Applied and Numerical Harmonic Analysis

Gitta Kutyniok
Holger Rauhut
Robert J. Kunsch
Editors

Compressed
Sensing in
Information
Processing

X Birkhauser



X Birkhauser



Applied and Numerical Harmonic Analysis

Series Editors

John J. Benedetto
University of Maryland
College Park, MD, USA

Wojciech Czaja
Mathematics, University of Maryland
College Park, MD, USA

Editorial Board Members

Akram Aldroubi
Vanderbilt University
Nashville, TN, USA

Douglas Cochran
Arizona State University
Phoenix, AZ, USA

Hans G. Feichtinger
University of Vienna
Vienna, Austria

Christopher Heil
Georgia Institute of Technology
Atlanta, GA, USA

Stéphane Jaffard
University of Paris XII
Paris, France

Gitta Kutyniok

Ludwig Maximilian University of
Munich

Miinchen, Bayern, Germany

Kasso Okoudjou
Dept of Mathematics, Tufts University
Medford, MA, USA

Mauro Maggioni
Johns Hopkins University
Baltimore, MD, USA

Zuowei Shen
National University of Singapore
Singapore, Singapore

Thomas Strohmer
University of California
Davis, CA, USA

Yang Wang

Hong Kong University of Science &
Technology

Kowloon, Hong Kong



Gitta Kutyniok * Holger Rauhut ¢ Robert J. Kunsch
Editors

Compressed Sensing in
Information Processing

Birkhauser



Editors

Gitta Kutyniok Holger Rauhut

Mathematisches Institut Lehrstuhl fiir Mathematik

Ludwig Maximilian University of Munich =~ RWTH Aachen University

Miinchen, Bayern, Germany Aachen, Nordrhein-Westfalen, Germany

Robert J. Kunsch

Lehrstuhl fiir Mathematik

RWTH Aachen University

Aachen, Nordrhein-Westfalen, Germany

ISSN 2296-5009 ISSN 2296-5017 (electronic)
Applied and Numerical Harmonic Analysis
ISBN 978-3-031-09744-7 ISBN 978-3-031-09745-4  (eBook)

https://doi.org/10.1007/978-3-031-09745-4

Mathematics Subject Classification: 94Axx, 65F22, 68U10, 90C25, 15B52, 86A10

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland
AG 2022

This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether
the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse
of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and
transmission or information storage and retrieval, electronic adaptation, computer software, or by similar
or dissimilar methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.

The publisher, the authors, and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, expressed or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

This book is published under the imprint Birkhduser, www.birkhauser-science.com by the registered
company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland



 -2016
36068 a -2016 36068 a
 
https://doi.org/10.1007/978-3-031-09745-4

 17863 56370 a 17863 56370
a
 
www.birkhauser-science.com

ANHA Series Preface

The Applied and Numerical Harmonic Analysis (ANHA) book series aims to
provide the engineering, mathematical, and scientific communities with significant
developments in harmonic analysis, ranging from abstract harmonic analysis to
basic applications. The title of the series reflects the importance of applications
and numerical implementation, but richness and relevance of applications and
implementation depend fundamentally on the structure and depth of theoretical
underpinnings. Thus, from our point of view, the interleaving of theory and
applications and their creative symbiotic evolution are axiomatic.

Harmonic analysis is a wellspring of ideas and applicability that has flourished,
developed, and deepened over time within many disciplines and by means of
creative cross-fertilization with diverse areas. The intricate and fundamental rela-
tionship between harmonic analysis and fields such as signal processing, partial
differential equations (PDEs), and image processing is reflected in our state-of-the-
art ANHA series.

Our vision of modern harmonic analysis includes a broad array of mathematical
areas, e.g., wavelet theory, Banach algebras, classical Fourier analysis, time-
frequency analysis, deep learning, and fractal geometry, as well as the diverse topics
that impinge on them.

For example, wavelet theory can be considered an appropriate tool to deal with
some basic problems in digital signal processing, speech and image processing,
geophysics, pattern recognition, biomedical engineering, and turbulence. These
areas implement the latest technology from sampling methods on surfaces to fast
algorithms and computer vision methods. The underlying mathematics of wavelet
theory depends not only on classical Fourier analysis but also on ideas from abstract
harmonic analysis, including von Neumann algebras and the affine group. This leads
to a study of the Heisenberg group and its relationship to Gabor systems, and of the
metaplectic group for a meaningful interaction of signal decomposition methods.

The unifying influence of wavelet theory in the aforementioned topics illustrates
the justification for providing a means for centralizing and disseminating informa-
tion from the broader, but still focused, area of harmonic analysis. This will be a key
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role of ANHA. We intend to publish with the scope and interaction that such a host
of issues demands.

Along with our commitment to publish mathematically significant works at the
frontiers of harmonic analysis, we have a comparably strong commitment to publish
major advances in the following applicable topics in which harmonic analysis plays
a substantial role:

*Analytic Number theory * Antenna Theory * Artificial Intelligence * Biomedical
Signal Processing * Classical Fourier Analysis * Coding Theory *
Communications Theory * Compressed Sensing * Crystallography and
Quasi-Crystals * Data Mining * Data Science * Deep Learning * Digital Signal
Processing * Dimension Reduction and Classification * Fast Algorithms * Frame
Theory and Applications * Gabor Theory and Applications * Geophysics * Image
Processing * Machine Learning * Manifold Learning * Numerical Partial
Differential Equations * Neural Networks * Phaseless Reconstruction * Prediction
Theory * Quantum Information Theory * Radar Applications * Sampling Theory
(Uniform and Non-uniform) and Applications * Spectral Estimation * Speech
Processing * Statistical Signal Processing * Super-resolution * Time Series *
Time-Frequency and Time-Scale Analysis * Tomography * Turbulence *
Uncertainty Principles *Waveform design * Wavelet Theory and Applications

The above point of view for the ANHA book series is inspired by the history of
Fourier analysis itself, whose tentacles reach into so many fields.

In the last two centuries, Fourier analysis has had a major impact on the
development of mathematics, on the understanding of many engineering and
scientific phenomena, and on the solution of some of the most important problems
in mathematics and the sciences. Historically, Fourier series were developed in
the analysis of some of the classical PDEs of mathematical physics; these series
were used to solve such equations. In order to understand Fourier series and the
kinds of solutions they could represent, some of the most basic notions of analysis
were defined, e.g., the concept of “function.” Since the coefficients of Fourier
series are integrals, it is no surprise that Riemann integrals were conceived to deal
with uniqueness properties of trigonometric series. Cantor’s set theory was also
developed because of such uniqueness questions.

A basic problem in Fourier analysis is to show how complicated phenomena,
such as sound waves, can be described in terms of elementary harmonics. There are
two aspects of this problem: first, to find, or even define properly, the harmonics or
spectrum of a given phenomenon, e.g., the spectroscopy problem in optics; second,
to determine which phenomena can be constructed from given classes of harmonics,
as done, for example, by the mechanical synthesizers in tidal analysis.

Fourier analysis is also the natural setting for many other problems in engineer-
ing, mathematics, and the sciences. For example, Wiener’s Tauberian theorem in
Fourier analysis not only characterizes the behavior of the prime numbers but is
a fundamental tool for analyzing the ideal structures of Banach algebras. It also
provides the proper notion of spectrum for phenomena such as white light. This
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latter process leads to the Fourier analysis associated with correlation functions in
filtering and prediction problems. These problems, in turn, deal naturally with Hardy
spaces in complex analysis, as well as inspiring Wiener to consider communications
engineering in terms of feedback and stability, creating his cybernetics. This latter
theory develops concepts to understand complex systems such as learning and
cognition and neural networks, and it is arguably a precursor of deep learning and
its spectacular interactions with data science and Al

Nowadays, some of the theory of PDEs has given way to the study of Fourier
integral operators. Problems in antenna theory are studied in terms of unimodular
trigonometric polynomials. Applications of Fourier analysis abound in signal
processing, whether with the fast Fourier transform (FFT), or filter design, or the
adaptive modeling inherent in time-frequency-scale methods such as wavelet theory.

The coherent states of mathematical physics are translated and modulated Fourier
transforms, and these are used, in conjunction with the uncertainty principle, for
dealing with signal reconstruction in communications theory. We are back to the
raison d’etre of the ANHA series!

College Park, MD John Benedetto
Wojciech Czaja
Boston, MA Kasso Okoudjou



Preface

In April 2014, the Deutsche Forschungsgemeinschaft (DFG, German Research
Foundation) established the Priority Program 1798 “Compressed Sensing in Infor-
mation Processing” (CoSIP). The objective of this volume is to offer a compre-
hensive overview of the scientific highlights obtained in the course of this Priority
Program, mainly during the second phase that started in July 2018.

Compressed sensing is an area of research with broad applications in electrical
engineering, computer science, and physics. It refers to situations where few
measurements already suffice to reconstruct a signal or image, despite the fact that
the acquired information leads to an underdetermined system of linear equations.
The key insight here is that most real-world signals are inherently sparse, that
is, for many natural classes of signals, there exist building blocks such that
decompositions of such signals with respect to these building blocks exhibit only
a small number of non-zero coefficients. It is remarkable that randomness has been
proven most successful in the acquisition step, enabling for a minimal number of
measurements. Furthermore, there exist efficient reconstruction algorithms which
make this approach feasible in practice.

The area of compressed sensing has attracted great interest of researchers in
mathematics and applied sciences since around 2004. A lot of recent research — both
in theory and application — are motivated by wireless communication and multiple-
input multiple-output channels (MIMO), which gain increasing importance with the
advent of digital technologies like the Internet of Things. In particular Chaps. 10, 11,
and 13 present an application-driven view point on wireless networks, while
Chap. 12 brings MIMO in context with radar imaging. These applications also
push forward the development of theory on different models of sparsity such as
hierarchical sparsity (see Chap. 1) or low-rank matrix recovery (Chap.2), as well
as theory on covariance estimation (see Chaps.3 and 4) and recovery algorithms
(see Chaps. 5-8). The rise of machine learning and deep neural networks likewise
leaves its imprint on compressed sensing-related topics in theory-driven research
(see Chaps. 7-9) as well as in research motivated by applications (see Chaps. 10, 13,
and 14). Last but not least, the problem of effectively acquiring compressive

ix
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measurements is still a challenge in particular applications, see Chap. 15 on moving
microphones and Chap. 16 on spherical near-field antenna measurements.

Overall, the network of SPP 1798 comprised more than 60 scientists, and
altogether 13 projects were funded in the second period and contributed to this
volume (Chaps. 8 and 9 are from the same project, the same holds for Chaps. 10
and 11). With Chap. 16, we also welcome a contribution from a project that has been
associated to CoSIP. The aim of this volume is of course not to give a complete
presentation of all results that have been obtained by participants of the Priority
Program but rather to collect the scientific highlights in order to demonstrate the
impact of CoSIP on further researches. The editors and authors hope that this
volume will arouse interest in the reader on the various new developments related to
compressed sensing that have been promoted by the Priority Program. For further
information concerning SPP 1798, please visit https://www.mathc.rwth-aachen.de/
spp1798ii/.

Miinchen, Germany Gitta Kutyniok
Aachen, Germany Holger Rauhut
Aachen, Germany Robert J. Kunsch

October 2021
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Chapter 1 ®
Hierarchical Compressed Sensing oo

Jens Eisert, Axel Flinth, Benedikt Grof3, Ingo Roth, and Gerhard Wunder

1.1 Introduction

The field of compressed sensing studies the recovery of structured signals from
linear measurements [12, 19]. Originally focusing on the structure of sparsity of
vectors, the framework was quickly extended to the structure of low-rankness
of matrices. These structures are simultaneously restrictive and rich. They are
restrictive so that they allow for signal recovery using far fewer linear measurements
than the ambient dimensions suggest and rich in that they naturally appear in a
plethora of applications. That being said, in many practically relevant applications,
the signals feature a more restrictive structure than mere sparsity or low-rankness.
A particularly important broad class arising in a wealth of contexts is hierarchically
structured signals. Such structures are in the focus of this book chapter.

J. Eisert

Dahlem Center for Complex Quantum Systems and Department of Mathematics and Computer
Science, Freie Universitit Berlin, Berlin, Germany

e-mail: jense @physics.fu-berlin.de

A. Flinth
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e-mail: flinth@chalmers.se
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The perhaps simplest examples are constituted by hierarchically sparse vectors.
A two-level hierarchically sparse vector is a vector consisting of multiple blocks
with a restricted support as follows: only a small number of the blocks have non-
vanishing entries and the blocks are themselves sparse. An illustrative example can
be given via imagining a telecommunication base station responsible for handling a
large set of potential users. If in each instance, only a few users actively transmit, and
the messages that are transmitted are sparsely representable, the vector compiling
all messages in its blocks is hierarchically sparse. The hierarchically sparse vectors
will serve as the main illustrative example of the entire chapter. It is straightforward
to generalize this notion for vectors with a hierarchy of nested blocks with sparsity
assumptions restricting the number of non-vanishing blocks on each level.

Another hierarchical structure of interest is given by replacing the sparsity
constraint on the vector-valued blocks by a low-rank assumption of matrix-valued
blocks. A motivating example here can be found in quantum tomography, where
quantum states can be modelled as low-rank Hermitian matrices. Hierarchical struc-
tures of quantum states arise here in the tasks of performing quantum tomography
with a partially uncalibrated measurement device or de-mixing sparse sums of
quantum states.

An intriguing feature of hierarchically structured signals is that their recovery
task is amenable to efficient thresholding algorithms. In general, thresholding
algorithms such as the iterative hard-thresholding pursuit are built on the insight
that, in contrast to the original recovery problem, the projection onto the set of
structured signals is efficient and in fact often particularly simple. This allows one
to employ algorithmic strategies such as projective gradient descent.

For hierarchically sparse signals, it turns out that the calculation of the projection
has the same computational complexity as the thresholding onto sparse signals.
Furthermore, the hierarchical structure allows for the parallelization of the projec-
tions for the blocks on each level yielding potential for further reducing the time
complexity by exploiting the restrictive structure. Based on this insight, we formally
introduce variants of the iterative hard-thresholding (IHT) algorithm and the hard-
thresholding pursuit (HTP) for hierarchically sparse signals.

For the IHT and HTP algorithm, recovery guarantees for measurement maps
that act close to isometrically, on sparse vectors, exist. Due to their similarity, the
recovery algorithms for hierarchically sparse signals inherit the recovery guarantees
from the original IHT and HTP provided the measurement map exhibits a restricted
isometry property (RIP) that is adapted to the hierarchically structured signal set.
We refer to the modified RIP restricted to hierarchically sparse signals as the
hierarchically restricted isometry property (HiRIP).

In this chapter, we derive a series of theoretical results concerning the HiRIP.
Requiring only HiRIP instead of RIP for the measurement opens up the pos-
sibility of exploiting multiple benefits. First, standard measurement ensembles
such as random Gaussian matrices can achieve HiRIP with a reduced sampling
complexity compared to RIP. The achievable logarithmic improvement mirrors
the reduced complexity of the restricted signal set compared to standard sparse
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vectors. Second, we introduce an ensemble of operators that do have the HiRIP,
but not RIP in any parameter regime. We give this flexible class of operators the
name hierarchical measurements since they are naturally adapted to hierarchical
structures. Hierarchical measurements combine different measurement maps on
each level of the hierarchy and, as we show, inherit HiRIP from standard RIP
and coherence properties of their constituent maps. An important instance of
hierarchical measurement is Kronecker products of measurements such that each
factor acts on the blocks of a certain hierarchy level.

Finally, we illustrate how the framework of hierarchical compressed sensing can
be applied in applications in machine-type communications and quantum technolo-
gies providing motivating examples and evaluations of practical performances.

Let us end with an outline of the remainder of the chapter. In Sects. 1.2 and
1.3, respectively, we formally introduce hierarchically sparse vectors and present
the algorithms used to recover them. Section 1.4 is devoted to theoretical results
concerning the hierarchical restricted isometry property (HiRIP) and step by step
develops a flexible toolkit to establish the HiRIP for large classes of measurement
ensembles. In Sect. 1.5, we move on to discussing the sparse, low-rank signal model,
including how the recovery algorithms can be adapted. In Sect. 1.6, we provide a
more specific discussion of selected applications. We close with a conclusion as
well as a small outlook in Sect. 1.7.

1.2 Hierarchically Sparse Vectors

We consider structured sparse signals that are vectors over the field K, referring
to either the reals R or the complex numbers C, and are hierarchically structured
into blocks. The support is restricted by sparsity assumptions on one or multiple
hierarchy levels. The simplest instance of hierarchically sparse signals is two-level
hierarchically sparse vector with constant block sizes and sparsities [20, 41-43].

Definition 1.1 (Two-Level Hierarchically Sparse Vectors) Let N,n,s,o0 € N.
A vector x € KM is called (s, o)-hierarchically sparse, if it consists of blocks
x; € K", x| = (xlT, R xl.T, R x;v—)T, where at most s blocks x; are non-zero,

and each of the non-zero blocks is at most o -sparse.

For brevity, we write (s, o)-sparse, dropping the hierarchically in the following.
We refer to the set of (s, o)-sparse vectors in KM as SQ] v or simply S if the
parameters are clear from the context. We also call the support supp(x) C [N] x [n]
of an (s, o)-sparse vector a (s, o)-sparse support, where [n] = {1,...,n}. The
definition of a two-level hierarchically sparse vectors can be generalized in several
directions: We can allow different block sizes and block sparsities. Furthermore,
each block is allowed to be a hierarchically sparse vector itself. This gives rise to
a more general recursive definition of hierarchically sparse vectors with arbitrary
many levels. The defining data of such a general hierarchically sparse vector can
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(4,2)
(1, 1) (2,1 (2,1
(4,2) (6,2) (5.2 (2 1) (5 2) (10,4) (6 3) (3 1)

Fig. 1.1 This figure shows an example of a hierarchically sparse vector. The grouping of the
entries is encoded in a rooted tree. The children of a vertex constitute a block at their level. The
pair of values at each vertex indicates the block size (the number of children) and the sparsity, i.e.
the number of children with non-vanishing entries. The leaves of the tree are identified with the
entries of the vector. The support of the vector drawn below and corresponding vertices with non-
vanishing entries are highlighted in red. ©2020 IEEE. Reprinted, with permission, from Ref. [35]

be collected in a rooted tree consisting of nodes, labelled by block sizes and
sparsities, see Fig.1.1. We refer to Ref. [35] for a formal definition of general
hierarchically sparse vectors. Other special cases of hierarchically sparse vectors
have been considered in the literature. Prominent examples are block sparse [13, 14]
and level sparse [3, 28] vectors.

Another setting where the hierarchical sparsity naturally emerges is so-called
bi-sparsity, see e.g. Ref. [18]. In said reference, a Hermitian matrix X € K"*" is
called bisparse if there exists a set § € [N] with |S| < s so that X;; is non-zero,
only if both i and j are in S. Clearly, any bisparse matrix can be interpreted as
an (s, s)-sparse vector. More generally, a matrix ¥ € KV*” with ¥; j non-zero for
i € Sand j € X for sets with cardinalities |S| = s,|, ¥| < o can be regarded
as (s, o)-bisparse and in the same manner identified with an (s, o)-sparse vector.
Bisparsity is of course more restrictive than hierarchical sparsity, but the projection
operator onto the set of bisparse matrices is—in stark contrast to its hierarchical
sparsity counterpart—NP-hard to compute. Hierarchical sparsity can thus be seen
as a relaxation of bisparsity which allows for more efficient recovery procedures.
We refer to Ref. [18] for a more comprehensive discussion on these matters, as
well as other ways to relax the bisparse structures. We encounter this relaxation in
conjunction with blind deconvolution in Sect. 1.6.2 and a non-commutative analog
of it in our discussion of blind quantum tomography in Sect. 1.6.3.

For simplicity and notational clarity, we content ourselves to present the frame-
work for two-level hierarchically sparse vectors. It is straightforward to generalize
the algorithmic strategies and most analytical results of this chapter to the general
definition of hierarchically sparse vectors outlined above, see Ref. [35] for details.
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1.3 Hierarchical Thresholding and Recovery Algorithms

We study the linear inverse problem of recovering an (s, o)-hierarchically sparse
vector x € KN” from noisy linear measurements of the form

y=Mx +e,

where M € K™ N" is the linear measurement operator and ¢ € K” encodes
additive noise. The recovery task can be cast as the constraint optimization problem

1
minimize —|y — M)c||2 subject to x is (s, o)-sparse., (1.1)
xE]KN” 2

where [ly| = [ |y,~|2]1/2 denotes the £5-norm.

So-called hard-thresholding algorithms solve the analogous optimization prob-
lem to (1.1) for standard s-sparse recovery by making use of the projection of a
vector z € K" onto the set of s-sparse vectors. The projection onto s-sparse vectors,

Ty(z) := argmin ||[x — z|| subject to x s-sparse,
xeKn

can be computed efficiently via hard thresholding, i.e. by setting to zero all but the
s largest entries in absolute value. Note that since the set of s-sparse vectors in K”
is not a convex set, the projection is non-unique. But for the arguments made here
every solution works equally well. Using a quick-select algorithm [24], the average
computational complexity of the thresholding operation is in O (n) with worst-case
complexity O (n?).

Following the blueprint of model-based compressed sensing [4], we can derive
variants of standard hard-thresholding algorithms for the more restrictive sparsity
structure under consideration here by modifying the thresholding operator accord-
ingly. The projection of a vector z € K" onto the set S of (s, o')-hierarchically
sparse vectors,

o1
Ty, (z) = argmin = [|lx — z||?,
xeS

can be computed via hierarchical hard thresholding: first, the standard hard thresh-
olding operation T, is applied to each block. Then, all but the s blocks with largest
£>-norm are set to zero. The procedure is summarized as Algorithm | and illustrated
in Fig. 1.2. We find that the average computational complexity of the hierarchical
thresholding operation scales as O(Nn), i.e. linear in the overall vector space
dimension as for the standard hard thresholding. Furthermore, the hard thresholding
and ¢>-norm calculation of the different blocks can be parallelized, reducing the
time complexity to O (max(N, n)). The hierarchical thresholding operation can be
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Algorithm 1: Hierarchical hard thresholding

input :z € KN, sparsity levels (s, o)

1 fori € [N]do
2 xi =Ty (zi);
3 vi = [lxi|l;
4 end
5 I =supp(Ts ((vi,...,vN)));
6 fori € [N]\Ido
7 ‘ x; =0
8 end

output : (s, o)-hierarchically sparse vector x = (xlT, o, x;)T

(a) (b) (©) (d (e)

Fig. 1.2 In this figure, the evaluation of the hierarchical thresholding operator T  is illustrated.
Starting with a given dense vector (a), each block is thresholded to its best o-sparse approximation
(b). To determine the s dominant blocks, the £>-norm is calculated for each block. The resulting
vector (c) of length N is again thresholded to its best s-sparse approximation (d). The resulting
blocks indicated by the s-sparse approximation (d) are selected from the o -sparse approximation
(b). The remaining (s, o' )-sparse support (e) is the output of Ty ,. ©2020 IEEE. Reprinted, with
permission, from Ref. [35]

extended recursively to general hierarchically sparse signals described in Sect. 1.2
without increasing the overall computational complexity.

Equipped with an efficient thresholding operation, we can formulate recovery
algorithms for hierarchically sparse signals following standard strategies. A par-
ticularly simple algorithm is the iterative hard thresholding algorithm [5] which
performs a projected gradient descent. The resulting hierarchical iterative hard-
thresholding algorithm (HilHT, Algorithm 2 [53]) alternates gradient descent steps
of the objective function (1.1) with the hard-thresholding operation T ..
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Algorithm 2: HilHT algorithm

input :datay € K™, measurement operator M € K"*N" sparsity levels (s, o)
initialize: x© =0

1 repeat

2 X0 = x=D 4 7O pp* (y_Mx(t—l));

3| 20 =T, (z0):

4 until stopping criterion is met att = t*

output : (s, o)-sparse vector X

Algorithm 3: HiHTP algorithm

input :data y € K™, measurement operator M € K"*N" sparsity levels (s, o)
initialize: x(© =0
1 repeat
2 O = x=D 4 @) pp* (y—Mx([_l));
3 1) = supp (Ty.0 ()E(’)));
4 x@ = argmin }[ly — Mx||> subjectto supp(x) S I®);
X
5 until stopping criterion is met at t = t*

output : (s, o)-sparse vector X

Here, () is a suitably chosen step size. The original IHT algorithms use constant
steps 7@ = 1 for all ¢. Alternative strategies include backtracking as in the
normalized iterative hard thresholding (NIHT) algorithm [6].

Faster convergence can be achieved with an adaption of the hard-thresholding
pursuit [ 17] to hierarchical sparsity, the HIHTP [35, 36]. Compared to the HiIHT, the
HiHTP algorithm uses the result of the thresholded gradient step as a proxy to guess
the support of the correct solution in each step. Subsequently, a linear least-squares
problem is solved on the support guess. The solution can be computed via pseudo-
inverse or an approximate method. Notably, with this modification, if the algorithm
finds the correct solution, it does this in a finite number of steps to the precision of
the least-squares problem solver. The HiHTP algorithm is given as Algorithm 3.

The computational complexity of both algorithms, HilHT and HiHTP, is typi-
cally dominated by the matrix vector multiplication with the measurement matrix
M and M*, scaling in general as O (mNn). If a fast matrix vector multiplication is
available for the measurement matrix, this scaling can be significantly improved.

The additional least-square solution in the HiHTP algorithm contributes
O (sam?) operations. For this reason, Hi[HT can be faster per iteration than the
HiHTP in certain parameter regimes. Note that the computational complexity,
featuring the overall vector space dimension Nn and the total sparsity so, is
identical to the complexity of the original IHT and HTP algorithms.

Modifications using hierarchically sparse thresholding can also be applied to
other compressed sensing algorithms such as the CoSAMP [32], the Subspace
Pursuit [10], or Orthogonal Matching Pursuit, see e.g. Refs. [30, 46] and the
references therein. Proximal operators of the convex relaxations of the problem
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(1.1) can be calculated using soft-thresholding operations yielding a hierarchical
version of the LASSO algorithms [20, 41-43]. Due to their similarity, the HilHT
and HiHTP algorithms inherit their convergence proofs and recovery guarantees
with slight modifications from their non-hierarchical counterparts. To this end, we
make use of the variant of the restricted isometry property (RIP) [8] adapted to
hierarchically sparse signals.

Definition 1.2 (Hierarchical Restricted Isometry Property (HiRIP)) Given a
linear operator M : KM — K™, we denote by ds.- the smallest constant such
that

(1 =8 )lIxlI* < IMx|* < (1 + 85.0) x|

holds for all (s, o)-hierarchically sparse vectors x € K",

We will also refer to the standard s-sparse RIP constant &, defined analogously
with the bounds holding for all s-sparse vectors. The standard RIP constant
dominates the HiRIP constant as 855 > 85, since S o is a subset of the set of 5 - o -
sparse vectors. But as we will see below, using the HiRIP allows for a considerably
more fine-grained analysis, yielding improvements in the sampling complexity.

In terms of a HiRIP condition, we can guarantee a robust and stable convergence
to the correct solution for the hierarchical hard-thresholding algorithms. To this end,
given x € KV and a support set @ C [N] x [n], we denote by x | the projection
of x onto the subspace of KV indicated by .

Theorem 1.1 (Recovery Guarantee for HIiIHT and HiHTP [35, 53]) Suppose
the measurement operator M : KN" — K™ satisfies the HiRIP condition

83s,20 < 84,
where 8 is a threshold, equal to 1/~/3 for the HIHTP algorithm and equal to ~/2 —
1 for the HilHT algorithm. Then, for x € K" e € K™, and Q C [N] x [n]
an (s, o)-hierarchically sparse support set, the sequence (x*) defined by HilHT
(Algorithm 2) or HIHTP (Algorithm 3), respectively, with y = Mx |q + e satisfies,
forany k > 0,

k ky,.0
[x* = x]ell = p" X" = xlall + tlell,

where the constants p and t depend on which algorithm is used: for HiIHT,

. . 2.18
pHHT = /383, 56, THIHT = 1 — pHilHT

whereas for HiIHTP,
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1/2

pHiHTP _ ( 2833‘2(7 ) .L,Hl'HTP _ 5.15
N 2 ’ = 1_  HHTP"

1 =805 20) 1= pt

The theorem’s proof follows closely along the lines of the standard proofs for
HTP and IHT as found, e.g. in Refs. [7, 17, 19]. A detailed proof can be found in
Refs. [35, 53], respectively.

1.4 Hierarchically Restricted Isometric Measurements

The results of the last section make it clear that the HiRIP property has the same role
for hierarchically sparse recovery as the RIP takes on for sparse recovery. If we can
prove that an operator A, for appropriate hi-sparsity levels (s, o), has the HiRIP, it
is guaranteed that HIHTP can recover x from the measurements Ax. In this chapter,
we will establish the HiRIP for several families of measurement operators, using
more and more specialized techniques.

1.4.1 Gaussian Operators

Let us first discuss the HiRIP properties of the arguably most well-known random
construction of a measurement operator: the Gaussian random matrix. A random
matrix A € K™*" is thereby said to be Gaussian if the entries are i.i.d. distributed
according to the standard normal distribution N(0, 1).

It has become a folklore result (see e.g. Ref. [19, Ch.9]) that if A is Gaussian, the
renormalized matrix ﬁA has the s-RIP with high probability if

n
m 2 slog (—) ,

s
where the notation 2 f(x) means greater than C - f(x), with C an unspecified
universal numerical constant. It is therefore natural to ask how large m needs
to be in order for \/L;ZA to have the (s, o)-HiRIP. Since (s, o)-sparsity is more

restrictive than so-sparsity, we surely will not need more than const. - so - log (%)
measurements. But is the threshold lower for the HiRIP? And if so, how much?

In fact, the framework of model-based compressed sensing [4] gives us a standard
route to answer this question for the Gaussian ensemble. Let us sketch this route
in some detail. First, one realizes that for any normalized fixed x € K, the
random vector \/LmAx is also Gaussian and as such obeys the following measure

concentration inequality:
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QW_M .

where c is a numerical constant. For a fixed vector x € K", LmA preserves its norm

> 8) < 2exp (—cm&z) ,

with high probability.

Second, we generalize the almost isometric behaviour to hold for all vectors
supported on a certain k-dimensional subspace V. To this end, we first establish that
it suffices that the measurement operator acts almost isometrically on a so-called p-
net for the intersection of the Euclidean unit ball with V. A p-net for a set M is a set
N with the property that for any g € M, there exists a p € N with |lg — pl2 < p.
It is not hard to construct a p-net for the normalized elements of V with cardinality
[19]

2 k
NI = Cret (1+2)

By choosing p suitably and applying a union bound over the p-net, we obtain for
any support S with |S| =k

S E

where C, A, and ¢ are universal numerical constants. With (1.2) at our disposal, it
is only one step to establish an isometry property for ﬁA € R™*N" for an entire

>4§ Vx :supp(x) = S) <k exp (—5m82) , (1.2)

union of subspaces such as structured sparse vectors. For instance, in order to get
the (s, 0)-HiRIP, we need to take a union bound over all (s, o')-sparse supports S.
There are (")(”)" such supports. Therefore

o
AYZAN - 2
H—Ax —1|>68 V(s,o)-sparsex | <C )»mexp<—cm8 )
s J\o

This probability is dominated by e, if

N fo
m > &5 2 log (c( )(”) wel>.
s J\o

. . . k .
Using the Stirling approximation (!) ~ (&), we obtain the more readable
condition

m > 872 (s log (&) + 5o log (£) + log (é)) .

Let us state this as a theorem.

Theorem 1.2 (HiRIP for Gaussian Matrices) Let A € K™ N be random
Gaussian. Then there is a universal numerical constant C > 0 so that if
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Fig. 1.3 Left: the number of recovered signals from 100 noiseless Gaussian samples over the
number of measurements m for HTP, HiLasso, and HiHTP. The signals consist of N = 30 blocks
of size n = 100 with s = 4 blocks having o = 20 non-vanishing real entries. Right: the number of
recovered blocks over the number of measurements m for HTP and HiHTP. The dashed and dotted
lines indicate the average number of correctly recovered zero and non-zero blocks, respectively.
The solid lines show the total average number of recovered blocks. The signals consist of N =
30 blocks with s = 4 blocks having non-vanishing real entries. A signal or block is considered
recovered if it deviates from the true signal by less than 10~ in £5-norm. ©2020 IEEE. Reprinted,
with permission, from Ref. [35]

m = G (stog () +solog (2) +log (1)) (1.3)

%ﬁA has an (s, 0)-HIiRIP constant 85 - (A) < & with probability as least 1 — €.

The difference of the condition (1.3) compared to the one needed to establish the
standard RIP

m=5 (so log (X2) + log (é)) (1.4)

is subtle. After all, both thresholds can be written as so multiplied with logarithmic
terms in the dimension of surrounding space. However, for certain parameter
regimes, the difference is significant. Indeed, in the scenario that N > n, (1.3)
can be much smaller than (1.4). This establishes that for Gaussian random matrices,
hierarchical thresholding algorithms are theoretically expected to have an improved
sampling complexity compared to their standard counterparts. Also in the non-
asymptotic regime, one can observe an improved sample requirement in numerical
simulation, see Fig. 1.3.

Note that the above discussion can be applied without problems to sub-Gaussian
matrices. A matrix is sub-Gaussian if the entries a; ; are i.i.d. distributed according
to a distribution that obeys P (|a,~k,~| > t) < aexp (—,BIZ) for some «, 8 > 0.
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1.4.2 Coherence Measures

The discussion in the last section very much relies on the random nature of the
measurement operator. This is a common feature of compressed sensing-related
theories—in order to obtain an optimal scaling, one practically has no choice other
than to use a random construction. A possible route to still establish (non-optimal)
RIP results for non-random matrices is to take a detour via so-called coherence
measures. The simplest result is as follows [19, Prop 6.2]: if we define the mutual
coherence of a matrix with normalized columns a; as

n(A) = sup [{ai, a;)],
l’j

the RIP constants obey
85(A) = (s — Du(A). (1.5)

To establish analogous results for the HiRIP constants, we need to use coherence
measures adapted to the block structure. Such measures have been introduced in
Ref. [43] for the analysis of the HiLasso algorithm. To work with these coherence
measures, it is convenient to introduce further notation to refer to the blocks of a
vector individually. To this end, we use the Kronecker product of matrices in the
convention

al,lB al,NB
AB=| = - :

am,]B am,NB

where ¢g; ; denotes the entries of A. The Kronecker product trivially also provides a
Kronecker product on vectors K¥ x K" — KM understood as n x 1 and N x 1
matrices, respectively. Using the basis {e;}ic[n, (¢;)j = §; j of K¥, we can rewrite
a blocked vector x € KN” with blocks x; € K", i € [N], as the sum of products
x = (xlT, x; s x;)—r = (v ¢ @ xi. The Kronecker product exemplifies the
canonical vector space isomorphism of KV” with the tensor product space KV ®
K”. Analogously, we identify the measurement matrices A € K"™*N* with linear
operators A : KV ® K" — K. We refer to A; € K™*" i e [N], defined through
Ai(v) = A(e; ® v), v € K", as the block operators of A. Now we introduce the
specialized coherence measures.

Definition 1.3 (Sub-coherence and Block Coherence) Let A : KV @ K" — K”
with block operators A; € K"*" and let {a; ;}je[n] be the columns of the ith block
operator. We define

1. The sub-coherence v(A) of A as the maximal mutual coherence of the block
operators, i.e.
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v(A) = sup u(A;) = supsup [{a; j, ai )|
i i j#k
2. The sparse block coherence ugy , (A) of A as

Mplock (A) = sup P (AFA)),
17]

where p° (B) denotes the o-sparse singular value of a matrix B € KNV,

o (B)= sup |{u, Bv)|.
u,v o-sparse
lull=llvl=1

Intuitively, v(A) measures the coherence within each block, whereas gy 4 (A)
measures the coherence between the blocks. Note that we have used a different
normalization in the definition of the sparse block coherence compared to Ref.
[43]. We can establish the following bounds on the HiRIP constants in terms of
the coherence measures.

Theorem 1.3 (HiRIP Through Coherence Bound) Let A : KN @ K" — K be
an operator with block operators A; and s € [N], o € [n]. It holds that

1. sup; 85 (Ai) < 81,5(A)  and gy (A) <2825 (A).
2. 85,0(A) = sup; 85 (Ai) + (s — Dtgoei (A).

In addition, if all columns of the block operators A; are normalized, then
85,0 (A) < (0 — DV(A) + (s — Ditgppex (A) -
Proof
1. Let j # k and x, y € K" be o-sparse normalized vectors. First, we have
AjxI% = 1x 1P = 1 A(e; ® )11 = llej @ x|I*| < 81.5(A),

since e; ® x is (1, o')-sparse. This proves the first claim. For the second claim,
we use the polarization identity to find

3 3
1 2] 2
(Ajx, Ay = 7 )" HijJri‘v’AkyH =2 HA(ej®x+i‘ek®y)H .

Since e; ® x and ¢; ® y have disjoint block supports, ¢; ® x + itey ® y are
(2, o)-sparse for all £. Hence,
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3
21
0 N N
i HA(ej®x+lek®y)H —ZE i
=0 £=0

1 Y, 2
4_1 ’e{;@x—i—lek@yu

3
1 2

552,0-ZE Hej®x+i€ek®y” .
=0

Now we use that |[e; ® x +i‘ex ® y||2 = 2 for all £. This proves both that the

final bound above equals %55,0 and that Zzzo itllej®x+itex ® y||2 = 0,
yielding the claim.

. Letx = Zi e; ® x; be an (s, o)-sparse and normalized signal. There exists an
S C [N] with |S| = s sothat x; = O fori ¢ S. We have

N
AxI? = > A | + D (Aixi, Ajxj).
i=1 i#j

Each x; is o-sparse and, thus, ||| A;x;||? — ||x; ||?| < 85 (A;)|lx;||>. Taking the sum
over i yields

N
2 2
x> = I Aixi |

i=1

< sup 8, (A ||,
1

We still need to deal with the cross-block terms. Let the support of x; be denoted
S;, the orthogonal projection onto the space supported on S; with Pg,, and define
V as the subspace with the same support as x. Consider the operator C : V — V,

y=) €e®yir Y a®Ps | Y AfAun
i

ies keS\{i}

We have

D (Aixi, Ajxj) = (x, Cx),
i)

and C is Hermitian. The latter implies that |(x, Cx)| < Allx||?, where A is the
magnitude of the largest eigenvalue of C. To estimate A, let v = ) ; ¢; ® v;
be a normalized eigenvector for C and i such that ||v;| is maximal. We have
Av; = Py, ZkeS A;‘Ak vk, and consequently

Mlvil> = (vi, Ps, D Af Agwr) = Y (Aivi, Agwg)

keS keS
k#i
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= 3 il = 6 = DugaAlu
keS
ki

In the second step, we have used that v; = Pg, v;, since v € V. In the penultimate
step, we have used that v; and vy all are o-sparse and that each index k in the
sum is different from i. In the final step, we have used the optimality of i. This
proves that A < (s — D)ugy . (A) and therefore the claim.

Finally, the addition of the theorem follows from the claim with (1.5). |

The above result can be applied to construct a large family of operators that
have suitably small HiRIP constants without exhibiting RIP in this regime. Consider
N pairwise orthogonal, p-dimensional subspaces of K™, and E; : KP — K"
isometric embeddings onto them. Let further C € KP*" be a fixed matrix with
35 (C) = & < 1. We consider the operator

N
A:KVN @K' > K", x > ZEiCxi.

i=1

The block operators of A are given by E;C, i € [N], and each of them is
compressively encoding K" into one of the mutually orthogonal subspaces. Due
to the fact that the E; are isometric, 6, (A;) = 8, (C) for each i. The pairwise
orthogonality of the subspaces implies that AYA; = O fori # j, so that ugy | (A) =
0. Theorem 1.3 then implies that §; 5 (A) < §(C) for any s.

The above construction will generically not result in an operator with small
85 (A). To this end, suppose that s < n and p < n — so. Then, there exists an
so-sparse w € K" with Cw = 0. Now the vector x = (w, 0, ..., 0) is so-sparse,
but || Ax||> — [|lx[|*| = [I0lI> — [Ix]I*| = Ilx||*. We conclude that 85, (A) > 1.

A disadvantage of this construction is that necessarily m > Np > No. This is
a considerably worse scaling than we found for Gaussian random matrices, which
exhibit the HiRIP for m 2 so up to log-factors. The scaling in N as opposed to
the sparsity parameter on the block-level s arises from the encoding into mutually
orthogonal subspaces. The idea of ‘mixing’ block operators can, however, be driven
a lot further to avoid this overhead as we will see in the next section.

1.4.3 Hierarchical Measurement Operators

As we saw above, a measurement operator on KV ® K” can always be thought of
as a mixture of block operators, say

N
B(x) =) Bixi.
i=l1
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The inequalities in Theorem 1.3, part 1 imply that in order for B to have a small
HiRIP constant, we need each block operator to be well-conditioned, and in addition
that the blocks are incoherent. What can we do when they are not?

Assume that instead of just observing Bx, we are allowed to sample a few
different linear combinations of the vectors B;x;,

N N
y= (Z ai.,jBixi> => a ® Bix;,
i=1

jelmy  i=l

with a; = (a;;)jem) € KM Can this make recovery easier? Let us define such
measurement operators that act hierarchically on the block structure of the vectors
as hierarchical measurement operators.

Definition 1.4 (Hierarchical Measurement Operators) Let A € KMV and B; e
K™" i =1,...,N, be given and denote the ith column of A by a;. We call the
operator

N
H: KN @K' > KM @ K™, x'—>2m®3ixi,

i=1
the hierarchical measurement operator defined by A and (B;)i¢[N]-

The structure and naming of hierarchical operators makes it easy to believe that
they are an excellent fit for hierarchically sparse recovery. They are, however, by no
means only of academic interest. We will discuss this more thoroughly in Sect. 1.6.
For now, the practical interest might already become apparent by noting that an
important special case of hierarchical measurement operators is the following: in the
case of B; = B being equal, the hierarchical operator is the same as the Kronecker
product A ® B of the matrices A and B. How do the hierarchical isometry constants
of H relate to the ones of A and the B;s? In order to discuss this question, we begin
by proving the following lemma.

Lemma 1.1 (RIP Implies Nuclear Norm Isometry) Ler X € K"*N have the
property that for some sets S and S of cardinality s, X; j = O if either i ¢& S or
jés.

1. If X is positive-definite Hermitian, which in particular implies S =S,
[(A*A, X) — [ X]ls| < 8:(A)IX ]l .
2. If S and S are disjoint,

[(A*A, X)| < 825 (D1 X || -
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Here, || X ||« denotes the nuclear norm, also known as the trace norm, of X, i.e. the
sum of its singular values.

Proof Consider a singular value decomposition of X, X = Z,N= 1 oiviu;. We have
(A*A, X) = ZIN=1 oi{Au;, A_v,'). Due to the assumption, for all i with o; # O,
supp(v;) C S and supp(v;) C S.

1. For X positive-definite, the o; are the eigenvalues of X, and u#; = v;. Since each
u; is s-sparse, it holds that

N N
(A A, X) = IX 1] < o HAws, Au) — 1] < " 07 - 85(A) = 8,(A) X

i=1 i=1

2. Ref. [19, Prop. 6.3] states that since the supports of #; and v; are disjoint, we
have |(Au;, Av;)| < 825(A). This in turn implies

N N
(A*A, X)| < D oil(Aui, Avi)| <) 0782 (A) = 25 (A)[[ X s .
i=1 i=1
O

We now prove that H inherits the HiRIP from the RIP of its constituent matrices,
in that ; » (H) can be bounded in terms of §;(A) and the constants &, (B;).

Theorem 1.4 (Hierarchically Inherited HiRIP) Let H be the hierarchical oper-
ator defined by A and (B;);c[N]. We have for s, o arbitrary

s, (H) < 85(A) + sup 85 (B;) + 85(A) - sup s (B;).

Proof Let x be normalized and (s, o)-sparse and S such that a; = 0 fori ¢ S. We
have

N N
IHOI = Y (@i ® (Bixi), a; @ (Bjxj)) = Y _ (ai, a;)(Bixi, Bjx;) = (A*A, G),
b=t ij=1

where G € KM*VN denotes the matrix with non-vanishing entries G;; =
(Bix;, Bjxj)fori € Sand j € S. By Lemma 1.1, part 1,

(A*A, G) — G| < 85(A)Glx. (1.6)

It remains to estimate ||G|/x. In order to do this, consider the operator M
KIS — K™, ¢ Y ies ¢iBixi. By construction, G = M*M, and therefore,
Gl = IM|?* = Yies | Bix;||?, where || - || here refers to the Frobenius norm.
Consequently,
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G I = 1x12] = D2 1Bl = 12| = D 60 (Bl (.7

ieS ieS

Combining (1.6) and (1.7), we obtain
(44, G) — 1x1P| = [(A*A, G) = IGIL| +[I Gl — x|

< 8,(4) <1 + sup5U<B;>) lx11? + sup 8, (By) 1.

1 1

which proves the claim. O

The theorem shows that hierarchical operators are a rich class of operators which
much more often have the HiRIP than the RIP. To make this precise, we take a look
at the special case of Kronecker products A ® B. Theorem 1.4 implies that if 55(A)
and 6, (B) are small, §; (A ® B) is also small. This is in stark contrast to the RIP
of Kronecker products. Indeed, Ref. [25] derived that

8s(A ® B) = max(8s(A), 55(B)).

That is, in order for A ® B to have the s-RIP (nota bene, not the so-RIP), both
A and B must have it. This obstacle leads to demanding performance bounds in
applications [40].

The total number of measurements measured by a hierarchical operator is equal
to mM. Together with the classical results on the RIP of Gaussian operators, the
theorem implies that by choosing A and B Gaussian, we can hence build hierarchical
operators having the (s, o)-HiRIP using only

n N
const - so log (—) log (—)
o s

many measurements. This scaling is up to log-factors identical to the result Eq. (1.3)
we established for fully Gaussian matrices. This is noteworthy, since while fully
Gaussian matrix consists of M N - mn independent parameters, a Kronecker product
A ® B only has M N + mn. This constitutes a considerable de-randomization of the
measurements, which can be e.g. exploited to reduce the storage complexity or to
speed up calculations. We refer to Refs. [34, 35] for an extended discussion and an
alternative direct proof of HiRIP for Kronecker product measurements.

Theorem 1.4 tells us that operators with small RIP constants can be combined to
obtain an operator with a small HiRIP constant. We now take a look at the contrary
question: To what extend are small RIP constants of the constituent operators
required to bound the HiRIP constants of the hierarchical measurement operator?

In order to get a simple formulation of our first result, let us first note that there
is an ambiguity in the definition of a hierarchical measurement operator. We can
always simultaneously rescale a; and B; since a¢; ® B; = (la;j) ® (A~'B;). We
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may thus w.l.o.g. assume that ||g;|| = 1 for all i. Under this assumption, a small
(s, 0)-HiRIP constant of H indeed implies small o -RIP constants of all B;.

Proposition 1.1 (o0-RIP Bound from (s, o)-HiRIP) Let H be a hierarchical
measurement operator given by A and (B;)ic[n]. Assume that the columns of A
fulfil \|a; || = 1 for alli. Then, it holds that

sup 85 (B;) < 81,6 (H).
1

Proof The ith block operator H; of H is given by a; ® B; € KM"*N The

normalization implies that ||(a; ® B)x||> = |la;||* - ||Bix||> = || Bix||*> for each
x € KN. Thus, 8, (B;) = 84 (H;), and the result follows from Theorem 1.3, part 1.
O

The above result in essence states that for H to have the (s, o)-HiRIP, it is
necessary that all B; have the corresponding o-RIP. Intriguingly, for the RIP
requirement of A, the situation is very different. Indeed, if the B; are mapping into
incoherent subspaces, A does not need to have the RIP. The precise result is as
follows.

Theorem 1.5 (HiRIP with Block Incoherence) For a family (B;);c[n), define the
operator

N
B: KN @ K" — K™, xi—)ZBix,-.

Let A € KM*N and natural numbers s, o, and t be given. The hierarchical operator
H given by A and (B;)ie[n) fulfils

8150 (H) < sup 35 (B;) + 85(A) - sup 85 (Bi) + /s - 825(A) - Mb]ocﬁ")(ﬂ)
t i

Proof Letx = Zi e; ® x; be a (ts, 0)-sparse, normalized vector and S C [N] be
such that x; = 0 fori ¢ S. We may subdivide S into ¢ disjoint sets Si, ..., S; with
cardinality s each. For each pair (k, £) € [t] x [t], we define a matrix G5t € KN*N
with non-vanishing entries G{‘f = (B;x;, Bjx;) fori € Sy and j € S¢. We may use
the same reasoning as in the proof of Theorem 1.4 to argue that

| H )| ZA A, GMy ) (A%A, GMY.
ke

Now, each matrix GX+¢ fulfils the assumption of Lemma 1.1, part 1 for k = £ and
Lemma 1.1, part 2 for k£ # £. Hence,
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‘n?«x)uz - Z‘: [

N
<5, Y |64 o) 3 |6kt
k=1 * k£e *

Still in analogy to the proof of Theorem 1.4, we find that | H Gkk ”* — llxxll? ‘ <
sup; 8¢ (Bi) || xk %, and consequently

H(x) — ||x||2‘ < 8(A) (1 + squU(B,-)) + 825 (A) - Z H Gk,ZH* .
! [

It remains to bound the terms with k % [. First, let us note that, since G** has
rank at most s, [|GX 4|, < /s||G5¢||. We now use the definition of the intra-block
coherence to argue that

20,2
[64 = | 3 B B = a2,

ieSk,jeSe ieSk,jeSe

Finally with

2
ST D i< DD Dol < ),

k2t \ ieSy, jese k \iese

where we have used the Cauchy—Schwarz inequality in the final step, the claim
follows. |

Note that the above result shows that A does not need to have the ¢s-RIP in
order for the hierarchical operator to exhibit the corresponding HiRIP. We may in
particular choose t+ = N /s and obtain an operator that acts isometrically on any
vector with sparse blocks. In terms of sample complexity, the above result is still a
bit opaque. By making a particular choice of ¢ and using the methods of Gaussian
random matrices discussed in Sect. 1.4.1, one can derive the following result (see
Ref. [16] for a proof).

Proposition 1.2 (Sample Complexity) Let (B;); and B be as in Theorem 1.4.3.
Assume that

2 N
(20,20)
t B ) < )
('ublock (B) — log(N)

and choose A € KM*N g5 a Gaussian matrix. Let 8, € > 0. Provided that
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2
2 N (1 + sup; 86 (B;

M= C [ (155" ®) - hlog ( 5 zp’) "(B’;) +1og (1) ]
(’Mblgéka (B))

where C is a universal numerical constant, the hierarchical measurement operator
H defined by A and (B;)icn obeys

81,0 (H) = 8 + sup o (Bi)
1

with a probability at least 1 — €.

This proposition shows that if uﬁgio) (B) is small enough, the number of ‘Gaussian

linear combinations’ we take with A does not have to grow linearly in ¢ in order to
establish a (¢, o')-RIP—instead, only (ruao” (8))? is needed.

The square dependence here on (£1(2%2)) is of course inferior compared to the
linear dependence of the sparsity we can achieve with the help of Theorem 1.4. It is
unclear whether this is merely an artefact of the proof.

These results end our discussion of the hierarchical operators and with that our
theoretical results on hierarchical restricted isometry properties.

1.5 Sparse De-mixing of Low-Rank Matrices

Generally, hierarchically sparse vectors arise from recursively assuming nested
groupings of the vector entries to be sparsely non-vanishing. Another generalization
of hierarchically structured vectors arises when we replace the sparsity assumption
with another structure assumption such as a low rank when suitably reshape. One of
the simplest of such examples is the de-mixing of a sparse sum of low-rank matrices
from linear measurements. For i € [N], let A; : K*"*" — K™ be linear maps and
pi € K" be matrices of rank at most r. The problem of de-mixing low-rank
matrices is to reconstruct the matrices p; given data of the form

N
Y=Y Ailp).
i=1

A further structure assumption might be that out of the N matrices p; actually only
a number of s are non-vanishing, giving rise to the problem of de-mixing a sparse
sum. We can straightforwardly cast the problem as the reconstruction problem of
a hierarchically structured vector. To this end, we set X = ZIN=1 e; ® pi. We can
regard X as a ‘vector’ in KV*" of matrix-valued blocks of rank-r and at most s
vanishing blocks.
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Algorithm 4: SDT algorithm

input : Data y, measurement A, sparsity s and rank r of signal
initialize: X0 = 0.
repeat

Calculate step-widths p/

X+ =7, (X’ + diag(u)) Pr, (A% (v — ﬂ(Xl))))

until stopping criterion is met at | = [*

AW N =

output : Recovered signal X"

Compared to (s, o )-sparse vectors, we have replaced the non-vanishing o -sparse
blocks by low-rank matrices. The de-mixing problem of a sparse sum of low-rank
matrices then is the task to reconstruct such a hierarchically (block) sparse, (block-
wise) low-rank vector X from linear measurements.

The principle strategy of hierarchical hard thresholding of Sect. 1.3 carries over
to hierarchically sparse, low-rank vectors. The projection onto the set of rank-r
matrices is given by the hard thresholding of the singular values. Let p € K**"
have singular value decomposition U diag(X)V* with a vector of singular values
¥ € K”". We define

P.(p) = U diag(T,(Z))V*.

Basically, replacing the application of T, in the hierarchically thresholding Algo-
rithm | yields a projection onto hierarchically sparse, low-rank vectors which we
will refer to as T .

Modifying the projective gradient descent of the HilHT algorithm with this
projection yields the so-called sparse de-mixing thresholding (SDT) algorithms,
Algorithm 4 [38]. In contrast to the structure of a union of subspaces of sparse
vectors, the set of rank r matrices constitutes an embedded differential manifold in
the linear vector space of all matrices. The geometrical structure can be exploited in
iterative hard-thresholding algorithms by projecting the gradient of the embedding
space in the descent step onto the tangent space of the manifold at the current iterate
[1, 47, 49]. At point p, the tangent space of the manifold of rank-r matrices is the
linear span of the set of matrices that have the same row or column space as p
[1]. For a hierarchically sparse, low-rank vector X = ZlN: 1€ ® p;i, we use the
projection onto the tangent space for each block. We denote by Py, and Py, the
projection onto the row and column space of p;, respectively. For p; vanishing,
we set the projections to be the identity. We define Py, : KN — KN gg
G=YN e®g r YN, e ®lg — (Id—Py)g (Id — Py,)]. The particularity
of the SDT algorithm is that we allow for a different step size for each matrix
block. We refer to Ref. [38] for more details on the algorithm and Ref. [50] for
an implementation. The SDT algorithm without the sparse thresholding operation
to determine the block support coincides with the algorithm proposed in Ref. [45].
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Fig. 1.4 The figure (taken from Ref. [38]) displays the recovery rate for the SDT in different
variants for different values of m for random Gaussian measurements. DT refers to the SDT
algorithms without the sparsity constraint (SD) and informed DT to the SDT algorithm restricted
to the correct support. A signal is considered successfully recovered, if the algorithm output
deviates from the true signal by less than 10~3 in Frobenius norm. Each point is averaged over
50 iterations and signal instances with r = 1, n = 16, N = 10, and s = 3. One observes nearly
coinciding recovery performances for the informed DT and the SDT algorithm. In comparison, the

DT algorithm requires significantly more samples for recovery

Following the blueprint of model-based compressed sensing, one can also
establish a recovery guarantee based on a RIP condition custom-tailored to the
hierarchical structure at hand. For random Gaussian measurement ensembles, this

gives rise to a sampling complexity of
872[slog(N/s) + (2n + Drslog 1]

to guarantee the correct recovery of X € KN"*" with at most s non-vanishing
blocks of rank r [38, Theorem 6]. Many results derived in Sect. 1.4 that establish the
HiRIP for hierarchically sparse vectors for different measurement ensembles can be
generalized to hierarchically sparse, low-rank vectors. This allows one to guarantee
recovery by the SDT algorithm for a large class of measurement ensembles.

