where z ∼ CN(0, N0I). We say
that an estimator ĥ of h given y is stable if limN0↓0 E

[‖h− ĥ‖2
] = 0.6

The following lemma yields necessary and sufficient conditions for stable
estimation of the channel vectors hk .

Lemma 11.1 Consider the Gaussian vector hk described via (11.11) and with
support set Sk . Let ĥk denote any estimator of hk given the observation7 yk =
�hk + zk . If T dl ≥ sk , there exist pilot matrices � ∈ C

T dl×M for which
limN0↓0 E

[‖h− ĥ‖2
] = 0 for all support sets Sk with |Sk| = sk . Conversely, for

any support set Sk : |Sk| = sk , any pilot matrix � ∈ C
T dl×M with T dl < sk yields

limN0↓0 E
[‖h− ĥ‖2

]
> 0.

Proof The proof follows by using the KL representation hk =∑m∈Sk gk,m
√[λk]mfm,

which holds exactly by assumption. Estimating hk is equivalent to estimating the
vector of KL Gaussian i.i.d. coefficients gk = (gk,m : m ∈ Sk) ∈ C

sk×1. Define the
M×sk DFT submatrix FSk = (fm : m ∈ Sk), and the corresponding diagonal sk×sk
matrix of the non-zero eigenvalues [	k]Sk,Sk . After some simple standard algebra,
the MMSE estimation error covariance of gk from yk in (11.13) with B = IM can

6 By N0 ↓ 0, we mean that N0 is approaching 0 from above.
7 Note that this coincides with (11.13) with B = IM , i.e., without the sparsifying precoder.
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be written in the form

R̃e = Isk −
([	k]Sk,Sk

)1/2 FH
Sk�

H

×
(
�FSk [	k]Sk,SkFH

Sk�
H +N0IT dl

)−1
�FSk

([	k]Sk,Sk
)1/2

.

(11.15)

Using the fact that Re = FSk ([	k]Sk,Sk )1/2R̃e([	k]Sk,Sk )1/2FH
Sk , such that

tr(Re) = tr([	k]Sk,Sk R̃e), we have that tr(Re) and tr(R̃e) have the same vanishing
order with respect to N0. In particular, it is sufficient to consider the behavior of
tr(R̃e) as a function of N0. Now, using the Sherman–Morrison–Woodbury matrix
inversion lemma [23], after some algebra omitted for the sake of brevity, we arrive
at

tr(R̃e) = sk −
sk∑

i=1

μi

N0 + μi

, (11.16)

where μi is the i-th eigenvalue of the sk × sk matrix

A = ([	k]Sk,Sk )1/2FH
Sk�

H�FSk ([	k]Sk,Sk )1/2.

Next, notice that

rank(A) = rank(FH
Sk�

H�FSk ) = rank(FSkFH
Sk�

H) ≤ min{sk, T dl}. (11.17)

In fact, [	k]Sk,Sk is diagonal with strictly positive diagonal elements, such that left
and right multiplication by ([	k]Sk,Sk )1/2 yields rank-preserving row and column
scalings, the matrix FSkFH

Sk is the orthogonal projector onto the sk-dimensional

column space of FSk and has rank sk , while the matrix �H ∈ C
M×T dl has the

same rank of �H�, that is at most T dl.
For T dl ≥ sk , the existence of matrices � such that the rank upper bound (11.17)

holds with equality (i.e., for which rank(A) = sk for any support set Sk of size
sk) is shown as follows. Generate a random � with i.i.d. elements ∼ CN(0, 1).
Then, the columns of FH

Sk�
H form a collection of T dl ≥ sk mutually independent

sk-dimensional Gaussian vectors with i.i.d.∼ CN(0, 1) components. The event that
these vectors span a space of dimension less than sk is a null event (zero probability).
Hence, such randomly generated matrix satisfies the rank equality in (11.17) with
probability 1. As a consequence, for T dl ≥ sk , we have that μi > 0 for all i ∈ [sk],
and (11.16) vanishes as O(N0) as N0 ↓ 0. In contrast, if T dl < sk , by (11.17) for
any matrix � at most T dl, eigenvalues μi in (11.16) are non-zero and limN0↓0 sk −∑sk

i=1
μi

N0+μi
≥ sk − T dl > 0. ��

As a direct consequence of Lemma 11.1, we have that any scheme relying on
intrinsic channel sparsity cannot yield stable estimation if T dl < sk for some user
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k ∈ [K]. Furthermore, we need to impose that the sparsity order of the projected
channels Bhk, k ∈ [K] is less than or equal to the desired pilot dimension T dl.

It is important to note that the requirement of estimation stability is essential in
order to achieve high spectral efficiency in high SNR conditions, irrespective of the
DL precoding scheme. In fact, if the estimation mean squared error (MSE) of the
user channels does not vanish as N0 ↓ 0, the system self-interference due to the
imperfect channel knowledge grows proportionally to the signal power, yielding a
signal-to-interference plus noise ratio (SINR) that saturates to a constant when SNR
becomes large. Hence, for sufficiently high SNR, the best strategy would consist
of transmitting just a single data stream, since any form of multiuser precoding
would inevitably lead to an interference-limited regime, where the sum rate remains
bounded, while SNR → ∞ [12]. Conversely, it is also well-known that when the
channel estimation error vanishes as O(N0) for N0 ↓ 0, the high-SNR sum rate
behaves as if the channel was perfectly known and can be achieved by very simple
linear precoding [7]. A possible solution to this problem consists of serving only
the users whose channel support sk is not larger than T dl. This is assumed implicitly
in all CS-based schemes and represents a major intrinsic limitation of the CS-based
approaches. In contrast, by artificially sparsifying the user channels, we manage to
serve all users given a fixed DL pilot dimension T dl.

11.4.2 Sparsifying Precoder Design

We now introduce a graphical model that encodes the power profile of each user
along the common virtual beams, namely along the DFT columns. Define G =
(V,K,E) as a bipartite graph with two color classes V and K, where V is a node
set of cardinality M , representing the set of virtual beams and K is a node set of
cardinality K , representing the users. Also (k, v) ∈ E if and only if [λk]v > δ0,
where δ0 > 0 is a small threshold that ensures that when the link is very weak,
it does not appear in the graph. Therefore, the biadjacency matrix of this graph is
given by an M × K binary matrix A for which [A]v,k = 1 if and only if (v, k) ∈
E. The weighted biadjacency matrix is defined as the M × K matrix W in which
[W]m,k = [λk]1/2

m .
From (11.11), the DL channel matrix H = [h0, . . . ,hK−1] ∈ C

M×K is related
to the matrix of angular channel gains G = [g0, . . . , gK−1] ∈ C

M×K as H =
FG. Particularly interesting is the relation between H and the bipartite graph G,
specifically the rank of H and the size of the largest subgraph in G that contains a
perfect matching. The rigorous statement is given in Theorem 11.1, but before that,
we provide the following lemma as a requirement for proving this theorem.

Definition 11.2 (Matching) A matching is a set of edges in a graph that do not
share any endpoints. A perfect matching is a matching that connects all nodes of the
graph.
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Lemma 11.2 (Rank and Perfect Matchings) Let Q be an r × r matrix with some
elements identically zero and the non-identically zero elements independently drawn
from a continuous distribution. Consider a bipartite graph Q with biadjacency
matrix A such that [A]i,j = 1 if [Q]i,j is not identically zero, and [A]i,j = 0
otherwise. Then, Q has rank r with probability 1 if and only if Q contains a perfect
matching.

Proof The determinant of Q is given by the expansion

det(Q) =
∑

ι∈π r

sgn(ι)
∏

i

[Q]i,ι(i),

where ι is a permutation of the set {1, 2, . . . , r}, π r is the set of all such
permutations, and sgn(ι) is either 1 or -1. From the construction of Q, it is clear that
the product

∏
i[Q]i,ι(i) is non-zero only if the edge subset {(i, ι(i)), i = 1, . . . , r)}

is a perfect matching. Hence, if Q contains a perfect matching, then det(Q) �= 0
with probability 1 (and rank(Q) = r), since the non-identically zero entries of Q
are drawn from a continuous distribution, such that all elements involved in the
product

∏
i[Q]i,ι(i) are independent. If it does not contain a perfect matching, then

det(Q) = 0 and therefore rank(Q) < r . ��

Theorem 11.1 For a submatrix GV′,K′ consisting of rows and columns with indices
in V′ and K′, respectively, define its associated subgraph as the subgraph G′ =
(V′,K′,E′) ⊆ G. The rank of H is given, with probability 1, by the side length
of the largest square intersection submatrix of G whose associated subgraph in G
contains a perfect matching.

Proof Note that since H = FG and F is unitary, the rank of H is equal to that of G.
In addition, the rank of G is equivalent to the largest order of any non-zero minor
in G,8 i.e., the side length of the largest non-singular square submatrix of G. The
elements of G are either identically zero or drawn from a Gaussian distribution with
zero mean and a variance [λk]m for some (k,m) ∈ [K] × [M]. Now, according
to Lemma 11.2, any such submatrix Q is non-singular (has rank equal to its side
length) if and only if its associated subgraph Q ⊆ G contains a perfect matching.
This concludes the proof. ��

Theorem 11.1 implies that the rank of the channel matrix is given, with
probability 1, by the size of a certain matching in the user-virtual beam bipartite
graph G. This matching is contained in a subgraph of G′ = (V′,K′,E′) ⊆ G that
specifies the selected users and virtual beams that must satisfy certain criteria. In
particular, given a pilot dimension T dl, we want to select G′ such that which node
on either color class K′ orV′ has a degree of at least one, and such that:

8 A minor of a matrix G is the determinant of some square submatrix of G.
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Stability constraint: For all k ∈ K′, we should have degG′(k) ≤ T dl, where
degG′ denotes the degree of a node in the selected subgraph.

Power constraint: The sum of weights of the edges incident to any node k ∈ K′
in the subgraph G′ is greater than a threshold, i.e.,

∑
m∈NG′ (k) wm,k ≥ Pth, for

some Pth and for all k.
Rank objective: The channel matrix GV′,K′ obtained from G by selecting a ∈
V′ (“selected beam directions”) and k ∈ K′ (“selected users”) has large rank.

The first constraint enables stable estimation of the effective channel of any selected
user with only T dl common pilot dimensions and T dl complex symbols of feedback
per selected user. The second constraint makes sure that the effective channel
strength of any selected user is greater than a desired threshold, since we do not
want to spend resources on probing and serving users with weak effective channels
(where “weak” is quantitatively determined by the value of Pth). Therefore, Pth is a
parameter that serves to obtain a trade-off between the rank of the effective matrix
(which ultimately determines the number of spatially multiplexed DL data streams)
and the beamforming gain (i.e., the power effectively conveyed along each selected
user effective channel). The objective is motivated by the equivalence between the
channel matrix rank and the system multiplexing gain. In fact, one can show that the
pre-log factor in the total sum rate is given by rank(GV′,K′)×max{0, 1− T dl/T },
and it is obtained by serving a number of users equal to the rank of the effective
channel matrix. We can summarize these in the form of the following problem.

Problem 11.1 Let T dl denote the available DL pilot dimension, and letM(V′,K′)
denote a matching of the subgraphG′(V′,K′,E′) of the bipartite graphG(V,K,E).
Find the solution of the following optimization problem:

maximize
V′⊆V,K′⊆K

∣∣M
(
V′,K′

)∣∣ (11.18a)

subject to degG′(k) ≤ T dl ∀k ∈ K′, (11.18b)
∑

m∈NG′ (k)
wm,k ≥ Pth, ∀k ∈ K′. (11.18c)

♦
The theorem below shows that this problem can be cast as a mixed-integer linear

program (MILP). We refer the interested reader to [29] for the proof.

Theorem 11.2 The optimization problem in (11.18) is equivalent to the MILP
below:

maximize
xm,yk,zm,k

∑

m∈V,k∈K
zm,k (11.19a)

subject to zm,k ≤ [A]m,k ∀m ∈ V, k ∈ K, (11.19b)
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∑

k∈K
zm,k ≤ xm ∀m ∈ V, (11.19c)

∑

m∈V
zm,k ≤ yk ∀k ∈ K, (11.19d)

∑

m∈V
[A]m,kxm ≤ T dlyk +M(1− yk) ∀k ∈ K (11.19e)

Pth yk ≤
∑

m∈V
[W]m,kxm ∀k ∈ K, (11.19f)

xm ≤
∑

k∈K
[A]m,kyk ∀m ∈ V, (11.19g)

xm, yk ∈ {0, 1} ∀a ∈ V, k ∈ K, (11.19h)

zm,k ∈ [0, 1] ∀m ∈ V, k ∈ K. (11.19i)

The solution subgraph is given by the set of nodes V′ = {m : x�m = 1} and K′ =
{k : y�k = 1}, with {x�m}M−1

m=0 and {y�k }K−1
k=0 being a solution of (11.19).

The solution to this optimization, however, is not necessarily unique, i.e., there
may exist several subgraphs with the same (maximum) matching size. For example,
consider the miniature beam–user bipartite graph of Fig. 11.2 and suppose that we
have a pilot dimension T dl = 2. Here the matching M = {(0, 0), (1, 1)} is a
matching of maximum size that is contained in two subgraphs, the first one defined
by beams V1 = {0, 1} and users K1 = {0, 1}, and the second one defined by the
beams V2 = {0, 1, 2} and users K2 = {0, 1} (both satisfy the constraints). In such
cases, we want to select the subgraph that includes the larger number of beams.
In this example, this is the second subgraph. The reason is that as long as adding
beams does not violate the stability constraint, we want to probe (and eventually
transmit along) more beams, since this naturally increases the beamforming gain due
to channel hardening. In fact, a prominent advantage of a massive MIMO system is
its high beamforming gain, and in this way, the algorithm encourages solutions that
result in larger beamforming gains.

In order to incorporate the preference for more selected beams in sparsification,
we introduce a regularization term to the objective of (11.19) to favor solutions
containing more active beams. The regularized form of (11.19) is given as

Fig. 11.2 A toy example of
the bipartite graph with
M = 3 beams and K = 2
users
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1

0

0

1

UsersBeams
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maximize
xm,yk,zm,k

∑

m∈V

∑

k∈K
zm,k + ε

∑

m∈V
xm

subject to {xm, yk, zm,k}m∈V,k∈K ∈ Sfeasible,

(PMILP)

where the feasibility set Sfeasible encodes the constraints (11.19a)–(11.19i). Here,
the regularization factor ε is chosen to be a small positive value such that it does
not affect the matching size of the solution subgraph. In fact choosing ε < 1

M

ensures this, since then ε
∑

m∈V xm < 1 and a solution to PMILP must have the
same matching size as a solution to (11.19); otherwise, the objective of PMILP can
be improved by choosing a solution with a larger matching size. The introduced
MILP can be efficiently solved using an off-the-shelf optimization toolbox. In the
simulation results of this chapter, we have used the MATLAB intlinprog, which
adopts a branch-and-bound method to find the solution to an MILP [42]. Figure
11.3 illustrates an example of the beam–user bipartite graph and how ACS acts on
it with a pilot dimension of T dl = 2. The algorithm selects a subgraph containing
a matching of maximum size while not violating the estimation stability constraint
(assuming for simplicity that the power constraint is satisfied). The selected beams
in this graph, i.e., the nodes {1, 2, 3, 5, 6} ⊂ V, are additionally represented by the
highlighted rows of the channel matrix in Fig. 11.1.

6

5

4

3

2

1

0

0

1

2

UsersBeams

w0,0 w0,1 0
w1,0 0 0
w2,0 w2,1 0
0 w3,1 0
0 w4,1 w4,2
0 0 w5,2
0 0 w6,2

weighted biadjacency matrix

W

λ0
↓

λ1
↓

λ2
↓

Fig. 11.3 An example of the beam–user bipartite graph, its weighted biadjacency matrix, and the
sparsification process with M = 7, K = 3 and the assumed pilot dimension T dl = 2. The faded
nodes represent the “eliminated” beams ({m : x�m = 0}), schematically crossed out in the weighted
biadjacency matrix. The non-faded edges (in blue and black) represent the user–beam connections
that exist in the selected subgraph. The blue edges further highlight the matching of maximum size
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11.4.3 Channel Estimation and Multiuser Precoding

For a given set of user covariance matrices, let
{
x�m
}

and
{
y�k

}
denote the MILP

solutions, and denote by B = {m : x�m = 1} = {m1,m2, . . . , mM ′ } the set of
selected beam directions of cardinality |B| = M ′ and by K = {k : y�k = 1} the
set of selected users of cardinality |K| = K ′. The resulting sparsifying precoding
matrix B in (11.13) is simply obtained as

B = FH
B, (11.20)

where FB = [fm1, . . . , fmM′ ] and fm denotes the m-th column of the M ×M unitary
DFT matrix F. For a DFT column fm, we have

Bfm =
{

0 if m /∈ B
ui if m = mi ∈ B,

where ui denotes a M ′ ×1 vector with all zero components but a single “1” in the i-
th position. Using the above property and (11.11), the effective DL channel vectors
take on the form

h̃k = B
∑

m∈Sk
[gk]m

√[λk]m fm =
∑

i:mi∈B∩Sk

√[λk]mi
[gk]mi

ui . (11.21)

In words, the effective channel of user k is a vector with non-identically zero
elements only at the positions corresponding to the intersection of the beam
directions in Sk , along which the physical channel of user k carries positive
energy, and in B, selected by the sparsifying precoder. The non-identically zero
elements are independent Gaussian coefficients ∼ CN(0, [λk]mi

). Notice also that,
by construction, the number of non-identically zero coefficients are |B ∩ Sk| ≤ T dl
and their positions (encoded in the vectors ui in (11.21)), plus an estimate of
their variances [λk]mi

, are known to the BS. Hence, the effective channel vectors
can be estimated from the T dl-dimensional DL pilot observation (11.13) with an
estimation MSE that vanishes as 1/SNR. The pilot observation in the form (11.13)
is obtained at the user k receiver. In this chapter, we assume that each user sends
its pilot observations using T dl channel uses in the UL, using analog unquantized
feedback, as analyzed for example in [7, 32]. At the BS receiver, after estimating
the UL channel from the UL pilots, the BS can apply linear MMSE estimation and
recovers the channel-state feedback that takes on the same form as (11.13) with
some additional noise due to the noisy UL transmission.

Remark 11.1 As an alternative, one can consider quantized feedback using T dl
channel uses in the UL. Digital quantized feedback yields generally a better end-
to-end estimation MSE in the absence of feedback errors. However, the effect
of decoding errors on the channel-state feedback is difficult to characterize in a
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simple manner since it depends on the specific joint source-channel coding scheme
employed. Hence, in this chapter, we restrict to the simple analog feedback.

With the above precoding, we have BBH = IM ′ . There are several options for
selecting the matrix �, among which we take � to be proportional to an arbitrary
unitary matrix of dimension T dl ×M ′, such that ��H = PdlIT dl . In this way, the
DL pilot phase power constraint (11.14) is automatically satisfied. The estimation of
h̃k from the DL pilot observations (11.13) (with suitably increased AWGN variance
due to the noisy UL feedback) is completely straightforward and shall not be treated
here in detail.

For the sake of completeness, we conclude this section with the DL precoded data
phase and the corresponding sum-rate performance metric that we shall later use for
numerical analysis and comparison with other schemes. Let H̃� = [̃h�0, . . . , h̃�

K ′−1]
be the matrix of the estimated effective channels for the selected users, where we
have assumed without loss of generality the order {0, 1, . . . , K ′ −1} for the selected
users. We consider the ZF beamforming matrix V given by the column-normalized
version of the Moore–Penrose pseudoinverse of the estimated channel matrix, i.e.,

V = (H̃�
)†

J1/2,

where
(
H̃�
)† = H̃�

(
H̃�HH̃�

)−1
and J is a diagonal matrix that makes the columns

of V to have unit norm. A channel use of the DL precoded data transmission phase
at the k-th user receiver takes on the form rk = (hk)H BHVP1/2d + nk,, where
d ∈ C

K ′×1 is a vector of unit-energy user data symbols and P is a diagonal matrix
defining the power allocation to the DL data streams. The transmit power constraint
is given by tr(BHVPVHB) = tr(VHVP) = tr(P) = Pdl, where we used BBH = IM ′
and the fact that VHV has unit diagonal elements by construction. In particular, in
the simulation results section, we use the simple uniform power allocation Pk =
Pdl/K

′ to each k-th user data stream. In the case of perfect ZF beamforming, i.e.,
for H̃� = H̃, we have rk = √JkPkdk + nk , where Jk is the k-th diagonal element
of the norm normalizing matrix J, Pk is the k-th diagonal element of the power
allocation matrix P, and dk is the k-th user data symbol. Since in general H̃� �= H̃,
due to non-zero estimation error, the received symbol at user k receiver is given by
rk = bk,kdk+∑k′ �=k bk,k′dk′ +nk,, where the coefficients (bk,1, . . . , bk,K ′) are given

by the elements of the 1×K ′ row vector (hk)H BHVP1/2. Of course, in the presence
of an accurate channel estimation, we expect that bk,k ≈ √JkPk and bk,k′ ≈ 0 for
k′ �= k. For simplicity, in this chapter, we compare the performance of the proposed
scheme with that of the state-of-the-art CS-based scheme in terms of ergodic sum
rate, assuming that all coefficients (bk,1, . . . , bk,K ′) are known to the corresponding
receiver k. Including the DL training overhead, this yields the rate expression (see
[6])
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Rsum =
(

1− T dl

T

)∑

k∈K
E

⎡

⎣log

⎛

⎝1+
∣
∣bk,k
∣
∣2

1+∑k′ �=k
∣
∣bk,k′

∣
∣2

⎞

⎠

⎤

⎦ . (11.22)

11.5 Simulation Results

In this section, we provide simulation results to see the empirical evidence for
the performance of ACS. We also compare ACS to two of the most recent CS-
based methods proposed in [47] and [15] in terms of channel estimation error
and sum rate. In [47], the authors proposed a method based on common probing
of the DL channel with random Gaussian pilots. The DL pilot measurements yk
at users k = 1, . . . , K (similar to (11.13), but with a different pilot matrix) are
fed back and collected by the BS, which recovers the channel vectors using a
joint orthogonal matching pursuit (J-OMP) technique able to exploit the possible
common sparsity between the user channels. In [15], a method based on dictionary
learning for sparse channel estimation was proposed. In this scheme, the BS jointly
learns sparsifying dictionaries for the UL and DL channels by collecting channel
measurements at different cell locations (e.g., via an offline learning phase). The
actual user channel estimation is posed as a norm-minimization convex program
using the trained dictionaries and with the constraint that UL and DL channels share
the same support over their corresponding dictionaries. Following [15], we refer to
this method as JDLCM.

11.5.1 Channel Estimation Error and Sum Rate vs. Pilot
Dimension

In order to have a fair comparison, we involve the UL pilot transmission step in
the simulation. The JDLCM method requires UL and DL instantaneous channel
samples to train its sparse-representation dictionaries. Our method (ACS) uses the
UL channel samples to estimate the UL covariance and then uses that to obtain the
DL covariance via a transformation (see [22] for details). Then it uses the estimated
(and not the true) DL covariance to perform sparsification. The J-OMP method does
not make any use of either the UL or DL covariance, and it is not clear how one can
incorporate the covariance information in this algorithm.

For this comparison, we considered M = 128 antennas at the BS, K = 13
users, and resource blocks of size T = 128 symbols. For JDLCM, the sparse-
representation dictionary is jointly trained for N = 1000 instantaneous UL and
DL channels as proposed in [15]. For ACS, the BS computes the users’ sample UL
covariance matrices by taking N = 1000 UL pilot observations and then runs a
non-negative least-square optimization to estimate a parametric form of the angular
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scattering function γ in (11.6). This estimate is then used to transform the UL
covariance to the DL covariance. Given the obtained DL channel covariance matrix
estimates, we first perform the circulant approximation and extract the vector of
approximate eigenvalues λk, k ∈ [K]. Then, we compute the sparsifying precoder
B via the MILP solution. In the results presented here, we set the parameter Pth in
the MILP to a small value in order to favor a high rank of the resulting effective
channel matrix over the beamforming gain.9 After probing the effective channel
of the selected users along these active beam directions via a random unitary pilot
matrix �, we calculate their MMSE estimate using the estimated DL covariance
matrices.

Eventually, for all the three methods, we compute the ZF beamforming matrix
based on the obtained channel estimates. In addition, instead of considering all
selected users, in both cases, we apply the Greedy ZF user selection approach of
[14], which yields a significant benefit when the number of users is close to the rank
of the effective channel matrix. As said before, the DL SNR is given by SNR =
Pdl/N0, and during the simulations, we consider ideal noiseless feedback for
simplicity, i.e., we assume that the BS receives the measurements in (11.13) without
extra feedback noise to the system.10 The sparsity order of each channel vector is
given as an input to the J-OMP method, but not to the other two methods. This
represents a genie-aided advantage for J-OMP that we introduce here for simplicity.
As the simulation geometry, we consider three MPC clusters with random locations
within the angular range (parametrized by ξ rather than θ ) [−1, 1). We denote by �

the i-th interval and set each interval size to be |�i | = 0.2, i = 1, 2, 3. The ASF for
each user is obtained by selecting at random two out of three such clusters, such that
the overlap of the angular components among users is large. The ASF is non-zero
over the angular intervals corresponding to the chosen MPCs and zero elsewhere,
i.e., γk(ξ) = β1�i1∪�i2

,, where β = 1/
∫ 1
−1 γk(ξ)dξ and i1, i2 ∈ {1, 2, 3}.

The described arrangement results in each generated channel vector being
roughly sk = 0.2 ×M ≈ 26-sparse. To measure channel estimation error, we use
the normalized Euclidean distance as follows. Let H ∈ C

M×K ′ define the matrix
whose columns correspond to the channel vectors of the K ′ served users, and let Ĥ
denote the estimation of H. Then the normalized Euclidean error is defined as

Eeuc = E

[
‖H− Ĥ‖2

F

‖H‖2
F

]

.

9 This approach is appropriate in the medium to high-SNR regime. For low SNR, it is often
convenient to increase Pth in order to serve less users with a larger beamforming energy transfer
per user.
10 Notice that by introducing noisy feedback, the relative gain with respect to J-OMP is even
larger, since CS schemes are known to be more noise-sensitive than plain MMSE estimation using
estimated DL covariance matrices.
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Fig. 11.4 (a) Normalized channel estimation error, and (b) achievable sum rate as a function of
DL pilot dimension with SNR = 20 dB, M = 128, and K = 13.

Figure 11.4a shows the normalized channel estimation error for the J-OMP, JDLCM,
and our proposed active channel sparsification (ACS) method as a function of the
DL pilot dimension T dl with SNR = 20 dB. Our ACS method outperforms the
other two by a large margin, especially for low DL pilot dimensions. When the
pilot dimension is below channel sparsity order, CS-based methods perform very
poorly, since the number of channel measurements is less than the inherent channel
dimension. Figure 11.4b compares the achievable sum rate for the three methods.
Again our ACS method shows a much better performance compared to J-OMP and
JDLCM. This figure also shows that there is an optimal DL pilot dimension that
maximizes the sum rate. This optimal value is T dl ≈ 40 for our proposed method,
T dl ≈ 60 for JDLCM, and T dl ≈ 70 for J-OMP.

11.5.2 The Effect of Channel Sparsity

The channels can have various sparsity levels in the angular domain. While the CS-
based method is in this sense at the mercy of environmental features, our active
sparsification method is able to deal with different scenarios by inducing more
sparsity in the channel. This section examines the effect of channel sparsity order
on sum rate when the ACS method is employed. We take user ASFs to consist of
two clusters, chosen at random, out of three pre-defined clusters. To have different
sparsity orders, we vary the size of the angular interval, each of the clusters occupies
(|�i | = 0.2, 0.4, 0.6, 0.8), and we see how it affects the error and sum-rate metrics.
The sparsifying precoder, DL training, feedback, and data precoding are performed
as before. We take M = 128, and as the ASF consists of two clusters, the channel
sparsity order takes on the values sk = 26, 51, 77, 102 for all users k ∈ [K ′]. Then
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Fig. 11.5 Sum rate vs. T dl for various channel sparsity orders. Here SNR = 20 dB, M = 128, and
K = 13.

the system sum rate is calculated empirically for each pilot dimension via Monte
Carlo simulations. Notice that in these results we fix the channel coefficient power
along each scattering component, such that richer (less sparse) channels convey
more signal energy. This corresponds to the physical fact that the more scattered
signal energy is collected at the receiving antennas the higher the received signal
energy is. Figure 11.5 illustrates the results. As we can see, for a fixed T dl, when
the number of non-zero channel coefficients increases, i.e., when the channel is less
sparse, we generally have a larger sum rate. This is due to the fact that, with less
sparse channels, the beamforming gain is larger, since more scattering components
contribute to the channel. Therefore, we can generally say that with our method, for
a fixed pilot dimension, less sparse channels are, in a sense, better. Of course, this
is not the case for techniques based on the sparsity assumption of a small number
of discrete angular components, which tend to collapse and yield poor results when
such sparsity assumptions are not satisfied.

11.6 Beam-Space Design for Arbitrary Array Geometries

The ACS can be applied to design precoders for cases with array geometries other
than the ULA. As explained in Sect. 11.3, a necessary step before performing
sparsification in a tractable way is that all channels share the same (approximate)
eigenspace. Earlier in this chapter, we observed that, for a massive ULA, this
common eigenspace is asymptotically given by the span of the DFT basis due
to an application of Szegö’s theorem for large Hermitian Toeplitz matrices (see
Sect. 11.3). For an arbitrary array geometry, the covariance is not necessarily
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Toeplitz, and we are not aware of any work suggesting the existence of a (approxi-
mate) common eigenspace for MIMO channels of generic array geometries. Then,
what is a suitable strategy to obtain an approximate common eigenbasis? In order to
extend ACS to arrays with arbitrary design, here we propose a method for obtaining
an approximate common eigenspace for channels of a multiuser system with an
arbitrary array geometry. Once a common eigenbasis is obtained, sparsification can
be done simply by performing the MILP on a bipartite graph that encodes the link
between the users and the set of obtained virtual beams.

Consider a BS equipped with an array of arbitrary geometry consisting of M
antennas, communicating with K users. The user channels are all assumed zero-
mean, complex Gaussian with covariances �k = E

[
hkhH

k

]
, k ∈ [K]. Define

the eigendecomposition of �k as �k = Uk	kUH
k , where Uk is the unitary

matrix of eigenvectors (UH
k Uk = IM ) and 	k is the diagonal matrix of non-

negative eigenvalues. We note that the eigenbasis of distinct covariances is generally
different. This makes the joint processing of the channels and the precoding design
difficult. Hence, we are interested in obtaining an approximate common eigenbasis
U among all covariances {�k}. An ideal choice for U is one that “approximately”
diagonalizes all the members of {�k}, such that the diagonal elements of UH�U
“closely” follow the true eigenvalues of �k for all k. If the covariances are in fact
jointly diagonalizable, i.e., if there exists a unitary matrix Uc such that U1 = U2 =
. . . = UK = Uc, then it is desirable to obtain Uc as the common eigenbasis. If the
covariances are not jointly diagonalizable, then we want to obtain a unitary matrix
U� that “best” diagonalizes the covariances.

Some of the present authors have studied this problem in a slightly different
context in [30], where the goal was to obtain the approximate common eigenbasis
U given a number of N samples of the instantaneous channels of the K users.
There, they assumed a parametric form of the covariances as {�k = U	′kUH} and
performed a maximum likelihood (ML) estimation of U and {	′k} given the samples.
It turns out that the emergent ML problem can be cast as the following optimization:

minimize{um}
∑

m,k

log
(

uH
m�̂kum

)
subject to uH

mun = δm,n, m, n ∈ [M],

(11.23)

where �̂k = 1
N

∑N−1
n=0 hk[i]hk[i]H is the sample covariance of the instantaneous

channels for k ∈ [K]. However, in this chapter, we have assumed that the channel
covariances (or estimates thereof) are readily given. Then it seems natural to apply
the same formulation by substituting the sample covariance with the available (true
or estimated) covariances. This results in the following problem:

minimize{um}
f (U) =

∑

m,k

log
(

uH
m�kum

)

subject to uH
mun = δm,n, m, n ∈ [M],

(P1)
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which presents an optimization over the manifold of unitary matrices U = {U ∈
C
M×M : UHU = IM}. To solve the ML problem P1, we propose a gradient

projection method and show that it converges to a stationary point of the cost
function f . But first, let us study the problem when applied to a special class of
user covariances.

11.6.1 Jointly Diagonalizable Covariances

One can show that, if the true channel covariances are jointly diagonalizable, then
the global optimum of P1 is given by the common eigenbasis. To see this, first note
that the channel covariance of user k can be decomposed as �k = Uc	kUcH, for
k ∈ [K], where Uc ∈ C

M×M, UcHUc = IM denotes the common eigenbasis.

Definition 11.3 (Majorization) For x ∈ R
M , define x↓ as the vector containing

the elements of x in descending order. Let y ∈ R
M be another vector such that∑M−1

i=0 [x]i =
∑M−1

i=0 [y]i . We say x majorizes y (x 7 y) iff
∑m

i=0 x↓i ≥
∑m

i=0 y↓i ,
for all m ∈ [M].
The following theorem shows that Uc is a global optimum of P1.

Theorem 11.3 Let �k, k = 0, . . . , K − 1, be a set of jointly diagonalizable
covariance matrices. Then U� = Uc is a global optimum of P1.

Proof Given a unitary matrix U, let σ k(U) ∈ R
M be a vector such that [σ k(U)]m =

uH
m�kum. Particularly, we can check that σ k(Uc) is the vector of eigenvalues of �k .

From the properties of eigenvalue decomposition, it follows that σ k(Uc) 7 σ k(U)

for all U ∈ U and all k ∈ [K]. Besides, the function h(x) = ∑i log([x]i ) is
Schur-concave [46], and hence,

∑
m log([σ k(Uc)]m) ≤ ∑m log([σ k(U)]m) for all

k. Therefore, we have f (Uc) ≤ f (U) for all U ∈ U, proving Uc to be the global
minimizer of f overU. ��
This theorem shows that P1 satisfies a minimum requirement for finding a set of
approximate common eigenvectors: at least when the channel covariances do share
a common eigenbasis, the ML optimum coincides with it.

11.6.2 ML via Projected Gradient Descent

Now we turn to solving the ML problem P1. We use a projected gradient descent
(PGD) method to minimize the objective cost function f . The PGD is a well-known
iterative optimization algorithm [4], which starts from an initial point U(0) and
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consists of the following two steps per iteration:

Ũ(t) = U(t) − αt∇f (U(t)) (Gradient Step)

U(t+1) = PU(Ũ(t)), (Projection Step)

where ∇f (U(t)) ∈ C
M×M is the gradient of f at U(t), PU : CM×M → U is the

orthogonal projection operator onto the set of unitary matrices, and αt > 0 is a
step size. The following lemma, proved in [38], shows how one can compute the
orthogonal projection.

Lemma 11.3 Let V ∈ C
M×M be a matrix with singular value decomposition V =

SDTH, where S and T are unitary matrices of left and right eigenvectors and D =
diag(d) is non-negative diagonal. Then, the orthogonal projection of V onto the set
of unitary matrices is given by PU(V) = STH.

The following theorem presents a guarantee for the convergence of PGD when
applied to solve P1 (see [30] for the proof).

Theorem 11.4 Let U(0) ∈ U be an initial point and consider the gradient
projection update rule

U(t+1) = PU
(

U(t) − αt∇f (U(t))
)
, t = 0, 1, . . . , (11.24)

with αt ∈ (0, 1
L
) for all t , where L is the Lipschitz constant of ∇f (U). Then the

sequence {U(t), t = 0, 1, . . .} converges to a stationary point of f (U).

Theorem 11.4 guarantees that the sequence generated by PGD converges to a
stationary point of the likelihood function. This gives a suitable common eigenbasis
that, in a sense, approximately diagonalizes all the user covariance matrices. This
basis can serve as the beam-space representation of the channel.

11.6.3 Extension of ACS to Arbitrary Array Geometries

We can directly extend the ACS technique for FDD massive MIMO channels with
non-ULA geometries. In Sect. 11.6, we proposed a method of designing a common
eigenbasis. Given user channel covariances {�k}, or their estimates, this method
yields a common eigenbasis U�, and the user-dependent “approximate eigenvalue”
matrices 	�

k = diag(λ�k), k ∈ [K], where [λ�k]m = u�Hm �kum. Eventually, the
covariance of user k can be approximated as

�k ≈ U�	�
kU�H. (11.25)
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The eigenbasis U� consists of the array virtual beams. Since this beam space is
shared among all users, we can define the bipartite user–beam graph introduced
in Sect. 11.4.2. In this case, the edge weight between a user k and a beam m is
given by wm,k = [λ�k]m. Then we can solve the same matching-size maximization
problem in (11.18) through the MILP. Let {x�m} denote the MILP solution for the
binary variables representing beam nodes and {y�k } its solution for binary variables
representing user nodes. Also let B = {m : x�m = 1} define the set of active beams
and K = {k : y�k = 1} the set of active users. The sparsifying precoder in this case
is given as

B = U�H
B . (11.26)

The rest of the channel training and precoding procedure is performed just like the
ULA case.

Remark 11.2 Note that since U� is only an approximate eigenbasis of �k , we
cannot guarantee the coefficients of the linear expansion of a random channel
vector hk in terms of the columns of U� to be independent random variables with a
continuous distribution. Hence, we cannot prove that maximizing the matching size
in the beam–user bipartite graph is equivalent to maximizing the channel matrix
rank. The reason is that the conditions of Lemma 11.2 are violated, since we cannot
assume a distribution on the coefficients. Nevertheless, we assume that the error of
approximating the covariances as in (11.25) is not large, such that U� is close to Uk

for all k. This would lead the coefficients of the expansion in terms of the columns
of U� to be close to the Gaussian coefficients of the Karhunen–Loéve expansion.
Then maximizing the matching size will maximize the channel matrix rank.
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Chapter 12
Atmospheric Radar Imaging
Improvements Using Compressed
Sensing and MIMO

Jorge Luis Chau, Juan Miguel Urco, Tobias Weber, and Jeremy
Olaore Aweda

12.1 Introduction

The focus of this chapter is the signal processing in atmospheric radar imaging
(ARI) and in particular its application to the study of polar mesospheric summer
echoes (PMSEs). Atmospheric received signals are stochastic and result from the
scattering of non-homogeneous atmospheric irregularities. In the case of PMSE, the
received signals could be considered quasi-stationary in time scales of a few seconds
with correlation times of milliseconds to a few seconds, organized in patches
with horizontal sizes of 1–5 kms separated between a few kilometers to tens or
hundreds of kilometers, organized in various narrow vertical layers of∼150−600 m
thickness, and a typical signal-to-noise ratio (SNR) after matched filtering varying
from −10 to 40 dB, e.g., [34]. Moreover, PMSE patches drift horizontally with
the background horizontal wind, e.g., [1]. Climatologically, a westward wind of
∼30 − 50 m/s is observed during the summer polar mesosphere at around 85 km,
e.g., [6].

Atmospheric radar systems used in ARI operate at very high frequencies (VHFs)
due to the frequency-dependent scattering properties of atmospheric irregularities.
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This results in huge antenna arrays, and it is crucial to make the best use of the still
rather limited number of antennas. Promising approaches are (a) the use of non-
uniform antenna arrays, i.e., a pseudo-random sampling of the electromagnetic wave
field, (b) the use of multiple-input multiple-output (MIMO) antenna configurations,
and (c) the use of tracking techniques to exploit the time dynamics of the PMSE
brightness.