Compared to an algorithm that does not exploit the sparsity of the de-mixing
problem, the SDT algorithm can exhibit a significant improvement in the sampling
complexity in relevant parameter regimes, Fig. 1.4.

Hierarchically sparse, low-rank vectors certainly constitute another important
class of hierarchically structured signals as it encodes the de-mixing problem of
a sparse sum of low-rank matrices. The theme of hierarchically combining low-
rank and sparse structure assumptions in nested grouping of entries gives rise to a
plethora of structures all of which can be efficiently reconstructed using recursive
combinations of the hierarchical thresholding method introduced above.
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1.6 Selected Applications

1.6.1 Channel Estimation in Mobile Communication

In mobile communication, a lot of users are simultaneously communicating with
a base station through electromagnetic waves. Let us model the messages a user
wants to transmit with a sequence ¢ € K”". To send this message, the user
must first translate the message to a wave. A popular scheme for this is so-
called OFDM (Orthogonal Frequency-Division Multiplexing). This scheme can be
imagined as each ¢ giving rise to a complex exponential, a so-called tone, b(w) =
[1,e7i®h e7i®n-1] ¢ KI*" where w is the frequency and 71, . . ., f,,_ are some
discretization times. In OFDM, a fixed grid of the form w; = 2wkw, k € [n], is used,
where o is the normalized frequency. Mathematically, this corresponds to applying
the discrete Fourier transform to c.

As the electromagnetic waves travel from the user to the base station, they scatter
on random features, e.g. buildings and trees, in the environment. This scattering
causes random phase and amplitude shifts, modelled by so-called complex gains
pp- It also means that a single transmission results in several incoming wave-fronts,
each with a different angle of arrival. This situation can be utilized if the base station
has several antennas arranged in an array: when the wave-front arrives at the antenna
array, the wave-front travels slightly different distances before arriving at each
antenna, i.e. if a ‘1’ arrives at antenna 0, antenna k will receive an ‘ax(6)’, where 6
denotes the angle of the wave-front. Here, a = [ag, ..., ay,—1] : [-7, 7] — KI*n jg
a function, often referred to as the antenna manifold in the communication literature.
For the popular uniform linear array (ULA), in which the antennas are placed at a
uniform separation d along a straight line, the antenna manifold is after a change of
variables u = d sin(6) given by

a(u) — [1, eaniu7 e47rdiu’ e eZ(n—l)ndiu] .

The parameter u actually takes on values in the entirety of [—d, d], but let us for
now assume that it lies on some grid {—%, R %}.

Combining these two models, we see that for a specific user, all transmitted
signals result in a collective measurement of the form 2521 ppa(up)*(b(wp)*, c)
where (wp,up) is given by the delay and angle of the kth wave-front. The
communication is thus characterized by the channel matrix [9]

L
H=>"ppa(uy)*b(w,) € KN*".
p=1

Once we know H, the base station can easily decode any number of sent messages.
Note that as long as the environment and the position of the user do not change
drastically, H is expected to stay roughly constant.
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Fig. 1.5 Comparison of HilHT and IHT performances for channel matrix reconstruction. ©2019
IEEE. Reprinted, with permission, from Ref. [53]

Now suppose that we are only given a low-dimensional sample of H. To be
concrete, define sub-sampling operators P, € KM*N p e K™ in angle
and delay, and assume that we only observe P, H PJ . Can we still recover the
entire matrix? To do this, we may utilize that, according to the above discussion,
it has a sparse representation in the delay-angle domain. Indeed, defining A =
[ekauj]k,je[N] c KNxN and B = [eiitkwe]k,/ée[n] e K" " we get

P“HPJZP”A Z 'Ope”jp®ew/ép B*PJZ(PMA®P¢UB)X’
pelL]

with X = Z,L7=1 Ppeu, Deaw,,- Note that X is not only sparse but also hierarchically
sparse: only a few angle blocks are active, and for each such angle, only a few
delays wy are utilized and vice versa. In fact, it is a reasonable assumption that
the angles for the L paths are distinct, leading to a (1, L)-sparse ground truth. We
further observe that sampled H is a Kronecker product measurement of X, where the
terms of the Kronecker product are sub-sampled Fourier matrices. Thus, the results
of Sect. 1.4.3 imply that the recovery indeed is possible and provide an explicit
sampling complexity.

In Fig. 1.5, the performance of HilHT and IHT is compared for m = n = 256
and N = 1024. We generate data synthetically and inject the measurement with
Gaussian noise of an SNR of 10dB. The recovery quality is measured in terms of
the mean per-entry square error ﬁ |H — H | between the actual channel matrix

H and the estimate H. This error is plotted against the sub-sampling factor M /N
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for different values of L. We see that HiIHT handles a small sub-sampling factor
considerably better than IHT. Indeed, only accessing one percent of the available
antennas is enough to achieve reasonable performance with HilHT, whereas IHT
fails when less than about 10 percent of the antennas are utilized.

The communication setting presented here can be extended in several directions:
first, we may drop the assumptions on the delays and angles to be on a grid—in
the off-the-grid case, the vector X is arguably still approximately sparse. Second,
we can model the case of multiple users by adding a third level to the hierarchical
signal. On this level, sparsity naturally emerges assuming a sporadic user activity.
We refer to Ref. [53] for details.

1.6.2 Secure Massive Access

With the rise of new communication technologies such as the Internet of Things
(IoT) and Tactile Internet (TI), the amount of devices virtually explodes, and with it
the amount of sensitive information gathered from various sensors and transmitted
over the air. This development poses significant challenges on the security of
communication channels and demands for new physical layers of security. In
particular, it calls for fast and scalable low-overhead security schemes suitable for
the frequent burst of spontaneous communication between low-complexity devices
with a base station. Here, we use the hierarchical measurement framework to design
a secure massive access procedure based on blind deconvolution, see also the
discussion on bisparse structures in Sect. 1.2. More details can be found in Ref.
[52].

A base station sends out known pilots to enable all user equipments (UEs) to
measure the channel between the station and the UE. The channel is here modelled
as a filter in KV, where N is the length of the delay period. For each transmitting
UE p € [N4] and receiving base station antenna g € [N, ], there is one filter

_ . N
hp’q = (hp,q,l, ...,hp,q,,,...,hp,q’N) e K™.

The concrete appearance of the filters is again determined by delays caused
by reflections on random physical features in the environment. Therefore, it is
reasonable to assume that each &, , is sparse, and, for fixed UE g, all channels
hp.q for p =1, ..., N; share the same sparsity pattern.

As in the previous section, the UE transmits their sequences ¢, € KE by first
linearly encoding them into signals x, = B)c,, using a codebook B, € K¥N*£ and
then sending them over the channel. In an IoT scenario, the messages typically are
very short, so that it can be assumed that they can be encrypted as sparse sequences
¢p. During transmissions, these are convolved with the channel vectors, so that each
of the base station’s antennas receives a superposition of the UEs’ signals,
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Ny
Yg = Z hpq® (Bpcp) +24
p=1
withg = 1, ..., N; and ® denoting the circular convolution. We may now lift [29]

the bilinear operation (cp, hp4) — hp4 ® Bycp to a linear operation conv), :
KEXN _ KN on the matrix bph[T,’q e KEXN resulting in

Ny
Yo=Y _conv,(bph} ) +z4. (1.8)
p=1

We observe that the channel estimation task at the base station becomes the problem
of simultaneously performing a blind deconvolution and de-mixing, naturally
formalized as the linear reconstruction of a signal

Xy =bih| ... by, ) € EN)NG ~ NaEN,

The signal further exhibits the following structure: our assumptions of o-
sparse channels and s-sparse messages imply that the matrices b h p.q are all
(s, o)-bisparse. As discussed in Sect. 1.2, we may relax this to slmple hierarchical
(s, o)-sparsity. Additionally assuming a sparse user activity at a given time, i.e.
by, # 0 only for 1 users, the vector X, is a three-level (s, o, u)-sparse vector. Note
that the operator conv, has a structure that is not covered by our theoretical results.
Still, we may try to recover it using the HiHTP algorithm.

We conduct simulations with N; = 1 receive antenna and N, = 10 total UEs.
We set N = 1024 and N = E = 128. For each of the N, users, a o-sparse channel
hi € RE is drawn with the locations of the non-zeros distributed uniformly and
entries drawn from the standard normal distribution. The signals are computed as
xr = Bcy, where B € RV*E is a Gaussian random matrix and ¢; € RF is s-sparse
with values in {—1, 1} if the user is active and 0 if the user is not active. This results
in the data y; € R" as defined in (1.8).

We vary the number of active users u, as well as the sparsities s and o.
Figures 1.6 and 1.7 show the rate of successful recovery for varying number of active
users, averaged over 20 runs per setup. The x- and y-axis show the channel sparsity
w and the signal sparsity s, respectively. As can be seen, the HIHTP algorithm is
indeed capable of recovering the ground truth, as long as the sparsity levels are low
enough.

An interesting feature of the model is that it can be used to generate a secure
communication scheme. To this end, we make use of the reciprocity of the channel:
the channel h,T,,q for transmission from UE g to base station antenna p is equal to

the channel hi’q for transmission in the other direction. This reciprocity condition
is fulfilled for modern off-the-shelf WiFi devices [48]. Due to the reciprocity,
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Fig. 1.6 Recovery rate for 2 of 10 active users. ©2018 IEEE. Reprinted, with permission, from
Ref. [52]
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Fig. 1.7 Recovery rate for 5 of 10 active users. ©2018 IEEE. Reprinted, with permission, from
Ref. [52]

the channel itself can serve as a source of shared randomness for the secret key
generation. The communication protocol consists of two phases:

Phase 1

1. The base station sends a predefined pilot signal to all UEs.

2. Each UE g measures the complex-valued channel gains hy = (h[i,,q) PEIN]-

3. Each UE encrypts his/her message m to a sequence ¢, = f(mn, hé ), using some

encryption scheme f and hg as a random encryption key.
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Phase 2

1. All the UEs g send their encrypted sequences c, to the base station using the
scheme discussed above. The encoding operators B), are left public.

2. The base station receives the superposition of all the convolutions of the cipher
text with the respective channels. With a hierarchical thresholding algorithm,
the station inverts (1.8) and, thus, gains knowledge of the cipher texts ¢, and

channels h},,q.
3. Due to reciprocity h;,q = h%,, ¢- the base station thereby obtains the encryption
keys hj and decrypts the cipher texts.

The security of the scheme relies on the assumption that the channels of different
users are independent of each other and cannot be inferred from another position.
Unless a man in the middle has access to the antenna of a UE, the eavesdropper
cannot use his/her channel coefficients to recover the message of another user.

We note that small variations between both channels, i.e. small violations of
reciprocity, can be tolerated by adjusting the key generation process. One can for
example quantize the channel gain sufficiently coarse to equalize the keys. Here,
the hierarchical framework is applied to solve a blind deconvolution and de-mixing
problem. Refs. [16, 51] present further examples of the hierarchical measurement
framework applied to massive random access without a built-in security scheme.

1.6.3 Blind Quantum State Tomography

Quantum communication allows for the transmission of data under unprecedented
levels of security [21]. Here, the security proofs are neither based on assumptions on
the computational hardness of certain mathematical problems nor on the feasibility
of practically reverting or predicting the randomness of physical processes: instead,
there are proofs of security available based on the fundamental laws of nature
themselves. Under mild assumptions, quantum key distribution can be proven
secure under the most general attacks allowed by physics, within a paradigm
of closed laboratories. Simultaneously, the advent of novel quantum computing
devices promises solving certain tasks with a significantly improved computational
complexity compared to classical computing devices. These tasks include NP prob-
lems at the heart of established and universally employed cryptographic schemes.
It is beyond the scope of the present article to introduce the various applications
of the quantum technologies [2]. Instead, we here focus on a particular context in
which hierarchical compressed sensing naturally comes into play: this is the task
of semi-device dependently identifying the state of a quantum device. Methods for
such characterization and certification tasks are important diagnostic tools in the
development of quantum technologies. We refer to Refs. [11, 27] for details.

The problem at hand here is the identification of quantum states prepared in some
physical prescription. The recovery of unknown quantum states is called quantum
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state tomography. A general quantum state is described by a trace-normalized,
positive-definite complex matrix. Of particular interest are unit rank, so-called
pure quantum states or more generally low-rank quantum states. Ideally, devices
in quantum technologies operate or are envisioned to operate in pure quantum states
of large dimensions. Quantum states of higher rank encode ‘classical’ statistical
mixtures of pure states typically produced by noisy operations. We denote the set of
rank-r quantum states by O C C"*".

An important diagnostic task for quantum devices is, thus, to learn the low-
rank quantum state of the device from linear measurements. Exploiting the rank
constraint on the quantum states in the recovery task is crucial to devise quantum
tomography protocols working in state spaces of sizeable dimension. This renders
compressed sensing method of crucial importance for quantum tomography [15, 22,
23,26, 33,37, 39, 44].

That said, the apparatus with which one performs the measurements can espe-
cially for near-term devices not be reasonably assumed to be fully characterized:
commonly, there are calibrating parameters that are not fully known. An important
practical problem is, thus, the recovery of a low-rank quantum state p by means of
measurement devices that are simultaneously themselves characterized by a handful
of parameters, giving rise to sparse vectors &.

In a linear approximation of the measurement device calibration, this leads to the
problem of blind (self-calibrating) quantum state tomography: let A : C'4*d _
R™ be a linear map describing the measurement and calibration model. Given data
y = A(X) € R™ and the linear map A, recover X under the assumption that

Xel{E®p| & eKN s-sparse, peZ)f}C(CN"X”. (1.9)

The blind quantum state tomography problem can be regarded as a non-
commutative analogon of bisparse recovery problems where the data is bilinear in
two sparse vectors both to be recovered. Similarly to the vector case, already the
projection onto the set of structured signal is an NP-hard problem. In fact, one can
encode the sparse PCA problem [31] and thereby CLIQUE into the task of finding
the closest element of the form é @ p with& € KV, p € Dl'toagiven X € KNmxn i
Frobenius norm, Ref. [38, Theorem 3]. For this reason, it is not possible to directly
derive an efficient algorithm based on a hard-thresholding operation for the blind
quantum tomography problem.

However, the problem of de-mixing a sparse sum of low-rank matrices intro-
duced in Sect. 1.5 can be seen as a relaxation to the closest hierarchically structured
signal class that still allows for an efficient projection. The analogy to the relation
of bisparsity and hierarchical sparsity is imminent.

Consequently, the SDT algorithm is a natural candidate to efficiently tackle the
blind tomography problem. Figure 1.8 shows numerical simulations of the perfor-
mance of the SDT algorithms in the blind quantum tomography task for a random
calibration model motivated by quantum technologies in comparison to a standard
low-rank tomography algorithm. The relaxation to the hierarchical structured prob-
lem, however, comes at the cost of a sub-optimal scaling in complexity theory. While
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Fig. 1.8 The figure (taken from Ref. [38]) displays the trace-norm reconstruction error for the
SDT algorithm compared to a standard low-rank tomography algorithm for a different number
of measurements m of sub-sampled random Pauli measurements. Each point depicts 30 random
measurement and signal instances withr = 1,d = 8, n = 10, and s = 3. The dotted lines indicate
the median. The inline figure shows the mean ¢;-norm reconstruction error of the calibration
coefficients for the SDT algorithm

a parameter counting of the original blind tomography problem hints at an optimal
scaling of O (max{s log N, nr}), the sparse de-mixing problem introduces already in
parameter count an additional factor of s to the second term O (max{s log N, snr}).
Due to the sparsity assumption on the calibration parameters, the total number
of calibration parameter N still only enters logarithmically. For this reason, the
scheme remains highly scalable in practically relevant parameter regimes despite
the relaxation. At the same time, using the framework of hierarchical compressed
sensing outlined above provides a rich toolkit to equip the SDT with flexible
guarantees for many ensembles of measurement and calibration models. Another
algorithmic approach to bilinear structured problems such as the blind tomography
problem is constraint alternating minimization. We refer to Ref. [38] for further
details.

1.7 Conclusion and Outlook

In this chapter, we have introduced a framework for hierarchically compressed
sensing with a focus mostly on the reconstruction of hierarchically sparse signals.
In its core, standard approaches of compressed sensing naturally generalize to
hierarchically structured signals, giving rise to recovery algorithms equipped with
theoretical guarantees. Thereby, the successful recovery of hierarchically sparse
signals via hard-thresholding algorithms can be established under a custom-tailored
restricted isometry assumption. There are, however, a number of specific features
that separate the hierarchical framework from its more generic counterparts.
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At the heart of the approach is the fact that the projection operator onto the set
of hierarchically structured signals is efficiently calculable via hierarchical hard
thresholding. Unlike for, e.g., the bisparse structure, it can be computed in linear
time and is highly amenable to parallelization. This in turn renders the simple
recovery algorithm interesting in realistic parameter regimes and under practical
demands.

Furthermore, within the hierarchical framework, there is a large family of opera-
tors that obey the hierarchical, but not the standard restricted isometry property. This
makes the framework potentially applicable in settings where standard compressed
sensing is infeasible.

On a more theoretical level, the hierarchically sparse structure can be used as
a relaxation of the complicated bisparse structure. In particular, we have presented
numerical evidence that instances of the sparse blind deconvolution problem can
be solved using HIHTP. And we have invoked the same strategy for the quantum
tomography problem and other related questions. While in this context theoretical
guarantees are expected to be sub-optimal, the simplicity and flexibility of the
hierarchical framework might still be of merit in order to analyze complicated
measurement settings. We leave further exploring these matters to future research.
A particularly interesting question is to analyze the HiRIP properties of the blind
deconvolution operator.

Indeed, we have at the end of this chapter seen several exemplary applications
where the hierarchical approach facilitates recovery. This brings us to the arguably
most important feature of the framework: hierarchically structured signals naturally
emerge in many applications. From our own background and past research, we can
conclude this with some confidence. But of course, we very much suspect that
there are many applications we are unaware of where the hierarchical framework
is readily applicable. For the sake of clarity, we have mainly focused our exposition
on the set of two-level hierarchically sparse vectors and merely hinted at the gen-
eralizations towards multiple levels potentially mixing low-rankness and sparsity
and potentially even further structures that for themselves come with an efficient
projection. We hope that we have conveyed that the approach, and even most of the
results we presented, can be rather straightforwardly generalized to this rich family
of hierarchical signal structures, leaving the playing field wide open.
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Chapter 2 ®
Proof Methods for Robust Low-Rank Chock or
Matrix Recovery

Tim Fuchs, David Gross, Peter Jung, Felix Krahmer, Richard Kueng,
and Dominik Stoger

2.1 Introduction

Computationally tractable data acquisition in high dimensions is a fundamental
problem in various real-world applications in signal processing, data science, and
physics. Nyquist sampling or scanning the data in full is often unfeasible. This
motivates the use of compressive observation schemes, which employ regularization
methods to recover as much of the signal as possible from seemingly incomplete
observations. Thus, quantifying the trade-off between sample complexity and recon-
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struction accuracy has become a key task for identification of feasible regimes and
the design of efficient approaches for sensing and reconstruction. These questions
have been central in the area of inverse problems for many years. However, starting
in the early 2000s, a highly successful novel viewpoint has emerged. Namely
initiated by the influential works on compressed sensing [15, 17], various authors
have studied the problem of what can be gained when the measurements can be
optimized over all vectors or within a structural measurement framework [31].
Commonly, the term compressed sensing is used nowadays also for more general
sensing scenarios beyond the initial setup that follow this paradigm.

In this generality, compressed sensing is therefore concerned with the recovery
of structured data, i.e., data that lives on a low-dimensional subset embedded in a
high-dimensional space, from a number of observations that scale with the intrinsic
dimension, rather than the ambient dimension. As it turns out, for a large class
of different measurement models combined with various structural constraints,
choosing the free parameters of the measurement scheme at random leads to near-
optimal performance.

Initially, the model of a nontrivial but relevant low-dimensional set was given
by sparse vectors. For matrices, a natural basis independent notion of sparsity is
“sparsity in the eigenbasis,” i.e., low rank, and we are thus led to studying the low-
rank matrix recovery problem: estimate an unknown n; x ny-matrix X¢o from m
observations of the form

y=AXo) +eeC” (2.1)

where A is a known linear measurement operator and e is additive noise. Here and
in the following, we will use the notation

A(Xo) (@) := (A;, Xo), A; € C>"2, (2.2)

which expresses the ith component of the measurement as the Frobenius inner
product with a matrix A;. The problem is interesting in the regime

tk(Xo) max{ni, no} <m <L nina,

where rk(X() denotes the matrix rank. Assume for concreteness that we have the
bound |le|l2 < 7 on the noise strength (|| - ||2 denotes the £>-norm of a vector).
As X has low-rank, one could naively try to estimate X by solving the following
minimization problem:

minimize 1k (X)
XGCHIXHZ
subjectto  [|A(X) —yl2 <.
Unfortunately, problems of this type are NP-hard in general, as minimizing the

support size of a vector (i.e., finding the sparsest solution) can be considered as
a special case [74]. Therefore, in [26], it was proposed to use the nuclear norm || - ||
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(the sum of singular values) as a proxy for the rank. For this reason, the following
approach has been suggested [14, 18, 20, 36, 76] for matrix completion:

minimize || X ||«
Xecnl ><)12 (2 3)

subjectto | A(X) — yl2 < 7.

It is the analysis of this semi-definite program (SDP) we are concerned with in the
present chapter. Before tackling the technical details, we briefly list three important
applications of the framework of low-rank matrix recovery.

2.1.1 Sample Applications

In this section, we highlight three famous applications of low-rank matrix recovery
which have been investigated intensively in the last years.

2.1.1.1 Matrix Completion

Maybe the most natural instantiation of the general model (2.2) is the case where
the measurements reveal individual matrix elements

AX) (@) = /"2 (X, eqep ) F = | "2 Xy by (2.4)

where {e,, } and {ep, } denote the standard basis of C"! and C"2, respectively. This is
the matrix completion problem. Since it arises in many different applications such as
multiclass learning [3], collaborative filtering [77], and distance matrix completion
problem in sensor localization tasks [44], see here also Fig. 2.1, it has become very
popular in the last decade and has been studied intensively in the statistics, machine
learning, and signal processing literature.

Assume that the matrix elements (a;, b;) for i € [m] := {l...m} to be
revealed are chosen independently and uniformly among all n; X n, possibilities.
It is clear that not all low-rank matrices can be efficiently recovered from few
such measurements. For example, if X has a single non-zero entry, then unless
m = O (n1ny), the probability that any non-zero information is obtained is small.

To identify a set of well-behaved instances, Ref. [14] introduced the following
two coherence parameters:

w(U) = /"% max [U%e; 2
i€[ny]

(V) :=,/72 max ||V*e2,
i€[ny]
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distance matrix (x,y)-location

———r

Fig. 2.1 Distance matrix completion: one source of low-rank matrices is Gram matrices which
encode the Euclidean geometries of point sets. The task of recovering Gram matrices is related
to the one of finding distance matrices from few pairwise distances. This problem appears, for
example, in sensor localization; see, e.g., [44]. Wireless sensors are distributed in an area (indoor
room, industry hall, etc.) and measure individual signal strengths, but obstacles like walls block
certain path directions (red). The goal is to complete the matrix of pairwise distances and compute
the sensor locations. Recall that given n points {x;}7_; C R?, the Gram matrix G j = (xi, x;j) has
rank upper bounded by d, independent of n

where Xg = UZV* with U € C"'*" and V € C"2*" denotes the singular value
decomposition (SVD). Indeed, it was shown in [18] that

m > nirlogn, max {uz W), 12 (V)} (2.5)

observations are necessary for a rank-r matrix X¢ to be uniquely determined from
the revealed entries.

Subsequently, a series of works [36, 76] established that this sampling rate is
almost sufficient as well. Compared to Eq. (2.5), an additional log(n)-factor and
a third incoherence parameter suffice to ensure exact recovery via nuclear norm
minimization (2.3). See Sect. 2.3 for a detailed statement and proof sketch.

2.1.1.2 Blind Deconvolution

Blind deconvolution [41] refers to the problem of recovering a signal x € CL from
the noisy convolution w * x + ¢ € CL, where w € C! is an unknown kernel
and e € CL refers to additive noise. When using appropriate cyclic extensions or
considering zero padding, the convolution can rewritten as a circular convolution

L
(w* x)(@i) = Z wjxi—; forie[L]. (2.6)
j=1

The difference i — j is considered modulo L. As prototypical example of a bilinear
inverse problem, blind deconvolution refers to recovering (x, w) from a noisy
version of w * x and the precise role of x and w depends on the underlying
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Fig. 2.2 Blind deconvolution: a wireless device transmits a signal x received by the base station.
Due to reflections in the environment, the signal experiences an unknown channel distortion,
represented by a convolution w * x with the impulse response w

application. In imaging, for example, one considers such a problem for the two-
dimensional convolution. The signal x typically represents the image and w is an
unknown blurring kernel [79]. In communication engineering, the discrete model
above describes the effective convolution in complex baseband. Hence, w represents
the sampled impulse response of the transmission channel and the task is to
demodulate and decode information from the signal vector x, only having access
to the noisy channel output w * x + e, see Fig.2.2. The conventional coherent
approach in this application is to send known pilot signals, to first estimate w and
then demodulate later information-bearing signals x. However, this approach is not
feasible for short signals x and for communication at low latency or high mobility.
For communication engineers, the important question is then how much overhead
is required for coping with the unknown impulse response w of the communication
channel [34] when using non-coherent strategies [87].

Of course, blind deconvolution is a highly underdetermined bilinear inverse
problem. Without further assumptions, recovery is only possible up to inherent
ambiguities [23, 88]. To avoid nontrivial ambiguities, one has to further constrain
the vectors, for example, by assuming that x and w lie in N and K -dimensional
subspaces, respectively. As we will outline below, this yields to the problem of
recovering N x K matrices from L observations. To be more compliant with
existing works in the literature, we will stick to this notation implying that n; = N,
ny = K, and m = L. In formulas, we assume that w = Bhy and x = Cmy for
given B € CLXK ¢ e CL*N| and unknown hg € CX, my € CV. Then, the
measurement operator acting on /¢ and m is known to be generically injective up
to the unavoidable scaling ambiguity if and only if L > 2(N + K —4) [49, 68]. That
is, one aims for sampling complexities that are near-linear in N + K.

Following [1], we consider the case that B is a fixed matrix such that B*B = 1d

and C is a random matrix with i.i.d. complex normal entries C;; i CN(0,1/VL).
The choice of the random matrix C is motivated by the success of randomization
in compressed sensing as well as by applications in wireless communications. Here
m contains a message to be transmitted and C is a coding matrix. The signal x =
Cmy gets transmitted through a time-invariant channel, which can be modeled as
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a circular convolution with impulse response w when using an appropriate cyclic
prefix.

In many applications, it is reasonable to assume that only the first few entries
of w are non-zero as the path delays are often much shorter than the length of the
signals x. In this case, B would be the matrix which extends k9 € CX by zeros.
Hence, the receiver observes w * x + e, where e represents additive noise, and the
goal is to reconstruct the original message contained in the vector my.

Now let F € CEXL be the unitary discrete Fourier transformation matrix. It is
well known that F diagonalizes the circular convolution, i.e.,

w*x := F (w * x) = v/Ldiag (F Bhg) F Cirp.

Let by denote the ¢th row of FB, and let c¢ denote the ¢th row of VLFC. Note
that this implies that all the entries of {ce}le are jointly independent and have
distribution CN (0, 1). Moreover, we obtain that

(m)e = byhom{ce = (becy, homg).

We observe that @ * x is linear in the K x N matrix homg. This motivates the
definition of the linear operator A : CK*N — CL by

(A(X)) (&) := (becy, X) wherel € [L]. 2.7)

Hence, we obtain the model

—

yi=w*xx+e=AXg) +e,

where Xo = hom(, and e € CL represents noise with |le[» < 7. Note that X,
is a rank-one matrix. This reformulation effectively reduces blind deconvolution to
a low-rank matrix recovery problem, where measurement matrices correspond to
outer products A, = bycj.

If, in addition, a sparsity constraint is to be imposed, the problem becomes con-
siderably more difficult. In particular, linear combinations of the convex regularizes
no longer lead to sample-efficient recovery guarantees [75] even when using optimal
tuning [52]. Only under additional structural assumptions, recovery guarantees are
available using an alternating minimization approach [33, 67]. This, however, is
beyond the scope of this chapter.

2.1.1.3 Phase Retrieval

Another instance of a challenging inverse problem is phase retrieval—an important
problem with a long history that dates back to the 60s [89]. It occurs naturally in X-
ray crystallography [40, 73], astronomy [28], ptychography [42, 78], and quantum
tomography [61, 64]. We refer to Fig. 2.3 for a visual illustration. Mathematically
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probe

—Yk

X-ray

illumination mask

detector in image plane

Fig. 2.3 Phase retrieval: in diffraction imaging, a probe is illuminated by coherent X-ray light.
The resulting diffraction pattern is first modulated by an illumination mask and recorded at
detectors in the 2D image plane. Importantly, these detectors can only record intensities, not
phases: yx = |{fx., D*xo)lz, where xg € C" encodes the microscopic structure of the probe,
D = diag(d,,...,d,) describes the illumination mask, and f; € C" is a Fourier vector
(Fraunhofer approximation to the diffraction equation)

speaking, the discrete phase retrieval problem asks for inferring a complex signal
vector xg € C" from m measurements of the form (noiseless for simplicity)

yi = Hai, xo)|, i€ [m]. (2.8)

This problem cannot be solved unless the measurement system is overcomplete
because all phase information is lost in the measurement process. More precisely,
it has been shown that one needs m > 4n — 4 generic measurements to ensure that
there is a unique solution [24].

If, in contrast, one instead had access to the complex phases ¢y of {(ax, xo), this
problem would reduce to solving a linear system of equations:

dF = Axo, (2.9)

where @ = > " | q_ﬁkeke,’; and A =)', exa; subsumes the measurement process.
Crucially, for phase retrieval, we do not know & in (2.9). One intuitive approach to
recovering x is performing a least-squares minimization over both unknowns:

minimize Oy — Ax|,, 2.10
pminimize Py ll» (2.10)

® € U(m) is unitary and diagonal in the standard basis. Although NP-hard in
general, heuristic approaches exist for solving non-convex problems of this form.
One such heuristics is alternating minimization, see, e.g., [29, 72]. This is an
iterative algorithm, where one alternates between keeping x fixed and minimizing
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® and vice versa: fixing ® and optimizing over x. Very few theoretical guarantees
regarding its performance are known.

Given the importance of the problem and the lack of mathematical understanding,
obtaining theoretical guarantees for phase retrieval is highly desirable. In order to do
so, we will follow a different direction pioneered by Balan, Bodmann, Casazza, and
Eddidin [4]: lift the quadratic phase retrieval problem to a linear inverse problem on
positive semidefinite n x n matrices:

yi = lai, x0)|* = tr{a;a} Xo) where Xo = xoxg € C™" (2.11)

is proportional to the orthoprojector onto span(xg) C C". By construction, the
desired solution is a Hermitian n x »n matrix with minimal rank (rk(Xg) = 1).
Following Refs. [8, 16], we can exploit this intrinsic rank constraint via constrained
nuclear norm minimization (2.3). This approach effectively reduces the phase
retrieval problem to a Hermitian low-rank matrix recovery problem, where each
linear measurement (2.2) must only involve (Hermitian) outer products:

yi = A(xoxy) (i) = (Ai, xox3), where A; = aja] € H, and i € [m].

The reformulation of phase retrieval as a low-rank matrix recovery problem has led
to the establishment of rigorous recovery guarantees. By and large, these apply to
randomly selected measurement vectors that are sufficiently “generic.” Exemplary
is the main result from Ref. [9]: already m 2 n standard complex Gaussian
measurements arp, ..., dn ud CN(0, I) suffice to ensure correct recovery. Subse-
quent research has led to similar recovery guarantees for phaseless measurements
that are less generic [10, 38, 48]. We will present two such arguments further
below. In Sect. 2.2.3, we partially derandomize the recovery guarantee for Gaussian
measurements by executing a descent cone analysis.

We conclude by emphasizing that the phase retrieval problem admits a clean
reformulation in terms of low-rank matrix recovery. This is an ideal starting point
for developing rigorous convergence guarantees but might come with a considerable
algorithmic overhead. After all, we have replaced a non-convex problem over n-
dimensional vectors by a convex problem over (Hermitian) n x n matrices (2.3).
General purpose solvers, like CVX, quickly run into storage issues as the problem
dimension 7 increases. This motivated the development and rigorous analysis
of non-convex phase retrieval algorithms. These include gradient descent-type
algorithms on C” [7, 11, 21], as well as non-convex approaches based on matrix
factorization [0, 42]. In parallel, the development of matrix sketching algorithms
led to substantial storage and runtime improvements for solving certain convex
optimization problems [86, 91]. Importantly, these also apply to lifted phase retrieval
and ensure algorithmic tractability even for moderate to large problem sizes [91]. So,
recovery guarantees for lifted phase retrieval—like the ones presented in this book
chapter—are also of algorithmic relevance.
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2.1.2 This Work

In this book chapter, we take a look back at more than a decade of rapid progress
concerning randomized inverse problems for matrix recovery. A complete treatment
of all interesting developments would go way beyond the scope of a single chapter
and we choose to focus on one aspect: mathematically rigorous recovery guarantees
for the reconstruction of low-rank matrices from generic as well as structured
measurements.

With the benefit of hindsight, we review two versatile proof techniques and put
them into context, namely the descent cone analysis, as well as the construction of
approximate dual certificates.

Section 2.2 deals with the descent cone analysis. That is, low-rank matrix
recovery guarantees are obtained by analyzing the relative geometric orientation
of the optimization problem’s feasible space with respect to the objective function’s
descent cone anchored at the signal X of interest. Exact and unique recovery hap-
pens if and only if the intersection of these two convex objects only contains a single
point. Deep results from high-dimensional probability theory show that this desir-
able event happens with overwhelming probability, provided that the measurements
are sampled independently from sufficiently generic ensembles. Prominent example
applications include optimal generic low-rank matrix recovery (Sect.2.2.2), as
well as phase retrieval from generic measurement vectors (Sect.2.2.3). Although
geometrically appealing, this proof technique is not without limitations. It struggles
to handle less generic problems, where additional structure—like incoherence of the
unknown signals—is essential to rule out exceptional problem instances where the
reconstruction must necessarily fail. Moreover, this technique does not always give
precise insights into the noise robustness of the reconstruction schemes (Sect. 2.2.4).

Section 2.3 introduces an alternative proof technique based on duality of
convex optimization. Convex optimization problems—Iike nuclear norm minimiza-
tion (2.3)—come in pairs and the two problems have a duality gap: objective
function values of the primal problem are always smaller than or equal to objective
function values of the dual problem. Equality occurs if and only if both primal
and dual solutions are optimal. This, in turn, implies that optimality of a certain
feasible point, say Xy, can be certified by constructing a dual feasible point that
achieves the same objective function value. What is more, exact feasibility is not
required to certify optimality of X for constrained nuclear norm minimization.
An approximate dual certificate suffices, provided that the measurement operator
fulfills certain additional properties (Sect. 2.3.1).

We will then describe how to construct approximate dual certificates via a
probabilistic method—the so-called golfing scheme (Sect.2.3.2). A key advantage
of the golfing scheme is that it can be applied to problems with incoherence
constraints, where it is not immediately clear how to apply the methods described in
Sect. 2.2. Concrete example applications are matrix completion (Sect. 2.3.3), blind
deconvolution and demixing (Sect.2.3.4), and phase retrieval with incoherence
(Sect.2.3.5).
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Approximate dual certificates do also have their downsides, however. Chief
among them is noise robustness. In Sect. 2.4, we refine the descent cone arguments
introduced in Sect. 2.2. This leads to near-optimal blind deconvolution guarantees in
the high-noise regime (Sect. 2.4.1), as well as novel insights into the phase retrieval
problem (Sect. 2.4.2).

2.2 Recovery Guarantees via a Descent Cone Analysis

2.2.1 Descent Cone Analysis

Recalling the linear inverse problem (2.1) y = A (Xo) + e € C™, there is usually
a large set of possible solutions for which A does not deviate too much from y.
Further properties, such as low rank, can be obtained by minimizing an appropriate
function f : C">*"2 — R over this set. If f yields low values only for a small
subset of {X € C"1*"2 : |A(X) — yll2 < 1} (or {X € C"1>*"2 : A(X) = y} in the
noiseless case), recovery guarantees can be obtained. This motivates descent cone
analysis.

The descent cone D(f, Xo) of a proper convex function f : C"*"2 — R ata
point X € C"*"2 is the conic hull of directions in which f decreases near Xo:

D(f, Xg) :={Z € C"*"2 : f(Xo+€Z) < f(Xg) for some € > 0}.

Descent cone analysis can facilitate the estimation of probability of success
for solving linear inverse problems with optimization. Consider the following two
convex optimization problems (left: noiseless and right: noisy measurements)

minimize f (X) minimize  f (X)

subjectto A (X) = y. subjectto A (X) — y|r < T.
(2.12) (2.13)

Let us first discuss the noiseless case. If X is the ground truth of the measure-
ments A (Xp) = y, any minimizer X of (2.12) has to fulfill f(X) < f(Xo) and

A(X ) = y and therefore can be decomposed as the sum of X and a perturbation

Z € D(f, Xo) N ker(A). If the intersection between the nullspace ker(A) and the
descent cone D(f, Xg) only contains the zero element, X¢ is the unique optimal
solution of (2.12). This is illustrated in Fig. 2.4 (left).

This clean geometric picture can be extended to the noisy case. In this setting,
exact recovery cannot be expected. Therefore, we will bound the reconstruction
error ||)2' — XollF = || Z]| r between a feasible minimizer X= Xo+ Z of (2.13) and
the ground truth Xg. Since || A (X9 + Z) — yl|l2 < t implies that || A (Z) ||» < 2t,
the intersection of D(f, Xo) and {Z : ||A(Z) ||» < 2t} has to be analyzed, see
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ker(A)

D(f, Xo) D(f » Xo)

Fig. 2.4 lllustration of a descent cone analysis: the intersection between the nullspace of A (resp.,
the set for which || A(Z) |2 is low) with the descent cone D(f, Xp), i.e., the set of directions Z in
which f is decreasing at X, contains all perturbations Z such that X + Z is a minimizer of the
noiseless (resp., noisy) convex optimization problem (left: noiseless and right: noisy)

Fig. 2.4 (right). In order to control the size of this intersection, we will need the
following quantity, which we refer to as smallest conic singular value:

Ami \?{, .Z) . X = .nf IAZ) ]2
min ( (f 0) ZED(lf,XO)\{O} 2T

If the conic singular value is larger, we expect the intersection to be smaller, and,
hence, we should obtain stronger noise bound. This intuition is made precise by the
following lemma by [19], see also [85].

Lemma 2.1 [19, Proposition 2.2] Let A : C"'*"2 — R™ be a linear operator and
assume that y = A (Xo) + e with |le|ly < t. Then, any minimizer X of the convex
optimization problem (2.13) satisfies

v 2t
IX = Xollr = 5 DTN

Proof Sketch By definition, Apin (A, D(f, Xo)) =< ”T(ﬁ)‘b < Héﬁ for any
feasible Z. The first inequality follows from the definition of Ay (A, D( f, Xo0))
and Z € D(f, Xo), and the second inequality follows from ||A(Z)|» < 27, which

concludes the proof. O

In the following, we will discuss applications with various underlying random
operators ‘A. We will show how one can obtain lower bounds for the minimum
conic singular value, which by Lemma 2.1 will yield recovery guarantees, both in
the noise-free and in the noisy case.

2.2.2 Application 1: Generic Low-Rank Matrix Recovery

Low-rank matrix recovery describes the problem of recovering a low-rank matrix
Xo € R"*"2 from measurements of the form

vi = (A;, Xo) where A; ¢ R""*"2 and i € [m].
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It is useful to introduce the measurement operator A : R"1*"2 — R™ by
AX)(G) = (A;, X) where A; ¢ R""*"2 and i € [m] (2.14)

for X € R"1>"2,

(This setting can be extended to the complex-valued setting. However, for
simplicity of the exposition, we will only discuss the real-valued setting in this
section.) In this subsection, we will focus on independent random measurement
matrices A; with independent standard normal entries. In order to recover a low-rank
matrix X, we will consider the convex optimization problems (2.12) and (2.13)
with f = - [l

Recall from the last section that by setting £ := {Z € D(|| - ||x, Xo) : | Z|lF =
1} and bounding infzcfg || A (Z) |2, the smallest conic singular value from below
would guarantee that D(|| - ||, Xo) N ker(A) only contains the zero element and,
therefore, exact recovery in the noiseless scenario.

Adjusting Fourcart’s and Rauhut’s formulation of Gordon’s escape through a
mesh [31, Theorem 9.21] (originally due to Gordon [35]) to the real-valued vector
space R"1 "2 one obtains a powerful lower bound that can exploit the randomness
of A.

Theorem 2.1 (Gordon’s Escape Through a Mesh) Let A : R"1*"2 — R™ be a
Gaussian measurement operator as defined in (2.14), and let E be a subset of the
Frobenius unit sphere Sp(R"*"2) := {Z € R"*™ . || Z||F = 1}. Furthermore,
define the Gaussian width of E as

L(E):=Esup(A, Z), (2.15)
Z€eE

where A € R"""2 s a standard normal matrix (A;; i N(Q, 1)). Then, for t>0,
zinlfg A2 = vm — 1 —L(E) —t
€

with probability at least 1 — e 12,

The Gaussian width is actually a reasonable summary parameter for the size of a
convex cone. It is also closely related to the statistical dimension [2]. If £(E) does
not exceed +/m — 1, recovery guarantees can be obtained.

Theorem 2.1 only requires E to be a subset of the Frobenius unit sphere, and,
therefore, one is not restricted to a specific descent cone, but one can instead choose
the union over all possible descent cones corresponding to rank-r matrices in order
to obtain uniform recovery guarantees:

E =Sp®"V"™)NK, and K= ) D 1.X).
XeR" X2 :0k(X)=r
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Holder’s inequality yields supzcp (A, Z) < |[Allsupzcg, [ Z]|«. Tight bounds
on the operator norm of a standard Gaussian matrix are readily available (more
on that later), but it seems plausible that the largest nuclear norm of Z € E,
could scale unfavorably with the ambient dimension (|| Z||, < +/min {n1, n2}||Z||r
which is sharp). The geometry of descent cones, however, excludes such worst-case
instances. The following lemma highlights that the effective rank of descent cone
elements is proportional to the rank of the anchor point. It is a generalization of [64,
Lemma 10] to rectangular matrices. To increase accessibility, we write x < y if
there is a positive constant C > 0 such that x < Cy.

Lemma 2.2 Suppose that Z € C''*"2 is contained in the nuclear norm descent
cone of a rank-r matrix X € C"'*"2, Then,

IZ1l SVFIZIF.

The suppressed proportionality constant is small (C < 14-+/2), but probably not
optimal. The proof is novel and uses ideas from dual certificates (Sect. 2.3), as well
as pinching, see, e.g., [5, Problem I1.5.4]. We refer to appendix for details. With this
lemma at hand, we can bound the Gaussian width of E,..

Corollary 2.1 The Gaussian width of E,, the union over all possible descent cones
with an anchor point of rank-r, can be bounded by

UE) ST (Vi + ).

Furthermore, let A : R">*"2 — R™ be a Gaussian measurement operator as
defined in (2.14). Then, Amin (A, D(f, X)) is bounded away from zero for any rank-
r matrix X w.h.p. if

m 2 r(ng + no).

Proof Sketch Using Holder’s inequality and Lemma 2.2, the Gaussian width £(E,)
can be bounded in terms of the expected operator norm of a standard Gaussian
matrix:

UE;) =E sup (A, Z) < sup [|ZIIEIlA] S VFE[A].
Z€E, Z€E,

A tight upper bound E|A| < (/n1 + /n2) can be found, e.g., in [31, p.292]. By
Theorem 2.1,

inf |AZ)|2 = inf Amin (A, DL - [+, Xo)) = vV/m — 1 —€(E) — 1
XeE, XeRM>*M2:0k(X)=r

with probability at least 1 —e”z/z. Therefore, if m 2 r(n1+ny), we can pick ¢ > 0,
such that infxcg, || A(Z)]|7 is positive w.h.p. |
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Even when measuring multiple matrices of rank-r via the same measurement
operator A, Corollary 2.1 uniformly bounds Amin (A, D] - ||«, X)) from below
and, therefore, gives a uniform recovery guarantee for recovering not only one but
all possible rank-r matrices.

2.2.3 Application 2: Phase Retrieval

Recall that H, ¢ C"*" denotes the (real-valued) vector space of Hermitian n x n
matrices. The lifted reformulation of the phase retrieval problem is based on the
measurement operator

AXo)(i) = (Ai, Xo) Ai =aja’ € H,, Xo=xoxi € H,, i € [m].

This bears strong similarities with the measurement operator for generic low-rank
matrix recovery (2.14), but there is one crucial distinction. Each measurement
matrix A; = a;a} is itself a rank-one orthoprojector. These are everything but
generic random matrices (cf. a matrix with standard normal entries is almost surely
not rank-deficient), and a clean descent cone analysis based on Gordon’s escape
through a mesh (Theorem 2.1) seems out of reach. Fortunately, Mendelson and co-
authors [55, 71] developed a weaker variant of Theorem 2.1. Known as Mendelson’s
small ball method, this result only requires i.i.d. measurement matrices that also
obey a small ball property. We refer to Tropp [85] for a user-friendly exposition and
proof and state it directly in terms of measurement operators on Hermitian n x n
matrices.

Theorem 2.2 (Mendelson’s Small Ball Method) Suppose that A : H,, — R"
is a measurement operator (2.2) whose measurements correspond to independent

realizations of a Hermitian random matrix A € H,,. Fix a subset E C H,,, and for
& > 0, define

Q¢ (E; A) = inf Pr{[{A, Y}| = £],

m

Wu(E; A) =Esup(Y,H) H=-=)Y €A,

where €1, ..., €y id {£1} is a Rademacher sequence. Then, for any & > 0 and
t >0,
1}22 A )2 > E/m Qo (E; @) — 2W,, (E; ®) — &t (2.16)

with probability at least 1 — e 2%,
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In fact, this statement is valid for all real-valued' inner product spaces with
finite dimensions. It is worthwhile to point out that for standard normal random
matrices @y, ..., &, € R"*"2 and subsets E of the Frobenius unit sphere, this
result recovers Theorem 2.1 up to constants. Fix £ > 0 of appropriate size. Then,
E C {Y e, : ||Y]l2 =1} ensures that £ Q¢ (A; E) is constant. What is more,
W, (A, E) reduces to the usual Gaussian width (2.15).

We obtain a recovery guarantee for phase retrieval by appropriately analyzing
both contributions to Eq. (2.16). Similar to before, we can actually obtain a uniform
recovery guarantee by taking into account all possible descent cones in one go:

Ey={Y eH,: |Y|r=1NK, where Ki=|JD(Illxx*).

xeCr

(2.17)
Let us start with controlling the empirical width.

Lemma 2.3 (Empirical Width for Non-generic Phase Retrieval) Ler E1 C H,
be the union of descent cones defined in Eq. (2.17) and suppose that a € C" is an
isotropic, sub-normalized random vector, i.e., BEaa* = Id, ||a|2 < ~/2n. Then,

Wi (E1) < y/nlog(n) provided that m < nlog(n). (2.18)

The assumption m < nlog(n) is not essential but will simplify exposition
later on. Similar arguments apply to standard complex Gaussian measurement
vectors g € C" (which are not sub-normalized) and produce tighter bounds [64]:
W (E1, aa*) < o/n (no log(n)-factor), provided that m < n. The following proof
sketch summarizes arguments presented in Ref. [64].

Proof Sketch (Lemma 2.3) We will show the slightly more general bound

ElH]| < \/max {m, nlog(n)}.
Apply Lemma 2.2 to obtain

Wi (E1, A) =E sup (Y, H) < sup |YILE|H| < VrEIH]||.
YeE, YeE,

The remaining expression is an operator norm of a random matrix H =
1 m % . . .
T Y i1 €ia;a’ that features two types of randomness. The matrix Khintchine

inequality, see, e.g., [31, Exercise 8.6(d)], allows us to trade the Rademacher
randomness against an additional square root. More precisely,

n 172

1
> @) s HERE,
j=1

)

log(n) 172
EIH| = BB H| < Eyy/ 220 ”

m

A ¥
Z“J"j
j=1

! Extensions to complex-valued inner product spaces are also possible, see, e.g., [46].
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where the last inequality follows from (aja’;)(ajajf) = llajll2 aja’; < Jn aja;‘.
We now face an operator norm of a sum of random matrices X; = a ja’ that are
positive semidefinite and obey || X;|| = |a j||§ < 2n each. Isotropy also asserts
H ZT:l EX; H = ||mld|| = m, and we can apply the matrix Chernoff inequality
[84] to obtain for any 7 > 0

m

> ad;
Jj=1

E, < eTT_lm + Qn log(n) < max {m, nlog(n)}.

O

The empirical width bound (2.18) suggests that an order of n log(n) non-generic
phaseless measurements may suffice to establish strong uniform recovery guaran-
tees for phase retrieval via low-rank matrix reconstruction. However, this is only true
if the measurement matrices g;a; are not too spikey. More precisely, we need that
Q¢ (aa*, E1)—the second quantity in Mendelson’s small ball method (2.16)—is
lower bounded by a constant.

Lemma 2.4 (Marginal Tail Function for Non-generic Phase Retrieval) Suppose
a € C" is a random vector that obeys E(a, Ya)?> > (Y,Y) and E{a, Ya)* <

(E(a, Ya)z)zfor allY € Eq. Then,

0x(Eiaa") 2 (1= 255) 7 forall 0<g < Joonst/a.

Proof Fix Y € Ej and use E{a, Ya)? > (Y, Y) = const to apply a Paley—Zygmund
type argument:

2 (E(a,va)?)
E(a,Y,a)* ~

Pr[[(aa®, )] = 26] = Pr[(a Ya) = oS Ba, Ya)?| = (1 - 55)

— const const

The moment assumption E(a, Ya)* < (E(a, Ya)z)2 ensures that the final ratio is
lower bounded by a constant. Such a lower bound is valid, regardless of Y € E,.
Hence, it also applies to the infimum Q2 = infyeg, Pr{|{aa*, Y)| = 2¢]. O

We now have gathered all the auxiliary statements we need to carry out a descent
cone analysis for phase retrieval with non-generic measurements.

Theorem 2.3 (Phase Retrieval from Non-generic Measurements) Leta € C" be
a random vector that is isotropic (Eaa™ = Id) and sub-normalized (a2 < ~/2n)
and also obeys

2
E(a, Ya)? > (Y,Y), aswellas (]E<a,Ya>2) < Ela, YA, (2.19)

for every Y € Ky. Then, with high probability, a total of
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m 2 nlog(n)

randomly selected phaseless measurements ay, ...,a, ~ a € C" suffice to
reconstruct signals xo € C" via constrained nuclear norm minimization (2.3).

In fact, this recovery guarantee is actually uniform. That is, with high probability,
a single collection of randomly sampled phaseless measurements allows for recon-
structing all phaseless signals via nuclear norm minimization (2.3). Conditioned on
this event, the actual reconstruction is also stable with respect to noise corruption.
Suppose that y = A(xx*) + e, where |le|l;, < T and the noise bound is known.
Then, the solution X of the convex optimization problem (2.3) is guaranteed to
obey ||)A( — xox0*||F < 7/4/m. Up to constants, this assertion is on par with some
of the strongest stability guarantees for low-rank matrix reconstruction in general
[9, 13, 47].
Proof Sketch (Theorem 2.3) Let us start by reformulating phase retrieval as a low-
rank matrix recovery problem (r = 1). The general descent cone analysis presented
in Sect. 2.2.1 identifies the minimum conic singular value as an important summary
parameter. If it is positive, the current set of measurements allows to recover Xo =
Xox via nuclear norm minimization under idealized circumstances (no noise). The
size of the minimum conic singular value also captures noise robustness (the larger
the better). Theorem 2.2 (Mendelson’s small ball method) achieves just that. Fix
& = const sufficiently small and insert the bounds from Lemma 2.4 and Lemma 2.3
into the assertion of Theorem 2.2:

Anf AWz >E/m Qo (E1; aa®) — 2Wy, (E1; aa®) — &1

>./m — const ( nlog(n) + t) ,

with probability at least 1 — e, Assigning m = Cnlog(n) and t = y/2/m,
where C > 0 (y > 0) is a sufficiently large (small) constant, allows us to conclude
infyeg, [|AY)|2 2 «/m with probability at least 1 — e~7~™ _This ensures that the
minimum conic singular value is of (optimal) order /m.

There is one additional twist. In Eq. (2.17), we have defined the set E; as the
union of all possible descent cones anchored at all possible lifted signals X = xx*.
Consequently, Theorem 2.2 produces a lower bound of 4/m on the infimum over all
possible descent cones, not just a single one. This allows us to effectively treat all
possible signals at once and establish a uniform recovery guarantee. O

Let us conclude this section with discussing the extra assumptions (2.19).
They formulate conditions on the second and fourth moments of the measurement
matrices A = aa*. The second moment condition ensures that the expected
measurement operator is non-singular on the union K of all descent cones:

E(Y, EA*AY)) = E(aa*, Y)p = E(a, Ya)> > (Y,Y) forallY € K.
(2.20)

1
m
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Viewed from this angle, it actually captures (sub-)isotropy on the relevant parts
of H,,—a natural requirement for any low-rank matrix recovery procedure. Alas,
by itself, it is not sufficient to derive nontrivial recovery guarantees [37, 62] and
extra assumptions are required. Theorem 2.3, for instance, requires that (certain)
fourth moments of A = aa* are comparable to their second moment squared. It
should be viewed as a relaxation of (sub-)Gaussian moment growth conditions, but
only up to order four. Suitable measurement ensembles only need to mimic (outer
products of) Gaussian measurement vectors up to fourth moments. This condition is
much weaker than sub-Gaussianity, and vector distributions that satisfy Eq. (2.19)
can admit a lot of structure. A concrete example is orbits of certain symplectic
symmetry groups that arise naturally in quantum information (Clifford group) and
time—frequency analysis (oscillator group) [65]. A more refined analysis also allows
for replacing constrained nuclear norm minimization (2.3) by a simple least-squares
or £,-fit over the cone of positive semidefinite matrices [47], such as the convex
optimization problem

m

minimize tr (EDEDY* X)) -y
;| ( ) | 2.21)

subjectto X € 8",

where 8" C R™*" denotes the set of real-valued symmetric matrices and Si cS
its positive definite subset. Such reformulations have the added benefit of being
tuning-free. In particular, no a priori noise bound t is required, see [63] for related
arguments addressing sparse vector recovery and [27] sparse covariance matching.

2.2.4 Limitations

As we have seen, a descent cone analysis combined with probabilistic tools such
as Mendelson’s small ball method yields essentially near-optimal uniform recovery
results for low-rank matrix recovery from Gaussian measurement matrices or phase
retrieval measurements with Gaussian measurement vectors. A key observation of
the proof is that the union of all descent sets is contained in a suitably large nuclear
norm ball, so it suffices to estimate the Gaussian width of this ball.

This approach, however, has significant limitations when it comes to problems
with more structure such as matrix completion and blind deconvolution. The
reason is that in these problems, as explained in Sect.2.1.1.1, recovery guarantees
will necessarily fail for some exceptional signals that violate certain incoherence
conditions. Thus it will necessarily be impossible to bound the minimum conic
singular values for the descent cones anchored at these signals and estimating a
general superset cannot be sufficient.
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However, one may wonder whether it is possible to obtain a comparable result
to Corollary 2.1 and Theorem 2.3 by considering the union of all descent cones
of all incoherent rank-r matrices instead. However, this turns out to be more
delicate. In particular, it is unclear how to mathematically formulate a property that
captures the fact that matrices in the descent cone anchored at incoherent signals
are better conditioned with respect to the measurements. A direct connection to
the notion of incoherence is difficult, as matrices in the descent cone anchored
at incoherent signals will not necessarily be incoherent. As a consequence, also
the minimum conic singular values can become provably very small [58, 60],
which makes it difficult to bound them from below, which would be necessary for
recovery guarantees based on the strategy explained above even for the noiseless
case.

In the next section, we present an alternative analysis strategy that is better suited
to deal with incoherence conditions, as it is based on (approximate) dual certificates
rather than the descent cone and relies on the signal alone rather than differences
to alternative solutions. In certain cases, however, as we will see in Sect. 2.4, it will
also be possible to adapt the descent cone analysis to such scenarios.

2.3 Recovery Guarantees via the Golfing Scheme

2.3.1 Recovery Guarantees via Dual Certificates

Maybe the most natural way of proving that a convex optimization attains its optimal
value at a given argument is by exhibiting a dual certificate — the generalization
to possibly non-smooth convex functions of the familiar gradient condition for
optimality. Let us start by considering the noiseless nuclear norm problem (tr = 0)

minimize || X||«
Xetnmn (2.22)
subjectto  A(X) =y,

see also Eq. (2.12) with f(X) = || X||x. Let X € C"1*"2 be a rank-r matrix with
singular value decomposition (SVD) X = UXV*. Thatis, X € R"*" is a diagonal
matrix with nonnegative entries and U € C"'*" and V e C™*" are isometries, i.e.,
U*U = V*V = 1d,. The tangent space of the variety of rank-r matrices at the point
X can be checked to be given by

Tx :={UA*+BV*: AeC"™ BeC"*"}. (2.23)

Denote by Pr, the (Hilbert-Schmidt) orthogonal projection onto the tangent space
and by PTXL the projection onto its orthocomplement. The subdifferential 9| - ||« (X)
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of the nuclear norm at X is the set of affine lower bounds to the nuclear norm that
coincide with the norm at X. A simple application of the matrix Holder inequality
[5] shows that [90]

a - I« (X) = {W eC>M . Pr.W=UV", ||PT§W|| < 1}. (2.24)

With these notions, it is straightforward to see that a sufficient condition for X
being the minimizer of (2.22) is given by the following lemma, first formulated in
Ref. [14].

Lemma 2.5 ([14]) Let Xo € C"'*"2 be such that A (Xg) = y € C™. Suppose that
the following two conditions hold:

1. There exists a vector z € C™ such that Y = A* (2) satisfies

Pry, Y = Uv* and IIPTXLOYH < 1.

2. The linear operator A is injective when restricted to the tangent space Tx,,.
Then, X is the unique minimizer of (2.22).

In Ref. [14], it was shown in the context of low-rank matrix completion from a
sufficient number of uniformly sampled matrix elements that such a dual certificate
exists with high probability. A refined (and fairly involved) analysis in Ref. [18]
showed that the number of measurements can be reduced to the order of the
information-theoretic limit, up to logarithmic factors.

Reference [36] introduced a new approach—the golfing scheme—for construct-
ing dual certificates. In the original paper, and commonly in works referring to
it, the result is presented as being based on the observation that the conditions
in Lemma 2.5 can be relaxed and that the existence of an approximate dual
certificate suffices to establish uniqueness. Approximate dual certificates are easier
to construct using randomized processes, which in their natural formulations will
give results that are correct only approximately and up to a small probability of
failure.

In this chapter, we aim to present the story from a different point of view. Namely,
we will show that a minor tweak of the golfing scheme actually gives an explicit
randomized construction for an exact dual certificate, using no more measurements
than the original argument. In this sense, it is inaccurate to say that constructing
exact certificates is harder than constructing approximate ones. While this point of
view does not seem to impact the headline result on recovery guarantees, we feel
that it represents a conceptually clearer way of thinking about the argument. To the
best of our knowledge, this approach has not appeared elsewhere in the literature
before.
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2.3.2 Golfing with Precision

Here, we recall the basic logic behind the golfing scheme, in preparation of

presenting the putting proposition, Proposition 2.2. We start with two definitions.
The analysis uses the fact that the measurement operator A is an approximate

isometry when restricted to the subspace Tx. The precise notion employed is this:

Definition 2.1 Let X € C"1*"2, We say that A fulfills the §-restricted isometry
property (6-RIP) on Ty, if for all matrices Z € TY, it holds that

A=IZIF < IA@D) I3 < A+ Z]7-
As the name suggests, approximate dual certificates obey condition 1 in

Lemma 2.5 approximately. This is captured by the following formal definition.

Definition 2.2 Given a measurement operator A : C"1*"2 — C™, a vector z € C",
giving rise to a matrix ¥ = A* (z), is an approximate dual certificate at Xg =
U X V* if it satisfies the following properties:

lzll2 < 2, (2.25)
a=UV* = Pry A*@IllF < gpay- (226)
HPTXLO (A @) | <. 2.27)

With these definitions, the central result reads as follows:

Proposition 2.1 [/2, 36] Let Xg € C"'*"2 with SVD Xo = UXV*, and suppose
that y = A (Xg)+e with |le|l2 < t. Suppose that the following two conditions hold.:

1. There exists an approximate dual certificate Y = A*(z)
2. The measurement operator A satisfies the 5-restricted isometry property on Tx,
with constant § = 3/4

Then, every minimizer X of (2.22) satisfies
1Xo = XIIF S I1AIIT. (2.28)

Here, || Al = supy,,=1 IA)|IF is the operator norm of the measurement
operator. The requirement (2.25) on the norm of z is only necessary in the noisy
case |le]l2 > 0.

The bound (2.28) is not always tight. For example, let ‘A be the Gaussian
measurement operator defined in Sect. 2.2.2. For m < nina, ||A|l < /niny with
high probability. This is larger than the optimal error scaling || X¢ — X|p «/m for
this regime and measurement model.
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(1) Y (2) Yi (3) Yia
P L o
Y Re . Y ";' Y, Y] Y
.
Yo );0 Y

Fig. 2.5 Construction of an approximate dual certificate via golfing: for the pth leg, we start with
a current best guess Y, (cf. panels (1) and (2) above). On the tangent space Tx,, we aim to express
the difference A, := Yia — Pry, ¥p (dotted line) in terms of rows from the partial measurement
matrix AP. Here, Yig = UV* is the “ideal” dual certificate, which is an element of the tangent
space. If the rows of AP were an orthonormal basis, then A, = (AP)* AP (¥iq) would give an exact
solution. If AP is subsampled from an orthonormal basis, standard measure concentration results
imply that on the tangent space, we will obtain a relatively decent approximation for A, (solid
line). In fact, if the number of rows in A? is sufficient, one can easily show that the distance to the
ideal certificate will be reduced by a constant factor with high probability. It is then natural to just
iterate the scheme (panel (3)). This results in a random process which converges in Frobenius norm
to the ideal certificate (on the tangent space) exponentially quickly. At the same time, on the space
orthogonal to the tangent space, we have that ]E(PT% (A* (2)) ) = 0. Again using concentration of

measure results, one can show that, during the logarithmically many legs of the golfing procedure,
the spectral norm of these terms remains small

Before proving this statement, we sketch the idea behind the golfing scheme [36]
for the construction of an approximate dual certificate (cf. Fig. 2.5).

The ensemble of measurement vectors will often be isotropic in the sense that
E[A*A] = Id. This motivates the choice Z; = AUV*) and ¥| = A*(z) =
FAFAUV*) for z and Y, as it leads to the correct result E [ﬂ*(Zl)] = UVv*
in expectation. Consequently, one could then hope to show properties (2.25),
(2.26), and (2.27) using measure concentration around the mean. Unfortunately, this
approach does not usually work directly. One problem is that the operator norm || A||
can be quite large (for blind deconvolution || A|, it is of the order /K N/L). This,

in turn, means that H Uuv* — PTXO A* (2) H . needs to be small, smaller than typical

fluctuations. The idea behind the golfing scheme is to iteratively refine this initial

guess until condition (2.26) is satisfied:

* Step 1: Choose a partition of [m] into Q disjoint sets {I'j,..., g} of size
roughly |Ty| ~ m/Q, such that QE [(A9)*A?] ~ 1d, where A? := Qr, A.
(Here, QOr, : C" — C™ denotes the coordinate projection onto I'y.)

¢ Step 2: Set

Yo=0 and

Yy = Yyo1 + QAR (UVF =Py ¥yo1)  where 1 <q < Q.
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The corresponding z € C™ is then given by

Q
7= QZﬂq (UV* —PTXOYq—1> :
g=1

Note that a consequence of the sample splitting in Step 1 is that the golfing scheme
is set up in such a way that the distribution of A? is independent of Y,_;. This
simplifies the analysis but is not essential [39].

The precise convergence properties of this random process depend on the
parameters (partition size, incoherence, etc. [36]) and is, in any case, beyond
the scope of this article. Instead, we want to make precise the following new
observation—which, in keeping with the theme, we call the putting proposition.
For more context, see the discussion at the end of Sect. 2.3.1.

Proposition 2.2 (“‘Putting Proposition”) Assume that the approximate dual cer-
tificate properties (2.25)-(2.27) hold and that A fulfills the §-restricted isometry
property on Tx, for 8 < 3/4. Then, there exists an exact dual certificate for Xo.

Proof Using the variational characterization of the operator norm of a Hermitian
linear map, as well as the definition of the 6-RIP, we get

” PTXO‘?[*‘?[PTXO — PTXO

= sup |(z, A*AZ) — 1]
ZeTy, | Z| =1

= sup |||ﬂZ||%—1| <.
ZeTxy. 1 Zllr=1

Hence, as a linear map on the tangent space, PTXOﬂ*[r’[PTXO is invertible and
satisfies

Set
x = APy, (PTXOJ"(*?IPTX()>71 (UV* = Pr, A (2).
Together with (2.26), this gives
Il < AUV = Pr A @) < gk
But then, with Y/ = A*(z + x) = Y + A*(x), we have that

Pry,¥) =UV*
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and
/ *k
”PTXLOY < HPTXLOYH + HPTXLOf( (x)

1

<3+ ‘PT;Oﬂ*(x) i

< 2+ 1Allxl2
1 1

St sas < L.

2.3.3 Application 3: Matrix Completion

Using dual certificate-based proof techniques, the nuclear norm minimization
approach to matrix completion has been studied extensively [14, 18, 20, 36, 76].
A typical result for the noiseless case (z = 0) reads as follows:

Theorem 2.4 ([20]) Assume that ny > njp. Consider measurements of the form
y = A(Xp), where Xg € R"*"™ s a rank-r matrix and A is given by (2.4).
Assume that

m > C max {,uz (U),/,LZ (V)}mllogznl.

Then, with high probability, the matrix X is the unique minimizer of SDP (2.22)
(see also SDP (2.3) with T = 0).

Further variants have been studied in the literature. For example, if the noise
term is drawn randomly instead of adversarially, improved results can be given, see
Refs. [53, 54] for subexponential and Ref. [22] for sub-Gaussian noise. Non-convex
algorithms with rigorous performance guarantees can be found in Refs. [30, 32, 43,
50, 51, 66, 70, 83]).

2.3.4 Application 4: Simultaneous Demixing and Blind
Deconvolution

Simultaneous blind deconvolution and demixing is a generalization of the blind
deconvolution problem introduced in Sect.2.1.1.2. It is motivated by wireless
communication scenarios that involve multiple senders, but only one receiver. Each
sender wants to transmit a signal m; using a linear encoder C;. The encoded signal
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Fig. 2.6 A multi-user wireless (uplink) communication scenario: wireless devices i = 1,...,r
simultaneously transmit messages m; to the base station which are individually encoded with a
linear code C; and experience individual convolutional channels #;

x; = Cijm; is sent through an unknown convolution channel w; to the receiver.
Because there are multiple senders, the receiver obtains the superposition of r
convolutions, where the goal is to reconstruct all messages {m;}/_,.

In mathematical terms, this leads to an inverse problem of the form

-
y=Zwi*xi+e€(CL, (2.29)
i=1

where * denotes the (circular) convolution introduced in Eq. (2.6). The goal is to
simultaneously reconstruct all signals x;, as well as all channel descriptions w);.
As in the randomized blind deconvolution framework, we have to use some prior
knowledge on w; and x; in order to be able to reconstruct these signals. We are
going to adopt the framework introduced in Ref. [69]. Assume that w; and x; are
elements of known subspaces. Hence, we can write w; = Bh; and x; = C;m; for all
i €[r], where B € CEXK and C; € CLXN | see Fig.2.6. We assume that B*B = Id
and, moreover, that for each i € [r], the entries of the matrix C; are i.i.d. samples
from the complex normal distribution CN (0, 1).

Similar to the randomized blind deconvolution setting, we note that for each
i € [r] there is a unique linear operator A; : CK*N — CF such that for all u € CK
and v € CV it holds that

A; (uv*) = Bu x C;v.

Hence, we can rewrite Eq. (2.29) as
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y= Z.‘f’{i (him?) + ¢
i=1

We emphasize that each outer product z;m} comes with a unique linear operator
A;. This allows us to recast Eq. (2.29) as a low-rank matrix recovery problem on a
larger space. Our goal is to recover the block-diagonal rank-r matrix

Xo =h1mT€Bh2m§ 69~~~69hrm:<

from a linear measurement operator that decomposes accordingly (A(Z; & --- &
Zy) = > i_y Ai(Z;)). Adapting SDP (2.3) to this problem structure yields

Inlnumze Z 1 X+
(2.30)

.
subject to ||y — Zﬂi X2 =7,
i=1

see [69]. Furthermore, denote by u2,. . and /L%l the coherence parameters, which are
similar to the ones defined in Sect.2.1.1.2. (For a precise definition, we refer to
[45].) In [69], it has been shown that if

L>r? (Kuﬁwx + Nui) log® L 2.31)

holds, then in the noiseless scenario, i.e., ¢ = 0, the convex relaxation (2.30)
recovers the ground truth matrix Xo with high probability.

However, we observe that the number of degrees of freedom in this problem is
r (K + N — 1), which raises the question, whether the quadratic dependence on r
in (2.31) is necessary. Indeed, numerical experiments in [69] indicate that the true
dependence of the sample complexity in r should rather be linear (see [69, Section
1V] as well as [45, Section III]).

The main result in [45] shows that the required simple complexity is indeed linear
in r. Hence, nuclear norm minimization can recover the ground truth signal X at
near-optimal sample complexity.

Theorem 2.5 ([45] and see also [80-82]) Let y € CL be given by (2.29) with
llell2 < t. Assume that

L/10g3 Lzr (K:U*i)ax log (K:urznax> + NM%) :

Then, with high probability, every minimizer X = X1 ®...®X, of SDP (2.30)
satisfies
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2
¥ . < t/rN.

.
X%
i=1

In the following, we are going to describe the main technical ingredient, which
allowed for linear scaling in ». In both [69] and [45], the proofs establish the
existence of an approximate dual certificate with high probability. One ingredient
is to show that the measurement operator acts as an approximate isometry operator
on the tangent space of X, see Definition 2.1. To make this precise in the blind
demixing scenario, define, for i € [r], the tangent space T; of rank-1 matrices at
him;-“:

T, = !h,‘u? + vim;" DU € (CK, Vi € (CN} .
Then, we can define the tangent space at X by
={X1®...9X,: X;€T; foralli €[rl}.

In both [69] and [45], one part of the proof consists in showing that, with high
probability, the collection of measurement operators {A;};_, fulfills a local isometry

property on T'. That is, for a sufficiently small § > 0,

.

2 ~

(1—8) I1X|2 < H 3 A (X)) H2 <(1+8) X2 forallX = X®...0X, € T.
i=1

(2.32)

In [69], the restricted isometry property is first shown individually on each 7; and
after that is shown that the images of the subspaces 7; under the operator A; are
sufficiently near-orthogonal to each other. Combining these two properties yields
(2.32). However, the second step requires that L scales quadratically in r.

In contrast, our analysis establishes the restricted isometry property directly on
T. For that, we define

r
T:= {X1 B..0X € T:Zux,-n%: 1}.
i=1
Next, we observe that (2.32) is equivalent to

§>  sup ‘ ”Zﬂl (X)H Xr:”Xi”zF‘
i=1

X1®..0X, €T i=1

sup
X1®..0X,€

(MH%ﬂZﬂQWH
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The key idea is that the last expression can be interpreted as a suprema of chaos
processes, and we can use deep results from empirical process theory [57] to bound
this expression with high probability.

2.3.5 Phase Retrieval with Incoherence

Recall that in the phase retrieval problem we are interested in reconstructing a signal
xo from measurements of the form

vk = Wak, x0)* + ex. (2.33)

We have seen in Sect.2.2.3 that this problem can be solved not only for Gaussian
measurement vectors {a;} but also for measurement vectors that are less generic.
Nevertheless, the required assumptions are somewhat more restrictive than, for
example, in compressive sensing. In particular, for measurement vectors with
unimodular entries, the problem does not even have a unique solution.

To see that, assume that for all k, the entries of the vector a; have all the same
modulus, i.e.,

[ | =1(a)2 | = ... = (@), |- (2.34)
In this case, both the vectors

x:=(1,0,...,0) e R

(2.35)
xp:=(0,1,...,0) e R

lead to the same measurements, i.e.,
. 2 . 2 f 11 .
Kai, x1)|° = [{ai, x2)] oralli € [m].

Hence, x1 and x; cannot be distinguished based on phaseless measurements alone.
We want to stress that condition (2.34) holds for several interesting classes of
measurement vectors. For example, this condition is fulfilled if the entries a; are
Rademacher random variables, i.e., (ax); is either 1 or —1, each with probability
1/2. Moreover, if each entry (ax); is a random variable with uniform distribution
over §! C C, this condition would also be fulfilled.

Another example, which is important for certain applications, is given by random
masks [10, 38]. That is, the measurement vector ay, is of the form

ap = diag (ex) fi,»

where €; € {—1, 1}" is a Rademacher vector and fj, is the /xth column of the DFT
matrix F € C"™*",
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A first step to address these issues was taken in [56]. The key idea is to impose
an incoherence condition of the form

s << 1, @3
which prevents counterexamples of the form (2.35). Under such incoherence
condition, one can obtain recovery guarantees for all centered random vectors
with i.i.d. real-valued sub-Gaussian entries of unit variance, including the case of
Rademacher random vectors that was previously excluded. More precisely, [56,
Theorem V.1] yields that with high probability, all signals satisfying (2.36) for u =

«/LE can be recovered via (2.21) from an order-optimal number of measurements.

The proof combines the golfing scheme with stability bounds of [25], confirming
that the golfing scheme is well suited to deal with incoherence.

We note that the incoherence condition (2.36) is much weaker than the inco-
herence conditions in matrix completion and blind deconvolution because it is
dimension-free. At the same time, this approach is limited to the real case, as the
underlying stability results from [25] exploit that the phase factors to be recovered
are actually signs and hence belong to a finite candidate set. Thus for the complex
case, one needs different tools, which will be discussed in Sect. 2.4.2 below.

2.4 More Refined Descent Cone Analysis

2.4.1 Application 5: Blind Deconvolution

In Sect.2.2.4, we have discussed why the descent cone analysis framework
described in Sect. 2.2.1 cannot be directly applied to the matrix completion and blind
deconvolution scenario. In the following, we want to outline how one can refine
those methods to obtain novel insights into low-rank matrix recovery problems. For
that, we are going to revisit the blind deconvolution setting, see Sect.2.1.1.2, and
demonstrate how to combine a descent cone analysis with incoherence constraints to
prove near-optimal bounds in settings which are relevant in practice. This improves
over existing error bounds (see, e.g., [1]), which depend polynomially on K and N
and hence are quite pessimistic.

More precisely, recall from Sect.2.2.4 that we only expect to obtain reasonable
bounds for matrices with low incoherence, as described by the set

H, = {ho e CK . VL|(bg, ho)| < pllholl2 for all £ € [L]}.

Even if the signal is contained in the set, not all principal components of a
descent direction need to be incoherent as well. The key observation underlying
the following theorem is that these “coherent” descent directions only allow for
very small decrements and will hence only play a significant role for very small
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noise levels. Thus even under mild lower bounds on the noise level, one obtains
near-optimal recovery guarantees.

Theorem 2.6 ([60, Theorem 3.7]) Let o > 0 and B € CE*X such that B*B = Id.
Assume that

L> ' (K+N) log’ L.

Then, with high probability, the following statement holds for all hg € H, \ {0}, all
mo € CN\ {0}, all t > 0, and all e € CL with |le|r < T :

Any X minimizing the nuclear norm subject to a data fidelity term of at most t
satisfies

~ 2/31002/3 .
IX — homgllF S F— 35— max {z, allhomgl F} . (2.37)

Note that the error estimate in (2.37) depends only logarithmically on L. To illustrate
this result, assume that the noise level T = ¢ /L_2 log_2 L for some € > ¢p. Then,
by setting @ < egu 2 log™2 L, we obtain near-linear error bounds with a required
sample complexity at the order of

u® 6
L> CI%(K—FN) log® L.

This improves over existing noise bounds as in [1] and shows that for large enough
noise near-optimal recovery bounds are possible.

Proof Sketch As discussed in Sect.2.2.4, the minimum conic singular value of
the descent cone at the point homg is ill-conditioned, i.e., there exists a matrix

Z e CK*N gych that % is small. The key observation in the proof is that
only matrices Z, which are near-orthogonal to the ground truth, can be poorly
conditioned. This observation gives rise to the following proof strategy. Namely, we
partition the descent cone of the nuclear norm at the point iomj into two cones K
and K, where the cone K contains all the directions, which are almost orthogonal
to the ground truth matrix homg. The cone K, contains all the remaining directions.
It turns out that matrices in the descent cone K3 inherit certain coherence properties
from the matrices homg, which allows us to apply Mendelson’s small ball method
to obtain a lower bound for the minimum conic singular value A, (A, K3), which
is at the order of a constant (up to log-factors and ignoring the wu-dependence).
Then, using Lemma 2.1, we can control the error, which arises from the directions
contained in the cone K5. In order to control the error, which can arise from
directions in K, we use the observation that for those directions, the nuclear norm
ball around homg behaves locally like a Euclidean ball. In particular, if the noise
level 7 is small, only a short segment in this direction will have smaller nuclear
norm than hom(. Hence, only a small error can occur from these near-orthogonal
directions Z € Kj. O
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2.4.2 Application 6: Phase Retrieval with Incoherence

The strategy of splitting the descent cone into two parts can also be applied to
the phase retrieval problem with measurements consisting of arbitrary i.i.d. sub-
Gaussian entries as introduced in Sect.2.3.5, allowing to generalize the results of
[56] to complex-valued measurements. This is a key step toward understanding
real-world applications such as ptychography, which typically do not give rise
to real-valued measurements. For complex-valued measurements of real-valued
signals, one obtains recovery guarantees exactly analogous to those discussed in
Sect.2.3.5, where this time one requires the incoherence constraint (2.36) with
parameter u = 81—1, see [59, Theorem 2].

The proof of these guarantees proceeds via a descent cone analysis of the cone
of all admissible directions

M, :=cone{Z € 8" : Ixp € X, such that xox; + Z € S'.},
where
Xy = {x0 € R"\ {0} : [lxollo < mtllxoll2} -

In order to observe how incoherence is useful, it is instructive to consider the signal
x0 = e; = (1,0,...,0) € R". Note that the matrix Z = ere] — eje] is an
admissible direction, that is, xox(’)k +t7Z € S’jr for a sufficiently small # > 0. However,
if the measurement vector a;. satisfies

[(@or | = 1) =...= (@), |

we have tr(a Zay) = 0. The problem here is that all the mass of Z is concentrated
on its diagonal. The proof in [59] shows that this cannot be the case, if xq is
incoherent.

To extend the recovery guarantees to complex-valued signals, one needs to
address an additional difficulty. Namely, the phases of the entries of the measure-
ment vector must be well distributed on the unit circle in C. To see this, consider
real measurements of a complex signal x. Then, x and x give rise to the same
phaseless measurements and hence cannot be distinguished. Such ambiguities can
be addressed by an additional constraints on the measurements; then, the proof tech-
niques sketched above carries over. We refer the interested reader to [59] for details.

2.5 Conclusion

Although many inverse problems admit a reformulation as a low-rank matrix
recovery problem, as we have seen, even for the benchmark reconstruction approach
via nuclear norm minimization, the structure imposed by the applications can
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make a significant difference. This is true both in terms of how to analyze the
reconstruction performance and in terms of the robustness results that can be
expected. A key concept in this context is the role of incoherence that distinguishes
problems with comparable performance for different signals from problems where
for some signals the solution is not even unique. The golfing scheme has proven
to be a useful tool to derive signal-dependent recovery guarantees for incoherent
signals but has several shortcomings such as limited geometric interpretations. Some
of these shortcomings can be addressed by a refined descent cone analysis that
partitions the descent cone into multiple parts that can be analyzed separately. To
date, however, this approach has only been applied to very few scenarios, in all
of which the underlying signal is of rank one. Generalizing this analysis to higher
rank and also precisely analyzing the performance in the small noise regime would
be of great importance for generating a more comprehensive understanding of the
potential and limitation of low-rank matrix recovery via nuclear norm minimization.
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Appendix: Descent Cone Elements Are Effectively Low Rank

Lemma 2.2 Suppose that Z € C"'*"2 js contained in the nuclear norm descent
cone of a rank-r matrix X € C"'*"2, Then,

121 < (1+~2) VrIZIr.

The constant 1 4 /2 is not optimal and could be further improved by a more
refined analysis. The argument presented here is novel and inspired by dual certifi-
cate arguments reviewed in Sect. 2.3. It also requires a rectangular generalization of
the pinching inequality for Hermitian matrices, see, e.g., [5, Problem I1.5.4]

Theorem 2.13 ((Hermitian) Pinching Inequality) Ler P,..., P, C H, be a
resolution of the identity ( P12 = Pyand )", P = Id). Then,

L
IXIle = Y IPXP,  forevery X € H,.
=1

We can extend pinching to general rectangular matrices by embedding them
within a larger block matrix. The self-adjoint dilation of Z € C"1*"2 is

0z
T(Z) = (Z* 0) € Hy,y4n,-
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Dilations preserve spectral information. In particular,

_ * _ zZZ* 0
1Tl =t (VT(2) m))_u(VO m)

=tr(VZZ*) + tr(NZ*Z) = 2|| Z . (2.38)

For simplicity, we only formulate and prove our generalization of the Hermitian
pinching inequality for identity resolutions with two elements each. Statement and
proof do, however, readily extend to more general resolutions with compatible
dimensions.

Corollary 2.3 (Pinching for Non-symmetric Matrices) Let P, P € H, , and
0, Ql € H,,, be two resolutions of the identity. Then,

X1+ = 1PXQllx + HPLXQLH* forall X € C"1*"2,

Proof (Corollary 2.3) Use Eq. (2.38) to relate the nuclear norm of X to the nuclear
norm of its self-adjoint dilation:

200 = 17000 = | (0. )

*

Next, we combine P, P+ € H,, and Q, QJ- € H,, to obtain a resolution of the
identity with compatible dimension:

PO Pt 0

0 Q P 0 Q 1 € Hn1+n2-
Since everything is Hermitian, we can apply Theorem 2.13 (original pinching) with
respect to this resolution of the identity to the nuclear norm of the s.a. dilation:

(ed) =G (e Gol A0 ) (e e)
(o) ")

0
otx*pt 0
We can now recognize self-adjoint dilations of two rectangular matrices. Using
Eq. (2.38) implies

*

N

*

ITX) e ZNT(PX Q)lls + IT(PEX O s = 211 PX Qlls + 2[ P X Q..
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Next, the concept of sign functions of real numbers is extendable to non-
Hermitian matrices. Let X € C"*"2 be a rectangular matrix with SVD X =
UXV*. We define its sign matrix to be sign(X) = UV* € C"'*"2. Note that this
sign matrix is unitary and obeys

(sign(X), X)p = r (UVH*UZV*) = tr(2) = || X ||
The last ingredient is the dual formulation of the nuclear norm:

X[« = max (U, X)| = max [{U, X)]|.
i<t

Uunitary

Proof (Lemma 2.2) By assumption, Z € C"1*"2 is contained in the descent cone of
arank-r matrix X. This implies that there exists T > O such that || X ||« > | X+TZ]||«.

Apply an SVD X = UX V* and use it to define r-dimensional orthoprojectors P =
UU* e H,,, Q = VV* € H,,, as well as their orthocomplements Ppl=1d-P
and Q1 = Id — Q. Use them to define the matrix-valued projections

Pr,: Z+—> PrZQ+ and Pr,:+> Z-P;(2)=PZ+Z2Q—-PZQ
such that Z = P%X (Z) +Pry(2) = Z%X + Zry and, in particular, X%X = 0 and
X7, = X. In words, Pr, projects C"1*"2 onto a subspace whose compression to

the kernel of X vanishes identically, namely the tangent space of X (as defined in
(2.23)). Moreover, for every Z € C"1>*"2,

ik (Zr,) =1k (PZ + (P + PHZQ — PZQ) =k (PZ + P*Z0)
=1k (P2) + 1k (PLZQ) < tk(P) +1k(Q) =2r, (2.39)

because matrix rank is subadditive and cannot increase under matrix products.
Corollary 2.3 (pinching)—with respect to P and Q—and the descent cone property
of Z together imply

1X0e 21X + 2] 2 [P+ 22) 01, + | PLX + 7204

=X +1PZQl. +7| P Z0"

*

— |(sign(X + TPZQ), X + TPZO)r| +t HPLZQL

*

> |(sign(X), X)r + t(sign(X), PZQ)Fr| + Tl P-Z Q.

)

=X + 7 (= I(sign(0), PZO)r| + | PEZ0*
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Since T > 0, this chain of inequalities can only be valid if

1
|22,

=|ptzot| = isienc, PZOIFI < IsignCONIPZ QI < VFIPZOIF

because both P and Q are rank-r projectors. We can combine this with a
decomposition Z = Z%X + Z1, and Eq. (2.39) to conclude

1z < |24,

Tt |Z1 ||, < VrIPZQIlF + /rank(Zr )| Z1y ||
<VFIZIF +V2r1ZIF = (14 V2) VrIZI F

because both Z — PZQ and Z +— Zr, are contractions with respect to the
Frobenius norm. o
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Chapter 3 ®)
New Challenges in Covariance Qe
Estimation: Multiple Structures and

Coarse Quantization

Johannes Maly, Tianyu Yang, Sjoerd Dirksen, Holger Rauhut,
and Giuseppe Caire

3.1 Introduction

The key objective in covariance estimation is simple to state: given n € N i.i.d.

samples X!, ..., X" L X of a random vector X € RP, compute a reliable estimate
of the covariance matrix E[XX'] = ¥ e RP*P (without loss of generality, we
restrict ourselves here to mean-zero distributions, i.e., E[X] = 0). For this purpose,
a natural estimator is the sample covariance matrix

. 1}1
T, =) XKxHT 3.1
" n}; 0.9) 3.1

as it converges to X, for n — o0, by the law of large numbers. Nevertheless, an
asymptotic result is of limited use from practical perspective. Given n € N, it
provides no information on the reconstruction error ||ﬁ,1 — X|| measured in the
operator norm || - ||. (Although other norms or error metrics might be considered
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as well, e.g., the Frobenius norm, we mainly restrict ourselves in this chapter on
operator norm bounds as the most common representative.)

In the last two decades, numerous works on non-asymptotic analysis of covari-
ance estimation showed that reliable approximation of X by 3, becomes feasible
for sub-Gaussian distributions if n = p, where a < b denotes a < Cb for some
absolute constant C > 0. For instance, if X has a Gaussian distribution, then it is
well known [61] that with probability at least 1 — 2¢™*

~ —+t +t
15, — =1 < IZ) (,/”T+ ”n ) (3.2)

This classical result exhibits various weaknesses. For instance, it requires strong
concentration of the distribution of X around its mean. The estimator in (3.1) is
sensitive to outliers and not reliable if concentration fails [12, 34]. Furthermore,
in applications the ambient dimension can easily exceed the number of accessible
samples such that even if concentration may be assumed, the estimate in (3.2) is
void.

3.1.1 Outline and Notation

In Sect. 3.2, we briefly discuss massive MIMO as one specific modern application
of covariance estimation. The massive MIMO setting originates from wireless
communications research and will serve as a motivation for investigating multiple
structures and quantized samples in a mathematical framework. Section 3.3 then
surveys recent theoretical advances on estimation of structured covariance matrices,
and Sect. 3.4 shows the impact of coarse sample quantization on estimation guar-
antees. Having the theoretical results from Sects. 3.3 and 3.4 in mind, in Sect. 3.5,
we finally return to the details of massive MIMO and present our recent approach
in engineering literature. We conclude in Sect. 3.6 by discussing the gap between
existing theoretical guarantees and practical solutions. Some technical details of
Sect. 3.3 are deferred to the Appendix.

We denote [rn] = {l, ..., n}. For any absolute constant C > 0, we abbreviate
a < Cb (resp., >) as a < b (resp., 2). We furthermore write a <y, b (resp., =) if
C only depends on the quantity L. Whenever we use absolute constants ¢, C > 0,
their values may vary from line to line. Scalar-valued functions act component-wise
on vectors and matrices. For a set S, the indicator function xgs is 1 on § and 0 on
its complement S¢. We denote the all ones-matrix by 1 € R”*? and the identity by
I € R7*P. In particular,

1 ifx; >0

[sign(x)]; = ,
—1 ifx; <O,
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for all x € RP and i € [p]. For Z € RP*P, we denote the operator norm (the
maximum singular value) by ||Z|| = supyesr-1 |1Zul|2, the nuclear norm (the sum of
singular values) by ||Z ||, = tr(v'Z T Z), the Frobenius norm (trace norm) by 1Z]% =
tr(Z'Z) = szl ZZ ., the max norm by || Z| o = max; j|Z;, j|, and the maximum
column norm ||Z||1—2 = maxe[p) ||Z;]l2, where z; denotes the j-th column of Z.
We use © for the Hadamard (i.e., entry-wise) product of two matrices. The uniform
distribution on a set S is denoted by Unif(S). The multivariate Gaussian distribution
with mean € R? and covariance matrix X € RP*” is denoted by N(u, X). The
sub-Gaussian (Yr2-) and subexponential (1-) norms of a random variable X are
defined by

Xy, = inf[t >0:E [exp (Dt(TI")] < 2}
A mean-zero random vector X on R” is called K -sub-Gaussian if

(X, %)|ly, < K E[(X,x)?]'/?  forallx € R".

3.2 Motivation: Massive MIMO

Multiple-input multiple-output (MIMO) is a method in wireless communication to
enhance the capacity of a radio link by using multiple transmission and multiple
receiving antennas. It has become an essential element of wireless communication
standards for Wi-Fi and mobile devices [24, 50]. Massive MIMO equips the base
station (BS) with a large number of antennas to further increase bandwidth and
potential number of users [44, 45].

In a classical massive MIMO communication system, the BS is equipped with
a uniform linear array (ULA) of M antennas and communicates with multiple
users through a scattering channel, e.g., wave reflection on buildings or objects. See
Fig. 3.1 for an exemplary setup. During uplink (UL), the BS receives user pilots and
aims at estimating the respective channel covariance matrices, which characterize

Fig. 3.1 An exemplary
multipath propagation A
channel, where the user signal (M —1)d[<
is received at the BS through : /
two scattering clusters ;
3d<
0;

2d

4

User

7
\

Scattering Channel
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each transmission channel. By assuming mutual orthogonality of all UL pilots, it
suffices to focus on a single user channel. We denote the corresponding UL channel
vector at time—frequency resource s by h(s) € CM (standard block-fading model,
e.g., [59]). Furthermore, we assume that the user transmits a single pilot per channel
coherence block such that the channel vectors h(s) are i.i.d. complex Gaussian
vectors, for s € [N] [27, 28].

The received pilot signal at the BS at resource block s is then given as

y(s) = h(s)x(s) + z(s), (3.3)

for s € [N], where x(s) € C is the known pilot symbol and z(s) ~ CN(0, NoI) =
N, 20T) + jN(0, 22T) models additive white Gaussian noise (AWGN). Without
loss of generality, one may assume that the pilot symbols are normalized, i.e.,
x(s) = 1. The core problem of massive MIMO channel estimation is now to
estimate the channel covariance matrix

Th = Eh(s)h(s)"] (3.4)

from N noisy samples y(s), s € [N]. Since the number of samples N is limited
due to time constraints of the UL phase, one expects for massive MIMO that N =~
M. Translating this into our initial theoretical setting, i.e., identifying the ambient
dimension p with the number of antennas M, the number of samples n with the
number of independent time—frequency resources N, and the sample vectors XX
with the channel vectors h(s), we see that the sample covariance matrix will not
provide a reliable estimate of Xy, in this case, cf. Eq. (3.2) for n & p. Nevertheless,
a closer look into the channel model reveals that Xy naturally exhibits intrinsic
structures such as low-rankness and Toeplitz structure, cf. Sect. 3.5.

Structure and Quantization Let us highlight two crucial points. First, whereas
engineers are successful in boosting the sample covariance matrix by using special
features of their problem setting, cf. Sect. 3.5, it might simplify existing approaches
if alternatives to the sample covariance matrix are used that automatically leverage
intrinsic structure(s) of the covariance matrix. As Sect. 3.3 will show, the last decade
substantially improved our theoretical understanding in this regard. Second, if the
above methods are used in real applications, one has to take into account that
the sample vectors y(s) have to be quantized to finite alphabets before digital
processing. Especially, in massive MIMO, the information loss due to quantization
can be significant since fine quantization at a multitude of antennas leads to
enormous energy consumption. The results presented in Sect. 3.4 can be seen as a
first theoretical step into understanding the non-asymptotic behavior of covariance
estimators under coarse quantization of the samples. Since we concentrate on
memoryless quantization schemes (each vector entry is quantized independently of
all others), our model should be applicable to massive MIMO in a straightforward
way.
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3.3 Estimation of Structured Covariance Matrices and
Robustness Against Outliers

As we have already seen in Sect.3.2, there are several structures of interest
that ¥ might exhibit in applications. We concentrate here on three important
instances—sparsity, low-rankness, and Toeplitz structure—that naturally emerge
in engineering, biology, and data science, e.g., [42, 53]. Parts of the results we
review below are not restricted to Gaussian random vectors but allow to treat
heavy-tailed distributions that only satisfy assumptions on their lower moments.
Techniques for robust covariance estimation include median of means [31, 49],
element- and spectrum-wise truncation [12, 47], and M-estimators [47, 48]. The
recent work [46] even constructs a “sub-Gaussian” estimator that only requires a
finite kurtosis assumption (L4—L>-norm equivalence). In this context, an estimator
is called sub-Gaussian if it performs on non-Gaussian distributions as well as the
sample covariance matrix applied to Gaussian distributions, for further discussion
see [46]. Although the proposed construction is computationally intractable, it
illustrates the potential of robust estimation. For further information on early and
recent approaches to robust covariance estimation, we refer the reader to [29, 34].

3.3.1 Sparse Covariance Matrices

We begin with the assumption that ¥ is a sparse matrix, i.e., only few entries of
Y are relevant and hence non-zero. If X models ordered variables, the non-zero
entries of X, for instance, might cluster around the diagonal such that ¥ is a banded
or tapered matrix. A straightforward way to estimate such covariance matrices is
to band/taper the sample covariance matrix in [6, 11, 23]. If the variables are
not ordered and the non-zero entries of ¥ do not cluster, thresholding of in is a
viable alternative [5, 19]. As remarked in [40], the aforementioned approaches can
be treated in a unified way by introducing a mask M € [0, 1]7*? and considering
the masked sample covariance matrix M © ) ». The masked formulation allows to
decompose the estimation error

IMOE, -2 <|MOE, - MOZ|+|MOEX-X|

into a variance term that behaves well if M is (close to) sparse and a bias term
that is small whenever M encodes the support of X. The bias term is deterministic
and solely depends on a proper choice of M. For understanding the influence of
sparsity on the required sample size, it thus suffices to control the variance term.
The corresponding state-of-the-art result can be found in [13] which extends [40]
from Gaussian distributions to general distributions of finite fourth moment and
strengthens [40] if applied to Gaussian distributions. To facilitate the comparison
with (3.2), we present the result only in the Gaussian case.
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Theorem 3.1 ([13, Theorem 1.1]) Let M € [0, 11P*P, for p > 3, be fixed and
X ~ N(0, X) with X € RP*P_ Then,

(EIMo %, -Mo znz)%

Sz

~

| \/”E“oo _ IMI5 ., log(p) | 1o 1M Tog(p) log(np)
1l n (B2 n

Theorem 3.1 only bounds the second moment of the variance term, which
yields high-probability estimates via Markov’s inequality. However, the same
proof techniques apply to higher moments of the variance term as well such that
exponential tail bounds can be achieved for Gaussian X, cf. [13, Section 3.3].

Let us compare Theorem 3.1 with (3.2). For general covariance estimation, i.e.,
M = 1, we have ||M||%%2 = ||[M|| = p, which implies that up to log-factors both

results are of the same order O(ﬁ + %). If M encodes sparsity, however, meaning

that only up to s <« p columns and rows are non-zero and ||M||%_)2 = |M]| =s,
the estimation error is considerably reduced when applying Theorem 3.1. A similar
error reduction occurs if M ® X, is a banded estimator of bandwidth B.

Estimation via Thresholding While the masked framework provides a unified
understanding of the intrinsic complexity of sparse covariance estimation, in
practice the mask M is unknown. A more realistic approach to the problem is hence
thresholding procedures as, e.g., [5]. To allow for non-ordered covariance matrices,
i.e., general sparsity and not only limited bandwidth of the matrix, the authors of [5]
introduce the set of bounded and (effectively) sparse covariance matrices

P
Ug, s, M) :={%:%;; <M and Z|z,-,,-|q <s,foralli € [p]},
j=1

forg € [0,1) and s, M > 0. If ¢ = 0, the matrices in U(g, s, M) have at most
s non-zero entries per row; if ¢ > 0, the rows are close to s-sparse vectors. To
estimate X € U(q, s, M), the thresholded estimator T, (X,) is considered, where

A if|A; ] =T,

else,

[T-(A)]i,; = (3.5)

forany t > 0 and A € RP*P.

Theorem 3.2 ([5, Theorem 1]) Let X ~ N(0, X), for X € U(q, s, M), and M’ >
0 be sufficiently large (depending on M ). If
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M | log(p) ’
n

forn Z log(p), then with probability at least 1 — e—ent?

1—q
3 1 =z
ITe(E) — 21 =0 s (%(P))

Theorem 3.2 does not require knowledge on the support of ¥ and respects
sparsity defects. However, if we once more consider the case g = 0, we see that the
estimate in Theorem 3.2 is suboptimal since the error behaves (up to log-factors)

like O(\/Sn? ) and not like O(\/g ) as one would expect.

3.3.2 Low-Rank Covariance Matrices

When working with high-dimensional random vectors, another commonly con-
sidered structural prior is to assume that the distribution concentrates around a
low-dimensional manifold. This may manifest itself in ¥ being a low-rank matrix.
Interestingly, the sample covariance matrix in (3.1) intrinsically leverages low-
rankness of X. To understand this phenomenon, we consider the effective rank of X
defined as

e = 1B
1=

It is straightforward to verify that I < r(¥) < rank(X). In contrast to the rank of X,
the quantity r(X) is small even if X is only close to a low-rank matrix, e.g., consider
¥ to be a full rank matrix with exponentially decaying spectrum.

Theorem 3.3 ([37, Corollary 2]) Let X ~ N(0, X), for ¥ € RP*P andn 2 r(X).
Then with probability at least 1 — e™" the sample covariance matrix satisfies

o X X
1%, - =1 S I <,/"(n L +\/§+£).

The authors of [37] further show that the bound in Theorem 3.3 is tight up to
constants. If we compare the result to (3.2), we see that both estimates agree for
(effectively) full rank matrices like ¥ = I. If X is of low rank, however, Theorem 3.3
controls the estimation error even in the case n < p.

Low-Rank Estimators We could stop at this point since >, apparently meets our
requirements. Nevertheless, two questions remain. First, if one assumes X to be
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low rank, one would wish for an estimator that is low rank itself, and, second,
Theorem 3.3 fails if X does not exhibit strong concentration around its mean. The
first point can be addressed by using the LASSO estimator

AL . & 2
X, = arg mun IS = Znllz + Sl (3.6)

where A > 0 is a tunable parameter. Initially introduced in [43] to estimate
covariance matrices from incomplete observations, the result reads in our setting
as follows.

Theorem 3.4 ([43, Corollary 1]) Let X ~ N(0,X), for ¥ € RP*P, and n 2

r(X)log2p +n)>. If
— [log(2
A=C tr(zn>||zn||,/¥,

. . e 1
for a sufficiently large absolute constant C > 0, then with probability at least 1 — 2
the estimator in (3.6) satisfies

) r(X)log(2p)
1%, —ZI < IIZII\/T.

The nuclear norm regularization in (3.6) induces (effective) low-rankness on
~ A . .
X, [21, 51] and the order of estimation error reflects up to log-factors the one in

Theorem 3.3. Furthermore, the construction of )AJI); can easily be adapted to heavy-
tailed distributions by replacing 3, with an appropriate robust counterpart, e.g., the
spectrum-wise truncated sample covariance matrix [34]. A corresponding version
of Theorem 3.4 that is not restricted to (sub)-Gaussian distributions is [34, Theorem
5.2].

3.3.3 Toeplitz Covariance Matrices and Combined Structures

The third structure we discuss here in detail naturally arises in various engineering
problems. If the entries of X resemble measurements on a temporal or spatial grid
whose covariances only depend on the distances of measurements (in time or space)
but not their location, X is a symmetric Toeplitz matrix, i.e.,



3 New Challenges in Covariance Estimation: Multiple Structures and Coarse. . . 85

o1 0'2...0'p
oy .

=% ,
. ‘. 0.2
O’p...o’2 O"l

and the first column o € R? determines X via X; ; = o};—j+1. (For simplicity,
we identify Toeplitz matrices with their first column in the following.) Such a
structure appears, for instance, in Direction-Of-Arrival (DOA) estimation [38] and
medical/radar imaging processing [9, 56]. For further examples, we refer the reader
to [53]. Since Toeplitz structure reduces the degrees of freedom in X from p? to p,
leveraging this structure can lead to a notable reduction in sample complexity.

The authors of [10] propose to average, the sample covariance matrix along its

. . . . o T
diagonals to obtain the Toeplitz estimator X noep defined as

~ Toe 1 &
(60 ) = ———— > [Zulij. forre(pl. (3.7)
(p+1)—r 4
i—j=r—1
They derive error estimates for Gaussian distributions with banded Toeplitz covari-
ance matrices.
The more recent work [33] extends these results to non-Gaussian distributions
and general masks as introduced in Sect.3.3.1. To be more precise, the authors
of [33] assume that the distribution of X has the so-called convex concentration

property.

Definition 3.1 A random vector X € R? has the convex concentration property
with constant K if for any 1-Lipschitz function ¢ : R? — R, one has E[¢ (X)] < oo
and

2

Pr{|¢p(X) — E[¢p(X)]| > t] <2¢ K2, forallt > 0.

By setting ¢ () = (-, x), for x € R?, one easily sees that all distributions that have
the convex concentration property are sub-Gaussian. For the sake of consistency, we
therefore restrict ourselves here to Gaussian distributions as their most prominent
representative. For a symmetric Toeplitz mask M € [0, 1]7*? characterized by its
first column m € [0, 117, we furthermore define the weighted £1- and £;-norms of
m as

b b2\
”m”L*:Zm and ||m||2,*=<zm> .

r=1 r=1
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Theorem 3.5 ([33, Theorem 3]) Let M € [0, 117*? be a symmetric Toeplitz mask
and X ~ N(0, X) with ¥ € RP*P symmetric and Toeplitz. Then,

~ T m lo m lo
IE”MMnmp_MQZ”5”2”(/|| ||2,»:1 2 | ||1,2 g(p)).

As Theorem 3.1, the result is not restricted to an estimate of the expected error
but includes respective high probability bounds with exponential tail decay. Let us
compare Theorem 3.5 to Theorem 3.1. If we ignore log-factors and assume that
M is a banding or tapering mask with support bandwidth B < £, i.e., only the
B innermost diagonals of M are non-zero, Theorem 3.5 guarantees an estimation

error of order O( % + :;n), cf. [33, Corollary 2], which improves the estimate

O(\/g + %) of Theorem 3.1 by a factor p. This improvement corresponds to the
reduction in degrees of freedom when comparing Toeplitz to general matrices. Note,
however, that the additional assumption B < ap, for « € (0, 1), is required for such
a reduction since estimation of the outermost diagonals of ¥ is hardly enhanced
by averaging over the Toeplitz structure. This is expressed by Theorem 3.5 since
lm|l; « and |m||2 4 are O(1) and not 0(%) if the tail entries of m are not of vanishing
magnitude.

Estimation via Thresholding Theorem 3.5 differs from the previously discussed
results in the sense that it allows to simultaneously leverage two structures of
¥, sparsity and Toeplitz structure. Nevertheless, as in Sect.3.3.1, the masked
framework leaves open the question of how to choose M in practice. By combining
the thresholded approach in Theorem 3.2 with the techniques of Theorem 3.5,
one can obtain a thresholded Toeplitz estimator which profits from both structural
priors. To state a corresponding estimate, let us define the set of bounded Toeplitz
covariance matrices with (effectively) sparse first column o by

p
(L(Toep(q’& M) = {Z: Xij =0ji—jj+1 < M, for o € R” with Z lo |9 < st .

r=1

We furthermore denote by B,,(X) the matrix X restricted to bandwidth ap, i.e.,
[Bop(X)])i,j = X jif li — jI+ 1 < ap and [By,(X)];, j = 0 else.

Theorem 3.6 There exists an absolute constant C > 0 such that the following
holds. Let X have the convex concentration property with constant K. Let E[X] = 0
and E[XXT1 = X, for ¥ € ’LlToep(q, s, M). Forall o« € (0,1) and ¢ > 1, we have
with probability at least 1 — 2ap)~ €~V that if

r= | =2 max{CK? Tk |8 (3.8)

(1—w) np
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then

1—q
c log(p)\ 2
l—a np

2 Toep

H’JI‘T Bop(E,T)) — ZH <s (max{C2K4, CKY) + | Bep(Z) — X,

where T is the thresholding operator from (3.5).

Two comments are in order here. To gain from the Toeplitz structure, Theo-
rem 3.6 requires X to be close to a banded matrix. This is as in Theorem 3.5 before
and has been discussed previously. Moreover, by adapting the proof strategy of
Theorem 3.2, the result inherits the slightly suboptimal error decay in the sparsity
level s, cf. the discussion of Theorem 3.2 for the case ¢ = 0. The proof, which
combines ideas from [5] and [33], can be found in the Appendix.

Combining Toeplitz Structure and Low-Rankness Sparsity is not the only
structure that can be imposed on Toeplitz matrices. For instance, in massive MIMO,
see Sect. 3.2, low-rankness of ¥ may naturally be assumed in addition to Toeplitz
structure [28]. The recent works [20, 39] propose several algorithms to estimate low-
rank Toeplitz covariance matrices from partial observations by a technique called
“sparse ruler.” In particular, the authors can show that the sufficient number of
samples to approximate X scales (up to log-factors) polynomial in the (effective)
rank of X.

Remark 3.1 Before closing this section, let us briefly comment on the three types
of structures discussed above and their mutual relation:

Sparsity: The concept of sparsity is the maybe most fundamental way of theoreti-
cally describing intrinsic “low-complexity” of points in a vector space. Whereas
we only introduced sparsity of vectors in R"” with respect to the canonical basis,
it is straightforward to generalize the definition to arbitrary vector spaces and
other bases (or even frames). Note, however, that sparsity strongly depends on
the chosen representation of objects in space, i.e., a point that is sparse in one
basis need not be sparse in another.

Low-rankness: One can view low-rankness as a special case of sparsity since a
matrix is low rank if and only if the vector of its singular values is sparse
in the canonical basis. Stated differently, a matrix is low rank if its induced
linear mapping only acts on low-dimensional subspaces of the ambient input
and output space. This second characterization shows that, in contrast to sparsity,
low-rankness is not representation dependent. Furthermore, one can generalize
the concept to higher dimensional linear operators as well, e.g., tensor spaces.

Toeplitz structure: Just as low-rankness, Toeplitz structure is a special type of
sparsity that requires matrix structure of the points in space. Its low-dimensional
structure lies in the fact that only (2n — 1) parameters are necessary to charac-
terize an R"*" Toeplitz matrix. In contrast to low-rankness, Toeplitz structure
is representation dependent. Nevertheless, Toeplitz matrices naturally appear as
covariance matrices of stationary random processes, i.e., if the covariance of two
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events does not depend on their localization in time but only their distance in
time.

For further discussion and literature on the subject, we refer the interested reader to
[22].

3.4 Estimation from Quantized Samples

All results stated above assume that the sample vectors XF are real-valued, i.e.,
one has access to infinite precision representations of the samples. In applications,
this assumption is not always fulfilled. Especially in signal processing, samples are
collected via sensors and, hence, need to be quantized to finitely many bits before
they can be digitally transmitted and processed. Engineers have been examining
the influence of coarse quantization on correlation and covariance estimation for
decades, e.g., [2, 14, 30, 41, 54]. However, in contrast to classical covariance
estimation from unquantized samples, so far only asymptotic estimation guarantees
have been derived in the quantized setting. To improve our understanding on the
effect of quantization on covariance estimation, we analyzed two memoryless one-
bit quantization schemes in our recent work [16]. We call a quantizer memoryless
if it quantizes each entry of X* independently of all remaining entries. This is
fundamentally different from feedback systems, e.g., ¥ A-quantization [4, 55],
and of particular interest for large-scale applications like massive MIMO where
the entries of X* correspond to inputs from different antennas, cf. Sect.3.2. We
conclude by providing a detailed discussion of the models and results in [16].