We first start with the presentation of the system model for ARI, followed
by usual ARI techniques. The application of MIMO and compressed sensing to
different atmospheric radar fields is presented in Sect. 12.2.5.

12.2 System Model and Inversion Methods for Atmospheric
Radar Imaging

This section describes the system model for ARI. The system model for the single-
input multiple-output (SIMO) antenna configuration is presented followed by the
MIMO case. This section is complemented with a description of inversion methods
used in atmospheric radar imaging.

12.2.1 System Model for SIMO Atmospheric Radar Imaging

Figure 12.1 shows the system model with a reference point and one antenna element
k at a known position in space with the position vector 9rk . A narrowband signal
with the complex amplitude sRP,n being backscattered from a single target n in
the far-field would be received at the reference point. The direction of arrival is
characterized by the wavenumber vector 9βn, which is described in terms of the unit
vector 9un into the direction of the target n and the wavelength λ as

Fig. 12.1 Model for SIMO
atmospheric radar imaging

.

target

reference
point

antenna
element

path length
difference Δ
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9βn = 2π

λ
9un. (12.1)

Due to the position 9rk of the antenna element k in space, there is a path length
difference �ρk,n between the antenna element k and the reference point. This path
length difference can be computed as

�ρk,n = −9un · 9rk. (12.2)

Since the reference point-related signal sRP,n is a narrowband signal, the signal
sk,n received at antenna element k is a phase shifted version of the signal sRP,n [22].
This phase shift is

�φk,n = −2π
�ρk,n

λ
= 2π

9un · 9rk
λ

= 9βn · 9rk. (12.3)

The signal sk,n received at antenna element k expressed in terms of the signal
sRP,n that would be received at the reference point is

sk,n = sRP,nej�φk,n = sRP,nej 9βn·9rk . (12.4)

The exponentional term ej 9βn·9rk is called the steering factor.
In the case where there are N different targets n = 1, . . . , N , the signal sk being

received at the k-th antenna element is a superposition of the phase shifted versions
of all N signals sRP,n, n = 1, . . . , N . Furthermore, the signal sk received at antenna
element k are corrupted by noise nk with zero mean. The signal sk received at the
antenna element k can thus be expressed with a summation as

sk =
N∑

n=1

sRP,nej 9βn·9rk + nk. (12.5)

Since the targets in ARI are fluctuating, it is common practice to look at the
statistics of the received signals rather than their particular realizations [46]. The
spatial correlation of the signals sk and sl received at antenna elements k and l also
known as the visibility in radio astronomy [46] is

vk,l = E
{
sks

∗
l

} =
N∑

n=1

N∑

m=1

E
{
sRP,ns

∗
RP,m

}
ej( 9βn·9rk− 9βm·9rl ) + E

{
nkn

∗
l

}
. (12.6)

The signals sRP,n and sRP,m from different targets n �= m are assumed to be
uncorrelated. Therefore, the term E

{
sRP,ns

∗
RP,m

}
is zero for n �= m. Furthermore,

E
{
sRP,ns

∗
RP,n

} = E
{|sRP,n|2

} = bn (12.7)
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is commonly referred to as the brightness in radio astronomy [46].
The noise nk and nl at different antenna elements k �= l is assumed to be

uncorrelated. Therefore, the term E
{
nkn

∗
l

}
is zero for k �= l. For k = l, one obtains

the variance

E
{
nkn

∗
k

} = E
{ | nk |2

} = σ 2. (12.8)

Using

�9rk,l = 9rk − 9rl (12.9)

and the brightnesses bn, the visibility vk,l can be rewritten as

vk,l =
{∑N

n=1 bnej 9βn·�9rk,l , k �= l
∑N

n=1 bnej 9βn·�9rk,k + σ 2 =∑N
n=1 bn + σ 2, k = l.

(12.10)

The co-array is defined as the auto-correlation of the antenna array [18]. For
the co-array as well as Eq. (12.10), only the displacements �9rk,l between antenna
elements matter. However, depending on the positions of the antenna elements
in space, several pairs of antenna elements may result in the same displacements
thereby creating a redundancy. Figure 12.2(left) shows an array of antenna elements
arranged in an asymmetrical cross used for meteor studies in [17]. The correspond-
ing co-array is shown in Fig. 12.2(right). The large circle at the center of the array
shows the redundancy in the co-array where five pairs of antenna elements resulted
in the same displacement.

The visibilities obtained from the K antenna elements can be combined in a
visibility vector.

Fig. 12.2 An asymmetrical cross array with K = 5 antenna elements (left) [17] and its
corresponding co-array (right)
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Representing the summation as a matrix vector product yields the linear system
of equations

⎛

⎜
⎜⎜⎜⎜⎜⎜
⎜⎜⎜⎜⎜
⎝

v1,1
...

vK,1
...

v1,K
...

vK,K

⎞

⎟
⎟⎟⎟⎟⎟⎟
⎟⎟⎟⎟⎟
⎠

=

⎛

⎜
⎜⎜⎜⎜⎜⎜
⎜⎜⎜⎜⎜
⎝

1 · · · 1
...

...

ej 9β1·�9rK,1 · · · ej 9βN ·�9rK,1

...
...

ej 9β1·�9r1,K · · · ej 9βN ·�9r1,K

...
...

1 · · · 1
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⎟
⎟⎟⎟⎟⎟⎟
⎟⎟⎟⎟⎟
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·
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...

bN

⎞
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⎜⎜⎜⎜⎜
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σ 2

...

0
...

0
...

σ 2

⎞

⎟
⎟⎟⎟⎟⎟⎟
⎟⎟⎟⎟⎟
⎠

(12.11)

with K2 equations for N brightnesses bn, n = 1, . . . , N . The matrix with the
exponentionals is called the sensing matrix.

In reality, I measurements of the received signals are taken at the antenna
elements k and l. The i-th measured received signals at antenna elements k and l

are denoted by s
(i)
k and s

(i)
l , respectively. From these I measurements, an estimate

of the visibility is computed as

v̂k,l =
1

I

I∑

i=1

s
(i)
k s

∗(i)
l . (12.12)

The brightnesses bn to be estimated are real-valued, see Eq. (12.7). To ensure
that the inversion algorithm used for estimating the brightnesses always returns a
real-valued solution, it might be useful to reformulate the system model of (12.11)
into an equivalent purely real-valued system model. This can be achieved by taking
linear combinations of the visibility as in

vk,l + vl,k

2
=
⎧
⎨

⎩

∑N
n=1 bn cos

( 9βn ·�9rk,l
)
, k �= l

∑N
n=1 bn + σ 2, k = l

(12.13)

and

vk,l − vl,k

2j
=

N∑

n=1

bn sin
( 9βn ·�9rk,l

)
. (12.14)

Using the linear combinations of the visibilities, one can define a vector v with
K2 elements. The m-th element of the vector v is
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[v]m =

⎧
⎪⎪⎨

⎪⎪⎩

vk,l+vl,k
2 =∑N

n=1 bn cos
( 9βn ·�9rk,l

)
, m = 2k − 1+ (l − 1)2, k < l

vk,l−vl,k
2j =∑N

n=1 bn sin
( 9βn ·�9rk,l

)
, m = 2k + (l − 1)2, k < l

vk,k − σ 2 =∑N
n=1 bn, m = k2.

(12.15)
Furthermore, defining a K2 ×N matrix A with the elements

[A]m,n =

⎧
⎪⎪⎨

⎪⎪⎩

cos
( 9βn ·�9rk,l

)
, m = 2k − 1+ (l − 1)2, k < l

sin
( 9βn ·�9rk,l

)
, m = 2k + (l − 1)2, k < l

1, m = k2

(12.16)

and a brightness vector b with N elements

[b]n = bn, (12.17)

one obtains a purely real-valued linear system of equations

v = A · b. (12.18)

Furthermore, from the definition of (12.7), it is clear that the brightnesses
bn are nonnegative. This non-negativity has to be considered when designing an
appropriate inversion algorithm.

12.2.2 System Model for MIMO Atmospheric Radar Imaging

Figure 12.3 shows the system model with transmitter and receiver side reference
points as well as a transmit antenna element p with position vector 9rp and a
receive antenna element k with position vector 9rk . When transmitting a signal from
a transmit antenna element at the transmitter side reference point, a narrowband
signal with the complex amplitude sRP,n being backscattered from a target n in
the far-field would be received at the receiver side reference point. The direction of
departure of the signal transmitted from the transmitter side reference point would in
general be different from the direction of arrival of the signal received at the receiver
side reference point due to the transmit antenna array and the receive antenna array
being at different places. The wavenumber vectors 9βTX,n and 9βRX,n characterizing
the direction of departure and the direction of arrival, respectively, are as described
in Eq. (12.1).

Since the reference point-related signal sRP,n is a narrowband signal, the signal
sp,k,n received at antenna element k due to the transmission from antenna element
p is a phase shifted version of the signal sRP,n. This phase shift is
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Fig. 12.3 Model for MIMO atmospheric radar imaging

�φp,k,n = 9βTX,n · 9rp + 9βRX,n · 9rk, (12.19)

see (12.3).
Therefore, the signal sp,k,n received at the k-th antenna element due to the p-th

antenna element illuminating the target n is

sp,k,n = sRP,nej�φp,k,n = sRP,nej( 9βTX,n·9rp+ 9βRX,n·9rk). (12.20)

In the case that N different targets n = 1, . . . , N are present, the signal sp,k
received at antenna element k when transmitting from antenna element p taking the
zero mean noise nk into consideration is

sp,k =
N∑

n=1

sRP,nej( 9βTX,n·9rp+ 9βRX,n·9rk) + nk. (12.21)

Taking the spatial correlation of the signal sp,k received at antenna element k
when transmitting from antenna element p and the signal sq,l received at antenna
element l when transmitting from antenna element q yields the visibility

vp,q,k,l = E
{
sp,ks

∗
q,l

}

=
N∑

n=1

N∑

m=1

E
{
sRP,ns

∗
RP,m

}
ej( 9βTX,n·9rp+ 9βRX,n·9rk− 9βTX,m·9rq− 9βRX,m·9rl )

+ E
{
nkn

∗
l

}
. (12.22)
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Using the same assumptions and definitions as in the SIMO case, one can write

vp,q,k,l =

⎧
⎪⎪⎨

⎪⎪⎩

∑N
n=1 bnej( 9βTX,n·�9rp,q+ 9βRX,n·�9rk,l ), k �= l

∑N
n=1 bnej( 9βTX,n·�9rp,q+ 9βRX,n·�9rk,k) + σ 2, p �= q, k = l

∑N
n=1 bn + σ 2, p = q, k = l.

(12.23)

In the following, the special case that the transmit and receive antenna elements
are collocated such that the direction of departure and arrival is the same as depicted
in Fig. 12.4 will be considered. For such a collocated MIMO radar, the transmit and
receive signals are characterized by the same wavenumber vector 9βTX,n = 9βRX,n =9βn. The signal received at antenna element k due to the transmission from antenna
element p in the case of collocated MIMO radar is

sp,k =
N∑

n=1

sRP,nej 9βn·(9rp+9rk) + nk. (12.24)

.

.

target
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element

Δ
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element

Δ

Fig. 12.4 Model for Collocated MIMO atmospheric radar imaging
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The use of additional transmit antenna elements results in signals being received
from several transmit–receive paths. When P transmit and K receive antenna
elements are used, the resulting number of transmit–receive paths is PK . The PK

transmit–receive paths are equivalent to using PK virtual receive antenna elements
called a virtual array. The virtual array is the convolution of the transmit antenna
array and the receive antenna array where only the sums of the transmit and receive
antenna elements’ positions 9rp+9rk matter. Depending on the position of the transmit
and receive antenna elements, some of the measurements by the virtual array result
in the same displacement thereby leading to a redundancy. The steering matrix of the
virtual array is basically the Kronecker product of the transmitter side and receiver
side steering matrices [27]. The elements of the steering matrix are composed of
the steering factors. Figure 12.5 depicts the concept of the virtual array. It shows a
MIMO configuration with two transmit antenna elements and three receive antenna
elements. The first row shows the MIMO radar with two Tx and three Rx antennas.
The second and third rows show the layout where the received signal is due to the
transmission from only one Tx. The resulting virtual array on the fourth row with
six receive antenna elements is due to the three receive antenna elements receiving
signals as a result of the transmission from the two transmit antenna elements, i.e.,
the bottom row is a combination of the two layouts above it.

The visibility vp,q,k,l for the collocated MIMO radar case simplifies to

vp,q,k,l =

⎧
⎪⎪⎨

⎪⎪⎩

∑N
n=1 bnej 9βn·(�9rp,q+�9rk,l ), k �= l

∑N
n=1 bnej 9βn·(�9rp,q+�9rk,k) + σ 2, p �= q, k = l

∑N
n=1 bn + σ 2, p = q, k = l.

(12.25)
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Fig. 12.5 A MIMO radar (top) and its resulting virtual array (bottom)
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�9rp,q,k,l = �9rp,q +�9rk,l, (12.26)

the visibility vp,q,k,l can be rewritten as

vp,q,k,l =

⎧
⎪⎪⎨

⎪⎪⎩

∑N
n=1 bnej 9βn·�9rp,q,k,l , k �= l

∑N
n=1 bnej 9βn·�9rp,q,k,k + σ 2, p �= q, k = l

∑N
n=1 bn + σ 2, p = q, k = l.

(12.27)

Similar to the co-arrays in the SIMO case, the correlation of the virtual array
depends only on the sum of the displacements between the transmit antenna
elements and the displacements between the receive antenna elements �9rp,q,k,l =
�9rp,q +�9rk,l .

It is recommended to rewrite the system model as a purely real-valued system
model as it was done in the SIMO case. This can be achieved by taking linear
combinations of the visibilities vp,q,k,l as in

vp,q,k,l + vq,p,l,k

2
=

⎧
⎪⎪⎨

⎪⎪⎩

∑N
n=1 bn cos

( 9βn ·�9rp,q,k,l
)
, k �= l

∑N
n=1 bn cos

( 9βn ·�9rp,q,k,k
)
+ σ 2, p �= q, k = l

∑N
n=1 bn + σ 2, p = q, k = l

(12.28)
and

vp,q,k,l − vq,p,l,k

2j
=

N∑

n=1

bn sin
( 9βn ·�9rp,q,k,l

)
. (12.29)

Using the linear combinations of the visibilities, one can define a block vector

v =

⎛

⎜
⎜⎜⎜⎜⎜
⎝

v1
...

vr
...

vR

⎞

⎟
⎟⎟⎟⎟⎟
⎠

(12.30)

with

R = P(P + 1)

2
(12.31)

blocks vr , where P is the number of transmit antenna elements and
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r = p + q(q − 1)

2
, p ≤ q. (12.32)

The m-th element of the r-th block is

[vr ]m =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

vp,p,k,l+vp,p,l,k
2 , m = 2k − 1+ (l − 1)2, p = q, k < l

vp,p,k,l−vp,p,l,k
2j , m = 2k + (l − 1)2, p = q, k < l

vp,p,k,k − σ 2, m = k2, p = q
vp,q,k,l+vq,p,l,k

2 , m = 2k − 1+ 2K(l − 1), p < q, k �= l
vp,q,k,l−vq,p,l,k

2j , m = 2k + 2K(l − 1), p < q, k �= l
vp,q,k,k+vq,p,k,k

2 − σ 2, m = 2k − 1+ 2K(l − 1), p < q, k = l
vp,q,k,k−vq,p,k,k

2j , m = 2k + 2K(l − 1), p < q, k = l,

(12.33)
where K is the number of receive antenna elements. Similarly, a block matrix

A =

⎛

⎜⎜⎜⎜⎜⎜
⎝

A1
...

Ar

...

AR

⎞

⎟⎟⎟⎟⎟⎟
⎠

(12.34)

with R blocks can be defined. The m-th row and n-th column element of the r-th
block is

[Ar ]m,n =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

cos
( 9βn ·�9rp,p,k,l

)
, m = 2k − 1+ (l − 1)2, p = q, k < l

sin
( 9βn ·�9rp,p,k,l

)
, m = 2k + (l − 1)2, p = q, k < l

1, m = k2, p = q

cos
( 9βn ·�9rp,q,k,l

)
, m = 2k − 1+ 2K(l − 1), p < q, k �= l

sin
( 9βn ·�9rp,q,k,l

)
, m = 2k + 2K(l − 1), p < q, k �= l

cos
( 9βn ·�9rp,q,k,k

)
, m = 2k − 1+ 2K(l − 1), p < q, k = l

sin
( 9βn ·�9rp,q,k,k

)
, m = 2k + 2K(l − 1), p < q, k = l.

(12.35)
Finally, a brightness vector b with N elements

[b]n = bn (12.36)

can be defined. One obtains a purely real-valued linear system of equations

v = A · b (12.37)

as in the SIMO case.
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ARI is a spectral analysis problem as the visibility and the brightness are a
Fourier pair.

12.2.3 SIMO vs MIMO Arrays

Figure 12.6a depicts a uniform linear antenna array consisting of two transmit
antenna elements and six receive antenna elements. As mentioned in the previous
section, the visibility vp,q,k,l depends only on the displacements �9rp,q,k,l =
�9rp,q+�9rk,l for the MIMO case and �9rk,l for the SIMO case. These displacements
are also known as baselines. The baselines for the SIMO case considering only one
transmit antenna element can be seen in Fig. 12.6b. Since the array is uniform, some
of the baselines are identical and are therefore redundant. The number of redundant
baseline is color coded in Fig. 12.6b and e.

The point spread or instrument function that is the response of an antenna array
to a punctual target b0 at 9βn = 9β0 is used to characterize the performance of the
antenna array. The visibility for this condition reduces to

vm = b0ej 9β0·�9rm . (12.38)

Taking the inverse Fourier transform of the visibility vm yields the point spread
function
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b̂( 9β − 9β0) =
PK∑

m=1

vme−j 9β·�9rm = b0

PK∑

m=1

ej 9β0·�9rme−j 9β·�9rm = b0

PK∑

m=1

e−j( 9β− 9β0)·�9rm .

(12.39)
The point spread function b̂( 9β − 9β0) characterizes the angular resolution of an

antenna array. The ideal instrument function of a Dirac delta function is desired
for an antenna array. However, the limited number of visibilities for conventional
arrays results in its finite angular resolution. The instrument function for the SIMO
case considering 9β0 = 0 is depicted in Fig. 12.6c, which is not close to a Dirac
delta function. The mainlobe has a half-power beam width (HPBW) of 2◦ and the
sidelobes have a normalized gain of −14 dB.

The angular resolution �θ and the maximum unambiguous angle θmax for a
uniform linear array with 9β = 2π

λ
sin (θ) are computed as

sin (�θ) = λ

(�9rmax)
(12.40)

and

sin (θmax) = λ

2(�9rmin)
, (12.41)

where θ is the elevation angle in the direction of the target and �9rmax and �9rmin are
the maximum and minimum separation between two baselines, respectively. Figure
12.6d shows the MIMO configuration with 12 virtual receive antenna elements
forming the virtual array which is two times larger than in the SIMO case with six
receive antenna elements. The resulting angular resolution is also two times better
as shown in Fig. 12.6f. However, the strongest sidelobes still have a normalized gain
of ≈ −14 dB as in the SIMO case.

12.2.4 Inversion Methods

The systems of linear Eqs. (12.37) and (12.18) are underdetermined systems with
infinitely many solutions matching to the measured visibilities v. Therefore, the
radar imaging task is to select the solution that represents the most probable
brightnesses b̂ from the set of possible solutions.

12.2.4.1 The Capon Method

The Capon method is an adaptive technique proposed by Palmer et al. [29] for
solving the radar imaging problem based on the work of [4]. The method minimizes
the sidelobe interference by choosing the weights at each direction of arrival
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adaptively. It can be seen as an extension of the beam steering approach. In order to
use the Capon method, the visibilities v have to be rearranged in a matrix form
V. The element [V]k,l on the k-th row and l-th column is [V]k,l = 〈sks∗l 〉, for
k = 1, . . . , K and l = 1, . . . , K , where K is the total number of receive antenna
elements. The estimate of the brightness for the n-th target [b̂]n is obtained as

[b̂]n = 1

aH
n · V−1 · an , (12.42)

where an is the n-th steering vector and aH
n being the conjugate transpose of an.

Equation (12.42) is solved for all N targets to get the complete estimate of the
brightness vector b̂.

12.2.4.2 Maximum Entropy Method

The maximum entropy (MaxEnt) method chooses the brightness b̂ which maximizes
the entropy while being consistent with the measured visibilities v [45]. The entropy
as a measure of the probability is defined as

H (b1, . . . , bN) = −
N∑

n=1

bn ln bn. (12.43)

The brightness b̂ that maximizes the entropy and is consistent with the measured
visibilities is computed as

b̂ = arg max
b1,...,bN

{H (b1, . . . , bN)} , s.t.

{
B =∑N

n=1 bn,

‖v− A · b‖2
2 = 0.

(12.44)

The maximization of the entropy results in a nonlinear problem which can be
solved numerically using the hybrid method described in [31]. Additionally, the
error covariance matrix can be used as a constraint in the optimization task to obtain
a more detailed radar image as done in [20].

12.2.4.3 Compressed Sensing

Compressed sensing (CS) formalizes the long known knowledge that fewer mea-
surements than required by the famous Shannon–Nyquist sampling theorem are
needed for the exact recovery of signals that do not completely occupy the spectrum.
It formalizes this knowledge by requiring that the signal be sparse in some known
domain. While images are not sparse in their original domain, they have been shown
to be sparse in the Fourier and wavelet domain by the work of [36, 38, 47]. Curvelets
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[33], bandlets [26], and adaptive dictionaries [30] have been proposed in an attempt
to improve the sparsity of complicated images. An arbitrary sparsity basis for the
brightness b can be exploited by

b = � · f (12.45)

and

v = A ·� · f, (12.46)

where � is an N × N matrix defining the sparsity basis of the brightness b and f is
the corresponding sparse vector of the brightness b in the arbitrary basis �.

Although Eq. (12.46) is still an underdetermined system of linear equations, the
work of [2] shows that exact recovery of f is possible under two conditions. The
first condition is that the sparsity vector f is F -sparse, i.e., it has at most F nonzero
elements with F < N , where N is the number of elements in the brightness b.
Secondly, it is required that the sensing matrix H = A · � satisfies the restricted
isometric property (RIP), which requires that any F columns of the sensing matrix
H be approximately orthogonal. A naive estimate of the sparsity vector f̂ can be
computed from noisy measured visibilities v as

f̂ = arg min
f

{‖f‖0} , s.t. ‖v− A ·� · f‖2
2 < σ 2, (12.47)

where the “L0-norm” ‖f‖0 is the number of nonzero elements in the sparsity vector
f. Although the “L0-norm” minimization yields the sparsest version of f that agrees
with the measured data, it is unfortunately non-convex and difficult to solve for most
problems.

For a sensing matrix H that satisfies the RIP condition, results from [3] and [13]
show that the “L0-norm” minimization is equivalent to the more computationally
attractive “L1-norm” minimization such that

f̂ = arg min
f

{‖f‖1} , s.t. ‖v− A ·� · f‖2
2 < σ 2. (12.48)

The “L1-norm” minimization also known as basis pursuit can be solved using linear
programming. The estimated brightness b̂ can be computed from f̂ using Eq. (12.45).

12.2.5 MIMO Implementations

It is necessary in a MIMO radar to separate the signals from different transmit
antenna elements. When designing a transmit diversity scheme to generate transmit
signals, the range and velocity of the target n have to be considered so that the
backscattered signals are still orthogonal upon reception. It should be noted that
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designing a transmit diversity scheme where the orthogonality of the backscattered
signals is not destroyed by delay or Doppler shift is rather a dream than a technical
solution. In a more comprehensive sense, the correlation of the backscattered
signals depends on the thickness of the target as well as the target’s Doppler
bandwidth. Consider a scenario where two signals are transmitted from two spatially
separated transmit antenna elements and allowing a frequency separation of 1 MHz
between the transmitted signals. While the two signals are orthogonal to each
other considering ideal band-limited signals, their backscattered forms might not be
orthogonal to each other depending on the nature of the target n. If the target n is a
hard target with a narrow Doppler bandwidth, for example, a specular meteor having
a Doppler frequency of 100 Hz, the backscattered signals will still be orthogonal
to each other. On the other hand, if the target is a volume with multiple scatters,
each scatter with its own Doppler frequency greater than 500 kHz, the backscattered
signals might not be orthogonal to each other.

It should be noted that no transmit diversity scheme ensures perfectly orthogonal
receive signals. However, a transmit diversity scheme that ensures a low correlation
among the backscattered signals is sufficient. Transmit diversity can be achieved by
transmitting signals with different frequencies, at different times, or with different
polarizations. Unfortunately, frequency and polarization transmit diversities are not
suitable for ARI due to the frequency and polarization-dependent scattering nature
of atmospheric targets. In an attempt to use frequency diversity, the frequency
separation between the transmitted signals from two transmit antenna elements must
be at least the bandwidth of the target. This bandwidth could be a few megahertz for
atmospheric targets, and such large frequency separations are not suitable for most
atmospheric targets due to their frequency-dependent scattering properties.

Time diversity, waveform diversity, and a suboptimal diversity scheme are
presented in the following. The limitations as well as the suitability for specific
radar targets are also described.

12.2.5.1 Time Diversity

Time diversity involves transmitting the same waveform from all transmit antenna
elements where each signal is transmitted after a time delay. For one transmitting
antenna element and a desired maximum unambiguous range dmax , the pulse
repetition interval (PRI) T is computed as

T = τ + 2dmax
c

, (12.49)

where τ is the transmitted pulse width and c being the speed of light. In the MIMO
case where P transmit antenna elements are present, every p-th pulse is used for a
certain transmit antenna element. Therefore, the MIMO PRI TMIMO is

TMIMO = PT . (12.50)
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Fig. 12.7 Time diagram of a pulsed MIMO radar with two transmitters using time diversity

Such a time diversity scheme with two transmitters P = 2 is depicted in Fig. 12.7.
As seen in Eq. (12.50), the larger the total number of transmit antenna elements

P , the longer the MIMO PRI TMIMO, resulting in a reduced transmit energy per
antenna element. Therefore, time diversity is only suitable for radar targets with
high signal-to-noise ratios and long correlation times.

Separating the Doppler and range processing in a rather suboptimal trivial way
as against a joint Doppler and range processing considering the MIMO ambiguity
function as done in, e.g., [32] and [10], the maximum unambiguous Doppler
frequency wmax is computed as

wmax = π

TMIMO
= π

PT
. (12.51)

Therefore, the Doppler bandwidth of a MIMO radar with P transmit antenna
elements is P times smaller than the Doppler bandwidth of a radar with P = 1
transmit antenna element.

In order to keep the loss in Doppler bandwidth and average energy low, time
diversity should be used only for targets with short ranges.

12.2.5.2 Waveform Diversity

Waveform diversity uses codes that are almost uncorrelated with their shifted
versions to generate quasi-orthogonal transmit signals. Waveform diversity can be
applied to pulsed radar, which can be considered as a special case of continuous
wave radar with most of the code bits being zero. However, short codes exhibit
a high cross-correlation; thus, using only waveform diversity is not recommended
for pulsed radars. For long pulses, there are several known codes, some of which
include Gold codes [15], Walsh–Hadamard codes [16], polyphase codes [11, 14],
and pseudo-random binary codes [28]. The choice of one of the codes depends on
the hardware capabilities. Figure 12.8 shows an example of such a diversity scheme
with each transmit antenna element simultaneously transmitting a coded waveform
for the entire transmission duration. All transmit antenna elements simultaneously
transmitting their waveforms for the entire duration mitigate against the loss of
average energy per antenna element experienced in time diversity. The signal for
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Fig. 12.8 Time diagram of a continuous wave MIMO radar with two transmitters using waveform
diversity

each transmit–receive link can be recovered with inverse methods as long as the code
sequence is known. A thorough analysis of the signals using waveform diversity is
done in [39].

An analysis of the auto- and cross-correlation properties of two coded waveforms
wP and wQ is carried out in the following. The auto-correlation CP,P (di, dj ) of
waveform wP at different range lags dn − di is defined as

CP,P (di, dj ) =
N∑

n=1

wP (dn − di)w
∗
P (dn − dj ). (12.52)

Similarly, the cross-correlation of two waveforms wP and wQ is defined as

CP,Q(di, dj ) =
N∑

n=1

wP (dn − di)w
∗
Q(dn − dj ). (12.53)

Equation (12.53) shows the interference between received signals from different
ranges, due to a high range sidelobe. Figure 12.9 depicts the normalized auto- and
cross-correlation functions for two pseudo-random binary codes P and Q of length
50. The correlation values are normalized to the code length. The auto-correlation
for di = dj (mainlobe) is 1 as desired, while the correlation for the sidelobes di �=
dj is 0.12. The range peak-to-sidelobe ratio (PSLR) is thus ≈ 10. The range PSLR
can be improved by using longer codes.

To efficiently use the available bandwidth and time, the number of orthogonal
codes should be approximately equal to the time–bandwidth product. Unfortunately,
there is a limited number of known codes for many types of codes.
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Fig. 12.9 Auto- and cross-correlation functions of two waveforms P and Q of length 50
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Fig. 12.10 Time diagram of a continuous wave MIMO radar using suboptimal diversity

12.2.5.3 Suboptimal Diversity

A suboptimal diversity scheme is illustrated in Fig. 12.10 where code and frequency
diversity are combined to generate the transmit signals. An optimal diversity scheme
would combine the advantages of all transmit diversity schemes and minimize
their disadvantages. Theoretically, an optimal transmit diversity scheme would
provide the highest number of transmit signals that ensure orthogonal receive signals
for the same radio spectrum and time resolution. Unfortunately, such an optimal
diversity scheme does not exist. The suboptimal diversity shown in Fig. 12.10 can
be implemented with a few hardware modifications. The combination of code and
frequency diversity reduces the large frequency separation that would otherwise be
necessary for a frequency diversity scheme. This suboptimal diversity basically
increases the number of codes without increasing the code length. Although
increasing the code length might produce the same result as this suboptimal diversity
scheme, it would require an increased sampling rate, i.e., increased bandwidth on
transmission and reception.
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Table 12.1 Advantages and disadvantages of transmit diversities

Transmit

diversity Advantages Disadvantages

Time -Easy to implement -Poor time resolution

-No additional signal processing -Range ambiguity

-Reduced Doppler bandwidth

-Less average Tx power

Waveform -One single operating frequency -High range sidelobe

- Scalable -Coupling between transmit signals might
be problematic

-Requires specialized software

Optimal -One single operating frequency -Requires specialized hardware and soft-
ware

-Scalable -Coupling between transmit signals is min-
imized

Table 12.1 summarizes the advantages and disadvantages of the diversity
schemes discussed.

12.3 Applications of MIMO in Atmospheric Radar Imaging

In this section, we deal with the applications of MIMO to atmospheric radar
imaging. Although MIMO has been used previously in communications and hard-
target radar applications, our efforts below are pioneering in their respective fields,
i.e., ionospheric irregularities, polar mesospheric summer echoes, and mesospheric
wind measurements from meteor echoes. All of these three targets are stochastic in
nature. The implementation and results of these applications are presented below.

12.3.1 MIMO in Atmospheric Radar Imaging for Ionospheric
Studies

Atmospheric radar imaging was first introduced and implemented in the early 1990s
at the Jicamarca Radio Observatory (JRO) to study equatorial electrojet (EEJ)
plasma instabilities [24]. Since then, the technique has been applied using different
algorithms (see Sect. 12.2.4 in both 2D and 3D applications at different locations
[21]). All of these previous studies were implemented with a single transmitter and
many receivers, i.e., SIMO.

We proposed and implemented the first MIMO application to atmospheric radar
imaging [39]. As in the case of the first SIMO imaging, our MIMO approach
was implemented at the JRO to study EEJ instabilities. This time though, two
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spatially separated antennas were used, allowing the virtual array with a larger
aperture and more visibility samples than previously obtained with SIMO. This first
implementation was tested with three transmit diversity schemes: time, polarization,
and code. Frequency diversity was not implemented, since the echoes from EEJ
instabilities are frequency dependent. In addition, Capon and MaxEnt imaging
techniques were implemented. Clearly, resulting EEJ images were significantly
improved when MIMO with MaxEnt was utilized.

Although polarization diversity was tested, it was not recommended, since more
hardware was required, i.e., twice as many receivers, and it could not be scaled
up if more transmitter diversity were needed. Time and code diversity provided
similar results. However, time diversity has the disadvantage that all the available
transmitter power is not used.

Based on the successful implementation at JRO, MIMO has also been theoreti-
cally evaluated to study fine ionospheric structures at high latitudes. In particular,
different configurations of antennas as well as inversion techniques have been tested
for the soon-to-be-finished EISCAT 3D radar. As in the case of JRO implementation,
the MIMO study using the EISCAT 3D configuration consisted on dividing the
transmitting array into multiple independent transmitters, as expected the resulting
virtual arrays was much larger and with more samples, allowing measurements with
unprecedented angular resolution [35].

12.3.2 Polar Mesospheric Summer Echoes Imaging

Having demonstrated the utility of MIMO to improve radar imaging studies of
ionospheric targets, MIMO has also been applied to 3D radar imaging studies of
polar mesospheric summer echoes (PMSEs). Urco et al. [40] implemented SIMO
and MIMO using the Middle Atmosphere Alomar Radar System (MAARSY)
located in Northern Norway. MAARSY is an active and modular phased antenna
array operating at 53.5 MHz and at a maximum peak power of 800 kW located in
Andoya, Norway (69.30◦ N, 16.04◦ E). The antennas can be grouped into fifty-five
(55) symmetric “hexagons” with seven (7) antennas each, and seven (7) adjacent
“hexagons” are further grouped into an “anemone.” An “anemone” can be used as
one transmit or receive antenna element. The whole array has a directive gain of
33.5 dBi, a half-power beam width of 3.6◦, and a maximum sidelobe suppression of
17 dB with respect to the mainlobe. A complete technical description of MAARSY
can be found in [25].

Coherent MIMO was implemented at MAARSY as depicted in Fig. 12.11a.
Three (3) anemones B, D, and F were used as transmit antenna elements, while
fifteen (15) hexagons were used as receive antenna elements. Time diversity was
employed in order to ensure that the transmit signals were orthogonal to each other.
Each transmit antenna element was interleaved every 2 ms. The resulting virtual
array has forty-five (45) virtual receive antenna elements as depicted in Fig. 12.11d
and an angular resolution of ≈0.6◦. The resolution achieved is equivalent to an
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Fig. 12.11 Antenna positions, visibility samples, and array point spread function (after [40]). (a)
SIMO: antenna array. (b) SIMO: visibility (1 Tx). (c) SIMO: point spread function. (d) MIMO:
virtual antenna array. (e) MIMO: visibility (3 Txs). (f) MIMO: point spread function

antenna area of 450 m which is more than five times the nominal diameter of
MAARSY. Figures 12.11b and c show the visibility and the point spread function,
respectively, for the SIMO case when only one transmit antenna element is used
for transmission, while Figs. 12.11e and f show the same for the collocated MIMO
configuration. The color coded redundancy is seen in Fig. 12.11b and e. The
complete MAARSY MIMO configuration used to generate the result in Fig. 12.12
is summarized in Table 12.2.

Figure 12.12 shows an example of the East-West (EW)–North-South (NS) 2D
image at 00:56:55 UT on July 17, 2017 at 85.8 km above ground using MAARSY.
The intensity, Doppler, and spectral width are represented as lightness, hue, and
saturation, respectively. From the results in Fig. 12.12, it can be seen that MaxEnt
method has a better image quality than the Capon method for both SIMO and
MIMO configurations. The Capon method tries to reduce the sidelobes adaptively
by steering them to echo-free zones which unfortunately do not exist in this
application as the entire area is filled with PMSE scattering. However, it should
be noted that MaxEnt method is computationally more demanding than Capon.
Furthermore and as expected, MIMO configuration reproduces a cleaner and more
defined image than SIMO configuration for both MaxEnt and Capon method due to
the improved angular resolution of MIMO configuration. It can be concluded based
on the similar image quality in Fig. 12.12b and c that image reproduction using
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Table 12.2 Radar parameters used for PMSE observations

Radar parameters SIMO MIMO

Frequency 53.5 MHz 53.5 MHz

Pulse coding Complementary 16 Complementary 16

Pulse repetition frequency (PRF) 1000 Hz 1000 Hz

Range resolution 450m 450m

Number of coherent integrations 8 8

Effective PRF (after integration) 12.5 Hz 12.5 Hz

Number of FFT points 16 16

Number of incoherent integrations 128 128

Equivalent integration time 81.92s 81.92s

Number of transmitters (beams) 1 5 (3 processed)

Transmit diversity – Time

Tx interleaving – 2 ms

MIMO configuration and Capon (MIMO–Capon) has a comparable performance to
SIMO configuration using MaxEnt (SIMO-MaxEnt).

To quantify the performance of the different implementations, we use a meteor
echo which can be considered as a point target in range and angle with known
scattering properties. Figure 12.13 shows the angular resolution achieved by the
different imaging implementations considered in this experiment.

The middle and rightmost plots in Fig. 12.13 show the normalized angular power
distributions in the East-West direction θx (middle plot) and North-South direction
θy (rightmost plot), respectively. The sample points for a given angle were fitted to
a Gaussian function, and the HPBW for each implementation was estimated.

The angular resolution achieved is summarized in Table 12.3. An improvement
factor that serves as a reference to the theoretical angular resolution of the full
MAARSY array is included in the last column. As expected, the improvement of
using MIMO over SIMO configuration was roughly 50%. Surprisingly, an angular
resolution of approximately 0.6◦ was achieved when MIMO was combined with the
MaxEnt.

These unprecedented spatial–temporal observations of PMSE have allowed us to
study a Kelvin–Helmholtz Instability (KHI) event in four dimensions for the first
time [8]. By characterizing the spatial and temporal dimensions of the event, and
using turbulent scaling analysis, we are able to qualify the flow conditions, i.e., it
was turbulent with relatively high Reynolds numbers and weakly stratified with a
Froude number close to 1.

Since the computational complexity of MaxEnt is high, our approach is to
employ MIMO–Capon for a quick rough overview of a scenario and employ
MIMO–MaxEnt for a more detailed evaluation for particular scenarios of interest.
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Fig. 12.12 2D PMSE images for a range of 85.8 km. (a) SIMO configuration with Capon’s
method, (b) SIMO configuration with MaxEnt method, (c) MIMO configuration with Capon’s
method, and (d) MIMO configuration with MaxEnt method (after [40])

12.3.3 MIMO in Specular Meteor Radars to Measure
Mesospheric Winds

Coherent MIMO has been applied also to specular meteor radars (SMRs), where
a single target needs to be imaged at a given range and time. In standard SMRs,
the transmitter and receiver are collocated, and the target localization is done by
a receiver station consisting of at least five closely separated antennas (5-antenna
interferometer) [17, 19]. Radar interferometry is a special case of radar imaging,
where a single dominant target is at a given range, time, and frequency. Recently,
the standard SMR system has been extended to a multistatic approach (incoherent
MIMO), where either multiple interferometer receivers are added between 60–
150 km from an existing transmitter [37] or the detections of two or more closely
located monostatic systems working at different frequencies are combined [6]. In
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Fig. 12.13 Normalized angular power distribution of specular meteor echo as a function of range
(leftmost plot), East-West direction θx (middle plot), and North-South direction θy (rightmost plot)
(after [40])

Table 12.3 Performance of imaging techniques

Spatial

Angular resolution at Equivalent

Technique resolution 85 km antenna aperture Improvement factor

MAARSY 3.60◦ 5.33 km 76 m –

SIMO–Capon 1.27◦ 1.88 km 216 m 2.83

MIMO–Capon 0.88◦ 1.30 km 312 m 4.09

SIMO–MaxEnt 1.05◦ 1.55 km 261 m 3.42

MIMO–MaxEnt 0.615◦ 0.90 km 450 m 5.90

both cases, the angle of arrival with respect to the receiver is measured. By using
coherent MIMO, the implementation of the multistatic approach is more reliable,
cheaper, and easier to scale than previously thought. Figure 12.14 shows a sketch of
coherent and non-coherent MIMO.