3.4.1 Sign Quantization

In the first setting, we assume to receive one-bit quantized samples
sign(XK) € {—1, 1}, (3.9)

for k € [n], instead of X* itself. (Recall that we apply scalar functions like sign
entry-wise to vectors and matrices.) Since the quantizer sign is scale-invariant, i.e.,
sign(z) = sign(Dz) for any diagonal matrix D € R”*? with strictly positive entries
and z € R?, we can only hope to recover the correlation matrix of the distribution,

21,]
N el
X ~ N(0, ¥), where X has ones on its diagonal.
It has been known for decades that

i.e., a normalized version of ¥ with entries [ We thus assume that
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5, = sin (2”—” 3 sign(Xk)sign(Xk)T> (3.10)

k=1

is well suited to approximate ¥ from the quantized samples, cf. [30]. Note that the
specific form of %, is motivated by Grothendieck’s identity (see, e.g., [61, Lemma
3.6.6]), also known as “arcsin-law” in the engineering literature [30, 60], which
implies that

I := E[sign(X*)sign(X¥) "] = ; arcsin(X) (3.11)

if X ~ N(0, X). Applying the strong law of large numbers and the continuity of
the sine function to (3.10), one easily obtains with (3.11) that 53,1 is a consistent
estimator of X.

The two key quantities for understanding the non-asymptotic performance of ¥,
are I and

A := cos(arcsin(X)) = cos(5T).

Furthermore, we define
2 2 2 2.9 . 4 . 2
() =20 —(ZoT) = —Z° ® arcsin(X) — —2(Z ® arcsm(E)) ,
b4 T

for symmetric Z € RP*P.

Theorem 3.7 ([16, Theorem 1]) There exist constants ci,cy; > 0 such that the

following holds. Let X ~ N(0, X) with ¥; ; = 1, fori € [p], and X!, ..., x" 4 X
be i.i.d. samples of X. Let M € [0, 1]1P*P be a fixed symmetric mask. Then, for all
t > 0withn > ¢ logz(p)(log(p) + t), the biased sign estimator in fulfills with
probability at least 1 — 2e~ 2!

- lo +t
MO, -MoE| < ||o<MoA)||\/%

log(p) + t
+ (max {[M O A[, MO =} ng

(3.12)

The right-hand side in Theorem 3.7 (for convenience, we only consider the case
M = 1 here) can be trivially estimated to get

1, — 2| < max{] cos(aresin(Z))]. [ E]]} (,/ log(’; I log(’; )+ ’) ,
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Fig. 3.2 The experiment from [16] depicts average estimation error of ):",n and )~:,, in operator
norm, for p = 20, n varying from 10 to 300 and three different choices of the ground truth X with
ones on the diagonal and off-diagonal entries equal to ¢ = 0.5, ¢ = 0.9, and ¢ = 0.99

which is up to the addltlonal dependence on cos(arcsm(E)) comparable to the error
bound in (3.2) for E This is remarkable since ¥, accesses considerably less
information on the samples than >,

Theorem 3.7 even suggests that for strongly correlated distributions of X, i.e.,
¥ = 1, the dominant first term on the right-hand s1de of (3.12) vanishes. In other
words, the bound in (3.12) predicts ¥,, to outperform 3., if the entries of X strongly
correlate. Numerical experiments from [16] confirm this counter-intuitive fact, cf.
Fig.3.2. A possible explanation is that by construction, X, implicitly uses the
assumption that X has ones on its diagonal which is not provided to ..

Furthermore, a corresponding lower bound on the second moment of the
estimation error shows that the unconventional term ||c(M ® A)| is factual and
not an artifact of the proof, cf. [16, Proposition 14].

3.4.2 Dithered Quantization

The results of Sect.3.4.1 are restricted to the estimation of correlation matrices of
Gaussian distributions. Both limitations stem from the chosen quantization model:
first, (3.9) is blind to the rescaling of variances and, second, Grothendieck’s identity
only holds for Gaussian distributions. Nevertheless, by introducing a dither in the
one-bit quantizer in (3.9), we can fully estimate the covariance matrix of general
sub-Gaussian distributions. Dithering means adding artificial random noise (with
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a suitably chosen distribution) to the samples before quantizing them to improve
reconstruction from quantized observations, cf. [25, 26, 52]. In the context of one-
bit compressed sensing, the effect of dithering was recently rigorously analyzed in
[3, 17, 18, 32, 36], see also the survey [15].

To be precise, we require two bits per entry of each sample vector where each bit
is dithered by an independent uniformly distributed dither, i.e., we are given

sign(Xk + rk), sign(Xk + i'k)T, k=1,...,n, (3.13)

1 =1

where the dithering vectors 7', T",..., t", T" are independent and uniformly
distributed in [—X, A]?, with . > 0 to be specified later. From the quantized
observations in (3.13), we construct the estimator

~dith - -
2 =1% +1EDT, (3.14)
where
. -
¥ == > sign(X* + th)sign(XF + )T (3.15)
n k=1

Theorem 3.8 ([16, Theorem 3]) Let X be a mean-zero, K-sub-Gaussian vector

with covariance matrix E[XXT] =Y Le X!, ... X" 4 X be i.i.d. samples of X.

Let M € [0, 11P*P be a fixed symmetric mask. If 1> 2k log(n)|| X, then with

probability at least 1 — e,

~ dith
Mo -Mo x|

log(p) +1¢ log(p) +1¢
<k IM[l1s2 1212 + ﬁ),/T “z”M”T'

In particular, if \* ~g log(n) || X ||so, then

~ dith
Mo Z," -Mo 2|
IZ1 =l (og(p) + 1) log(p) +1
<k log(m)IM[1 2 ~ gp +log<n)||M||||z||oog+.

(3.16)

The error bound (3.16) coincides (up to different logarithmic factors) with the
best known estimate for the masked sample covariance matrix in Theorem 3.1, even
though the sample covariance matrix requires direct access to the samples X. This
performance, however, heavily depends on the choice of A, cf. [16]. Furthermore, it
should be mentioned that there are cases where the performance of the dithered
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estimator is significantly worse than the performance of the sample covariance
matrix. Let us consider for simplicity the case M = 1. If the samples X are
Gaussian, then [37] shows that

. [Z)Te(X) Tr(X)
ElX, — X[l =~/ + ;
n n
~dith

X[ Xl Yool
SIE _ 5 < gt TELVEISOEG) | Al o)

whereas (3.16) yields

via tail integration. Since Tr(X) < p| X ||, the second estimate is worse in general.
Numerical experiments in [16] have shown that this difference is not an artifact of

proof. Simply put, %, and i:lth perform similarly if ¥ has a constant diagonal,
whereas fl,, performs significantly better whenever Tr(X) < pl|X| co-

Theorem 3.8 can be extended to heavier-tailed random vectors. This, however,
requires a larger choice of A and thus more samples to reach the same error.
For a sub-exponential random vector X, one would already need A> > log(n)? -
max;e(p] | X; ||3/1. The dependence of A on n, both in the latter statement and in
Theorem 3.8, can be observed in numerical experiments [16] as well.

Let us finally mention that the quantized estimators in (3.10) and (3.14) are
not necessarily positive semi-definite as one expects from covariance matrices.
In applications, one would thus replace both estimators by their projection onto
the cone of positive semi-definite matrices, which is efficiently computed via the
singular value decomposition [8, Section 8.1.1]. The obtained estimates also apply
to the projected estimators since convex projections are 1-Lipschitz.

3.5 The Underlying Structures of Massive MIMO
Covariance Estimation

Having the just surveyed theoretical insights on covariance matrix estimation in
mind, let us return to the massive MIMO setup of Sect.3.2. To understand the
intrinsic structure of Xy, in (3.4) and consequent approaches in engineering literature
to leverage it, we have to dive deeper into the underlying model and its physical
interpretation. We thus follow the notational conventions of engineering literature
in this section. Recall that the number of antennas M can be identified with the
ambient dimension p, the number of time—frequency resources N with the number
of samples 1, and the channel vectors h(s) correspond to samples XK.

Under the assumptions stated in the beginning of Sect.3.2, i.e., the BS is
equipped with M antennas in a ULA, the channel vector h(s) can be written
explicitly as
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1
h(s) = / P, 9)a(E) de

for s € [N]. Here, £ = si;i(%(,f:x) are the normalized angles of arrival (AoA) with
Omax € [0, %] being the maximum array angular aperture (cf. Fig. 3.1), the vectors
a(¢) € CM denote the respective array response at the BS, and the channel gain
p(&,s) is a complex Gaussian process with zero mean. By assuming the antenna
spacing tobe d = %, where A = <L denotes the wavelength with ¢y being the speed

of light and fj the carrier frequency, we obtain
. (M —1 T
a) = (1,e/75, ..., /7M=DE)

where j denotes the imaginary unit. With the additional assumption of wide
sense stationary uncorrelated scattering (WSSUS), the second-order statistics of the
Gaussian process p (&, s) are time invariant and uncorrelated across AoAs so that

Elp, 9)p* ", )1 =y (©) 8¢ — &),

where y: [—1, 1] — Ry is the real and non-negative measure that represents the
angular scattering function (ASF) and § is the Dirac delta function. In particular,
this implies that

1
*n = E[h(s)h(s)"] = / 1 y (&) a@)a@) de. (3.17)

Building upon this explicit representation of h(s) and structural assumptions on y,
one can refine the estimate obtained from the sample covariance matrix of y defined
in (3.3).

A Hands-on Approach In [35], we choose the following approach. First note that
by (3.17) the channel covariance matrix belongs to the set

1
M= {/ 1 y©aa@ds:y e ﬂ} ,

where A denotes the class of typical ASFs in wireless propagation. If one assumes
sparse scattering propagation, the set A consists of sparse ASFs. In particular, we
assume that y (£) can be decomposed as the sum of a discrete spike component y,
(modeling the power received from line-of-sight (LOS) paths and narrow scatterers)
and a continuous component y,. (modeling the power received from wide scatterers).
Mathematically, we can write

r

Y () =J/d(S)-H/c(E)=ZCk5(E—Ek)+Vc(E), (3.18)

k=1
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where y,; consists of r <« M Dirac deltas with AoAs &1, ..., &, and strengths
c1,...,¢, > 0 corresponding to r specular propagation elements. Furthermore,
by sparsity assumptions on y, we have that meas(y,) <« meas([—1, 1]), where
meas(y,) denotes here the measure of the support of y.. Combining (3.17) and
(3.18), we decompose the channel covariance matrix as

r 1
Th=Zp 4+ 2 =) calad)" + / 7el® a®a®)" de, (3.19)

k=1

where Zﬁ is rank-r and positive semi-definite and X} is full rank and positive semi-
definite with few dominant singular values. We can approximate X} now in three
consecutive steps:

(i) Spike Location Estimation for y,: Applying the MUItiple SIgnal Classification
(MUSIC) algorithm [58], we estimate the AoAs & of the spike component y,
from the noisy samples y(1), ..., y(N), cf. [35, Theorem 1]. Since this step
is fairly standard, we do not discuss the details here but refer the interested
reader to [35]. Let us only mention that the number of spikes is estimated by
the number of dominant eigenvalues of Xy := E[y(s)y(s)H] (where one can
naturally assume a corresponding gap in the spectrum since the power received
via LOS paths in y; dominates the power received from wide scatterers in y,).
As a result, we obtain estimated spike locations ék, for k € [r], and define an
approximation of yy

7a§) =) &8 — &)

k=1

where the coefficients ¢y, ..., ¢; > 0 still need to be estimated.

(ii) Sparse Dictionary-Based Method: We approximate the continuous component
yc over a finite dictionary of densities G, := {¢;: [—1,1] — R, i € [G]}
that are suitably chosen, e.g., Gaussian, Laplacian, or rectangular kernels, cf.
Fig.3.3. We hence define

G
V(€)=Y biyi (),
i=1

where only the coefficients b Ly vvns I;G > () need to be estimated.
(iii) Non-Negative Least Square (NNLS) estimator: Collecting the coefficients in a
single vectoru = (by, ..., bg,¢1,...,¢)" € Rgo“ and recalling (3.19), we

define our coefficient-dependent estimate of the channel covariance
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Fig. 3.3 Example of a Gaussian dictionary that might be used to express y,

G+7

Th(u) = cha(sk)a(sw +Zb / i ®) a@a@©)" de = Zusl,
(3.20)

where

f Vi a®a@EHds ifl<i<G
aé_g)a_g)" ifG<i<G+r.

All that remains is to determine the coefficient vector u. Since Xy = Xy +

Nol, we can do so by fitting (3.20) to the sample covariance matrix )Aly of
y(),...,y(N),ie,

R G+r 5
u* = argll}lil(} H)Sy — Z u;S; — NOIHF. (3.21)
- i=1

Since Xp is Hermitian Toeplitz, one can incorporate the structure in (3.21) by
replacing Th = Z — NolI with its projection ¥}, onto the space of Hermitian
Toeplitz matrices (wh1ch can be done by averaging the diagonals as in (3.7)).
Denoting the first column of Eh by ¢ € CM and collecting the first columns
of the matrices S; in a matrix § € CM*(G+7) ye may instead solve

~ 2
u* = arg min HW(Su — &) H . (3.22)

where W = diag((«/M, S2M = 1), /2(M =2), ..., «/5)—'—) is a weight
matrix compensating the averaging process.

A Hands-on Approach: Empirical Evaluation Let us empirically compare the
NNLS estimator to the sample covariance matrix right away. We consider a ULA
with M = 128 antennas, where the spacing between two consecutive antenna
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elements is settod = % We produce random ASFs in the following general format:

y(€) =vaé) + v )

o — l—a [ & o8
= - Z(S(g — &)+ — Zrectuj,gj &)+ ZGaussianuk,gk &1,
i=1 j=1 k=1
(3.23)

where we set the number of delta, rectangular, and Gaussian functions to be
r = 2,n, := 2,and ng := 2, respectively. The spike locations are chosen
uniformly at random from [—1, 1], i.e., & ~ Unif([—1, 1]) for i € [2]. The
rectangular functions are defined as

rectﬂj,aj(f) =X[ ](5),

9j 9j
Hj—5 s Mjt5

where @y ~ Unif([—1,0]), uo ~ Unif([0, 1]), and o; ~ Unif([0.1, 0.3]), for
J € [2]. The Gaussian functions Gaussiany, ., are densities of N(u, ox), where
wr ~ Unif([—0.7,0.7]) and o ~ Unif([0.03, 0.04]), for k € [2]. Moreover,
a := 0.5 is set to present the power contribution of discrete spikes. The constant
Z = f_ll ¥c(£)d& normalizes y, in measure. The signal-to-noise ratio (SNR) is set
to 10 dB.

In addition to the sample covariance, we compare our NNLS estimator to sparse
iterative covariance-based estimation (SPICE) [57]. This method also exploits the
ASF domain to fit a covariance matrix. Note that SPICE can only be applied with
Dirac delta dictionaries and that it does not include a step of spike support detection
as in our method.

Denoting a generic covariance estimate as X, we consider two metrics to evaluate

the estimation quality. The first metric, the normalized Frobenius-norm error, is

defined as ENp = % The second metric, the power efficiency, evaluates the

similarity of dominant subspaces between the estimated and true matrices, which is
an important factor in various applications of massive MIMO such as user grouping
and group-based beamforming. Specifically, let d € [M] denote a subspace
dimension parameter, and let Uy € CM*? and U; € CM*4 be the d dominant
eigenvectors of Xy, and X corresponding to their largest d eigenvalues, respectively.

SO0
Then, the power efficiency based on d is defined as Epg(d) = 1 — % Note
h,YdY,

that Epg(d) € [0, 1] where a value closer to 0 means that more power is captured
by the estimated d-dominant subspace.

SPICE and the proposed NNLS estimators are applied with G = 2M Dirac
delta dictionaries for the continuous part G,.. The resulting Frobenius-norm error and
power efficiency are depicted in Fig. 3.4. All results are averaged over 20 random
ASFs and 200 random channel realizations for each ASF. The proposed NNLS
method outperforms the sample covariance matrix and SPICE for both metrics.
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Fig. 3.4 Frobenius-norm error (left) and power efficiency with % = 0.5 (right)

Finally, one can observe a similar outcome for smaller sample sizes as well, e.g.,
N/M = 0.125, which occur naturally in massive MIMO.

3.6 Conclusion

The present chapter shows that in the last decade good progress has been made on
understanding the influence of intrinsic structure of covariance matrices on the non-
asymptotic performance of suitably designed estimators. As we have seen, such
estimators with strong guarantees are available for sparse, low-rank, and Toeplitz
covariance matrices. At the same time, the chapter illustrates that practitioners still
continue to tweak the basic sample covariance matrix using their specific knowledge
of the application at hand—seemingly unaware of the progress in theory. We hope
that this essay helps mathematicians and practitioners alike to gain an overview of
recent theoretical developments on structural and quantized covariance estimation
and that it motivates mathematicians to look deeper into the underlying physical
models of concrete applications to better understand the structures of interest.
Furthermore, our recent theoretical progress on quantized covariance estimation
suggests that reliable reconstruction of the covariance matrix is possible even under
heavy loss of information during sampling. The use of coarse quantization might
thus lead to a considerable increase in capacity in massive MIMO systems and
related applications.
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Appendix: Proof of Theorem 3.6

To prove Theorem 3.6, we need two technical lemmas. In the remaining section, &

~ &, Toe;
always refers to the first column of X and o to the first column of X, P,

Lemma 3.1 Under the assumptions of Theorem 3.6, we have for o € (0, 1) and
0<u <1 that

~ — l—a)min{L,L}n u
Pr |:max o, — oy > ﬁ:l <2ape ( ck® k2 P
r<ap

where C > 0 is an absolute constant.

Proof We proceed similar as in [33]. First note that, for all k € [n],r € [ap], we
can write

1

6'r_o'r|

= X; X5 — o
p+D—r| = ( ) (3.24)

= v, x4, XH) — BV XE, X1

where the mask M, is defined by [M,];; = W if j—i = r —1 and
[M,]; ; = Oelse, i.e., only the r-th co-diagonal of M is non-zero. By using a version
of the Hanson—Wright inequality for random vectors with the convex concentration
property [1], we get that

H le u
Prl| (M, X", X*) — B[V X", X41| = ] < ze‘“‘”‘{CK4HMrH%’CK2"MrH}

=Z]

)

which, by integration, leads to

E[1Z/1%] < 2 2CK* M, [|3)T (q) + 4¢(CK? M, )* T (2q)
< q!ACK* M, [13)7 + 29)!2CK?|IM, )%,
for any ¢ > 1. The random variables Z are thus sub-gamma with variance

parameter v = 16K*(C|M,|% + C*|M,||*) < CK*||M,||3 and scale parameter
y = 4CK?||[M,|]? [7, Theorem 2.3]. By independence, we get for all 0 < p < %

n r z r ﬂ
E [e“ Yizi Zi] = HE[eMZi] < 2=y

i=1
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(and the same holds for —Z;) such that Yo Z; is sub-gamma with variance
parameter vn and scale parameter y [7, Chapter 2.4]. Consequently,

1 o - 5 u u
Pr[ggzi > CK (nMrnF ;+||Mr||,—l)
§Pr|: > «/2vnu+yui| <2e M,

for any u > 0 [7, Chapter 2.4]. Recalling (3.24) and noting that || M, 1% = IM,|| =

W yield with the choice u = min { 7, =k }((p + 1) — r)nii that

n
2. %4

i=1

Pr[|5, —o| > 2«/5] < Pr[|5, —o| > ﬁ+a]

—min{ g o | (D —romit

< 2e

A union bound over r € [ap] and the bound r < ap conclude the proof. O
The second lemma follows along the lines of [5, Theorem 1].

Lemma 3.2 Under the assumptions of Theorem 3.6, assume in addition that X has
a bandwidth of at most ap, i.e., By, (X) = X and thus supp(c) C [ap] and that

& Toep ~
i,I}lg[);()] |Bap(2n )i,j — Xijl = rn%?; oy —or| = (1 —y)7, (3.25)
for some y € (0, 1). Then,

o Toep _
1T Bap(X, ) — EN Sy 795,

. . < o T .
Proof For convenience, let us abbreviate X := ]Bap(Enoep) and denote its first
column by . We write

ITo(2) — Bl < [T(B) — Zl + IT(E) — T()].

Since ¥ € U™P (g, s, M),
p p p
S ISiilxs =0 = D 1SS e < Y11
j=1 j=1 j=1

and Gershgorin’s disc theorem imply
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p
T, (¥) — | < max i <r) < TS,
IT+(2) - 2| < m: Zl| i.jI X1 <) <

p

Moreover,

p
ITe (%) = Te(D) < max Y 15115, =1, 15, <c)
Jj=1

p
+max 1% 1x5, <, 15, 120)
j=1
p
+max Y 15 = BijIXs, e 5, )
i=1

=)+ )+ D).

J. Maly et al.

(3.26)

First recall that by assumption supp(e) C [ap] and supp(6) C [ap]. Hence, using

the observation that 6, = 6,, forr < ap, and

P P
XUzize) = O T I X =0 < D 1819779,
j=1

P
= j=1

j=1

we may estimate with (3.25) and X € U™P(q, s, M)

(3.27)

P
(I11) < max |6, — o] -maxz 1% 19179 < stlTa,
rfotp i
j=1
Furthermore,
p . p
() = max Y 1% = Tijlxys, e, 5, o0 + XD 1B, 2, 15, 1<r)
j=1 j=1
= (IV) + (V).

By (3.26), we know that (V) < 71495 Furthermore, we get that

p

V) =max Y 15 = Zijlxgs, o, 5, 1<yo)
j=1
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p
+max Y 1% = Bijlxs, e, e, <n)
j=1
< max |6, — oy| -max N; (1 — y) +s(y7) 7,
1

r=ap

where we defined N; (1 —y) := Zle X, and reused the bound on

i—2i j|1>1-y)T}
(I11) for the second term (replacing T with y T in the summation). Since we have
by (3.25) that N;(1 — y) =0, fori € [p], we get that (V) <, s7179. Hence,

(I <, st

Finally, note that by (3.27) and ¥ € U®(q, s, M),

P
(1) = max Y (1% = i j1+ 150 Dxs, 1< 15, 120)

j=1
14 14
< max |o; — oy| - max DN ER max DI
j=1 j=1
<stl7 4 g7l-a,
Combining the bounds for (1), (11), and (I11) yields the claim. |
Proof of Theorem 3.6 Note that
~ T ~ T
ITe Bap (X, 1)) = N < [T Bap(E, ) — Bap(X) | + 1Bep(E) — Z.

(3.28)

By Lemma 3.1, we get with probability at least 1 — (2ap)~ €~ that

I
max |6, —o,| < IL max{CK?, v/CK} 0g(p) =1-y)r, (3.29)
V1—«

r=op np

wherec > land 1 — y = \L@ The claim now follows by applying Lemma 3.2 to
the first term on the right-hand side of (3.28). |

References

1. Adamczak, R.: A note on the Hanson-Wright inequality for random vectors with dependencies.
Electron. Commun. Probab. 20 (2015)



102

2.

3

10.

11

12.

13.

14.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

J. Maly et al.

Bar-Shalom, O., Weiss, A.J.: DOA estimation using one-bit quantized measurements. IEEE
Trans. Aerospace Electron. Syst. 38(3), 868—884 (2002)

. Baraniuk, R.G., Foucart, S., Needell, D., Plan, Y., Wootters, M.: Exponential decay of

reconstruction error from binary measurements of sparse signals. IEEE Trans. Inform. Theory
63(6), 3368-3385 (2017)

. Benedetto, J.J., Powell, A.M., Yilmaz, O.: Sigma-delta quantization and finite frames. IEEE

Trans. Inform. Theory 52(5), 1990-2005 (2006)

. Bickel, PJ., Levina, E.: Covariance regularization by thresholding. Ann. Stat. 36(6), 2577—

2604 (2008)

. Bickel, PJ., Levina, E.: Regularized estimation of large covariance matrices. Ann. Stat. 36(1),

199-227 (2008)

. Boucheron, S., Lugosi, G., Massart, P.: Concentration inequalities: a nonasymptotic theory of

independence. Oxford University Press, Oxford (2013)

. Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press, Cambridge

(2004)

. Brookes, M.J., Vrba, J., Robinson, S.E., Stevenson, C.M., Peters, A.M., Barnes, G.R.,

Hillebrand, A., Morris, P.G.: Optimising experimental design for MEG beamformer imaging.
Neuroimage 39(4), 1788-1802 (2008)

Cai, T.T., Ren, Z., Zhou, H.H.: Optimal rates of convergence for estimating Toeplitz covariance
matrices. Probab. Theory Related Fields 156(1-2), 101-143 (2013)

. Cai, T.T., Zhang, C.H., Zhou, H.H.: Optimal rates of convergence for covariance matrix

estimation. Ann. Stat. 38(4), 2118-2144 (2010)

Catoni, O.: Challenging the empirical mean and empirical variance: a deviation study. In:
Annales de I'THP Probabilités et statistiques, vol. 48, pp. 1148-1185 (2012)

Chen, R.Y., Gittens, A., Tropp, J.A.: The masked sample covariance estimator: an analysis
using matrix concentration inequalities. Inform. Inference J. IMA 1(1), 2-20 (2012)

Choi, J., Mo, J., Heath, R.W.: Near maximum-likelihood detector and channel estimator for
uplink multiuser massive MIMO systems with one-bit ADCs. IEEE Trans. Commun. 64(5),
2005-2018 (2016)

. Dirksen, S.: Quantized compressed sensing: a survey. In: Compressed Sensing and Its

Applications: Third International MATHEON Conference 2017, pp. 67-95. Applied and
Numerical Harmonic Analysis. Birkhduser, Cham (2019)

Dirksen, S., Maly, J., Rauhut, H.: Covariance estimation under one-bit quantization. arXiv
preprint arXiv:2104.01280 (2021)

Dirksen, S., Mendelson, S.: Robust one-bit compressed sensing with partial circulant matrices.
ArXiv:1812.06719 (2018)

Dirksen, S., Mendelson, S.: Non-gaussian hyperplane tessellations and robust one-bit com-
pressed sensing. J. Eur. Math. Soc. Arxiv: 1805.09409 (2021)

El Karoui, N.: Operator norm consistent estimation of large-dimensional sparse covariance
matrices. Ann. Stat. 36(6), 2717-2756 (2008)

Eldar, Y.C., Li, J., Musco, C., Musco, C.: Sample efficient Toeplitz covariance estimation. In:
Proceedings of the Fourteenth Annual ACM-SIAM Symposium on Discrete Algorithms, pp.
378-397. SIAM (2020)

Fazel, M.: Matrix rank minimization with applications. Ph.D. Thesis, Stanford University
(2002)

Foucart, S., Rauhut, H.: A Mathematical Introduction to Compressive Sensing. Applied and
Numerical Harmonic Analysis. Birkhéuser, Basel (2013)

Furrer, R., Bengtsson, T.: Estimation of high-dimensional prior and posterior covariance
matrices in Kalman filter variants. J. Multivariate Anal. 98(2), 227-255 (2007)

Goldsmith, A., Jafar, S.A., Jindal, N., Vishwanath, S.: Capacity limits of MIMO channels.
IEEE J. Selected Areas Commun. 21(5), 684-702 (2003)

Gray, R.M., Neuhoff, D.L.: Quantization. IEEE Trans. Inform. Theory 44(6), 2325-2383
(1998)



26.

217.

28.

29.

30.

3

—

32.

33.
34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45.

46.

47.

48.

49.

50.

New Challenges in Covariance Estimation: Multiple Structures and Coarse. . . 103

Gray, R.M., Stockham, T.G.: Dithered quantizers. IEEE Trans. Inform. Theory 39(3), 805-812
(1993)

Haghighatshoar, S., Caire, G.: Massive MIMO channel subspace estimation from low-
dimensional projections. IEEE Trans. Signal Process. 65(2), 303-318 (2016)

Haghighatshoar, S., Caire, G.: Low-complexity massive MIMO subspace estimation and
tracking from low-dimensional projections. IEEE Trans. Signal Process. 66(7), 1832—1844
(2018)

Hubert, M., Rousseeuw, P.J., Van Aelst, S.: High-breakdown robust multivariate methods.
Statistical Science, pp. 92-119 (2008)

Jacovitti, G., Neri, A.: Estimation of the autocorrelation function of complex Gaussian
stationary processes by amplitude clipped signals. IEEE Trans. Inform. Theory 40(1), 239—
245 (1994)

. Jerrum, M.R., Valiant, L.G., Vazirani, V.V.: Random generation of combinatorial structures

from a uniform distribution. Theor. Comput. Sci. 43, 169-188 (1986)

Jung, H.C., Maly, J., Palzer, L., Stollenwerk, A.: Quantized compressed sensing by rectified
linear units. IEEE Trans. Inform. Theory 67(6), 41254149 (2021)

Kabanava, M., Rauhut, H.: Masked Toeplitz covariance estimation. ArXiv:1709.09377 (2017)
Ke, Y., Minsker, S., Ren, Z., Sun, Q., Zhou, W.X.: User-friendly covariance estimation for
heavy-tailed distributions. Stat. Sci. 34(3), 454-471 (2019)

Khalilsarai, M.B., Yang, T., Haghighatshoar, S., Caire, G.: Structured channel covariance
estimation from limited samples in massive MIMO. In: IEEE International Conference on
Communications (ICC), pp. 1-7 (2020)

Knudson, K., Saab, R., Ward, R.: One-bit compressive sensing with norm estimation. IEEE
Trans. Inform. Theory 62(5), 2748-2758 (2016)

Koltchinskii, V., Lounici, K.: Concentration inequalities and moment bounds for sample
covariance operators. Bernoulli 23(1), 110-133 (2017)

Krim, H., Viberg, M.: Two decades of array signal processing research: the parametric
approach. IEEE Signal Process. Mag. 13(4), 67-94 (1996)

Lawrence, H., Li, J., Musco, C., Musco, C.: Low-rank Toeplitz matrix estimation via random
ultra-sparse rulers. In: ICASSP 2020-2020 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pp. 4796-4800. IEEE (2020)

Levina, E., Vershynin, R.: Partial estimation of covariance matrices. Probab. Theory Related
Fields 153(3-4), 405-419 (2012)

Li, Y., Tao, C., Seco-Granados, G., Mezghani, A., Swindlehurst, A.L., Liu, L.: Channel
estimation and performance analysis of one-bit massive MIMO systems. IEEE Trans. Signal
Process. 65(15), 4075-4089 (2017)

Liu, L., Hawkins, D.M., Ghosh, S., Young, S.S.: Robust singular value decomposition analysis
of microarray data. Proc. Nat. Acad. Sci. 100(23), 13167-13172 (2003)

Lounici, K.: High-dimensional covariance matrix estimation with missing observations.
Bernoulli 20(3), 1029-1058 (2014)

Lu, L., Li, G.Y., Swindlehurst, A.L., Ashikhmin, A., Zhang, R.: An overview of massive
MIMO: Benefits and challenges. IEEE J. Selected Topics Signal Process. 8(5), 742-758 (2014)
Marzetta, T.L., Ngo, H.Q.: Fundamentals of massive MIMO. Cambridge University Press,
Cambridge (2016)

Mendelson, S., Zhivotovskiy, N.: Robust covariance estimation under L4-L2 norm equivalence.
Ann. Stat. 48(3), 1648-1664 (2020)

Minsker, S.: Sub-Gaussian estimators of the mean of a random matrix with heavy-tailed entries.
Ann. Stat. 46(6A), 2871-2903 (2018)

Minsker, S., Wei, X.: Robust modifications of U-statistics and applications to covariance
estimation problems. Bernoulli 26(1), 694-727 (2020)

Nemirovskij, A.S., Yudin, D.B.: Problem complexity and method efficiency in optimization
(1983)

Paulraj, A.J., Gore, D.A., Nabar, R.U., Bolcskei, H.: An overview of MIMO communications-a
key to gigabit wireless. Proc. IEEE 92(2), 198-218 (2004)



104

SI.

52.

53.

54.

55.

56.

57.

58.
59.

60.
61

J. Maly et al.

Recht, B., Fazel, M., Parrilo, P.A.: Guaranteed minimum-rank solutions of linear matrix
equations via nuclear norm minimization. SIAM Rev. 52(3), 471-501 (2010)

Roberts, L.: Picture coding using pseudo-random noise. IRE Trans. Inform. Theory 8(2), 145—
154 (1962)

Romero, D., Ariananda, D.D., Tian, Z., Leus, G.: Compressive covariance sensing: Structure-
based compressive sensing beyond sparsity. IEEE Signal Process. Mag. 33(1), 78-93 (2016)
Roth, K., Munir, J., Mezghani, A., Nossek, J.A.: Covariance based signal parameter estimation
of coarse quantized signals. In: 2015 IEEE International Conference on Digital Signal
Processing (DSP), pp. 19-23. IEEE (2015)

Schreier, R., Temes, G.C., Norsworthy, S.R.: Delta-Sigma Data Converters: Theory, Design,
and Simulation. IEEE Press (1996)

Snyder, D.L., O’Sullivan, J.A., Miller, M.L.: The use of maximum likelihood estimation for
forming images of diffuse radar targets from delay-doppler data. IEEE Trans. Inform. Theory
35(3), 536-548 (1989)

Stoica, P., Babu, P, Li, J.: SPICE: a sparse covariance-based estimation method for array
processing. IEEE Trans. Signal Process. 59(2), 629-638 (2011)

Stoica, P., Moses, R.L.: Spectral analysis of signals (2005)

Tse, D., Viswanath, P.: Fundamentals of Wireless Communication. Cambridge University
Press, Cambridge (2005)

Van Vleck, J.H., Middleton, D.: The spectrum of clipped noise. Proc. IEEE 54(1), 2—-19 (1966)

. Vershynin, R.: High-Dimensional Probability: An Introduction with Applications in Data

Science, vol. 47. Cambridge University Press, Cambridge (2018)



Chapter 4 )
Sparse Deterministic and Stochastic oo
Channels: Identification of Spreading
Functions and Covariances

Alihan Kaplan, Dae Gwan Lee, Gotz E. Pfander, and Volker Pohl

4.1 Motivation and Introduction

Many physical and technical systems in science and engineering are well described
by linear systems. In practical applications, it is important to identify the parameters
describing the linear system at hand. If the system is time-invariant, the channel is
uniquely determined from the impulse response of the channel. For time-varying
systems, the identification problem becomes much more challenging and it is even
not obvious whether a given time-invariant system can actually be identified or
not. It is necessary to identify time-varying systems in many areas of science and
engineering and especially in communications, control, and system theory. For
concreteness, we will focus the discussions in this chapter on the identification of
time-varying communication channels.

The transmission of a continuous-time signal x over a dispersive and time-
varying channel H can be described formally by the relation

(Hx) (1) =// na (T, V) x(t — 1) DV dedy, t eR. 4.1)
]RZ
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The so-called (delay-Doppler) spreading function ny : RxR — C completely
describes the channel H [2, 9, 19, 34], and identifying a channel of the form (4.1)
is then equivalent to the problem of determining the spreading function ng from
the channel response Hg to a known test signal g. In particular, one asks which
spreading functions can be identified by such a probing scheme and how one
has to design the test signal g in order to identify the channel. This channel
identification problem has a long history starting in the 1960s with groundbreaking
works of Kailath and Bello [2, 9] that lead to fundamental results in [12, 23];
it remains an active field of research to date. In recent years, for example, the
channel identification problem has been considered for multiple-input multiple-
output (MIMO) channels [15, 20], for sparse [7, 24] and stochastic channels
[26-28], or for channels with satisfying linear side constraints [17]. For an overview
on the fascinating history of this problem, ranging back to the cold war, we refer to
the overview article [35].

It is known [7, 22] that the identification problem for continuous-time chan-
nels (4.1) can be solved by reducing it to an identification problem for time-discrete,
finite-dimensional channels of the form

L—-1L-1

Hx = Z Z n(k, OM T*x (4.2)

k=0 £=0

for a signal x € CL, with spreading coefficients n(k, £), and where M and T stand
for the modulation and translation operators on CZ, respectively. See Definition 4.1
for details. Because of this close relation between (4.1) and (4.2), we will discuss
mainly the time-discrete model.

This chapter reviews some recent result concerning the channel identification
problem paying particular attention to the question whether linear side constraints
will help for identifying the channel. With respect to the channel model (4.2), we
may assume that the spreading coefficients g satisfy one or more equations of the
form

L-1

> ank, Onuk, &) =b,,  n=12,...,N,
k, =0

with known coefficients a,(k, £) and b,. Does the knowledge of such side con-
straints help to identify the channel? In general, the answer depends (of course) on
the coefficients a, (k, £) and b, but, as we will see, knowing such side constraints
will enable us to identify channels which cannot be identified without these side
constraints.

The parameters of a communication channel, i.e., the spreading coefficients n g,
can change very rapidly since they depend strongly on the position of the transmitter
and receiver as well as on the environment (i.e., scatterer such as landscape,
buildings, cars, etc.). If the transmitter and/or the receiver move, these scattering
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coefficients will change. While formally, such channels can be described by a
deterministic spreading function, it is frequently beneficial to model the coefficients
nH (k, £) as random variables. In addition, random spreading coefficients are used
to describe an ensemble of communication channels, for example, described by a
particular application or setting.

In this case, channel identification does not aim to identify the spreading
coefficients ng (7, £) itself, but their statistical properties and especially their
autocorrelation

RﬂH (kv Zv k/’ g/) = E{nH(kv Z) r)H(k/? E/)}5

where E{-} denotes the expectation. For such stochastic channels, one can ask
similar questions as in the deterministic case. Which channels are identifiable?
How should we choose the identifier? Do linear side constraints satisfied by the
autocorrelation Ry, improve the ability to identify the channel? In this chapter,
we focus again on the last question, and we will show that similarly as in the
deterministic case, known side constraints on the autocorrelation of the scattering
coefficients are usually beneficial for the identification of stochastic channels.

This chapter is structured as follows. The finite-dimensional model for determin-
istic and stochastic channels is discussed in detail in Sect. 4.2. Section 4.3 is devoted
to deterministic channels. Along with a review of known results for identification
of deterministic channels, we discuss the problem of utilizing some known linear
constraints between and within subchannels and also discuss the application of
transmitting messages with unidentified channels. Section 4.4 is devoted to the
problem of identifying stochastic channels, where we also consider the situation
of knowing some linear relations between the covariance entries.

4.2 Channel Identification and Estimation

While continuous-time channels of the form (4.1) are useful in modeling a larger
class of dispersive operators, finite-dimensional channels of the form (4.2) are pre-
ferred for applications in communications engineering. In this section, we review the
finite-dimensional model for deterministic and stochastic channels and in particular
discuss the respective channel identification problem. Thereby, we consider two
kinds of communication channels: (1) deterministic channels that are characterized
by a set of fixed (deterministic) spreading coefficients and (2) stochastic channels
whose associated spreading coefficients are random variables. We will discuss these
channels in detail after recalling some basic notions in the time—frequency analysis.
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4.2.1 Time—Frequency Analysis in Finite Dimensions

Vectors in CE will be denoted by boldface letters and their entries will be indexed
by the cyclic group Z; = {0, 1, ..., L — 1}, that is, we write a vector in CL as
X = (X0, X1, ..., )cL,l)T e CL, where (~)T denotes the transpose of a vector.

Definition 4.1 For L € N, cyclic translation and modulation on C* are defined,
respectively, as

T : (CL —> (CL, (xo,xl, . .,xL_l) = (xL_1,)C(), . ,xL_z) and

M:Ct = CE (xo, X1y . x1_1) > (woxo, o'xy ..., a)Lfle_l) ,
where @ = 27/l We define the time—frequency shift operator m(k, £) = M‘T*
for (k,l) € Zp xZ1. Moreover, the short-time Fourier transform of x € CL with
respect to a window ¢ € CL is defined as Vox(k, ¢) = (x, w(k, £)c) for (k,l) €
ZL XZL.

The non-commutativity of 7' and M plays a crucial role in time—frequency analysis.
The (non-)commutation relation is given by M‘T* = o*¢ T*M* fork, ¢ € Z;.

Definition 4.2 The Gabor matrix generated by a window ¢ € CL is the LxL?
matrix

G(c) = [ ¢, Me, ..., M ¢ | Te, MTe, ..., ML 'Te |
(4.3)
v | TE e, MT e, L, METITE .

It is easy to compute that the rows of G(c) are mutually orthogonal, and in fact,
it holds G(c) G(¢)* = L||c||*Ir, which corresponds to the fact that for ¢ € CL\{0},
the set {M‘T* ¢ : (k,0) € Zy xZ} of all time—frequency shifts of ¢ forms a tight
CL-frame with frame bound L ||c||? (see [13, Proposition 2]).

We will often deal with matrices that have more columns than rows. For such
matrices, the degree of linear independence between columns is quantized by the
so-called spark.

Definition 4.3 For a matrix A € CM*N with M < N, the spark of A is the
cardinality of the smallest linearly dependent subset of columns in A, that is,

spark(A) = min {|z]|o : Az =0, z € CV\{0}},

where ||z]lo = |{n € Zy : z, # 0}| denotes the number of nonzero entries in z. We
say that A has full spark if spark(A) = M + 1, that is, if every M columns of A are
linearly independent.

In particular, the Gabor matrix G(c) € CL*L? has full spark for some windows
ceCl:
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Proposition 4.1 (Theorem 1 in [13] for L Prime and [18] for General L € N)

Given L € N, the matrix G(c) has full spark for almost every ¢ € CL. Moreover,
the set of all such ¢ is a dense open subset Uy, of CL, whose complement set is a
finite union of manifolds with zero Lebesgue measure.

This result is quite involved, it took 10 years to resolve the case for composite L.
Quite useful, and much simpler, is the following characterization.

Proposition 4.2 (Theorem 2in [13]) Let L € Nandc € (CL\{O}. The matrix G(c)
has full spark if and only if for each x € CE\{0}, the short-time Fourier transform
Vex € (CL2 has at most L — 1 zero entries.

Proposition 4.2 implies that the set Uy, in Proposition 4.1 is given by
Up ={ce CL : V.x has at most L — 1 zero entries for every x € (CL\{O} }.

We will use this set Uy, later when discussing the identification of SISO channels.
For the case of MIMO channels, we require the following generalization of
Proposition 4.1.

Proposition 4.3 (Theorem 7 in [17]) For every L, N € N, there exists a dense
open subset Up y C (CY)N with full measure such that the matrix

GV, ..., e™) =[GV | G?) | - | G™)] eCtN  (44)

has full spark for ¢V, ..., e¢™M) € UL.n.

4.2.2 Deterministic Channels

A SISO communication channel is modeled as a linear map H : CL — CIL. 1t
is well known that the set of all time—frequency shifts {m(k, £)} r)ez, xz, 1S @
basis for the space £(CE, CL) of all linear operators on C%. Therefore, every H €
L(CL, CL) can be written as

L—1
H = Z n(k, &) M*T* (4.5)
k, =0

with unique coefficients = {n(k, £) }(k 0eZy X7 called the spreading coefficients
of H which encode all the characteristics of H. We will often write =y =
{77H (k, ﬁ)}(k,Z)EZLxZL when it is necessary to specify the dependence of # on H. In
the context of communications, each coefficient n(k, £) can be understood as a gain
factor associated with a transmission path with time delay £ (due to the traveling
distance) and frequency shift ¢ (due to the Doppler effect). Note that for an input
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signal x € CL, we have

L—-1
y=Hx= ) nk O)M'T'x = G(x)n, (4.6)
k,£=0

which relates the channel output Hx to the Gabor matrix G(x) discussed in
Sect.4.2.1.

It is straightforward to extend the above SISO model to MIMO channels. A
MIMO communication channel with N € N inputs and M € N outputs is described
by a linear map H : (CH)NY — (CH)M with M N subchannels H,,, : Ct — Ck,
m=1,...,.M,n=1,..., N, where each H,,, is of the form (4.5) and describes
the transmission associated with the n-th input and the m-th output. For an input

signal x = {x(")};v:] € (CHN | the m-th output of H is then given by

N
Ym=Hpx =Y Huyyx™,  m=12_. M 4.7

n=1

Note that H can represented by the M x N block matrix

Hy;--- H N
H = : : (4.8)
Hy,--- Hyn,
where each H,, , € CEXL is the matrix representation of H,, € L(CL, chy.
The spreading coefficients of each subchannel H,, , will be denoted by n,, , =
[m.n (K, Z)]k =0 € (CL and their collection will be denoted by n = {3, n}m ln 1
Substituting the expression (4.6) for individual SISO subchannels into (4.7) yields

N
Y =Hpx =) Gx")n,, =[G 6| - 1 6" ]n,
n=1
— G(x(l), .. .,x(N)) N
with »,, = (ﬂm,l» cee nm,N) € ((CLZ)N. This expression relates the signal at the
m-th output with the concatenated Gabor matrix G(x(l), o xN )) e CLxN L

discussed in Proposition 4.3.

Note that both SISO and MIMO channels are essentially linear maps from CLt
to CL2. The case of SISO channels corresponds to L; = Ly = L, and the case of
N-input M -output channels corresponds to L1 = NL and L, = ML.
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Definition 4.4 A class of operators H C L(CE1, CL?) is identifiable if there exists
a vector ¢ € CL1 such that the map ®, : H — CL2, H +— Hc is injective. Such a
vector ¢ is called an identifier for H.

Note that if H is an identifiable linear space of L(CE1, CL2), then it is necessarily
of dimension at most L.

4.2.3 Stochastic Channels

We now consider channels that vary rapidly and unpredictably over time and channel
ensembles, both of which are modelled as so-called stochastic channels. Such
channels can be obtained by replacing the spreading coefficients in the deterministic
channel model with some random variables. Adapting the expression (4.6) for
deterministic SISO channels, we model stochastic SISO channels as

Y& =Hx@E = > nuk 5 M T
(k,0)eZpxZy, (49)

=Gx)nyg&) for x € CF,

where each ng(k, £; -) is a complex-valued random variable with zero mean and
finite second moments. We denote the space of all such random variables by 7,
so that the family g = {nu(k, €; )}« 0)ez; x7,; Of L? random variables can be

understood as an element of WLz.

For a (deterministic) input signal x in (4.9), both ng(§) and the output y(§)
are zero mean random vectors. The second moments of these vectors, i.e., the
corresponding covariance matrices, are then given by

Ry, O, A) :=Enu(A; &) nu(V; §)} for A, N € ZpxZyg, @10,
Ry(m,m') := E{y, () yu(§)} for m,m’ € Zy, '

respectively, where y,, (€) denotes the m-th coordinate entry of y(£), thatis, y(§) =
(yl &),...,yL( ))T. It is apparent from these definitions that both matrices Ry, €
CL**L* and R y € CL*L are Hermitian, that is,

Ry, (A, A) =Ry, (W, %) and Ry(m,m’) = Ry(m,m’) , (4.11)
respectively. Moreover, using (4.9), we see that these matrices are related by

Ry =E{y®) y&)"} =E{Gx)ng &) ny ()" Gx)*} = G(x) Ry, Gx)",
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which can be vectorized to obtain
vec Ry = (G(x) ® G(x)) vec Ry, . 4.12)

Here, the matrices Ry and R,,, are of dimension LxL and L%x L7, respectively,
. . 2 .
and the vectorization operator vec : CN*N — CN” for N e N is defined as

vec X(k) = X(k mod N, |k/N]) for k=0,1,...,N>—1, (4.13)

that is, vec X is the vector formed by stacking the columns of X € CVN*V,

Stochastic MIMO channels are modeled as in (4.8) with each subchannel H,,,
being a stochastic SISO channel of the form (4.9). Note that as for the deterministic
channels, both SISO and MIMO stochastic channels are essentially linear maps from
CLt to ¥ for some L1, Ly € N. Indeed, a SISO channel corresponds to L; =
L, = L, and an N-input M-output channel corresponds to L; = NL and L, =
ML.

Definition 4.5 A class of stochastic operators H C L(CLt, #%2) is identifiable (up
to second-order statistics), if there exists a vector ¢ € C! such that operators in
H with different covariances Ry, = E {Vec ng(vecy H)*} yield different output
covariances Ry, = E {Hc(Hc)*}; more formally, if there exists a vector ¢ € CL!
such that the map'

Vet (H/~) — CH*2 [Hl— Rpe
is injective, where H/ ~ denotes the set of all equivalence classes of H by the

equivalence relation ~ defined as H ~ H’ if and only if R,, = R Such a
vector c is called an identifier for H.

Ny’

It is easily seen that the full class of stochastic SISO channels H of the form (4.9)
is not identifiable. Indeed, the map W, 4 : (H/ ~) — CL*L in this case is
essentially described by Eq. (4.12) with x = ¢, which is an underdetermined linear
system associated with the L?x L* matrix G(¢) ® G(c), and hence W 41 cannot be
injective. Considering the degrees of freedom, one would need to by far restrict the
class of stochastic SISO channels to achieve the identifiability.

Remark 4.1 (Transition to Continuous-Time Setting) It should be noted that all
results established in the finite-dimensional (discrete-time) setting can be carried
over to the continuous-time setting in a straightforward way. For more details, we
refer to [17, Sect. 5] and also [15, 25].

I'The map ¥, is well defined due to the relation (4.12).
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4.3 Results in Deterministic Setting

This section is dedicated to deterministic channels. In Sect.4.3.1, we give a short
review of known results on identification of SISO/MIMO channels. In Sect. 4.3.2,
we discuss how to utilize some known linear constraints between and within
subchannels. Section 4.3.3 addresses the application of transmitting messages
through channels that are not identified in advance.

4.3.1 Classical Results on Channel Identification
4.3.1.1 Identification of SISO Channels

Recalling that every H € L(CL, CL) can be expressed in the form of (4.5) with
unique spreading coefficients ng = {UH (k, E)}(k OeLixZy supported in Zp XZp,

we define the following class of operators with restricted spreading support A C
Z LX Z L-

Definition 4.6 For A C Zj xZp, the single-input single-output (SISO) operator
Paley—Wiener space on A is defined as

OPW(A) = span{M‘T* : (k, ¢) € A} = {H € L(C",C") : suppny C A}.

For instance, the class of operators which consists of linear combinations of
translations Tk, k =0,1,...,L — 1, corresponds to the space O PW(A) with
A = Zj x{0}.

According to Definition 4.4, the space O PW(A) is identifiable if and only if
there is a vector ¢ € CL such that for H € O PW(A) the equation

y=Hc= Z nu(k, ©) M‘T*¢ (4.14)
(k,0)eA

is uniquely solvable in ng o = {nu(k, O}x.nen € CA. With G(c) € CLxL?
denoting the Gabor matrix generated by ¢ € C (see Sect.4.2.1), one can
rewrite (4.14) as

y=Hc=G()|anla-

This implies that O PW(A) is identifiable if and only if the matrix G(c)|5 has
linearly independent columns. Note that by Proposition 4.1, there exists a vector
¢ € CL such that G(¢) has full spark, that is, every L columns of G(c) are
linearly independent. Consequently, we have the following characterization for
identifiability of O PW (A) given only in terms of the size of A.
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Corollary 4.1 ([13, 18]) For A C Zj xZy, the space O PW (A) is identifiable if
and only if |A| < L.

4.3.1.2 Identification of MIMO Channels

As discussed in Sect.4.2.2, deterministic channels with N-inputs and M -outputs
are modeled as linear maps from (CX)" to (CL)M . Recall from Definition 4.4 that a
class of operators H C L (((CL)N , (CHM ) is identifiable if and only if there exists
a vector ¢ € (CH)N such that the map H — (CY)M, H — Hec is injective.

Definition 4.7 For A = [A,, ,17_ | | with A, , C Z1 xZy,, the MIMO operator
Paley—Wiener space on A is defined as

OPW(A)={H: Hpy, € OPW(App), m=1,....M, n=1,...,N}.

The space O PW(A) is identifiable if and only if there exists a vector ¢ =
M, ..., e™) e (CEHN such that the map H — He is injective on O PW(A).
Using the full sparkness of the concatenated Gabor matrices in Proposition 4.3, we
obtain the following characterization for identifiability of O PW (A).

Corollary 4.2 ([201) For A = [Ay YN with Ay, C ZpxZy, the space
O PW (A) is identifiable if and only ifz,ivzl [Apmnl < Lforallm=1,..., M.

Corollary 4.2 implies that O PW(A) is identifiable if and only if for each m the
space O PW(A,,) with A, = {Am ,,} 1s identifiable. This reflects the fact that
N-input M-output channels can be separated into M systems of N-input single-
output channels.

4.3.2 Linear Constraints

The necessary and sufficient condition for identifiability of O PW (A) presented in
Corollary 4.2 is based on the assumption that all subchannels and their components
are independent. If some linear relationship between and within subchannel is
known, for instance, if transmission antennas (or receiving antennas) are not well
separated, one could take advantage of such information in channel identification.

Let us formalize the concept of such relationship in terms of linear constraints.
In the SISO setting, we express the linear relations between the entries of =
{n(x, g)}(k,Z)eZLxZL by the equation b = An, where b € C” and A € CP*E for
some P € N. Combining with (4.6), we obtain

Rk



4 Sparse Deterministic and Stochastic Channels 115

Ifne CL? is known to be supported in a set A C Zy xZy, the system reduces to

Y| _[G©Ia
[b}_[ ol }mA. @.15)

In the MIMO setting, writing (see (4.6))
H, , ™ = G(™) Nypn form=1,....M, n=1,...,N,

yields the equation

Y Hij - Hy7]|[c? YA Gy,
[ } =He=| z L= :
Yu Hy - Hyy c@™ Zfl\/:l G(c™) Mt
G, ..., c™) 0 0 U
0 G, ...,eMy... 0 n
0 0 G, ey ] Ly
where G(c(l),...z, c™y = [G(c(l))| |G(c(N))] € (CLXNL2 and p,, =
{nmy” },7:1 IS ((CL )N form = 1,..., M. Similarly, linear relations between and
within the vectors y,,, m = 1, ..., M, are expressed by the equation

M
b = Zm:l Am UPE

2 .. .
where b € CP and A,, € CP*L” for some P € N. Combining the above equations,
we obtain

¥ G, ... ,c™) 0

¥ 0 G, ....cM)y ... 0 m
- . . . m
Yu 0 0 e G(eW, L e

b Ay A Ay s

Ifeachp,, = {nmy,,}fl\’:1 € ((CLZ)N is supported in A, = {Am,,,},’;/:1 C (ZrxZp)V,
the equation reduces to
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Y1 G(cD,...cM)|y, 0 0 n1la
1
¥, 0 G(C(I),...,C(N))|A2 0
. n2la,
Ym 0 0 o GeW o e™)a,,
b A||A1 A2|A2 AMIAM "M'AM
(4.16)

The constraints b = A | 7|4 in the SISO case, and b = ZZ’:] ApmlA,, Nmla,, inthe
MIMO case, are referred to as the side constraints associated with O PW (A) and
O PW (A), respectively.

The discussion above immediately leads to the following result.