Again motivated by the successful implementations of MIMO to studies of
EEJ and PMSE instabilities, MIMO has been implemented for SMRs. In this
case, the interferometry was also done in transmission. To make use of the
maximum available power and given that meteors do not last long, code diversity
was implemented using coded continuous wave signal (i.e., spread spectrum
transmission). Each transmit antenna used a different code, and all codes were
quasi-orthogonal to each other. This implementation is now called SIMONe (Spread
Spectrum Interferometric Multistatic meteor radar Observing Network). Details of
the implementation and first results can be found in [7]. Figure 12.15 shows sketches
of the different configurations possible with SIMONe.

Besides MIMO and spread spectrum, SIMONe makes use of a simple and
computationally efficient compressed sensing approach to decode the received
signals [41]. The approach allows us to go after strong targets as well as weak
targets, taking advantage of the sparseness nature of the meteors. A block diagram
of our compressed sensing implementation in SIMONe is shown in Fig. 12.16.

After the prototype test, a 10-day campaign called SIMONe 2018 was conducted
in November 2018. During this campaign, SIMONe links were added to existing
MMARIA links in northern Germany. 2 MIMO and 4 SIMO links were added in a
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(a) (b)

Fig. 12.14 Coherent versus non-coherent. (a) RCS diversity. (b) Spatial diversity

Fig. 12.15 Sketch of SIMONe configurations: (a) SIMO, (b) MISO, and (c) MIMO (after [7])

couple of days. During this campaign, more than 200 thousand meteors per day were
detected, approximately 20 times more than in a traditional system. Figure 12.17
shows SIMONe 2018 detections on November 5, 2018. Given the high number of
good quality detections, a second-order statistics approach to investigate second-
order wind statistics was developed [44]. SIMONe 2018 data have also been used to
study the mesospheric frequency spectra of horizontal winds during the campaign
[5], as well as primary and secondary gravity waves [42]. Specific details of the
campaign can be found in [5].

The SIMONe concept is now matured and currently in operation in Peru [9]
and Argentina [12] to study the mesosphere dynamics under different background
geophysics. New operational deployments are being planned in Northern Norway
and Northern Germany. The details of operational SIMONe can be found in [9].
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use truncated LSE to obtain
a solution

select the indices of strong
meteor echoes
(threshold=6 )

subtract the contribution of
strong echoes from the

measurements

use MFE to obtain a
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select the indices of medium
meteor echoes
(threshold=6 )

subtract the contribution of
medium echoes from the

measurements

use MFE to obtain a
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Fig. 12.16 Block diagram of SIMONe compressing sensing decoding (after [41])

Fig. 12.17 Meteor detections on November 5, 2018 during the SIMONe 2018 campaign. More
than 200 thousand meteors were detected (after [44])
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12.4 Summary and Future Work

We have presented applications of MIMO that improve current atmospheric radars.
Specifically, one can achieve a better angular resolution by using MIMO on existing
transmitting arrays, thereby synthesizing a larger virtual array. Another important
improvement is the development of the SIMONe concept, which revolutionizes the
implementation and performance of multistatic specular meteor radars.

We have done some preliminary work on using machine learning to solve the
inverse problem in ARI. We intend to publish the results in a future work.

Future work will also focus on employing more sophisticated CS techniques for
ARI and then to combine tracking techniques with CS. A special feature of ARI is
the fact that the brightness, i.e., the image, is nonnegative, which was exploited in
the signal recovery, e.g., [23]. Furthermore, the rather small number of antennas,
i.e., samples, enables novel otherwise too complex signal recovery techniques. The
application of MIMO configurations results in a highly structured sensing matrix.
It basically results from the Kronecker product of the transmitter side and the
receiver side steering matrix. The suitability of MIMO antenna configurations for
radar imaging was analyzed. MIMO is also useful to validate methods that do not
use MIMO and heavily rely on the exploitation of a priori knowledge. This task is
especially important to study weak PMSE signals given that in the case of MIMO
the available transmitter power has to be shared. Systems without MIMO capability
would have to solely rely on CS ARI. A first approach toward combining CS and
tracking techniques to study PMSE is to look at the whole measurement sequence at
once and to apply conventional signal recovery algorithms. Unfortunately, this brute
force approach has high computational complexity and is limited to time dynamics
which can be described by a linear model. Thus, it seems attractive to separate the
tracking, which is also justified by theory. If the time dynamics can be modeled by
a Markov model, a single forward or a forward and a backward iteration shall be
used depending on whether only the past measurements (online) or past and future
measurements (offline) are exploited, respectively. When separating the tracking
signal recovery algorithms, we might use algorithms exploiting statistical a priori
knowledge, like Bayesian approximate message passing (BAMP). For the tracking,
Kalman filters could be used in the case of Gaussian models. Grid-based methods,
which can be combined with any discretized stochastic model, are attractive and
will be the main focus of our project as long as the size of the scenario is not too
large. If the computational complexity of grid based methods is too large, one could
resort to particle filtering, e.g., [43].

The work presented in this chapter was funded by the Deutsche Forschungs-
gemeinschaft (DFG, German Research Foundation) under the project number
403837627, called “Compressed sensing radar imaging of polar mesospheric
summer echoes using tracking and MIMO approaches (CP-PMSE-MIMO)” as part
of the priority program called “Compressed Sensing in Information Processing
(CoSIP).”
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Table of Mathematical Symbols

Symbol Definition

a Steering vector

A Sensing matrix

b Brightness

b Brightness vector

b̂ Estimated brightness vector

C Cross-correlation of two waveforms

d Range

c Speed of light

f Brightness vector in a given sparsity basis

k Receive antenna element

K Total number of receive antenna elements

n Target

N Total number of targets

n Noise

p Transmit antenna element

P Total number of transmit antenna elements

9r Position vector

s Received signal

T Pulse repetition interval

9u Unit vector

v Visibility

v Visibility vector

w Coded waveform

wmax Maximum unambiguous Doppler frequency
9β Wavenumber vector

�9r Displacement

�θ Angular resolution

�ρ Path length difference

θ Elevation angle

θmax Maximum unambiguous elevation angle

λ Wavelength

σ 2 Noise power (variance)

τ Transmitted pulse width

� Sparsity basis
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Chapter 13
Over-the-Air Computation for
Distributed Machine Learning and
Consensus in Large Wireless Networks

Matthias Frey, Igor Bjelaković, and Sławomir Stańczak

13.1 Introduction

Wireless communications is becoming increasingly pervasive both in everyday life
and in business and industry. Its importance is increasing in vehicular communi-
cations, smart manufacturing, mobile health care, environmental monitoring, and
smart agriculture, to name a few examples. Due to the ubiquity of wireless devices,
efficient use of the electromagnetic spectrum is a more pressing issue than ever:
Despite the availability of additional spectrum, e.g., in the millimeter wave range,
the scarcity of communication resources is expected to continue to be an increasing
problem as the size of wireless networks increases. Therefore, if the traditional
paradigm of source-channel separation is followed, then the number of wireless
devices that can be deployed in any given geographical area will be too small
to realize many of the aforementioned applications. A very promising approach
to accommodate more devices is to relax the separation between the source and
channel to a certain extent and design communication schemes from the ground
up targeted to specific technical applications. A key observation in this context is
that often, the data available at the transmitters is either redundant or it is only of
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interest for the receiver in a combined form. If the application-specific combining of
information is performed exclusively or predominantly in receiver-side processing,
this alone can imply orders of magnitude worse resource utilization than is required
for the application at hand, especially if the wireless network is very large.

This can be immediately concluded from the data processing inequality which
implies that no receiver-side processing of a signal can increase the information
contained in the signal [27, Section 2.3]. Therefore, the entropy or the amount of
information contained in f (s1, . . . , sK), where s1, . . . , sK are random variables,
is smaller than or equal to the amount of information contained in the random
vector (s1, . . . , sK). Consequently, combining information to evaluate a function
f can incur a loss of information at the receiver side. In many cases of practical
interest, the information loss is significant, and communication resources can be
used much more efficiently if the combining is carried out in the channel and not in
post-processing, as we illustrate in the following example.

Example 13.1 Suppose that K transmitters send their data s1, . . . , sn to a single
receiver through a multiple-access channel. For simplicity, we assume that each sk
is an independent random variable uniformly distributed over S = {0, 1}. Now if
the receiver reconstructs each of these variables, then the entropy or the amount of
information available at the receiver is

∑K
k=1 H(sk) = K bits where H : S →

R≥0 : s �→ ∑
s∈S p(s) log2(1/p(s)) is the Shannon entropy1 and p : S �→ [0, 1]

is the probability mass function. This means that the transmitters have to transmit
K bits to the receiver. Therefore, if the capacity of the communication channel
is 1 bit per channel use, then K channel uses are necessary to convey the full
information to the receiver.2 Now we assume that the receiver is only interested in
f (s1, . . . , sK) = ∑K

k=1 sk which can be easily computed from s1, . . . , sK . By the
data processing inequality, this operation cannot increase the amount of information.
In fact, the entropy of the function is H(

∑
k sk) = K −∑K

k=0

(
K
k

)
2−K log2

(
K
k

)

which is strictly smaller than K for all K ≥ 2. This means that instead of
transmitting K bits that are necessary to reconstruct each sk , the transmitters can
send significantly less information to the receiver if its objective is to compute the
sum function f (s1, . . . , sK).

The class of communication schemes in which the signals are transmitted con-
currently and the processing at the transmitter and receiver sides are designed so that
the receiver directly reconstructs the combined information that is necessary for a
certain application is called Computation over Multiple-Access Channel (CoMAC),
AirComp or Over-the-Air (OTA) computation. The goal of these schemes is to
obtain a scaling behavior of the communication cost in the number of transmitters

1 We use the convention 0 · log(1/0) := 0 in the definition.
2 In the case of orthogonal channel access, it is necessary to establish K independent (interference-
free) communication channels, where each of these has the capacity of 1 bit per channel use.
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that is better than the linear growth3 that would ensue from a separation of source
and channel coding. Therefore, such schemes exhibit the inherent property that the
receiver is unable to fully reconstruct all of the transmitted information.

This paradigm shift away from source-channel separation has great potential to
solve a fundamental scaling law issue that could otherwise hinder the development
of the envisioned massively sized wireless networks. However, it also comes with
a major downside, as it renders virtually all existing security schemes inapplicable.
For example, since OTA computation usually involves the transmission of analog
instead of digital signals, neither standard methods of cryptography nor of Physical
Layer Security can be used. On the other hand, secure communication is becoming
increasingly important in an interconnected world. For some applications such as
e-health and smart manufacturing, a lack of security guarantees could be enough to
completely prevent the development of a communication scheme in the first place.
It is, therefore, of essential importance in the development of OTA computation
schemes to design them from the ground up with security concerns in mind. While
existing methods of Physical Layer Security cannot be directly applied, there is a
variety of tools that can guide the development of OTA computation schemes which
can guarantee security on the Physical Layer.

In the remainder of this chapter, we first give an overview of the current state
of the art in the area of OTA computation, as well as two of its currently most
prominent applications: Distributed Machine Learning and distributed consensus.
We then survey our own contributions, which include the development of an OTA
computation scheme for fast-fading channels, applications to consensus algorithms
and Distributed Machine Learning as well as the first steps towards the design of
OTA computation schemes which feature inherent protection against eavesdropping
attacks. The integration of security guarantees into the design of OTA computation
schemes has, to the best of our knowledge, not appeared in the literature before. We
conclude the chapter with a summary of open research problems.

13.2 Over-the-Air Computation

The idea of a scheme that allows a receiver to reconstruct directly a combined form
of two messages, but not the original messages themselves, can be traced back
to [48] where a source coding problem is formulated in which it is the receiver’s task
to reconstruct a sequence of modulo-2 sums of encoded bits. An uncoded analog
scheme for obtaining a noisy estimate of a function of transmitted values with an
application to wireless sensor networks has appeared in [34] and is, to the best of
our knowledge, the first work that proposes a joint source-channel approach to OTA
computation.

3 If the expense necessary for coordination and scheduling is also considered, this growth can even
be superlinear.
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The authors in [34] take an analog approach in which a certain amount of noise
is tolerated in the received value and the function is computed only once.4 This is in
contrast with a class of digital schemes that are closer to [48] in the sense that they
also consider functions with finite domains and typically give error guarantees for a
large number of repeated function computations.

13.2.1 Digital Over-the-Air Computation

In digital OTA computation, the function that is to be computed maps between
discrete sets. The computation is carried out repeatedly, and the objective of the
corresponding coding scheme is that the probability of a decoding error approaches
zero as the number of repetitions tends to infinity.

More formally, [57] introduces the problem of digital computation coding in the
following way:

Definition 13.1 A digital computation coding problem consists of the following:

• A multiple-access channel W which maps channel inputs X1, . . . , XK ranging
over the input alphabets X1, . . . ,XK to a channel output Y which ranges over
the channel output alphabet Y .

• An objective function

f : S1 × · · · × SK → S, (13.1)

where S1, . . . ,SK,S are finite sets.
• A probability distribution on S1 × · · · × SK .

The idea is that, given this problem, the transmitters encode their messages
S1, . . . , SK as sequences of channel inputs in such a way that the receiver can, with
high probability of success, reconstruct f (S1, . . . , SK) without necessarily being
able to draw any further information about S1, . . . , SK .

Definition 13.2 An (m,M, ε)-code for a given digital computation coding problem
consists of:

• for each k ∈ {1, . . . , K}, an encoder

Fk : Sm
k → XM

k (13.2)

• a decoder

D : YM → Sm (13.3)

4 The function can be computed multiple times since the scheme can simply be repeated, however,
the individual instances do not take advantage of the repeated computation.
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such that if the sequence of channel inputs is determined by XM
k := Fk(S

M
k ), the

error probability at the receiver satisfies

P

(
D(YM) �= (f (S

(1)
1 , . . . , S

(1)
K ), . . . , f (S

(m)
1 , . . . , S

(m)
K ))

)
≤ ε. (13.4)

These notions can then be used to define the analog of rate and capacity in
classical source or channel coding problems.

Definition 13.3 The computation rate of an (m,M, ε)-code is defined as the ratio
m/M . A computation rate R is called achievable if there is a sequence of (m,M, ε)-
codes of computation rate R where M →∞ and ε→ 0. The computation capacity
is the supremum of all achievable computation rates.

This framework is extended by allowing the alphabets S1, . . . ,SK,S to be
infinite and then characterizing the rate-distortion trade-off. In any case, the
computation coding problem combines source and channel coding because the
encoders simultaneously remove redundancy from the sources and protect the
transmission against channel noise. The authors of [57] note examples where the
rate that separate source and channel coding can achieve is strictly less than the
computation capacity.

In the setting with finite alphabets, the typical objective function considered is
addition in a finite field, and the main application noted by the authors is physical
layer network coding. This idea was seminal to a lot of follow-up research (e.g., [38,
58, 59, 62, 80]) which has expanded upon and refined the idea of using Over-the-Air
computation as a means for increasing the efficiency of network coding. Notably,
there is also a work [37] which proposes schemes that use digital computation codes
in conjunction with a quantizer to compute functions that are of interest in other
applications, such as the arithmetic mean, the geometric mean, and the Euclidean
norm.

13.2.2 Analog Over-the-Air Computation

The framework of digital computation codes is promising and its applications to
network coding are highly relevant as they can realize impressive performance
gains in wireless networks. However, it also has downsides in the context of other
applications:

• The notion of computation capacity is an asymptotic one valid only for block
lengths tending to infinity. While finite-blocklength results are certainly conceiv-
able, it is nonetheless an inherent property of any approach involving digital
coding that a certain number of repeated function computations is necessary
in order to guarantee a reasonably low probability of decoding error. This can
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be problematic in applications where only a few computations are necessary or
where protocols are used in which the roles of transmitters and receivers change
frequently with only very few computations being done between these changes.

• To the best of our knowledge, the only known digital coding schemes which
can deal with channel fading compute sums over finite fields for the application
of network coding. Examples of functions that existing digital schemes cannot
compute over fading channels include weighted sums which have a high
relevance in the context of OTA ML, as well as maxima and various kinds of
averages which are important in the context of consensus algorithms and control
systems.

• The digital coding schemes can only deal with discrete messages. If real (or
floating point) numbers are processed in a certain application, a quantizer needs
to be added to the system. Since quantization is a form of source coding, this is
somewhat in contrast with the observation that joint source-channel approaches
are necessary to achieve optimum system performance.

A way to make OTA computation applicable where these disadvantages hinder
the use of digital schemes is to process analog input values directly into an
electromagnetic signal without first going through a sequence of bits (or other
discrete values) as an intermediary step. A striking observation in this context is
that a standard wireless channel actually performs a summation of the transmitted
signals (which, through their IQ representations, can be seen as points in Euclidean
space). This opens the door to the computation both of weighted sums and (as a
special case) arithmetic averages, which we have noted above are very relevant
functions both for OTA ML and consensus algorithms. There are two important
research questions that these observations directly raise:

• If we were able to compute real function values in an analog system without error,
this would in the point-to-point case degrade to a possibility to losslessly transmit
a real number through the wireless channel which would imply infinite Shannon
capacity of the channel. Since this is known to be unrealistic for any real-world
channel, we can immediately conclude that a certain amount of noise in the
computed function values is unavoidable in any kind of analog OTA computation
scheme. But is it possible to control the strength of the noise, for instance, by
providing tail bounds for its magnitude?

• We can expect from the structure of the wireless channel that it can compute sums
in Euclidean space, but can we, with the use of suitable pre- and post-processing
schemes, compute a larger class of functions OTA?

With respect to the latter question, it is clear that since the wireless channel
performs an addition of its input signals, the class of functions that we can compute
OTA are in a certain sense functions that can be reduced to a summation. In order to
make this statement more precise, we use an already existing mathematical notion,
called nomographic functions, that defines this kind of functions formally. This
connection was first observed in [35] and has been discussed and analyzed in [36]
in more detail than we can in the following summary.
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Definition 13.4 A nomographic representation of a function f : RK → R consists
of functions f1, . . . , fK, F : R→ R such that

∀x1, . . . , xK ∈ R : f (x1, . . . , xK) = F

(
K∑

k=1

fk(xk)

)

. (13.5)

A function f : R
K → R which has a nomographic representation is called a

nomographic function.

It has been noted in [18, Theorem 8] that every function is nomographic accord-
ing to this definition. We state a version of this result that fits with Definition 13.4.
Since it illustrates the arguments below very well, we also give a full proof, based
on the same idea as in [18].

Theorem 13.1 (adapted from [18, Theorem 8]). Every function f : RK → R is
nomographic.

Proof We first fix an arbitrary bijection φ : R → (0, 1). An example of a possible
choice is

φ : x �→

⎧
⎪⎪⎨

⎪⎪⎩

1
2 · 1

x+1 , x ∈ (0,∞)

1
2 ·
(

1+ 1
|x|+1

)
, x ∈ (−∞, 0)

1
2 , x = 0.

(13.6)

Next, we define for every x ∈ (0, 1) the decimal5 representation of x as a
sequence of digits ax,1, ax,2, · · · ∈ {0, . . . , 9} such that

x = 0.
dec

ax,1ax,2 . . ., (13.7)

with the definition

0.
dec

ax,1ax,2 . . . :=
∞∑

i=1

ax,i · 10−i . (13.8)

We make the choice for the sequence ax,1, ax,2, . . . unique by requiring that it
has to contain infinitely many non-zero elements. Let, for all k ∈ {1, . . . , K},

5 Of course, there is nothing special about base 10 here, and in fact, [18] uses dyadic representa-
tions. We have chosen the base 10 here so that our representation coincides with the usual decimal
notation of numbers.
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fk(x) := 0.

dec

0 . . . 0︸ ︷︷ ︸
k−1

aφ(x),1 0 . . . 0︸ ︷︷ ︸
K−1

aφ(x),2 0 . . . 0︸ ︷︷ ︸
K−1

aφ(x),3 0 . . . 0︸ ︷︷ ︸
K−1

. . . . (13.9)

Define ψ1, . . . , ψK, F : (0, 1)→ R by

ψk : 0.

dec

b1b2 . . . �→ φ−1

⎛

⎝0.

dec

bkbk+Kbk+2K . . .

⎞

⎠ (13.10)

F : x �→ f (ψ1(x), . . . , ψK(x)) . (13.11)

With the definitions (13.8) and (13.9), we can see that

K∑

k=1

fk(xk) = 0.
dec

aφ(x1),1 . . . aφ(xK),1aφ(x1),2 . . . aφ(xK),2 . . . . (13.12)

Clearly, the decimal representation of
∑K

k=1 fk(xk) contains the full decimal
representations of x1, . . . , xK and, therefore, allows for their full reconstruction.
More specifically, the maps

(x1, . . . , xK) �→
K∑

k=1

fk(xk) (13.13)

x �→ (ψ1(x), . . . , ψK(x)) (13.14)

are inverses of each other and, therefore, (13.5) is satisfied, concluding the proof
that f is nomographic. ��

In order to use the nomographic representation of a function in a wireless
communication system, the inner functions f1, . . . , fK should be computed at the
transmitter before the actual transmission, while the outer function F should be
implemented and evaluated at the receiver. Therefore, f1, . . . , fK are sometimes
referred to as the pre-processing functions while F is called a post-processing func-
tion. The summation is performed by the wireless channel due to its superposition
property. If the receiver has access to f1(x1)+· · ·+fK(xK), then from (13.13) and
(13.14), it is clear that a full reconstruction of x1, . . . , xK is possible and in fact,
this full reconstruction is used as an intermediate step in post-processing. On the
other hand, we know from Example 13.1 that by the data processing inequality, we
cannot hope for such a strategy to be effective if the channel under consideration
has finite capacity. Indeed, in (13.9) we can see that arbitrarily significant digits of
the transmitted values can be hidden in digits of arbitrarily low significance in the
real number that is transmitted over the channel and, therefore, even a channel noise
of extremely low power can cause arbitrarily strong disruptions.
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It appears that in order to apply a nomographic representation to an OTA
computation problem, Definition 13.4 is not strong enough and we need to
impose additional constraints on the functions f1, . . . , fK, F . Indeed, a famous
result [10, 46] states that every continuous function f : RK → R can be written as
a sum of 2K + 1 functions with continuous nomographic representations,6 giving
a positive answer in part to the question posed by Hilbert as the thirteenth problem
in his list of unresolved mathematical problems of the twentieth century [41]. If
there was a result implying that for every algebraic function, there is a nomographic
representation consisting only of algebraic functions, this would give a positive
answer to the as-of-yet unresolved part of Hilbert’s thirteenth problem. We can,
therefore, expect that proving such a result would be very hard.7 Another result
worth noting in this context is that the set of functions with a continuous nomo-
graphic representation is nowhere dense in the space of continuous functions [19].
This provides another piece of evidence that generic nomographic representations
suitable for OTA computation may not exist.

A pragmatic way to proceed in light of these difficulties is to attempt to find a
subclass of functions that is small enough to permit nomographic representations
which are suitable for use with noisy communication systems and at the same time
large enough to contain most functions of interest in practical OTA computation
problems.

We conclude this section with a brief summary of papers that propose approaches
to the OTA computation problem for functions particularly relevant to applications
for consensus problems in wireless networks and ML over wireless channels.
Goldenbaum and Stanczak [35] presents a scheme that is able to deal with imperfect
synchronization and the presence of fading in OTA computation; extensive theoreti-
cal analyses for the asymptotic case is provided for the arithmetic and geometric
mean functions. In [65], under the assumption of known fading coefficients at
the transmitter, a similar scheme is used for computing the sign of a weighted
sum which is the decision function of a linear support vector machine used for
classification. As a result, the authors obtain a distributed binary classification
scheme that is highly efficient in massively sized wireless networks. In the more
recent work [49], under the assumption that the sources are independent and the
channel state is known at both the receiver and the transmitter, the authors derive
analog OTA computation schemes for sums that are optimal in terms of mean square
error. In the case of i.i.d. Gaussian sources the authors of [25] show how to OTA
compute sums over fading channels where the channel state information is available
neither at the transmitter nor the receiver.

6 A continuous nomographic representation is a nomographic representation that consists only of
continuous functions f1, . . . , fK, F .
7 Hilbert even hypothesized that the correct answer to the question would be negative [41, 42],
which was, however, partly disproven in [10, 46].
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13.2.3 Analog Over-the-Air Computation as a Compressed
Sensing Problem

While an important motivation for studying the problem of OTA computation is the
prospective application to distributed Compressed Sensing (see Sect. 13.3.3), the
problem of analog OTA computation itself can also be viewed as a variation of a
compressed sensing problem.

Consider

Y = E ·X +N, (13.15)

where E ∈ C
M×K , X ∈ C

K , Y ∈ C
M and N is a random vector ranging over

C
M . A classical Compressed Sensing problem (cf., e.g., [28]) would be to recover

a sparse signal vector X from the measurement Y under the knowledge of E and the
statistics of N in the regime K � M .

Considering the structure of the pre-processors that we use in the achievability
results of Theorems 13.2 and 13.3, the signal at the receiver can be represented as Y
in (13.15), where K is the number of transmitters, M is the number of channel uses,
X is a shifted and rescaled version of the distributed data at the transmitters, N is
the additive channel noise and

E =
⎛

⎜
⎝

U1(1)H1(1) · · · UK(1)HK(1)
...

...

U1(M)H1(M) · · · UK(M)HK(M)

⎞

⎟
⎠ , (13.16)

where Hk(m), k = 1, . . . , K,m = 1, . . . ,M denote the channel fading coefficients
and Uk(m), k = 1, . . . , K,m = 1, . . . ,M represent an additional randomization
which is artificially introduced by the transmitters in pre-processing. In the case of
our proposed schemes, these randomization coefficients are chosen uniformly from
the set {−1, 1}.

This formulation, while it is quite close to the Compressed Sensing problem, also
exhibits a few important differences:

• The signal X is not sparse in general. However, the goal of the receiver is not to
reconstruct X in its entirety, but rather some function of X, which needs not be
linear. The function value that needs to be recovered by the receiver is a linear
scalar and, therefore, only one-dimensional, which is a condition that comes
very close to the usual sparseness condition in Compressed Sensing. Studying
a problem in Compressed Sensing where the objective is not to recover the
full signal vector from the measurements but rather some function of it (e.g.,
a classification result or a parameter estimation) is something that has also been
done before (e.g., [44, 77]).

• The channel coefficients are random with only statistical information available at
the receivers. The values Uk(m), k = 1, . . . , K,m = 1, . . . ,M can, however, be
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freely chosen at the transmitters. Therefore, the matrix E in this scenario consists
of two parts, one of which is unknown and the other part can be designed. This
is in contrast to the usual Compressed Sensing scenario where the whole sensing
matrix can usually be designed or is at least known for the purpose of the sparse
recovery procedure.

Because of these differences, the proofs of our results surveyed in Sect. 13.4 call
for the use of mathematical tools that are different from those normally applied in
Compressed Sensing.

13.3 Applications of Over-the-Air Computation

OTA computation has potential applications in every setting in which such a large
number of wireless devices share constrained wireless resources that it becomes
inefficient or even infeasible to exclusively use traditional scheduling and separate
decoding of all transmitted information before it is post-processed at the receiver.
Furthermore, even if the available resources are tremendous, but the number of
participating devices is so large that traditional scheduling becomes prohibitively
expensive, OTA computation can be a useful tool to solve the problem. On
the other hand, it inherently fuses concepts that have traditionally been separate
in communication systems. We have already discussed the point that from an
information-theoretic perspective, it is a joint source-channel approach that breaks
with the traditional separation paradigm. But also from the perspective of network
architecture, it means using schemes on the physical layer that are at least in part
tailored to specific applications, and traditional methods of scheduling and routing
have to be adapted to be compatible. Therefore, OTA computation can be seen as a
cross-layer approach that encompasses the entire network stack from the application
layer all the way down to the physical layer. While the pre- and post-processing
schemes can be proposed in such a generic manner that they can in principle be used
for a large variety of potential applications, they still need to be carefully adapted
to each one. There are two main fields of application that have recently motivated
the development of OTA computation schemes, namely distributed OTA Machine
Learning and consensus algorithms. In this section, we give a brief overview of these
two applications.

13.3.1 Distributed Machine Learning

In this subsection, we take a look at distributed ML, in particular, Federated
Learning (FL), describe how this field branches into Vertical FL (VFL) and
Horizontal FL (HFL) and cite a few examples from the literature that approach FL
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problems with OTA computation methods. First, we need to define what ML is for
the sake of this chapter, and we follow the formalism in [69].

Definition 13.5 A statistical learning problem is a tuple (X ,Y,P, L), where

• the feature alphabet X is a Polish space (usually a high-dimensional Euclidean
space),

• Y ⊆ R is called the label alphabet,
• P is a probability measure on X × Y ,
• L : X × Y × R→ [0,∞) is called the loss function.

In the usual application setting, only the feature and label alphabets and the loss
function are known about the statistical learning problem, while information about
P is only known indirectly through a training sample.

Definition 13.6 Given a statistical learning problem (X ,Y,P, L), a training sam-
ple of length N is a sequence (xn, yn)Nn=1 ∈ XN ×YN where each (xn, yn) is drawn
i.i.d. according to P .

The objective in solving a statistical learning problem is to find an ML model
which can make predictions about the labels of newly drawn samples of P , given
only the features. An ML model is a mathematical object which provides, given a
set of parameters, a labeling function. Examples of ML models are neural networks,
support vector machines, and decision trees.

Definition 13.7 Given a statistical learning problem (X ,Y,P, L), a labeling
function is a function f : X → R. A labeling function induces a risk (sometimes
also called loss) RL,P := EPL(X, Y, f (X)), where (X, Y ) is the pair of random
variables ranging over X × Y and distributed according to P .

Typically, the objective is to exploit the indirect knowledge that we have about
P through the training sample to obtain a labeling function with low risk, which is
usually the measure for how well we have solved the statistical learning problem.
To this end, a training procedure for a given ML model takes a training sample as
its input and outputs parameters for the ML model. Therefore, in conjunction with
the model, it maps training samples to labeling functions.

Distributed ML studies cases of statistical learning problems where some of
the information about the statistical learning problem or the training sample are
only known at certain locations in a network. Although there are possibilities for
communication between the agents in the network, there are application-specific
reasons for not transmitting the entire information to a central point. One particular
instance of Distributed ML is called Federated Learning (FL) [47]. In FL, the initial
main reason for not transmitting all the available information to a central point and
then solving the problem in the traditional way is to preserve the privacy of the users
from whom the training data is collected,8 but communication efficiency also plays

8 A major motivation for introducing the FL framework was Gboard, a software made by Google
which is used as the default keyboard on many Android devices [50].
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an increasingly important role. FL can be further categorized into Horizontal FL
(HFL) and Vertical FL (VFL) [75].

In HFL, each agent k out of a total of K agents in the system sees only a
subsequence of the training sample (xnk,i , ynk,i )

Nk

i=1. In principle, it is possible for
each agent to train its own local ML model based on the locally available training
sample. Depending on the application at hand, however, this can incur several
difficulties:

• The locally available training subsamples may simply be too small to train an
ML model and obtain an acceptable risk.

• The way in which the locally available training subsamples are drawn from the
overall training sample may be such that the subsamples are not i.i.d. or do not
follow P [81]. For instance, it is common for the subsamples to be biased towards
certain labels in a way the overall training sample is not.

Distributed optimization algorithms can be used to carry out the training in a
decentralized manner. They make, either at one central point or everywhere in the
network, a trained ML model available that benefits from the whole training sample
without transmitting it through the network in its entirety. There is a huge body
of recent research (cf., e.g., [1, 5–9, 21, 39, 63, 67, 68, 70, 76, 79, 82–84], and the
references therein) into ways to perform distributed optimization algorithms such as
stochastic gradient descent exploiting OTA computation. This approach can achieve
fundamentally more favorable scaling laws than would be possible otherwise.

In VFL, the data is distributed in a different way: In a system with K agents,
the statistical learning problem has a feature alphabet X = X1 × · · · × XK that
is a Cartesian product of K feature spaces. A feature x ∈ X can, therefore,
be written as a tuple x = (x1, . . . , xK) and the training sample is of the form
((x1,n, . . . , xK,n), yn)

N
n=1 where each agent k has only the local training sample

(xk,n, yn)
N
n=1. Correspondingly, when training is complete and a label needs to be

estimated, each agent k sees only the projection to Xk of the observed feature. Since
the labeling function has the whole feature space X = X1×· · ·×XK as its domain,
the arguments to compute it are not available at any single point in the network and
it is, therefore, natural to attempt to compute the labeling function OTA. So there
are two important research question in OTA-VFL:

• Given a training sample that is distributed as described above, how can we
carry out a distributed training procedure exploiting OTA computation that scales
better than linear in the number of agents involved?

• Given the trained model (which also is available only in a distributed manner),
how can we compute the labeling function using the OTA approach?

The first question is quite similar to the main research question in OTA-HFL and
there is some hope that tools from this field could be suitably adapted. The second
question is more specific to the VFL scenario, and we note that many standard
ML labeling functions naturally take the form of (weighted) sums. Examples are
layers of neural networks (the activation function can be evaluated afterwards in
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post-processing if necessary) and the linear support vector machines that have been
used for OTA-VFL in [65]. Contrary to the OTA-HFL, there does not appear to be
a large body of research on OTA-VFL. Besides [65] and our own results which we
survey in Sect. 13.5, we are not aware of any works that propose to leverage OTA
computation in a VFL scenario.

13.3.2 Consensus Over Wireless Channels

Consensus problems deal with combining opinions of participating agents to
achieve an agreement that encompasses their information about or subjective
assessments of an object. They have originally appeared as statistical problems in
which the opinions are probability distributions which have to be combined to form
a consensus distribution. In [26] this is illustrated as a horse race betting problem
where the agents’ opinions are probability distributions on which horse will win
the race. They place their bets according to these opinions and the overall track’s
odds that result from these bets are considered the consensus which in a certain way
combines all the participating agents’ opinions. The problem has subsequently been
stated as one of combining various experts’ opinions and researched extensively to
aid with decision making in the context of management sciences (see, e.g., [29, 71],
and the references therein).

The research on this theory has later been applied to problems of multisensor
fusion and pattern recognition [12] and since found a multitude of other applications
in engineering sciences [61]. In some of the engineering applications the nature
of the difficulty of the problem has shifted significantly: Often, an opinion is
simply a real number or vector and the way the opinions have to be combined
to form the consensus is fully prescribed by the application at hand and is fairly
simple compared to the original consensus problem: For instance, the consensus
can be the arithmetic average (with applications, e.g., in formation control and
flocking of autonomous vehicles [60]) or the maximum of the opinions (examples
for applications include task assignment [17] and traffic automation [55]). In these
applications, the challenge is that it is infeasible to aggregate the opinions in a
central point because the communication cost or the time delay incurred would be
prohibitive. In these cases, distributed consensus algorithms are used that seek to
make the consensus value available to agents in a large network with a minimum of
communication required between the agents [61].

In many applications, the communication links between the agents are wireless
channels, and indeed, several agents can be linked to another agent via a broadcast
or multiple-access wireless channel. Some works that exploit these properties to
reach average or maximum consensus in a way that is more communication-efficient
than would be possible with point-to-point communication are [43, 54–56]. We
expect that theoretical analysis of OTA computation techniques could serve as a
building block to enhance the efficiency and, in particular, the scaling behavior of
the communication cost in the number of participating agents. Moreover, this way
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it would be possible to provide additional theoretic error guarantees for consensus
schemes that exploit the superposition of signals in the wireless channel. In [3],
we have proposed a maximum consensus scheme which leverages analog OTA
computation of sums to make the maximum of the agents’ opinions available at the
receiver in a multiple-access wireless channel with no fading but with additive noise.
The OTA computation schemes we survey in this chapter can be used to extend
these results to channels exhibiting fast fading [13]. It is, in particular, worth noting
that the scheme proposed in [3] can OTA compute the maximum of the agents’
opinions in a wireless channel although we do not expect the maximum function to
satisfy Definition 13.8. This is achieved not through a single OTA computation but
through a multi-step protocol that alternates between analog OTA computation of
sums and digitally coded broadcast communication. We believe, therefore, that such
multi-step protocols are a potentially promising approach to computing also other
functions for which a representation as in Definition 13.8 is not known. This is at
the cost of higher system and communication complexity, but a favorable scaling of
communication cost in extremely large networks would be retained.

13.3.3 Compressed Sensing

As detailed in Sect. 13.3.1, OTA computation can be applied to distributed ML in
wireless networks, both in the Horizontal ML scenario and in the Vertical ML sce-
nario. On the other hand, ML is a tool that is itself often used to solve Compressed
Sensing problems (e.g., [2, 64, 73]). Therefore, one potential application of OTA
computation is to apply it to distributed ML algorithms for sparse signal recovery,
which would yield distributed Compressed Sensing schemes for wireless networks.
These could, for instance, be used to facilitate communication tasks such as channel
estimation and beamforming. The main advantage of the OTA-ML-aided approach
to Compressed Sensing is the scaling behavior of the communication cost with the
number of transmitters, which is often logarithmic or even constant. For the massive
wireless networks that are envisioned for the future, this scaling behavior is not just
advantageous for the conservation of communication resources, but can be expected
to become absolutely essential given the expected growth of the number of wireless
devices.

Works such as [9] use an OTA version of distributed Stochastic Gradient Descent
(SGD) to solve the empirical risk minimization problem encountered in the training
of ML models. Therefore, another prospective approach to exploit OTA computation
for distributed Compressed Sensing would be to extend the SGD method so that it
can be used to solve Compressed Sensing optimization problems such as LASSO
or elastic net directly. This is in contrast to an approach that formulates an ML
model to approach the Compressed Sensing problem and then solves the associated
risk minimization problem OTA. To this end, promising research directions could
be the extension of the OTA-SGD method so that it can be used to execute, e.g.,
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subgradient and proximal gradient methods in a distributed fashion in wireless
networks.

13.4 Distributed Function Approximation in Wireless
Channels

In this section, we discuss our Distributed Function Approximation (DFA) scheme
which we proposed in [13] and extended in [31, 33]. The goal in introducing
it was to provide a flexible framework that can deal with such a large class of
wireless channels that the scheme would be robust to departures from common
assumptions on the system model such as Gaussianity of the fading and noise.
At the same time, the class of functions for OTA computation should contain
the most relevant ones in current applications (which are mainly weighted sums).
It should also be large enough to provide flexibility and make the DFA scheme
applicable in scenarios where functions that have not yet received much attention are
computed OTA. Another important consideration in the design of the scheme was
the distribution of the sources. Many existing works on OTA computation assume
a particular source distribution for their theoretical analysis, and usually require
that the transmitted values are independently distributed between the transmitters.
Since this requirement is extremely difficult to check in practice, we have decided
to not model the sources stochastically. Instead, we show that the bound on the
approximation error is satisfied uniformly over all possible values of the sources.
This yields a worst-case analysis with theoretically proven error guarantees that
are valid for every distribution of the sources, even if there is arbitrary correlation
between them. In addition, the error bounds are nonasymptotic in the sense that they
are valid for any number of channel uses, not just for a sufficiently large one.

13.4.1 Class of Functions

For the class of functions that can be computed OTA, it is important that they are
not only nomographic (which as we have seen in Theorem 13.1 and its proof is
a notion that is too weak in the presence of channel noise), but that they have a
nomographic representation that is amenable to the processing of noisy values. We
adapt Definition 13.4 to give a stronger notion of nomography, which means that it
defines a smaller class of functions, but also provides a good basis on which error
bounds can be argued.

Definition 13.8 ([13, Definition 1]) Let S1, . . . ,SK be measure spaces. We say
that a function f : S1 × · · · × SK → R is in Fmon if there are measurable f1 :
S1 → R, . . . , fK : SK → R, which we call the inner functions and a measurable
F : R→ R, which we call the outer function, such that all of the following hold:
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• f1, . . . , fK, F are a nomographic representation of f ; i.e., for all s1 ∈
S1, . . . , sK ∈ SK ,

f (s1, . . . , sK) = F

(
K∑

k=1

fk(sk)

)

(13.17)

• f1, . . . , fK are bounded and there is a bounded measurable set DF ⊆ R such
that f1(S1)+ · · · + fK(SK) ⊆ DF .

• There is a strictly increasing function Φ : [0,∞)→ [0,∞) with Φ(0) = 0 and
for all x1, x2 ∈ DF ,

|F(x1)− F(x2)| ≤ Φ(|x1 − x2|). (13.18)

We call Φ an increment majorant of F .

The abbreviation mon in the subscript of Fmon refers to the existence of a
monotonous increment majorant.

For a given f ∈ Fmon, the inner and outer functions are not necessarily unique,
however, when we consider a function f ∈ Fmon, we implicitly fix a representation
f1, . . . , fK, F of f which satisfies Definition 13.8. With this representation fixed,
we can define some additional properties.

Definition 13.9 Given f ∈ Fmon (and a fixed representation f1, . . . , fK, F ), we
let

φmin,k := inf
s∈Sk

fk(s), φmax,k := sup
s∈Sk

fk(s). (13.19)

The total spread of the inner part of f is defined as

Δ̄(f ) :=
K∑

k=1

(φmax,k − φmin,k) (13.20)

and the maximum spread is defined as

Δ(f ) := max
1≤k≤K(φmax,k − φmin,k). (13.21)

As we will see below, the representations of functions in Fmon allow for the
construction of pre- and post-processors in OTA computation that have provable
error bounds on the quality of the receiver’s estimate of f (s1, . . . , sK). Another
very important property of Fmon is whether it contains the functions that are of
interest in practical problems where OTA computation is applied. In the following,
we list some examples of relevant subsets of Fmon. More details on this can be found
in [13, Section II-D].
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• The special case where F is the identity function. We call this class the class
of generalized linear functions and it is the most important one for ML schemes
since it contains weighted sums, but it is also significant for distributed consensus
since it contains the arithmetic average function (a special case of a weighted
sum).

• More generally, the special case where F is Lipschitz-continuous and, more
generally than this, the special case where F is Hölder-continuous.

• For any p ≥ 1 and compact S1, . . . ,SK ⊆ R, the p-norm is in Fmon.

13.4.2 System and Channel Model

For our DFA schemes, we use the system model depicted in Fig. 13.1. The objective
is to OTA compute a function f (s1, . . . , sK) in Fmon through a series of M uses of
a given channel. To this end, each transmitter k uses a randomized pre-processing
function FM

k which transforms the input value sk into an M-length sequence of
channel input symbols. These sequences are superimposed in the channel to yield
a sequence YM of channel output symbols, which the receiver transforms to an
estimate f̃ by applying a post-processing map DM . In the DFA schemes we
propose, for each k, the sequence T M

k is i.i.d. conditioned under sk .
For the channel model, the basic idea is that our results should apply to fast-

fading wireless channels. At the same time the error guarantees should be provably
robust to common departures from the assumption that noise and fading are i.i.d.
Gaussian (cf., e.g., [14, 51, 52]). We, therefore, assume that fading and noise are
sub-Gaussian. This class of sub-Gaussian distributions contains besides Gaussian
distributions all distributions with bounded support, which means that almost all
practically relevant non-Gaussian disturbances are captured in this class (see [31,
Section II-C] for details).

Definition 13.10 For a real random variable X, we define
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Fig. 13.1 DFA System model
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τ(X) := inf
{
t > 0 : ∀λ ∈ R E exp (λ(X − EX)) ≤ exp

(
λ2t2/2

)}
. (13.22)

If τ(X) is finite, we call X a sub-Gaussian random variable, and τ(X) its sub-
Gaussian norm.

We note that τ(·) is indeed a semi-norm on the space of sub-Gaussian random
variables [20, Theorem 1.1.2]. Examples of sub-Gaussian variables include:

• Gaussian variables: If X is normally distributed with variance σ 2, we have
τ(X) = σ . This follows from the calculation of the moment-generating function
of X.

• Bounded variables: If |X − EX| ≤ c almost surely, then τ(X) ≤ c. This follows
from Taylor’s theorem [20, Example 1.1.2].

We consider a complex channel which is used M times. The output of the channel
at its m-th use is given by

Y (m) =
K∑

k=1

Hk(m)Tk(m)+N(m), (13.23)

where the symbols are defined as follows:

• Tk(m) is the complex channel symbol that transmitter k transmits at the m-th
channel use. We impose the peak power constraint ∀k,m |Tk(m)|2 ≤ P .

• Hk(m) are the fading coefficients. We assume that they are centered and that
their complex components have variance 1 and a sub-Gaussian norm uniformly
bounded by σF .

• N(m) is the additive noise at channel use m. We assume that it is centered with
the sub-Gaussian norm of its complex dimensions uniformly bounded by σN .
The total noise power

∑M
m=1 E |N(m)|2 is assumed to be known at the receiver.

13.4.3 The Case of Independent Fading and Noise

In this section, we present our results from [13]. In addition to the assumptions made
in Sect. 13.4.2, we assume that all the instances of fading and noise are stochastically
independent, but we do not assume that they are necessarily identically distributed;
we only need the uniform bounds on their sub-Gaussian norms stated in Sect. 13.4.2.
Additionally, no instantaneous channel state information needs to be known at
the transmitter or the receiver, only the general statistical properties stated in
Sect. 13.4.2. Under these assumptions, we have the following result.

Theorem 13.2 ([13, Theorem 1]) Let f ∈ Fmon and fix a representation as
in Definition 13.8. This representation induces Φ and, via Definition 13.9, the
quantities Δ(f ) and Δ̄(f ).
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Then there are pre- and post-processing functions so that for every ε > 0, the
absolute error of the estimate f̃ of f (s1, . . . , sK) satisfies

P

(∣∣
∣f̃ − f (s1, . . . , sK)

∣∣
∣ ≥ ε

)

≤ 2 exp

(
− MΦ−1(ε)2

2LΦ−1(ε)+ 8L2K

)
+ 2 exp

(
− MΦ−1(ε)2

2FΦ−1(ε)+ 4F 2

)
, (13.24)

where

L = Δ(f )σ 2
F (13.25)

F = 3σ 2
F Δ̄(f )+ 4σNσF

√
Δ(f )Δ̄(f )

P
+ 2σ 2

NΔ(f )

P
. (13.26)

The proof of this theorem in [13] gives explicit pre- and post-processing
operations. Intuitively, the pre-processing works by applying the inner functions
f1, . . . , fK from Definition 13.8 to the distributed data followed by shifting and
rescaling steps which ensures that the transmit power constraint is satisfied and
finally applies a random phase shift to mitigate the effects of the unknown fading.
The post-processor averages its received signal in such a way that it mitigates the
random distortions incurred by the unknown fading and noise, then inverts the
shifting and rescaling operations that were performed in pre-processing and finally
applies the outer function F from Definition 13.8.

It is of particular interest how these error bounds depend on K since the
unfavorable scaling of separation-based approaches with K is one of the main
motivations for using analog OTA computation in the first place. However, it is
tricky to answer this question for general f , since f itself has to change with K and
depending on how it does, the spreads introduced in Definition 13.9 can scale in a
different way with K . This is a question of how f scales its values with K , as the
following two examples demonstrate.

Example 13.2 ([13, Example 1]) Consider the sum function

f : [0, 1]K → R, (s1, . . . , sK) �→ s1 + · · · + sK. (13.27)

Clearly, f ∈ Fmon. Substituting the spreads of f into Theorem 13.2 (see [13,
Example 1] for details), we obtain the error bound

P

(∣∣∣f̃ − f (s1, . . . , sK)

∣
∣∣ ≥ ε

)

≤ 2 exp

(

− Mε2

4σF ε + 32Kσ 4
F

)

+ 2 exp

(
− Mε2

4Fε + 16F 2

)
, (13.28)
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where

F = 3σ 2
FK +

4σNσF
√
K√

P
+ 2σ 2

F

P
. (13.29)

Therefore, if we want to achieve a bounded approximation error in the case K →
∞, we have to let M grow proportionally with K2.

Example 13.3 ([13, Example 1]) Consider the arithmetic average function

f : [0, 1]K → R, (s1, . . . , sK) �→ s1 + · · · + sK

K
. (13.30)

Clearly, f ∈ Fmon. The error bound of Theorem 13.2 is in this case (see [13,
Example 1] for details)

P

(∣∣∣f̃ − f (s1, . . . , sK)

∣∣∣ ≥ ε
)

≤ 2 exp

(

− MKε2

4σ 2
F ε + 32σ 4

F

)

+ 2 exp

(
− Mε2

4Fε + 16F 2

)
, (13.31)

where

F = 3σ 2
F +

4σNσF√
PK

+ 2σ 2
N

PK
. (13.32)

Therefore, we can achieve a bounded approximation error in the case K → ∞
without having to let M grow with K at all.

13.4.4 The Case of Correlated Fading and Noise

In this section, we present our analog OTA computation results from [31, 33].
Compared to [13] where both the fading and the noise had to be independent, we
introduced the possibility of correlations so that our results would also cover, e.g.,
the common case of a block fading channel (which exhibits correlated fading) or a
channel with bursty additive noise (which exhibits correlated noise).

For z ∈ C, we denote the real part of z with zr and the imaginary part with zi .
We define

N := (Nr(1), Ni(1), . . . , Nr(M),Ni(M))
T

(13.33)
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and

H := (H(1), . . . , H(2M))T , (13.34)

where for m = 1, . . . ,M ,

H(2m− 1) := (H1
r (m), . . . , HK

r(m)) (13.35)

H(2m) := (H1
i (m), . . . , HK

i(m)). (13.36)

Given these notations, our system model assumptions are

H = AR, (13.37)

N = BR, (13.38)

where R is a vector of 2KM+2M independent random variables with sub-Gaussian
norm at most 1, A ∈ R

2MK×2MK+2M and B ∈ R
2M×2MK+2M . This replaces

the independence assumption made in Sect. 13.4.3, while the assumptions made in
Sect. 13.4.2 are still in place.

For the special case of i.i.d. standard Gaussian R, this linear transformation
model specializes to arbitrarily dependent Gaussian fading and noise. It is, there-
fore, a straightforward generalization of the Gaussian case to replace R with
a sub-Gaussian vector that covers fading and noise which can exhibit arbitrary
correlations, albeit not an arbitrary stochastic dependence structure.

Additionally, we need to quantitatively capture how strong the correlation
between users is in the fading. To this end, we make the following definition.

Definition 13.11 The fading is called user-uncorrelated if for every k1, k2 ∈
{1, . . . , K}, for every j ∈ {r, i} and for every m ∈ {1, . . . ,M}, the random variables
H

j
k1
(m) and H

j
k2
(m) are independent.

We do not fully restrict the channel model under consideration to channels with
user-uncorrelated fading, however. Instead, we assume that the matrix representing
the fading is decomposed as

A = Ai + (A− Ai), (13.39)

where Ai is a matrix that would result in user-uncorrelated fading if substituted
into the dependence model described above. This can immediately be seen to not
introduce any additional restriction in the model since Ai can, e.g., be chosen all-
zero. However, the impact that the user-uncorrelated part Ai and the user-correlated
part A − Ai have on the resulting error bounds differs, as can be observed in the
following result which we have under the preceding assumptions.

Theorem 13.3 ([31, 33, Theorem 1]) Let f ∈ Fmon and fix a representation as
in Definition 13.8. This representation induces Φ and, via Definition 13.9, the
quantities Δ(f ) and Δ̄(f ).
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Then there are pre- and post-processing functions so that for every ε > 0, the
absolute error of the estimate f̃ of f (s1, . . . , sK) satisfies

P

(∣∣
∣f̃ − f (s1, . . . , sK)

∣∣
∣ ≥ ε

)

≤ 2 exp

(
− MΦ−1(ε)2

16F +D + 4Φ−1(ε)L

)
+ 2 exp

(
− MΦ−1(ε)2

256F + 32Φ−1(ε)L

)
,

(13.40)

where

L =
(√

Δ̄(f )‖A‖ +
√
Δ(f )

P
‖B‖
)2

(13.41)

F = L

⎛

⎝

√
Δ̄(f )

M
‖A‖F +

√
Δ(f )

PM
‖B‖F

⎞

⎠

2

(13.42)

D =
(

4
√

2MΔ̄(f )‖(A+ Ai)(A− Ai)
T ‖ + 4

Δ(f )√
PM

‖ABT ‖F
)2

. (13.43)

Remark 13.1 D is zero for an important subclass of cases. The first summand in
(13.43) captures the effect of user-correlated fading which we have discussed above.
In the case of user-uncorrelated fading it is 0. The second summand captures the
effect of correlation between fading and noise and it is 0 in case fading and noise
are stochastically independent.

A commonly considered example for a situation where this remark applies is the
case of block fading. We denote the map that rounds down to the nearest integer
with (·� and say that the channel follows a block fading model with block length β

if both of the following hold for all k1, k2,m1,m2:

• If k1 �= k2 or ((m1 − 1)/β� �= ((m2 − 1)/β�, the fading coefficients Hk1(m1)

and Hk2(m2) are uncorrelated.
• Otherwise, the fading coefficients Hk1(m1) and Hk2(m2) are almost surely equal.

With this definition, we have the following immediate consequence of Theo-
rem 13.3.

Corollary 13.1 ([31, Corollary 3]) If the fading is independent between users and
for each user, we have a block fading model of block length β, the error bound is
(13.40), where D = 0 and
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L =
(√

Δ̄(f )βσF +
√
Δ(f )

P
σN

)2

F = L

(√
2KΔ̄(f )σF +

√
2Δ(f )

P
σN

)2

.

13.5 DFA Applications to VFL

In this section, we give an overview of the OTA-computed labeling functions for
VFL scenarios that we propose in our works [13, 31].

The first one is a generalization of the idea in [65] where the labeling function
of a linear support vector machine for binary classification is used. We note
that it is possible to generalize this to the case of support vector machines with
additive kernels [22]. Looking specifically at regression problems and their labeling
functions, we then give a theoretically proven error guarantee on the additional error
incurred through the OTA computation. However, the training has to be carried
out offline with all of the training data available at a central point. Therefore,
this approach is only suitable in cases in which the models do not or only very
infrequently have to be retrained.

In [31], we look at a different way of constructing OTA-computed labeling
functions for the case of binary classification based on the idea of adapting the
Boosting technique (cf., e.g., [53, Chapter 6]). A Boosting labeling function has the
form

g :=
K∑

k=1

αkgk, (13.44)

where α1, . . . , αK are nonnegative weights and g1, . . . , gK are base labeling
functions which can be from any ML model. The usual reason for employing
Boosting is that sometimes, it is hard to construct a single ML model with a
near-zero classification error while it is easier to construct many ML models
with a classification error that is only slightly better than random guessing. One
boosting algorithm which constructs a classifier of the form (13.44) that achieves an
arbitrarily small error in this case as long as K can be chosen large enough is called
AdaBoost [53, Theorem 6.1]. It is apparent in (13.44) that g satisfies Definition 13.8
and is, therefore, in Fmon, so our OTA computation techniques are applicable. The
idea is, therefore, to not necessarily use different ML models as the base labeling
functions, but instead make them different by training each of them based on the
locally available features. In [31], we propose two different ways of combining the
base labeling functions:
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• Train each base labeling function only locally and use equal weights α1 = · · · =
αK = 1.

• Use a straightforward adaptation of the AdaBoost technique to train the base
labeling functions and calculate the weights.

The first possibility has the advantage that it does not rely on any communication at
all during the training phase and is, therefore, suitable in cases in which the models
have to be frequently retrained or the training sample is particularly large. The
second possibility can for some problems yield better labeling functions: If, e.g.,
some of the participating agents see features that are stochastically independent
(or close to independent) from the labels, this technique is better equipped to
deal with this situation as it will simply adjust their weights to low values.
The disadvantage of the second approach is that there is currently no distributed
training procedure that leverages OTA computation. This results in a bad scaling
behavior in extremely large networks. However, we do propose a distributed training
procedure based on point-to-point and broadcast communication that is better in
terms of communication efficiency than transmitting the whole training sample
to a central place. Therefore, it is primarily suitable for networks of moderate
size where frequent re-training is not necessary. Both of these approaches have
the advantage that they are agnostic to the ML models they use as base labeling
functions. Therefore, they provide a flexible approach to VFL classification that can
be combined with other building blocks depending on the application at hand. It
is even possible to use different ML models at different agents depending, e.g., on
their computational capabilities. In [31], we give a theoretically guaranteed bound
on the additional loss incurred by computing g OTA. Moreover, we complement this
in [31] with a numerical example where we combine decision tree classifiers OTA.

13.6 Security in OTA Computation

OTA computation schemes carry the promise that they can improve communication
efficiency so dramatically in many cases of practical interest that they can be seen as
an enabler for applications in massive wireless networks for which the communica-
tion cost or the time delay incurred would otherwise be prohibitive. However, there
is also a flip side that has the potential to hinder widespread adoption: Some tools
that enhance the properties of communication and are frequently used as building
blocks in communication systems inherently rely on the principle of source-channel
separation. Therefore, they cannot be adapted to work in a scenario where a joint
source-channel approach is taken such as in OTA computation. One example of
such a building block that is particularly important in modern communication
systems is cryptography. OTA communication schemes as described in Sect. 13.4
are vulnerable to a number of attacks such as malicious transmitters participating in
the scheme or attackers eavesdropping on the transmission, and it is unclear whether
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Fig. 13.2 System model for distributed function approximation with security constraints

and how state-of-the-art cryptographic security could be adapted to defend against
such threats.

At least for the latter kind of threat – attackers eavesdropping on the commu-
nication – information-theoretic security, while not adaptable in a straightforward
fashion, provides a set of tools with which a defense can be developed. The ultimate
goal in this direction should be full semantic security [11]. As a first step, we have
proposed in [32] to extend the system model with a jammer as depicted in Fig. 13.2.
This shows how information-theoretic security tools can be adapted to the OTA
computation setting. The jammer can increase the variance of the eavesdropper’s
estimate of the quantity of interest, but not fully prevent it from obtaining an
estimate.

The key assumption we make is that the received jamming signal must be
stronger for the legitimate receiver than it is for the eavesdropper. This way, the
legitimate receiver can exploit the dependencies which we carefully introduce into
the jamming signal to reconstruct it exactly. To the eavesdropper, the received signal
is almost equivalent to an i.i.d. jammed transmission. With the knowledge of the full
jamming signal, the legitimate receiver can then cancel it from its received signal or
at least mitigate its impact. The approximation of the OTA-computed function value
is out of scope of the scheme and can be carried out, e.g., with the tools we survey
in Sect. 13.4.

While our results on OTA computation rely heavily on the particular structure of
wireless channels, the class of channels for which the reconstruction of the jamming
signal is possible is much more general. This will become apparent in the following.

We are not aware of a similar system model having been proposed before for
OTA computation, but we draw heavily from existing tools in information theory.
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13.6.1 Information-Theoretic Preliminaries

Before we can state and discuss the result, we have to introduce some information-
theoretic terminology and notation. A channel W is a stochastic kernel mapping
from an input alphabet to an output alphabet. Given a channel W and a probability
distribution P on its input alphabet, we denote the induced joint input-output
distribution with QP,W , the marginal on the output alphabet with RP,W and define
the information density as

iP,W (xM ; yM) := 1

M

M∑

j=1

log
dW(xj , ·)
dRP,W

(yj ). (13.45)

The mutual information is defined as

IP,W := EQP,W
iP,W (X;Y ), (13.46)

where X and Y denote the input and output random variable of the channel,
respectively. We denote the M-fold product of a channel or a probability distribution
with a superscript M .

A compound channel (Ws)s∈S is a collection of channels. If a transmission is
made through a compound channel, some s ∈ S is chosen in such a way that
neither the transmitter nor the receiver know s or the law according to which it is
chosen, but it remains the same for all channel uses over the entire block length. Our
result poses the requirement that the compound channel can be (δ, J )-approximated.
The formal definition can be found in [32, Definition 2], but we note here that
many commonly considered classes of wireless channels such as Additive White
Gaussian Noise channels and the fast-fading Gaussian channel have this property..
We use WB(s1,...,sK ) to denote the effective channel that maps the jammer’s input X
to the output Y of the legitimate receiver if the values of the transmitters are fixed
at s1, . . . , sK . Similarly, we use WE(s1,...,sK ) to denote the effective channel that
maps the jammer’s input X to the output Z of the eavesdropper if the values of the
transmitters are fixed at s1, . . . , sK .

A codebook C induces a jamming strategy as follows: The jammer picks a
codeword from C uniformly at random and then transmits this codeword as the
jamming signal.

13.6.2 Result and Discussion

We have now introduced the necessary notation to state our result for secure OTA
computation.
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Theorem 13.4 ([32, Theorem 2]) Let P be a jammer input distribution. Suppose
that for every δ > 0, there is some J (δ) such that the compound channel
(WB(s1,...,sK ))(s1,...,sK )∈S1×···×SK

can be (δ, J (δ))-approximated under P . Suppose
further that for all s1 ∈ S1, . . . , sK ∈ SK , the moment-generating function

E exp(λ · iP,WE(s1,...,sK )
(X;Z)) (13.47)

of the information density exists and is finite at some point λ > 0. Given a number
R such that

sup
s1∈S1,...,sK∈SK

IP,WE(s1,...,sK ,·,·) < R < inf
s1∈S1,...,sK∈SK

IP,WB(s1,...,sK ,·,·),

(13.48)
there are numbers γ1, γ2 > 0 such that for sufficiently largeM , there is a codebook
C such that under the jamming strategy induced by C, the legitimate receiver
B can reconstruct the jammer’s transmitted signal with an error not exceeding
exp(−Mγ1), while the eavesdropper’s output R̂WE

M
(s1,...,sK )

,C satisfies

∥∥∥∥R̂WE
M
(s1,...,sK )

,C − RM
P,WE(s1,...,sK )

∥∥∥∥
TV

< exp(−Mγ2), (13.49)

where ‖·‖TV denotes the total variation norm on signed measures.

For a detailed discussion and a proof of this theorem, we refer the reader to
[32]. Here, we briefly discuss the result and its impact and also summarize the
information-theoretic ideas that are used to prove it.

Equation (13.47) is a technical requirement that is satisfied, for example, for all
channels with finite alphabets and for all Gaussian channels whether or not they
have fading. Equation (13.48) defines a number R and at the same time imposes the
requirement that the information term on the left has to be strictly smaller than the
information term on the right. These information are a formalization of the signal
strength at the eavesdropper and the legitimate receiver, respectively. Therefore,
(13.48) is the formal statement of the above-noted condition that the signal strength
of the jamming signal observed at the legitimate receiver has to be stronger than the
signal strength observed at the eavesdropper. Note that other than through (13.48),
neither the construction of the jamming scheme nor the recovery procedure at B
require knowledge of the eavesdropper’s channel WE . On the other hand, the result
remains valid even if E has full knowledge of WE .

Under these conditions, the theorem claims the existence of a jamming strategy
that has two properties: First, the legitimate receiver can fully reconstruct the
jamming signal. This can be used to remove or at least mitigate its impact. For
a detailed example of how this can be done in an application scenario, we refer
the reader to [32, Section III]. Second, we have (13.49) which describes how the
usefulness of the signal to the eavesdropper is bounded. It looks very similar to the
semantic security criterion, but the values s1, . . . , sK appear inside the variational
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distance so that it can actually not guarantee full semantic security. However, as
we mentioned in the beginning of the section, it can at least guarantee that any
estimate of the computed function by the eavesdropper has a higher variance than
the estimate which the legitimate receiver can obtain. For details, we refer the reader
to [32, Section III and Section V-A].

For the part of our result that says that the legitimate receiver can reconstruct
the full jamming signal, we use an adapted result from the theory of compound
channels which has been initiated in [15, 24, 72] and subsequently developed, e.g.,
in [4, 45, 66, 78]. It is known [45] that the classical results on compound channel
capacity do not carry over to arbitrary compound channels, and the assumption made
in the literature is usually that the channels have finite alphabets or exhibit a certain
Gaussian structure. We use a more general condition which is also easier to treat in
our framework, namely that the compound channel can be (δ, J )-approximated for
all δ > 0 and suitable J ∈ N. This notion of channel approximation follows to some
extent the proof idea in [15] where it is shown that the finiteness of the alphabets
implies approximability of the compound channel with a finite number of channels.

For the part of our result that says that to the eavesdropper, the jamming signal
appears like i.i.d. noise, we make use of the theory of channel resolvability [40, 74]
and of how it can be used to achieve information-theoretic secrecy [11, 16, 23]. The
resolvability result we use is from [30].

13.7 Open Research Questions

We conclude this chapter with a brief discussion of directions that we think are
promising for future research. These directions can be divided into three categories:

1. Improvement of the OTA computation schemes and their analysis and evaluation
2. Research on the applications of OTA computation schemes in distributed ML and

consensus
3. Continuation of the research on secure OTA computation

Direction 1 is the most fundamental one in the sense that it can impact the
possibilities for both of the other directions. It includes research on the improvement
of the scheme itself so that it becomes more efficient or that it becomes applicable
to more complex or more general system models, improvements of the theoretical
analysis and more detailed numerical evaluations. The theoretical analysis could
be enhanced with tighter error bounds or by expanding its applicability to more
general system models, and it could be complemented with suitable converse
bounds that give an idea of how tight the error guarantees are. The numerical
evaluations we show in [31, 33] could profit from more detailed and, in particular,
more realistic channel models that are already covered by the theoretical analysis,
such as bursty interference, correlated fading and various other types of non-i.i.d
and non-Gaussian components, and they could be complemented with hardware
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demonstrators. Furthermore, other practically relevant complications in the system
such as imperfect synchronization among the transmitters (against which we
expect our schemes to have considerable robustness) could be tackled both on the
theoretical and the empirical side.

Item 2 is the most significant one in terms of direct impact on technical appli-
cations. For HFL, we have noted in Sect. 13.3.1 that a huge body of research work
already exists. Still, we see some possibilities for improvement with an application
of our DFA schemes: For instance, we are not currently aware of OTA-HFL schemes
that can deal with a lack of instantaneous channel state information both at the
transmitter and the receiver and at the same time not rely on an assumption on
the distribution of the sources (and such assumptions are very hard to verify in
practice). In OTA-VFL, on the other hand, much more basic research questions
are still open: We have suggested OTA computable ML labeling functions [13, 31]
that are applicable for some cases of regression and binary classification problems
and in addition, there are earlier OTA computable labeling functions available for
binary classification [65], but we think that different labeling functions are necessary
in order to be able to tackle larger classes of OTA-VFL problems. Additionally,
there is still a need for more efficient OTA training procedures that have a better
scaling behavior in the number of participating transmitters than the scheme we
have proposed in [31]. For the application of distributed consensus, we believe that
our DFA schemes may have the potential to yield OTA average-consensus schemes
that can deal both with sub-Gaussian fading and additive channel noise and have
better finite-time convergence guarantees than existing schemes.

Topic 3 has the potential to give answers to questions that have a growing
relevance as the integration of OTA communication systems into real-world com-
munication systems progresses, since we expect missing security guarantees to be
a potential showstopper for many applications of OTA communication schemes.
The objective in defending against eavesdropping attacks should be full semantic
security, but research into active attacks that are specific to OTA computation
schemes also deserves attention.
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Chapter 14
Information Theory and Recovery
Algorithms for Data Fusion in Earth
Observation

Massimo Fornasier, Danfeng Hong, Gerhard Kramer, Lars Palzer,
Michael Rauchensteiner, and Xiao Xiang Zhu

14.1 General Framework

In this chapter we explore instances of the general nonlinear data model or data
processing model

y = g(A(x)(x + ns))+ nm, (14.1)

where x is a source input, y is a data or measurement output, A(·) is a linear map,
possibly input dependent, and ns , nm are noise terms at the source or measure-
ments, respectively. The nonlinear function g may be a source of measurement
distortion, but it could also be a man-made design such as a multi-channel multi-
bit quantization function or an activation function as in artificial neural networks.
Model (14.1) represents a general framework for quantized compressed sensing,
quasi-linear, bilinear and more general nonlinear compressed sensing, single and
multi-index models, and artificial neural networks.
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Two fundamental tasks are associated with model (14.1).

• Inversion Given g, A(·), and knowledge of the stochastic behavior of the
noise sources, we wish to establish the theoretical and practical invertibility
of the model. This means to determine theoretically under which conditions,
given the measurement y, it is possible to recover x up to a given precision
and possibly provide constructive/algorithmic solutions. The theoretical analysis
aims at establishing the minimal conditions for invertibility and it may be based,
e.g., on complexity analysis or asymptotic theories, such as the rate-distortion
theory [8, 51, 66], both seeking optimal information-theoretic bounds. The
practical inversion of the model (14.1) is often performed by suitable numerical
optimizations with objective functions that incorporate misfit to data y and priors
on the source x, see, e.g., [18, 19].

• Learning/identification Some parameters of the model are unknown, e.g., the
linear mixing map A(·) may be unknown as in dictionary learning problems,
see, e.g., [4]. In this case, given a collection, called training set, of input-output
pairs {(xi, yi) : i = 1, . . . , N} one seeks to identify the parameters that allow
the model to reproduce the input-output mapping on the training set. This is
the typical situation encountered, for instance, in the training or identification
of neural networks.

In some applications, one may be interested even to perform both tasks, i.e.,
identification/learning and invertibility, simultaneously from one instance input-
output pair (x, y) only. This is, for instance, the case in bilinear compressed sensing
and its applications in wireless communication [41], where both channel and signal
needs to be recovered.

Learning/identification and inversion of model (14.1) are necessary tasks for
many applications in data and signal processing. Besides the ones already mentioned
above, we focus on and report here about data fusion in remote sensing [63, 70, 74].
In particular, the massive amount of available complementary multi-sensor satellite
imagery offers an ideal basis for learning inter-sensor representations with, e.g.,
deep neural networks [48], which we found to be a powerful approach in various
remote sensing areas [34, 54].

The rest of the chapter is organized as follows: In Sect. 14.2 we present
theoretical results of learning/identification of model (14.1) in the context of
feed-forward deep artificial neural networks. Section 14.3 presents results about
quantized Compressed Sensing with message passing reconstruction, which is an
inversion problem via a form of neural network. The final Sect. 14.4 shows novel
models of the type (14.1) in signal processing for real-life applications in remote
sensing and Earth observation.
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14.2 Identification of Neural Networks: From One Neuron to
Deep Neural Networks

In this section, we present results of learning/identification of generic feed-forward
artificial neural networks, which can be interpreted in the general framework of
our main model (14.1). Here we follow a compressed sensing approach in the
sense that we establish exact recovery of all parameters of a neural network from
the observation of the minimal amount of input-output pairs. Moreover, low-rank
approximations to the space generated by tensor products of (entangled) weights
play a crucial role.

14.2.1 From One Neuron to Deep Networks

Deep learning has become an extremely successful approach with state-of-the-art
performances on various applications such as speech recognition, image recogni-
tion, language translation, and as a novel method for scientific computing. In order
to understand how deep learning works, it is perhaps beneficial to start with the
simplest building block, i.e., the artificial neuron. An artificial neuron is a ridge
function f : Rd → R of the type

f (x) = g(wT x + θ) = ρ(wT x) = ρ(w · x), (14.2)

where g : R → R is a scalar univariate function and w ∈ R
d is the direction of

the ridge function. Ridge functions are simple functions to be used as a phase-field
(hyperplane) separatrix. Sums of such functions provide (soft) tilings/tessellation
of the space. In general the set of linear combinations of ridge functions {f (x) =∑m

i=1 αig(wi · x + θi)} is dense in the continuous functions C for g ∈ Cb. Hence,
they constitute simple building blocks for composing high-dimensional functions.

Deep learning is about realizing complex tasks by means of highly parametrized
functions f : Rd → R

mL , called deep artificial neural networks, composing layers
of artificial neurons of the type

f (x) = f (x; (W, τ)) := ρL(W
�
L ρL−1(W

�
L−1 . . . ρ1(W

�
1 x) . . . ),

where ρ�(·) = g(· + τ�) are shifted activation functions, the shifts τ� ∈ R
m� are

bias parameters, and the matrices W� ∈ R
m�×m�+1 collect the weight of each layer

� = 1, . . . , L.
In practical applications the number of layers L, determining the depth of

the network, and the dimensions m� × m�+1 of the weight matrices W� are
typically determined through heuristic considerations, whereas the weight matrices
themselves and the shifts are learned based on training data. The training of a neural
network is done by data misfit: Given training data (xi, yi), i = 1, . . . , N (for
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instance, an image xi and a label yi indicating, e.g., whether the image is of cat
or dog), one learns (W, τ) by minimization of the loss function

L(W, τ) = 1

N

N∑

i=1

|yi − f (xi; (W, τ))|2 .

Mean squared error loss as above is one of the most popular misfit used in
practice, but also the Kullback–Leibler divergence (relative entropy), or Wasserstein
distances are discrepancies considered much in practice. The minimization of
the misfit is usually performed by first order optimization algorithms, such as
(stochastic) gradient descent and variations [57], because of their simplicity and
scalability. In support of deep learning come the empirical evidence of being able
of outperforming other methods (against “certified” benchmarks, e.g., ImageNet),
but also the recent theoretical discoveries, e.g., [9, 10, 15] that show that deep
artificial network can approximate very complicated high-dimensional functions
without incurring in the curse of dimensionality.

14.2.2 Data Interpolation and Identification of Neural
Networks

For the number of samples N = O(W), where W = ∑L−1
�=1 m� × m�+1 is the

complexity of the network, it is known that there exist data interpolating networks
with 0-loss, see, e.g. [61, 72]. We call this situation the realizable regime, i.e.,
the data are realized by a network. In this case one expects multiple optimal
networks, which may be due also to symmetries (permutation of neurons in one
layer, and signs due to symmetries of activation functions, e.g., tanh(2x − 1) =
− tanh(−2x + 1)). In the overparametrized regime N � W the loss landscape
becomes increasingly “less nonconvex” and the number of possible optimal network
may further increase. Surprisingly overparametrization and fitting do not cause
overfitting [73]. This due to the fact that optimization methods used for training
such as (stochastic) gradient descent perform an implicit regularization and they
promote low complexity networks, see, e.g., [3].

The unique identifiability of neural networks from realizable input-output pairs
has been considered in the literature for over three decades [2, 58]. Perhaps the most
relevant result is the one of Fefferman [16]:

Theorem 14.1 (Fefferman ‘94) A generic fully connected deep neural network
with activation function g = tanh is uniquely identified by its output up to natural
symmetries.

We provide here the general lines of the proof of this remarkable result: The
proof uses that tanh is a meromorphic function that is i-periodic. Then sums and
compositions of dilated and shifted tanh are again regular outside countable poles,
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Fig. 14.1 Failure of stochastic gradient descent to identify a neural network in the realizable
regime

which encode the weights and shifts of the network. If two networks coincide on R
d

then by analytic extension they coincide on C
d and necessarily have the same poles,

hence the same network architecture. The result has been generalized by Vlacic
and Boelcskei [62] to non-fully connected networks with more general activation
functions. However, a neural network remains fully determined by a finite number
of parameters. Its identification is known since the 1990s to be in general an NP-hard
problem [6, 38]. However, identification is not at all expected to generically require
an infinite amount of training samples as assumed in the above mentioned results.
Yet gradient descent will not converge to identification in the realizable regime
N = O(W), see Fig. 14.1. This failure of such algorithm to perform identification
is due to the non-convexity of the loss.

Identifiability means that given a sufficiently generic network no other network,
smaller or larger, up to the above mentioned equivalences, can in fact realize the
same task exactly (explainability and uniform stability). Robustness or stability
mean that if a larger network performs approximately a task, then it may be
reduced to a minimal and potentially significantly smaller network performing
approximately the same task.

The scope of results [17, 20–22] can be summarized in the following

Theorem 14.2 (Fornasier et al. 2018–2021) Generic networks of complexity W

and with smooth activation functions can be stably and constructively identified up
to natural symmetries from a number N = O(W) of (possibly actively chosen)
samples.

Below we would like to show instances of this result, starting from the most basic
case of scalar shallow networks to arrive to the case of generic deep neural networks.
The typical proof architecture goes as follows. We learn the parameters, comprised
of weight matrices and shifts, in a two-step fashion.

• First, we use derivative information of the network to identify the so-called
entangled weight matrices, which essentially encode the information contained
in the standard weight matrices up to sign and scaling.

• Signs, scalings, and shifts of the network are identified by means of gradient
descent for least squares.
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Let us start showing how such results are proven with the simple case of shallow
networks.

14.2.3 Shallow Feed-Forward Neural Networks

A neural network f : Rd → R with one hidden layer and one output node can be
defined as

f (x) =
m∑

i=1

big(w
T
i x + θi) =

m∑

i=1

ρi(w
T
i x).

We start with the case m ≤ d and {w1, . . . wm} linearly independent (below we also
approach the overcomplete case m > d, see Remark 14.1). Differently from the
case of the single neuron, the use of first order differentiation

∇f (x) =
m∑

i=1

ρ′i (wT
i x)wi ∈ W = span {w1, . . . , wm} ,

furnishes information about W = span {w1, . . . , wm} (active subspace identifi-
cation, in a moment), but it does not on the single weights wi . Higher order
differentiation yields tensors

Dkf (x) =
m∑

i=1

ρ
(k)
i (x)wi ⊗ · · · ⊗ wi︸ ︷︷ ︸

k−times

,

which require that the ρi’s are sufficiently smooth. In a setting where the samples
are actively chosen, it is generally possible to approximate these derivatives by
finite differences. However, even for passive sampling there are ways to construct
similar tensors, which rely on Stein’s lemma or differentiation by parts or weak
differentiation. If the density p(x) of the sampling points xi’s is (approx.) known,
i.e., dμX(x) = p(x)dx, then

1

N

N∑

i=1

f (xi)(−1)k
∇kp(xi)

p(xi)
≈
∫

Rd

f (x)(−1)k
∇kp(x)

p(x)
p(x)dx

=
∫

Rd

∇kf (x)dμX(x) = Ex∼μX
[∇kf (x)]

=
m∑

i=1

(∫

Rd

ρ
(k)
i (wT

i x)dμX(x)

)
wi ⊗ · · · ⊗ wi︸ ︷︷ ︸

k−times

.
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In recent work [36], stable 1-rank decompositions of third order symmetric
tensors (k = 3) have been used for the weights identification of one hidden layer
neural networks. In this review chapter we show that using second derivatives
(k = 2) surprisingly suffices and the corresponding error estimates reflect positively
the lower order and potential of improved stability. Moreover, the technique extends
to deeper networks and overcomplete cases.

Theorem 14.3 (Fornasier, Vybíral, Daubechies) Let m ≤ d and let f be a
shallow network f (x) = ∑m

i=1 ρi(wi · x), with ρi ∈ C3[−1, 1], {wi} ⊂ R
d are

lin. independ. Let ε > 0. Then by using at most mX [(d + 1)+ (m+ 1)(m+ 2)/2]
random exact point evaluations of f , which correspond to numerical differentiation
of f with stepsize ε, there exists a constructive algorithm computing approximations
{ŵi} of the weights up to a sign, for which

( m∑

i=1

‖ŵi − wi‖2
2

)1/2

� ε,

with probability at least 1−mδ(mX /m2). Moreover, we can construct an approxi-
mating shallow net f̂ : Bd

1 → R with weights ŵi , such that

‖f − f̂ ‖L∞(Bd
1 )

� ε.