Proposition 4.4

(a) For A C Z;xZj and A € (CPXLZ with some P € N, the space O PW (A)
with side constraints of the form b = A|p 0| is identifiable if and only if there
exists ¢ € CL such that the matrix

G(o)|a
4.17
[0 ] @1

is injective.
2
(b) For A = [Am,,,]n}‘f:]fl\]:1 With Ay, C ZpxZy and matrices A, € CP*L",

m=1,..., M, with some P € N, the space O PW (A) with side constraints
of the form b = Z,A,:IZI AmlA,, Nmla,, is identifiable if and only if there exists
c= (W, ..., ¢M) e (CHN such that the matrix
G, ..., e™M)y, 0 0
0 G, . ..,eM)ly, - 0
0 0 o GeW, o ey,
Alla, Az, ApmlAy
(4.18)
is injective. Here, G(cV, ..., e™) 1= [G(cM)| - |G(c™M)] e CLXNL?

and A = {Amn ), C (ZrxZp)V.

n=

Clearly, choosing the empty set of side constraints would reduce the matrix
in (4.17) to G(c)|p, which, for an appropriate choice of ¢ € CF, is injective
whenever |A| < L (see Corollary 4.1). Likewise, for an appropriate choice of
¢ € (CL)N | the matrix (4.18) without the last row is injective if quv:l [Amnl <L
forallm =1, ..., M (see Corollary 4.2).
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Proposition 4.4 converts the problem of identifiability of SISO/MIMO operator
Paley—Wiener spaces with side constraints, into injectivity of certain matrices,
namely, the matrix (4.17) in the SISO case and the matrix (4.18) in the MIMO
case. In the SISO case, we will show that if A € CP xL? consists of a single row,
i.e., if P = 1, then for each A C Zj xZj; with |A| = L + 1 the matrix (4.17) is
injective for some ¢ € C’, and hence, the space O PW (A) with side constraints of
the form b = A|, | is always identifiable. Compared to Corollary 4.1, this result
overcomes the fundamental restriction on the size of A by exploiting the additional
constraints.

Theorem 4.1 ([16,17]) Forany A C Z; xZy with |A| = L+1anda € CtT1\{0},
there exists a vector ¢ € CL for which the (L + 1)x(L + 1) matrix [G(ﬂ\,\]

is invertible. Moreover, such vectors ¢ form a dense open subset of Ct with full
measure.

The proof of this theorem is based on the following lemma.

Lemma 4.1 ([16, 17]) Let A C Zy x Zp with L +1 < R := |A| < 2L. Then
span{kerG(c)|A ic € UL} = CR, where Uy is the set of all ¢ € C so that G(c)
has full spark (see Proposition 4.1).

Unfortunately, to obtain an identifiability result from this lemma requires to
restrict ourselves to |A| = L + 1 as in Theorem 4.1.

Theorem 4.1 does not allow us to draw conclusions for the case of linear
constraints with multiple equations. Indeed, if A € C* L% hag multiple rows, i.e.,
if P > 2, the intersection of the row spaces of A| and G(c)|x may depend on the
choice of ¢. Below we give an example of A C Zj xZ; with size L + 2 and linear
G(c

A

constraints of two equations such that the matrix [ ﬁ\lA ] is singular for all ¢ € CL.

Example 4.1 Let L = 3 and A = {(0,0), (0, 1), (0, 2), (1,0), (1, 1)}. For every
¢ = (co, c1, cz)T € C3, the matrix

€0 €0 o €1 C1

¢ Wy wher co a)2co

I 1 10 O
0 0 01 1

[G(C)IA

Cl1 wCl a)2C1 Cc2 we)
Ala ]

is singular because the first row is a linear combination of the fourth and fifth rows.

We also provide a matrix A € CF XL with the property that the matrix [G/(‘C‘)A‘ A]

is not injective for all ¢ € CLand A C Z; xZ; with size 2L.
Example 4.2 LetA=[I,|M~'|--- |M~©=D] e CLXL? The 2L x L? matrix
[GX:)] is rank deficient for all ¢ € CE.
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We now extend Lemma 4.1 and Theorem 4.1 to the MIMO setting.

Lemma4.2 ([16,17]) Let L > 2, N > 1, and AV, ..., AWN) c Z; xZ; with
L+1<R=YN |A®W| <2L. Then,

span {ker [G(c(]))lAm G(C(N))lA(N)] ORI W= UL,N} = CKR,

where Uy_y is the set ofall ¢V, ..., ¢™)) € (CYYN such that [G(cV) --- G(c™)]
has full spark (see Proposition 4.3).

Theorem 4.2 ([16, 17]) Let L > 2, M,N > 1, A = [Ap 0"\ with
Amn C ZpxZy and Z%:l 2111\1:1 [Amnl = L+ 1,and a = (ay,...,ay)" €

CL+I\(0}, where a,, is a vector of dimension Zflv:l |Am.nl- There exists a vector
€M, ..., e™) e (CHY such that the (L + 1)x (L + 1) matrix

G, ....cM)y, 0 0
0 G, . ..,eMylp, - 0
0 0 G, e,
aT a; . a;’i/l’

4.19)
where A,, = {A,,w}r/:/=1 C (ZrxZp)N, is invertible. Moreover, such vectors
(e, ..., ¢™) constitute a dense open subset of (CE)N with full measure. Hence,
the MIMO operator Paley—Wiener space OPW (A) = [ OPW (Ap ) ],17‘1"’:12\’:1 with
side constraints b = ZZIZI a;y NylA,,, where b € C and y,, = {nm,n};\lzl €

((CLZ)Nfor m=1,..., M, is identifiable.

Concerning side constraints with multiple equations, Example 4.1 in the SISO
case clearly implies that Theorem 4.2 cannot be generalized to linear side constraints
with two or more equations.

We remark that our results are in the fully deterministic setting: for a given set of
linear constraints, we seek generators ¢ for which the associated matrix is invertible.
It would be interesting to consider the case where the linear constraints are chosen
randomly. For generic linear constraints, the situation like Example 4.1 could be
ignored and therefore larger support sets could be considered.

4.3.3 Message Transmission Using Unidentified Channels

In this section, we discuss the topic of transmitting messages with unknown
channels where the primary goal is to transmit messages exactly and the secondary
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goal is to identify the channel if possible. In communications, one usually tests a
communication channel with a pilot signal to identify/estimate the channel before
using it to transmit messages. The receiver is then able to recover messages based on
the channel information [6, 31]. However, such a two-step method is not so useful
for rapidly varying channels. There are several known methods in the literature
on how to improve the reliability of transmission scheme [32, 33], but there is
little work in the direction of simultaneous message transmission and channel
identification [8, 10, 11, 14].

4.3.3.1 Problem Formulation

We consider deterministic SISO channels H € O PW (A) with A C Zp xZp (see
Definition 4.6). The standard approach for message transmission using H is in two
steps: first, the channel H is tested with a pilot signal ¢ € C” to identify/estimate
the channel, and then messages z € Z are transmitted through H and the receiver
decodes the received signal based on the channel information. Our strategy is to
combine these two steps and to rather send z 4 ¢ into the channel H without
identifying H in advance.

Message Transmission Problem We assume that A C Z; xZj; and Z C CL are
given, while the choice of ¢ € CF is up to the user. What conditions on A C Zj xZ
and Z C CF are necessary and/or sufficient so that there exists a vector ¢ € CF
with the property that every z € Z can be recovered uniquely from y = H(z + ¢)
with H € OPW (A) unknown? Certainly, one may also consider the case where
A C Zj xZy, is unknown.

4.3.3.2 Message Transmission with Known Support

We first consider the case where A C Zr xZy is known. A naive approach to the
problem is to first identify the channel H € OP W (A) and then use the channel
information to transmit the message z € Z. Our goal, however, is to successfully
transmit and recover the message, so identifying the channel H is in principle
not necessary. Let us clearly define what we mean by the message being uniquely
recoverable.

Definition 4.8 Let H = OPW(A) with A C Z;xZy, and let Z C CL and
¢ € CL. We say that every z € Z is uniquely recoverable from the measurement
y = H(z + ¢) with H € H\{0} unknown if
H(z+c¢)=H'(z +c) forsome H, H € H\{0} and z,z € Z implies z = 7’.
For the input signal z + ¢, the channel output of H € O PW(A) is given by

Yy=H@Z+c)=Gz+o)|angr=GC@)Iangr+GOAng A, (4.20)
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where ng o = {(nak, O}k, 0en. If ran G(z)|a NranG(c)|a = {0}, one could
immediately write y = y’ + y” with unique components y' = G(z)|ang a €
ran G(z)|x and y” = G(c)|angy A € ran G(c)|4. This would then allow to identify
Ny, from y” (provided that G(c)|4 is an injective matrix) and, in turn, to recover
z from y’ = Hz (provided that H is injective on ).

Let us consider the case where Z C CZL is a one-dimensional subspace of CL,
say, Z = span{x} for some fixed x € CX\{0}. Then (4.20) becomes

y=H@z+0) =[G G(©)a] [“ﬂ":’AA] . (4.21)

and recovering the message vector z = ux with u € C is equivalent to recovering its
coefficient u. To this end, it is desirable that dimran G(x)|, is as small as possible
so as to reserve enough space for ran G(c)|5. Note that G(c)|5 needs to have
linearly independent columns for the exact recovery of ngy 5 from G(¢)|ang 4-
Note however that the problem depends on the choice of x and A (while ¢ € CF
can be chosen by the user), and there is no general solution for the recovery of u.

The following theorem appeared in [14] without proof and provides a solution
to our problem in the case that ran G (x)|, is a one-dimensional subspace of C-
and |[A| < L — 1 (for instance, consider z = (1,1,...,1)and A = {0,...,L —
2}x{0}). Indeed, if ran G(x)|5 = span{a}, then there exists a vector ¢ € CL such
that ran G(z)|p Nran G(c)|p, = {0} and so one can use the arguments described
above.

Theorem 4.3 ([14]) Let A C ZyxZy with1 < |A| < L — 1 and a € CL\{0}.
There exists a vector ¢ € CE\{0} such that the matrix [ G(c)|s, a] € CLXUAIFD
has full rank.

Here we provide a short proof of Theorem 4.3, which relies on the following lemma
whose detailed proof is given in section “Proof of Lemma 4.3”.

Lemmad4.3 ([14]) Let A C ZpxZyp with 1 < R = |A| < L — 1. Then
span{ker(G(c)|A)* ¢ € S} = CL, where Uy is the set of all ¢ € CL such
that G(c) has full spark.

Proof of Theorem 4.3 By Lemma 4.3, we have

N ranG@lr = () (ker(G@I*)" = (0},

cely, cely,

This implies that for each @ € CL\{0}, there exists a vector ¢ € Uy satisfying
a ¢ ran G(c)| . Since G(c) has full spark, the matrix G(c)| has full column rank,
and hence we conclude that [ G(¢)|a, @ ] has full rank. |
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Remark 4.2  Theorem 4.3 and Lemma 4.3 are in analogy with Theorem 4.1
and Lemma 4.1 which are concerned with having an additional row to the Gabor
submatrix G(c)|a.

The previous discussion relies on the condition ran G(z)|5 Nran G(c)|x = {0}.
This, however, is often more than what is needed. For instance, if Z ¢ CL is an
R-dimensional subspace of CL, then requiring ran G(z)|x Nran G(c)|p = {0} for
all z € Z\{0} would imply |A]- (R + 1) < L, which is a very tough restriction. It
turns out that only |A| + R < L is necessary for the recovery of z € Z, as we will
see in Proposition 4.6 below.

For A C Zp xZr, we define B(A) = {M‘T* : (k, ) € A}, which is a basis for
O PW (A). In particular, for the cyclic subgroups

Ty =((1,s))={(0,0),(1,s),...,(L— I,(L—1)s)} for s=0,...,L—1,
I'e =((0, 1)) = {(0,0), (0, 1),..., (0, L — D},
it follows from the commutation relation M¢T* = % T*M¢ k, ¢ =0, ..., L —1,

that all elements in each family B(I's) commute. Therefore, they are simultaneously
diagonalizable.” The next proposition provides the common eigenvectors for B(Ty).

For L € N, the Fourier vectors in C are defined as v; = \LE (Lo, ..., a)(L’l)j)qr
for j =0,...,L — 1, where ® = ¢*™/L Let D € CL*L be the diagonal matrix
with D, , = @914 = " +D/2 forp = 0,1,..., L — 1.

Proposition 4.5 Let L € N be an odd integer.

(a) The family B(I'y) with s € {0,..., L — 1} has common eigenvectors D°v;,
j=0,..., L —1, which form an orthonormal basis of CL.

(b) The family B(Tso) = {I M, ..., M~} has common eigenvectors ej, j =
0,...,L—1.

The proof of Proposition 4.5 follows easily from the following lemma.

Lemma 4.4 (Cf. Lemma 2 in [11]) Let L € N be an odd integer. Then, for all
j, s € Zr, one has

i1 k(k=Ds
TD'v; = w /7 Doy for ke 7y

MestjZstj+g for Lelr.

21t is well known that a family S of diagonalizable square matrices is simultaneously diagonaliz-
able, that is, there exists an invertible matrix U such that U1 AU is a diagonal matrix for every
A € 8, if and only if all matrices in S commute.
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Consequently, for all j, k,s € Zr, one has

kk=1)s

MSTEDS v; = =577 Dow;. (4.22)

Remark 4.3 In Lemma 4.4, we require L € N to be an odd integer to ensure that
DOO — DL L= w()+l+~~+L — (a)L)(L+1)/2 =1.

Proposition 4.6 Let L > 3 be a prime number, and let s € {0,1,...,L — 1, oo}.
If A C Ty and if Z C CL is spanned by R common eigenvectors of B(I'y) with
IA| + R < L, then any message z € Z can be uniquely recovered after sending
through the above transmission scheme.

A proof of Proposition 4.6 is given in section “Proof of Proposition 4.6”. In the
proof, the condition that L € N is odd is required for applying Lemma 4.4, while
the condition L € N prime is needed when applying Chebotarev’s theorem on roots
of unity.

4.3.3.3 Message Transmission with Unknown Support

Before addressing the message transmission problem for channels with unknown
support, let us recall some necessary notions. The coherence for a matrix ® =
[¢1, ..., @n] with £3-normalized columns, i.e., ||¢,|l2 = 1 for all n, is defined as

w(P) = rl_n;f}(%w)’ :

In compressed sensing, the coherence is often used as a simple measure for the
quality of measurement matrices, since recovery algorithms perform better for
measurement matrices with smaller coherence [5]. There are known constructions of
deterministic Gabor matrices with small coherence. For instance, the Gabor matrix
G(c) generated by the Alltop window ¢ € CL with L > 5 prime,’ defined as (see
18))

cn) = - AL for e 7y, (4.23)
has coherence u (G(c)) = \/LZ which is very close to the optimal lower bound

, i.e., the Welch bound for L x L? matrices (see [5, Proposition 5.13] for a

1
VL+1
computation of the coherence). Later, we will use the Alltop window as the pilot
signal c.

3 For composite numbers L € N, the Alltop window ¢ € CL does not guarantee small coherence
of G(c). See, for instance, [21].
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For an odd integer L € N, Lemma 4.4 implies for all j, k, ¢,r € Zr,
MIT* DY v, = oK~k D2y o (4.24)
In particular, setting £ = 2rk gives
M¥ATh DYy = VK pry (4.25)

where w = ¢?™/L and Dzrvj (n) = \LFL WM D for e Zy,. To simplify the

notation, we define the chirp signal x,,7 1, € CL with base frequency m € Z; and
chirp rater € Zp as

rn®+mn

XmL+r(n) = w for neZy .

-

Setting m = r + j, one has x4+, = Dzrvj, and thus (4.24) and (4.25) can be
written as

2_
M T x4 = ™ 7™ % g o—2rt) L4 (4.26)
and
MzrkaxmL+r = U)rk27mkxmL+r , (4.27)

respectively. We collect all the L? chirp signals in CL as columns of the matrix E =
[Xo, X1,..., X1 1] € CLXLZ, where each X, = [x,, XLgrs oens x(L_l)L+,] is
the unitary matrix with columns consisting of all chirp signals with chirp rate r.

Lemma 4.5 (Lemma 4 in [11]) Let L > 5 be a prime, and let ¢ € CL be the

Alltop window defined in (4.23). The coherence of the matrix [G(c) E] € cLxaL?
is bounded above by 2//L.

We are now ready to address the message transmission problem for channels
H € OPW(A) with unknown support A C Zy xZy.Letu = {ur}fz_o1 € CRbea
message vector of size R. The signal to be sent through H will be designed as

x = Zf;ol ux, +c, (4.28)

where ¢ € CL is the Alltop window and x,, r = 0,..., R — 1, are chirp signals
with base frequency m = 0 and chirp rate . Note that since all x, are linearly
independent, the message vector u = {ur}f;o] encoded in z = Zfz_ol ux, € Z
can be retrieved uniquely from z.

As the exact spreading support A C ZpxZ; of H € OPW(A) is not
known, we will simply employ the representation (4.5) for general linear maps
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H e L(CE, CF), but with the assumption that 5 = {n(k, Z)}
Substituting (4.28) into H yields (cf. (4.6))

(k. 0)eZy X1, 1S Sparse.

y=HE+o= Y nkOMT (c+ X ux,)
(k,l)EZLXZL

R—-1
2
= > ke OMTetrY Y k. Ou o xe2mre
(k,0)eZy X7y, r=0 (k,0)eZ x7Zp,

R-1L-1 L-1

=GOn+y Y. (Z n(k, m + 2rk) ™%’ ur)mer

r=0m=0 k=0

=G()yp+ Es =[G(c) E] |:Z:| ,

4.29)
where s = {5y} (r.m)ez, xz, is given by

Sk, m+2rk) 0™ u, if0<r<R—1and meZyg,
S =
" o if R<r<L—1and meZ.

This corresponds to an underdetermined linear system consisting of L equations in
the 2L? variables [, s]T, and the associated L x2L? matrix [G(c) E] is guaranteed
to have small coherence by Lemma 4.5. If [, s]T is known to be sparse, one could
apply compressed sensing methods to recover it from (4.29). Note that for H €
OPW(A), we have [supp (s)| < R|A| and thus |supp ([n, s]T)| <+ R)A|.If

VL
Rfm—l,then

T VL 1 1 1
su S <A+R A5—§—§—1+—),
Isupp ([n, s17)] < ( )ALl = 3% 2u(6@ £) 2( (6w £)

so one could immediately apply [4, Theorems 4.3 and 4.5] (also see [5, Corollary
5.4 and Theorems 5.14 and 5.15]) to obtain the following result.

Theorem 4.4 (Theorem 5 in [11]) Let L > 5 be a prime, and let H € O PW (A)

with unknown A C Zy xZp. IfR < ‘% — 1, then any message vector of size R can
be transmitted through H and be recovered exactly via orthogonal matching pursuit
(OMP) or basis pursuit.

Figure 4.1 shows a simulation result for Theorem 4.4 with randomly generated
channels and messages. The x-axis is the size of A C Zy xZy, and the y-axis is the
size R of messages. The £-error of the recovered messages is shown in grayscale
with black and white meaning small and large error, respectively. The green line
R|A| = L is a fundamental threshold due to degrees of freedom. Message recovery
is in principle not possible in the region above this threshold. We refer to [11] for
more details.
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Fig. 4.1 Message recovery error rates for L = 307

4.4 Results in Stochastic Setting

We now turn to the case of stochastic channels. In contrast to deterministic
channels whose identifiability depends only on the size of the spreading support
(see Corollaries 4.1 and 4.2), we will see that identifiability of stochastic channels
(in the sense of Definition 4.5) relies not only on the size but also on the geometry
of the support set of the covariance Ry, . In Sect.4.4.1, we discuss some support
patterns which allow for channel identification (called permissible patterns) and
those which do not (called defective patterns). As in the deterministic setting, we
consider in Sect. 4.4.2 the problem of utilizing known linear side constraints in the
stochastic setting. Some numerical experiments supporting our results are presented
in Sect. 4.4.3.

A stochastic SISO channel is described by (4.9), and using a pilot input signal
¢ € CL yields

YE)=Hc) =G)nyé), (4.30)

where 9y (§) = {nu(k, £; )} k,0)ez, xz,, 1s a random vector in CL* and G(c) is the
Gabor matrix generated by ¢. Recall from Sect. 4.2.3 that the covariance matrices
Ry, € CL**L* and R, € CEXL of the random vectors 7 (€) and y(&), are
defined by (4.10), and they are related by the equation R, = G(c) Ry, G(c)*.
This equation can be vectorized to obtain

vec Ry = (G(c) ® G(c)) vec Ry, , 4.31)
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which is an underdetermined linear system with the L?x L* matrix G(¢) ® G(c).
So for (4.31) to be uniquely solvable, the covariance matrix Ry, € CL**L? has to
be sparse with at most L? nonzero entries.

Reduction of Variables Assume that there is a set A C Zj; xZj; such that
nuk,€;&) = 0 ae. & for (k,£) ¢ A. Then the linear system (4.30) reduces to

YE) =G©)lang aG), (4.32)

where ng A(§) = {nu(k, £; )}k een is the restriction of 5y (&) to the set A.
Correspondingly, the linear system (4.31) reduces to

vec Ry = (G(c) ® G(c)) vec Ry A, (4.33)

|A><A
which is a linear system with the L?x|A|?> matrix G(c) ® G(c)|axa With the

vectorization vec R of a matrix R € CV*N as defined in (4.13). Note that for
R e (CNXN

suppR = {(m,n) € ZyxZy : R(m,n) #0} C ZnxZn,
supp(vecR) ={€ € Zp2 : vec X (£) #0} < Zpo.

Through the vectorization, each support pattern A in Zy xZy is converted into a
support pattern AinZ ~2, and vice versa. For brevity, we will often abuse notations
and not distinguish the sets A and A.

Covariance matrices have a particular structure which should be reflected by the
support pattern. Therefore, a set A C Zy xZy is called a positive semi-definite
(psd) pattern if

@i, j) € A implies (i), (j,i), (j,J) € A. (4.34)

4.4.1 Permissible and Defective Support Patterns

Motivated by Eq. (4.33), we consider matrices G € CMx*N with M < N and seek
for support patterns I' C Zy xZy such that the matrix G ® G| is injective for
some G € CM*N _Note in particular that injectivity of the matrix G ® G|r with
I' = AxA and G = G(c) for some ¢ € CF would allow us to solve Eq. (4.33)
uniquely in Ry A.

Definition 4.9 For M, N € Nwith M < N, a pattern_F C ZnxZy is called
(M, N)-defective if for every G € CM*N the matrix G ® G|r is not injective;
otherwise, I" is called (M, N)-permissible.
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We start with a lemma that provides several equivalent conditions for injectivity
of G ® G|r for general non-structured matrices G € CM*" and psd patterns I" C
Z N X Z N-

Lemma 4.6 (Lemma 10 in [27]) Let G € CY*N with M,N € N, M < N, and
letT' C Zn xXZn be a psd pattern. The following are equivalent:

(a) X — GXG* is injective on the (nonlinear) cone {X € CN*N . x
0, suppX CT'}.

(b) X — GXG* is injective on the subspace {X € CN*N : X* = X, suppX C
r}.

(c) X — GXG* is injective on the subspace {X € CN*N : suppX C T'}.

(d) G ® G is injective on the subspace {w € ch . suppw C T}, that is, G ® G|
is injective.

v

In the case _of tensor structured psd patterns, i.e., ' = AxA with A C Zy, the
injectivity of G ® G|r is simply characterized by the injectivity of G|4.

Proposition 4.7 Let G € CM*N with M/N € N, M < N, and A C Zy with
|A| = 1. Let diag(A) = {(n,n) :n € A} C Zn XZp. The following are equivalent:

(a) The matrix G5 € CYXIAl s injective, i.e., the columns of G| are linearly
independent.

(b) The matrix G ® G|axa € CMXIAR injective.

(c) Zhere exist nonempty disjoint subsets A1, Ay C A with A1 U Ay = A such that
G ® Gl(a,xA)U(A,x Ay) IS injective.

(d) Zhere exist nonempty disjoint subsets A1, Ay C A with A1 U Ay = A such that
G ® Gl(a,xapuiarx AU diaga) S injective.

(e) There exists an element n € A such that G ® G|({n}><A)U(Ax{n})Udiag(A) is
injective.

Moreover, in this case, |A| < rk(G) (£ M) and GQ® G|r is injective for every
I'CAxA.

Remark 4.4  All permissible patterns in (b)-(e) are psd patterns which are
contained in A X A.

We refer to section “Proof of Proposition 4.7” for a proof of Proposition 4.7.
Note that injectivity of G ® G|r for I' = AxA and its subpatterns appearing in
Proposition 4.7 (b) — (e) depend only on the injectivity of G|a. This argument
however does not apply to patterns that are more distributed in Zy X Zy . An extreme
case is the diagonal pattern I' = diag := {(n,n) : n € Zy} C Zn xZy, which will
be discussed in Propositions 4.8 and 4.9 below.

As a direct consequence of Proposition 4.7, we also obtain some fundamental
limitations on the patterns I" for which G ® G| is injective.
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Two squares Butterfly Arrow (Arrowhead)

Fig. 4.2 Examples of (4, 16)-defective patterns due to Corollary 4.3

Corollary 4.3 (cf. Propositions 15 and 17 in [27])
Let G € CM*N with M, N e Nand M < N.

(i) Let A\, Ao C Zy be disjoint sets. If_G|AlUA2 is not injective (ini)ar-
ticular, if |A1|+|A2l > 1kG), then G ® Gl(a,xA)U(AxAy) and G @
G|, x A2)U(Asx AU diag(a) @re not injective.

(ii)) Let A < Zn. If G|a s not injective (in particular, if |A| > rkG), then
for each n € A the matrix G ® G|({n}><A)U(Ax{n})udiag(A) is not injective.
Consequently, if a psd pattern I C Zy X Zy contains more than rk(G) elements
in a row/column, then G @ G|r is not injective.

Corollary 4.3 provides three types of defective patterns which are illustrated in
Fig. 4.2. The defective patterns of the form (A;x A1) U (A2xAz) and (A1 xAp) U
(A2x A1) U diag(A) are, respectively, called the two squares pattern and the
butterfly pattern (see [26, Definition 5.1]). The defective patterns of the form
({n}x A)U(A x{n})Udiag(A) withn € A are called the arrow (arrowhead) pattern.

Considering the channel model (4.30) in which Gabor matrices G(¢) € cLxt?
arise naturally, we will now restrict G to L x L? dimensional matrices. The following
result (whose proof is given in section “Proof of Proposition 4.8”) provides some

necessary conditions for injectivity of G ® Ggig With G € cLxL?,

Proposition 4.8 Let G = [G 41520 5" € C4% with L > 2. The matrix G ®
G|diag e CL*xL? g singular if one of the following conditions holds:

(i) There exist two rows of G that are linearly dependent when the entrywise phase
factors are removed, that is, there exist some ji # j» and a constant n > 0
satisfying |G j, x| = n|G j, k| for all k.

(ii) There exist two rows of G such that all entries in each row have the same
magnitude, that is, there exist some ji # j» and constants rj,rj, > 0
satisfying |G j, x| =rj, and |G j, k| =1}, for all k.

(iii) The matrix G has all real-valued entries or all imaginary-valued entries, that
is, the entries G j i are all real or all imaginary.
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In the case of Gabor matrices G = G(c) with ¢ € CF, we have the following
criterion for invertibility of G ® G|diag e CLxL? given in terms of the short-time
Fourier transform V,c.

Proposition 4.9 (Theorem 16 in [27] and Theorem IL2 in [28]) Let diag =
{(A,A) : A € Z1 xZL} be the diagonal pattern on the L?xL? grid. Then ®(c) =
G(c) ® G(c) |diag e CL*XL? i invertible if and only if ¢ is in the set

Vi ={ce cL . Vec has no zero entries},

which is a dense open subset of CL with full measure. Moreover; the singular values
of ®(c) are given by

VL - |Vee(k, 0)| = VL - {c, n(k, O)¢)|, k,€=0,...,L—1.

Remark 4.5

(@) Ife = (co,...,c—1)T € CE with |co| = ... = |c—1] > 0, then all entries
in G(c) are identical in magnitude, and therefore ®(c) must be singular by
Proposition 4.8. This is indeed confirmed with Proposition 4.9 by observing
that V,¢(0, £) = (¢, M‘c) = O for all £ € Z;\{0}.

(b) The columns of ®(c) cannot form an orthogonal basis for cL? Indeed, the
columns of ®(c) being orthogonal would imply that for any (k’, £') # (k, £),

e, (k' —k, ¢ — 0)¢))? = |(m(k, O)e, w(k', £)e)|?
= (nk, Oc @k, O)c, k', €)e @ k', ' )e) = 0,

while the invertibility of ®(c) would imply |{c, 7 (k, £)c)| # O for all (k, £) €
Zy1,xZp, by Proposition 4.9, yielding a contradiction.

(c) It is easily seen that V; is not a subset of the set Uy in Proposition 4.1,
and vice versa. For instance, ¢ = (1, e”““)T belongs to U;\V,, while ¢ =
(3, —emi/3, —264”i/3)T belongs to V3\Us. Furthermore, the set Uy, N V is a
dense open subset of CL with full measure.

From Propositions 4.7 and 4.9, we conclude that all Lx L tensor patterns and
the diagonal pattern are (L, L?)-permissible (see Fig. 4.3 for an illustration of these
patterns).

4.4.2 Linear Constraints in Stochastic Setting

A special type of stochastic channel operators, which has important applications in
engineering and physics, is the so-called WSSUS channels.
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4x4 tensor 4x4 tensor Diagonal

Fig. 4.3 Examples of (4, 16)-permissible patterns: tensor structured psd patterns (Proposition 4.7)
and the diagonal pattern (Proposition 4.9)

Definition 4.10 A stochastic SISO channel H is called wide-sense stationary with
uncorrelated scattering (WSSUS) if its covariance matrix Ry, is diagonal, that is,
Ry, (A, 1) = Oforall A # A" in Z; xZy. In this case, we have Ry, (A, 1) =
S Cpy (V) for some Cy, = {Cy,(Mhez,xz;, € CL® which is called the
scattering function of H.

For WSSUS channels, the linear system (4.31) reduces to

vec Ry = (G(¢) ® G(0)lgiag) Cny - (4.35)

which is an exactly determined linear system associated with the L?x L? matrix
Gl ® G(C)|diag~ Proposition 4.9 guarantees that this linear system is uniquely

solvable for all ¢ in the set V7, which is a dense open subset of CL with full measure.
Hence, the class of WSSUS channels is identifiable up to second-order statistics in
the sense of Definition 4.5.

4.4.2.1 WSSUS Pattern with Additional Off-diagonal Contributions

Let us now weaken the WSSUS condition in Definition 4.10 to allow for some

additional off-diagonal contributions, i.e., we assume that the covariance matrix
2072 .
Ry, € CL™*L7 satisfies

Ry, (A, )= 8 Cyp (A) + extra off-diagonal components.

Note that Ry, is Hermitian and satisfies (4.11). Therefore, Ry, (4, A) # 0 implies
R,,(},1) # 0 and so we will always have an even number of off-diagonal
elements. Moreover, since the |suppRy H| > L, it is clear that such a channel will
not be identifiable up to second-order statistics. Only if Ry, is known to satisfy
additional side constraints, it might become identifiable and it is clear that one needs
at least as many side-constraints as Ry, has nonzero off-diagonal elements.
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The following proposition shows that two (symmetric) nonzero off-diagonal
elements in the covariance matrix Ry, can always be compensated by two linear
side constraints that are chosen appropriately.

Proposition 4.10 Let A, 1’ € Z; xZy with » # X', and leta € RE*, by, by € R be
such that the vectors (aT, b1, by) and (aT, by, by) are linearly independent, i.e.,

T
v =%, biba\ o 2D pas full row rank. (4.36)
a b2 b1

There exists a vector ¢ € CE such that the (L* + 2) x (L* + 2) matrix

G(o) ® G(O)lgigg TMe @ (W )e m(W)e @ m(M)e
v = aT b1 by “4.37)
a’ by b

is invertible. Moreover, the set of all such vectors ¢ € CF is a dense open subset of
CEL with full measure.

Proposition 4.10 shows that for almost WSSUS channels, one has a very similar
behavior as in Theorem 4.1 for deterministic channels with side constraints. It shows
that one additional (symmetric) support component of the covariance can always be
compensated by an additional linear side constraint. A proof of Proposition 4.10 is
given in section “Proof of Proposition 4.10”.

We would like to mention that the complex-valued case a € (CLZ, by,by € Cis
not fully resolved, as we are missing a rigorous proof for the determinant of ¥ being
a nontrivial polynomial in the variables cq, ..., cp—1 and its complex conjugates
C0, - - -, CL—1. A rigorous argument would require similar techniques as in [13, 18].
Precisely, we wish to prove following statement: let A, A" € Z; xZy with A # A/,

and leta € CL, by, by € C be such that

T

vy = f']l‘ bibal o e2x4) paq full row rank.
a b2 b]

There exists a vector ¢ € CL such that the (L2 + 2) x (L% 4 2) matrix

Glo)® G(C)|diag T(M)e@a(M)e t(M)e @ m(M)e

¥ = a¥ by by
a’ by by

is invertible. Moreover, the set of all such vectors ¢ € CL is a dense open subset of
CL with full measure.
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4.4.2.2 Tensor Product Pattern with Additional Contributions

We now assume that the covariance matrix Ry, € CLP*L? g supported in a tensor
product pattern with some additional contributions, that is, suppRy,, C (AxA)UQ
with A C Zy xZr, |A| = L, and Q C (Zr xZ1)*\(AXA).

The case where Q2 = {(A, A)} with A € (Z1 xZ1)\A is resolved by the following
proposition. Note that if ¢ is chosen from the set Uy, in Proposition 4.1 (so that G(c)
has full spark), then G(c)|5 € CE*L is invertible and thus G(c) ® G(c)|axa =
G()|a®G(o)|p € CL**L? is invertible.

Proposition 4.11 Given a subset A C ZpxZj with |A| = L, an element ) €
(Zyp xZp)\A, and any a € (CLZ, b € Cwith ||a||% + |b|? # 0, there exists a vector
¢ € CL such that the matrix

= |:G(C) ®‘?E(c)|A><A n(A)ci{)n(k)c] e CUHDXL+1)

is invertible. Moreover; the set of all such vectors ¢ € Ct is a dense open subset of
CL with full measure.

A proof of Proposition 4.11 is given in section “Proof of Proposition 4.11”.
The problem of extending Proposition 4.11 to the general case Q2 =
{(A1, A1), ..., (Ag, Ag)} with K > 2 distinct elements A1, ..., Ag in (Zp XZp)\A
is left open.

As a final remark, we note that most of the results in Sect. 4.4 are for stochastic
SISO channels. While some results extend directly to stochastic MIMO channels
(for instance, Proposition 4.9 can be extended immediately to WSSUS MIMO
channels), the others require a careful modification and more involved proofs. We
leave the investigation on stochastic MIMO channels as a future work.

4.4.3 Numerical Simulations

In Sect. 4.4.2, we have shown that the matrices ¥ in Propositions 4.10 and 4.11 are
invertible if the generating vector ¢ € C* belongs in a certain open dense subset of
CE with full measure. This indicates that the matrix ¥ with a randomly generated
window ¢ € C and randomly generated additional rows must be invertible with
high probability. Although we have only treated some particular cases of patterns
with additional contributions in Propositions 4.10 and 4.11, we believe that these
results extend to general cases with more additional contributions. To verify this
claim, we made some numerical experiments described below.
As in Propositions 4.10 and 4.11, we generated matrices of the form
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v (@@G(cnr W@G(c)IA), (4.38)

A B

where I' C (Zy xZy)? with || = L? is a permissible support pattern in the sense
of Definition 4.9, and A C (Zy, XZL)Z\F with |A| = N is the support of additional
N contributions chosen so that I' U A is a psd pattern (i.e., satisfies (4.34)). The
matrices A € CN*L* and B € CV*N represent additional side constraints, and the
full matrix ¥ is therefore of dimension (L2+N)x (L?+N). In the simulations, we
considered the two cases: (i) I' is the diagonal set (WSSUS) and (ii) I" is a random
tensor product set.

(i) First, when I is the diagonal set, i.e., ' = {(A, X) : A € Z; xZ1}, we picked
A C (Zy xZp)*\I'" in a way that I' U A is a psd pattern and then generated 20
pilot vectors ¢ € CL with each vector chosen uniformly from the L-dimensional
complex unit ball. For each ¢, we generated 20 pairs of A and B. The matrix A
is generated by choosing its rows uniformly from the L?-dimensional complex
unit ball, and the matrix B is generated by choosing its entries uniformly from
the set {x +iy : —1 < x, y < 1} independently. Thus, for each dimension L,
we generated 400 instances of ¥ and computed the smallest singular value of
each matrix W. The average of the smallest singular value is shown in Fig. 4.4.

’1‘;‘ T T T T

—¥—WSSUS with 6 more contributions

Tensor product with 6 more contributions

- = =(L* + 6) x (L? + 6) random Ganssians

(=] o
(=] o
-] @
T T

o

(=]

&
T

Miniunun Singular Value

Dimension L

Fig. 4.4 Illustrated is the empirical expected value of the minimal singular value of the matrix ¥
in (4.38) for different support sets and with different number of side constraints. Additionally, the
theoretical lower bound on the expectation of the minimal singular value of squared matrices [3]
with i.i.d. Gaussian random variable entries with zero mean and variance one is depicted
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(i) Next, we generated a tensor product set ' C (Zr xZ)? in a random way
and then picked A C (ZyxZ1)*\T so that T'U A is a psd pattern. For each
generated psd pattern, we chose ¢, A, and B similarly as before and generated
400 instances of the matrix W. The smallest singular value of each matrix is
computed and their average is shown in Fig. 4.4

In Fig. 4.4, the described two cases with |[A| = N = 6 are compared with
the expected smallest singular value of (L24N)x(L*+N) random Gaussian
matrices (whose entries are i.i.d. Gaussian random variables with mean zero
and variance one) [3].

Figure 4.4 indicates that the matrix ¥ is always invertible for generic vectors
¢ and matrices A and B. The comparison of minimum singular values implies
that recovery for the WSSUS case is more stable than the tensor product case.
Certainly, the minimum singular value of W decreases as its dimension grows,
that is, as L grows and as more additional support components are considered.
It is interesting to note that the minimum singular value for the WSSUS case is
larger than Gaussian matrices, while that for the tensor product case is smaller
than Gaussian matrices. Note also that the decay rate for the WSSUS case is
much slower than Gaussian matrices and the tensor product case.

Based on the experiments above, one could expect that matrices ¥ of the
form (4.38) are almost always invertible in practical scenarios, and hence the
knowledge of linear side constraints would help to overcome the fundamental
limitation due to degrees of freedom when recovering the covariance matrix

R,, € CE<L” from R, € CL*L in Eq. (4.31).

Appendix
Proof of Lemma 4.3

Let us label the elements of A by A = {(k1,¥41), ..., (kr,¢R)} C ZpxZy and
fix any d € Uy so that G(d) has full spark. Then G(d)|, € CL*X has the full
rank R < L — 1, and therefore ker (G(c)|5)* € CFisan L — R > 1-dimensional
subspace of CL. Fix any nontrivial vector, x € ker (G(c)|A)*.

For 0 < p, g < L — 1, the (non-)commutation relation M erk — okt TR MY with
o = ¥/ gives
MTFMITPd) = P~ % MITP(M‘T*d), k,¢=0,...,L—1,

and since G (d) has full spark, it follows that G(M?T?d) has full spark as well, that
is, M1T?d € Uy. Collecting the equation for (k, £) € A, we have

GMITPd)|p = MIT? G(d)|, DP?



4 Sparse Deterministic and Stochastic Channels 135
with DP9 := diag(a)gll’_qu, el a)ER”_qu) € CRXR g0 that
(G(MTPd)|y)" = DPD (G(d)|A)* M~IT 7.
Since x € ker (G(c)|p)*, it follows that for p,g =0, ..., L — 1,
MITPx € ker (G(MITPd)|p\)* where MIT?d € Uy,
To prove that span{ker (G| : ¢ € UL} = CZ, it suffices to show that
span{M4T?x : p,q = 0,...,L — 1} = CL. But this is always true since

{(MiTPz : p,q = 0,...,L — 1} with any nontrivial vector z € CF is a tight
frame for CL with frame bound L ||z||%.

Proof of Proposition 4.6

We first assume that s € {0, 1, ..., L—1}, and write A = {(ky, k15), ..., (kn, kns)}

forsome 0 <ky <... <ky <L —1.Let Z=span{D*vj, ..., D’v;,} for some
0<j1 <...<jr<L—1,where N+ R < L, and we label the elements in
Zi\{j1,---, JrRYaS jre1 < ... < JrL.

For a message vector u = {ur}f:1 of length R, we set z = Zle u, D°v;, and
c= ZrL:R_H D’v;,. Then for H = Z,[l\]:l aank"STk" € OPW(A), we have

N R L
y=HGz+0=Y a, Mk”STk"(Zu, Dv, + Y D*‘vj,) (4.39)
n=l1 r=1 r=R+1

N kn (kn—1) L N kn (kn—1)
i n(kn—1)s 3 n(kp—1)s
— E Uy (Z g, w Jrkn+ 2 )stjr+ E (§ ay, Jrkn+ 2 )stjr~
n=1

r=1 = r=R+1 n=1

Since the vectors D*v;, j = 0, ..., L — 1, form an orthonormal basis of CL, we
immediately obtain the basis representation coefficients in (4.39) by taking the inner
product of y with D°v;, j =0,...,L — 1:

N — ik kn (kn—1)s
ur<zn=1akna) Jrkn 7755 for r=1,...,R,

ZNZI ag, e for r =R+1,..., L.
(4.40)

(y,D'vj,) = b, =

Note that since N < L — R, the linear system
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. . ky (ky—D)s
bre1 wIR+IkL L T IR1kN aw T
—jikt ... ,—iLkn ky ey =Ds
br w w a2
is a (over-)determined system. In fact, the coefficients ay,, . . ., ak, can be recovered

uniquely due to Chebotarev’s theorem on roots of unity (see, for instance, [29] and
[30, Lemma 1.3]), which asserts that for L € N prime, every square submatrix of
the L x L discrete Fourier matrix (e~27k¢/ L)L ! o formed by eliminating arbitrary
rows and columns is invertible. Once the coefﬁ01ents Qk,, . .., Aky are recovered, it

is straightforward to compute the message values u1, ..., ug from (4.40), provided
kn (kn Ds

that YN ap, @ Ikt L0 forr = 1,

Now we assume that s = 0o, meaning that A = {(O, £1),...,(0,€y)} for some
0</t;<...<fy<L-—1LetZ=spanlej,...,ej}forsome0 < j <...<
jr < L —1,where N + R < L, and we label the elements in Z\{j1, ..., jr} as
JR¥1 < ... < JL.

For a message vector u = {u,}® | of length R, we set z = =8 u e, and
c= Z,L:R+1 ej. Then for H = 3" | ap, M € OPW(A), we have

L N
y=H(z+ Zur(zae w”‘”) Z (Z% wj’e”) € -
n=1

r=1 r=R+1

The rest of the proof is similar to the case s € {0, 1,..., L — 1}.

Proof of Proposition 4.7

(a) < (b): Note that k(G ® G|axa) = tk(G|a ® G|a) = (tk G|r)2 If G|, is
injective, i.e., if tk G|, = |A| < M, then k(G ® G|axa) = |A|* and hence
GG |Ax A 1s injective. Conversely, assume that G® G| axa 1s injective. If a vector
v € CV with suppv € A satisfies Gv = 0, then Gvv*G* = Gv(Gv)* = 0 and
since supp(vv*) € AxA, we have from Lemma 4.6 that vv* = 0 which implies
v = 0. Hence, G|, is injective.

(b) = (c), (d), (e): These implications are obvious, since the index sets
(A1x A1) U (A2xAz), (A1xA2) U (AxxAy) Udiag(A), (fn}xA) U (Ax{n}) U
diag(A), with A € A and n € A, are subsets of AXA.

(c) = (a): Suppose to the contrary that v € CV is a nontrivial vector with
suppv € A and Gv = 0. Let A1, A, C A be nonempty disjoint sets such that
AUAy=Aand G ® Gl (A, xA UM x Ay) 18 injective. We write 0 # v = v 4+ v;
with suppv; € Aj and suppvy € Aj,. Then Gv; = G(—v3), which implies
Gv1viG* = Gvyv3G* and thus GZG* = 0, where Z = v v} — vov} € CV*¥N
is a nontrivial (Hermitian) matrix supported in (A1x A1) U (A2 x A2). The matrix
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Z is nontrivial because at least one of its diagonal entries is nonzero. However, in
view of Lemma 4.6, this contradicts with the injectivity of G ® G|(a,x A ;)U(Arx Ay)-
Therefore, such a vector v € CV must not exist which means that G|, is injective.

() = (d): If n € A, then (n,n) € diag(A), so that ({n}xA) U (Ax{n}) U
diag(A) = ({n}xA\{n}) U (A\{n}x{n}) U diag(A). Therefore, the condition (e)
implies (d) with A} = {n} and Ar = A\{n}.

(d) = (a): Suppose to the contrary that v € CV is a nontrivial vector with
suppv € A and Gv = 0. Let A1, A2 C A be nonempty disjoint sets such that
AlUA; = Aand G ® Gl (A, x AU xAUdiag(a) 18 njective. As before, we
write 0 # v = v + v, with suppv; € A and suppv, € A; and consider the
following three cases:

(i) If vy # 0 and v, = 0, then choose any n, € Aj and set

A=[0...0 v; 0...0] e CNxV,
——
np-th

Then Z = A + A* € CV*V is a nontrivial (Hermitian) matrix supported in
(A1 x{n2}) U ({n2}x A ) satisfying GZG™* = 0.
(i) If vy = 0 and vy # 0, then choose any n; € A1 and set

B=[0...0 v, 0...0] € CNVxV,
——
ni-th

Then Z = B + B* € CV*V is a nontrivial (Hermitian) matrix supported in
(A x{n1}) U ({n1}xAy) satisfying GZG* = 0.

(iii)) Otherwise, if both v and v, are nontrivial, then Gv; = G(—v>) which implies
Gv1v5G* = Gvyv]G*, and thus we have GZG™ = 0 where Z = vjv} —
vV} € CN*N is a nontrivial (Hermitian) matrix supported in (AjxAz) U
(A xAy).

In all three cases, we deduce from Lemma 4.6 that G ® G|(a,x A,)U(A,xA,;) iS DOt
injective, yielding a contradiction. Therefore, such a vector v € C" must not exist
which means that G|, is injective.

Proof of Proposition 4.8

For each k = 1,..., L% let vy = {vk(j)}JL.;ol = {Gj,k}f;(} € CL be the k-th
column vector of G. Note that G ® G|diag ={n® vk}llgil = {vkvz},fil e CLxL?

. .. . . . . .. 2 2
is not injective if and only if there exists a nontrivial vector a = {ak},f=1 e Ct
satisfying
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Y2 apvevt =0, (4.41)

which can be understood as a linear system with L? equations in the L? variables

ai, ..

., ar2. Note that the L equations reflecting the diagonal entries of the square

matrices vy vZ are of the form

®

(ii)

(iii)

2 12 .
Zl%:ﬂk-’vk(J)’ =0, j=0,...,L—-1. (4.42)

If there exist some j; # j» and a constant n > O satisfying |G j, «| = 171G j, «|
for all &, that is, |vi(j1)| = n|vk(j2)| for all k, then Eq.(4.42) for j = ji
and j = j, is identical up to a multiplicative factor. The linear system (4.41)
is then underdetermined, so there exists a nontrivial vector a = {ak},fil
satisfying (4.41).

Assume that there exist some j; # j» and constants 7,7, > 0 satisfying
|Gkl = lv(jI =rj, and |G j, k| = |vk(j2)| = 7}, for all k. Equation (4.42)
for j = ji and j = j» is then given by r}, Z,lgil ar =0andrj, Z,fi] ar =0,
respectively. Note that for each n = 1, 2, the equation 7, Z,fil ap = 0is
void if rj, = 0 and reduces to Z,’;i] ar = 0if rj, # 0. In any case, the
linear system (4.41) is underdetermined, so there exists a nontrivial vector a =
fax}E2 | satistying (4.41).

Assume that all entries of G are real-valued. Then (4.41) is simply

Y2 a vl =0. (4.43)

Since all matrices vy vE € REXL are symmetric, the equation read off from the
(p, g)-th entry of (4.43) is identical to that read off from the (g, p)-th entry
of (4.43). This implies that the linear system (4.43) has kernel of dimension
at least L(L — 1)/2 > 1, so there exists a nontrivial vector a = {ak},fil
satisfying (4.43).

Now, assume that all entries of G are imaginary-valued. Writing the column
vectors of G as vy = iwg withwy € REfork =1,..., L2, Eq. (4.41) becomes

- YE g ww! =0. (4.44)

. .. 2
By the same arguments as above, there exists a nontrivial vector a = {ak},I;:1
satisfying (4.44).

Hence, in all cases (i)—(iii), the matrix G ® G| diag € CLxL? i singular.
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Proof of Proposition 4.10

To prove Proposition 4.10, we need the following technical lemma.

Lemma D.7 Let ¢ € CL be such that ®(c) = G(c) ® G(¢)lgiqq € cLixL?
is invertible. Fix any A # X in ZyxZy. If t(M)e @ m(AM)e = ®(c) v for some
v e CL, then T(Wye ® T (M) = ®(c) .

Proof Since ®(c) is invertible, there exist unique vectors v, w € CL® such that

7(A)e®@m(V)e = ®(c)vand 7 (V)eRm(A)e = ®(¢) w. Forany (m,n) € Zy X Zy,
we have

(w(m, n)e ® 7 (m, n)c)* T @ (M )e = (w(m, n)e, w(A)e) - (A )e, m(m, n)c)

= (m(m,n)e, 1(M)e) - (w(M)e, w(m, n)c) = (w(m, n)e @ m(m, n)c)* 7(AM)e ®@ m(h)e

so that

()" (r(Me @ T(W)e) = ®(e)* (T (V)e @ w(M)e),

and thus, ®(¢)*®(c) v = ®(c)*®(c) w. However, the Gram matrix of ®(c) given
by

®(c)*P(c) = [(n(m, n)c ® m(m, n)c>* w(k, £)c  m(k, Z)c](m P

= [l Om, mye, ek, O] 4 062, x2,

is positive definite and has real-valued entries, so we obtain v = w, that is, w = .

O

Proof of Proposition 4.10 1f a = 0, then condition (4.36) is equivalent to having
b% #* b%, and thus

det ¥ = det (G(c) ® G(©)ldiag) - (b — b3).

Hence, for any vector ¢ in the set V; from Proposition 4.9, we have that ¥ is
invertible.

Now assume that @ # 0. Then by a Gaussian elimination, we see that
condition (4.36) is equivalent to by # by. With ¢ € CL chosen from the set V.
in Proposition 4.9, and v = {v(j)}]L.i1 e CL’ satisfying T(Me ® 71(V)e = ®(c) v,
we have
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P (c) 0 0
¥~ | @ bitby =Y a() (vG) +v() b = X5 a()v() |
0 0 by — by

which implies that ¥ is invertible if and only if

L2
bi+by # Y a()) (v(j) + (). (4.45)

j=1
Here, the right-hand side can be written as

L2
3 a() (v() + () = 2Re (aT(W@)G(c)|diag)*‘(n(,\)c®n(x’)c)).

j=1

It is therefore enough to show that there is a vector ¢ € Vp, satisfying (4.45). Suppose
thatd € V is a vector satisfying

b+ by =2Re (" (@) ® G@lgiag) ' (71 © 7()d)) (4.46)
and
a"(Gd)® G(d)|diag)*‘ (r(Wd ® T(W))d) # 0. (4.47)

Using the (non-)commutation relation M trk = M TEMY with 0 = e27i/L

have

, we

7k, OMITPd = MIT 7 (k, 0)d - P % for k,¢,p,q € Z;.

Writing A = (k, £) and A" = (k/, £) in Z xZ[,, we thus obtain that for any p, q €
Zy,

- )
(G(Mq T7d) @ G(M1 TPd)|diag) 7k, OMITPd @ n(k', ¢ )MIT"d

| , ,
= (G(d) ® G(d)|diag> 7k Od @ n(K, )d - ¢ Ok =k
Since A = (k,¢) and ) = (K, £) are distinct in Zj, xZp, there is an element
(p.q) € ZyxZy with (&' —€)p— (k' —k)g 20 mod L, thatis, 0 ~0P~ K~k
1. It is then easily seen that condition (4.45) holds for ¢ = M9T?d € V. Hence,
we conclude that there exists a vector ¢ € V. such that W is invertible. |
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Proof of Proposition 4.11

Note that for each ¢ € Ujp, the matrix G(c) € (CLXLz has full spark, i.e.,
spark(G(c)) = L + 1 (see Definition 4.3), so its submatrix G(c)|p € CE*L is
invertible. The vector z. = (G(c)|a)"'m(M)¢c € CL has no zero entries, since
otherwise the equation G(c)|aun) [zf] = (G(e)|pa)z2e — m(A)e = 0 would hold
with || [%]]|, < L implying that spark(G(¢)) < L.

We will also need the following observation. Fix any ¢ € Uy. Since z. € CF
has no zero entries, the set {d € CL : (G(d)|a) zc = m(L)d} is a zero measure
manifold in C* containing ¢. Pick any vector ¢; € CF outside the manifold; then
clearly z., # z.. Again, the set {d € CL : (G(d)|p) Z¢; = m(A)d} is a zero measure
manifold in CL containing c;. Pick any vector ¢, € CL outside the two manifolds;
then clearly z¢, # z¢, Z¢,. Inductively, we obtain a sequence of vectors ¢y, ¢z, . ..
in Uy, such that z¢, z¢,, Z¢,, . . . are all distinct vectors in CE. Since each Z¢, € ct
has no zero entries, it follows that the vectors Z¢ ® z¢, Ze; @ Ze¢;» Zey @ Zey» - - - AL

all distinct in (CLZ. In turn, the vectors (Z¢, ® zZ¢, —2¢ ® 2¢) # 0forn =1,2, ...
are all distinct in CL”.
Noting that 7(A)e ® Tt(A)e = (G(c)|p)ze ® (G(e)|p)z2e = (G(c)|A ®

G(0)|r)Ze®ze) = (G(c) ® G(€)|axn)(Ze ®zc), we apply a column operation on
W to obtain

¥ ~ [%@G(C)IAM 0 }
a® b—a"Z®z)]

which gives

det W = det (G(c) ® G(©)|axa) - (b —a" (Zc ® z0))

= |det(G(©)|n) [** - (b—d" (@ ® z0)).
[ ——
#0

Step 1 (Existence of a vector ¢ € U, such that det W # 0).

We only need to show that there exists a vector ¢ € Uy, satisfying a” (Ze ® z¢) #
b.