Proof (Sketch) The proof of this result is based on the following arguments. By
active subspace search based on first order differentiation it is possible to reduce the
problem to the case m = d. We omit here more details and we refer to [22]. Once
this dimensionality reduction is performed, the recovery strategy of the weights wi

goes along the following steps:

• Recover an approximation to Ŵ of W = span{wi ⊗ wi, i = 1, . . . , m} ⊂
R
m×m (by active or passive sampling) by using approximate second order

differentiation;
• Perform a whitening procedure, which allows us to restrict our search to near

orthonormal weights w1, . . . , wm without loss of generality;
• Then we consider the following algorithm

arg max ‖M‖∞, s.t. M ∈ Ŵ, ‖M‖F ≤ 1

to recover wi’s—or their good approximation ŵi (which is of course possible
only up to the sign).

��
Let us describe concisely these steps in more detail.
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14.2.3.1 The Approximation to W: Active Sampling

By PCA compute

Ŵ = PCA{Δ2
εf (xj ), j = 1, . . . , mX },

where

(Δ2
εf (x))j,k =

f (x + ε(ej + ek))− f (x + εej )− f (x + εek)+ f (x)

ε2 ,

for j, k = 1, . . . , m, is a finite difference approximation to the Hessian of f a
x. (Passive sampling is also possible.) For x drawn at random and by applying in a
suitable way Chernoff matrix bounds [60], one derives a probabilistic error estimate,
in the sense that

‖PW − PŴ‖F→F ≤ Cm3/2ε,

with high probability, see Fig. 14.2.

14.2.3.2 Whitening

Once Ŵ ≈ W is available, the whitening procedure is used to reduce the problem
to the case where the weights are nearly orthonormal. We denote

S(w1, . . . , wm) = inf
{( m∑

i=1

‖wi − zi‖2
2

)1/2 : z1, . . . , zm orthonormal basis in Rm
}
,

as measure of the level of orthogonality of the wi’s.

Fig. 14.2 Concentration of Hessians
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Theorem 14.4 (Fornasier, Vybíral, Daubechies) Let γ, η > 0 be positive real
numbers. Let ‖PW − PŴ‖F→F ≤ η and let Ĝ ∈ Ŵ and G = PW (Ĝ) be positive
definite with G̃ � γ Im, then

S(
√
λ1Âw1, . . . ,

√
λmÂwm) ≤ η‖Ĝ‖F

γ

and
{

Âw1
‖Âw1‖2

, . . . , Âwm

‖Âwm‖
}
are ε-nearly orthonormal, for ε =

√
2η‖Ĝ‖F
γ

, i.e.,

S
( Âw1

‖Âw1‖2
, . . . ,

Âwm

‖Âwm‖2

)
≤
√

2η‖Ĝ‖F
γ

=: ε.

An optimal choice of Ĝ can be obtained by solving

max
G̃∈Ŵ
‖G̃‖F=1

min
x∈Rm

‖x‖2=1

xT G̃x.

(Notice that the map G̃→ min x∈Rm

‖x‖2=1
xT G̃x is concave and one can use a projected

gradient ascent method to compute Ĝ.)

In view of the simple reformulation

f (WT x) =
m∑

i=1

ρi(wi · ÂT x) =
m∑

i=1

ρ̂i (
Âwi

‖Âwi‖2
wi · x) = f̂ (x),

and Theorem 14.4, for ρ̂i (t) = ρi(t‖Âwi‖2), we could further assume without loss
of generality that the vectors {wi : i = 1, . . . , m} are nearly orthonormal in first
place.

14.2.3.3 The Recovery Strategy of the Weights wi

It should be clear that Ŵi = PŴ (wi ⊗ wi) are nearly optimal solutions for

arg max ‖M‖∞, s.t. M ∈ Ŵ, ‖M‖F ≤ 1. (14.3)

Under the assumption of near orthonormality of wi obtained by whitening, by
studying first and second order optimality conditions for this constrained nonconvex
program, one can also show that there are no relevant solutions other than Ŵi . A
simple projected gradient ascent algorithm performs the search of optimal solutions.
This concludes the details of the proof of Theorem 14.3.
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14.2.4 Deeper Networks

The approach has been further extended to two hidden layers and deeper networks
in [17, 21]. Recall that a feed-forward deep network is given by

f (x) = f (x; (W, τ)) := ρL(W
�
L ρL−1(W

�
L−1 . . . ρ1(W

�
1 x) . . . )

or more formally

Definition 14.1 (Feed-Forward Neural Network) Let L,m0, . . . , mL ∈ N with
D = m0. For � ∈ [L], consider weight matrices

W� =
(
w
[�]
1 | . . . |w[�]m�

)
∈ R

m�−1×m�,

shifts τ� ∈ R
m� , and let g : R→ R be an activation function. A feed-forward neural

network with mL outputs is a function f : Rd → R
mL computed via the recursive

rule y[0](x) = x,

y[�](x) = g(W�
� y[�−1] + τ�), � ∈ [L]

and f (x) = y[L](x), where g is meant to be applied component-wise to non-scalar
inputs. The components of f are denoted by fp for p ∈ [mL] and we often write
ρ�(·) = g(· + τ�). It will often be useful to refer to the number of neurons of the
network as m = m1 + · · · +mL.

Let us assume now that an oracle provided us with matrices of the type

Ṽ� =
�−1∏

k=1

(WkDk)W�π�S� ∈ R
D×m�, � ∈ [L], (14.4)

where D1, . . . , DL−1, S1, . . . , SL are arbitrary invertible diagonal matrices and
π1, . . . , πL are permutation matrices. Then the network can be completely
reparametrized by using the matrices Ṽ� with fewer remaining free parameters
S�,D�, τ�:

Proposition 14.1 (Fiedler, Fornasier, Klock, Rauchensteiner) Assume rk(Ṽ�) =
m� for all � ∈ [L]. Then the feed-forward network f̃ defined by weight matrices
W̃�

1 = S−1
1 Ṽ �1 and

W̃�
�+1 = S−1

�+1Ṽ
�
�+1(Ṽ

�
� )†S�D̃

−1
� , � ∈ [L− 1],

with D̃� = π�� D�π�, shifts τ̃� = π�� τ�, and activation functions g satisfies f̃ ≡
π�L ◦ f .
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This parametrization allows to reduce the problem of identification from W parame-

ters to O(
√
W). This reduction of complexity turns out key to allow gradient descent

to be able to complete the identification (contrary to Fig. 14.1). Surprisingly matrices
of the type (14.4) can be easily obtained again by second order differentiation:
Denote diagonal matrices G�(x) := diag

(
ρ′�(W�

� y[�−1](x))
) ∈ R

m�×m� and the
so-called entangled weights are given by

V�(x) :=
(
�−1∏

k=1

WkGk(x)

)

W�. (14.5)

Proposition 14.2 The Hessian of the p-output fp of a FFNN f reads

∇2fp(x) =
m1∑

i=1

S
[1]
p,i(x)

(
w
[1]
i ⊗ w

[1]
i

)
+

L∑

�=2

m�∑

i=1

S
[�]
p,i(x)

(
v
[�]
i (x)⊗ v

[�]
i (x)

)

=
L∑

�=1

V�(x)S
[�]
p (x)V�(x)

�,

for p ∈ [mL]. (v[�]i (x) are columns of V�(x).)

Hence, if the decomposition ∇2fp(x)= ∑L
�=1 V�(x)S

[�]
p (x)V�(x)

� would give
access to V�(x) one could then apply Proposition 14.1. Unfortunately, such matrix
decomposition is nonorthogonal and not immediately obtainable. However, com-
bining concentration of measure and suitable optimizations it is possible to obtain
V�(x) for some x∗ from sampling multiple Hessians. Let us show how this strategy
works. First one needs to compute a suitable space V̂ ≈ V spanned by symmetric
rank-1 matrices:

• In view of the Lipschitz continuity of x → V�(x), by sampling approximate
Hessians Δ2

εfp(x) from a distribution x ∼ μX tightly concentrating, e.g., at x∗,
Hessians cluster around a subspace V = span{vi ⊗ vi}.

• The spanning rank-1 matrices vi ⊗ vi = v
[�]
i (x∗) ⊗ v

[�]
i (x∗) are precisely made

of entangled weight vectors v[�]i (x∗), columns of V�(x∗);
• The subspace V can be again stably approximated V̂ ≈ V by PCA of the point

cloud {Δ2
εfp(xi) : xi ∼ μX}, see Fig. 14.2.

Then one uses optimization to find v
[�]
i (x∗)⊗ v

[�]
i (x∗) near the subspace Ŵ :

• Denote V = {v1 ⊗ v1, . . . , vm ⊗ vm}, where m = m1 + · · · +mL > d.
• We denote the approximation error by ‖PV̂ − PV‖F =: δ, and an upper error

bound ν := CF − 1, where CF > 1 is the upper frame constant of {v1, . . . , vm}
(hence the system is not expected to be near orthonormal but it is morally a near
unit norm Parseval frame!).
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• Instead of optimizing over matrices as done in (14.3), one can opt for more
efficiently optimizing over vectors:

max‖u‖2=1
ΦV̂ (u) := ‖PV̂ (u⊗ u)‖2

F .

Theorem 14.5 (Fiedler, Fornasier, Klock, Rauchensteiner) Assume that ν and
δ are sufficiently small. For each i there exists a local maximizer u∗i of ΦŴ with
ΦŴ (u∗i ) ≥ 1− δ within the cap

Ui :=
{

u ∈ S
D−1 : 〈u,wi〉 ≥

√

(1− 3δ)
1− ν

1+ ν

}

.

Furthermore, for any constrained local maximizer u ∈ S
d−1 of ΦV̂ with ΦV̂ (u) >

7 1+ν
1−ν δ and basis expansion PV̂ (u ⊗ u) = ∑K

i=1 σiPV̂ (vi ⊗ vi) ordered according
to σ1 ≥ . . . ≥ σK , we have

min
s∈{−1,1} ‖u− svj‖2 ≤

√
2ν
∑K

i=2 σ
2
i + 2δ

(1− ν)(1− 6 ν
1+ν − 13δ)−

√
6 ν

1+ν + 13δ − 2δ
.

Remark 14.1 Notice that this procedure of identification of the vi⊗vi in V for m >

d now also solves the problem of identification of 1-hidden layer neural networks
for the number of neurons m > d.

Once entangled weights are computed by Algorithm 1 as ensured by The-
orem 14.5 and [42], see Fig. 14.3, one can proceed to identifying the residual
parameters by gradient descent, see Fig. 14.4. This conclude the proof of The-
orem 14.2. We compare stochastic gradient descent (SDG) with our algorithmic
pipeline in Fig. 14.4. While SGD does not provide identification of the network, our
method obtains full recovery of deep networks very efficiently.

Algorithm 1: Subspace power method
input : PV̂ , stepsize γ > 0, number of iterations J

1 Sample u0 ∼ Uni(SD−1)

2 for j = 1,. . . ,J do
3 uj = PSD−1 (uj−1 + 2γPV̂ (uj−1 ⊗ uj−1)uj−1)

4 end
output : uJ
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Fig. 14.3 Percentage of entangled weights’ recovery for different architectures (with fixed and
variable number of outputs) with respect to the number of neurons

Fig. 14.4 Comparison of stochastic gradient descent
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14.3 Quantized Compressed Sensing with Message Passing
Reconstruction

In this section, we study quantized compressed sensing (QCS) from a statistical
inference point of view. Consider the model

Qk = g
( 1√

n
〈Ak,X〉

)
, 1 ≤ k ≤ m, (14.6)

where

• X is a vector in R
n whose entries xi , i = 1, . . . , n are output by a memoryless

source with distribution PX,
• Ak is the transposed kth row of A ∈ R

m×n which is a dense measurement matrix
with iid N (0, 1) entries, and

• g : R→ Q with #(Q) = 2b is a b-bit quantization function.

We assume that PX, g, and A are known to the decoder. Based on this model, we
can form the posterior distribution

P(x|Q,A) ∝
n∏

i=1

PX(xi)

m∏

k=1

1

(
Qk = g

(
1√
n
〈Ak, x〉

))
(14.7)

to compute the optimal estimator E[X |Q,A] with respect to the Minimum Mean
Square Error (MMSE) criterion. Unfortunately, finding the optimal estimator is
computationally infeasible unless the dimensions are extremely small. A growing
body of recent research, much of which is built on ideas and tools from statistical
physics, has been focused on developing computationally feasible estimators that
approximate the MMSE estimator and investigates the fundamental limits of the
optimal estimator. We shall review some of these works below.

Our goal in this section is to investigate the RD trade-offs for a QCS system. To
this end, we first review the Generalized Approximate Message Passing (GAMP)
algorithm and apply it to our QCS setting in Sect. 14.3.1. There, we also numerically
compare the performance for a Bernoulli-Gaussian source with the rate-distortion
(RD) function. Section 14.3.2 conducts a similar study for the case of a distributed
Bernoulli-Gaussian source. There, we extend the GAMP algorithm to the two-
terminal setting.
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X

, Q

Fig. 14.5 Graphical model for QCS. The light blue factor nodes represent the scalar quantizer g
and the observed quantized measurements Q. The dark blue variable nodes represent the signal
components, each of which has marginal distribution PX

14.3.1 Bayesian Compressed Sensing via Approximate
Message Passing

Approximate message passing (AMP) is a computationally efficient iterative thresh-
olding algorithm for large scale CS problems [13]. The paper [53] provided an
extension to more general signal priors and elementwise output functions and
established the term Generalized Approximate Message Passing (GAMP) that is
widely used.

We give a brief sketch of the main ideas behind (G)AMP. The starting point for
the derivation of AMP are the belief propagation (BP) equations corresponding to
its graphical model, see Fig. 14.5. In this graphical model, the square factor nodes
at the top represent the quantizer g with the observations Q, whereas the circular
variable nodes represent the signal components about which the distribution PX is
known as an initial condition for the algorithm. The BP algorithm then iteratively
exchanges the available information (called beliefs) between the variable nodes
and factor nodes. Unfortunately, this exchange of information involves tracking
complicated probability measures and is unfeasible for applications such as CS.
Loosely speaking, this challenge can be tackled by exploiting the fact that mixtures
of many random variables tend to become Gaussian by the central limit theorem.
Since a Gaussian distribution is fully specified by its mean and variance, these
distributions can easily be tracked. Carefully using the central limit theorem and
other approximations, one can then reduce the BP iterations to a sequence of matrix-
vector multiplications and two scalar inference problems.

We will tailor the GAMP algorithm steps to QCS, as presented in [39]. The first
scalar problem is related to the factor nodes. To this end, denote μ := E

[
X2
]
, let

g : R → {1, . . . , 2b} be a quantization function, (V ,W)
iid∼ N (0, 1), and consider

the quantizer output
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Q̃ = g
(√

η · V +√μ− η ·W ) (14.8)

for η ∈ [0, μ]. We interpret
√
ηV as side information and are interested in

estimating W from the quantized measurement. Define the two functions gPout :
R→ R and hPout : R→ R via:

gPout(q̃, v, μ− η; g) = 1√
μ− η

E[W |Q̃ = q̃,
√
ηV = v] (14.9)

hPout(q̃, v, μ− η; g) = 1

μ− η

(
1− Var[W |Q̃ = q̃,

√
ηV = v]

)
. (14.10)

The second inference problem is that of estimating a single X ∼ PX from a
measurement corrupted by Gaussian noise

X̃ = X +N/
√
snr (14.11)

where snr ≥ 0 and N ∼ N (0, 1) independent of X. Note that X̃ has a PDF
irrespective of whether X is discrete, continuous, or mixed. We define the two
functions gPX : R→ R and hPX : R→ R via

gPX(x̃, snr) = E[X |X̃ = x̃]
hPX(x̃, snr) = Var[X|X̃ = x̃].

(14.12)

Taking vectors as inputs, the functions gPout , hPout , gPX , hPX , and (·)−1 are
applied component-wise and % denotes component-wise multiplication for vectors
and matrices. The GAMP algorithm for QCS is given in Algorithm 2.

An important property of (G)AMP algorithms is that their asymptotic perfor-
mance (as n,m → ∞ with m/n → α) can be predicted via the State Evolution
(SE). We define two state variables - one for each scalar inference problem (14.8)
and (14.11). The SE then iteratively recomputes the state variables via the functions
hPout and hPX until convergence. The correctness of SE for GAMP has been proved
in [37]. The SE procedure for QCS is given in Algorithm 3.

As an example, consider the Bernoulli-Gaussian spike source with distribution

PX = (1− p) · δ0 + p ·N (0, 1). (14.13)

For this source, the estimation functions in (14.12) are

gPX(x̃, snr) =
x̃

1+ (1−p)
p

√
1+ snr exp

(
− snr2x̃2

2(1+snr)
) · snr

1+ snr
(14.14)
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Algorithm 2: GAMP for QCS [39]

initialize: y0 = E[X]
v0
x = Var[X]
ŝ0 = 0

1 for t = 1, 2, 3, . . . do
2 Factor update:
3 vtp = 1

n
(A% A)vt−1

x

4 p̂t = 1√
n

Ayt−1 − vtp % ŝt−1

5 ŝt = gPout (q, p̂
t , vtp; g)

6 vts = hPout (q, p̂
t , vtp; g)

7 Variable update:
8 vtr = 1

n
(A% A)Tvts

9 r̂t = yt−1 + (vtr )
−1 % ( 1√

n
ATŝt
)

10 yt = gPX (r̂
t , vtr )

11 vtx = hPX (r̂
t , vtr )

12 end
output : yt

Algorithm 3: GAMP SE for QCS

initialize: μ = E
[
X2
]

η0
SE = 0

1 for t = 1, 2, 3, . . . do
2 Factor update:
3 snrt = α · E

V Y

[
hPout (Q, V,μ− ηtSE; g)

]

4 Variable update:

5 ηtSE = μ− E
X̃

[
hPX

(
X̃, snrt

)]

6 end
output : MSE = μ− ηtSE

hPX(x̃, snr) =
1

1+ (1−p)
p

√
1+ snr exp

(
− snr2x̃2

2(1+snr)
)
(

1

1+ snr
+
( snr · x̃

1+ snr

)2)

− gPX(x̃, snr)
2. (14.15)

The estimation functions on the quantizer side, Eqs. (14.9)–(14.10), are

gPout(q̃, v, μ− η; g) = 1

μ− η

(
E[Z |g(Z) = q̃] − v

)
, Z ∼ N (v, μ− η)

(14.16)

hPout(q̃, v, μ− η; g) = 1

μ− η

(
1− Var[Z|g(Z) = q̃]

μ− η

)
, Z ∼ N (v, μ− η).

(14.17)
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Fig. 14.6 GAMP performance as predicted by SE and empirically observed for a Bernoulli-
Gaussian source with p = 0.1 with n = 5000

Since Z is a truncated Gaussian on the event {g(Z) = q̃} for some q̃ ∈ Q, the
above expectation and variance can easily be calculated numerically in terms of the
Gaussian probability and cumulative density functions.

In Fig. 14.6, we compare the SE predictions of the asymptotic MSE with the
errors empirically observed through simulations for different b and α. Here, we
chose PX to be Bernoulli-Gaussian with p = 0.1 and the signal length n = 5000.
For b ≥ 2, we choose g such that each quantization interval has probability 2−b
under the Gaussian measure with mean zero and variance μ. For each b and α we
plot the median MSE of 250 experiments.

We further show the critical measurement rate αcrit, at which the phase transition
to perfect recovery happens for Gaussian matrices with noiseless and unquantized
measurements. While the optimal estimator achieves perfect reconstruction for α >

p even for Gaussian matrices, this is not the case for AMP [43, 44]. In this case, we
can use SE to compute αcrit ≈ 0.21.

As expected, the MSE decreases with increasing b. Further, there is a sharp
decline in the MSE for α > αcrit, which matches the phase transition in the
limit of infinite quantization rate. We conclude that the SE predictions for these
parameters are very accurate. For α � αcrit, the error decreases slowly in α as we
are effectively oversampling the signal which is known to yield an error decrease
inversely proportional to the sampling rate, see [35, Thm. 1].
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14.3.2 Two-Terminal Bayesian QCS

AMP was extended to a distributed setting in [24] for unquantized two-terminal CS
and termed Multi-Terminal Approximate Message Passing (MAMP). This section
combines the GAMP and MAMP algorithms for the distributed problem.

Formally, we have two generalized linear models

Q1[k] = g1

( 1√
n
〈A(1)k ,X1〉

)
, 1 ≤ k ≤ m1

Q2[k] = g2

( 1√
n
〈A(2)k ,X2〉

)
, 1 ≤ k ≤ m2,

(14.18)

where

• (X1,X2) are output by a memoryless source with distribution PX1X2 ,
• A(1) ∈ R

m1×n and A(2) ∈ R
m2×n are the measurement matrices, each with iid

N (0, 1) entries, and A(j)k is the transposed kth row of A(j),
• g1 : R → Q1 and g2 : R → Q2 are two quantization functions with b1 and b2

bits, respectively.

The graphical model for this setting is depicted in Fig. 14.7. We see that the two
terminals are connected only via the knowledge of the joint distribution of the
two signals. To get the Multi-Terminal Generalized Approximate Message Passing
(MGAMP) reconstruction algorithm, we combine the GAMP and MAMP steps in
an obvious way without giving any formal derivations. To this end, recall the two
scalar channels (14.8) and (14.11). The first channel was related to the quantization
of the measurements. As this happens individually in the two terminals, those factor
updates are also done individually in the MGAMP algorithm and we can reuse the
functions gPout and hPout given in (14.9)–(14.10). For the additive noise channel in
Eq. (14.11), we now have two parallel noise channels

X̃1 = X1 + Z1/
√
snr1

X̃2 = X2 + Z2/
√
snr2,

(14.19)

where (X1, X2) ∼ PX1X2 and Z1 and Z2 are independent of each other and

(X1, X2), and each have distribution N (0, 1). Define the functions g(1)PX1X2
, g(2)PX1X2

,

h
(1)
PX1X2

, and h
(2)
PX1X2

(all R2 → R) via
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Fig. 14.7 Graphical model for two-terminal QCS. The light blue factor nodes represent the scalar
quantizers and the observed quantized measurements at each terminal. The dark blue variable
nodes represent the signal components of the two terminals and the knowledge of their joint
distribution

g
(1)
PX1X2

(x̃1, x̃2, snr1, snr2) = E[X1 |X̃1 = x̃1, X̃2 = x̃2]

g
(2)
PX1X2

(x̃1, x̃2, snr1, snr2) = E[X2 |X̃1 = x̃1, X̃2 = x̃2]

h
(1)
PX1X2

(x̃1, x̃2, snr1, snr2) = Var[X1|X̃1 = x̃1, X̃2 = x̃2]

h
(2)
PX1X2

(x̃1, x̃2, snr1, snr2) = Var[X2|X̃1 = x̃1, X̃2 = x̃2].

(14.20)

For vectors, these functions are again applied component-wise. The MGAMP
algorithm is described more precisely in Algorithm 4. Similarly, the behavior of
MGAMP can be predicted by its SE, which is given in Algorithm 5.

As an example, we perform MGAMP experiments and compute the SE predic-
tions for a distributed Bernoulli-Gaussian spike source

PX1X2 = (1− p) · δ0 + p ·N
(
0,
[

1 ρ

ρ 1

])
(14.21)

for some ρ ∈ (−1, 1). The scalar quantizers g1 and g2 are again chosen to maximize
the entropies of their outputs, i.e., they partition the real line into intervals of equal
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Algorithm 4: MGAMP for QCS
initialize: for j = 1, 2, set

μj = E
[
X2
j

]

y0
j = E

[
Xj

]

v0
xj
= Var

[
Xj

]

ŝ0
j = 0

1 for t = 1, 2, 3, . . . do
2 Factor update: for j = 1, 2, set
3 vtpj = 1

n

(
A(j) % A(j)

)
vt−1
xj

4 p̂t = 1√
n

A(j)yt−1
j − vtpj % ŝt−1

j

5 ŝtj = gPout (qj , p̂
t
j , vtpj ; gj )

6 vtsj = hPout (qj , p̂
t
j , vtpj ; gj )

7 Variable update:
8 Linear step: for j = 1, 2, set

9 vtrj = 1
n

(
A(j) % A(j)

)T
vtsj

10 r̂tj = yt−1
j + (vtrj )

−1 %
(

1√
n

A(j)Tŝtj
)

11 Nonlinear step: for j = 1, 2, set

12 ytj = g
(j)
PX1X2

(r̂t1, r̂
t
2, vtr1

, vtr2
)

13 vtxj = h
(j)
PX1X2

(r̂t1, r̂
t
2, vtr1

, vtr2
)

14 end
output : yt1, yt2

Algorithm 5: MGAMP State Evolution for QCS
initialize: for j = 1, 2, set

μj = E
[
X2
j

]

η0
j = 0

1 for t = 1, 2, 3, . . . do
2 Factor update: for j = 1, 2, set

3 snrtj = αj EQY

[
hPout (Q, V,μj − ηtj ; gj )

]

4 Variable update: for j = 1, 2, set

5 ηti = μj − E
X̃1X̃2

[
h
(j)
PX1X2

(
X̃1, X̃2, snrt1, snr

t
2

)]

output : MSE μj − ηtj for j = 1, 2

probability under the Gaussian measure. Let x̃ = [x̃1, x̃2]T. For this source, the
estimation functions in (14.12) can be computed to be

g
(1)
PX1X2

(x̃1, x̃2, snr1, snr2) = 1

1+ (1−p)
p

N (x̃;0,Σ0)

N (x̃;0,Σ1)

· [1 ρ
]
Σ−1

1 x̃ (14.22)

and
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h
(1)
PX1X2

(x̃1, x̃2, snr1, snr2)

=
1− [1 ρ

]
Σ−1

1

[
1
ρ

]
+
([

1 ρ
]
Σ−1

1 x̃
)2

1+ (1−p)
p

N (x̃;0,Σ0)

N (x̃;0,Σ1)

− g
(1)
PX1X2

(x̃1, x̃2, snr1, snr2)2,

(14.23)

where

Σ0 =
[

1/snr1 0
0 1/snr2

]
and Σ1 =

[
1+ 1/snr1 ρ

ρ 1+ 1/snr2

]
. (14.24)

The functions g(2)PX1X2
and h

(2)
PX1X2

are computed similarly. Since the functions gPout

and hPout depend only on the quantizer and are computed individually in the two
terminals, we can reuse (14.16)–(14.17).

For our experiments, we chose the measurement rates and quantizers to be the
same at both terminals. Thus, the average MSE is also the same at both terminals.
Figure 14.8a plots the SE and experimental results for p = 0.1, n = 5000 and
the correlation coefficient ρ = 0.9. Observe that SE again accurately predicts the
experimental performance. Figure 14.8b compares the SE predictions for ρ = 0.9
(solid lines) and ρ = 0 (dotted lines). Observe that for small measurement rates, a
high correlation can be exploited to reduce the estimation error. For larger rates, the
performance is nearly identical in both cases. Observe also that the phase transition
is reduced to a measurement rate of approximately αcrit ≈ 0.15 (as compared to
αcrit ≈ 0.21 in Fig. 14.6) at each terminal.

14.4 Signal Processing in Earth Observation

In the Earth observation (EO) task, the continuous improvement of signal and
image processing techniques is the key to retrieving valuable information from the
ever-growing remote sensing data acquired every day. Information retrieval can be
usually performed by solving the general inverse problem given in (14.1), where
the measurements in Y have significantly smaller dimension than the sparse, jointly
sparse, low-rank signals in X. The matrix A represents the system information with
the respect to the variable X in a nonlinear form. Ns and Nm are specified as model
errors and noises, and the function g(·) takes into account quantization effects while
acquiring the measurements.

Two categories of applications incorporating models of the type shown in (14.1),
which are of particularly high demand for current and next-generation optical EO
missions, will be unfolded in the scope of the following chapter.
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Fig. 14.8 Comparison of SE
and empirical performance
for MGAMP with equal
measurement rates and
quantizers at both terminal.
The MSE is the same at both
terminals. (a) p = 0.1,
ρ = 0.9. (b) ρ = 0.9
corresponds to the solid line
and ρ = 0 to the dotted lines
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14.4.1 Multi-Sensor and Multi-Resolution Data Fusion

Remotely sensed optical imaging systems compromise on either detailed spectral
mapping capacity, which allows to discriminate and classify materials, or high-
spatial resolution, which elucidates the scene geometry. Figure 14.9 illustrates
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Fig. 14.9 Illustration of the trade-off between spectral and spatial resolution for different optical
remote sensing instruments [23], e.g., WorldView-2, Sentinel-2, and EnMAP

the trade-off between spatial and spectral resolution of remote sensing images,
including several well-known EO satellite missions, i.e.,

• EnMAP: The next-generation German hyperspectral (HS) instrument featuring
244 spectral bands with 30 m ground sampling distance (GSD);

• Sentinel-2: A superspectral (SS) instrument featuring 13 spectral bands with 10
m, 20 m, and 60 m GSD;

• WorldView-2: A platform carrying both a multispectral (MS) image with 8 bands
at a 2 m GSD and a single broadband panchromatic (PAN) sensor at a GSD of
0.5 m.

The trade-off between spectral and spatial resolution has been long a great
challenging issue for monitoring heterogeneous surfaces, such as urban areas
that are characterized by both high levels of spatial detail and large variants of
materials and objects. Multi-sensor or multi-resolution fusion (e.g., HS and MS
data fusion) is indispensable for mitigating the physical limitations associated with
individual sensors to a great extent [69]. The idea is to fuse data acquired by two
complementary instruments to obtain both high-spectral and high-spatial resolution.

Since the dimension of the fusion product is always higher than the summed
dimensions of the input data, a difficulty arises in maximizing both spatial and
spectral resolutions due to the very large number of degrees of freedom. More
precisely, the larger the difference between the spatial resolutions or numbers of
spectral channels of the input data, the larger the number of degrees of freedom.
Consequently, the fusion problem becomes increasingly ill-conditioned and fusion
products deviate significantly from the ground truth [31, 70].
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Recently, much research was conducted by many well-known groups to render
this type of problem well-posed by inferring prior knowledge about sparse or
jointly sparse representations. The approach followed in the most recent studies
is a sparsity-promoting model with an error term, denoted as f (Z, Yh, Yl) corre-
sponding to an underdetermined system, which is derived from a sensor observation
model. This model describes the relationship between the target high-spatial and
high-spectral resolution image Z, the high-spatial resolution measurement (first
observed image) Yh and the high-spectral resolution measurement (second observed
image) Yl [64]. The system can be written as

min
Z′,X

f (Z′, Yh, Yl)+ λh(Z′, X), (14.25)

where λ ∈ R is a regularization parameter and Z′ = φ(Z) is a low-dimensional
(compressed) representation of the high-dimensional target image Z. The regular-
ization term can be expressed as follows

h(Z′, X) = ||Z′ − P(A,X)||qp, (14.26)

where P denotes an operator that generates image patches as products of a set A of
dictionaries with corresponding sparse coefficients X, and that forms this set of all
patches into a full 3-D image (one spectral and two spatial dimensions).

In [74], the (jointly) sparse coefficients in the i-th patch Xi under reconstruction
are estimated from the local patch measurements Yi by solving a system that can be
generalized to a matrix version of the model (14.1) as follows

Yi = gi(AiXi +Ns,i)+Nm,i . (14.27)

In the simplest case, with Yi = [yi,1, yi,2, ..., yi,d ] describing patch measurements in
d adjacent correlated spectral channels, the joint sparse property of the coefficients
Xi = [xi,1, xi,2, ..., xi,d ] corresponding to correlated channels is promoted via the
group sparsity (�2,1-norm):

min
Xi

1

2
||AiXi − Yi ||2F + μ||Xi ||2,1. (14.28)

Beyond the sparse representation based approaches, enormous efforts have been
recently made to enhance the fusion performance using deep learning (DL) models
(owing to their powerful ability in data representation). In our work [69], we found
that DL-based fusion methods can be also described as a special case of the general
model (14.1), which can be formulated as

Yh = gh(Aφh(X)+Ns,h)+Nm,h,

Yl = gl(φl(A)X +Ns,l)+Nm,l,
(14.29)
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where φh(X) and φl(A) can be defined as the linear function with respect to the
variables X and A, respectively, i.e., φh(X) = XR, φl(A) = CA. C and R represent
the point spread function (PSF) and spectral response function (SRF) from the high-
resolution HS image to the high-resolution MS image and the low-resolution HS
image, respectively. This is a typically coupled spectral unmixing framework for HS
and MS image fusion [45]. Following it, we developed a coupled unmixing network
with a well-designed cross-attention module for unsupervised HS superresolution,
called Coupled Unmixing Nets with Cross-Attention (CUCaNet). In CUCaNet, the
functions φh and φl can be estimated by learning two-stream convolutional neural
networks (CNNs), which can be solved by minimizing the following optimization
problem [68]:

min
A,X

1

2
||Yh − Aφh(X)||2F +

1

2
||Yl − φl(A)X||2F , (14.30)

with the physical constraints A ≥ 0, X ≥ 0, 1�X = 1�. By optimizing
Eq. (14.28), we then obtain the to-be-estimated high-resolution HS image by
AX. Figure 14.10 illustrates the proposed CUCaNet from the spectral unmixing
perspective.

We highlight the fusion performance of our CUCaNet on an example data, i.e.,
Pavia University HS data, which has been widely applied for various applications
[32, 33], in comparison with several state-of-the-art fusion methods, as shown in
Fig. 14.11. These advanced methods include GSA [1], CNMF [71], CSU [45], FUSE
[65], HySure [55], NSSR [12], STEREO [40], CSTF [46], LTTR [11], unsupervised
uSDN [52], and supervised MHFnet [67]. In general, our designed nonlinear system,
CUCaNet, tends to recover more detailed information of high-resolution HS images,
showing the superiority in the multi-sensor and multi-resolution data fusion task.
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LrHS Image
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Linear Reconstruction
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Endmembers
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Fig. 14.10 An illustration of our CUCaNet from the spectral unmixing perspective
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GT GSA CNMF CSU FUSE HySureHrMSI & LrHSI
(PSNR/SAM)

STEREO CSTF LTTR MHFnet CUCaNet
. . )

uSDNNSSR

Fig. 14.11 The fusion performance on the Pavia University dataset (cropped area) of different
compared approaches. Region of interests (ROIs) are zoomed in 3 times in the right top corner,
and the residual maps between enhanced images and ground truth maps are shown in the left lower
corner. The best results are shown in bold

14.4.2 Hyperspectral Unmixing Accounting for Spectral
Variability

The low spatial resolution of remotely sensed HS sensors causes multiple materials
to be merged in single pixels. That is, the spectral profiles corresponding to
individual pixels are compositions of multiple material spectral signatures. Spectral
unmixing aims at identifying all contributing materials and their relative contribu-
tions to the mixed pixels’ spectral signals. Considering the large number of potential
candidate materials related to the small number of materials actually contributing to
each pixel, sparse property is a natural prior knowledge for RS image processing.

Recently, advanced models were developed that represent real-world scattering
and mixing scenarios more accurately than the commonly used Linear Mixing
Model (LMM). However, one main factor, i.e., nonlinearity, hinders the LMM’s
ability to accurately unmix the HS data. In HS imaging, spectral signals usually
suffer from the nonlinear mixing, due to the multiple scattering and intimate mixing
of materials. As another factor, a source of errors in the unmixing process is the
spectral material variability of identical and nearly identical materials in multiple
measurements under different illumination, atmospheric, and observation conditions
[27, 29].
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Fig. 14.12 Model illustration of our proposed ALMM for spectral unmixing

We include these insights in our recent Augmented Linear Mixing Model
(ALMM) [29], which further develops the Extended Linear Mixing Model (ELMM)
[14] and the spectral variability-aware Perturbed Linear Mixing Model (PLMM)
[59]. The ALMM unmixing model is given by

Y = g((A+ΔA)X +Ns)+Nm, (14.31)

where A and ΔA are called spectral endmember and variability matrices, respec-
tively. In our work [29], we approximate nonlinear scattering effects by the
following simplified version of the ALMM model:

Y = AXS + EB +N, (14.32)

where S denotes the scaling factors, E is the spectral variability matrix, and B

represents the coefficients corresponding to the variable E. Figure 14.12 illustrates
these quantities based on representative HS data.

One way to obtain the unknown quantities in (1.24), as proposed in [29], is to
solve an optimization problem that is penalized by multiple regularization terms to
enforce physically meaningful properties:

min
X,B,S,E

1

2
||Y − AXS − EB||2F + αΦ(X)+ βΨ (B)+ γΥ (E)

s.t. X 4 0, S 4 0.

(14.33)

The regularization terms for the abundances X, spectral variability coefficients B,
and spectral variability dictionary E approximate physical conditions well by using
the following models:
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Φ(X) = ||X||1,1 =
N∑

k=1

||xk||1,

Ψ (B) = 1

2
||B||2F ,

Υ (E) = 1

2
||A�E||2F +

1

2
||E�E − I ||2F .

(14.34)

In addition, non-negativity, i.e., X 4 0, S 4 0, is usually taken into account to
meet the reasonable physical assumptions in the spectral unmixing process. Also,
the sum-to-one constraint is another important prior that needs to be considered and
imposed on the abundance maps. The variables X and S are bundled together, e.g.,
Eq. (14.33), further leading to the difficulty to satisfy the sum-to-one constraint on
X in the practical case. As a trade-off, our ALMM work approximates the strong
constraint by adopting a scaled constrained least squares unmixing.

Differently from the ALMM’s refined modeling, the new subspace-based unmix-
ing framework is developed, called subspace unmixing with low-rank attribute
embedding (SULoRA) [27], being capable of handling various spectral variabilities
in a more robust and generalized fashion. It is well known that the signals in the
high-dimensional space are complex and noisy. Directly processing and performing
spectral unmixing on such signals is really challenging. For this reason, a creative
subspace-based unmixing strategy is mathematically modeled as

Y = Y
′ +N

′
, s.t. Y

′ = ΘY,

Y
′ = ΘAX +N

′′
,

(14.35)

whereΘ is a subspace projection with the low-rank attribute, Y
′
is the corresponding

subspace representation of the original HS data Y after the low-rank attribute
embedding, and N ′ and N ′′ denote different-level model noises.

According to the subspace model in Eq. (14.35), spectral unmixing can be
conducted by optimizing the following constrained optimization problem:

min
X,Θ

1

2
||Θ(Y − AX)||2F +Φ(Θ)+ Υ (X) s.t. X 4 0. (14.36)

The problem (14.36) is highly ill-posed, and a feasible solution to solve this problem
is to regularize the variables X and Θ by adding prior knowledge. We then have the
two following regularization terms Φ(Θ) and Υ (X) with respect to the variables Θ
and X below.

• Subspace Regularization Φ(Θ): we regularize the subspace projections Θ with
a low-rank attribute to transfer the original HS data into a more robust subspace,
which is approximately formulated in the form of nuclear norm, i.e., ||Θ||∗.
More specifically, we aim at learning a low-rank subspace projection that can be
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considered as a correlative filtering bank to address various spectral variabilities
and meanwhile reduce the computational cost to a great extent. Beside, we
also expect to make the structural information consistent as much as possible.
The prior can be modeled as ||Y − ΘY ||F . To sum up, the resulting subspace
regularization term can be written as follows

Φ(Θ) = α

2
||Y −ΘY ||2F + β||Θ||∗. (14.37)

• Abundance Regularization Υ (X): due to the material sparsity about abundance
maps in the HS scene, this abundance regularization term parameterized by the
penalty parameter γ can be represented by

Υ (X) = γ ||X||1,1. (14.38)

Similarly to our ALMM model, scaled constrained least squares unmixing is applied
to estimate the scaling factors of endmembers to relax the sum-to-one constraint in
the unmixing model. An alternating direction method of multipliers (ADMM) solver
[7, 30] is designed to optimize our two models.