(1) If a = 0, then b # 0 by the assumption, so aT(z_c®zc) =0#bforallc e Uyr.
(i) Ifa # 0, then the set {x € CL* : b — aTx = 0} is an affine hyperplane in CL’.
We need to show that there is a vector ¢ € Uy such that 7, ® z, does not belong
in this affine hyperplane. Suppose to the contrary that {z; ® z, : ¢ € UL} is
contained in the affine hyperplane. Since b — a’x = ((x, 1), (—a, E))(CL+1 for
x € CL*, this means that the nonzero vector (—a, b) € CL+1 is orthogonal to

[Eﬁz’z”] for all ¢ € Uyr; thus, showing
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span { [ZC Q?zc:| ‘ce UL} — L1 (4.48)

would give a desired contradiction.

By Gaussian elimination, we see that (4.48) holds if there is a vector ¢ € U
satisfying

JE— J— 2
spanf{Zy @ z¢ —Zc ®zc ¢ € UL} = ct.
The left-hand side is equal to
span{Zy ® Ze — Ze ® Zey Zo ® 2o —Ze @ 2c 1 ¢/, ¢” € Ur}
= Span{z_c/®zd _z_c//®zl:’/7 m@zd’ _E®ZC . C’,C” S UL}

D span{Zy ® 2y — T ®zer 1 ¢, ¢ € UL}

D span{Zy ® 20 —Zc Q@ zc 1 ¢ € UL},
so in order to prove (4.48), it suffices to show that
span{Zy @ z¢ — 2o @z 1 ¢/, " € UL} = cL.

But this can be seen easily because U; is a dense open subset of CL (see
Proposition 4.1).

Step 2 (The set of all ¢ € CL with detW # 0 is a dense open subset of CL). We
now write

b—a" @@z = b—a" (G TMe® (Gl 7(R)e)

1 T N NN . .
- maT (adJ (G(©)]A)T(M)e ® adj (G(c)|A)n(A)c),

where adj (A) denotes the adjugate matrix of A, which appears in Cramer’s rule

A~ = 15 adj (A). Then

det W = |det(G(c)|A)|2L*2(b | det(G (e)]n)|?

— " (adf GO (Ie © adj (G () )T (R)e)),

which is nonzero for all ¢ in a dense open subset of C%, namely the subset of Uy,
excluding a manifold of measure zero in C. The manifold here is expressed by
the equation det W = 0, where we know from Step 1 that det ¥ is a nontrivial
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polynomial in the variables co, ..., cz—1 and its complex conjugates cg, ..., CL_].
Hence, there exists a vector ¢ € CL such that W is invertible. m|
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Chapter 5 ®
Analysis of Sparse Recovery Algorithms Qe
via the Replica Method

Ali Bereyhi, Ralf R. Miiller, and Hermann Schulz-Baldes

5.1 Introduction

Statistical mechanics deals with the analysis of very large many-particle systems
and seeks the following ultimate goal: Starting from the microscopic behavior of
individual particles, it tries to find out the macroscopic properties of the system.
The system size is, however, so large that it is not possible to solve the microscopic
equations of motion. Statistical mechanics follows an alternative approach: It
describes the microscopic behavior of the system particles via a stochastic model
and extracts the desired deterministic properties via statistical analysis.

The goal and techniques of statistical mechanics are in various aspects similar
to those of information theory. This connection has been widely investigated in the
literature; see for instance [37]. In addition to all interesting theoretical aspects of
this connection, the links between the two theories lead to a key achievement: The
analytical tools of statistical mechanics can be used to address asymptotic analysis
in information theory and its applications.

In this chapter, we use one particular statistical mechanical tool, namely the
replica method, to investigate the asymptotic performance of a large class of sparse
recovery algorithms. The interest in characterizing the asymptotic performance
has several origins: The most natural one is to have an analytic bound on the
performance of a given recovery scheme. This is however not the only application.
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Sparse recovery is used in several other applications in which the asymptotic
performance characterization is useful for system design. In Sect. 5.7, we give two
particular instances; namely, the example of deriving error bounds in distributed
compressive sensing and tuning algorithms used for detection of spatially modulated
signals.

The focus of this chapter is on the asymptotic analysis of a generic compressive
sensing setting via the replica method. As a result, the contents of this chapter give
a comprehensive overview on the replica method and its applications to asymptotic
analyses in communications and signal processing. Details on most aspects of the
discussion are given in [2].

5.2 A Multi-terminal Setting for Compressive Sensing

We consider a generic multi-terminal sensing setting. The setting includes the
classical single-terminal compressive sensing setting, as well as other scenarios of
sparse recovery.

Consider a distributed sensing network (DSN) with J correlated sparse source
signals, namely x; (t) € X C R for j € [J]. Here, the notation [J] is defined as

[J]:={1,...,J}, 5.1)

and is used through the chapter to shorten the presentation. The source signals are
sampled at the time instances, t = #, forn € [N]. Let x; € XVl for X ¢ R
denote the vector of samples collected from the j-th source signal. We assume that
the sampling is performed, such that the femporal correlation among different time
samples is negligible.! As the result, the sample vectors are statistically modeled as
follows: x1, ..., x s are independent and identically distributed (i.i.d.), such that the
time samples of the source signals at ¢ = ¢, are spatially correlated.

The spatial correlation of the time samples at ¢+ = f, is modeled via the joint
probability distribution py (x;]), where we define

x) = Xy ey Xn) - (5.2)

The joint distribution of the all signal samples is given by

p(x’) = ﬁpx (x,{), (5.3)
n=1

where the notation x” is defined as

! This is typically the case in classic signal sampling techniques.
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x) = (x1,...,x)). (5.4)

Considering source signal j, an individual sensing unit collects M linear (and
potentially noisy) observations of the samples. Denoting the vector of observations
by y; € RMix1 e can write

yi=Ajx;+z;. (5.5)

Here, A; € RM;*N denotes the sensing matrix of unit j that describes the linear
transform from the signal samples to the observations, and z; € RMjx1 is the
measurement noise at terminal j.

The observations, as well as the sensing matrices, are given to a single data-fusion
center. The data-fusion center recovers the signal samples using a joint recovery

algorithm, i.e., it finds the estimates £/ = (X1,.... %) as

aJ

=gy .. ysAL LAY, (5.6)
via some recovery algorithm g (-|A1, ..., Ay). At this point, we consider a generic

form for the recovery algorithms. We will later focus on a specific (but broad) class
of sparse recovery algorithms that use the method of least squares.

5.2.1 Characterization of the Recovery Performance

Before illustrating the details of the system model, let us clarify the ultimate goal
of this chapter, i.e., the asymptotic analysis of sparse recovery algorithms. To this
end, we first need to define a metric that characterizes the performance of a recovery
algorithm g (-|A1, ..., Ay). This metric is defined in the following definition:

Definition 5.1 (Average Distortion) Consider the distortion function
AG): R xR > R. (5.7)

J

Using this function, the distortion between the source samples x’ and their

. . AT . .
corresponding estimates X is determined as

N
Ay (ff;xf) =ZA()?,{;X,{). (5.8)
n=1
The average distortion is then given by

Dy = %E {Av (;2’; x’)} : (5.9)

where E {-} indicates statistical expectation.
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The average distortion describes the quality of the recovery algorithm. Depend-
ing on the choice of the distortion function, the average distortion determines
different forms of estimation errors. For example, by setting

J
A& 5]) = D = xinl, (5.10)
j=1

the average distortion reduces to the well-known mean squared error (MSE).

It is important to keep in mind that the average distortion explicitly depends on
the recovery algorithm. In fact, depending on the choice of g (-|A, ..., Ay), the
estimated samples %/ change, and consequently, Dy varies.

The ultimate goal of this chapter is to find the average distortion for a large class
of sparse recovery algorithms when the number of signal samples per each terminal,
i.e., N, is very large. For most known sparse recovery algorithms, this is a hard task
to do, due to reasons that we explain in Sect. 5.4.

In order to address this goal, we need to specify a model for every component of
the setting. We do this in the following section.

5.2.2 Stochastic Model of System Components

A typical model for the noise processes is the additive white Gaussian noise
(AWGN) model. This follows from the fact that noise in sensing devices is
physically caused by several random independent processes whose spectral density
in the bandwidth of interest is well approximated by that of AWGN. Considering
the AWGN model, z; is considered to be an i.i.d. Gaussian random vector whose
entries are zero mean with variance af.

We also model the sensing matrices as they are generated by a random process.
Although stochastic modeling of noise is widely accepted, considering such a model
for sensing matrices requires a bit of illustration. A stochastic model for sensing
matrices assumes that each sensing matrix A ; is taken at random from a predefined
ensemble. The logic behind considering such a model is as follows: From the
compressive sensing literature, we know that sensing matrices require to satisfy
some specific properties, such that a certain recovery performance is guaranteed
[23]. Many random ensembles are shown to satisfy these properties. This means
that by generating a sensing matrix from these ensembles at random, the anticipated
recovery performance is achieved with a high probability. To incorporate this fact
into the analysis, the classical approach is to assume that the sensing matrices are
given by a random ensemble. From the mathematical viewpoint, such an assumption
does not harm the generality of the analysis, as most structured sensing matrices can
be described by a random ensemble as well.

In this chapter, we assume that the sensing matrices are right rotationally
invariant random matrices. This is generic assumption since it includes most well-
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known random ensembles, e.g., the class of i.i.d. sensing matrices. We introduce
this random ensemble in the sequel. However, before defining that, let us first define
the density of states for a given matrix.

Definition 5.2 (Density of States) Let S € RY*V be a self-adjoint square matrix
whose eigenvalues are given by Aq,...,Ay € R. The density of states for this
matrix is defined as the empirical cumulative distribution function (CDF) of its
eigenvaxlues,2 ie,forA e R

N
FQ(A):%ZHA” <A} (5.11)
n=1

We are now ready to define right rotationally invariant random matrices.

Definition 5.3 (Right Rotationally Invariant Matrices) A; € RM/*V is right
rotationally invariant if its Gramian J; = A}-A ; has the decomposition

T
J; :UijUj, (5.12)

where U; and D; have the following properties:

1. The matrix U; € RN*N is a Haar-distributed matrix.>
2. The matrix D; € RN*N denotes the diagonal matrix of eigenvalues whose
density of states converges as N — 00, i.e., limy_ Flj)v_ A =F;j (b).
; .

The class of right rotationally invariant matrices includes the most well-known
random ensembles in compressive sensing; for instance, the class of i.i.d. random
matrices, i.e., random matrices whose entries are generated i.i.d. from a distribution
with bounded variance.* Note that different forms of random matrices will have
different densities of states. We clarify this point further in Sect.5.4 when we
formally formulate the asymptotic analysis of a sparse recovery algorithm.

5.2.3 Stochastic Model for Jointly Sparse Signals

As indicated, we assume that there exists a spatial correlation among the signals for
various sources. Noting that the signals are sparse, we interpret this spatial coupling
as joint sparsity. To give an intuition on joint sparsity, we focus in the sequel on a

2 Note that for random S, the density of state is random.

3 A Haar matrix is a random matrix generated from the rotation-invariant measure on the set of all
orthonormal matrices.

4 Another well-known example in compressive sensing is the row-orthonormal random sensing
matrix; see [39] and references therein for the exact definition and further examples.



150 A. Bereyhi et al.

special joint sparsity model in which the sample n of signal j is written as
Xjn = ChWon + SonWjn + SjnUjn- (5.13)

Here, sou, won, ¢n, Wjn, Sjn, and uj, are independent i.i.d. sequences whose
distributions are as follows:

1. In (5.13), the random variable wo,, as well as the random variables w ;, and u j,
for j € [J], are defined to be in set X, and their probabilities of being zero are
equal to zero.

2. Random variables sg,, ¢;, and s j,, are Bernoulli-distributed and

Pri{c, =1} =1—-Pr{c, =0} = uc (5.14a)
Pr{so, =1} =1 —=Pr{sg, =0} = o (5.14b)
Pr{sj, =1} =1—Pr{sj, =0} = pu;. (5.14c)

In this model, the samples of a terminal are given as the superposition of three
sparse components. The first component, whose n-th entry is given by c,woy,
is a sparse vector that is common among all the terminals. The second sparse
component, represented by so,w;, for n € [N], has a common support5 across
all the terminals; however, the values of the non-zero entries are drawn from
independent processes. The last component contains a sparse signal whose support
and non-zero entries are independently generated for each terminal.

Although the given model for joint sparsity is not the most general one, it
includes the most well-known sparse recovery settings in the literature. In the sequel,
we address the main settings for sparse recovery. These settings are derived from our
system model as special cases.

5.2.4 Special Cases

The three main settings for sparse recovery are classical compressive sensing, the
problem of multiple measurement vectors (MMV), and distributed compressive
sensing (DCS). In the sequel, we briefly go through these settings and illustrate
how they are derived from our generic multi-terminal setting.

5.24.1 Classical Compressive Sensing

In classical compressive sensing, also called the single measurement vector prob-
lem, a sparse signal is observed linearly via a single terminal and is to be recovered

5 By support, we refer to the indices of non-zero entries in a vector.
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from this underdetermined set of observations. This setting is simply derived by
setting J = 1 in our model. As spatial correlation among terminals has no meaning
in this case, one can further set ¢, = sg, = 0 for n € [N] in the sparsity model.

5.2.4.2 Multiple Measurement Vectors

In MMV, multiple sparse signals are observed with a common sensing matrix and
recovered at a single data-fusion center. This setting is straightforwardly derived
from our model by letting

Al=...=Ay. (5.15)

In general, the joint sparsity model given in Sect. 5.2.3 is a valid model in MMV.
Nevertheless, in many applications of MMV, it is common to assume the common
support model for the spatial correlation. This model assumes that the samples of
different terminals have common support; however, the non-zero entries are drawn
from independent processes. The common support model is derived from the joint
sparsity model in Sect. 5.2.3 by setting s, = ¢, = 0forn € [N].

5.2.4.3 Distributed Compressive Sensing

DCS describes the most generic setting that fits to our model. In this problem, the
jointly sparse signals of different terminals are observed with different matrices and
recovered at a common fusion center. Similar to MMV, the joint sparsity model in
Sect. 5.2.3 is generally valid for DCS. A common model is however the common-
innovation model in which the signal of each terminal is given as a common sparse
component superposed by an independent sparse innovation term. This model is
derived from the one given in Sect. 5.2.3 by setting so, = 0 forn € [N].

5.3 Sparse Recovery via the Regularized Least-Squares
Method

We focus on the class of regularized least-squares (RLS)-based recovery algorithms.
These algorithms recover the signal samples by minimizing a penalized residual sum
of squares. In general, an RLS-based algorithm is of the following form:

J
, 1
g(yi.. ysAL ... Ay) = argmin Y K||yj—Ajvj||2wv(vf). (5.16)
J
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Here, v/ = (v1,...,vy), and uy () : RV*/ s RT is the regularization function
that penalizes the residual sum of squares, and |-|| denotes the Euclidean norm. In
the sequel, we assume that uy () decouples, i.e., there exists u (-) : RIXJ s R,
such that

N

uy(v’) =Zu(u,{). (5.17)

n=1

Furthermore, A1, ..., A, are tunable factors, referred to as regularization parameters.

5.3.1 Some Well-Known Forms

The interest in the class of RLS-based recovery schemes comes from its broadness.
In fact, the recovery scheme in (5.16) includes a diverse set of sparse recovery
algorithms. In the sequel, we discuss two well-known examples, namely £,-norm
minimization for classical compressive sensing and £, ,-norm minimization for
DCS.

5.3.1.1 {,-Norm Minimization

Most algorithms in compressive sensing with a single terminal recover the sparse
signal by finding a vector of samples whose residual sum of squares is bounded,
i.e., finding v, such that®

ly —Av|? <€ (5.18)

for some €, and whose £ ,-norm for some p is minimum. The most common choice
of p is p = 1, which results in the least absolute shrinkage and selection operator
(LASSO), also called basis pursuit algorithm.

Using the method of Lagrange multipliers, it is shown that there exists a
regularization parameter A, for which the RLS-based algorithm with decoupled
regularization function u (v,) = |v,|? performs identical to this algorithm; see, for
example, [2].

6 Note that the index j is dropped, as we consider a single-terminal setting.
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53.1.2 £, ,-Norm Minimization

For multi-terminal settings, the classic ¢,-norm minimization techniques are often
extended to £, ,-norm minimization techniques. The feasible set in this case is
constructed with the same approach, i.e., finding vy, ..., v; for which

ly; = Ajojl? < e (5.19)

with some ¢; for j € [J]. The recovered samples are then found by searching the
feasible set for vectors whose £, ,-norm is minimum. For a collection of J vectors
vy, ..., vy, the £, ;-norm is defined as

a/p\ /4

N J
i, vsllpg = | Do D Ivinl” : (5.20)

n=1 \ j=1

The most well-known £, ;,-norm minimization technique is the group LASSO
technique in which p =2 and ¢ = 1.

Similar to ¢,-norm minimization, one can invoke the method of Lagrange
multipliers and show that there exist regularization parameters Ap, ..., Ay, for which
the RLS-based algorithm with decoupled regularization function u (v,{ ) = ||v,{ I ,,q
performs identical to £, ,-norm minimization.

5.3.2 Bayesian Interpretation

In the Bayesian framework, an RLS-based algorithm is interpreted as a mismatched
maximum-a-posteriori (MAP) estimator. This estimator postulates the following
assumptions:

1. The prior joint distribution of samples at #, is proportional to exp {—u (-)}. This
means that py (x;]) is assumed to be

px (47) = L{;‘ ) (5.21)

for some normalization factor Z.
2. The noise processes are Gaussian.
3. The variance of noise at terminal j is proportional to A ;.

It then calculates the posterior distribution of the signal samples, i.e., it finds the
conditional distribution p (x”|y,...y;, A1, ..., A;), and determines its maximizer
as the estimate. Note that the postulated parameters are not necessarily matched to
the true ones. This is in fact why the MAP estimator is called mismatched.
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Using the Bayes’ rule, it is shown that the posterior distribution, given the
postulated model, is of the following form:

J

1
P(le}’hu-yJ,Al,.-.,AJ)ZCCXP —ZKH}’J-—AW_/HZ—MV(I)J)
j=1""
(5.22)

for some constant C. The MAP estimation hence reduces to the maximization of the
exponent term that recovers the RLS-based recovery.

Given the Bayesian interpretation, one concludes that most MAP estimators used
in classical signal processing and machine learning models can be reformulated as
an RLS-based algorithm. As the result, the analysis in this chapter can be directly
extended to Bayesian estimation’ in other applications.

5.4 Asymptotic Characterization

Now that the system model and recovery algorithm are presented, we are ready to
formally formulate the asymptotic performance of a sparse recovery algorithm. For
the asymptotic analysis, we consider a sequence of settings. The number of signal
samples N and the number of measurements at terminal j, i.e., M}, in this sequence
grow large, such that M; is a deterministic function of N. We assume that N grows
unboundedly large, and M; grows with N linearly. This means that there exists a
fixed p; (typically p; < 1) for each j € [J], such that

pj = lim — < oo. (5.23)

We refer to p; as the j-th terminal compression ratio.

For every DSN in the sequence, we use an RLS-based algorithm to recover
the signal samples. Let Dy denote the average distortion between the true signal
samples and their estimates in the DSN whose index is N; see (5.9). The asymptotic
analysis intends to find the asymptotic limit of this sequence of distortions, i.e.,

D = lim Dy. (5.24)
Ntoo

The derivation of D and its dependence on the various model parameters are
not straightforward from both analytical and computational points of view. In fact,
depending on the regularization function, the derivation of D deals with one or two
of the following issues:

7 Or to learning algorithms in a Bayesian framework.
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» For some regularization functions, the RLS-based algorithm solves a convex
optimization problem that can be posed as standard convex programming.
Hence, it is performed in polynomial time. Although RLS-based recovery in
this case is computationally tractable, there is no guarantee that the problem is
also analytically tractable. For asymptotic analysis, one needs to determine the
sequence of average distortions for any integer index N and take the limit when
N goes to co. For some particular RLS-based algorithms, this task can be done
via basic analytic tools; nevertheless, there are several forms whose limit is not
known analytically via the basic tools.

» Several RLS-based algorithms are not only analytically, but also computation-
ally intractable. An example is the £p-norm minimization algorithm in which
the regularization function is proportional to the £¢p-norm. For this choice of
regularization function, the recovery algorithm reduces to a decision problem
that belongs to the class of nondeterministic polynomial time (NP)-complete
problems and hence is NP-hard [23]. Another instance is the case in which RLS
is used for recovery of a signal whose samples are drawn from a discrete support,
i.e., X be a discrete set. Similar to £gp-norm minimization, RLS-based recovery in
this case is NP-hard since it deals with integer programming.® Clearly, for these
forms, asymptotic characterization is not computationally tractable.

The above analytical and computational issues can be addressed via the replica
method. As it becomes clear later, the replica method invokes several non-rigorous
tricks to bypass the analytical obstacles of the problem. The term non-rigorous tricks
will be clarified in the next sections of this chapter, while we illustrate how the
replica method exactly does that.

Now that the asymptotic analysis is formulated in principle, we can state
explicitly our main purpose as follows: The main purpose is to illustrate how the
asymptotic distortion D is derived for an RLS-based algorithm via the replica
method.

5.4.1 Stieltjes and R-Transforms

Before we start with the illustration of the replica method, we give some basic
definitions that are used throughout the derivations via the replica method. These
definitions enable us to compactly represent the statistics of the sensing matrices.
To start with the definitions, consider the sequence of DSNs indexed by N. For
each terminal, there exists a corresponding sequence of densities F ]N () that for a

given index N describes the density of states for J; = AJT.A ;- We assume that this
sequence converges as N — oo to a deterministic density of states F; (1) for each

8 Note that this is the case for any choice of the regularization function.
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J € [J]. For these asymptotic densities, the Stieltjes and R-transforms are defined
as follows [53]:

Definition 5.4 (Stieltjes Transform) For the asymptotic CDF F; (1), the Stieltjes
transform is given by

+00 1
Gj(s) = / k—dFj ) (5.25)
o A—3S
for some complex s with Ims > 0, where Im s is the imaginary part of s.

Definition 5.5 (R-Transform) For the asymptotic density F; (i), the R-transform is
defined as

1
Rj () =G} (-w) = —, (5.26)

where G;l (+) denotes the inverse of the Stieltjes transform with respect to composition.

If G;l (+) has multiple solutions, a solution is selected whose corresponding calculation
of R-transform satisfies the following conditions:

1. The following limit exists:
+00
lim R; (w) = / AF; (A). (5.27)
w—0

—0o0

2. R; (w) is an increasing function on the real axis.’

The definition of the R-transform is further extended to matrix arguments:
Consider a self-adjoint matrix Sy« with the eigendecomposition

S=WAW L (5.28)
For this matrix, we use the notation R (S) to refer to
R; (S) := WDiag {R; (A1), ....R; (1)} W', (5.29)

where Diag {ay, ..., ay} denotes an N x N diagonal matrix whose diagonal entries
areay,...,ay.

9 More precisely, if F i (A) is different from a step function at a single mass point, i.e., derivative
of F; (A) is different from a Dirac impulse at a single mass point, R ; (w) is strictly increasing; for
details, see [59, Appendix E].
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5.5 Building a Bridge to Statistical Mechanics

As mentioned before, the replica method was initially developed in statistical
mechanics for the analysis of spin glasses. Nevertheless, it found its way to several
other fields, such as coding, information theory, and signal processing. The key point
in employing the replica method for asymptotic analysis is to make a connection
between the problem at hand and the theory of spin glasses. In this section,
we illustrate how this connection is made. To this end, we need first to give a
quick overview on basic definitions in statistical mechanics. The contents of this
section are discussed with details in [2, Chapter 3]. For further discussions on
fundamentals of statistical mechanics and its connections to information theory and
signal processing, see [37] and the references therein.

5.5.1 Introduction to Statistical Mechanics

A thermodynamic system consists of N particles with each having a microscopic
parameter v, € V for n € [N] and some set V. This parameter describes a
macroscopic property of the corresponding particle, e.g., the velocity. In general,
a microscopic parameter could be a vector of continuous or discrete entries. For
sake of brevity, we assume that v, is a continuous scalar. The extension to cases
with discrete v, can be followed in [2, Chapter 3]. For this system, the microstate is
defined as a vector in VV that collects microscopic parameters of all the particles,
ie.,

v=1[vi,...,o5]". (5.30)

Corresponding to this system, a Hamiltonian & (-) is defined, which describes
the physical properties of the system. The Hamiltonian is a function that assigns to
microstate v a non-negative energy level & (v).

Remark 5.1 Here, we have defined the Hamiltonian in an abstract form. For a physical
system, the explicit form of the Hamiltonian is derived from the physical theories that
describe the interactions of microscopic parameters in the system.

For a thermodynamic system, the explicit calculation of macroscopic parameters
is intractable.! To address this issue, statistical mechanics follows a stochastic
approach. In this approach, the microstate is considered to be a random vector whose
distribution depends on the remperature. We denote this distribution by pg (v), where
B is the inverse temperature, i.e., 8 = 1/T with T being the temperature.

10 This follows the same reasons given in Sect.5.4 for the asymptotic analysis of RLS-based
algorithms.



158 A. Bereyhi et al.

Using stochastic analysis, statistical mechanics derives physical features of the
thermodynamic system from this stochastic model. These physical features are
known as macroscopic parameters of the system. Mathematically, a thermodynamic
system can be described via the following two macroscopic parameters: entropy and
free energy.'" These parameters are defined as follows:

Definition 5.6 (Normalized Entropy) For a given thermodynamic system with N
particles, the normalized entropy at inverse temperature 8 is defined as

1
Hy ()=~ [ o ) 10gp, ). (531)
VN

Definition 5.7 (Normalized Free Energy) Consider a thermodynamic system with N
particles and Hamiltonian & (-). At inverse temperature S, the normalized free energy is
defined as

1 1
Fv(B) = LEBW) - EWN ®. (5.32)

where the expectation is taken with respect to pg (v).

5.5.1.1 Second Law of Thermodynamics

The fundamental rule in stochastic analysis of thermodynamic systems is the
second law of thermodynamics. This law indicates that the microstate in thermal
equilibrium'? is distributed such that the free energy is minimized. Since Fy () is
convex with respect to pg (v), it is concluded that the microstate is distributed with
the Boltzmann—Gibbs distribution. This means that at thermal equilibrium

exp {—BE (v)}

5.33
Zn (B 639

pp (v) =

at inverse temperature 8. In the denominator, Zy (8) is a normalization factor, i.e.,

Zn (B = / exp (—BE ()} dv, (5.34)

yN

' fact, the main two macroscopic parameters of a thermodynamic system are entropy and
energy. The free energy is derived by applying the second law of thermodynamics as the Lagrange
dual function. We however use directly the free energy in our formulation, for sake of brevity.

12 This means that there is no energy flow.
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and is called the partition function. The distribution pg (v) reduces to some well-
known distributions for several choices of the Hamiltonian, e.g., it reduces to the
Gaussian distribution when & (v) o ||v]|.

Remark 5.2 The stated form of the second law of thermodynamics is a simplified
interpretation of the original form. In fact, the law states that the entropy in an isolated
system grows constantly. This is interpreted as a constrained optimization problem in
which the normalized entropy is maximized subject to an energy constraint. Using the
method of Lagrange multipliers, the free energy is derived as the objective function of
the dual unconstrained optimization. It is then shown that the Lagrange multiplier is in
fact the temperature.

Substituting the Boltzmann—Gibbs distribution in the definition of the free
energy, it is concluded that

1
Fn(B) = _ﬂWlOgZN (B)- (5.35)

This is a fundamental identity indicating that the free energy of a system in thermal
equilibrium is calculated explicitly from the partition function. Starting from this
equation, it is shown that all other macroscopic parameters of the system are directly
derived from Fy (B). For instance,

d
Hy (B) = ﬂzﬁﬁv B). (5.36)

Therefore, the partition function completely describes the macroscopic features of
the system in thermal equilibrium.

5.5.1.2 Spin Glasses

Spin glasses are thermodynamic systems whose particles choose to interact ran-
domly. This means that the Hamiltonian of a spin glass is not only a function of the
microstate, but also a randomizer. This randomizer is realized once from a random
ensemble and remains fixed as the system is in thermal equilibrium.'?

Similar to thermodynamic systems, the stochastic analysis of spin glasses follows
the second law of thermodynamics. Let £ denote the randomizer of a spin glass. The
Hamiltonian of this spin glass is given by

EC1R) : VN > RT. (5.37)

13 In statistical mechanics, this randomizer is known to have quenched randomness. This is
different from the type of randomness considered for the microstate.
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In other words, for every realization of €, we have a specific Hamiltonian
function. By the same lines of derivations explained in Sect.5.5.1.1, one can show
that, conditioned on the randomizer, the microstate of the spin glass in thermal
equilibrium is distributed with the Boltzmann—Gibbs distribution. This means that

exp {—BE (v|R)}

v|) = , (5.38)
P Zv (BI9)
with random partition function
Zy (B9 = [ exp(~pE i) do. (5.39)
VN
The normalized free energy in thermal equilibrium is hence written as
1
Fn (BIR) = _ﬂWIOgZN (BI1%) . (5.40)
and the conditional entropy is determined from the free energy by
,d
Hn (BIR) = B~—Fn (BIR). (5.41)

dp

In the remaining parts of this chapter, we focus on spin glasses. This is due to the
fact that our problem is formulated in terms of a spin glass.

5.5.1.3 Thermodynamic Limit

Spin glasses are studied in the thermodynamic limit. This means that the macroscopic
parameters are derived for the case, in which the number of particles tends to
infinity, i.e., the asymptotic limit N 1 oo. Suggested by physical intuition, in
the thermodynamic limit, a spin glass has deterministic macroscopic parameters.
This means that in the asymptotic limit, the free energy Fu (8|R) converges to its
expected value.'* This property of spin glasses is known as self-averaging; more
discussions in this respect can be followed in [25, 26, 43].

Following the self-averaging property, the free energy of a spin glasses in the
thermodynamic limit is calculated as follows:

1. Determining the sequence of expected free energies Fy (8|€2) indexed by N as

Fn (B) =E{Fn (BIR)}, (5.42)

14 Here, the expectation is taken over the randomizer .
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where the expectation is taken with respect to €.
2. Taking the asymptotic limit of the expected sequence, i.e., calculating

F(B) = »?%‘30 Fn (B). (5.43)

5.5.1.4 Averaging Trick

Before we start with the derivations, let us illustrate the key averaging trick in
statistical mechanics. Consider a function ¥ (-) that for each microstate v € V¥
determines a scalar parameter. The macroscopic parameter corresponding to this
function is defined as

- 1
YN = N]E {vn (v)}, (5.44)

where the expectation is taken first with respect to the conditional Boltzmann—Gibbs
distribution, i.e., Ps (v|€2), and then with respect to .

The classic approach for determining vy in statistical mechanics is to use the
averaging trick. This trick modifies the partition function with a dummy factor % as
follows:

ZN (B h|R) = / exp{—BE (v|R) + hyn (v)}dv. (5.45)
veVN

For this modified partition function, the normalized free energy, conditioned on a
realization of the randomizer, is

1
Fn (B, h|R) = BN log Zy (B, h|R), (5.46)

and its expected value Fy (B, h) is determined by calculating the expectation over
Q,1i.e., asin (5.42).
By standard derivations, it is readily shown that

9
YN = —ﬂ%ﬁv (B, h) |h=0. (5.47)

Exchanging limiting procedures, one has in the thermodynamic limit

w = I\IIITIEO KEN (54821)

9
= —/3%7'(/3, h) Ih=o0. (5.48b)
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5.5.2 Corresponding Spin Glass

The connection between the sparse recovery problem and the statistical mechanics
is illustrated by introducing the concept of corresponding spin glass. In fact, for
an RLS-based recovery algorithm, we can define an imaginary spin glass whose
macroscopic parameters are the asymptotic performance metrics of the recovery
algorithm. We clarify this connection in the sequel.

Remember the system model in Sect.5.2 with sensing matrices A, ...A; and
observation vectors yq, ..., y;. We define the corresponding spin glass as follows:

Definition 5.8 (Corresponding Spin Glass) The corresponding spin glass is a spin
glass whose microstate is described by v/ = (vq,...,vy), where v € XN for j € [J].
The randomizer of this spin glass is

Q={A1,...., AL y.....¥s}, (5.49)

and its Hamiltonian is
‘o
6(v’|sz) = 5y = A (v’). (5.50)
j=1""

From our earlier discussions, we know that at inverse temperature S, the
microstate in thermal equilibrium is conditionally distributed with

7 _ exp{—ﬂ& (vJ|SZ)}
P (1) == 2 G G1

where the partition function Zy (8|y, A) reads

Zy (BIR) = / exp {—ﬂ8 (vlm)} dv’. (5.52)

LeXN
v;eX

The key property of this spin glass that connects it to our sparse recovery problem
is its ground-state property.

Theorem 5.1 (Ground-State Property) For a given realization of R, assume that the
Hamiltonian has a unique minimizer denoted by v (R). Then, as the temperature goes
to zero, i.e., B 1 0o, the microstate of the corresponding spin glass converges in
distribution to the deterministic vector v! (). This means that for every realization
of @

. Jo) _ |1 v =0l @
ﬁllTIgpﬂ (v |SZ) = [O v %) (@) . (5.53)



5 Analysis of Sparse Recovery Algorithms via the Replica Method 163

In fact, this is a well-known property in statistical mechanics: At zero temper-
ature, the microstate converges in distribution to a realization whose energy level
is minimized. The appellation follows the fact that this realization, i.e., v{ (R), is
called the ground state of the system.

The ground-state property clarifies the connection between our problem and this
spin glass: In fact, the ground state is what the RLS-based algorithm recovers, i.e.,

v (@) =#". (5.54)

In other words, as the temperature goes to zero, the microstate of the corresponding
spin glass converges to the signal samples that are recovered via the algorithm,
i.e., #/. Hence, the performance metrics of this sparse recovery algorithm, e.g., the
asymptotic distortion, are given as the macroscopic parameters of this spin glass at
zero temperature.

The corresponding spin glass shows several other interesting properties. Inter-
ested readers are referred to [2, Chapter 3].

5.5.2.1 Asymptotic Distortion as a Macroscopic Parameter
The main purpose of this chapter is to determine the asymptotic distortion. As indi-

cated, this metric can be defined as a macroscopic parameter of the corresponding
spin glass. To show that, consider the following macroscopic function:

uw (v)) = av (v7:x7), (5.55)

where x7 refers to the true signal samples. The macroscopic parameter defined by
this function is

i 1
Y= 1\1[1& NE {vn (v)} (5.56a)
. H 1 J. .J
= Jim NIE{AV (v ‘x )} (5.56b)

As the temperature goes to zero, 8 1 oo, the microstate v’ converges to %7, Hence,
at zero temperature, we have

S Ty
v — I\II]THOIO NE {AV (x i X )} (5.57a)
= lim Dy (5.57b)
Ntoo

- D. (5.57¢)
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The last equation clarifies how the asymptotic distortion is derived from the
corresponding spin glass.

Using the averaging trick, we can find D from the following expected modified
free energy in the thermodynamic limit

F (6.1 = = lim 5B llog Zn (5, h19). (558)
at zero temperature as
D =~ lim B-F(B. 1) ln—o. (5.59)
proo’ Oh
where the partition function is given by

Zn (B, h|R) = / exp {—ﬂ& (vJISZ) + hAy (vl; xJ)} dv’. (5.60)

v; exnN

5.5.3 The Replica Method

The variational problem derived in terms of the corresponding spin glass suffers
from the same analytical intractability issue we observed in the original problem.
In the original problem, we are unable to find the solution of the optimization
problem in an analytical form.'> This is now transformed to a logarithmic expectation
in (5.58). This is not a trivial task and, hence, keeps the problem still very
challenging.

One should note that from the complexity viewpoint, transforming the original
problem into the variational form does not change the order of complexity. In
fact, for those cases in which the RLS-based algorithm reduces to an NP-hard
problem, the calculation of the corresponding free energy also lies in the class of
NP-hard problems. One can check this fact by considering the simple example
of using an RLS-based algorithm to recover discrete-valued signal samples, i.e.,
when X is discrete. In this case, both the original and variational problems are
NP-hard. Consequently, transforming the original problem into its variational form
only enables us to use the replica method that finds a prediction of the asymptotic
performance without directly solving the problem.

The replica method tries to calculate this logarithmic expectation with a series of
tricks. The first trick is to use the Riesz identity [45]:

Theorem 5.2 (Riesz Identity) For a non-negative random variable X, we have

15 Remember that for some choices of regularization function, e.g., £o-norm, this problem is not
even numerically solvable.
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logE { X%}

: (5.61)

E {log X} = li
{log X} 9111(}

Using this identity, one can rewrite the logarithmic expectation of (5.58) as

0
B llog Zo (5, i) = fim 5 {ZNe(ﬂ D} (5.62)

The right-hand side deals with the logarithm of an expectation. The problem is
however still challenging since 6 on the right-hand side of the identity is a real
scalar: The intractability of logarithmic expectation is now transformed to the
challenge of calculating real moments. Here, the second trick is applied:

Definition 5.9 (Replica Continuity) We assume that the moment function'®

M ©) =E{Z} (B, hi2)} (5.63)

is analytic on the real axis and that this function is analytically continued from the set of
natural numbers to the set of positive reals, i.e., (0, 00).

This second trick is not mathematically rigorous. This is why the replica method
is often called the replica trick. The available results suggest that this is a valid

assumption; however, the proof is still an open problem.
Assuming 6 to be an integer finally resolves the intractability issue at the expense
of losing mathematical rigor. We now can write the moment function as'’

M ©) = E{Z% (B, hI®) (5.64a)

= . xp | — J J. J}

E{H/e p{ ﬂS(vulﬂ) +hAvy (va,x )}dva (5.64b)

:/E{exp{i—ﬁ&(vilﬂ)—&-hAv (v[{;xj)}}dv{“.dvgj. (5.64¢)
a=1

Note that the expectation in (5.64c) should be taken with respect to the stochastic
model given in Sect. 5.2.2.

The latter integral is complicated but tractable. The main remaining task is to
calculate this integral and find it as an analytic function in 6. We then plug it into
the Riesz identity and take the limits. In the sequel, we give a quick overview on the
derivations.

16 Note that the expectation is taken with respect to all random variables.
17 In the notation, we drop the integration set for sake of compactness.
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5.6 The Replica Analysis

The detailed derivation of fjp () from (5.64c) takes many pages and is out of the
scope for this chapter. We hence present the derivation steps and skip the details.
Interested readers are referred to [2, Appendices A-D].

We start the derivation by taking expectation with respect to noise. This task
is done via basic properties of Gaussian integrals. We then use the results in [27,
32, 33] on the asymptotic limit of spherical integrals to calculate the expectation
with respect to the sensing matrices. Some short notes on spherical integrals and
their asymptotic limits are found in [2, Apendix E]. Finally, we use the law of large
numbers to take the expectation with respect to the true signal samples x” .

After taking the expectations, we finally conclude that

v 0) = /exp[—NEM (Q7.8) +ex}dQ’as’, (5.65)

where the exponent function Eyj (Q”, S7) is defined as
J
M (Q7.87) =Y [6; (T,Q)) +uls; Q0] - M(s7). (5.66)
j=1
The matrices Q’ and S” are further defined as

Q' =@ ....Q) (5.67a)
= (S1,..-.S)) (5.67b)

with Q; and S; being symmetric 6 x 6 matrices for j € [J]. The exact definitions
of integral measures dQ; and dS; are given in [2, Appendix A]. Moreover, ey is a
bounded sequence in N that converges to zero as N grows large, and the matrix T

is defined as
1 Bo?
Ti=—|Ts— 7’219 , (5.68)
2 Aj+ 9,30]»

where Iy and 1y denote 6 x 6 identity and all-one matrices, respectively. The
components of the exponent function Eyy (Q’,S?) are further defined as follows:

* The function G; (-) is given by
B
G M) = / tr{MR ; (—2Mw)}dw (5.69)
0

for a & x 6 matrix M.
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« The function M (S’) is defined as

M(Sl>:IE log / exp{E(vJ,xJ|SJ>—l—hAv(vJ;xJ)}va , (5.70)

Xt
v;eX

where the function E (v/, x/|S”) is given by

E(v x |sf)=i S (xj —v,) — Buy (vf). (5.71)

j=l1

In these equations, the notations v’/ and x’ are defined as v/ = (vy, ..., v;) and

T =(x1,...,xy), respectively, where vj € X? and X; = Xjlgx for j € [J]. The
vector 1y« denotes the & x 1 vector of all ones, and X1, ..., Xy are correlated
random variables distributed jointly with py (X, ..., xs). It is worth mentioning
that the term uy (v’) decomposes as

o () =3 u(x)) 57

a=1

using the decoupling property of the regularization function uy (-). Here, v/ =
(Vias - - -» VJa) With v, denoting the a-th entry of v;.

Remark 5.3 The definition of f (#) contains integrals over N-dimensional vectors.
These integrals are transformed into integrals over 8-dimensional vectors in the final
expression. This transform follows several steps and assumptions, e.g., assuming limit
exchange and using the asymptotic limit of spherical integrals. The detailed derivations
can be followed in [2, Appendix A].

5.6.1 General Form of the Solution

The final form of the moment function in (5.65) enables us to apply the saddle-point
method to derive the free energy in the thermodynamic limit. After some lines of
derivation, we conclude that the asymptotic distortion is given by

D= %)I&}ﬁhrlgo E [Av (v]; xj> qg (VJ|XJ)} dv’. (5.73)
vjex?
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The conditional distribution qg (v/|x’) in this equation is a Boltzmann-Gibbs
distribution over the reduced dimension and is defined as

exp {—BEo (v/.x’)}

qp (VJ x’ ) = / , (5.74)

exp {—,BE() (Vj, xj> } dv’

ext
v;eX

where the exponent function is defined as

Eo(Vj,Xj):i(Xj—Vj)TRj (xj —vj) +uy (VJ), (5.75)

j=1

and the expectation is taken with respect to x’. The matrix R; in the exponent
function is further defined as

R =T;R; (-26T,Q}). (5.76)

where the symmetric 6 x 6 matrix Q‘; for j € [J] is calculated from the following
fixed-point equation:

Q= / IE[(xj—vj)(xj—vj)Tqﬂ(VJ|xJ)}va. (5.77)

Vi EXH

Remark 5.4 To see how (5.77) describes a fixed-point equation, note that the condi-
tional distribution g4 (v/|x”) depends on Q5. As a result, the right-hand side of this
identity is calculated as a function of Q;, and (5.77) describes a fixed-point equation in

Q;.

5.6.2 Constructing Parameterized Q’J‘.

The general solution of the replica method is given in terms of the 6 x 6 matrices Q.
The reason for having such a solution is simply the replica continuity assumption. In
this assumption, we postulate that 6 is an infeger. For an integer 6, having a 6 x 6
matrix is completely reasonable. Nevertheless, we aim to find the final solution as
an analytic function in 6, so that we can use it also for real choices of 6.

To find an analytic solution, there exists a classic trick: Assuming a structure
on Q;. In this trick, we limit the search to a set of parameterized matrices. The
parameterization is considered such that the solution of the fixed-point equation
leads to an analytic moment function in 6.



5 Analysis of Sparse Recovery Algorithms via the Replica Method 169

In order to clarify this trick, consider the following illustration: We assume that
Q; is a6 x 0 matrix that is parameterized by L parameters ¢V, ..., ¢'*. This means
that

Q=W (q(l), . .,q<L>), (5.78)

where W; (-) is a deterministic function that determines a 6 x 6 matrix for given
scalar arguments g1, ..., ¢ Note that L is an integer whose value is fixed and
does not vary by changing 6. By inserting this matrix into the fixed-point equation,
a system of L coupled equations in terms of g(V, ..., g is derived. We insert the
solution of this equation system into the replica solution and calculate the limits
analytically.

With respect to this trick, the following question arises: What is a meaningful
structure for Q;? The answer to this question is based on physical intuitions and
mathematical investigations of the energy model. These discussions are out of
the scope of this overview; however, their results can be directly applied to our
study. The investigations in the theory of spin glasses suggest a set of recursively
extendable structures drawn from the assumption of replica symmetry (RS). These
structures start with a simple symmetric parameterization, known as RS, and then
extend to more advanced structures by recursively perturbing RS.

5.6.2.1 Replica Symmetric Solution

RS considers the most basic structure on Q3. which depends only on two parameters
g; and x;, and is given by

Q= %Ie +q;1p. (5.79)

A compact way to represent the RS solution is to invoke the equivalent tunable scalar
setting that is defined below:

Definition 5.10 (Replica Symmetric Equivalent Scalar Setting) Let ¢; and x; be
given for j € [J]. For these parameters, the scalars 512 (xj.4q;) and 7 (x;) are defined

as
2 Xj 9 2 Xj
£ (x7-4)) =[R,»<—Aj)] i [(a,-m—quj)Rj(—M)], (5.80)

A' .
7 (%)) — (5.81)
®i (%)
J
The RS equivalent scalar setting consists of random variables x! = X1y...,XJ)

distributed with py (xJ ) and their noisy observations y; ( Xj.d j) for j € [J] that are
given by
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v (xis4) =xj +2; (xj»4)) (5.82)

with z; (X i q j) being independent Gaussian random variable with zero mean and
variance *g‘]z ( Xj:q j). The estimation of x” from its noisy observations is given by

J
1
1 (xi.q =argmin§ —_— y~—v-2—|—u v/). (5.83)
(0-47) Viex! iy TJ(X/')(] 2 ( )

For this setting, the average distortion is determined as
D(Xjaqj)=E[A(f<’ (xj,q,-);x’)}, (5.84)

where the expectation is taken over all random variables.

The RS equivalent scalar setting describes a multi-terminal scalar setting in
which the variances of noise terms are tuned by ¢; and y;. The scalar samples
X1, ..., Xy in this setting are estimated from the noisy observations via a single-
dimension RLS-based algorithm whose regularization parameter is tuned by ;.
This means that by changing x; and g;, the statistics of this setting and hence
its average distortion D (x;.q;) are changed. The RS solution states that when
x;j and g; are set to specific values, D (x;, ¢;) determines the asymptotic average
distortion of the RLS-based algorithm with decoupled regularization function u (-)
and regularization parameters A, ..., As. These specific values are determined
through fixed-point equations stated below:

Proposition 5.1 (Replica Symmetric Solution) Consider the RS equivalent scalar
system. The RS solution for asymptotic distortion is given by D <)(J*., q}‘), where )(;
and q} satisfy the following fixed-point equations:

q; =E {(x] (X} q,*-) —xj)z} (5.85a)
02 = () E{ (% (. 43) =) 2 (1. 47) |- (5.85b)

The expectation is taken over all random variables, i.e., x’ and 7’ ( X;, q‘/')

It is important to note that the right-hand side of fixed-point equations in (5.85) is
deterministic functions of x}‘ and q}‘. In fact, X (X; q]*) and z; X;, q]*. are random
variables whose statistics are specified by X; and q]*.. As a result, after taking the
expectation, the remaining terms are deterministic expressions containing X} and q]*..

The RS solution is calculated readily. In fact, (5.83) is a J-dimensional opti-
mization that can be solved analytically in various cases. For most well-known
RLS-based recovery algorithms, such as convex £, and £, ,-norm minimizations,
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the RS solution gives a valid prediction of the asymptotic distortion.'® Nevertheless,
there are a few particular cases in which the RS solution is invalid.'"” This
inconsistency is due to the simplicity of the RS structure. For those cases, one needs
to break RS.

5.6.2.2 Replica Symmetry Breaking

For scenarios in which the RS solution is not valid, e.g., £p-norm minimization, the
search for Q% is extended to a wider set of parameterized matrices via the replica
symmetry breaking (RSB) scheme. This scheme was introduced by Parisi in [42].
The scheme perturbs the RS gradually via a recursive technique. This perturbation
is called breaking.

Definition 5.11 (Replica Symmetry Breaking) Let 6 be an integer multiple of an
integer ¢ and Qg represent a { x ¢ matrix. RSB finds the new 6 x 6 matrix Qg4 as

Qe+1=1p ® Q¢+ qes11y (5.86)
¢

for some real scalar g, 1. Here, ® denotes the Kronecker product.

By letting Qo be an RS matrix, the RSB structures are recursively generated.
The RSB solutions are of more complicated form. We hence skip them and refer
interested readers to [2, Chapter 4].

5.7 Applications and Numerical Results

The asymptotic characterization of RLS-based recovery algorithms enables us to
address several tasks that rise in various applications of sparse recovery. In this
section, we briefly go through a few of them. The scope of these applications
however is not limited to these instances. We have given more discussions in this
respectin [1, 2, 4-16, 46—48].

18 There are in general various ways to test the validity. The most common test is the zero-
temperature entropy test, see [2]. For computationally feasible approaches, one can compare
the given solution with large-dimensional (but still finite-dimensional) simulations; for instance,
see the consistency the RS solution with numerical simulations in [2, Chapter 6] for £;-norm
minimization.

19 The invalidity of the solution in these cases is shown by the zero-temperature entropy test. For
some particular cases, the RS solution violates the known rigorous bounds.
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5.7.1 Performance Analysis of Sparse Recovery

The most relevant application of the results is to employ them for asymptotic
investigation of sparse recovery algorithms. A long discussion in this respect is
found in [2, Chapter 6], as well as [5, 8, 13]. As a particular instance, we employ
the asymptotic results to study the impact of spatial correlation in multi-terminal
compressive sensing.

For sake of visualization, we consider a simple setting with two terminals. These
terminals observe signals x; (¢) and x, (¢) that are jointly sparse. We assume that the
joint sparsity follows the common-innovation model; see Sect. 5.2.4.3.

The fusion center can recover the sparse signal via two alternative approaches:

1. Since each signal is sparse, the fusion center can use two separate sparse recovery
algorithms to recover each sparse signal individually.

2. A joint recovery algorithm can be used to take into account the spatial correlation
among the terminals.

The Slepian—Wolf theorem suggests that joint recovery outperforms an individual
scheme [22]. This is in fact a well-known behavior that has been observed in several
respects in the context of compressive sensing; see, for example, [18, 21, 24, 31]. To
investigate this issue, we consider a sample RLS-based recovery algorithm for each
approach and compare their performances using the asymptotic characterization.
For the individual approach, we consider the well-known LASSO algorithm. This
algorithm is realized by setting the regularization function to

uy (v1,v2) = [lvrllt + llvz2]1. (5.87)

As a comparable joint recovery, one can use an RLS-based joint recovery scheme
with convex utility, e.g., the group LASSO algorithm in which

uy (v1, v2) = |lvy, v2fl2,1. (5.88)

In the sequel, we use the two-dimensional LASSO technique proposed initially in
[8]. This algorithm extends the individual LASSO recovery approach by modifying
the regularization function as

uy (v1,v2) = vrll1 + llv2ll1 + @llvr + avall (5.89)

for some scalars ¢ and «. The intuition behind this algorithm is that any linear
combination of jointly sparse signals is also sparse, and its sparsity level depends on
the spatial correlation. The study in [8] has shown that this approach outperforms the
classic group LASSO technique for the common-innovation joint sparsity model.
Using the RS solution, we can calculate the asymptotic MSE for both approaches.
The asymptotic MSE is determined from the RS solution by setting the distortion
function to the squared Euclidean distance between the true and recovered pairs.
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Fig. 5.1 Rate-distortion 1
region for both joint and

individual LASSO schemes,

ie., (5.87) and (5.89),
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P2

Joint
- = = Individual

0.1

0.1 1
P1

Using the asymptotic MSE, we plot the rate-distortion region for both schemes. It
is found by fixing a threshold MSE and finding all pairs of compression rates, i.e.,
(p1, p2) for which the achievable MSE is smaller than the threshold. This region is
shown in Fig. 5.1 for a particular example in which the common part is 30% sparse
and each terminal has a 10% sparse innovation component. The tunable factors in
both algorithms are optimized to achieve minimal MSE. As the figure shows, using
a spatially coupled regularization improves the recovery performance significantly.
The Bayesian viewpoint illustrates this observation as follows: The postulated prior
distribution of an RLS-based algorithm with spatially coupled regularization takes
into account the spatial correlation and hence outperforms the individual approach.

5.7.2 Tuning RLS-Based Algorithms

Compressive sensing is not the only application of sparse recovery. In fact, sparse
recovery is used in various applications, such as communications, networking, and
machine learning; see some instances in [1, 2, 6, 7, 9-12, 14-16, 40, 46—48]. In
these applications, there is often a tuning task: Find the regularization parameters
of an RLS-based algorithm, such that the performance is optimized. This task is
readily addressed via the asymptotic characterization of the RLS-based recovery

algorithms.
We can illustrate this application by considering a simple example of spatial
modulation. The details on this example can be followed in [11, 16]. In spatial

modulation, the information is encoded in the support of the transmit signal: In
each symbol interval, based on the data bits, a subset of available transmit antennas
is set on and the remaining are turned off. As a result, the transmit signal is sparse,
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and hence, an effective detection scheme at the receiver is to use a sparse recovery
algorithm.?”

The common sparse recovery algorithms used in spatial modulation are for-
mulated as RLS-based recovery schemes. Examples are the classic LASSO and
box-LASSO techniques. We already know the classic LASSO scheme from the
previous section. The box-LASSO technique is moreover an extension of LASSO
in which the set X is restricted to a box, e.g., X = [— B, B] for some real B. This box
restriction is shown to enhance the performance, when we detect discrete-valued
signals [34, 51].

One of the challenges in these techniques is to find the optimal regulariza-
tion parameters, which result in minimum bit error rate. Such a task is usually
addressed via iterative tuning techniques. Nevertheless, in high data rates, the
tuning techniques impose extra processing load on the system. The asymptotic
characterization enables us to address this task analytically and hence avoid the
extra load. An instance of tuning via the asymptotic characterization is shown
in Fig.5.2. In this figure, a multiuser uplink scenario is considered in which the
LASSO and box-LASSO techniques are used for detection. Here, P denotes the
transmit power and o2 is the noise variance at the receiver. The sparsity of the
transmit signal is assumed to be 12.5%. The figure shows the optimal regularization
parameter, denoted by A*, against log P/o2. Although these results are derived
via the asymptotic characterization, the study in [16] shows that they closely
track the simulation results. Further discussions regarding the tuning of RLS-based
algorithms via asymptotic results can be followed in [2, Chapters 6 and 7], as well
as [15].

Fig. 5.2 Optimal
regularization parameter for 0.6 Box-LASSO
LASSO and box-LASSO : - - LASSO

0.4

/l*

0.2

6 8 10 12
log P/o? in [dB]

20 For sake of brevity, we skip the detailed system model. Interested readers are referred to [11, 16]
and the references therein.
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5.8 Summary and Final Discussions

The replica method is a powerful tool for large system analysis, as seen in this
chapter. Following the prescription suggested by the replica method, we have found
an analytic expression for the asymptotic distortion. The result could not be derived
via basic analytical tools. This demonstrates the power of the replica method. To
keep the contents of this chapter straightforward, we have dropped the detailed
derivations and only presented the major steps. The details can be found in [2].

The presented analysis is extendable in various respects and results in various
further interesting conclusions. Going through all of these extensions and conclu-
sions is not possible within a single chapter. We hence skip them here and refer
interested readers to [2] and the references therein. Nevertheless, to give you a flavor,
we conclude this chapter with a few highlights.