Furthermore, due to the limitations of linearized models in data fitting and repre-
sentation, the ability to accurately unmix the HS data remains to be improved. For
this reason, we further developed a self-supervised learning unmixing framework
inspired by advanced deep networks, called WU-Net [28]. In WU-Net, endmember
extraction and spectral unmixing are jointly performed by two subnetworks, i.e.,
endmember network, unmixing network, in a nonlinear system. The two subnet-
works share the partial to-be-estimated parameters, e.g., f (W1, b1, •). The whole
system can be modeled as

min
W1,b1,W2,b2

1

2
||Y − g(W2, b2, f (W1, b1, Y ))||2F +

1

2
||L− f (W1, b1, Y )||2F ,

(14.39)
where f and g denote the encoder and decoder networks with respect to the weights
W and biases b, respectively, and L is the pseudo endmembers extracted by existing
endmember extraction methods, e.g., vertex component analysis (VCA) [47]. Figure
14.13 illustrates the proposed unmixing framework (WU-Net) based on a nonlinear
system.

Similarly, we also visualize the abundance maps to qualitatively evaluate the
unmixing performance of different advanced unmixing algorithms on the AVIRIS
Jasper Ridge dataset, as shown in Fig. 14.14. They are

• Non-DL (linearized) unmixing approaches: fully constrained least squares
unmixing (FCLSU) [25], partial constrained least squares unmixing (PCLSU)
[26], sparse unmixing by variable splitting and augmented Lagrangian
(SUnSAL) [5], subspace unmixing with low-rank attribute embedding
(SULoRA) [27], and ALMM [29];



14 Information Theory and Recovery Algorithms for Data Fusion in Earth. . . 465

Abundances

Share Weights

Reconstruction

HS Image

Encoder Dropout Batch Normalization SostmaxActivation Function (ReLU)Activation Function (Tanh)

S S S S
Endmember Extraction

Unmixing

Pseudo-pure endmembers

Fig. 14.13 An overview illustration for the proposed WU-Net architecture in spectral unmixing
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Fig. 14.14 Qualitative comparison of abundance maps using different unmixing methods on the
AVIRIS Jasper Ridge dataset. The first column is the ground truth (GT) of abundance maps for
four different materials

• DL (nonlinearized) unmixing approaches: DAEU [49], deep autoencoder net-
works (DAEN) [56], CNNAEU [50], and WU-Net [28].

As expected, our linearized methods, i.e., SULoRA, ALMM, yield more similar
results with ground truth (GT), while the nonlinear deep method (WU-Net) shows
more realistic abundance estimation compared to other competitors.
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Chapter 15
Sparse Recovery of Sound Fields Using
Measurements from Moving
Microphones

Fabrice Katzberg and Alfred Mertins

15.1 Problem Formulation and Signal Model

Consider a stationary sound source inside a closed room, emitting the sound
pressure signal s(t) with t ∈ R. Sound-reflecting walls and obstacles lead to a
reverberant listening environment and, thus, to a sensed signal p(t) that contains a
running superposition of successively delayed and attenuated direct sounds, early-
reflection peaks, and diffuse late-field reverberations with exponential decay. For
a specific listening position in space, the time-dependent sequence of received
sound pressure is characterized by the room impulse response (RIR) h(t). From
the physical point, h(t) represents a solution to the acoustic wave equation at
the listening point for Dirac delta excitation at t = 0 and appropriate boundary
conditions. From the signal-processing point of view, h(t) is the filter describing the
acoustic transmission path from the source to the receiver location.

Assuming constant atmospheric conditions, h(t) may be modeled as linear time-
invariant (LTI) system, and sound propagation is described in terms of linear
convolution according to

p(t) = s(t) ∗ h(t) =
∞∫

−∞
s(t − τ)h(τ)dτ. (15.1)

By spatially extending the particular listening point x = (x, y, z) to the volume
Ω = R

3, the sound pressure field with respect to both time t and receiver location
x ∈ Ω is given by
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p(x, t) =
∞∫

−∞
s(t − τ)h(x, τ )dτ, (15.2)

where h(x, t) is the spatially varying RIR from the source position to the point x.
Due to the LTI assumption, perception of multiple acoustic events from different
sources is modeled subject to the superposition p(x, t) =∑q sq(t) ∗ hq(x, t), with
the index q denoting the signals belonging to the q-th sound source.

15.1.1 General Problem

Without loss of generality, the following descriptions consider the term sound field
as the spatio-temporal RIR h(x, t) for a particular configuration of one sound source.
The recovery of sound-field information is a common inverse problem that is crucial
in many audio applications related to sound-field analysis, auditory scene synthesis,
and channel equalization [13, 22, 44]. Measuring the sound field is a sampling
problem that can be solved with limitations that basically arise due to a restricted
number of spatially varying sampling positions.

Measurement and reconstruction strategies often follow the key idea of repre-
senting h(x, t) in terms of a weighted superposition of basis functions fp(x, t),

h(x, t) ≈
∑

p

apfp(x, t), (15.3)

where the discrete set of coefficients ap describing h(x, t) is referred to as sound-
field parameters. These parameters are encoded in spatio-temporal samples of
p(x, t) and may be decoded by solving the corresponding inverse problem. The
resulting estimates of ap allow for sound-field reconstruction according to (15.3).

For a broadband signal with maximum frequency fc, sampling and reconstruc-
tion of h(x, t) requires capturing sound waves in space with minimal wavelength

λ = c0

fc
, (15.4)

where c0 denotes the sound velocity. Thus, regular sampling according to the
Nyquist–Shannon sampling theorem demands spatial intervals

Δξ ≤ c0

2fc
∀ξ ∈ {x, y, z}, (15.5)

in order to avoid aliasing in space. This involves a huge number of sampling
positions. A static array of microphones will most likely never be dense enough to
enable measurements without significant problems for very high audio frequencies,
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excitation signal
(controlled)

moving microphone

t

sound reflection path

microphone trajectory
(predefined)

Fig. 15.1 Dynamic sound-field sampling in an echoic environment with a fixed source configura-
tion

and the effort for exact calibration and spatial positioning would be very high. For
example, the sampling of h(x, t) with fc = 17 kHz requires microphones at about
106 spatial measuring points inside a volume of 1 m3. A dynamic approach with only
one moving microphone may relax the spatial sampling problem. At this, complete
position information is needed, based on either a controlled predefined trajectory
or a tracking of the microphone positions. A sketch of the considered dynamic
measurement setup is given in Fig. 15.1. As usual, the impact of the microphone
on the sound field is considered negligible.

15.1.2 Sparse Signal Structures

Besides sparse signal structure along the temporal dimension for t < Tm, due to
discrete reflection paths before a certain mixing time Tm, one major characteristic
of h(x, t) is the inherent connection of its dimensions in frequency domain. For
positions sufficiently far away from the sound source and room walls, evanescent
sound waves can be ignored, and wave propagation follows the spectral relationship

κ2
x + κ2

y + κ2
z =

ω2

c2
0

(15.6)

between the spatial frequencies κx , κy , κz in rad m−1 and the temporal angular
frequency ω = 2πf in rad s−1. The velocity of the sound waves is c0 = ω/κ̌ ,
with the angular wavenumber κ̌ = |κ | and the wave vector κ = (κx, κy, κz).
Since air is regarded as a non-dispersive medium for frequencies within the human
hearing range, c0 is independent of ω. Thus, the speed of sound is only a function
of atmospheric conditions inside the closed room, e.g., temperature and pressure,
which are assumed to be constant according to the LTI model. In consequence,
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(15.6) provides a direct connection between the temporal and spatial frequencies
of the Fourier transform H(κ, ω) = F(h(x, t)). If H(κ, ω) is bandlimited in time
domain to ωc, then it is also bandlimited in the spatial domain by ǩc = ωc/c0.
Moreover, (15.6) reveals that the four-dimensional spectrum H(κ, ω) ideally lives
on the three-dimensional surface of a hypercone along the temporal frequency axis
ω. Especially at lower temporal frequencies, the conical shape is dominated by a
sparse set of frequency combinations. Without the far-field assumption, H(κ, ω)

would also be occupied at κ̌ > ωc/c0 due to evanescent waves. However, for that
case, the energy outside the conical shape decays rapidly along the spatial frequency
axes. Detailed analysis of h(x, t) and the corresponding sampling conditions are
given in [2].

The sparse signal structures of h(x, t) and H(κ, ω), respectively, are excellent
prerequisites for compressive sensing and, thus, have been successfully exploited in
several methods for obtaining qualified sound-field reconstruction from spatially
undersampled stationary measurements [3, 4, 20, 21, 30–32, 45, 50–52]. This
chapter recapitulates a recently developed compressed-sensing framework for a
dynamic sampling procedure with moving microphones [25, 26]. The dynamic
method recovers sparse components of the conically shaped sound-field spectrum.
At this, the spectral hypercone is defined in terms of Cartesian coordinates by
using regular samples in time, which are directly provided by the microphone,
and designed notional grid positions in space. This parameterization in terms of
multidimensional regular sampling leads to a highly structured inverse problem and
simple mathematical expressions.

The chapter is organized as follows. In Sect. 15.1, the sound-field sampling
model is described, and the uniform-grid design is introduced for representing
nonequidistant spatial samples subject to a virtual grid in space. The dynamic sam-
pling model and the sparse recovery procedure in frequency domain are presented
in Sect. 15.3. Based on a spectrally flat excitation in time and space dimensions,
a trajectory-dependent coherence analysis is given in Sect. 15.4. Using the simple
expressions from Sect. 15.4, a fast update scheme is specified in Sect. 15.5 that
allows for the direct manipulation of trajectory positions, in order to reduce the
coherence of the resulting sensing matrix. Finally, a summary is given in Sect. 15.6.

15.2 Multidimensional Sampling and Reconstruction

Microphones generate samples at uniform points in time with high acquisition
rates. However, considering the spatial dimensions, they are, in general, located at
nonequidistant positions unless costly calibrated measurement setups are used. In
dynamic setups, spatio-temporal sampling of one moving microphone is sufficient
for gathering entire sound-field information. The dynamic microphone performs
non-uniform sampling in space at time-varying positions along the measurement tra-
jectory. For simplicity, the underlying spatio-temporal sampling model is described
in this section first for uniform sampling in time and non-uniform sampling in space.
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The extension to the time-varying component of the dynamic case is carried out in
Sect. 15.3.2.

15.2.1 Temporal Sampling Model

The temporal bandwidth of observations p(x, t) is limited with an analog low-pass
filter blocking all frequencies above the cutoff frequency fc. The model parameter
fc is determined by the considered application.

Let T = 1/fs denote the sampling interval of the microphone with temporal
sampling frequency fs fulfilling the Nyquist–Shannon sampling theorem fs ≥ 2fc.
This leads to measurements at equidistant sampling points tn = nT , where n ∈ Z

is the discrete time variable. Supposing that the amplitude of h(x, t) vanishes into
the noise level at tn > tL−1, temporal sampling of the sound pressure field p(x, t)
is modeled by

p(x, n) =
L−1∑

m=0

s(n−m)h(x,m)+ η1(x, n), (15.7)

where η1(x, n) models the measurement noise.

15.2.2 Spatial Sampling Model

Non-uniform samples can be represented in terms of bandlimited interpolation
from notional regular samples at x# = (x#, y#, z#) on a uniform grid spanning Ω .
This leads to a parameterization model where the observation of the sound field
at receiver location xr = (xr , yr , zr ) is implicitly described by regular sampling
according to

p(xr , t) = s(t) ∗ h(xr , t) = s(t) ∗
∑

g∈Z3

h(g, t)f (G(xr )− g), (15.8)

where discrete grid points g = (gx, gy, gz) express real-world grid positions in

Ω# =
{

x# ∈ Ω | x# =
(
gxΔx, gyΔy, gzΔz

)
,
(
gx, gy, gz

) ∈ Z
3
}

(15.9)

subject to spacings Δξ in pursuance of (15.5), G : R3 → R
3 converts from real-

world positions to fractional grid coordinates, and f (G(xr )− g) is the multivariate
sinc kernel that is separable on the Cartesian grid,
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f (G(xr )− g) = sinc(xr/Δx − gx) sinc(yr/Δy − gy) sinc(zr/Δz− gz), (15.10)

with

sinc(x) = sin (πx)

πx
. (15.11)

15.2.3 Spatio-Temporal Measurement Model

By merging the sampling models for the particular dimensions, the sampled spatio-
temporal sound field can be represented in terms of

p(xr , n) =
L−1∑

m=0

s(n−m)
∑

g∈Z3

h(g,m)f (G(xr )− g)+ η1(xr , n). (15.12)

Samples p(xr , n) encode the sound-field parameters h(g,m) that allow for the
spatio-temporal reconstruction by analogy with (15.3). The parameters are provided
in the form of the signal h(g,m), which is the uniformly sampled version of the
spatially varying RIR at regular grid points g and discrete delays m ∈ {0, . . . , L−1}.
The temporal interval T is explicitly predefined by the sampling rate for the
microphone signal. Due to the backward model (15.8) with (15.9), spatial intervals
Δξ are free design parameters of the sampling problem. For T and Δξ satisfying
the Nyquist–Shannon sampling theorem, the recovery of h(g,m) enables the
reconstruction of h(x, t) by use of appropriate anti-imaging filters.

For the error-free case and an infinite-length model of the involved signals, ideal
reconstruction of the continuous sound field h(x, t) is accomplished by a separable
four-dimensional sinc filter with unlimited support. This is not feasible in practice.
However, despite truncating the temporal signals to limited taps m ∈ {0, . . . , L−1},
finite-length interpolation filters allow for reasonable approximations in the time
dimension due to the exponential energy decay of RIRs for higher-order reflection
paths. In the spatial dimensions, a hard limitation of the signals to a bounded
observation window is more critical in several aspects.

15.2.3.1 Finite-Length Observations in Space

So far, the notional grid points x# ∈ Ω# are defined by an unbounded set in R
3.

This ideal situation is not realizable in real-world setups. Measurement apertures
are always of finite length and, therefore, have a direct filtering effect on the original
signals to be measured. In this sense, a signal that is originally sparse in some
domain could lose this characteristic when being sampled. This issue is described
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in the following, and appropriate solutions are given for the designated sound-field
sampling model.

In practice, spatial interpolation is based on a limited number of grid positions
�̄# ⊂ �# in a bounded cuboid measurement volume �̄ ⊂ �. By defining an odd
number of samples in each dimension, G = GxGyGz discrete grid points g in

Γ =
{
−Gx − 1

2
, . . . ,

Gx − 1

2

}
×
{
−Gy − 1

2
, . . . ,

Gy − 1

2

}
×
{
−Gz − 1

2
, . . . ,

Gz − 1

2

}

span a volume of size XYZ with X = �x(Gx − 1), Y = �y(Gy − 1),
Z = �z(Gz − 1). Applying this hard limitation to the spatial sampling model
(15.8) initially induces a rectangular windowing of the original sound-field signal
according to

h̄(x, t) = h(x, t)w̄3D(x), (15.13)

where the multivariate window w̄3D(x) = w̄X(x) w̄Y (y) w̄Z(z) is composed of
individually scaled rectangular windows in terms of w̄X(x) = rect(x/X). Since

W̄X(κx) =
X
2∫

−X
2

e−iκxxdx = X sinc

(
Xκx

2π

)
, (15.14)

the windowing in (15.13) translates in frequency domain to the convolution

H̄ (κ, ω) = H(κ, ω) ∗ (W̄3D(κ)δ(ω)) (2π)
−3

= XYZ

(2π)3

∫

R3
H(κ − k, ω) sinc

(
Xkx

2π

)
sinc

(
Yky

2π

)
sinc

(
Zkz

2π

)
dk. (15.15)

This influence of the sampling setup on the original signal H(κ, ω), i.e., blurring of
spatial frequencies with a sinc filter kernel, is critical owing to multiple reasons. On
the one hand, the spatial interpolation of h(x, t) from the spatially sampled spectrum

H̄s(κ, ω) = 1

�x�y�z

∑

k∈Z3

H̄

((
κx − 2πkx

�x

, κy − 2πky
�y

, κz − 2πkz
�z

)
, ω

)

(15.16)
is inaccurate, especially due to the fact that spatial anti-aliasing filters are hardly
applicable in the spatial dimensions. The reconstruction becomes erroneous, which,
for our backward sampling model (15.8), in turn induces perturbations for both the
sampling itself and the actual reconstruction. On the other hand, the filter W̄3D(κ)

destroys the conical shape of H(κ, ω) and reduces spectral sparsity substantially.
Frequency allocation is impaired by a cross-shaped blurring due to the separated
three-dimensional sinc kernel. In order to preserve the conical structure and the
sparse frequency localization, it would be desirable to have a spatial observation
window that leads to a radially shaped, fast decaying filter that maintains compact
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support of H̄ (κ, ω) on the spherical shell

√
κ2
x + κ2

y + κ2
z ± ε = |ω|

c0
, (15.17)

with ε ∈ R+ being as small as possible.
To improve spatial reconstruction from finite samples, (15.15) and (15.16)

indicate that either the size V = XYZ of the observation window can be chosen
larger, possibly larger than an actual volume of interest �̄i ⊂ �̄, or, alternatively, the
spatial sampling intervals�ξ can be chosen smaller, well above the Nyquist rate. For
the direct sampling of positions x# ∈ �̄#, both procedures enlarge the measurement
effort in hardware and/or sampling time. For the inverse spatial sampling problem
(15.8), V and �ξ are free design parameters and can be arbitrarily adjusted in a
tradeoff with the number of variables to be recovered from linear measurement
equations. Considering a compressed-sensing-based recovery strategy, such an
increase of variables can be irrelevant or even beneficial as far as sparsity in the
sparse signal representation is maintained or even accentuated.

Based on a single sample at position xr ∈ �̄, the reverse sampling model (15.8)
allows for the incorporation of a predefined spatial observation window as

p(xr , t) = s(t) ∗
∑

g∈Γ
h(g, t)w3D(g)w−1

3D (g)ϕ3D(G(xr )− g)+ η2(xr , t), (15.18)

where the signal h(g, t) finally loses its ideally bandlimited character in the space
dimension, ϕ3D(G(xr ) − g) is a three-dimensional finite-length sinc filter approx-
imation, η2(xr , t) comprises the errors due to spatial sampling and interpolation,
respectively, and w3D(g) is a sampled window function that should be designed
properly, in particular, subject to the demand for preserving sparsity and conical
shape of the sound-field spectrum. Since (15.18) poses an inverse problem, the
coefficients should be w3D(g) �= 0∀ g ∈ Γ . A good choice, for example, is the
three-dimensional window consisting of a Hamming window in each dimension
conformable to

wGx (gx) = 0.54− 0.46 cos

⎛

⎝
2π
(
gx − Gx−1

2

)

Gx − 1

⎞

⎠ . (15.19)

Regarding the continuous signal, this selection suggests an observation window of
length X = �x(Gx − 1) composed of

wX(x) =
(

0.54+ 0.46 cos
(

2π
x

X

))
rect
( x
X

)
, (15.20)

having the Fourier transform
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Fig. 15.2 Two-dimensional spectral filters for a rectangular observation window (left) and a
Hamming window (right) considering sizes (a), (b) X = Y = 0.1 m and (c), (d) X = Y = 0.3 m

WX(κx) = 0.23X sinc

(
1− Xκx

2π

)
+0.23X sinc

(
1+ Xκx

2π

)
+0.54X sinc

(
Xκx

2π

)
.

(15.21)
In contrast to (15.14), (15.21) constructs a filter W3D(κ) = WX(κx)WY (κy)WZ(κz)

having nearly omnidirectional directivity pattern. The three-dimensional filter is
more compact and leads to a spectrum H̄ (κ, ω) = H(κ, ω) ∗ (W3D(κ)δ(ω))(2π)−3

that preserves both the sparse frequency localization and the conical structure
according to (15.17). A comparison of both filter types is visualized in Fig. 15.2
for the two-dimensional case.
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15.2.3.2 Linear Equations for Parameter Recovery in Terms of Uniform
Grids

By choosing appropriate design parameters, the spatio-temporal sampling inside
�̄i ⊂ �̄ is finally modeled by linear measurement equations

p(xr , n) =
L−1∑

m=0

∑

g∈Γ
s(n−m)w−1

3D (g)ϕ3D(G(xr )− g) h(g,m)w3D(g)+ η(xr , n)

=
L−1∑

m=0

∑

g∈Γ
s̄xr(g, n−m) h̄(g,m)+ η(xr , n), (15.22)

where

s̄xr(g,m) = s(m)w−1
3D (g)ϕ3D(G(xr )− g) (15.23)

can be regarded as the sampled spatio-temporal excitation on the multidimensional
grid, h̄(g,m) is the corresponding sampled spatio-temporal RIR, and η(xr , n) is a
perturbation term pooling measurement noise as well as any systematic and model-
induced errors. The knowledge about the temporal excitation sequence s(n) and
controlled or tracked microphone positions xr allows for setting up the system of
linear equations

p = Ah̄+ η (15.24)

that describes the spatio-temporal sampling subject to joint variables in h̄. The
measurement vector p ∈ R

MR contains the stack of R microphone signals each
of length M , A ∈ R

MR×P is the sampling matrix, h̄ ∈ R
P encapsulates

P = LG windowed sound-field parameters, and η ∈ R
M is the perturbation

vector. The inverse problem (15.24) enables the calculation of estimates ĥ(g, n) =
ˆ̄h(g, n)w−1

3D (g) that may be used for spatial reconstruction inside �̄i according to
the interpolation

h(x, n) ≈
∑

g∈Γ
ĥ(g, n)ϕ3D(G(x)− g). (15.25)

For the case, where (15.24) is solved directly without exploiting sparsity in
frequency domain, the simple choice w3D(g) = 1 is convenient. The finally
estimated sound-field parameters ĥ(g, n) describe the unweighted spatio-temporal
RIR, uniformly sampled at L delays in time and at G = GxGyGz grid positions in
multidimensional space.

Other parameterization models are, of course, also possible for describing spatio-
temporal samples, e.g., using quincunx [2] or spherical patterns [40] instead of
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the uniform-grid model. For the direct measurement of such patterns using a
correspondingly shaped array, quincunx and spherical configurations may reduce
the number of sampling positions needed for adequate interpolation inside a three-
dimensional target region �̄i. Especially, the demand for a spatial observation
window that preferably maintains the compact support of the spectrum within a
narrow spherical shell according to (15.17), in fact, leads to a parameterization
model in terms of spherical coordinates [28] where spherical harmonics for the
angular part and spherical Bessel functions for the radial part are used (assuming
a source-free volume �̄i). However, this may lead to ill-posed problems due
to several frequency-radius combinations where the Bessel functions cross zero
[33, 39, 40]. Furthermore, for spatial sampling scenarios without costly calibrated
arrays and arbitrary positions xr ∈ �̄i, spherical and also quincunx patterns that
parameterize h(x, t) result in inverse problems that are not straightforward in
modeling and analysis, especially for the extension to the more complicated case of
a moving microphone to be introduced in Sect. 15.3. For quincunx sampling, non-
trivial interpolation filters that are not separable in the spatial dimensions must be
calculated, clearly raising the complexity in the design of the measurement matrix.

Given the speed of sound c0, the uniform-grid parameterization requires a
spacing of the notional grid that satisfies �ξ = α−1c0(2fc)

−1 with oversampling
factor α ≥ 1 for each dimension ξ ∈ {x, y, z}, in order to avoid spatial aliasing
and allow for a sound-field reconstruction by means of (15.25). This model results
in a highly structured sampling problem, also for the dynamic case, and allows for
straightforward error analyses and extensions [25, 26]. The separable low-pass filter

ϕ3D(G(x)− g) = ϕ(x/�x − gx) ϕ(y/�y − gy) ϕ(z/�z − gz) (15.26)

is easy to calculate and leads to a well-arranged block composition of A. Based on
this, simple expressions enable an efficient evaluation of the expected estimation
error as a function of spatial sampling positions or, for the dynamic case, of the
microphone trajectory. The measurement matrix A only contains the source signal
and spatial interpolation coefficients that depend on the microphone trajectory
relative to the modeled grid. The effort for setting up and solving the system is
extremely low. The separability of dimensions also enables the efficient implemen-
tation of sparsifying transforms for the compressed-sensing framework presented in
Sect. 15.3.

In its original form, the uniform-grid model comprises

P�c(V , ωl) =
⌈

α
ωl

D
√
V

πc0
+ 1

⌉D
(15.27)

parameters to be estimated for recovering temporal frequency ωl inside a D-
dimensional cubical region Ωc of size V . Even if the sound propagation is actually
three-dimensional, parameter recovery is possible along a line (D = 1), on a plane
(D = 2), or within a volume (D = 3). As can be seen from (15.27), a reduction
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of the dimensions in the target volume is directly transferred to a reduction of
the dimensions of the uniform grid to be recovered. In frequency domain, these
parameter numbers are substantially reduced as there are sparse coefficients ideally
located along the conical surface (15.6). However, reducing spatial dimensions of
the observation inherently diminishes spectral structure according to κ2

x + κ2
y ≤

ω2/c2
0 (planar case) and κ2

x ≤ ω2/c2
0 (linear case) due to the released spatial

variables in the three-dimensional propagation medium.

15.3 Sparse Sound-Field Recovery in Frequency Domain

The spatio-temporal sampling model (15.24) can be directly extended to a sparse
recovery problem in discrete Fourier domain. For the special case of stationary
sound-field sampling, the resulting sensing matrix possesses a well-known structure
that immediately allows us to apply the existing theory and methods for sparse
recovery. This interesting link will be provided in Sect. 15.3.1. Subsequently, in
Sect. 15.3.2, the spatio-temporal sampling model is first extended to the dynamic
measurement procedure with moving microphones. Then, in Sect. 15.3.3, the corre-
sponding formulation of the sparse recovery problem along the spectral hypercone
is given. Finally, Sect. 15.3.4 shows how deterministic source sequences can be used
in order to reduce complexity for setting up and solving the dynamic sampling
problem, and Sect. 15.3.5 presents an efficient recovery algorithm that directly
exploits the block structure of the dynamic-sensing matrix.

15.3.1 Basic Ideas for the Simplified Stationary Case

As a starting point, let us take the linear system model (15.24) for describing a
stationary setup with R microphones at R positions xr ∈ �̄i. Then, assuming no a
priori knowledge about spectral structures, sparse sound-field recovery in frequency
domain may be accomplished by solving the problem

argmin
c∈CP

‖p− Bstat c‖2
2 s.t. ‖c‖0 ≤ K, (15.28)

with the sensing matrix Bstat = A�−1, sparse frequency parameters in c = �h̄,
where the support in c is quantified as ‖c‖0 = |{i : ci �= 0}|, and the sparsifying
transformation matrix � ∈ C

P×P that performs the four-dimensional discrete
Fourier transform (DFT) on the vectorized sound-field signal in h. The problem
(15.28) is NP-hard [34] and is typically solved using either a relaxation into an
�1-minimization problem allowing for convex optimization, such as basis pursuit
[12, 14], LASSO [46], or Dantzig selector [11], or a greedy algorithm such as
the orthogonal matching pursuit (OMP) [48], compressed-sensing matching pursuit
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(CoSaMP) [35], or iterative hard thresholding (IHT) [5, 6]. Based on sparse
estimates in ĉ, the unweighted sound-field parameters are obtained as

ĥ = (W−1 ⊗ IL)�−1ĉ, (15.29)

where ⊗ denotes the Kronecker product, the diagonal matrix W = diag {w}
encapsulates the weights w = [w3D(g1), . . . , w3D(gG)] from the chosen window
function, and IL is the L× L identity matrix.

In order to guarantee stable and robust recovery of any (approximately) K-
sparse signal, any arbitrary set of K columns of the sensing matrix B must build
up a nearly orthogonal system, which is formalized by the so-called restricted
isometry property (RIP) [10]. Verifying the RIP of a matrix is a combinatorial
NP-hard problem [47]; however, for the special case of stationary sound-field
sampling according to (15.28), the multidimensional sampling problem can be
reduced to single one-dimensional recovery problems that have been well studied
in the compressed-sensing literature. On the one hand, there is the sampling and
deconvolution problem in the temporal domain, which is trivial for a spectrally flat
excitation sequence, especially in Fourier domain, and, anyway, is not the critical
part in (15.28) since the microphones do not vary positions (see below in (15.33)).
On the other hand, there is the interpolation problem in the spatial dimensions. In
frequency domain, assuming spectrally flat interpolation filters (see Sect. 15.4.3),
this problem translates to nonequidistant sampling of trigonometric polynomials
and leads to a specifically structured sensing matrix, also for multivariate extensions.
Thus, sound-field sampling at random positions in space corresponds to the random
sampling of trigonometric polynomials. Related probabilistic guarantees for the
sensing matrix and the sparse recovery have been investigated in [41, 42].

For a non-random distribution of microphone positions, the coherence property

μ(B) = max
1≤u�=v≤P

|〈bu,bv〉|
‖bu‖2 ‖bv‖2

, (15.30)

may be used in practice as an indicator for RIP guarantees, where bu denotes the
u-th column of B [17]. The coherence of B directly affects the upper bound of its
RIP constant that, in turn, determines upper bounds for recovery errors induced by
measurement noise, the K-sparse signal approximation, and a mismatch of B (e.g.,
due to inaccurate calibration of microphone positions) [8, 10, 15, 16, 23].

The stationary case (15.28) can be seamlessly incorporated into the existing
multidimensional compressed-sensing frameworks that are known, for example,
from distributed sensing problems, and exploit the structures of Kronecker product-
based measurement and sparsifying matrices for efficient calculations [9, 18]. Let
us briefly outline the corresponding relationship in the following.

Suppose that the sound-field parameters in h are concatenated first along the time
dimension and then along the x, y, and z dimensions in succession. By defining
FU ∈ C

U×U to perform the normalized DFT with FFH = IU , the sensing matrix
for the considered stationary sampling problem can be represented as
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Bstat = A�H

=
(
ΦW−1 ⊗ S

) (
FH
Gz
⊗ FH

Gy
⊗ FH

Gx
⊗ FH

L

)

= ΦW−1�H
3D ⊗ SFH

L , (15.31)

where S ∈ R
M×L is the convolution matrix of the excitation, Φ = [ϕ1, . . . ,ϕR]T

with ϕr = [ϕ3D(G(xr ) − g1), . . . , ϕ3D(G(xr ) − gG)]T comprises the interpolation
coefficients corresponding to the G grid positions with respect to the r-th micro-
phone position, and �3D = FGz ⊗ FGy ⊗ FGx performs the multivariate DFT along
the spatial dimensions. The Kronecker-based expressions in (15.31) can be used
to apply efficient Kronecker-based recovery algorithms [9] and achieve efficient
coherence calculations. For example, by using the formula

μ(C1 ⊗ C2) = max {μ(C1), μ(C2)} (15.32)

involving the matrices C1,C2 with normalized columns (proof in [24]), it can
be seen that, for a spectrally flat excitation sequence, the coherence of Bstat is
determined by the spatial components only, according to

μ(Bstat) = μ(ΦW−1�H
3D ), (15.33)

with W−1 determined by the arbitrary window design, and Φ being directly
dependent on the selection of static microphone positions.

15.3.2 From Static to Dynamic Sensing

Consider the linear measurement equations (15.22) with an additional time-varying
relationship of the spatial measurement positions. Instead of capturing field infor-
mation over constant positions xr at each sampling point n, data is now acquired
at R locations xr (n) changing over time. By defining xr : Z → R

3 as the
trajectories performed by R moving microphones inside the target volume �̄i, we
obtain a dynamic measurement setup that generates samples at uniform points in
time and, generally, at varying and non-uniform positions in space. In this case,
only one microphone (R = 1) moving along the sampled trajectory x(n) =
(x(n), y(n), z(n)) and measuring the signal p(x(n), n) = s(n) ∗ h(x, n)|x=x(n) +
η(x(n), n) is sufficient for gathering the entire sound-field information. This setup
is considered in the following descriptions. An outline of the involved signals and
parameters is given in Fig. 15.3. The expansion to R > 1 dynamic microphones is
straightforward and may reduce the acquisition time.

According to (15.22), spatio-temporal samples of the moving microphone can be
described as
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Fig. 15.3 Dynamic sampling principle. The design variables �x and �y model a notional grid
in space (red dots). The microphone samples p(x(n), n) at trajectory positions x(n) can be
represented in terms of the unknown sound field at that grid

p(x(n), n) =
L−1∑

m=0

∑

g∈Γ
s(n−m)w−1

3D (g)ϕ3D(G(x(n))− g) h̄(g,m)+ η(x(n), n).

(15.34)
Due to the LTI assumption, single dynamic samples p(x(n), n) share the same

sound-field parameters inside �̄ and, by knowing the trajectory of the moving
microphone, can be jointly represented by

p =
∑

g∈Γ
w−1

g DgS h̄g + η, (15.35)

where the vector p ∈ R
M collects the M dynamic samples along the trajectory,

p = [p(x(0), 0), . . . , p(x(M − 1),M − 1)]T , (15.36)

η ∈ R
M is the perturbation vector,

η = [η(x(0), 0), . . . , η(x(M − 1),M − 1)]T , (15.37)

h̄g ∈ R
L contains the spatially windowed RIR at the notional grid point g,

h̄g =
[
h̄(g, 0), . . . , h̄(g, L− 1)

]T
, (15.38)

Dg ∈ R
M×M is a diagonal matrix stacking all M interpolation coefficients acquired

during dynamic sampling for the grid RIR at point g,

Dg = diag {[ϕ(G(x(0))− g), . . . , ϕ(G(x(M − 1))− g)]} , (15.39)

wg = w3D(g) denotes the scalar weighting at position g according to the designed
observation window, and S ∈ R

M×L is the convolution matrix of the source signal
s(n) constructed by S = [s(0), . . . , s(M − 1)]T with
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s(n) = [s(n), s(n− 1), . . . , s(n− L+ 1)]T . (15.40)

This representation of dynamic samples leads to the system of linear equations

p = Adyn h̄+ η, (15.41)

where the vector h̄ ∈ R
LG is the concatenation of weighted grid RIRs,

h̄ =
[
h̄
T

g1
, h̄

T

g2
, . . . , h̄

T

gG

]T
, (15.42)

and the measurement matrix A ∈ R
M×LG follows the block structure

Adyn =
[
w−1

g1
Dg1 S, w−1

g2
Dg2 S, . . . , w−1

gG DgGS
]

= [Dg1 S, Dg2 S, . . . , DgGS
] (

W−1 ⊗ IL
)

(15.43)

that consists of G repetitions of S along to columns in order to model temporal
excitation at each grid point in space. In contrast to the stationary case, the Toeplitz
structure of the convolution matrices is distorted by the diagonal matrices Dg

that scale the rows of S differently according to the instantaneous variations of
the dynamic microphone position x(n). Dynamic samples are represented in an
indivisible spatio-temporal sense.

15.3.3 Sparse Recovery Along the Spectral Hypercone

The adaptation of the dynamic sampling problem to a sparse recovery strategy in
frequency domain is straightforward. Also, the reduction of the search space to the
a priori known hyperconical structure along the temporal frequency axis is simple
due to the uniform-grid parameterization model.

Let us define the discrete spatial frequency variables k = (kx, ky, kz) with

kx ∈
{
−Gx−1

2 , . . . ,
Gx−1

2

}
, ky ∈

{
−Gy−1

2 , . . . ,
Gy−1

2

}
, kz ∈

{
−Gz−1

2 , . . . ,
Gz−1

2

}
,

(15.44)

and the discrete temporal frequency variable l ∈
{
−L−1

2 , . . . , L−1
2

}
(L is set odd),

translating to sampled frequencies according to

κkx = 2π�−1
x

kx

Gx

, κky = 2π�−1
y

ky

Gy

, κkz = 2π�−1
z

kz

Gz

, (15.45)

and ωl = 2πfs
l
L

. By using the relationship (15.17) and considering an appropriate
cubical observation window design (see Sect. 15.2.3.1) with 3

√
G = Gx = Gy = Gz
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and � = �x = �y = �z, the support of sparse DFT coefficients in c = �h̄ can
be constrained to the C < P discrete frequency locations (k, l), where the spatial
frequencies constitute spherical shells along the temporal frequencies l subject to

√
k2
x + k2

y + k2
z = αp |l|

3
√
G

L
± εs, (15.46)

with the proportioning factor αp = �fs/c0 and a small shell margin εs ∈ R+.
The a priori knowledge (15.46) allows for constructing the assigning matrix R ∈
{0, 1}C×P that consists of C unit vectors in the rows selecting the corresponding
frequency elements in c according to c̊ = Rc. Thus, the dynamic sampling problem
in terms of spectral sampling along the conically shaped subspace of dimension C

reads

p = Adyn�
HRT R�h̄+ η (15.47)

= B̊dyn c̊+ η, (15.48)

where RT , in turn, shrinks Bdyn = Adyn�
H to the selected columns B̊dyn = BdynRT that

contribute to discrete frequencies satisfying (15.46). Finally, we obtain the recovery
problem

argmin
c̊∈CC

∥∥
∥p− B̊dyn c̊

∥∥
∥

2

2
s.t.

∥
∥̊c
∥
∥

0 ≤ K, (15.49)

with the sensing matrix B̊dyn ∈ C
M×C , sparse frequency parameters along the

conical surface in c̊ ∈ C
C , and K < C < P . Provided that sufficient incoherent

measurements are available, (15.49) may be solved by compressed-sensing-based
recovery algorithms outlined in Sect. 15.3.1.

15.3.4 Perfect Excitation Sequences

The use of a deterministic L-shift cross-orthogonal excitation sequences s(n) =
s(nmodL) having perfect autocorrelation

rss(m) = σ 2
s δ(mmodL), (15.50)

with σ 2
s being the signal power, leads to an enhanced structure in the dynamic-

sensing matrix that can be exploited for reducing the computational complexity
of sparse recovery algorithms. Such signals can be constructed, for example, from
scaled maximum-length sequences [43] with zero DC offset.

Let s̃(n) be one period of a repetitive L-periodic source sequence s(n) that
satisfies (15.50). All circularly shifted versions of s̃(n) are uncorrelated to each
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other (which corresponds to constant-magnitude DFT coefficients). Accordingly,
for U periods of excitation in a steady-state situation, we obtain

s(n) ∗ s̃(−n) = γ

U−1∑

m=0

δ(n−mL), (15.51)

where γ is the energy of one period with

γ = Lσ 2
s =

L−1∑

n=0

|s̃(n)|2 . (15.52)

The relationship (15.51) can be expressed in matrix form by defining the circular
convolution matrix S̃ ∈ R

L×L for one period of excitation and the convolution
matrix SU ∈ R

LU×M comprising U periods of excitation, both set up for the steady
state with no zero padding at the boundaries. The uncorrelated excitation vectors
in S̃ lead to the orthogonality S̃S̃T = γ IL, and the matrix-based formulation being
equivalent to (15.51) reads

SU S̃T = γ [IL, . . . , IL]︸ ︷︷ ︸
U times IL

T . (15.53)

According to that, the dynamic measurement model (15.35) subject to U excitation
periods from a perfect source sequence satisfying (15.50) may be written as

p =
∑

g∈Γ
w−1

g DgSU S̃T S̃γ−1h̄g + η

= γ−1G
(

W−1 ⊗ S̃
)

h̄+ η (15.54)

= Ãdyn h̄+ η, (15.55)

where the matrix G ∈ R
M×P has favorable block-wise diagonal structure with

G =

⎡

⎢
⎢⎢⎢
⎣

D[1]g1
D[1]g2

. . . D[1]gG

D[2]g1
D[2]g2

. . . D[2]gG
...

...
. . .

...

D[U ]g1
D[U ]g2

. . . D[U ]gG

⎤

⎥
⎥⎥⎥
⎦

(15.56)

consisting of U × G blocks of the diagonal matrix D[u]g ∈ R
L×L that carries the

interpolation coefficients of the RIR at grid point g for the u-th period of excitation,
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D[u]g = diag {[ϕ(G(x((u− 1)L+ 1))− g), . . . , ϕ(G(x((u− 1)L+ L))− g)]} .
(15.57)

Note the well-defined structure in (15.54) due to the perfect excitation sequence.
In fact, the part

(
W−1 ⊗ S̃

)
h̄ simply represents an orthogonal transformation of the

sound-field signal in h̄ along the temporal dimension by use of S̃. The crucial part of
the sampling problem is modeled by the highly structured matrix G that is a direct
result of the measurement trajectory. Compared to the original true spatio-temporal
sampling problem modeled by (15.41) with (15.43), the temporal dimension de facto
becomes separated from the spatial component. This results in a time-decoupled
formulation where only the spatial part remains in the inverse problem. Owing to the
block-wise diagonal structure of G, the original spatio-temporal sampling problem
is actually reduced to L separate spatial sampling problems.

The incorporation of the structured measurement model (15.55) into the sparse
recovery procedure described in Sect. 15.3.3 leads to the problem formulation

p = Ãdyn�
HRT R�h̄+ η

= γ−1G
(

W−1 ⊗ S̃
)

�HRT c̊+ η

= γ−1G
(

W−1�H
3D ⊗ S̃FH

L

)
RT c̊+ η

= B̊dyn c̊+ η, (15.58)

with the dynamic-sensing matrix B̊dyn ∈ C
M×C defined by

B̊dyn = γ−1G
(

W−1�H
3D ⊗ S̃FH

L

)
RT , (15.59)

and the K-sparse frequency vector c̊ whose elements point to sampled frequency
locations (k, l) subject to (15.46).

15.3.5 Algorithm for Sparse Recovery from Dynamic
Measurements

Especially for larger audio bandwidths, the recovery of the four-dimensional sound-
field signal poses a large-scale problem that demands for fast computational
techniques. An efficient compressed-sensing-based recovery algorithm that works
directly on the non-convex cost function (15.49) is the iterative hard-thresholding
algorithm (IHT) [5]. By following a greedy strategy, the IHT converges to a local
minimum of (15.49) with near-optimal error guarantees. The achievable estimation
error depends linearly on the number of samples M provided. The minimum number
of required samples grows linearly with the sparsity measure K and logarithmically
with the dimension C of the signal space. The number of necessary iterations is
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logarithmic in the signal-to-noise ratio. It has been shown in [6] that the IHT has
performance properties similar to those achieved by OMP, CoSaMP, and �1-based
methods.

The IHT approaches the K-sparse solution by use of the iterative scheme

ˆ̊ci+1 = TK
{ ˆ̊ci + ν B̊H

dyn

(
p− B̊dyn

ˆ̊ci
)}

, (15.60)

where i denotes the iteration number, ν ∈ [0, 1] is a sufficiently small step size
[7], and TK{·} is the nonlinear thresholding operator that sets all but the K largest
absolute values in the signal to zero. One iteration involves a simple gradient
descent step into the direction of the least-squares solution with step size ν followed
by a hard projection of the signal estimate onto the subspace of its K-sparse
representation. At this, the bottlenecks for computational complexity and memory
demand are the operators B̊dyn and B̊H

dyn. For straightforward matrix calculations, the

effort is O(MC). However, as demonstrated previously, the sensing matrix B̊dyn

has well-defined structure due to the uniform-grid parameterization model. This
structure excellently fits into the scheme (15.60) and can be exploited to express
the IHT in terms of simplified and fast update equations that directly operate on the
considered signals.

By applying the dynamic sampling model (15.47) to (15.60), the iterative scheme
can be reformulated as

ˆ̊ci+1 = TK
{ ˆ̊ci + ν R�(W−1 ⊗ IL)hup

i

}
, (15.61)

where hup

i ∈ R
P is the negative gradient of the least-squares problem to (15.41) for

the simple case w3D(g) = 1. The vector hup

i ∈ R
P is the concatenation of the four-

dimensional update signal hup

i (g, n), (W
−1 ⊗ IL) performs the inverse windowing

along its spatial dimension, and, finally, R� performs its partial four-dimensional
DFT considering discrete frequencies according to conical structure (15.46). The
partial DFT can be applied by use of the fast Fourier transform with O(P logP)
operations and a subsequent pruning. The crucial part is the calculation of hup

i .
Efficient formulas for obtaining hup

i are presented in Sects. 15.3.5.1 and 15.3.5.2 for
the general case and, respectively, for a source signal having perfect autocorrelation
according to (15.50). The latter case allows for cost-saving calculations.

Note that the IHT update (15.61) can also be represented in terms of the complete
set of DFT coefficients H̄ (k, l) concatenated in c = �h̄. This increases the memory
requirement a little bit; however, it is more straightforward to implement. Then, the
iterative scheme becomes

ĉi+1 = TK
{

ĉi + ν M�(W−1 ⊗ IL)hup

i

}
, (15.62)

with the P × P diagonal matrix M = RT R that performs a frequency masking by
setting frequencies to zero that do not live along the conical shape.
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Subsequently, in Sects. 15.3.5.1 and 15.3.5.2, it is shown how the detailed knowl-
edge about structures in the sensing matrix, which is provided in Sects. 15.3.2–
15.3.4, enables us to define simple iterative schemes for sparse parameter recovery.
Explicit matrix calculations and operations in the IHT dissolve into a couple of fast
update equations.

15.3.5.1 General Case

The block-wise structured sensing matrix of the dynamic sound-field sampling
problem allows for calculating the spatio-temporal update signal in

hup

i =
[

hup

i,g1

T , hup

i,g2

T , . . . , hup

i,gG
T
]T

, (15.63)

with

h
up

i,g =
[
h

up

i (g, 0), hup

i (g, 1), . . . , hup

i (g, L− 1)
]T

, (15.64)

by the convolution of the source sequence with the particularly weighted residual
vector εi ∈ R

M according to

hup

i,g = ST Dg εi . (15.65)

Remember that Dg ∈ R
M×M is the diagonal matrix defined in (15.39). The residual

vector can be obtained from (15.35) and is given by

εi = p−
∑

g∈Γ
DgS ĥi,g, (15.66)

where ĥi,g = [ĥ(g, 0), . . . , ĥ(g, L−1)]T is the current estimate for the unwindowed
RIR at grid position g, which is provided by the inverse transform of the currently
estimated K-sparse signal representation subject to

[
ĥ
T

i,g1
, ĥ

T

i,g2
, . . . , ĥ

T

i,gG

]T = (W−1 ⊗ IL)�HRT ˆ̊ci . (15.67)

The convolutions along the temporal dimension by ST ∈ R
P×M and S ∈

R
M×P in (15.65) and (15.66), respectively, can be computed efficiently in Fourier

domain. Besides, there are only point-wise multiplications according to the spatial
components in Dg and a summation for calculating the residual vector.
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15.3.5.2 Perfect-Excitation Case

By exploiting the time-decoupled structure of the dynamic-sensing matrix (15.59)
for excitation with U periods of a perfect autocorrelation sequence, the update
vectors related to (15.65) can be calculated by

hup

i,g = S̃T
U∑

u=1

D[u]g ε
[u]
i , (15.68)

where ε
[u]
i ∈ R

L denotes the residual part that corresponds to the u-th period of
excitation and is obtained from

εi =

⎡

⎢⎢
⎣

ε
[1]
i
...

ε
[U ]
i

⎤

⎥⎥
⎦ = p−

∑

g∈Γ

⎡

⎢⎢
⎣

D[1]g
...

D[U ]g

⎤

⎥⎥
⎦ S̃ ĥi,g, (15.69)

with D[u]g ∈ R
L×L being the diagonal matrix defined in (15.57). Compared to (15.65)

and (15.66), the computational effort is lowered in (15.68) and (15.69). The circular
convolutions performed by matrices S̃T ∈ R

L×L and S̃ ∈ R
L×L can be calculated

very fast in Fourier domain.

15.4 Coherence Analysis

As an a priori indicator for stable and robust sound-field reconstruction, the
coherence of the dynamic-sensing matrix can be used (see Sect. 15.3.1). According
to the compressed-sensing paradigm, the upper error bounds for the sparse signal
recovery decrease with a lower coherence [8, 10, 15, 16, 23]. Note that uniform
performance guarantees derived in several references always represent worst-case
bounds for the theoretically worst possible scenario. In practice, however, typical
signals and measurement setups involve most likely never the worst-case behavior
for sparse recovery. Nevertheless, the coherence is in general a good indicator for
evaluating the sampling process in terms of compressed sensing.

Defined by the Welch bound, the coherence may range subject to

√
C −M

M(C − 1)
≤ μ(B̊dyn) ≤ 1. (15.70)

For calculating μ(B̊dyn), the naive approach of testing any normalized scalar product
between two different columns in B̊dyn according to (15.30) involves operations of
order O(C2). In this section, the specific signal structure in the dynamic-sensing
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matrix Bdyn is analyzed with respect to spectrally flat excitation (Sect. 15.4.1), in
order to derive a simple trajectory-dependent expression that allows for computing
the coherence of Bdyn at complexity O(P ) (Sect. 15.4.2). Remember that Bdyn ∈
C
M×P comprises all columns referring to the full set of discrete frequency variables

(k, l), and B̊dyn ∈ C
M×C contains the subset of columns from Bdyn according to

the hyperconical characteristic (15.46). Thus, μ(B̊dyn) ≤ μ(Bdyn) can be used as
upper bound. Finally, Sect. 15.4.3 presents conditions under which the assumption
of spectrally flat excitation in each dimension holds true.

15.4.1 Influence of the Trajectory on the Sensing Matrix

Based on the dynamic measurement model (15.34), it can be seen that the (n+ 1)-
th row of the measurement matrix Adyn is built up by the discrete spatio-temporal
excitation sequence

s̄n(g,m) = s(n−m)w−1
3D (g)ϕ3D(G(x(n))− g)

= s(n−m) φ̄n(g) (15.71)

that contains the time-reversed source signal segment of lengthL, spatially weighted
on G grid points g according to the current microphone position at sampling time n.
Accordingly, transferred into the sparsifying frequency domain, the (n + 1)-th row
of the resulting sensing matrix Bdyn = Adyn�

H carries the four-dimensional discrete
Fourier transform

S̄n(k, l) = 1√
LG

L−1∑

m=0

∑

g∈Γ
s̄n(g,m) e−2π i l

L
me−2π i kx

Gx
gx e

−2π i
ky
Gy

gy e−2π i kz
Gz

gz , (15.72)

with sampled frequency variables (k, l) as defined in Sect. 15.3.3. Correspondingly,
one column b of Bdyn concatenates M sampled values of the DFT spectra (15.72) for
one particular frequency combination (k′, l′) according to

b(k′,l′) =
[
S̄0(k

′, l′), S̄1(k
′, l′), . . . , S̄n(k′, l′), . . . , S̄M−1(k

′, l′)
]T

. (15.73)

Let us convert the microphone trajectory into grid-related coordinates

r(n) = (rx(n), ry(n), rz(n)
) =
(
x(n)

�x

,
y(n)

�y

,
z(n)

�z

)
(15.74)

and assume perfectly flat spectra S̄n(k, l) in any dimension, i.e., a spectrally flat
source sequence s(n) as well as inversely windowed interpolation filters φ̄n(g) =
w−1

3D (g)ϕ3D(G(x(n))− g) with ideal frequency response
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Φ̄n(e
iκ ) = e−irx(n)κx e−iry(n)κy e−irz(n)κz (15.75)

for each sampled inter-grid position r(n). Then, it can be stated that the moving of
the microphone from measuring point r(n) to position r(n+d) corresponds to phase
shifts in the sampled Fourier spectrum according to

Sn+p(k, l) = Sn(k, l)e−2π ip l
L e−2π idx(n,p)

kx
Gx e

−2π idy(n,p)
ky
Gy e−2π idz(n,p)

kz
Gz , (15.76)

involving the uniform phase delay p in the temporal dimension and, in general,
fractional phase shifts d(n, p) = (

dx(n, p), dy(n, p), dz(n, p)
)

in the spatial
dimensions that depend on the grid-related trajectory subject to

d(n, p) = r(p)− r(n). (15.77)

Combining (15.76) and (15.73), each of the P columns in Bdyn can be defined by
structured temporal and spatial phase terms of the form

b(k,l) =

⎡

⎢⎢
⎢⎢⎢⎢⎢
⎣

b0
(k,l)

b0
(k,l) e−2π i1 l

L e
−2π i

(
dx (0,1)

kx
Gx
+dy (0,1) ky

Gy
+dz(0,1) kz

Gz

)

b0
(k,l) e−2π i2 l

L e
−2π i

(
dx (0,2)

kx
Gx
+dy (0,2) ky

Gy
+dz(0,2) kz

Gz

)

...

b0
(k,l) e−2π i(M−1) l

L e
−2π i

(
dx (0,M−1) kx

Gx
+dy(0,M−1)

ky
Gy
+dz(0,M−1) kz

Gz

)

⎤

⎥⎥
⎥⎥⎥⎥⎥
⎦

, (15.78)

where the initial phase state

b0
(k,l) = σs eiθ0(l)e

−2π i
(
rx(0)

kx
Gx
+ry(0) ky

Gy
+rz(0) kz

Gz

)

(15.79)

is determined by the initial grid delay r(0) and the initial phase θ0(l) of the excitation
signal with power σ 2

s leading to the first microphone sample at time n = 0.
Accordingly, all columns in Bdyn possess consistent norms

∥∥b(k,l)
∥∥

2 =
√
Mσ 2

s . (15.80)

15.4.2 Coherence of Measurements

By using the column representation (15.78) for calculating μ(Bdyn) in line with
(15.30) and defining the distances between discrete frequency variables (k′, l′) and
(k′′, l′′) in f̄ = (k̄, l̄), with k̄ = (k̄x , k̄y , k̄z) and

l̄ = l′ − l′′ , l̄ ∈ {−(L− 1), . . . , L− 1} ,
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k̄x = k′x − k′′x , k̄x ∈ {−(Gx − 1), . . . ,Gx − 1} ,
k̄y = k′y − k′′y , k̄y ∈

{−(Gy − 1), . . . ,Gy − 1
}
,

k̄z = k′z − k′′z , k̄z ∈ {−(Gz − 1), . . . ,Gz − 1} ,

the coherence can be described by

μ(Bdyn) = max
(k′,l′) �=(k′′,l′′)

∣∣〈b(k′,l′),b(k′′,l′′)〉
∣∣

∥∥b(k′,l′)
∥∥

2

∥∥b(k′′,l′′)
∥∥

2

(15.81)

= max
f̄�=0

1

M

∣∣∣∣∣∣

M−1∑

n=0

e−2π in l̄
L e
−2π i

(
rx(n)

k̄x
Gx
+ry(n) k̄y

Gy
+rz(n) k̄z

Gz

)∣∣∣∣∣∣
, (15.82)

where the initial phase terms ei(θ0(l
′)−θ0(l

′′)) and e
2π i

(
rx(0)

k̄x
Gx
+ry(0) k̄y

Gy
+rz(0) k̄z

Gz

)

resulting from the scalar product in (15.81) are independent of the sum over n, have
no effect on the magnitude, and, therefore, dissolve into (15.82). The trajectory-
dependent expression (15.82) shows that the calculation of coherence between
columns of absolute frequencies can be relativized to the equivalent problem of
finding maximum correlation from possible differences in frequencies. Due to
this relationship, calculations reduce to linear complexity O(P ). Moreover, as the
excitation signals s̄n(g,m) are real-valued, the sampled spectra S̄n(k, l) are conjugate
symmetric. This may be exploited for saving further computational cost by reducing
the set of possible frequency differences in two dimensions, for example, according
to l̄ ∈ {0, . . . , L− 1} and k̄x ∈ {0, . . . ,Gx − 1}.

The expression (15.82) can be used to provide an upper bound for the evaluation
of the sparse recovery problem where only frequencies along the spectral hypercone
are considered. According to (15.46), the sensing matrix B̊dyn comprises columns
that involve discrete spatial frequencies ranging subject to

k̊ξ ∈ {−k̊max
ξ , . . . , k̊max

ξ } (15.83)

with maximum frequencies

k̊max
ξ =

⌈
fs�ξ(L− 1)(Gξ − 1)

2c0L
+ εs

⌉
(15.84)

for each dimension ξ ∈ {x, y, z}. Consequently, we obtain the upper coherence
bound

μ(B̊dyn) ≤ max¯̊f�=0

1

M

∣∣
∣∣∣∣

M−1∑

n=0

e−2π in l̄
L e
−2π i

(
rx(n)

¯̊
kx
Gx
+ry(n)

¯̊
ky
Gy
+rz(n)

¯̊
kz
Gz

)∣∣
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, (15.85)
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where possible frequency differences ¯̊f can be selected from a subset of spatial
frequencies in accordance with (15.83) and (15.84).

15.4.3 Spectrally Flat Spatio-Temporal Excitation

The quantity (15.82) is equivalent to the coherence (15.30) for spectrally flat
behavior of the measuring process in any dimension, which can be met by selecting
appropriate design parameters. For the temporal dimension, the choice of L-shift
cross-orthogonal excitation sequences is suitable (see Sect. 15.3.5.2). For the spatial
dimension, a dense grid design with more than twofold oversampling and the use
of maximally flat higher-order interpolation polynomials are appropriate. Then,
the bandlimited signal is located at the lower half-band where the interpolator
approaches ideal response, and the measurement model can be reduced to these
low spatial frequencies. For a non-ideal design, the measure (15.82) is an efficient
approximation of the coherence (cf. [26]).

Let us consider (15.75) for the simplified case w3D(g) = 1. The filters φ̄n(g) fulfill
a spatial alignment task. They perform a fractional delay (FD) in space on the sound
field h(g, n), in order to fit encoded samples h(r(n), n) taken in continuous space
into the modeled spatial grid. For one separated dimension, the impulse response of
an ideal FD filter is a shifted and sampled sinc function, φ̄id

n (gx) = sinc(gx−rx(n)),
where the delay rx(n) consists of the integer part (rx(n)� and the fractional part
qx(n) = rx(n)− (rx(n)�. Thus, the ideal frequency response of a FD filter reads

Φ̄ id
n (e

iκx ) = e−irx (n)κx , (15.86)

with constant magnitude response

|Φ̄ id
n (e

iκx )| = 1, (15.87)

linear phase response

arg
{
Φ̄ id
n (e

iκx )
}
= θ id

n (e
iκx ) = −rx(n)κx, (15.88)

and constant phase delay τ id
n = rx(n). For qx(n) �= 0, the ideal FD filter has infinite

length and, thus, is not realizable.
In order to design a realizable FD filter, several finite-length approximations for

the sinc function have been proposed. A discussion and comparison of common
techniques including non-recursive (FIR) and recursive (IIR) filter approximations
can be found in [49]. The maximally flat FD FIR filter approximation of length
N+1 is equivalent to the coefficients of the classical Lagrange interpolation method
considering an N -th-order polynomial. The maximum order of the interpolating
polynomial is limited by confining the support of the Lagrange kernel to local
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grid points. Choosing an odd-order Lagrange interpolator and centering the support
of φ̄n(gx) around the measurement position rx(n) yield a maximum of one in
the resulting magnitude response and allow for the best performance. The arising
approximation error is highly dependent on the fractional part qx(n). The worst case
occurs with a fractional delay of qx(n) = 0.5, which leads to an excessive magni-
tude error at high frequencies and even to an exact zero at the Nyquist frequency.
However, at low frequencies, the magnitude and phase-delay curves coincide with
the ideal response for any qx(n). By designing higher-order polynomials, this almost
perfect behavior can be obtained for the entire lower frequency half-band. Thus, for
a notional grid with spacing �x ≤ c0/(4fmax) that leads to at least twofold spatial
oversampling, the Lagrange filter achieves nearly optimal bandlimited interpolation
with nearly flat spectral characteristic. The additional weighting by an inverse
Hamming window according to (15.19) influences the frequency response only
marginally.

15.5 Trajectory Optimization

It has been shown in [25] that for sufficiently long sampling the minimum mean
squared error of estimates from the inverse problem (15.41) with (15.43) becomes
smaller for trajectory positions sampled closer to the notional grid points, indepen-
dently from the actual interpolation accuracy. For the sparse recovery in frequency
domain, no such general statement on the trajectory is applicable. According to
compressed-sensing theory, a random microphone trajectory would be a good
choice for generating incoherent measurements with high probability for a wide
range of constellations K < M < C [41, 42]. However, realistic trajectories cannot
be totally random, since the current position of the microphone is highly dependent
on its previous position. The speed of the microphone is limited in practice, so,
usually, it is impossible to reach any location inside �̄i instantly. In [26], the use of a
Lissajous trajectory covering the entire volume of interest has been experimentally
shown to be a good choice, performing even better than totally random dynamic
sampling positions.

15.5.1 Techniques for Measurement Matrix Optimization

Several iterative strategies have been proposed [1, 19, 29, 37, 38], in order to reduce
the coherence of measurements and obtain well-designed deterministic matrices
with optimized performance compared to totally random choices. Most of these
methods operate directly on the sensing matrix or, respectively, on the resulting
Gram matrix. However, considering the dynamic sound-field sampling problem,
entries of the matrix are not arbitrary, but arranged according to certain structures
as described in Sects. 15.3 and 15.4. The elements of the sensing matrix are not the
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design variables themselves, but rather result from particular relationships within the
multidimensional sampling problem. For such cases, where the sensing matrix can
be related to the design variables by use of a differentiable, nonlinear function, an
iterative optimization scheme has been proposed in [37]. This algorithm performs an
alternating minimization procedure and solves augmented Lagrangian subproblems,
in order to lower the coherence subject to the model parameters.

The dynamic sampling procedure possesses several design variables. However,
most of them are highly restricted according to the measurement setup and, thus,
are more or less predefined in advance. For the temporal dimension, there is the
source sequence s(n) that is arbitrary; however, it should cover the entire spectrum
of the bandlimited sound-field signal to be measured. Thus, white noise and perfect
sequences are convenient. In the spatial dimensions, model parameters are the grid
location that is essentially defined by the measurement volume, the observation
window that should be larger than the volume of interest for accurate interpolation
and designed according to the spectral requirements described in Sect. 15.2.3.1,
and the spacings �ξ of the notional grid that should be modeled subject to about
twofold spatial oversampling, in order to achieve (nearly) perfectly flat responses
by realizable FD filters at the considered frequencies in the lower half-band (see
Sect. 15.4.3).

The essential design variables in the dynamic sampling process are the trajectory
positions. A predefined microphone trajectory may lead to a sensing matrix with
high coherence. However, just slight changes in dynamic positions often lead to a
much lower coherence and reduced recovery error. For customizing the trajectory,
a cost-effective optimization procedure is highly favorable as the number of spatial
measuring points is, in general, as high as the number of provided samples M . For
all three dimensions in space, this results in 3M free design variables that basically
determine the coherence of B̊dyn. For example, dynamic sampling at 16 kHz for a
duration of 20 s involves about 106 position variables.

The low-complexity measure (15.85) is an excellent basis for deriving a simple
and fast algorithm that enables us to optimize the coherence of B̊dyn subject to the
trajectory positions [27]. By assuming a spatio-temporal excitation with spectral-
flatness character, the optimal grid-related trajectory is considered as

ropt(n) = argmin
r(n)

⎛

⎝max¯̊f�=0

∣
∣∣∣∣∣

M−1∑

n=0

e−2π in l̄
L e
−2π i

(
rx(n)

¯̊kx
Gx
+ry(n)

¯̊ky
Gy
+rz(n)

¯̊kz
Gz

)∣∣∣∣∣∣

⎞

⎠ .

(15.89)
In order to improve given trajectory positions, an update scheme can be used
that, first, efficiently identifies the origin of maximum spectral correlation subject
to (15.85) and, then, performs a gradient descent step for that current maximum
subject to the free position variables. This greedy-like method is highly efficient
for iteratively approaching a local minimum of maximum correlation and, thus,
obtaining a sensing matrix better suited to the CS paradigm.
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15.5.2 Fast Update Scheme for Trajectory Adjustments

A simple procedure allows for updating the trajectory r(n) subject to the minimiza-
tion of the maximum correlation between two columns in B̊dyn. By exploiting the
low-complexity measure (15.85), the objective function

J (r(·)) =
∣∣∣
∣∣

M−1∑

n=0

e−iT ¯̊
l′ (n)e−iX ¯̊k′ (r(n))

∣∣∣
∣∣

(15.90)

may be defined, with ¯̊k′ = (
¯̊
k′x,
¯̊
k′y,
¯̊
k′z), the temporal relationship

T ¯̊
l′(n) = 2πn

l̄

L
, (15.91)

and the positional dependency

X ¯̊k′(r(n)) = 2π

⎛

⎝rx(n)
¯̊
k′x
Gx

+ ry(n)

¯̊
k′y
Gy

+ rz(n)

¯̊
k′z
Gz

⎞

⎠ . (15.92)

The frequency distances in ¯̊f′ = (
¯̊
l′, ¯̊k′) are selected in accordance with the highest

spectral correlation for the current trajectory,

¯̊f′ = argmax
¯̊f �=0

∣∣∣∣∣

M−1∑

n=0

e−iT¯̊l (n)e−iX ¯̊k(r(n))
∣∣∣∣∣
. (15.93)

In order to minimize (15.90) with respect to the limitations of the measurement
process, different scenarios can be considered by adapting either one single position
(e.g., to find the optimal direction of future movement), multiple, or even all points
on the trajectory simultaneously at iteration i. The latter case emphasizes the need
for a computationally efficient optimization. Updates for one particular position
variable rξ (n∗) are performed following the gradient descent scheme

r
[i+1]
ξ (n∗) = r

[i]
ξ (n∗)− β

∂J (r(·))
∂r
[i]
ξ (n∗)

, (15.94)

with β being a small step size. For satisfying convergence conditions, a sufficient
choice of β can be obtained from common step-size rules [36]. Each iteration
goes along with a redesign of the objective function in a greedy fashion: if the
origin of the maximum correlation, i.e., (15.93), relocates, then J (r(·)) is adapted
accordingly.

Using Euler’s formula, the objective function can be rewritten as
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J (r(·)) =
⎛

⎝
(
M−1∑

n=0

cos
(
T ¯̊
l′ (n)+ X ¯̊k′ (r(n))

))2

+
(
M−1∑
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sin
(
T ¯̊
l′ (n)+ X ¯̊k′ (r(n))

))2⎞

⎠

1
2

,

(15.95)

in order to deduce simple expressions for the partial derivatives composing the
considered gradient. By applying the chain rule several times and using the
trigonometric identity sin(a± b) = sin a cos b± cos a sin b, the partial derivative of
(15.95) subject to the specific position variable simply reads

∂J (r(·))
∂rξ (n∗)

= γξ

M−1∑

n=0

sin
(
T ¯̊
l′(n− n∗)+ X ¯̊k′(r(n)− r(n∗))

)
, (15.96)

where the factor

γξ =
2π ¯̊k′ξ

DξJ (r(·)) (15.97)

depends on the particular dimension ξ ∈ {x, y, z} and the corresponding size Dξ ∈
{Gx,Gy,Gz}.

All in all, efficient adjustments of trajectory positions can be performed by
iteratively finding the maximum spectral correlation according to (15.93), calcu-
lating the gradient of the free variables in terms of (15.96), and updating subject
to (15.94), until some predefined exit conditions are reached. These could be, for
example, restrictions due to the measurement setup, i.e., boundaries of the spatial
grid, maximum distance between positions, or maximum microphone speed.

In Fig. 15.4, outcomes of the update scheme are presented for the adaptation of
positions on a Lissajous trajectory as well as positions resulting from an autoregres-
sive moving average (ARMA) process in each dimension. Both trajectories were
sampled at 4 · 105 points, which leads to 1.2 · 106 spatial design variables that
determine the coherence of the corresponding sensing matrix. For this example,
the coherences of the original states are μ(B̊dyn) = 0.18 for the Lissajous trajectory
and μ(B̊dyn) = 0.65 for the trajectory based on ARMA processes. Without building
up the large matrices, the optimization technique was capable of reducing the
coherences by directly manipulating the trajectory positions. At this, no constraints
were made on the resulting microphone velocity. The application of the update rule
(15.94) with (15.96) on each trajectory point at step size α = 0.1/(2π) obtained
improved setups where the coherence was significantly lowered by 0.1 after only
a couple of iterations, and finally reached a minimum in μ(B̊dyn) = 0.014 and
μ(B̊dyn) = 0.021, respectively. For both types of trajectories, just little changes
in rξ (n) by 0.2 on average led to the coherence improvement by 0.1. Numerical
experiments for various acoustic scenarios show that the coherence-based trajectory
optimization in turn improves the performance of the sparse sound-field recovery in
frequency domain [27]. Here, two main cases can be distinguished, as outlined in
the following.
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Fig. 15.4 Optimized microphone trajectories. (a)–(c) Lissajous trajectory and (d)–(f) ARMA
trajectory in their original states at i = 0 and their improved versions after i iterations leading
to lower coherence μ

For ARMA-process-based trajectories that originally lead to a lack of sampling
positions near the boundaries of the cubical volume �̄i, the positional optimization
converges to a much more expanded trajectory configuration with improved spatial
coverage (cf. Fig. 15.4d–f). The wider spread of spatial sampling points lowers
the coherence of the sensing matrix drastically and leads to a more homogeneous
recovery quality with an overall error reduction. Note that, in practice, the spread of
a defined number of trajectory positions will be limited by the maximum speed of
the microphone and must be constrained within the optimization procedure.

For the case where the original scenario already involves a widespread trajectory,
the optimization method performs only slight adjustments of positions. Comparing
the Lissajous-like trajectories in Fig. 15.4a and b, the outcome of optimization
is hardly visible. Positional differences are in the range of a few millimeters in
practice. However, such minor manipulations in the sampling setup have a major
effect on the sensing matrix and the CS-based recovery. Especially at positions in
areas where only a small number of dynamic samples are available, the optimized
trajectory enables more accurate RIR reconstruction. An example for this is depicted
in Fig. 15.5, where the RIR recovered at the center position of �̄i is compared for the
different trajectories in Fig. 15.4a–c given a fixed acoustic scenario (reverberation
time: 0.25 s, L = 2000, M/P = 0.25, fs = 8 kHz, signal-to-noise ratio: 20 dB). By
defining the normalized quality measure
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Fig. 15.5 Early part of the recovered RIR, sampled by using (a) a Lissajous trajectory with μ =
0.18, (b) its optimized version with μ = 0.08, and (c) its optimized version with μ = 0.014

Err = ‖htrue − hrec‖2
2

‖htrue‖2
2

, (15.98)

with htrue ∈ R
L being the ground truth and hrec ∈ R

L being the recovered RIR, the
recovery error based on the original Lissajous trajectory is Err = −13 dB. Using
the optimized versions from Fig. 15.4b and c results in reduced recovery errors of
Err = −18 dB and Err = −23 dB, respectively.
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15.6 Summary

In this chapter, basic ideas and strategies for the dynamic sound-field sampling
problem have been presented. The parameterization of the particular sound field in
terms of Cartesian coordinates and sinc-function-based interpolation filters allowed
for the direct incorporation of the dynamic measurement model into a compressed-
sensing-based recovery procedure, where sparsity in frequency domain is exploited.
Due to the uniform-grid model, both the required spatial interpolation and the
sparsifying transformation can be performed efficiently and separately in each
dimension. The separability of the dimensions led to a sensing matrix with highly
structured block components. The detailed analysis of the specific structure in terms
of involved signals and design variables revealed simple mathematical expressions
that enable us to avoid large matrix operations and accomplish tasks such as sparse
recovery, coherence calculation, and trajectory optimization at low effort in terms
of computation and memory.
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Chapter 16
Compressed Sensing in the Spherical
Near-Field to Far-Field Transformation

Cosme Culotta-López, Arya Bangun, Rudolf Mathar, and Dirk Heberling

16.1 Spherical Near-Field Antenna Measurements

In spherical near-field (SNF) measurements, the interaction between an antenna
under test (AUT) and a probe antenna in their near field is measured. In near field,
the radiation characteristics of both depend on the measurement distance between
them, since the radiated waves are spherical. In real applications, both antennas are
normally in their so-called far field, which means that a far-field approximation can
be used, resulting in assuming the radius of the radiated spherical waves is so large
that they are perceived as a plane wave. The implication is that, once a distance
that allows for this approximation is reached, it can be assumed that the radiation
characteristics of both antennas do not depend on the distance anymore.

The approach used to retrieve the far-field radiation characteristics of an AUT
from its interaction with a probe in their near field is modeling the interaction as
a multipole expansion, under the assumption that the probe response coefficients
be known. The objective is to retrieve the spherical mode coefficients (SMCs)
corresponding to the AUT, and once this is done, its far-field characteristics can be
calculated by computing the multipole expansion for a distance tending to infinity. In
Fig. 16.1, a measurement situation with an AUT and its coordinate system, (x, y, z),
and a probe and its coordinate system in primed letter, (x′, y′, z′), is shown, together
with the angles that relate the AUT and the probe. The general expression of the
multipole expansion relating the AUT and the probe in this situation, frequently
called the transmission formula, is given by [37]
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Fig. 16.1 Relationship between the coordinate systems of the AUT and the probe

y(r, χ, θ, φ) =
2∑

h=1

νmax∑

n=−νmax

∞∑

l=1

l∑

k=−l
ThlkDk,n

l (θ, φ, χ)Phnl(kwr), (16.1)

where y(r, χ, θ, φ) is the measurement signal dependent on the distance r , polar-
ization χ , elevation θ , and azimuth φ angles. The SMCs are given by Thlk , and the
function Dk,n

l (θ, φ, χ) represents the Euler rotation of spherical waves, also called
Wigner D-functions. In addition, Phnl(kwr) are the probe response coefficients of
the probe that is used to acquire near-field samples, with n being the equivalent l
order of the probe and n = νmax the maximum order considered for it. The probe
response coefficients Phnl(kwr) are, in turn, derived from the SMCs of the probe
measured at the center of the coordinate system of the measurement, rotated and
translated to the measurement distance to reflect the measurement situation at hand,
and can be expressed by

Phnl(kwr) =
∑

ην

C
hn(3)
ηνl (kwr)Rηνl, (16.2)

where the Greek indices represent their Latin counterpart for the original SMCs
of the probe, Rηνl are the original SMCs of the probe, and C

hn(3)
ηνl (kwr) are the

translation coefficients [37] that translate these to the measurement distance r , and
the superscript (3) represents outward travelling waves.

At the same time, h, as well as its Greek counterpart η, are limited to the values
1 and 2, which represent the propagation of transverse electric and magnetic waves,
respectively. Since antennas are band-limited, the summation over l can be truncated
to the band-limit constant B, so that we have a degree 1 ≤ l ≤ B. The band-limit
constant is defined according to



16 Compressed Sensing in the Spherical Near-Field to Far-Field Transformation 509

B = (kwr0� + L0, (16.3)

where kw is, again, the wavenumber, r0 is the radius of the minimum sphere
containing the AUT, the floor brackets signify the largest integer smaller than or
equal to the product kwr0, and L0 is a constant used for stability and accuracy. In
the literature, the choice of L0 = 10 is frequently used. We defer the construction
of a linear system of equations of the transmission formula to Sect. 16.3.2.

16.1.1 Notation

Throughout this chapter, we denote the vectors and matrices by lowercase and
uppercase letters. The elevation, azimuth, and polarization angle are denoted by
θ , φ, and χ , respectively. The set {1, ..., m} is denoted by [m]. x̄ is the conjugate
of x, and it is defined element-wise if applied to a vector. The inner product of two
vectors a,b ∈ C

N is given by 〈a,b〉 :=∑N
i=1 ai b̄i . The notation a � b means that

there is a universal constant C such that a ≥ Cb. The �p-norm of a vector x ∈ C
N

is given by

‖x‖p :=

⎧
⎪⎨

⎪⎩

(∑N
i=1 |xi |p

)1/p
, 1 ≤ p <∞

max
i∈[N ]

|xi | , p = ∞.
(16.4)

The set {1, 2, . . .} of natural numbers is given by N, whereas N0 includes {0} as
well.

16.2 Compressed Sensing

The classical concept of a system of equations is that of a set of m linearly
independent equations, i.e., equations that are not a linear combination of the
others, involving the same set of N variables. If the number of linearly independent
equations matches the number of variables, i.e., m = N , the system has a unique
solution. However, for the case where the equations are fewer than the number of
variables, i.e., m < N , the system is underdetermined, and it may have infinitely
many solutions, or no solution. Nevertheless, if many of the N variables are 0 or
have a neglectable influence on the system, it may be argued that the number of
significant variables is s̃ < N , and thus, m = s̃ equations should formally suffice to
solve the system. With this knowledge, solving the system still has the obstacle of
identifying which of the s̃ elements within the N variables are significant. Correctly
retrieving the solution in this case is called sparse retrieval. Let us assume we have
a linear system of equations expressed as a matrix equation as follows:
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y = Ax, (16.5)

where A ∈ C
m×N is the matrix with m row and N column dimension over the

complex fields. The linear inverse problem is the estimation of vector x ∈ C
N given

vector y ∈ C
m. It is well-known that for m ≥ N and a full-rank matrix A, the

recovery of vector x is unique. Nevertheless and as introduced earlier, this does
not hold true for the case m < N , where this problem becomes ill-posed, which
means the problem does not have a unique and stable solution. This situation is
dramatically different once we know that vector x has at most s̃ non-zero elements.
The �0-norm 1 of a vector x, ‖x‖0, is the count of its non-zero elements. Formulating
this as an optimization problem, we can write

minimize
x

‖x‖0 subject to y = Ax. (P0)

The combinatorial nature of the problem makes it computationally intractable, since
we have to consider all possible s̃-sparse vectors. Nevertheless, a convex relaxation
of the problem can be used, which changes the objective functions into the �1-norm,
so that it becomes

minimize
x

‖x‖1 subject to y = Ax, (P1)

which is a Basis Pursuit (BP) program [30]. Although this optimization problem
has been used in the late 1970s [41, 45], stable and robust recovery guarantees for
this algorithm have been derived, for the first time, in the seminal works [16, 30] in
2006. The book [32] provides a thorough treatment of these concepts. A prominent
sufficient condition for recovery is the so-called restricted isometry property (RIP).

Definition 16.1 A matrix A satisfies the RIP of order s̃ with constant δ ∈ (0, 1), if
the following inequalities hold for all s̃-sparse vectors x

(1− δ) ‖x‖2
2 ≤ ‖Ax‖2

2 ≤ (1+ δ) ‖x‖2
2 .

The smallest number δ, denoted by δs , is called the restricted isometry constant of
A.

Although the RIP would guarantee that solving (P1) is essentially akin to solving
(P0), certifying the RIP proves to be NP-hard [5]. For this reason, another metric,

1 The �0-norm of a vector x ∈ C
N is defined by

‖x‖0 :=
n∑

i=1

1(xi �= 0), (16.6)

where 1(·) is the identity function. The �0-norm is called a norm just by convention, as it is not a
norm in a classical sense.