5.8.1 Decoupling Principle

Although this chapter focused on the derivation of asymptotic distortion, the result
can be further used to prove the so-called decoupling principle. This principle
indicates that in the asymptotic regime the joint distribution of x;/ and £,/ converges
to the one described via an equivalent scalar setting, often called the decoupled
setting. This decoupled setting is shown to consist of an equivalent additive noise
term and a decoupled recovery scheme; see [2, Chapter 5]. The interesting point is
that the decoupled recovery scheme remains the same for all solutions, i.e., the RS
and RSB solutions, and it is only the distribution of the equivalent noise term that
changes. A comprehensive illustration of the decoupling principle and its detailed
derivations are given in [2, Chapter 5].

5.8.2 Nonuniform Sparsity Patterns

In various applications, the sparsity of signals varies over time. This form of sparsity
is often called nonuniform, whereas the normal form is considered uniform. For
nonuniform sparse signals, the stochastic model of samples is not i.i.d. anymore.
They are still independent;>' however, the joint distribution changes through time.
The analysis in this chapter extends to nonuniform patterns by some modifications.
Some results in this direction can be followed in [3, 9].

21 Since temporal correlation is usually avoided by classic sampling approaches.
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5.8.3 Extensions to Bayesian Estimation

In the Bayesian framework, the considered RLS-based algorithms are seen as MAP
estimators. This is however not the only approach for Bayesian inference. In many
other applications, e.g., signal processing and machine learning, other forms of
Bayesian inference are used, e.g., the minimum MSE estimator or more generally,
estimators with minimal posterior distortion; see, for example, [40].

The replica-based analysis in this chapter is readily extended to these estimators
as well. The derivations follow the same steps as illustrated in this chapter, i.e.,
finding a corresponding spin glass and interpreting the desired metrics as its
macroscopic parameters. The key difference here is that for other estimators, the
desired metrics might be a macroscopic parameter at a non-zero temperature.

5.9 Bibliographical Notes

Asymptotic analysis of signal recovery schemes roots back to early studies on
linear recovery techniques, e.g., studies in [28, 49]. The findings indicate that the
asymptotic properties of linear recovery schemes are equivalently described by a
simple scalar setting. Miiller and Gerstacker conjectured later that similar behavior
extends to most nonlinear schemes, as well [38]. This conjecture was originated
from the analytic results reported in a series of studies that employed the replica
method to derive the asymptotic performance of multiuser detectors. This series of
works start with the study by Tanaka in [52]. A key milestone in this direction is
achieved in [29], where the authors determine the asymptotic performance metrics
of a mismatched minimum MSE recovery scheme. This result is extended to MAP
estimators in [44] using standard large deviations techniques.

Early analytic investigations in compressive sensing follow rigorous approaches.
An instance is the studies by Donoho and Tanner in [19, 20], in which random
geometry is utilized to show the phase transition of linear programming when
it is used to perform sparse recovery. A similar approach is taken [17, 50] to
study the performance of ¢;-norm minimization for sparse recovery. To address
the fundamental limits in compressive sensing, an alternative information-theoretic
approach is followed by Wu in [57]; see also [58] and the references therein.

The strong connection between sparse recovery and multiuser detection was
initially illustrated in several lines of work; see for example [30]. The study
in [44] further extends the replica-based characterizations to address MAP-type
sparse recovery algorithms. These initial asymptotic analyses rely on the earlier
derivations and hence enclose restricted system models, e.g., single terminal and
i.i.d. sensing matrix. These restrictions are addressed in the later lines of work by
two different approaches: They either develop a framework by which the results are
extended to wider system models, e.g., university laws [41], or they deviate from
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the earlier derivations and use the replica method explicitly to derive the asymptotic
characteristics; see for instance [35, 36, 54-56].

These analyses were however limited to RS investigations. The complete replica

analysis of RLS-based algorithms was given in a series of works in [2, 4, 5, 13]
providing both the RS and RSB solutions.
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Chapter 6 )
Unbiasing in Iterative Reconstruction Qe
Algorithms for Discrete Compressed

Sensing

Robert F. H. Fischer and Carmen Sippel

6.1 Introduction

Undoubtedly, compressed sensing (CS) [12, 15, 19] is meanwhile a well-established
and widespread method in various fields of mathematics, signal processing, and
engineering. Thereby, the interest in compressed sensing first arose from a theo-
retical (mathematical) point of view, but this line of research was closely followed
by the study of the use and of the performance of compressed sensing in various
practical applications. In this chapter, we study reconstruction algorithms from a
communications theory point of view and for the use in communication scenarios.

6.1.1 Compressed Sensing Problem and Reconstruction

Algorithms
We consider the following compressed sensing problem: based on the observation
y = [y1, y2, ..., yu1" € RM, which is obtained via the known sensing matrix
A =Ja;] e RM*N M < N, by!
y=Ax+n, (6.1)

! Notation: Random variables and random vectors are typeset in sans-serif font; realizations in
conventional italic (math) font. Vectors are displayed in bold lower-case letters, matrices in bold
upper-case letters. The transpose and the inverse of A are denoted by ATand A1, respectively. A
diagonal matrix of appropriate size with the entries of the vector a as diagonal elements is denoted
by diag(a). I is the identity matrix. The £, norm is written as || - ||,. Ex{ - }: (element-wise)
expectation w.r.t. random vector x. f,(x): probability density function of random variable x.
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the vector x = [x1, x2, ..., xN]T € RY should be recovered. Thereby, it is
assumed that x is sparse, meaning that only a few non-zero components are present.
The elements are drawn i.i.d. from a known marginal probability density function
(pdf) tx(x), 1.e., fx(x) = ]_[lNzl fx(x;); a Dirac component at x = 0 accounts for the
sparsity.

In practice, no noise-free measurements will be available. This fact is modeled
by the additive noise term n € R™. We follow the usual presumptions that the
elements of n are i.i.d. Gaussian (marginal pdf f,(n)) with mean zero, variance a,%
per component, and that they are independent of the signal x.

Although the standard compressed sensing problem is non-convex due to its
sparsity constraint, it can be relaxed to an £j-based problem [13], which can
efficiently be solved by convex optimization techniques, see [9].

Apart from £1-based optimization, in the literature, there is a vast amount of
algorithms for signal recovery in compressed sensing, such as orthogonal matching
pursuit (OMP) [49], compressive sampling matching pursuit (CoSaMP) [43, 44],
iterative hard thresholding (IHT) [5, 6], iterative soft thresholding (IST) [14],
approximate message passing (AMP) [3, 17], and vector AMP (VAMP) [53, 54]
(similar, but not identical approaches are orthogonal AMP (OAMP) [38] and
iterative MMSE estimation and soft feedback (IMS) [63]) to mention only the most
prominent ones.

6.1.2 Discrete Setting

In the vast majority of the literature on compressed sensing the non-zero elements
of x are drawn from the real numbers. However, in a number of communication
applications the non-zero elements are deliberately, by design, drawn from a finite
set with real-valued elements (e.g., an amplitude-shift keying constellation [50]).
We will discuss iterative reconstruction algorithms and the required processing
steps for the general setting, i.e., arbitrary marginal pdfs f.(x). However, we
will eventually give the respective cost functions and show results from extensive
numerical simulations for the particular discrete setting where x; € {—1, 0, +1}
with probabilities {p1, po, p1} 2p1 + po = 1 and p; = s/(2N) when s denotes
the sparsity). The signal pdf is hence given by (8(x) denotes the Dirac function)

fx(x) = p1d(x + 1)+ pod(x) + p1 d(x — 1) . (6.2)

Notice that for real-valued sensing matrices A € RM*V the measurements y € RM
are still real-valued.

Particular examples where discrete-valued sparse signals may beneficially be
exploited in communications are sensor networks, where N low-activity sensors
independently transmit binary data and a fusion center with M antennas has to
reconstruct which sensors were active and which data has been transmitted [68].
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Further applications are peak-to-average power reduction in orthogonal frequency-
division multiplexing [23], the detection of pulse-width-modulated signals in
radar [20], code-book excited linear prediction (CELP) source coding [18], and
compressed-sensing-based cryprography [21].

This discrete compressed sensing is related to model-based compressed sensing
[1]; the signal model is given in form of the distribution of the discrete signal
elements. However, it should not be confused with /-bit compressed sensing where
the elements of the measurement vector are quantized, e.g., y € {:tl}M , but still
x eRY, e.g., [8, 31, 70]. This is of particular interest when cheap (one-bit) analog-
to-digital (A/D) converters are employed in the acquisition of measurements.

Naturally, the knowledge on the discrete nature of the signal should be utilized in
the signal reconstruction. Meanwhile most classical recovery algorithms have been
adapted for discrete compressed sensing, e.g., [26, 34, 60-63]. The estimation of
a discrete-valued vector is a combinatorial problem in general; it is non-convex,
even if the £( constraint is relaxed to an £1 one. In [47], an extension of the simplex
algorithm, called branch-and-cut algorithm, has been proposed. Unfortunately, these
algorithms have a prohibitively high computational complexity and in their analysis
typically bounded noise is assumed, for a detailed discussion see [45].

The signal recovery problem in compressed sensing has also been tackled from a
channel coding perspective, e.g., [11, 65, 69]. The relations are particularly obvious
when dealing with discrete compressed sensing. AMP [3, 16, 17, 40] is derived
from the generic concept of message passing, which, in the form of the sum-product
algorithm, is very successfully utilized for the decoding of low-density parity-check
codes [35] (or other sparse graphical models, e.g., [29]). The message-passing
approach can be adapted to the situation where an a-priori distribution of the sparse
vector is known, cf. [17, 36]. This resulting algorithm is often denoted as Bayesian
AMP (BAMP) [2, 51], cf. also generalized AMP (GAMP) [52]. BAMP/GAMP can
be used straightforwardly for the discrete scenario.

Typically, in communication scenarios, no perfect signal reconstruction is
required but only some folerable error ratio should not be exceeded. Consequently,
in the numerical examples we assess the error rate; as typical in digital
communications, the order of magnitude which can be achieved is relevant.

6.1.3 Outline of the Chapter

In this chapter, we discuss iferative algorithms for compressed sensing. We give
an overview over the relevant approaches available in the literature and introduce
improved processing steps—which we show to be unbiasing operations—for the
information exchange between the building blocks of the iterative schemes. Unless
otherwise stated, the exposition is valid for general a-priori pdfs but we will give
numerical results for the discrete case. The comparison of the continuous and
discrete case is beyond the scope of this chapter.
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The chapter is organized as follows. We review message-passing approaches
from the literature in Sect. 6.2 and have a look at how the problem can be separated
into feasible parts. In Sect. 6.3, this leads us to known iterative (“turbo”) algorithms,
where two problems are alternatingly solved. Thereby, the information exchange
between both parts is of importance. In Sect. 6.4, this step is discussed and we
represent it as an unbiasing operation. Using this knowledge, we propose improved
VAMP-type algorithms and assess them in Sect. 6.5 by means of numerical simula-
tions. The characterization of the reliability by an average variance or by individual
variances is studied.

6.2 Problem Statement and Iterative Algorithms

The task of reconstruction algorithms is to produce an estimate X given the observa-
tion y, i.e., to infer x from y, knowing the sensing matrix A. The optimum estimate
in the minimum mean-square error (MMSE) sense is given by the conditional mean”
[33, 48]

x=Ex |yl = fxfx|y(x) dx , (6.3)

where fjy(x) is the posterior (conditional) pdf induced by model (6.1). Alterna-
tively, the maximum-a-posteriori (MAP) estimate may be sought, which is given
by

X = argmax fyy (x) . (6.4)
X

Since fyy(x) > 0, w.l.o.g. we can write (f is a positive constant)
fuly(¥) = 5 e PEr (6.5)
where Z = [ e P Ey®) dyx is the so-called partition function, which normalizes the
distribution. The MAP estimate is then equivalently given as the minimization of

some energy function

X = argmin E,(x) . (6.6)
X

In this section, we review message-passing approaches available in the literature
and the underlying factorization of the problem at hand in order to solve (6.3)

2 1f no limits are given for integrals, the lower and upper limits are —oco and oo, respectively.
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or (6.4) in practice. The concept of exponential families, which is required in the
following sections, is also briefly summarized.

6.2.1 Factorization and Message-Passing Approaches

Problems (6.3) and (6.4) cannot be solved straightforwardly if the dimensions M
and N are large. Reasonable approaches can be derived when considering the
structure of the problem more closely.

Due to the above assumptions (i.i.d. data, additive i.i.d. noise, independent of the
data), the conditional pdf can be written as

1
fyjy(x) = ——f fx(x
xly( ) fy(y) ylx(y) x(X)
=c - fp(y — Ax) fx(x)
_ M T N ‘
=c [ _ faty —ajo - []_ tt) (6.7)
where c is a constant and a}— is the jth row of the sensing matrix A = [a1 .- -aM]T.
Moreover, assuming Gaussian noise, i.e., f,(y —Ax)= 1 = e’”y’Ax”%/(z"r%),
the MAP estimate is equivalently given by 7%h
£ = argmin (#ny — Ax|2 - log(fx(x))> . (6.8)
X n

When a Laplacian prior pdf is assumed — log(fx(x)) = const + A ||x||; and (6.8) is
specialized to LASSO (least absolute shrinkage and selection operator) [66]. Only
when assuming a Gaussian prior pdf, (6.8) is a least-squares problem with Tikhonov
regularization [10], or a linear MMSE equalization problem, which can be solved
analytically.

6.2.1.1 Message-Passing Approaches

The factorization (6.7) into M + N factors immediately leads to approaches widely
used in practice. We now give a brief overview over the main ideas; for the details
the reader is referred to the literature.

Pdf-Based Message Passing In [39] it is shown that when neglecting the depen-
dencies of one element x; on the other elements of x (and y; on y), the problem
can be dissected into two coupled equations for updating (conditional) pdfs. This
first step establishes a pdf-based message passing which is tackled with the sum-
product algorithm [35, 37]: the nodes are the elements of x accompanied by a
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“variable node” update and the elements of y accompanied by a “measurement
node” update, respectively. Noteworthy, at all variable nodes, for each measurement
node an individual message (pdf) is calculated and sent back (and vice versa) leading
to a huge complexity. This approach is still impractical but it leads to interpretations
which can subsequently be exploited.

In [67] it is shown that (on cycle-free graphs) the sum-product algorithm
converges to a solution ¥ which corresponds to stationary points of the (Bethe)
free energy in an associated system (x is the state of N particles, Ey(x) is
the corresponding Hamiltonian). Alternatively, the Helmholtz free energy Fg =
—log(Z), where Z is the partition function in (6.5), may be considered which
describes the problem from a different point of view, cf. [32]. Having tractable
approximations of these energy quantities may, thus, provide approximations of the
initial problem.

Mean and Variance-Based Message Passing When (implicitly, in the large-system
limit) assuming Gaussian random variables, within the iterations only (conditional)
means and variances have to be updated. Moreover, for Gaussian pdfs MMSE and
MAP criterion coincide; the sum-product algorithm coincides with the max-product
algorithm [37]. Defining the edge-dependent residuum r; ; &f Vi = D1 G
the problem is dissected into “variable nodes” and “residuum nodes” (instead of
measurement nodes) [39]. This procedure still has high complexity as individual
messages (mean and variance) per edge in the factor graph have to be calculated.
These updates follow the philosophy of message passing, where each node passes
extrinsic information back, i.e., the information gained via the other messages.

This second step is the core idea of many practical inference techniques, such
as expectation propagation (EP) [41] or expectation-consistent (EC) approximate
inference [46]. On the one hand, the pdfs to be handled are replaced by pdfs
from some family; then only parameters representing the sufficient statistics have
to be specified. Of special interest are exponential families (cf. Sect.6.2.2), since
Gaussian pdfs are special cases thereof. On the other hand, all factors in (6.7), except
the currently (in the respective node in the message-passing algorithm) considered
one, are replaced by a pdf from the chosen family. Thereby, the local calculations
become feasible.

Approximate Message Passing Finally, two main modifications lead to the practical
algorithm of “approximate” message passing (AMP). First, the edge-dependent
messages are written as node-dependent (averaged) versions plus some deviation.
Second, approximating these deviations via a first-order Taylor series expansion,
simple update equations are obtained. For details see [39]. Now, iterations between
approximative “variable nodes” and approximative “residuum nodes” are carried
out. Only averaged (node-, not edge-dependent) message are passed and only
average reliabilities (variances) are tracked. The messages are no longer exact
extrinsics but averaged and approximated versions and also not the posteriors of
the nodes. AMP is a well performing, low-complexity algorithm; its convergence is
well understood via state evolution. However, since only approximate quantities are
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tracked, no intuitive understanding is possible, cf. [55]. In particular, the Onsager
term [39], known from statistical physics, has no direct interpretation.

Although being derived from the “message-passing” philosophy—where the
processing is done fine-grained and based on a very local view of the node—, AMP
iterates between two parts in a “turbo” fashion—a very global view on the vectors
x and r is taken; no per-edge messages are calculated. This third step is viewed in
a more general way in the following.

6.2.1.2 Partitioning of the Problem

The above discussion reveals the general principle that an intractable problem is
transformed into a tractable one by (i) treating groups of factors in the factoriza-
tion (6.7) jointly and (ii) substituting such groups by a pdf from a chosen family.
By iterating over the factors in a message-passing approach, the desired solution is
found iteratively.

Besides treating all factors individually (as done in mean- and variance-based
message passing), the most obvious partitioning of the problem is to combine either
all M factors belonging to the observations into f,(n) or all N factors pertaining
to the variables into fx(x). The extreme case of considering both combinations
and resorting to the two-factor representation (6.7) lead to the “turbo” view and
is studied in detail subsequently. The corresponding factor graphs are depicted in
Fig. 6.1. These graphical tools visualize the dependencies of the factors (rectangular
nodes) of the variables (circle nodes); an edge symbolizes that the variable is an
argument of the factor [35]. The factors corresponding to the prior knowledge of the
signal (signal constraints) are shown on the top of the figures, whereas the factors
corresponding to the observations (channel constraints) are shown at the bottom.

The “mixed” approaches, not shown in the figure and not discussed in this
chapter, enable some degree of freedom in the order the factors are processed
(scheduling). This can be utilized for an optimized sequential update.

folxn) fx(x2) ... f(x) ... f(xn) fx(x)
L 0

faly1 —aix) fo(y; —ajx) folym — anx) fa(y — Ax)

Fig. 6.1 Factor graphs corresponding to the message-passing view (left: all factors are treated
individually) and to the turbo view (right: the factors corresponding to signal and channel
constraints, respectively, are combined)
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For example, when the prior factors are kept separately while combining the
factors belonging to the observations, a sequential processing of the variables x; is
enabled, e.g., [58]. Compared to the factorization with only two factors, where a
single variable x; is processed at the same time as all other variables, this has the
advantage that the reliability of this variable can benefit from insight into previously
considered variables leading to faster convergence. This also means that the variance
cannot be tracked on average for the signal vector, but, instead, individually per x;.

In cases where the prior pdf is not completely factorizable, see, e.g., [4], this
factorization does not go down to the individual variables; nevertheless, it can be
applied to the respective compounds of variables.

6.2.2 Exponential Families

We now give a brief review of exponential families, which are well-suited for the
use as substitute pdfs in iterative schemes.

A pdf of an N-dimensional random vector x is member of an exponential family
if it can be written as [42]

i) = % FayelTs® 69)

Thereby, f(x) can be any non-negative real-valued function, § € R”" represents
the natural parameters, g(x) € R" is a vector-valued function of x which reflects
the sufficient statistics of x, and Z (@) is the so-called partition function which
normalizes the pdf. This important class of pdfs encompasses a wide range of
common distributions, in particular, the Gaussian one.

If we specify first- and second-order moments by choosing (A > 0)

-
g) =[x, ..oy xy, =327 (6.10)

0=, .... hn AT, 6.11)

for f(x) = 1 a Gaussian pdf which is rotationally invariant about the mean is

specified; the N-dimensional mean and a single (average) variance characterize the
pdf—we call this case average variance (AvgV). Alternatively, we can choose (A; >
0)

gx) = [x1, ..o, xn, —pxd o, —3x%] (6.12)

0=[, ... \ws A1 ,.... Ay ] : (6.13)



6 Unbiasing in Iterative Reconstruction Algorithms for Discrete Compressed Sensing 189

here (for f(x) = 1) a Gaussian pdf with individual variances per dimension is
specified; the N-dimensional mean and the N individual variances characterize the
pdf—we call this case individual variances (IndV). Conveniently, we define

T A =AI, AvgV
A= [Al, AN] , . . (6.14)
A =diag(Aq,...,Ay), IndV

Please note that exponential families have the convenient property that [42]

def dlog(Z(x))
L= Edgn)=——"2= . (6.15)
Hence, the vector u contains the means m; = E{x;}, i = 1,...,N, and
quantities from which either the average variance oeizvg = % SN E{(xi —m;)?) or

the individual variances oiz = E{(x; — m,-)z} can be deduced. Moreover, natural
parameters and variances are connected by

=" A= Avev
= > = 5 Vg
A
. (6.16)
n; 1
)Liz—, Ai:_Z’ IndV
A; o

Remarkably, for Gaussian pdfs fyy (x), i.e., pdfs from an exponential family with
parameterization (6.10), (6.11) or (6.12), (6.13), MMSE and MAP criterion coincide
as

Ex{x|y} = argmax fyy(x) . (6.17)
X

Finally, we note that a given pdf can be projected onto an exponential family; the
pdf is assumed to be of the form ex(x) = ﬁh(x)e‘ﬂg (*)_ Thereby, the projection
is done such that the Kullback—Leibler divergence D(-||-) between f y(x) and ex(x)
is minimized, i.e.,

Ty (x)

0% = argimin D(f,(6)llex(x)) = argmin f fx‘y(x)log< T )dx . (6.18)

It is straightforward to show that this minimization is equivalent to adjusting 6
such that the moments (defined by g(x)) of ex(x) coincide with the ones of the
initial pdf fy,(x). This fact also holds the other way round: if the moments match,
the Kullback—Leibler divergence between the two involved pdfs is minimized [56].
Exponential families thus give the best representation under a moment constraint.
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6.3 Expectation-Consistent Approximate Inference

As shown in the last section, the simplest way of factorizing the posterior pdf is
given by separating the “signal” and the “channel” part, i.e., (6.7) can be rewritten

as (3 = c exp (|1y13/Q202)))

O T T
fay (@) = [, ) exp (x Fx + fyx> : (6.19)
fs(x) fe(x)
def 1 T def 1 T . o .
where f, = pA yand F = —20—2A A, and Z is the partition function.

For a factorization into two general factg)rs, Opper and Winther [46] proposed a
framework called expectation-consistent (EC) approximate inference; subsequently
it was generalized in [25]. Applying this framework to our compressed sensing
problem, diverse practical recovery algorithms result.

In this section, we briefly review the derivation of the algorithms and address the
consequences. Two classes of recovery schemes which emerge from the framework
are discussed in more detail. The exposition is valid for any prior pdf f,(x);
however, the associated cost functions are eventually stated for the particular
discrete setting (6.2). Results from numerical simulations are postponed to Sect. 6.5.

6.3.1 Derivation and Optimization Procedure

As motivated in the above review of message-passing approaches, instead of
calculating Ex{x | y} directly, the partition function Z is often considered. To
that end, we choose a vector-valued function g(x) which represents the moments
(usually mean and variance) we want to estimate/track within the algorithm (cf.
Sect. 6.2.2). Then, by expanding with 1, the partition function can be written as

fos(x) Je(x) dx
= Zs(05) / folx)e i@ 75 f(x)e 08 gy | (6.20)

As Z is also 1ntractable a manageable approximation is desired. To that end, the
signal part - (0 ) fs(x)eo 8 of the integrand is replaced by 7 (10 ) o8 ) which
is called the overlap [46] (both are valid pdfs). This leads to

2~ Zica(0.00) = 2,00 [ fule e 2o Me oy
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with 0. < 9, — 0,
 Z,(6y)

Zs(05) Zc(0.)
 Zo(8,)

0Tg(x) 4o —
/ ST Ay = = )

, 6.21)

where m fc(x)eozg(x) is the channel part. The partition functions of the
three involved pdfs (which are all members of an exponential family and, thus,
characterized by the parameter vectors 6, 6., and 6, respectively) are given by

Z.(0,) = / fux)e® 8@ gy (6.22)
Z(80) = / folx) 8@ dx | (6.23)
Zo(0,) = / P08 gy | (6.24)

Instead of treating the partition function, the negative log-partition function
—log(Zgc (05, 0,)) = —log (Zs(as))_ log (Zc(oo - 05)) + log (Zo(oo)) (6.25)

may be considered. Since 6. = 0, — 0, only two free parameters are present.

Noteworthy, instead of approximating the signal part in the integrand, one can
alternatively replace the channel part by the overlap. This leads to the adequate
expression

—log(Zgc,c(Oc. 00)) = —log (Zs(0o—0.))—log (Zc () +log (Zo(8,)) . (6.26)

Obviously, Zgc s and Zgc —and thus the therefrom calculated estimate—are
only sensible approximations if the parameters 6y, 6, (or 0., 6,) are tuned suitably.
In [46] it is argued that the parameters should be adjusted such that —log(Zgc s)
(—log(Zgc,¢)) is stationary.

A practical approach is to do this optimization iteratively. First, given 6, as the
negative log-partition function is a concave function in @ (or 6.), a maximization
w.r.t. @5 (or 6.) has to be performed—the unique maximizer is searched (subse-
quently we consider Zgc s; for Zgc ¢ the procedure is the same)

0% = argmax { —log (Zs(05)) — log (Zc (8o — 05)) +1og (Zo(0,)) }
0

L(0)

= argmax {L(65)} (6.27)
[

S
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with the obvious definition of the cost function Lg(fs). A necessary condition is

ﬁLS(GS) . 0, which, considering the property (6.15) of exponential families,
actually requires

d d
a_osLs(as) = 8_05( — log (Zs(os)) —log (Zc(ao - 05)))

— 1 (05) + Re(Bo —05) = 0. (6.28)

Hence, the optimization problem (6.27) is equivalent to matching the moments of
the signal and channel part. Contrary to what is stated in [46], the moment matching
is not an additional constraint. In summary, in the first step, 6 (or ) is adjusted
either such that L¢(fs) (analogously L.(f.)) is maximized or, alternatively, such
that the moments of the signal and channel part match.

Second, given 07 (or @}), the parameter 0, has to be adjusted such that
—log(Zgc,s) (or —log(Zgc,c)) is stationary. This leads to

5 . 5 .
50, ( — log (Zgc,s (07, 00))) = 20, (const —log (Zc(0, — 67)) + log (ZO(OO)))

=0—p.(0,— 0:) + 1o(0o)

and obeying (6.28) = —p(07) + po(0,) Z0. (6.29)

Again, as above, the optimization problem is equivalent to matching the moments
of the signal part and the overlap. Since u, is given and the expectation parameters
and the natural parameters of the overlap have a simple connection (cf. (6.16)), this
can be done immediately. For example, when g(x) and 6, are chosen according
to (6.10) and (6.11), we have

1 mg, i .
Ao=—, hoji =—5 i=1,...,N. (6.30)
Iof o¢
Finally, the means give the desired estimate
A T
x =[mgy1, ..., mgnN] . (6.31)

Noteworthy, any function g(x) which defines the exponential family can be used
in principle. Of special interest are the parameterizations (6.10) and (6.12), which
in [46] are called “uniform diagonalization” and “vector-valued diagonalization,”
respectively. Here, Gaussian pdfs are utilized and either an average variance O’azvg or
individual variances 012, e a]%, are tracked to characterize reliabilities.
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6.3.2 Algorithms

The steps for adjusting the parameters 65 (or 6.) and 0, directly lead to two
classes of algorithms which are subsequently discussed in more detail and which
are specialized to the discrete setting.

6.3.2.1 Optimization: ECopt,, ECopt, and ECseq, ECseq,

The maximization of the concave cost function Ls(6;) (or L.(f.)) may be replaced
by a minimization of the convex function —2 Ls(65) (the scaling by the factor 2 is
introduced for convenience). To that end, any convex optimization algorithm can be
applied, see, e.g., [9]. For model (6.1)/pdf (6.19), the function to be minimized in
the first step either reads

—2L,®) =2 log(Z(,) ~ log ((det(Ao — A+ F))
+ Ro—As + )T (Ao—As + F) ' Ao—As +£,) . (632)
or  —2Le(Be) =2 log (Zs(8o — 6.)) — log (det(Ac + F))
+ et fTAAH D) e+ f)) . (6.33)

Since gradients (w.r.t. @5 and 6, respectively) can easily be calculated, first-order
minimization algorithms are preferable over zeroth-order algorithms (gradient-free
optimization). However, this optimization step has significant numerical complexity.

For the discrete compressed sensing setup with prior pdf (6.2), after some
manipulations, the signal-pdf-dependent term on the right-hand side of (6.32)
and (6.33) specializes to

N

log (Z,(8)) = > log (po +2p1e™/2 cosh(,\s,i)) (6.34)

i=1
N

or log (Zs(8o—0.)) =) log (po+2ple*“‘oﬂ‘cvf)/2 cosh(xo,i—xc,i)) . (6.35)
i=1

Having 65, in the second step

s = Blg(0) = [ 80) 7l e o) e (6.36)
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has to be calculated and (6.30) is evaluated to obtain the overlap (equivalent
calculations are carried out when having 6.). As fs(x) factorizes, only one-
dimensional integrals have to be solved. Hence, this step has only minor numerical
complexity. These two steps are then iterated.

In [46], this strategy is called “double-loop” algorithm. We prefer the denomi-
nations ECopt, (when using L¢(#s)) and ECopt, (when using L.(6.)), respectively.

The costly numerical minimization can approximately be done coordinate-wise,
i.e., by adjusting only the pair As;, A; belonging to the variable x; and going
over the variables i = 1, ..., N (maybe in some optimized ordering). The 2N-
dimensional optimization problem is broken down to N two-dimensional ones.
This procedure is only possible if individual variances are treated (vector-valued
diagonalization). The cost function —2 L(fs) in (6.32) can be reduced after some
manipulations to a function for the variable x; only (for details see [46]), and reads

= 2L Ghsis Asi) = const = 2log (po +2p1e A4 coshGis ) )

(osz (As,i— Sl))Z
(osz (As,i— ”))’

+ log (Ao,s,i —(As,i — A;,')) (6.37)

where A° and A° have to be understood as the current (obsolete, non-optimized)
values and Aoc,i and Ao,c.i correspond to .. Alternatively, the function —2 L(6.)
in (6.33) reduces to

—2L¢i(Acji, Ac,i) & const — 2log (po +2pre Poei =Aei)/2 cosh(hg ¢ ; — )Lc,i))

)\o,c,i - ()\O I )\c,i))z
(
(Ao,c,i - (AS,,' - Ac,i) '

+10g (Aoci = (AZ; — Aci)) — (6.38)

where A2 . and A ; are the current values. In (6.37) and (6.38) only the first term on
the rlght hand 51de is specific for the discrete case; in the general case the first term
in (6.37) would read log ([ fx(x;) ehsi%i~Asi%i ;2 dx;).

We denote these strategies by ECseqg and ECseq_, respectively.

6.3.2.2 Vector Approximate Message Passing: VAMP

As we will see later on in the numerical examples, the optimization procedure leads
to very good performance, however, at the cost of numerical complexity. A much
simpler strategy can be derived from the fact that the moments pg and u. have to
match. In [46] this procedure is called “single-loop” algorithm.

Here, in the first step

= Exlg00) = [ 80) 7l fr) 1) ax (6.39)
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is calculated; then, via (6.30), the overlap 8, is obtained. Since the distribution
parameters are coupled, one can calculate

0y =00 — 0. (6.40)

This value is then used in the second step, which is identical to (6.36) in the above
approach. Again, having u, the overlap parameter 6, s is calculated using (6.30).
Then,

0. = 00,3 -0 (6.41)

is updated and the two steps are iterated. This algorithms coincides with VAMP
proposed in [54].

Noteworthy, in the calculation of u., the overlap takes the role of the prior
pdf fs(x) and in the calculation of p it takes the role of the channel pdf f.(x).
These approximations make the calculation of the means computable at all. For the
compressed sensing setup,

¢ the calculation of (6.39) amounts to a joint linear MMSE (LMMSE) estimator
treating the action of the channel but ignoring the prior pdf—we abbreviate this
operation by “LE” (for linear estimator)—, whereas

¢ the calculation of (6.36) amounts to individual non-linear MMSE (NLMMSE)
estimators obeying the signal pdf but ignoring the coupling via the sensing
matrix—we abbreviate this operation by “NLE” (for non-linear estimator).

These two steps are dual w.r.t. even more aspects; for more details see [59]. For
the LMMSE step (6.39) and for a large class of prior pdfs fi(x) in the NLMMSE
step (6.36) analytic expressions can be given, cf. [4, 54, 59].

These steps can also be interprTeted as a projection of the pdfs onto exponential
families. The pdf o(x) = 7 (100) %08 shall approximate the pdf f x|y (x). In the first
step, the pdf

Zc(lgc) fe(x) _ 1

— 01 g(x) 6.42
O ZC(HC)fC(x)e (6.42)

o(x)

is projected onto o(x). Using (6.40), f; is calculated and, in the second step, the pdf

ZS(I()S) fs(x) _ 1
eGIg(x) N Zs(os)

o(x) fu(x) et e® (6.43)

is projected onto o(x). Then, €. is calculated via (6.41). Since the moments
are matched, the projection is done in such a way that the Kullback-Leibler
divergence between the involved pdfs is minimized. The projections are iterated
until convergence is reached. This is the main approach of expectation propagation
[41].
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dzc LE QO’CI é_— dg NLE é)o,s %— dc

Fig. 6.2 Partitioning of the function blocks in iterative algorithms derived from the EC framework.
Top: Optimization approach (double-loop algorithm); Bottom: VAMP

Y

Y

6.3.2.3 Discussion

Figure 6.2 shows the conceptual splitting of the function blocks of EC-based
iterative algorithms for CS. In the top row the calculation steps of one iteration of the
optimization approach ECopt, are visualized. Given @, c, this algorithm optimizes
(tunes) 6. such that u. = p¢ (via the minimization of (6.33) or in the sequential
way employing (6.38)). If a new parameter vector . is obtained, the corresponding
M. determines the new 6, . The alternative approach ECopt, is obvious and not
shown.

In the second row, the calculation steps of one iteration of VAMP are shown. In
sequence, i, and p are calculated; both blocks are separated by the updates (6.40)
and (6.41).

6.3.3 Alternative Partitioning of the Problem

Up to now, we have considered the obvious partitioning of the conditional pdf and,
thus, of the problem into a “signal” and a “channel” part. In [57], a different, very
flexible factorization has been proposed. Here, (6.19) is written as

1
tay @) = — [, fuexp (1= ) fyixt) exp (xTFx+ v f1x) . (644)

fs(x) fe(x)

where f; = [fy1, ..., fy,n]and y € [0, 1] is a trade-off parameter. For y =
1, the above separation (used in VAMP) is obtained. Noteworthy, for y = 0, the
influence of the observations y is completely taken into account in the signal part.
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The surprising, analytic result of [57] is that using an appropriate initialization
(depending on y), the performance of the algorithm is independent of the choice
of y. This enables some degree of freedom in the implementations of the estima-
tors (6.36) and (6.39). The details can be found in [57].

6.4 Unbiasing of MMSE Estimators

In iterative schemes, i.e., feedback loops, the passing of the results of one process-
ing/decoding block to the next is a crucial point. In principle, suited processing of
the results has to ensure that positive feedback is avoided and thus amplification
and instable behavior are circumvented. This basic principle emerges in different
settings and is known under various denominations. In connection with (V)AMP it
is termed Onsager correction [54] or decoupling [7]. In iterative (turbo) algorithms
(e.g., for channel decoding) this is called the calculation of extrinsic information
[35], which means that only the information gained in the respective step has to
be passed on. Here, we will pursue the signal processing/estimation view that a
systematic offset in an estimate, a bias, has to be removed, i.e., unbiasing has to be
performed [64]. In [38], bias-free estimators are called divergence-free.

In this section, we derive our view of unbiasing; parts have been published in [24,
64]. In view of the functions blocks in EC-based iterative algorithms (see Sect. 6.3),
we will address two settings: joint linear estimators (the “LE” block in Fig.6.2)
and scalar non-linear estimators (the “NLE” block in Fig. 6.2), respectively. First
the basic principles and conditions of unbiasing are studied separately, then, the
unbiasing procedures are applied to a VAMP-type recovery scheme.

6.4.1 Joint Linear Estimators

We first consider the joint linear estimation, i.e., the block treating the “channel,”
part. To that end we follow the observation model

y=Ax+n, (6.45)

where the measurement (channel) matrix A is known. Typically, the MMSE estimate
is desired—in general it is given by [33, 48] (the index “B” indicates that the
estimate is biased, see below)

xAc,B = Ex{x| y}. (6.46)
In case the random vectors are (assumed to be) jointly Gaussian, this conditional

mean estimator reduces to a linear (affine) one. If x is i.i.d. Gaussian with mean x
and variance (per component) acz and the noise n is zero-mean i.i.d. Gaussian with
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variance (per component) 03, independent of x, the estimate specializes to” [33]

2 -1
fop = Xc+ (ATA + Z—gl) AT(y — Ax.) (6.47)
C
1 1 \-1/1 1
—(=ATA —1) (—AT — ) . 6.48
( 2 + O_C2 O’% y + O_szC ( )

Op

Per ch?stmction—as the orthogonality principle is obeyed—the estimation error
e B = Xc B — x is orthogonal to the observation y and the error covariance matrix

reads
2
®.p = aS(ATA + U—”I) ' 021 K). (6.49)

2
o¢

where we have used the end-to-end cascade (channel + estimator)

2 -1
K =K% (ATA+ %1) ATA . (6.50)

C

The average error variance is given by

1 1
0lp = N ®pc) = 03(1 _ Ntr(K)) . 6.51)
Like all MMSE estimates, X p is biased (hence, the index “B”) in the sense
that—as per basic principle the error is orthogonal to the observation [48]—part of
the useful signal is accounted to the error [27]. Unbiasing leads to an error that is

orthogonal to the desired quantity; it may be done by scaling the second part of the
estimate X g in (6.47) suitably, i.e.,

. Ta On )T
xS=xC+C<A A+—’;I> AT(y — Ax.) . (6.52)
GC

For the joint linear estimator, we have two main principles how to adjust the scaling
matrix C, average and individual unbiasing.

6.4.1.1 Average Unbiasing

For an average unbiasing we restrict ourselves to C = ¢, I and demand

3 We continue the notation of Fig.6.2. The biased estimate (corresponding to the “overlap™) is
denoted by the respective estimation step. The unbiased estimate—which is the input to the other
estimator—is not denoted by the block where it is produced, but by the block where it is input.
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tr(CK) = tr(cc K) = N , (6.53)
which is achieved by
N % (6.54)
Ccc = = , .
¢ tr(K) o’c2 — aé,c

where the last form follows from (6.51). o
It can be shown that data and unbiased error eg = Xxs — x are orthogonal on
average, i.e.,

1 1 N
NE{xTeS} == Y . Blxei} =0, (6.55)

and, after some manipulations, that the average variance of e is given by

1 1 1\-1 1
=g L Eed = () =) ©%

UB,C c

where My (-) denotes the arithmetic mean. The unbiased estimate (6.52) can be
written as (cf. also [28])

~ A 2 X Xc
X = ccXe g — (cc — )xc = o ( 5 — —2> . (6.57)
Gc B O¢

6.4.1.2 Individual Unbiasing
Alternatively, the components may be scaled individually such that the components
of the unbiased error are individually orthogonal to the data, i.e., E{Xl’ 6. } =0, Vi.
This is achieved when choosing

C = diag(1/K11,...,1/KnnN) - (6.58)

It can be shown that the individual variances and the average variance of e; amount
to [22]

(6.59)
1

1 N N 1 —K;; 1
2 _ 2‘ - 2 1,1 — 20 -
F=o Y Bl =Y v = (MH i 1). (6.60)

where My () denotes the harmonic mean.
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Noteworthy, the two unbiasing strategies (average unbiasing vs. individual
unbiasing) are not identical. Since the elements K; ; of the end-to-end cascade are
all positive and real, the relation Ma (K; ;) > Mu(K; ;) holds. This means that the
average estimation variance is smaller if only orthogonality on average is demanded;
the more strict demand of individual orthogonality of the error components and data
leads to a (somewhat) larger average variance. However, the individual variances
can be utilized profitably in the next processing step of an iterative algorithm leading
finally to a gain.

6.4.2 Scalar Non-linear Estimators

We now consider the individual non-linear estimation, i.e., the block treating the
“signal,” part. In this scalar case, the channel model is given by

y=x+w, (6.61)

where x is drawn according to some known prior pdf f.(x) (with mean zero and
variance 0)%), and the noise (disturbance) wis zero-mean Gaussian with variance avzv
and independent of the data x; hence, x and w are orthogonal, i.e., E{xw} = 0.
Again, we are interested in an estimate x which is calculated such that the mean-
squared error is minimized. The corresponding conditional mean estimator

28 =Edx|y) € 5y (6.62)

is the optimum solution [33, 48]. Sometimes we may explicitly indicate the
dependency of the estimate on the observation, i.e., write X5 (y). The conditional
variance of the estimation error es g(y) def x — Xs,B(y), and the mean-squared error
calculate to

d
s2p() =Ede s |y} = o, TR (6.63)

olp = By{cZp ()} - (6.64)

The right expression in (6.63) holds since the noise is Gaussian and, thus, a member
of an exponential family [42].

Whenever x is not Gaussian, the characteristic curve of the estimator is not a
linear function, S(y) # a -y, and the conditional variance is dependent on the
observation y. Only for linear estimators, conditional variance and mean-squared
error coincide.

The considered setting is depicted as a block diagram in Fig. 6.3. The observation
y (given by model (6.61)) is fed to the estimation function S(y) which provided
the biased estimate x5 . The processing for the subsequently discussed unbiasing
strategies (6.67) and (6.71) is also shown.
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X y S(}/)%F ;

Fig. 6.4 Visualization of the relations of the random variables in three-dimensional vector space;
orthogonal dimensions x, w, and v (reproduced from [24])

The relation between random variables can conveniently be visualized through
vectors in a vector space [48]. Thereby, the lengths of the vectors correspond to
the standard deviations of the random variables and the angles to the covariances—
uncorrelated random variables correspond to perpendicular vectors. A visualization
of the present situation is given in Fig. 6.4 in a three-dimensional space. Baseline
is the horizontal x-w-plane; since x (blue) and w (gray) are uncorrelated we have
0)% = 02 4 02. A third dimension v is required to represent the action of the non-
linear device S(y). Per basic estimation principle, the error e g (black) is orthogonal
to the observation y and to the estimate X5 g(y). As the error is not orthogonal to the
data x, a bias is present.

For the scalar non-linear estimator, since we operate in a three-dimensional
vector space, two main principles how to do the unbiasing are possible, signal-
oriented and noise-oriented unbiasing.

6.4.2.1 Signal-Oriented Unbiasing
The general principle to derive the bias compensation is the decomposition of the

estimate (the output of the non-linear estimator device S(y)) into a scaled (scaling
factor k) version of x plus an uncorrelated distortion wy, i.e.,

~ !
XsB(Y) = S() = kxx+ wx, (6.65)
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where the gain &, is adjusted such that x and wy are orthogonal, i.e., E{xw,} = 0.
This is obtained by

EdSWx _ o% — %up _ % (6.66)
E [} o2 o240k’ .

ky =

Noteworthy, the same result is achieved from geometric considerations: the scaling
factor kx corresponds to the projection of X5 g onto x (blue dashed line and blue dot
in Fig. 6.4). Using basic geometry of right triangles, (6.66) is obtained.

When performing “signal-oriented” unbiasing (SoU) (upper branch in Fig. 6.3),
the estimate (green) is then given by [64]

o

)’ES,B = Z—X)%S,B. (6.67)

1
Xesi = 7

’ 2
kX Ox Os,B

def A . . o
Here, the error e g = x— Xc,si (light gray) is orthogonal to the data x; it lies parallel
to the w-v-plane. It can be shown that conditional variance and MSE calculate to

2

(o 2
240 = Bxleesi) 1) = 250+ (570 ) &0 (668)
X s,B
1 1 \-1
o2 =B = (-~ ) - (6.69)
X

s,B

6.4.2.2 Noise-Oriented Unbiasing

In case of non-linear estimators, alternatively, a “noise-oriented” unbiasing (NoU)
can be performed [64]. Here, the noise estimate s = Ew{w | y} = Ex{y — x|
vy} =y — X5 B (cyan in Fig. 6.4) is considered. By basic geometry, the scaling factor
kw corresponding to the projection of X g onto w (gray dashed line and gray dot) is
given by

2 _ 2
O'W OS,B O'W
k== = s (6.70)
w w X

We are finally interested in the unbiased estimate % o (golden), given by

. 1, oy .
Xeno = Y — k_ XsB = Y+ ﬁ (xs,B()’) -y, (6.71)
w w “sB

Here, the error e no(y) def X — Xcno(y) (light gray) is orthogonal to w and lies in the
x-v-plane. Direct calculations reveal that conditional variance and MSE calculate to
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2

o, 2
o) = Exlecao) 13} = 2500 + (52 ) s =30 672)
Ow s,B
1 1 \-1
om0 = Bylsl o} = (T - —2> . (6.73)

Gs,B Ow

6.4.3 lIterative Schemes with Individual and Average Variances

Having derived the unbiasing approaches, we now apply them to iterative VAMP-
type algorithms. Thereby, either an average variance or individual variances can
be employed to represent the reliability of the estimates. Noteworthy, the biased
estimates treated in this section are synonymous to the overlap treated in Sect. 6.2.

For the joint linear estimator, unbiasing causes no problems. If an average
variance is desired, unbiasing on average (Sect.6.4.1.1) is performed and the
average variance calculates to (6.56). When individual variances are desired,
individual unbiasing (Sect. 6.4.1.2) is carried out and the individual variances (6.59)
are passed to the next stage in the iterative algorithm (from “LE” to “NLE” in
Fig.6.2).

In terms of normalized mean and precision (natural parameters), the unbiasing
operations are simply given by

Ag=Aoc—Ac, AvgV

As = Aoc — Ac ,
STTee e As=Aoc— A, IndV

(6.74)

which is nothing else than the subtraction between the “LE” and the “NLE” block
in Fig. 6.2 (cf. the definition of @ in Sect. 6.2.2).

The situation for the parallel scalar non-linear estimators is more involved.
When an average variance is desired, first the biased MSE ¢ ..p has to be calcu-
lated. Thereby, the statistical expectation in (6.64) is replaced by the empirical
average over the parallel branches. Then, the unbiased variances 052,81 or asno
are obtained via (6.69) or (6.73). Finally, the unbiasing of the elements is done
using (6.67) or (6.71) where the scaling factors can be written compactly as
0l/(0} —oly) =0l;/olg and ol/(0p — 025) = 02,,/02p, respectively [64].

When individual variances are passed to and should be produced by the parallel
scalar non-linear estimators, an additional problem occurs. The biased MSE os B
cannot be calculated as an emp1r1cal average. As this quantity (given fy(x)) is
a function of the noise variance O’W only, it may be precalculated and tabulated
or approximated by simple functions (e.g., a polynomial). Then, unbiasing is
performed according to (6.67) or (6.71) and the conditional variances g& 4(y) or

gs%no (y) according to (6.68) or (6.72) are passed individually per branch to the next
stage.
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When using
s 2 ) def 2
Ao,s,i —xs,B,t/S'S,B,i s Ab,i —xs,B,z/Us,B’i s hsi =y/0y 6.75)
def def defr ) 2 defy ) 2 :
Nosi =1/s2p; .  Avi=ljoly, ., Asi=l/og, Ax =1/oy,

the signal-oriented unbiasing operations (per element i) read in terms of the natural
parameters

Aei = hosi » Ae = Aos — Ax s AvgV
W .-V S W ( 1 + ( Ax —)Lb'i )2>_1 Ind\(76.76)
ST R, — Ay b U Aoys,i Ab,i — Ax Av,i ’

and for noise-oriented unbiasing

}\c,i = }\o.s,i - )ts,i 5 Ac = Ao,s - As s AVgV

N 1 N 6.77)
Aei = Ab,ii}\s,i ()\b”— - As’i) o A = (Ao,sj + (Ab,ijlf\s.i (Ab..li - A:,’i)) ) - IndV

As can be seen, only the noise-oriented average unbiasing corresponds to the
conventional update in the EC approach—the simple subtraction between the
“NLE” and the “LE” block in Fig. 6.2. Using this straightforwardly for individual
variances is not optimum. Indeed, as shown in [24], A.; will become frequently
negative leading to unusable results which have to be clipped and, thus, to non-
optimum performance of the reconstruction algorithm. The present new derivation
from estimation theory, however, guarantees meaningful parameters and improved
performance.

6.5 Numerical Results and Discussion

The discussed iterative signal recovery approaches are now assessed and compared
by means of numerical simulations. We thereby restrict ourselves to discrete
compressed sensing; specifically, the signal pdf (6.2) is employed. The elements of
the sensing matrix A are assumed to be i.i.d. unit-variance Gaussian. The columns
of A are then scaled to unit £, norm, which in communications corresponds to a
transmitter-side power control. Two different dimensionalities of the problem are
investigated: the choice N = 258, M = 129 with sparsity s = 12 (Scenario A), and
N = 64, M = 32 with sparsity s = 4 (Scenario B).

We first consider schemes where the reliability over the iterations is characterized
by an average variance. Then, schemes utilizing individual variances are studied.
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6.5.1 Average Variance

For assessing the schemes, we plot the symbol error ratio (SER), i.e., the ratio of
erroneously recovered signal elements x; and total number of symbols, over the
iterations. These plots cover the convergence behavior of the algorithm and the
steady-state performance. As usual in communications, the SER is displayed in
logarithmic scale because we are interested in the order of magnitude of the residual
error ratio.

In Fig. 6.5, the SER is shown for Scenario A and for algorithms utilizing an
average variance. AMP [17, 39] is compared with VAMP [54] (which employs
noise-oriented average unbiasing according to (6.77)); in addition VAMP using
signal-oriented average unbiasing according to (6.76) is shown. For stability
reasons, the precision parameters A are clipped to the interval A € [1078, 108].
The signal-to-noise ratio is adjusted to 101log,,(1/02) = 17 dB.

It can be seen that VAMP outperforms AMP slightly; essentially a somewhat
faster convergence is achieved. For the present setting of sufficiently large dimen-
sions (even still short for a number of applications) the steady-state performance is
reached after a few iterations and differs not too much.

It is apparent that noise-oriented unbiasing outperforms the signal-oriented
variant. This is explained by the dual operations in the two estimation steps in VAMP
(see Fig. 6.2). The one block performs joint linear estimation (concentrating on the
channel action), the other block performs individual non-linear estimation (taking
only the signal statistics into account). Dual to signal-oriented (average) unbiasing
after the linear estimation, noise-oriented (average) unbiasing after the non-linear
estimation should be used. For more details see [59].

1071 , , . .
AMP
—&5— VAMP
) —s— VAMP SoU
1072 ¢ 3
I 108t 3
a9
m
w
10 F E
\4 A4 v \‘
107 ¢ 3
0 2 4 6 8 10

Tteration k —

Fig. 6.5 Symbol error ratio (SER) over the iterations. IOloglo(l/cfﬁ) =17dB, N =258, M =
129, s = 12. Clipping of A to [1078, 10%]



206 R. F. H. Fischer and C. Sippel

AMP

SER —

1 1 1 1

0 2 4 6 8 10

Tteration k —

Fig. 6.6 Symbol error ratio (SER) over the iterations. 1010g10(1/03) =20dB, N =64, M = 32,
s = 4. Clipping of A to [1078, 10%]

The results for Scenario B are displayed in Fig. 6.6. Again, the SER is shown over
the iterations for AMP and VAMP. In addition, the results of ECopt, and ECopt, are
given. Here, the signal-to-noise ratio is adjusted to 20 dB.

In case of small dimensions, AMP and VAMP converge poorly; when carrying
out some hundred iterations, some improvements for both algorithms are possible;
in the present case, both converge to error ratios around 2 - 1074, ECopt, and, in
particular, ECopt, offer a much better performance. Note that the all-zero vector is
chosen as starting point for ECopt,, whereas in ECopt,, the joint linear estimate is
calculated first and used as initialization for 6, (cf. Fig.6.2). This “warm start”
leads to the advantage (horizontal shift of the curve) of ECopt. over the other
variant; except this fact both versions perform similar.

Noteworthy, the improvement in SER comes at the cost of increased complexity.
Even though the curves are plotted over the iteration number, significant differences
in the complexity per iteration are present. AMP and VAMP perform simple matrix
operations and scalar non-linear estimation only, whereas ECopt uses a convex
optimization algorithm on a (N + 1)-dimensional cost function (6.33) or (6.32)
per iteration.

6.5.2 Individual Variances

We now turn to the case of using individual variances within the algorithms
to characterize the reliabilities. Thereby, a more fine-grained knowledge on the
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Fig. 6.7 Symbol error ratio (SER) over the iterations. 101log;q (1 /03) =17dB, N =258, M =
129, s = 12. Clipping of A to [1078, 10%]

estimation quality of the symbols may be exploited, potentially leading to a
better performance. However, it has to be admitted that the numerical complexity
increases. For average variances, where A in (6.14) is a diagonal matrix, the inverse
(A + F)~! in (6.32), (6.33) can be efficiently calculated using a singular-value
decomposition, cf. [54]. This is not possible for general diagonal matrices.

The results for Scenario A are collected in Fig. 6.7. As above, the SER is shown
over the iterations. For reference, the results for AMP and VAMP from above (aver-
age variance) are repeated in gray. We compare VAMP with individual variance,
where the update after the non-linear estimators is done in the straightforward way
(analogously to (6.74), which, in each case, is employed after the linear estimator),
with the unbiasing strategies derived in Sect. 6.4.2.

Apparently, straightforwardly applying the EC framework with vector-valued
diagonalization to the compressed sensing setup does not lead to satisfactory
performance. Even AMP and VAMP with average variance outperform this vari-
ant. However, when employing the unbiasing rules derived in Sect.6.4.2, an
improvement over classical VAMP can be achieved. Here, noise-oriented unbiasing
performs only slightly better than the signal-oriented variant.

Noteworthy, for the unbiasing rules (6.76) and (6.77), the biased mean-squared
error O‘gB (which depends on N/s, i.e., p; in (6.2), only), or equivalently the
precision Ap =1/ og - 18 required; it cannot be calculated by averaging within the
algorithm. Hence, either Ay is precalculated (as a function of Ag) and tabulated
or an approximation is used. The SER curves when using a fine-grained table
cannot be distinguished from that when using the simple approximation A, =
exp(0.1330A¢ + 2.754) which holds for the present ratio N /s.
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Fig. 6.8 Contour plot of A over |Ag| and Ag. Left: discrete pdf according to (6.2), s = 12; Right:
Bernoulli—Gauss pdf; the non-zero elements are zero-mean, unit-variance Gaussian, s = 12

The poor performance of the straightforward approach can be explained by
studying the precision A, (after the non-linear estimator and the update A, =
Aos — Ag) as a function of |Ag| and Ag (cf. Fig. 6.2). To that end, a contour plot of
A is shown in Fig. 6.8. Within the gray-shaded area A, becomes negative and, thus,
it does not have any sensible meaning. This circumstance can only be handled by
clipping. This effect has already been observed in [54]—however, when employing
average variances, negative precision parameters occur very rarely and clipping does
(almost) not hurt. In case of individual variances negative quantities occur much
more often; in [24] we have shown that up to 5 % of the components of x are
affected in case of the discrete prior (6.2). In [30] this problem is treated for ECseq
by incorporating additional constraints in the optimization. In order to show that this
is not an effect of the discrete prior, on the right-hand side the contour plot is shown
for a Bernoulli-Gauss pdf; there the effect is even more pronounced.