16 Compressed Sensing in the Spherical Near-Field to Far-Field Transformation 511

the mutual coherence of the sampling matrix A, can be used as measure for
reconstructability.

Definition 16.2 The mutual coherence of a matrix A = [a1 . . . aN ] ∈ C
m×N is

defined as the maximum of the normalized inner product of columns of the matrix,
i.e.,

μ(A) := max
1≤i<j≤N

∣∣〈ai , aj 〉
∣∣

‖ai‖2 ‖aj‖2
.

The mutual coherence is commonly used to assess the conditioning of deterministic
matrices, and it is fundamentally related to the restricted isometry constants [32].
The mutual coherence is upper bounded by one and lower bounded by the Welch
bound [52]: in practice, if the coherence of a sensing matrix is closer to the Welch
bound, it will provide a better recovery guarantee. Even if the mutual coherence
provides weaker reconstruction guarantees than the RIP, it is easily computable and,
thus, practical for deterministic matrices.

16.3 Definition and Backgrounds

In this section, we provide a compact definition of signal processing on the sphere
and the rotation group. For a complete and detailed introduction in this area, we
refer the interested reader to [40].

16.3.1 Wigner D-Functions and Spherical Harmonics

The rotation group SO(3) is a set of all possible rotations on the three-dimensional
Euclidean space R

3. This space can be parametrized by three rotation angles
φ, χ ∈ [0, 2π) and θ ∈ [0, π ]. In this chapter, the convention of elevation
θ ∈ [0, π ], azimuth, and polarization angles φ, χ ∈ [0, 2π), as introduced
in Fig. 16.1, is used. Suppose we have a square-integrable function on this space
denoted by f, g ∈ L2 (SO(3)). This space is indeed a Hilbert space with inner
product given by

〈f, g〉 :=
∫

SO(3)
f (θ, φ, χ)g(θ, φ, χ)dν(θ, φ, χ), (16.7)

where dν(θ, φ, χ) := sin θdθdφdχ . Wigner D-functions are the orthonormal basis
functions for the Hilbert space L2(SO(3)), denoted by

Dk,n
l (θ, φ, χ) = Nle

−ikφdk,nl (cos θ)e−inχ , (16.8)
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where Nl =
√

2l+1
8π2 is the normalization factor, and dk,nl (cos θ) are the Wigner D-

functions 2 of band-limit degree 0 ≤ l ≤ B − 1 and orders −l ≤ k, n ≤ −l. It
should be noted that in SNF, formally, the trivial, continuous signal related to l = 0,
i.e., dk,n0 , is not considered to be part of the bandwidth, so 1 ≤ l ≤ B, as defined in
Sect. 16.1. However, for a purely mathematical derivation, the range 0 ≤ l < B is
considered.

Besides definition of the rotation group SO(3), we also provide the definition of
unit sphere S

2. Similar to the rotation group, we can also define a square-integrable
function on this space. The only caveat is that, instead of having a parametrization
of three angles, this space only has two parameter angles, namely θ ∈ [0, π ] and
φ ∈ [0, 2π). The orthonormal basis functions in this space are called spherical
harmonics and can be generated by considering their relation between Wigner D-
functions, which is

D−k,0l (θ, φ, 0) = (−1)k
√

1

2π
Yk
l (θ, φ), (16.9)

where the complex spherical harmonics can be written as

Yk
l (θ, φ) := Nk

l P
k
l (cos θ)eikφ.

Additionally, the definition of real spherical harmonics is given by

Yk
l (θ, φ) =

⎧
⎪⎪⎨

⎪⎪⎩

(−1)k
√

2Nk
l P

k
l (cos θ) sin(|k|φ) if k < 0

N0
l Pl(cos θ) if k = 0

(−1)k
√

2Nk
l P

k
l (cos θ) cos(kφ) if k > 0

. (16.10)

In both definitions, P k
l (cos θ) are the associated Legendre polynomials, and the

term Nk
l :=

√
2l+1
4π

(l−k)!
(l+k)! is a normalization factor.

16.3.2 Sparse Expansions of Band-Limited Functions

As discussed in Sect. 16.1, since we can assume most antennas are band-limited,
we can expand the electromagnetic fields radiated from an AUT with a band-limited
expansion of Wigner D-functions. This can be written as

2 With a lowercase or small d, to differentiate them from the Wigner D-functions Dk,n
l (θ, φ, χ) and

called, colloquially, “Wigner small-d functions.”
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g(θ, φ, χ) =
B−1∑

l=0

l∑

k=−l

l∑

n=−l
ĝ
k,n
l Dk,n

l (θ, φ, χ). (16.11)

As a consequence, a finite-dimensional vector of Fourier coefficients g =
(ĝ

k,n
l )0≤l<B with ambient dimension N = B(2B−1)(2B+1)

3 is obtained. A similar
concept for band-limited functions on the unit sphere can be defined by setting the
order n = 0 and the polarization angle χ = 0. As a result, we also have finite-
dimensional Fourier coefficients on the sphere with ambient dimension N = B2.

The matrix AW ∈ C
m×N is the measurement or sensing matrix constructed from

Wigner D-functions, which are the basis functions introduced in Eq. (16.1), and it is
given by

AW =
⎛

⎜
⎝

D0,0
0 (θ1, φ1, χ1) . . . DB−1,B−1

B−1 (θ1, φ1, χ1)
...

...
. . .

...

D0,0
0 (θm, φm, χm) . . . DB−1,B−1

B−1 (θm, φm, χm)

⎞

⎟
⎠ , (16.12)

with orders D0,0
0 ,D−1,−1

1 ,D−1,0
1 ,D−1,1

1 ,D0,−1
1 , . . . ,DB−1,B−3

B−1 ,DB−1,B−2
B−1 ,

DB−1,B−1
B−1 in each row. This matrix is a collection of m different samples of

Wigner D-functions, where for each sample there exist Wigner D-functions related
to its degree l and order |k| , |n| < B. The column dimension can be calculated
as N = B(2B−1)(2B+1)

3 , which means that, for a single column q ∈ [N ], we have
degree and orders dependent on q, i.e., l(q), k(q), and n(q). This is different from
the case portrayed by Eq. (16.1) and the column dimension N calculated by Eq.
(16.16), since, there, n is limited to n ∈ [−νmax, νmax], with νmax = 1 for the vast
majority of applications.

The construction of the sensing matrix from spherical harmonics ASH with band-
limit degree 0 ≤ l ≤ B − 1 and order −l ≤ k ≤ l is expressed as follows:

ASH =
⎛

⎜
⎝

Y0
0(θ1, φ1) . . . YB−1

B−1(θ1, φ1)
...

...
. . .

...

Y0
0(θm, φm) . . . YB−1

B−1(θm, φm)

⎞

⎟
⎠ , (16.13)

where each row follows the order Y0
0,Y−1

1 ,Y0
1,Y1

1, . . . ,YB−2
B−1,YB−1

B−1. The structure
of a sampling matrix A ∈ C

m×N , be it AW or ASH, is highly dependent on
the sampling of the Wigner D-functions and spherical harmonics. In this chapter,
the condition of RIP for both matrices and the construction of low-coherence
deterministic matrices are investigated.

The sampled version of band-limited expansion can be formulated in terms of a
system of linear equations

y = Ax, (16.14)
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where the matrix A ∈ C
m×N is constructed from sampled Wigner D-functions, and

the vector y consists of the acquired electromagnetic fields, i.e.,

y =
⎛

⎜
⎝

g (θ1, φ1, χ1)
...

g (θm, φm, χm)

⎞

⎟
⎠ . (16.15)

The vector of coefficients x ∈ C
N is constructed from Wigner coefficients ĝk(q),n(q)l(q) .

For SNF as described in the transmission formula (16.1), it is usually assumed that
the first-order modes of the probe are the ones with the most power, whereas the rest
are negligible. This translates into νmax = 1, which, in the classical SNF literature
and following its usual notation, is referred to as “μ = ±1 probes” [37]. The column
dimension N of this matrix depends on the band-limit constant B and writes

N = 2B(B + 2) = 2B2 + 4B, (16.16)

slightly different defined as general expansion of Wigner D-function, where we
have N = B(2B−1)(2B+1)

3 by taking the whole combination of degree l. The row
dimension m is defined by the number of sampled points. The vectors y ∈ C

m and
x ∈ C

N represent finite samples of near field and the SMCs. From this property, a
total of m = N measurements suffice to solve the linear equation system assuming
the matrix A is well-conditioned. However, for the classically used equiangular
sampling pattern, the total number of measurements required is larger than twice
the ambient dimension N :

m = 2(B + 1)(2B + 1) > 2N. (16.17)

However, the SMCs are compressible, which means only a small part of these
coefficients have a high intensity, as given in Fig. 16.2. This phenomenon leads
to the fundamental question of whether it is possible to reduce the number of
measurements scaling only with the number of significant coefficients. This problem

Fig. 16.2 SMCs (left: transverse electric, right: transverse magnetic)
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is crucial to be addressed in this chapter by using tools from compressed sensing
(CS), as discussed in the next section.

16.3.3 Construction of the Sensing Matrix

16.3.3.1 RIP Condition for Sensing Matrices

Uniformly distributed random samples on the sphere are highly connected to the
uniform probability measure on the sphere dν := sin θdθdφ. As discussed in
[15], taking this random sampling to construct a sensing matrix from spherical
harmonics is proven to satisfy the RIP condition, with the number of measurements
scaling as m � N1/2s̃ log4(N). However, this bound is not optimal because
of the scaling factor N1/2. The scaling with N can be further improved to
N1/4 by changing the probability measure to dθdφ and including sin1/2(θ) as
preconditioning [43]. An additional improvement to N1/6 is possible by sampling
according to | tan θ |1/3dθdφ and using (sin2 θ cos2 θ)1/6 as preconditioned, see also
[15]. Considering these different measures will affect the distribution of sampling
points on the spherical surface as depicted in Fig. 16.3. It can be seen that, to have
uniformly distributed random samples on the sphere, a distribution with respect
to the measure sin(θ)dθdφ shall be considered. On the contrary, taking uniformly
random samples directly from θ ∈ [0, π ] and φ ∈ [0, 2π) leads to a concentration of
points at the spherical poles, as well as to a concentration on the equator if random

samples with respect to |tan(θ)| 1
3 dθdφ are taken. This strategy can be tailored to

construct a matrix from sampled Wigner D-functions. This result is given in the
following theorem [6, Theorem 10], [10, Theorem 3].

Theorem 16.1 Consider the problem of finding sparse Fourier coefficients g of a
band-limited function g ∈ L2(SO(3)) from noisy linear measurements y = Ag+ η

with ‖η‖∞ ≤ ε. Suppose that the sensing matrix A is constructed as (16.12) using
m i.i.d. samples (θp, φp, χp), p ∈ [m] drawn uniformly from [0, π ] × [0, 2π ] ×
[0, 2π ]. Let P ∈ R

m×m be a diagonal matrix with Pii = sin(θi)1/2. The number of
measurements m is assumed to satisfy the following inequality:

Fig. 16.3 Distribution of random sampling (left: sin(θ)dθdφ, middle: dθdφ, right:
|tan(θ)|1/3 dθdφ)
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m � N1/6 s̃ log3(s̃) log(N).

Then with probability of at least 1 − N−γ log3(s̃), for universal constant γ ≥ 0, the
following holds. If g# is the solution to the following problem:

g# = arg min ‖z‖1 subject to ‖PAz− Py‖2 ≤
√
mε.

then

∥∥∥g− g#
∥∥∥

2
� σs̃(g)1√

s̃
+ ε,

where the best s̃-sparse approximation of g is expressed as

σs̃(g)p = minĝ∈CN :‖ĝ‖0≤s̃
∥
∥ĝ− g

∥
∥
p
.

In particular, when the measurements are not noisy, the recovery is unique for an
s̃-sparse signal, namely g = g#.

Although using random samples to prove the RIP condition is interesting from a
theoretical perspective, the design of deterministic sampling patterns is more inter-
esting for real application, especially for SNF. Due to the mechanical nature of the
problem, i.e., the need of mechanically rotating an AUT to acquire all defined points,
a random sampling scheme may reduce the number of samples in comparison to
other schemes, but still require a long measurement time. However and as mentioned
previously, certifying the RIP condition for deterministic matrices is hard [5, 49], so
the (low) coherence is used instead as a measure for reconstructability. In the next
section, a sampling pattern that yields a low-coherence matrix with the inclusion of
a constraint to enable fast acquisition is proposed.

16.3.3.2 Construction of Low-Coherence Sensing Matrices

Suppose a matrix is constructed from spherical harmonics and Wigner D-functions
as given in (16.13) and (16.12), respectively. The mutual coherence expressions for
spherical harmonics, μ(ASH), and Wigner D-functions, μ(AW), are given by [10]

μ(ASH) := max
1≤r<q≤N

∣∣∣∣∣∣
∣

m∑

p=1

Yk(q)

l(q) (θp, φp)Y
k(r)
l(r) (θp, φp)∥

∥∥Yk(q)

l(q) (θ,φ)

∥
∥∥

2

∥
∥∥Yk(r)

l(r) (θ ,φ)

∥
∥∥

2

∣∣∣∣∣∣
∣

(16.18)
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μ(AW) := max
1≤r<q≤N

∣∣∣∣∣∣
∣

m∑

p=1

Dk(q),n(q)

l(q) (θp, φp, χp)D
k(r),n(r)
l(r) (θp, φp, χp)

∥
∥∥Dk(q),n(q)

l(q) (θ ,φ,χ)

∥
∥∥

2

∥
∥∥Dk(r),n(r)

l(r) (θ ,φ,χ)

∥
∥∥

2

∣∣∣∣∣∣
∣
,

(16.19)
where the following convention is adopted:

Yk
l (θ,φ) :=

⎛

⎜
⎝

Yk
l (θ1, φ1)

...

Yk
l (θm, φm).

⎞

⎟
⎠ Dk,n

l (θ,φ,χ) :=
⎛

⎜
⎝

Dk,n
l (θ1, φ1, χ1)

...

Dk,n
l (θm, φm, χm)

⎞

⎟
⎠ .

(16.20)
In most cases, equiangular sampling patterns are used for their ease of implementa-
tion. For example, the classical SNF methods utilize this type of sampling patterns
to estimate the SMCs. Their convenience is not limited to the implementation
of the sampling itself but also has practical reasons with regard to the solver
to estimate the SMCs, which then allows the implementation of fast Fourier
transforms for processing. Regardless of their popularity, using these sampling
patterns to construct sensing matrices from spherical harmonics and Wigner D-
functions produces maximum coherence, i.e., it has a bad reconstruction guarantee,
as discussed in [7, Theorem 3], [10, Theorem 4].

Theorem 16.2 Let the matrix A ∈ C
m×N be constructed from either samples of

spherical harmonics Yk
l (θ, φ) or Wigner D-functions Dk,n

l (θ, φ, χ) for a signal with
bandwidth B using a sampling pattern that satisfies

2kφi ≡ 2kφj mod 2π, ∀i, j ∈ [m]
2nχi + 2kφi ≡ 2nχj + 2kφj mod 2π, ∀i, j ∈ [m]

for some−(B−1) ≤ k, n ≤ B−1. Then the mutual coherence of this matrix attains
its maximum, i.e., μ(A) = 1.

The equiangular sampling pattern, shown in Fig. 16.4a, belongs to the class
mentioned in the previous theorem. In the numerical evaluation, it is shown that the
coherence of the spherical harmonics sensing matrix as well as Wigner D-functions
is equal to one when applying this sampling pattern. Thus, the design of low-
coherence sampling matrices is necessary for compressed-sensing applications. This
problem is equal to finding the sequence of angles θp ∈ [0, π ], φp ∈ [0, 2π ], χp ∈
[0, 2π ] for p ∈ [m] that minimizes the coherence. Minimizing the coherence of
matrices from spherical harmonics and Wigner D-functions is a non-trivial problem
because of the non-convexity of associated Legendre, Jacobi, and also trigonometric
polynomials. However, and since certifying the RIP is hard, a minimal coherence is
a practical guarantee for reconstructability. It is possible to describe a coherence
bound considering equispaced sampling of θ as defined in [7, Theorem 4], [10,
Proposition 2], [11, Theorem 1], as follows:
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Fig. 16.4 (a) Equiangular and (b) spiral sampling schemes

Theorem 16.3 For symmetric and equispaced sampling pattern with cos θp =
2p−m−1
m−1 , p ∈ [m], the coherence of corresponding sensing matrices from spherical

harmonics and Wigner D-functions are lower bounded by

μ(A) = max
q �=r

∣∣∣
∣∣∣∣

m∑

p=1

Yk(q)

l(q)
(θp, φp)Yk(r)

l(r)
(θp, φp)

∥∥∥Yk(q)

l(q)
(θ, φ)

∥∥∥
2

∥∥∥Yk(r)

l(r)
(θ, φ)

∥∥∥
2

∣∣∣
∣∣∣∣

≥
∣∣
∣∣∣∣

M∑

p=1

PB−1(cos θp)PB−3(cos θp)

‖PB−1(cos θ)‖2 ‖PB−3(cos θ)‖2

∣∣
∣∣∣∣

, (16.21)

where Pl(cos θ) is the Legendre polynomial of degree l ∈ {0, . . . , B − 1}.3
As observed in [7, 10], by using a simple heuristic approach, there exists a sequence
of φp ∈ [0, 2π) for p ∈ [m] that achieves the lower bound in Theorem 16.3, which
implies that Eq. (16.21) becomes an equality. Pseudocode for constructing such a
sequence is presented in Algorithm 1. In the next section, we will draw numerical
results to show the performance of this proposed sampling pattern.

16.3.4 Numerical Evaluation

In this section, the coherence of matrices from spherical harmonics and Wigner D-
functions is evaluated, as discussed in [10]. Besides the proposed sampling pattern,

3 As explained previously, for the precise case of SNF, the range 1 ≤ l ≤ B is taken, since the
trivial continuous signal P0(cos θ) is not considered for the bandwidth. Under this assumption, the
degrees of the associated Legendre polynomial for the bound become B and B − 2, respectively.
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Algorithm 6: Pattern search
input : θ given, φ0 ∈ R

m as initial points, �0 > 0 as initial update step,
: standard basis ei for i ∈ [m] , λ ∈ (0, 1).

1 for k = 0, 1, . . . , kmax until
∣
∣μ(θ ,φk)− μLB

∣
∣ ≤ ε do

2 if μ(θ , x) < μ(θ ,φk) for x ∈ Sk := {φk ±�kei} then
3 φk+1 = x mod 2π
4 �k+1 = �k

5 else
6 φk+1 = φk mod 2π
7 �k+1 = λ�k

8 end
9 end

(a) (b)

Fig. 16.5 Proposed sampling path for the proposed scheme. (a) m = 97. (b) m = 800

several well-known sampling patterns on the sphere and the rotation group, as
discussed in [38], will also be provided. Additionally, the recovery results in terms
of phase transition diagrams as well as the implementation in spherical near-field
antenna measurements are presented, where the BP programs (P1) YALL1 [54]
and SPGL1 [50] will be used. The distribution of the proposed sampling pattern
and sampling path for near-field measurements, as given in [25, 26], is shown in
Fig. 16.5.

16.3.4.1 Coherence Evaluation

In this setting, the sensing matrix from spherical harmonics with a column dimen-
sion N = 100 will be considered. In Fig. 16.6a, the mutual coherence of sampling
matrices from Wigner D-functions is evaluated for different sampling strategies:
the equiangular sampling, discussed previously; the proposed sampling scheme,
and the spiral sampling scheme [12, 44], shown in Fig. 16.4b. The spiral sampling
scheme is included for being often researched for accelerating SNF measurements
[14], sometimes in combination with the application of compressed sensing [39].
It can be seen that, among all three sampling patterns, the equiangular sampling
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Fig. 16.6 Coherence evaluation of sensing matrices from both analyzed basis functions. (a) For
spherical harmonics. (b) For Wigner D-functions

pattern delivers the worst performance as discussed in Theorem 16.2. From looking
at Fig. 16.6, it is clear that for spherical harmonics, given an equispaced sampling
on θ , the construction of sampling pattern from Algorithm 1 yields sequences
on φ that can reach the coherence bound in Theorem 16.3, labeled in the figure
as Legendre bound. Along the same line, we can evaluate the coherence of the
sensing matrix from Wigner D-functions with N = 84. Apart from the similar
performance for equiangular sampling pattern, it is shown in Fig. 16.6b that the
bound in Theorem 16.3 cannot be achieved for Wigner D-functions. Nevertheless,
among all sampling patterns, the proposed sampling pattern still delivers a low-
coherence sensing matrix.
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16.3.4.2 Phase Transition Diagram: Random vs. Deterministic

In this section, the sparse recovery performances of different sensing matrices,
including the proposed sampling pattern, are evaluated. Phase transition diagrams
visualize the performance of successful and failed recoveries, which are represented
by white and black colors. The abscissa, m/N , represents the ratio between the
number of samples considered m and the total number of variables N , while the
ordinate axis, s̃/m, represents the ratio between the number of non-zero variables
and the number of samples considered. The sparse coefficients are generated
according to a zero-mean and unit-variance complex Gaussian distribution. For each
parameter, we consider Monte Carlo (MC) simulations with 50 trials, for which
any random quantities are redrawn independently. The recovery is classified as
successful if the following holds:

∥∥x− x̂
∥∥

2

‖x‖2
≤ ε, (16.22)

where x, x̂ ∈ C
N are the original and its estimated signal, respectively. The

threshold is given by ε = 10−3, so that it relates to an error of εdB = −60dB.
The performance of several sampling schemes is assessed: the classical equiangular
sampling, the spiral sampling, the proposed sampling, and two definitions of the
random sampling scheme, discussed in Sect. 16.3.3.1. Here, the random sampling
schemes related to dθdφ and |tan θ |1/3 dθdφdχ are denoted as Random 1 and
Random 2, respectively. The background reflects the probability of success of the
best case, while the transition bounds for each case are drawn for a probability
of success of 0.5, i.e., 50%. For both cases, it can be seen from Fig. 16.7a and b
that the worst performance, as expected, occurs when constructing a matrix from
equiangular sampling patterns. Thus, this type of sampling pattern is inappropriate
to be used for sparse recovery. Numerically, we show that the construction of a
low-coherence deterministic sensing matrix has a performance comparable to the
one of a sensing matrix from random samples. Although, in theory, the construction
of a sensing matrix with low coherence presents a pessimistic recovery guarantee
compared to satisfying the RIP condition, in this specific case for spherical
harmonics and Wigner D-functions we can have a similar performance [29, 39].

16.3.5 Implementation in Spherical Near-Field Antenna
Measurements

In this section, the implementation of the proposed sampling pattern to real
measurement data is discussed. As described in [25, 26], the double-ridged guide-
horn antenna SAS-571 by AH System’s [46] is used as AUT. The polarization
angle χ is alternated between χ = 0◦ and χ = 90◦ for consecutive points in



522 C. Culotta-López et al.

Fig. 16.7 Phase transition diagrams of sensing matrices from both analyzed basis functions. (a)
For spherical harmonics. (b) For Wigner D-functions

elevation θ [23, 25]. The operation frequency for all experiments is f = 10 GHz,
and the original measurements are performed with a number of measurements
m = 14,280, while the reconstruction by using CS is accomplished with m =
5038. In comparison, only 35.28% of the originally acquired measurement points
are required for the shown reconstruction. The measurement situation, with the
coordinate system of the AUT, the primed coordinate system of the probe, and the
measurement angles, can be seen in Fig. 16.8.

The reconstruction of SMCs is performed by solving the BP program (P1) with
the MOSEK solver [1–3]. Afterward, these coefficients are used to estimate the
far-field radiation pattern, as shown in Fig. 16.9. The reference and reconstructed
coefficients are shown in Fig. 16.10.

The evaluation of the far field is performed by comparing the original, calculated
from a classical measurement, with the reconstruction obtained with the proposed
strategy. This is done for the φ = 0◦ and φ = 45◦ cuts and both the co-polar (Co-
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Fig. 16.8 Measurement situation. The primed coordinate system corresponds to the probe

Pol) and the cross-polar (Cx-Pol) components of the AUT’s radiation pattern. The
equivalent error signal (EES) is shown as well, calculated by [23]

EES = 20 log10

∣∣|Eref, norm| − |Erec, norm|
∣∣, (16.23)

where Eref, norm and Erec, norm are the reference and reconstructed patterns normal-
ized to their maximum, respectively. The reconstruction shows good agreement,
considering that the simulations are carried out with a number of measurement
points of around 3 times lower than for equiangular sampling.

16.3.5.1 Modifying the Scheme for Time Efficiency

Acquiring fewer points does not directly relate to a reduction of the measurement
time, since this depends on the number of mechanical movements required [26].
The presented minimum-coherence sampling scheme, calculated to be equidistant
in elevation, can be easily acquired with a conventional roll-over-azimuth positioner.
As is the case for equiangular measurements, the roll axis, corresponding to φ, can
be set to work in continuous mode, i.e., without stop between consecutive samples.
Likewise, the azimuth axis, corresponding to θ , is set to work in step mode, i.e.,
stopping between consecutive samples. For the proposed sampling, more points on
the step axis, θ , are generally required, since there exist as many θ positions as
points m. This causes the acquisition to be slower for schemes with comparatively
large values of m. Taking advantage of the rotations of the continuous axis, φ,
it is possible to increase the information content with no time cost by adding
sampling points to the sampling path [23, 26]. To keep the equiangular sampling
as comparison standard, the newly introduced sampling points are taken at the same
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Fig. 16.9 SAS-571’s original normalized far-field radiation pattern and the pattern reconstructed
with the proposed method for φ = 0◦ and φ = 45◦ for a number of samples that amounts to
35.28% of the original

Fig. 16.10 Normalized SMCs of the SAS-571 double-ridged guide-horn antenna
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Fig. 16.11 Proposed scheme
and its modification for
m = 97 and mg = 97,
respectively. (a) Minimum
coherence. (b) Modified
sampling

(a) (b)

Fig. 16.12 Maximum and mean errors and speed gain in terms of times the speed of equiangular

angular distance the equiangular sampling is acquired with. A comparison between
the proposed sampling, used in the previous section, and the modified sampling with
additional points on the path is shown in Fig. 16.11.

The modified scheme based on a minimum-coherence compressed sampling with
m number of sampling points is said to have a base number of ground sampling
points mg. It is shown that this scheme does reduce the reconstruction error without
increasing the measurement time. This modification to the sampling scheme allows
measurements with lower mg schemes to deliver a reconstruction error normally
only achievable by choosing larger values of m. Provided fixed reconstruction error
requirements, the proposed modification allows for faster measurements.

The same antenna used for previous simulations, AH Systems’ SAS-571 [46],
is used to test this concept. The measurement frequency is f = 10 GHz. The
measurement step for a measurement with an equiangular measurement scheme
is�θ = �φ = 3 ◦. The numerical experiments are performed for modified sampling
schemes with mg = 37, mg = 45, and mg = 97. In Fig. 16.12, the maximum
and average error retrieved from these reconstructions is shown and compared
to a reconstruction with m = 97, i.e., without additional points acquired on the
sampling path. The estimated speed gain is also shown, calculated as times faster
than equiangular sampling, where a value C represents a measurement time of
tCS = teq/C.
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Fig. 16.13 Projection of a
compressed sampling scheme
onto a cylindrical surface. (a)
Sphere. (b) Cylinder

16.3.5.2 Extension to Arbitrary Surfaces

The theory introduced until now has the constraint of only being valid for spherical
surfaces, since the basis functions it is based on are defined for a spherical geometry.
However, extending it to other surfaces, especially surfaces that are currently used
in near-field facilities, would be advantageous for its application.

Equation (16.1) can be modified to accommodate a variable radius, ρ > r0, ρ ∈
R
m, which forces a different set of probe response coefficients Phnl(kwρj ), j ∈ [m]

per measured point [21, 22], which is called pointwise probe correction. By radial
projection of the (r, θ, φ) points of a compressed sampling scheme onto an arbitrary
surface defined in the spherical space (ρ, θ, φ), pointwise probe correction enables
the retrieval of the SMCs and, thus, the application of the investigated concepts on
non-spherical geometries [23, 24]. To this end, a function ρ(θ, φ) is required for the
description of the chosen surface.

For the mentioned case of a cylindrical surface, results are promising despite
truncation when the top and bottom are not measured, which is the typical applica-
tion case of cylindrical near-field measurements. In Fig. 16.13, the projection of a
compressed sampling scheme onto a cylinder is shown, whereas the reconstruction
results for the φ = 0◦ and φ = 45◦ cuts, considering the same conditions as in the
previous paragraph and a scheme with mg = 3B = 177, are shown in Fig. 16.14,
together with the EES, calculated as in Eq. (16.23). The vertical dashed lines define
the truncation angle for the explored experiment.

16.3.5.3 Implementation Considerations: Basis Mismatch

Compressed-sensing applications often suffer from specific problems, such as basis
mismatch (BM) [20]. BM occurs when the measurement signal’s basis functions
matrix is not exactly A but Â, though A is assumed for calculations. Since the
measured signal is sparse only in A, if the disagreement between both bases is
high, the measured signal loses its compressibility and, thus, its reconstructability
from compressed sampling schemes. Due to the finite nature of digital systems, an
argument is made for BM always being present to some extent [20]. Formalizing
the problem, let ŷ be a measurement signal sparse over the transformation matrix
Â [23, 27], so that ŷ = Âx. Assuming the basis function Â is unknown and A
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Fig. 16.14 Simulated reconstruction for a compressed sampling projected onto a cylinder

is assumed instead delivers ŷ = Ax̂, where the SMCs vector is not the original
anymore, but a BM-distorted vector x̂. Solving this equation and inserting it in the
previous equation yield

x̂ = A+ŷ, x̂ =
(

A+Â
)

x = �x, (16.24)

where A+ is the Moore–Penrose pseudoinverse of A and the matrix � = (A+Â)

is the BM factor between the true SMCs vector x and the reconstructed vector
x̂. Ideally, Â = A and � = IN . Several non-idealities can be modeled as
BM, such as errors introduced by the characterization of the measurement probe,
positioning errors, and aliasing introduced by the lack of redundancy due to
undersampling. In [27], a compressed measurement is performed using NSI-MI
Technologies’ Robotic Antenna Measurement System (RAMS) in their facility.
Although numerical simulations using the positioning uncertainties of RAMS show
the impact thereof is limited, a measurement in an unshielded environment proves
that the impact of aliasing in compressed measurements is high. Thus, a shielded
environment is advisable for compressed measurements. The mismatch caused by
the finite precision of the mechanical setup or by a (reasonable) error introduced by
the operator setting up the measurement is proved to have a more limited impact
[23].

16.4 Phaseless Spherical Near-Field Antenna Measurements

It has already been observed in [42, 47, 48, 53] that, when the phase measure
is unreliable because of hardware defects, one can only rely on the magnitude
measurements. For near-field measurements or more specifically SNF, the lack of
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phase information creates ambiguities in the reconstruction of the SMCs. Besides
the complete characterization of ambiguities that exist in phaseless measurements,
several issues related to the number of measurements and suitable sampling patterns
can be considered as object of investigation.

16.4.1 Phaseless Measurements

Suppose we only have access to the phaseless measurements of near-field radiation.
This problem can be expressed as follows:

y = |Ax| . (16.25)

As for the classical problem in spherical near-field measurements, the goal is to
estimate the coefficients x ∈ CN given phaseless measurements y ∈ Rm. The system
is no longer linear, and phase ambiguities are introduced. The possible ambiguities
for spherical harmonics are characterized and explained in the following section.

16.4.1.1 Ambiguities in Phaseless Spherical Harmonics Expansion

Let us construct ASH = {ap}p∈[m] ∈ C
N from band-limited spherical harmonics as

given in Eq. (16.13) with vector x ∈ C
N containing spherical harmonic coefficients

f̂ k
l , i.e., x =

(
f̂ 0

0 , f̂
−1
1 , f̂ 0

1 . . . f̂ B−1
B−1

)T
. The rotated coefficients z = xejα ∈ C

N for

α ∈ [0, 2π) and the reflected conjugate coefficients z = x deliver the same intensity
measurement. The first property is a trivial implication of phaseless measurements.
The second part follows from the property of conjugate spherical harmonics.

Yk
l (θ, φ) = (−1)kY−kl (θ, φ). (16.26)

These coefficients z and x are different in general for complex signals. Since the
degree and order of the spherical harmonics are defined as 0 ≤ l ≤ B − 1 and
−l ≤ k ≤ l, this conjugate symmetry produces an ambiguity between positive and
negative orders. The last property does not exist when considering real spherical
harmonics. Apart from phase ambiguities, the property of real spherical harmonics
yields another type of ambiguity. For instance, if an inappropriate sampling pattern
is considered, as discussed in the following result [8].

Proposition 16.1 (Ambiguity-Incurring Sampling Patterns) Consider real
spherical harmonics expansions of bandwidth B. Let the sampling points (θp, φp)
be chosen as (θp, (B − 2)θp) for p ∈ [m] to construct a matrix of spherical
harmonics ASH = [a1, . . . , am]T ∈ R

m×N as in (16.13). Suppose that the elements
of a vector of coefficients x ∈ R

N are constructed from the following:
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f̂ k
l =
{
cl k = 0, l+B is an odd number

0 otherwise
.

Then there is a vector of coefficients y ∈ C
N with single non-zero elements at degree

and order l = k = 1, i.e., ĝ1
1 = d1

1 such that for all p ∈ [m]:

ASHx = ASHy

B−1∑

l=0

N0
l Pl(cos θp)cl = N1

1P
1
1 (cos θp) sin

(
(B − 2)θp

)
d1

1

.

In other words, the products ASHx and ASHy cannot be distinguished using neither
complete nor phaseless measurements.

Since Proposition 16.1 shows that the solution for phase retrieval based on
spherical harmonics is not unique, thus the problem seems ill-posed. Considering
θp = (p−1)π

m−1 for p ∈ [m] and B ≥ 4, it is interesting to see that the previous
proposition is equal to equiangular sampling. In the numerical evaluation, we will
consider this type of sampling patterns to represent Proposition 16.1.

16.4.2 Numerical Evaluation

Recently, many algorithms to recover coefficients x from phaseless measurements
have been developed. In this chapter, the numerical experiments are performed by
using algorithms in the PhasePack library [19] and with the semidefinite program
using CVX [35, 36]. At its core, the semidefinite program considers squared
measurements instead of absolute measurements as follows:

bp =
∣
∣〈ap, x

〉∣∣2 = trace
(

apa∗pX
)

for p ∈ [m], (16.27)

where ap = [Y0
0(θp, φp), . . . ,YB−1

B−1(θp, φp)] ∈ C
N and the operator trace(.) takes

the summation of diagonal square matrices. Note that the matrix X = xx∗ ∈ C
N×N

is a rank-1 and positive semidefinite matrix. Therefore, the optimization problem
can be written as

find X

subject to rank (X) = 1, X 4 0, bp = trace
(

apaTpX
)
∀p ∈ [m].

(16.28)

This optimization problem is non-convex; therefore, a convex relaxation based on
semidefinite programming is used to solve it as suggested in [17]. This relaxation is
called PhaseLift and is described by
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find X that minimize trace (X)

subject to X 4 0, bp = trace
(

apaTpX
)
∀p ∈ [m].

(16.29)

The application of this and other methods to SNF measurements is investigated in
[9]. Since a relaxed version is considered, it is necessary to analyze when and in
which conditions the solutions of both problems are equivalent, i.e., when PhaseLift
indeed solves Eq. (16.28). For sensing matrices constructed from a random normal
distribution, the condition has been explained in [17]. However, the condition is
totally different when considering structured matrices from spherical harmonics.
Although this problem is still open in general, a number of algorithms for recovery
are tested in the next section.

16.4.2.1 Phase Transition Diagram

In this setting, the same well-known sampling patterns as we discussed in
Sect. 16.4.2 from [38] and algorithms in [19] will be used. The Gerchberg–Saxton
[33] and Fienup [31] algorithms use the alternating projection method [13]. Similar
to the alternating projection method, the Kaczmarz [51] method is an iterative
method that consists of projecting the estimation to a hyperplane determined
by each row of a sensing matrix from spherical harmonics. In contrast to the
alternating projection methods, PhaseLift [17], PhaseMax [34], and PhaseLamp
[28] are convex optimization methods to solve the phase retrieval problem. While
PhaseLift [17] works on the squared or intensity measurement, PhaseMax [34] and
its optimization, PhaseLamp [28], rely only on the magnitude measurement directly.
Wirtinger flow [18] is a gradient-based method, which consists of minimizing the
loss function in terms of the mean squared error from the intensity measurements.

In Fig. 16.15, all algorithms fail to recover the correct signal for equiangular
sampling, which confirms Proposition 16.1 [8]. Nevertheless, it can be seen that
PhaseLift delivers a successful recovery from a smaller number of samples than the
other algorithms. For this reason, a complete phase transition diagram for PhaseLift
is provided, as shown in Fig. 16.16. Band-limit constant B = {4, 5, . . . , 10} and
N = B2 are assumed, and MC with 10 trials is performed in this setting. As derived
in [4], the measurement bound for real measurements m ≥ 2N − 1 seems sufficient
to recover the coefficients by using PhaseLift.

16.4.2.2 Implementation in Spherical Near-Field Antenna Measurements

The application of these concepts for phaseless SNF measurements is evaluated. An
array of dipole antennas with ambient dimension of coefficients N = 96 is used as
AUT. It can be seen from Fig. 16.17 that m = 2.5N measurements are enough to
recover SMCs by using PhaseLift, which is lower than the works in [42, 48], i.e.,
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Fig. 16.15 Phase transition of different algorithms

Fig. 16.16 Phase transition of different sampling patterns with PhaseLift

m > 4N . Moreover, recovering the SMCs from phaseless near-field measurements
is possible by considering the spiral and uniformly random samplings.

16.5 Summary

This chapter introduces a method to reduce the measurement time of spherical
near-field antenna measurements by reducing the number of sampling points using
compressed-sensing techniques. This is done starting from the theoretical conditions
that allow for reconstruction from an undersampled set of random measurement
points, followed by the practical approach of introducing a constraint in the
sampling scheme to promote quick mechanical acquisition. Besides, it is studied
whether compressed-sensing techniques can be used to the same end for phaseless
spherical near-field antenna measurements.

A sampling strategy to construct a low-coherence sensing matrix from spherical
harmonics and Wigner D-functions has been proposed. It is numerically shown
that these sampling patterns deliver a better recovery performance than other well-
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Fig. 16.17 Far-field reconstruction from phaseless measurements

known sampling patterns. This sampling pattern also outperforms random sampling
schemes in terms of the reconstruction of the spherical mode coefficients and
far-field radiation pattern. The implementation of the proposed sampling pattern
is verified, showing that the measurement time can be significantly reduced.
Furthermore, by application of the technique known as pointwise probe correction,
the derived theory can be extended to other arbitrary geometries. This enables, e.g.,
the application of the proposed sampling to the acquisition with systems optimized
for geometries other than spherical, such as the cylindrical one.

However, compressed measurements suffer from additional problems due to the
lack of redundancy of the measurements. Most additional effects can be modeled
as contributing to basis mismatch, with the effect of aliasing being critical due
to environmental reflections occurring outside of the measurement sphere. For
adequate performance, measuring in a shielded environment is required.

A reduction in the number of measurement points for phaseless spherical
near-field measurements, compared to the classical method, is shown feasible by
measuring on a single surface. This is tested with classical, but undersampled,
sampling schemes and existing algorithms for sparse phase retrieval from other
fields. A lot of open questions related to this problem remain, such as the condition
of the sensing matrix, the number of measurements to have recovery guarantee, as
well as sampling strategies to construct the sensing matrices. Nevertheless, further
research in the direction of phaseless spherical near-field antenna measurements
seems promising.
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