The respective results for Scenario B are depicted in Fig.6.9. The curves for
AMP, VAMP, and ECopt, employing average variances are repeated in gray for
reference.

First, we note that in case of small dimensions, the use of individual variances
leads to more performance gains than in case of larger dimension. However, the
straightforward application in the EC framework is outperformed by the derived
unbiasing from Sect. 6.4.2.

Here, ECopt, does not perform as well as ECopt,. This effect is again explained
by the incorrect unbiasing. In ECopt, the parameter vector 6 is tuned and 6. =
0,5 — 6 is employed within the cost function; see also Fig.6.2. However, this
is exactly the stage where negative precisions occur very likely. Clipping these
negative values deteriorates the performance. In contrast, in ECopt, only the
unbiasing/update 6 = 6, — 0. is required, which is the correct procedure. As a
consequence, this version outperforms the alternative version. Noteworthy, contrary



6 Unbiasing in Iterative Reconstruction Algorithms for Discrete Compressed Sensing 209

1071 . . . .
AMP
VAMP
> ECopt. AvgV
1077 —&— VAMP IndV
—&— NoU
—+— ECopts
T 3 —«— ECopt,
107 F — % — ECseq, E
&
wn
107 F
~
S
109 T X — e — == ——
0 2 4 6 8 10

Iteration k. —

Fig. 6.9 Symbol error ratio (SER) over the iterations. 101og,(1/02) £20dB, N = 64, M = 32,
s = 4. Clipping of A to [1078, 108]

to the statement in [46], the partitioning of the problem is not symmetric and the
factors are not equivalent.

Finally, the sequential optimization approach ECseq, almost performs the
same as when performing full optimization. However, only N two-dimensional
optimizations per iteration instead of a 2/N-dimensional one have to be carried out
leading to a much smaller complexity. The alternative approach ECseq, does not
perform well (not shown) due to the reasons discussed above. For sensing matrices
of moderate sizes, ECseq, is an interesting scheme offering very good performance
at manageable numerical complexity.
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Chapter 7 ®
Recovery Under Side Constraints oo

Khaled Ardah, Martin Haardt, Tianyi Liu, Frederic Matter,
Marius Pesavento, and Marc E. Pfetsch

7.1 Introduction

Compressed sensing (CS) is a signal processing technique for efficient acquisition
and reconstruction of signals based on an underlying model sparsity, which allows
to recover the signal of interest from far fewer samples than required by traditional
acquisition systems operating at Nyquist rate. Theoretical recovery guarantees on
the number of observations required can be further enhanced if side information
on the measurement system and the signal representation is incorporated in the
form of additional side constraints that are enforced in the recovery process. The
measurement system may be subject to various types of side constraints that can
be exploited and may originate from: i) the structure of the sensing matrix (shift-
invariance, block structure, sparse co-array structures [60], etc.), ii) the structure of
the sparse representation vector (integrality, variable bounds, unit-modulus, etc.), iii)
the sparsity structure in the multiple snapshot case (block- and group-sparsity, rank-
sparsity, etc.), as well as iv) the structure of the measurements (quantization effects,
K-bit measures, magnitude-only measurements, etc.). A fundamental question that
arises in this context is, in which sense structural information can be incorporated
into the CS problem and how it affects the existing algorithms and theoretical
results.
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Moreover, recovery from nonlinear measurements with sparse models has
recently been investigated, e.g., in the classical phase retrieval problem, where
different forms of redundancy have been incorporated through the use of known
or unknown linear mixing networks. Redundancy can further enhance recovery in
this case.

A large variety of applications involve data recorded from large-scale sensor
arrays or massive multiple-input multiple-output (MIMO) arrays, which consist of
an assembly of wideband sensors to meet the corresponding high-throughput and
high-resolution requirements. In this context, sparsity naturally arises in the angular
domain, e.g., in the form of discrete propagation models and a small number of
impinging signals from different directions. Similarly, in sensor array and MIMO
applications, the structure of the array, the properties of the constellation signal
and the transmitted signal provide important prior information. In order to keep
hardware costs in these large-scale systems at a reasonable scale while retaining
high performance, mixed analog—digital sensing system designs are employed to
reduce the number and the sampling rates of the analog-to-digital converters as well
as the quality requirements (e.g., w.r.t. linearity, dynamic range) of the hardware
components.

This chapter reviews recent developments on sparse recovery guarantees and
efficient recovery algorithms in CS networks under the aforementioned side con-
straints in the context of multi-antenna systems. First, CS with linear and nonlinear
measurement models and the corresponding recovery problems are introduced
in Sect.7.2. Theoretical results on the recoverability of linear CS measurements
under side constraints are presented in Sect. 7.3. Recovery algorithms for sparse
measurements under side constraints are addressed in Sect. 7.4, and a new linear
mixing matrix design is proposed in Sect.7.5. Finally, phase retrieval for known
and unknown dictionaries is discussed in Sect. 7.6, before conclusions are drawn in
Sect. 7.7.

7.2 Sparse Recovery in Sensor Arrays

Consider, as one prominent example application, the following sparse one-dimen-
sional narrow-band array processing model that is frequently encountered in the
context of direction-of-arrival (DoA) estimation [2, 6, 18, 30, 59, 70] and multiple-
input multiple-output (MIMO) communication [15] and that will be used as a
generic example in subsequent sections. We assume that K far-field narrow-band
source signals impinge on a sensor array composed of M omni-directional sensors
as depicted in the right-hand side of Fig.7.1. The ¢-th time sample of the array
output vector y(t) = [y1(t), ..., yu()]T € CM is given by

y(1) = A0 xO 1) + n(@), t=1,...,D, (7.1)
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Fig. 7.1 Sparse array processing model with linear and nonlinear mixing network

where x© (1) = [xfo) @, ..., x}?) (01T e CK is the vector of signals emitted by
the K sources, n(tf) € CM contains the spatially and temporally white circular
Gaussian sensor noise, and D is the number of available time samples. The matrix
A@D) = [a@)),...,a0k)] € CM*K denotes the true array steering matrix,
whose i-th column is the array response vector a(f;) corresponding to the i-
th source with DoA 6; € ©, where ® defines the field of view. The steering
vector a(f) describes a manifold denoted as MY . For example, for a uniform
linear array (ULA) with half-wavelength inter-element spacing, a(f) is given by
af) = [1,e~ 7SO =iM=Drsin@ T we denote 00 = [0, ..., 00T
as the true DoA parameter vector.

7.2.1 Compressive Data Model for Sensor Arrays

The model in (7.1) presumes a dedicated radio frequency (RF) receiver chain
for each individual antenna element including an LNA, filters, down-conversion,
analog-to-digital converter (ADC), etc. In many applications, however, such sep-
arate RF chains for each antenna element come at a high cost in terms of the
overall receiver complexity and power consumption. To reduce the number of RF
channels (and time samples) without loss in the array aperture, compressed sensing
can be applied, where the antenna outputs are linearly combined in the analog
domain and then passed through a reduced number of RF chains to obtain the
digital baseband signals as illustrated in the left-hand side of Fig.7.1. This can
be realized in hardware, e.g., by using configurable hardware components such
as tunable phase shifters, a bank of fixed analog beamformers combined with a
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fast switching network that enables analog beamformer selection, and/or a band of
(tunable) bandpass filters. This way, N < M RF receiver channels are used for
signal processing in the digital domain.

Let ®©(r) € CV*M denote the complex analog mixing matrix of a compressive
array at time ¢, which compresses the output of M antenna elements to N active RF
channels. Then, the complex (baseband) array output (7.1) after combining can be
expressed as

§@) = 2O0)(AO@)xV ) +nt)) +wr), t=1,...,D, (1.2)

where [® V()] = anm() - /@ n = 1,...,N, m = 1,..., M with
anm(®) € [0,1], @u.m() € [0,27], and w(t) € CN contains the spatially and
temporally white circular Gaussian measurement noise. Signals may be subject to
additive noise that acts before (i.e., in the form of n(¢)) or after the mixing network
(i.e., in the form of w(#)). Defining the effective array steering matrix A(O(O), 1) =
o (1)A(0 (0)), Model (7.2) becomes

) =A09, HxQ@) + 7@), (7.3)

where fi(r) = ®© (/)n(¢) + w(r) is the effective noise vector.

Cost-efficient analog hardware devices and data acquisition systems generally
involve nonlinear transformations that can perform further compression. Such
nonlinear transformations are indicated by the operator 7, which performs a
nonlinear mapping from CV*P to CE*P as depicted in Fig.7.1. The types of
nonlinearity consist, for instance, of nonlinear transformations introduced from low-
cost power amplifiers, magnitude-only, and sub-band power measurements that are
often used in cellular communications, C-bit quantization, the more aggressive 1-bit
quantization (sign-only measurements), hard-thresholding, and soft-thresholding, or
modulo operations. Considering the D time samples simultaneously, the resulting
measurement matrix Z = [z(1), ..., z(D)] € CL*P recorded at the output of the
nonlinear mixing network is given by

Z=7{2OMAO0)xO),..., 2 D)AO)xV (D)} +N, (7.4)

where N € CL*P combines the various noise contributions. If the mixing matrix
o (¢) is time-invariant, i.e., ®© (1) = & the model (7.4) reduces to

Z=7{®VA0 )X} +N, (7.5)

where X@ = [xO(1), ..., xO(D)] € CK*P comprises the D time snapshots.
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7.2.2 Sparse Recovery Formulations for Sensor Arrays

Based on (7.5), we aim to solve the sparse recovery problem that allows for a robust
and efficient estimation of the frequencies of the K sources x,ﬁo) (5) from the set of
measurements z(¢) while exploiting potential structure in ®(z), A, A, and xO),
or specific properties of 7. Specifically, we will address variations of the general

multiple-measurement £, , mixed norm minimization problem

r)?ig % HZ - T{ <I>A(0)X} Hi + AIX]lp,q : side constraints, (PO)

where at this point ® is assumed to be time-invariant for simplicity of description
(i.e., considering (7.5)), A(@) € CM*P with P > M is a “fat” sensing matrix
corresponding to the P-dimensional DoA grid vector @ that appropriately samples
the field of view ©, and X € CP*P is the row-sparse (joint-sparse) signal matrix
of interest, i.e., its columns share the same support. The support of the non-zero
rows of X corresponds to the DoAs on the spatial grid. Moreover, the regularization
parameter A > 0 controls the trade-off between the data-fitting term and the sparsity
level in X. The joint-sparsity in x is induced by the £, , mixed norm defined as

P 1/q
Xl = (Z ||xk||‘,€) : (7.6)

k=1
for p, ¢ > 1, which applies an inner £,-norm to the rows x;, k = 1,..., P in
X = [xq,...,xp]T and an outer £,-norm to the £,-row-norms. Ideally, we aim

to solve (PO) using the £, o-pseudo-norm | X[, 0, which is the cardinality of the
non-zero £,-norms of the rows of X. If D = 1, the model reduces to the single-
measurement case and the £, -mixed-norm reduces to the £;-norm.

In the absence of the various noise contributions, i.e., N = 0, the general
minimization problem (P0O) can be equivalently written as

r)I(lig {||X||p,q : T{PA(0)X} = Z, additional side constraints} . 7.7)

)

7.3 Recovery Guarantees Under Side Constraints

In this section, we consider the uniform recovery of sparse solutions with additional
side constraints on the solutions/signals. We use the signal model (7.1) without noise
in the single-measurement case, i.e., n = 0 and D = 1. More precisely, consider the
equation system Ax = y for A € R™*" 'y € R™. The side constraints for x can be
expressed by requiring that x € C € R”. This leads to optimization models
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min{||x]lo : Ax=Yy, x e C}, (7.8)

i.e., variants of (7.7) in the single-measurement case without nonlinearities, which
promise to be able to uniquely recover sparse solutions for a larger set of right-hand
side vectors y. This is illustrated by the following very simple toy example.

Example 7.1 Consider the following recovery problem forn = 2. Let A = [1, —1]
and y = 1. The system AX = y has two sparse solutions, namely x; = (1, 0)T
and xo = (0, —1)T. Since ||x1]|; = [|X2]|1 = 1, it is not possible to uniquely recover
either point by ¢;-minimization or that by {p-minimization. But by exploiting
nonnegativity, X; can indeed be uniquely recovered.

Another example of a whole family of sensing matrices showing that exploiting
side constraints leads to weaker recovery conditions can be found in [22, Theo-
rem 4.5]. This shows that side constraints are not only of theoretical interest but
should be exploited in the recovery process. The price to pay may of course be that
the recovery problems become harder to solve.

7.3.1 Integrality Constraints

One particular example of an interesting side constraint is the integrality of x.
Applications include discrete tomography [31] or massive MIMO with constellation
signals [20, 21]. A notable special case of this setting includes the recovery of binary
vectors, which has applications in digital or wireless communication systems.

The corresponding general recovery problem can be formulated as

min {|x]lo : Ax = Ax?, x € [£, u]z}, (7.9)

where x© € [£, u]y = {xeZ" : t; <x;j <uj, i €[n]}isan s-sparse vector and
A € R™ " Note that we can assume £ € Z" U {—o0} and u € Z" U {o0}. As in the
case of classical sparse recovery, we consider the ¢ -relaxation of (7.9), namely

min {[x]; : Ax = Ax?, x € [£, u]z}. (7.10)

In the literature, recovery of binary and integral sparse vectors using (7.10) has
been considered for example in [26, 62], where the nonconvex integrality condition
was relaxed to x € [{,u] = {x € R" : £ < x < u}. In this case, the prior
knowledge of x being integral does not help for recovery: uniform recovery of all
sparse bounded integral x is equivalent to uniform recovery of all sparse bounded x,
see [26]. This already shows that in order to exploit integrality, one has to take
this into account in the recovery program. Note that (7.10) is nonconvex but can
be formulated as a mixed-integer (linear) program (MIP). Furthermore, note that
both (7.9) and (7.10) are NP-hard [34].
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It turns out that in case of rational measurement matrices A and no bounds on the
variables, there is again no difference between integral and general x [34]. However,
in the presence of additional bounds, this is no longer true. In this case, it is possible
to formulate null space properties depending on the bounds £, u that characterize
uniform recovery of integral (bounded) sparse vectors x using (7.10), see [34].
To this end, define the following two null space properties (NSP) depending on
asetV CR". LetA e R""and S C [n] :={l, ..., n} and define

NSP(V) : vsllt < llvglli Vv e (VNNA))\ {0},

NSPL(V):  vg=<0 = ) v <0 VYve(VNNA))\ {0}

i=1

where S denotes the complement of a set S, vs denotes the vector of elements
indexed by S, and N(A) denotes the null space of the matrix A.

Then, NSP(R") is the classical null space property [14, 16] that characterizes
uniform recovery of sparse vectors x by 1 -minimization, and NSP, (R") is the well-
known nonnegative null space property [27, 87] characterizing uniform recovery via
nonnegative £{-minimization.

For integral vectors without bounds, i.e., {; = —oo and u; = oo for all i € [n],
and integral nonnegative vectors, the results for uniform recovery are completely
analogous to the classical case with the only exception that for satisfying the
NSP, only integral vectors in the null space of A are of interest, see [34] for the
exact statements. This observation also shows that for A € Q™*", the classical
(nonnegative) NSP and the corresponding integral (nonnegative) NSP coincide,
since for A € Q™*", all vectors in the null space of A can be scaled to integrality.
Thus, for rational data, exploiting integrality does not lead to improved recovery
conditions.

If the bounds £, u are nontrivial, the situation changes fundamentally. The first
difference is that for classical recovery, bounds on x do not influence recovery
properties since vectors in the null space of A can be scaled accordingly. For integral
vectors in the presence of bounds —oo < ¢; < 0 < u; < oo foralli € [n],
however, a new NSP arises. It turns out that the condition NSP([£ — u, u — £]7) is
only sufficient but not necessary for uniform recovery using (7.10). Nevertheless,
we can use a variable split into positive and negative parts to obtain an NSP that
characterizes uniform recovery in the following statement.

Theorem 7.1 ([34]) Let A € R™*" and s > 0. Then every s-sparse vector x ¢
[£, ulz is the unique solution of (7.10) if and only if

n
—(vs, w§)T ek — Zvi +w; <0,

i=1
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holds for all (v, w)T € N((A, —A)) N (K + (—=K)) with (v, )T # (0,07 and
all S C [n], |S| < s, where

=) e[ (), o)

The complementarity constraints x; - y; = 0 in K are due to the split into
positive and negative parts. This already shows that the introduction of bounds
leads to different recovery conditions, in contrast to the situation of classical sparse
recovery over R”. For testing the NSP in Theorem 7.1, one needs to take care of the
complementarity constraints x; - y; = 0. This can be done by, e.g., using methods
from [11, 12]. For nonnegative integral vectors with upper bounds, the variable
split is not needed, and it can be shown that NSP_ ([—u, u]z) characterizes uniform
recovery [34].

Besides using (7.10) for recovery of sparse integral vectors, one can also use the
exact recovery problem (7.9), which can be formulated as a MIP if there are finite
bounds by expressing the nonconvex £g-objective using binary variables (recall
that (7.9) and (7.10) are NP-hard [34]). In this case, it is also possible to characterize
when solving (7.9) recovers any s-sparse integral vector with or without bounds. The
condition for classical sparse recovery using £o-minimization is spark(A) > 2s,
where spark(A) denotes the smallest number of linear dependent columns in A. The
corresponding statements for integral sparse recovery using (7.9) appear in [34].

7.3.2 General Framework for Arbitrary Side Constraints

In the previous section, we have explicitly considered integrality constraints as
one specific side constraint that can be added to the recovery problem to obtain
stronger recovery guarantees. The corresponding recovery conditions resemble the
well-known null space properties that exist for various other settings such as sparse
(nonnegative) recovery [14, 16, 27, 87], block-sparse recovery [63], or low-rank
(positive semidefinite) matrix recovery [28, 45]. Thus it seems reasonable to search
for a general setting and null space property that unifies the cases already considered
in the literature. Such a general framework is presented in [25] that comprises all the
previously mentioned settings but does not handle additional side constraints such
as nonnegativity, integrality, and positive semidefiniteness. Sparsity in this general
framework is expressed using projections. Recently, this general framework was
extended in [22] to also cover additional side constraints. Under mild assumptions
on the side constraints and the measurement process, it is possible to state an NSP
for the corresponding general recovery problem. It turns out that this general NSP
specializes to the already known NSPs in the various special cases mentioned above.
In the following, we will shortly describe this general recovery framework and
provide an application in order to evaluate the influence of side constraints.
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For the general framework, we need two finite-dimensional Euclidean spaces X
and &. A linear sensing map A: X — R™ is used for acquiring signals x € X,
and a linear representation map B: X — & is used for mapping a signal to an
appropriate representation. We will denote the image of x under a linear operator F
as Fx. Additional side constraints are modeled using a set C € X with 0 € C. The
image of C under the map B is denoted with D. Finally, let ||-|| be a norm on &.

Sparsity in this general framework is expressed using projections onto appropri-
ate subspaces. Therefore, let  be a set of matrices representing linear maps on &.
Each P € % is assigned a nonnegative real weight by v: £ — R, and another
linear map P:E — & Then, fors € R4, an element x € X is called s-sparse, if
there exists a linear map P € # with v(P) < s and PBx = Bx. Furthermore, let
Py ={P € P : v(P) < s} be the set of linear maps that induce s-sparse elements.

The corresponding generalized recovery problem for a given right-hand side y €
R™ can be formulated as

min {||Bx|| : Ax =Yy, x € C}. (7.11)

Note that this is convex if C is convex. Using this general framework, it is possible to
state two NSPs that can be used to characterize uniform recovery using the general
recovery problem (7.11).

Definition 7.1 The linear sensing map A satisfies the general null space property of
type I and type II of order s for the set C if and only if for all v € (N(A)N(C+(—C)))
with Bv # 0 and all P € P, it holds that

—PBveD = IvD v@ e, v=vD —v? 1 PBVY | — | PBV?| < |PBvV|,
(NSP-I¢)
—PBveD = vvV vP e, v=v) —v® . pBVY || - |PBV?| < | PBYV|,
(NSP-II€)
respectively, where N(A) := {v € X : Av = 0} is the null space of A.

Example 7.2 (Recovery of Sparse Nonnegative Vectors by {1-Minimization) For
the recovery of nonnegative vectors, let X = & = R”, B be the identity, and
Il = lI-lli. The set of side constraints is C = R}, implying O = R’. Let P
be the set of orthogonal projectors onto all coordinate subspaces of R”, and define
P = I, — P, where I, denotes the identity mapping on R”. Define the nonnegative
weight v(P) := rk(P), so that v(P) is the number of non-zero components of the
subspace P projects onto. The notion of general sparsity reduces to the classical
sparsity of non-zero entries in a vector x € R, and the recovery problem (7.11)
becomes nonnegative £1-minimization with P Bx = xg and PBx = x5 In this case,
it can be shown that the general null space property (NSP-I€) of order s for the set
C is equivalent to the known nonnegative null space property [27, 87]
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Vs <0 = Y v <|lvglhi, Yve N\ {0}, VS S [nl, IS| <5,
ieS
(NSP-0)

where S denotes the index set of components on which P projects.

Under mild assumptions, the null space properties (NSP-I) and (NSP-1I°) can
be proven to characterize uniform recovery using (7.11). Which NSP is needed
depends on which assumptions are satisfied; see [22] for the formal statement. More
examples of how the various settings already considered in the literature turn out to
be special cases of this general recovery statement can also be found in [22]. At
this point, it is important to notice that already in the special case of sparse vectors,
checking whether A satisfies the classical NSP is ANP-hard [65].

The two NSPs characterizing uniform recovery in a very general framework
already indicate that a stronger, i.e., more restrictive side, constraint leads to weaker
conditions that need to be satisfied to guarantee uniform recovery.

In [22], an NSP for the recovery of positive semidefinite block-diagonal matrices
is derived, which has not been considered before. Let X € S’ be a (symmetric)
positive semidefinite matrix and A: 8" — R"™, AX) = (A; o X, ..., A, ¢ X)T
be a linear operator, where Ay, ..., A,, € S" are symmetric matrices and “e”
denotes the component-wise inner product. In order to define a block-diagonal form,
letk > 1and By, ..., By # @ be a partition of [n]. The matrix X and the linear
measurement operator A(X) are in block-diagonal form with blocks By, ..., B,
if Xg, = (Ai)s,y =O0forall (s,1) ¢ (B1 x Bj)U---U (Br x By) and alli € [m].
Let Xp be the submatrix containing rows and columns of X indexed by B. The
corresponding norm is given by the £, ,-norm defined as

IXllwg = 1CAXB, s - 1XB 1) g

and the block support BS(X) is given by the indices of those blocks Xp. # 0.
By using an appropriate linear representation map to encode the block-diagonal
structure, (NSP-I€) simplifies to

Vg 20VieS = Y 1Ta(Vg) < Y Vg (NSP? | o)

ies ies

forall V.e (N(A)NS")\ {0} and all S C [k], |S| < s, where A(Vp,) is the vector
of eigenvalues of Vp,, and 1 is a vector of ones. The general uniform recovery
statement [22, Theorem 2.7] yields the following theorem.

Theorem 7.2 ([22]) Let A(X) be a linear operator in block-diagonal form and s >
1. Then, every positive semidefinite X© ¢ S’ with ||X(O)||*,o < s is the unique
solution of min {||X||,.1 : AX) =b, X > 0} with b = AX?) if and only if A(X)
satisfies (NSPY | ) of order s.

#, 1,2
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As a conclusion, the general framework presented above can answer many
interesting questions concerning uniform recovery in the presence of side con-
straints using the optimization problem (7.11). The two general null space prop-
erties (NSP-I¢) and (NSP-II®) can be used to analyze and quantify the exact impact
of various side constraints in the recovery process. Given a specific setting, the NSPs
can decide whether additional side information is needed or which side constraints
need to be exploited in the recovery process to guarantee uniform recovery. For
instance, this framework explains why there are two seemingly different NSP
formulations for classical sparse recovery and nonnegative sparse recovery and their
connection.

7.4 Recovery Algorithms Under Different Side Constraints
for the Linear Measurement Model

7.4.1 Constant-Modulus Constraints

In this section, we consider a variation of Problem (7.8) for the case of noisy
measurements s and for side constraints on the sparse representation vector of the
form {x € CV : |x,| € {0,c¢}Vn € [N]}. This problem emerges, e.g., in multi-
user massive MIMO hybrid precoding systems with antenna selection and strict per
antenna magnitude requirements [13]. In this application, let A denote the MIMO
N x K channel matrix, y denote the symbol vector of the K users, and x denote
the transmitted signal vector. To limit nonlinearity effects in the power amplifiers,
the magnitudes of non-zero signals x,, transmitted from the selected antennas are
restricted to a constant c. The optimization problem can be formulated as [13]

min ||x]|o (7.12a)

XeCN
st ly — ATx|» < V5, (7.12b)
lxn| € {0, c},  Vn €[N], (7.12¢)
where ||x|lo = |{n € [N] : x, # 0} denotes the number of non-zero entries
of x, i.e., the number of active antennas. We assume without loss of generality
that ¢ = 1. In order to reformulate the constant-modulus constraint (7.12c), we

split vector x into real and imaginary parts Re[x] and Im[x], respectively. Let
b = [b1, by, ...,bx]T € {0, 1}V denote a vector of binary variables. Problem (7.12)
can then be written as
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N

min Y b, (7.13a)

N N
xeCN bef0,1} —

K
2
s.t. Z (Re[yk] — (Refag]™w — Im[ak]Tz))

k=1

+ (Im[yk] — (Re[ag]"z + Im[ak]Tw)>2 <38, (7.13b)
Re[x,]? + Im[x,]*> < b,, Vn €[N], (7.13¢)
Re[x,? + Im[x,]> > b,, Vne[N], (7.13d)
b, € {0, 1}, Vn € [N]. (7.13e)

In (7.13), we have replaced the modulus constraints |x;, |2 = Re[x,]? + Im[x,]* =
bn, n € [N], by the two inequality constraints (7.13c) and (7.13d), which will be
treated differently in the following. The mixed-integer nonlinear program (7.13)
will be solved by employing a spatial branching method [71] in which branching
is performed on both integral and continuous variables. In this branch-and-bound
procedure, the binary constraints b, € {0, 1} at each node of the tree are relaxed to
linear inequality constraints 0 < b, < 1.

In the case that the solution (X, f)) of the LP relaxation of Problem (7.13) does
not satisfy the condition Re[%,]? + Im[%,]*> > l;n for some n € [N], this violation
will be resolved by one of the following steps:

1. If the binary variable by is already fixed to zero, inequality (7.13c) also implies
that X, is set to zero.

2. If the bounds of the continuous variables Re[x; ] and Im[x, ] are not yet restricted
to one of the orthants w.r.t. Re[x;,,] x Im[x; ], four branching nodes can be created,
the first with the additional constraints Re[x, ] > 0, Im[x, ] > 0, the second with
Re[x;] > 0, Im[x,] < O, the third with Re[x,] < 0, Im[x,] < 0, and the fourth
with Re[x,] < 0, Im[x,,] > 0. This partitions the feasible solution set into these
four orthants.

3. If the bounds of the continuous variables Re[x,,] and Im[x,] are already restricted
to one of these four orthants, the following steps are performed. Assume w.l.o.g.
that (£,, by) is feasible for the first orthant, i.e., Re[£,] > 0 and Im[£,] > 0.
Propagation: Let ¢, < Re[x,] < u;, {; < Im[x,] < u; denote the current lower
and upper bounds of the variables Re[x;] and Im[x, ], respectively. Compute the
four points (4y, f(4r)), (ur, f(ur)), (f(4), €;), and (f (u;), u;) on the unit circle
that correspond to the respective lower and upper bounds of Re[x,] and Im[x,],
where f(x) = +/1 — x2. These four points can now be used to strengthen the
lower and upper bounds of Re[x,] and Im[x,], as depicted in the left-hand side
of Fig.7.2. If the binary variable b, is not yet fixed to one, the lower bounds
are not propagated, as b, could be set to zero in an optimal solution, implying
Re[x,] = Im[x,] = O as well. As an example, consider the situation depicted in
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Fig. 7.2 Left: Inequalities that are added to the sub-nodes. Right: Bound propagation for the
continuous variables

Fig.7.2. In order for an optimal solution (x*, b*) to fulfill the modulus constraint
Re[x,]*> + Im[x,]*> > b,, the point (Re[x;], Im[x;]) needs to lie on or above
the arc between the two points ( f (), ui) and (u,, f(u;)) if b; = 1, so that the
lower bounds of Re[x,] and Im[x;,] can be tightened.

Separation: If Re[x,] + Im[x,] < by, add the cut Re[x,] + Im[x,] > b, to the
LP relaxation. Note that each solution in this orthant on the unit circle satisfies
this inequality.

Branching: If Re[x,] + Im[X,] > 5,1, create two branching nodes defined by
linear inequalities of the form f,, Re[x,] + g, Im[x,] > b,, as visualized in the
left-hand side of Fig. 7.2.

Computationally efficient suboptimal heuristic solutions for problem (7.12) and
simulation results from numerical experiments can further be found in [13].

7.4.2 Row- and Rank-Sparsity

In this section, we consider row- and rank-sparse recovery from noisy mea-
surements. The idea to exploit a common sparsity structure among multiple
measurements as prior information was proposed in [23, 29, 41, 67, 69, 85], where
the mixed-norm (7.6) is used to enforce row-sparsity. The corresponding row-
sparse data model is illustrated in Fig.7.3. The classical row-sparse recovery
problem corresponds to a least-squares data-fitting problem with £; ;-mixed-norm
minimization:

1
min — |AX = Y[[§ + 4 VD X1, (7.14)

where X = [x(1),...,x(D)]. This problem emerges, e.g., in the context of
direction-of-arrival (DoA) estimation, where the columns of the dictionary A
represent the array responses for difference directions and the support of the
matrix X, i.e., the indices of the non-zero rows indicate the source DoAs. The
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Fig. 7.3 Multiple

measurement problem with .

row sparsity | -
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Y = A®v) X

dimension of problem (7.14) grows with the number of measurements D and the
size of the dictionary and can become computationally intractable. To reduce the
computational cost, it was suggested in [41] to reduce the dimension of the M x D
measurement matrix Y by matching only the signal subspace in the form of an
M x K matrix Ygy, leading to the prominent £1-SVD method. A drawback of the
£1-SVD method is that it requires knowledge of the number of source signals and
that the estimation performance may deteriorate in the case of correlated source
signals. To overcome this limitation, a convenient equivalent problem reformulation
was derived in [54] as stated in the following theorem.

Theorem 7.3 (Problem Equivalence 1) The row-sparsity inducing > mixed
norm minimization problem (7.14) is equivalent to the convex problem

min tr((ASAY + 1 11)7'R) + (), (7.15)

Seby

with R = YYH /D denoting the sample covariance matrix and D, describing the
set of nonnegative diagonal matrices, in the sense that minimizers X* and S* for
problems (7.14) and (7.15), respectively, are related by

X* = SAftAsAl i)y, (7.16)
Conversely, S* = diag(s], ..., sk) contains the row-norms of the sparse signal
matrix X* =[x}, ..., X}(]T on its diagonal according to
SE = LIIX*Ilz (7.17)
k \/B 1112
fork = 1,..., K, such that the union support of X* is equivalently represented by
the support of the sparse vector of row norms [s7, .. ., s;(]T.

Problem (7.15) is known as the SPARse ROW-norm reconstruction (SPARROW)
reformulation. It reveals several interesting properties of the underlying multiple
measurement problem, and it can be reformulated as a semidefinite program. Unlike
Problem (7.14), the dimension of (7.15) does not grow with the number of mea-
surements [54]. Gridless variants of the method for uniform linear arrays (ULAS),
shift-invariant arrays, and augmentable arrays are reported in [3, 53, 54, 64, 72].
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Fig. 7.4 Multiple measurement problem with block sparsity

In the case of DoA estimation in partly calibrated subarray systems with unknown
DoAs v and subarray position parameters 3, the recovery problem can be formulated
as a rank- and block-sparse regularization problem [50]. The corresponding data
model is illustrated in Fig. 7.4, where B(v) contains the subarray steering vectors,
®(v,n) = [e(1,n),...,9(vk, n)] contains the inter-subarray array responses,
and X contains the row-sparse signal waveforms. We observe that the matrix Z =
ZT, ..., Z}]T enjoys a special block- and rank-sparse structure as it is composed
of K-stacked rank-one matrices Zy = ¢@(vg, 5) XZ, fork = 1,..., K. The block-
and rank-sparse recovery problem is given by

K
1 )
min ||BZ—Y||F+;||ZI<||*, (7.18)

where the nuclear norm regularization ||Zg|,« = tr((ZkHZk)l/ 2) encourages block-
rank-sparsity, i.e., the solution blocks Zj shall either be zero or low-rank [32,
33, 52, 77]. Similar to Problem (7.14) also Problem (7.18) admits a convenient
reformulation with a significantly reduced number of optimization variables, as
provided by the following theorem [50, 51].

Theorem 7.4 (Problem Equivalence 2) The rank- and block-sparsity inducing

Ly 1-mixed-norm minimization Problem (7.18) is equivalent to the convex problem

min tr((BSBY + AD'R) + u(S), (7.19)
SeS

with R = YYH/D and S; denoting the sample covariance matrix and the set

of positive semidefinite block-diagonal matrices composed of K blocks of size
P x P, respectively. The equivalence holds in the sense that a minimizer Z* for
Problem (7.18) can be factorized as

7' = S*BEBS*BY + AD 7y, (7.20)

where S* is a minimizer for Problem (7.19).
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7.4.3 Block-Sparse Tensors

In [7], block-sparse core tensors were considered as the natural multidimensional
extension of block-sparse vectors or matrices (as illustrated in Fig. 7.4) in the context
of multidimensional data acquisition. Such block-sparse tensors arise naturally
in a wide range of applications as, for instance, in magnetic resonance imaging
(MRI), hyper-spectral imaging, multidimensional inpainting, missing data problems
for electroencephalogram (EEG), super-resolution imaging, or MIMO wireless
communications. The (M, ..., M) block sparsity for a tensor assumes that Q
support sets, characterized by M, indices corresponding to the non-zero entries,
fully describe the sparsity pattern of the considered tensor. In the context of
compressed sensing with Gaussian measurement matrices, the Cramér-Rao bound
(CRB) on the estimation accuracy of a Bernoulli-distributed block-sparse core
tensor was also derived in [7]. This prior assumes that each entry of the core
tensor has a given probability to be non-zero, leading to random supports of
truncated Binomial-distributed cardinalities. Based on the limit form of the Poisson
distribution, an approximated CRB expression is provided for large dictionaries and
a highly block-sparse core tensor. Using the property that the n-mode unfoldings of
a block-sparse tensor follow the multiple-measurement vectors (MMYV) model with
a joint sparsity pattern, a fast and accurate estimation scheme, called Beamformed
mOde-based Sparse Estimator (BOSE), is proposed in the second part of [7]. The
main contribution of BOSE is to exploit the structure by mapping the MMV model
onto the single-measurement vector (SMV) model, via beamforming techniques.
Finally, the proposed performance bounds and BOSE are applied in the context
of compressed sensing to non-bandlimited multidimensional signals with separable
sampling kernels and for multipath channels in a MIMO wireless communication
scheme.

7.4.4 Non-circularity

Recently, three different sparse recovery strategies have been proposed [55, 57, 58]
for exploiting the strict non-circularity property of the impinging signals x© (¢)
in (7.1) [56, 61], i.e., the received complex symbols x© (1) result from real-valued
constellations rotated by an arbitrary phase ¢. These strictly non-circular signals
may represent real-valued modulation schemes such as BPSK (binary phase shift
keying), PAM (pulse amplitude modulation), ASK (amplitude shift keying), or
Offset-QPSK (offset-quadrature phase shift keying, after an appropriate derotation).
As the rotation phase ¢ (that may be due to the propagation environment) is usually
unknown, the estimation problem becomes a two-dimensional (2-D) sparse recovery
problem, which requires estimating the support in the spatial domain as well as in
the rotation phase domain.
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In [55], a combined 2-D finite dictionary was introduced for both dimensions,
and the resulting 2-D sparse recovery problem was solved by a £ ;-mixed-norm
relaxation using multiple-measurement vectors (MMYV). Thereby, the known ben-
efits associated with strictly non-circular (NC) sources [56, 61], e.g., an improved
estimation accuracy and a doubling of the number of resolvable signals, can also be
achieved via sparse recovery. In order to handle the resulting 2-D off-grid problem,
an off-grid estimation procedure was introduced by means of local interpolation.

Article [58] addresses the prohibitive computational complexity required for
solving the 2-D mixed-norm problem as a result of sampling both dimensions,
significantly increasing the size. Thus, in [58], a sparse optimization framework
was proposed based on nuclear norm (rank) minimization after lifting the original
optimization problem to a semidefinite programming (SDP) problem in a higher-
dimensional space. To this end, the 2-D estimation problem is reduced to a
1-D estimation problem only in the sampled spatial domain, which automatically
provides gridless estimates of the rotation phases. As a result, the proposed method
requires a significantly lower computational complexity while providing the same
performance benefits. Additionally, an off-grid estimator for the spatial domain has
been proposed.

In [57], a gridless sparse recovery algorithm for NC signals has been proposed
based on atomic norm minimization (ANM). After the NC preprocessing step,
the ANM-equivalent SDP problem provides a solution matrix with a two-level
Hermitian Toeplitz structure. It was shown that by using the multidimensional gen-
eralization of the Vandermonde decomposition, the desired direction estimates can
be uniquely extracted from the two-level Hermitian Toeplitz matrix via NC Standard
ESPRIT or NC Unitary ESPRIT [17] in closed form. Due to the exploitation of
the NC signal structure, the proposed NC ANM procedure provides a superior
estimation accuracy as compared to the original methods for arbitrary signals. In
this case, the number of estimated sources can exceed the number of sensors in the
array.

7.5 Mixing Matrix Design

In this section, we consider a noiseless time-invariant version of (7.2) given as

y = ®Ax = ¥x € CV, (7.21)
where ¥ = ®A € CV*? is the total sensing matrix, ® € CV*M is the mixing
matrix (a.k.a., the projection/compression matrix), A € CM*? is the dictionary
matrix with P > M, and x € C” is the signal vector of interest with [|x]lo < s,i.e., X
is s-sparse. To enhance recoverability of x, the sensing matrix ¥ should be designed

carefully so that it satisfies a certain property (e.g., the NSP or the restricted isometry
property (RIP) [8, 9]). Among them, the mutual coherence property of the sensing
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matrix W, denoted hereafter as pmax (W), provides an easy measure with respect to
recoverability, which is defined as [48]

¥i'Yl
Lmax (W) = max —— 91 (7.22)
max i#j 1Yill2 1Y ll2
with columns ¥, = [Yx1,...,¥xn]T € CV, k € {1,..., P}. Clearly, a large

coherence max (W) means that there exist, at least, two highly correlated columns
in ¥, which may confuse any pursuit technique, such as basis pursuit (BP) and
orthogonal matching pursuit (OMP). However, it has been shown that if s <
%( 1+1/ umax(\ll)), the above techniques are guaranteed to recover x with high
probability [8, 48]. Due to its simplicity, several sensing matrix design methods via
mutual coherence minimization have been proposed recently, e.g., in [1, 84, 86].
In general, the results provided by [1, 84, 86] confirm that a well-designed sensing
matrix always leads to a better recoverability. However, we note that the achievable
mutual coherence by the aforementioned methods is, in general, far from the known
theoretical Welch lower bound, as we will also show in Sect.7.5.3. Moreover, in
the scenarios where the mixing matrix is realized using a network of phase shifters,
none of the existing methods, to the best of our knowledge, have considered the
constant-modulus constraints imposed by the mixing matrix hardware that involves
cost-efficient analog phase shifters.

Formally, by assuming that the dictionary matrix A € is given and
fixed, sensing matrix design reduces to finding the mixing matrix ® with constant-
modulus entries so that the coherence pmax(¥) is minimized, which can be
expressed as

CMXP

min = fimax (W) st [[Yglla =1, Vk, and [pp,m| =1, Vn, m, (7.23)
HcCNxM

where ¢, , is the (n,m)-th entry of ®, n € {1,...,N},and m € {1,..., M}.
Problem (7.23) is a nonconvex and ANP-hard optimization problem [40]. In the
following, we propose two solution methods. Section 7.5.1 presents the sequential
mutual coherence minimization (SMCM) we proposed in [4] for the case of P = M.
In Sect. 7.5.2, we propose a new method termed enhanced gradient descent (EGD)
for the more general case of P > M.

7.5.1 Sensing Matrix Design: P = M Case

In this subsection, we present our first solution to problem (7.23) for unconstrained
mixing matrix design, i.e., by neglecting the constant-modulus constraints. Specif-
ically, for a given dictionary matrix A € CY*? we assume that P = M and
the columns of A are linearly independent so that the condition of AA~™! = I, is
guaranteed. In this case, for a given sensing matrix ¥ € CV*” with a coherence
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Umax = Mmax (W), the optimal unconstrained mixing matrix that preserves pimax can
be obtained as ®uncon = YA~ € CVM i, tmax(PunconA) = fimax. Therefore,
the main task here is to find a low-coherence sensing matrix ¥ € CV*?.

Let us assume that the columns of W are normalized so that || ¥, |2 = 1, Vk, and
let G = WHW € CP*F be the so-called Gram matrix of W. Moreover, let Gyqr-abs €
RP*P be a matrix so that its (k, j)-th entry is given as Giﬁ’rﬂbs = |GIkJ12, By
expanding Giqr-aps, it can be expressed as

iy 2wty 1 ylly,)?
qur-abs = . = - ) (7.24)
Sy 2 iy iy 2. 1

which is a symmetric matrix with all ones on its main diagonal. Since all vectors in
W have unit norm, we have ng’rﬂbs = |¢E¢ j |> < 1,Vk # j, and the maximum
among them represents the squared coherence of the matrix W. According to [36,
68], tmax (W) has a theoretical lower bound given as (max(¥) > /B, where 8 =
%. This means that, at the best, we have pmax(¥) = +/B. Noting that the
k-th column vector ¥ appears only in the k-th column/row of Gggr-abs (due to its
symmetry), we propose to solve problem (7.23) in an alternating fashion by iterating
over the following P subproblems, where the k-th subproblem for updating ¥, is

given as
find ¥, e CV st [Py P < BV £k and [Pl = 1. (7.25)

Problems (7.23) and (7.25) are related in the sense that both aim to minimize
the maximum off-diagonal entry in (7.24). However, the strict unit-norm constraint
[¥ill2 = 1 in Problem (7.25) may result in infeasibility for poorly initialized
vectors ¥ ;, Vj # k, especially with a tight lower bound g. To avoid such a scenario,
we propose to relax (7.25) by dropping the unit-norm constraint and only impose
it after a solution is obtained, i.e., we first seek a solution to the following relaxed
problem

find ¥, eCY st [Py > <BVj#£k, (7.26)

which, unlike (7.25), is guaranteed to be feasible. To obtain a solution of prob-
lem (7.26), a suitable objective function is needed. One possible approach is as
follows

¥ € arg max |1ﬁkl'lvk|2 s.t. |1/I?Ivk|2 <BVj#k. (7.27)

Vi E(CN

In problem (7.27), we borrow the notion from the beamforming design in
wireless communication systems, see Fig.7.5, where we interpret v; € CV as
the beamforming vector of the k-th mobile station (MS) that we wish to design
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Fig. 7.5 A P-user interference-channel (IC) system model in wireless communication systems,
where a base station (BS) with N antennas serves P single-antenna mobile stations (MSs)
simultaneously so that the data transmission to the k-th MS causes interference to the remaining
P — 1 MSs

so that the desired transmit signal to the k-th MS, i.e., |¢}{{Vk|2, is maximized and
the interference signals to the remaining P — 1 MSs, i.e., |1ﬁlj71vk|2 < B,Vj # k,
are minimized for given channel vectors {¥;,..., ¥ p}. Due to its convexity,
Problem (7.27) can be efficiently solved using the existing techniques, e.g., using
the proposed method in [46], as we have shown in [4, 5]. Alternatively, we can
resort to the relaxed semidefinite programming (SDP) approach, by dropping the
rank-one constraint, and write Problem (7.27) as

max  tr{W;"Vi} st tr{\Il;-OVVk} <BVj#k, and Vi > 0, (7.28)

Vke(chN

where W°¥ = wkwﬁ}j e CN*N and V;, = VkaH e CN*N_ Problem (7.28) is
convex and can be efficiently solved using off-the-shelf solvers, e.g., the CVX
toolbox. Let V; denote the obtained solution of (7.28). Then, ¥, is given by the
eigenvector corresponding to the dominant eigenvalue of Vi, i.e., ¥; = Amax{Vi}.
In summary, the proposed mixing matrix design method is given by Algorithm 1.
Note that a naive approach to obtain a constrained mixing matrix, i.e., one with
constant-modulus entries, is given as ®on = I (Pyncon), Where II(+) is a projection
function that imposes the constant-modulus constraints on ®yncon element-wise,
i.e., II(z) = z/|z|]. The performance of such an approach will also be evaluated
in Sect. 7.5.3.

7.5.2 Sensing Matrix Design: The General Case

In this subsection, we propose a new solution to (7.23) for the more general case of
P > M. Similarly to [1], we propose to solve (7.23) indirectly by solving

min n(®) st Yl =1, Vk, and |ppm| =1, Vn,m, (7.29)

HcCNxM
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Algorithm 1: Sequential mutual coherence minimization (SMCM)

input ¥ € CN*P ey
initialize: 8 = % andn =1
forn=1,2,... do
fork =11t P do
Compute Vi) by solving problem (7.28).
Update the k-th column vector of ¥ () as ¥y = Amax{ Vi) }-
end
ife = |Hmax(‘I’(n)) - Mmax(‘l’(n—l))|2 < €, then
| Break
end

o @ AT R W -

end
output : the sensing matrix ¥ and the corresponding mixing matrix ®yycon = WAL,

where n(®) = |[AH®HPA — Ip||12;. To obtain a solution for (7.29), we propose
a constrained gradient-descent (GD) method, which updates the mixing matrix @
iteratively as

InN(Px-1))
Q) = H<q>(n—1) e ) (7.30)
8(I>(i1—1)
where n is the iteration index, ¢ is the step size, and % is the gradient of

n(®(,—1)) with respect to ®(,_1), which is given as [1]

0n(®u-1))
ﬁ = q)(n—l)A(AH‘I’gz_l)q’(n—l)A —1p)AH =¥, E;_pAH,
—

(7.31)

where ¥,_1) = @A and E(,_1) = \Ilgl_l)\ll(n,]) — Ip. The update step
in (7.30) is a direct extension of the proposed unconstrained GD method in [1]
to account for the constant-modulus constraints. Our results show that both the
unconstrained and the constrained GD-based methods achieve a mutual coherence
that is far from the known theoretical Welch lower bound, as it is shown in Table 7.1.
To enhance their performance, we propose to apply a shrinking operator on the error
matrix E(,_1) entry-wise to get I:I(n,l) such that the (k, j)-th entry of I:](n,l) is
obtained as

[k, j1
[k, j] 0, |E(n,]1)} <a- /B,

-n = k,j k. j .
=D sgn{EEn_]]l)} : (|EEH1]1)| —a- \/E) otherwise,

E (7.32)
where o > 1 is an uncertainty measure and g is as defined above. After a closer look

at (7.32), one can see that for a very tight threshold B = a - /B, the resulting error
matrix E¢,_1) becomes a sparse matrix, where some of its entries that are smaller
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Algorithm 2: Enhanced gradient descent (EGD)

input @) € CN*M A e CM*P ¢y, and ¢.
initialize: 8 = % andn = 1.

1 Normalize the columns of ¥ ) = ®()A so that || ¥ ) ¢ ll2 = 1, Vk.
2 forn=1,2,... do

3 Calculate the error matrix E,—1) = \Ilgl_l)\ll(,,,l) —1Ip.

4 Apply the shrinking operator (7.32) on E(,_1) to get I:Z(,,,I).

5 if mixing matrix should be unconstrained (i.e., ®,c0n) then

6 ‘ Compute ® () = ®u_1) — ¢ - ¥u_nEu_nAll

7 else if mixing matrix should be constrained (i.e., ®,,) then

8 ‘ Compute q)(n) = H(‘I’(n_l) - - \I’(n_l)E(y,_l)AH).

9

end
10 Normalize the columns of W,y = @A so that ¥, ll2 = 1, Vk.
1| ife=]p(¥u) — w(¥u-1))* < e then
12 ‘ Break
13 end
14 end

output : Mixing matrix &*

than f will be set to zero. The direct implication of such a shrinking operator is that
the new mixing matrix @) will be updated so that it mainly minimizes the entries
that are larger than 8. In summary, the proposed enhanced GD (EGD) method for
mixing matrix design is given by Algorithm 2. In Sect. 7.5.3, we will investigate in
detail the impact of o on the performance of EGD method.

7.5.3 Numerical Results

In this subsection, we present some numerical results for the proposed sensing
matrix design methods. In all the simulation results, we set N = 16, M = 64, and
design the dictionary matrix as A = [aj, ..., ap] € C¥** such that its k-th column
is given as a; = [1,e/%, ... e/M=DIT ¢ CM where vy = 2u(k — 1))/P.
For comparison, we include results for a mixing matrix ® obtained by using the
proposed closed-form method in [86]," the proposed methods in [84] and [1], as well
as averaged over 10,000 random realizations, where the entries of ® are chosen from
a zero-mean circularly symmetric complex Gaussian distribution, termed EVD, Itr-
SVD, GD, and Random, respectively. We show the simulation results in terms of
the maximum mutual coherence pmax (V) defined in (7.22) and the average mutual
coherence fayg (W) defined as

"Let UAUY be the eigenvalug decomposition of AHA. Then, the unconstrained mixing matrix
is obtained as ®uncon = Ay UZ, where Ay and Uy contain the leading N eigenvalues and
eigenvectors, respectively. For constrained mixing matrix scenarios, simply ®con = II(®uncon)-
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Table 7.1 Coherence jimax (¥) (Lavg(¥)) versus P (N = 16 and M = 64)

P |Random |EVD t-SVD | GD EGD SMCM

®uncon| 64| 0.64 (0.32)] 0.56 (0.30)| 0.24 (0.23)] 0.56 (0.31)| 0.26 (0.25) [a = 1.2]  0.24 (0.23)
96/ 0.74 (0.33)] 0.74 (0.32)| 0.34 (0.25)] 0.67 (0.33)| 0.32 (0.30) [« = 1.4]  0.53 (0.28)
128/ 0.85 (0.34)| 0.81 (0.33) 0.50 (0.27)| 0.84 (0.34) | 0.44 (0.32) [« = 1.7]| 0.73 (0.32)

Beon | 64]0.64(0.32)] 0.74 (0.32)] 0.51 (0.29)] 0.64 (0.31)] 0.31 (0.27) [@ = 1.3]] 0.57 (0.30)
96| 0.74 (0.33)] 0.75 (0.33)] 0.67 (0.31)] 0.68 (0.33)| 0.47 (0.30) [« = 1.5]| 0.68 (0.33)
128/ 0.85 (0.34)| 0.82 (0.34)] 0.79 (0.33)] 0.84 (0.34)| 0.72 (0.33) [ = 1.9]| 0.80 (0.33)

uavg(\ll)=Ni( Z |G“‘-f'1|), (7.33)

(k,))eSp

where Sg = {(k, j) : |G[k'j]| > /B}, Ng is the number of elements in the set
Sg,and G = WHW is the normalized-diagonal Gram matrix. Table 7.1 shows the
obtained results for different values of P. Moreover, Fig. 7.6 shows the convergence
behavior of the iterative methods for the scenarios with P = 64 and P = 128.
For the GD method [1], we use the step size { = 5 X 1074 /n, while for the EGD
method, we use { =5 x 1072 /n, where n is the iteration index.

From Table 7.1, when P = M = 64, we can see that the SMCM and the
Itr-SVD methods achieve similar performance, where the only difference is that
SMCM has a faster convergence rate compared to Itr-SVD, as can be seen from
Fig.7.6. However, as expected, when the ratio P/M increases above 1, the SMCM
performance decreases, since the naive approach of calculating the mixing matrix ®
from the designed sensing matrix W incurs a performance loss. On the other hand, it
can be seen that the proposed EGD method has the best performance in almost all of
the considered scenarios. Here, we note that the introduced uncertainty measure o
has a big impact on the EGD performance and the convergence rate, as can be seen
from Fig.7.7. In general, for a sufficiently large «, the EGD converges faster, but
its performance degrades and approaches that of the GD. On the other hand, from
Fig. 7.7, we can also note that & should not be too small since in this case most of the
entries within the resulting error matrix E will be set to zero. From our simulation
results in Table 7.1, we observe that o should be selected so that it is approximately
equalto P/M.

In this section, we have proposed the two mixing matrix design methods SMCM
and EGD via mutual coherence minimization. For the unconstrained mixing matrix
and P = M, we have shown that the original nonconvex problem can be relaxed
and divided into P convex subproblems, which are updated iteratively using an
alternating optimization technique. However, SMCM incurs some performance
loss for the constrained case and for P > M. To overcome this issue, we
have proposed the EGD method, which enhances the classical GD-based method
of [1] by introducing a shrinking operator on the error matrix. Using computer
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simulations, we have shown that the proposed SMCM and EGD methods have a
faster convergence rate and a lower mutual coherence compared to the benchmark

methods.

7.6 Recovery Algorithms for the Nonlinear Measurement
Model

This section is devoted to recovery techniques that explicitly consider the specific
structure of the measurements z themselves. More specifically, we consider the
special case of magnitude-only measurements. Hence, we use the information that
measurements are nonnegative, and we intend to uniquely recover the phase of the
measurement signal along with the sparse representation vector.
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7.6.1 Sparse Phase Retrieval

In this subsection, we consider the sparse phase retrieval problem [19, 24, 35, 42,
44,47, 49, 73, 82], which aims to reconstruct an unknown complex-valued sparse
signal x € CK from M noise-corrupted magnitude-only measurements:

z = |Ax| +n, (7.34)

where A is a designed sensing matrix, n € CM is an additive noise vector, and ||
is applied element-wise. The measurement model (7.34) can be viewed as a special
case of the system depicted in Fig.7.1, where @ is the identity and 7{-} = |[|.
The recovery problem can be formulated as the following £-regularized nonlinear
least-squares [47, 82]:

min 2(x) = 1 |z — |AX][I3 + A Ix]]; - (7.35)
xeCK — 0 ——
fx) g(x)

It is a very challenging optimization problem due to the fact that g is nonsmooth
and, more notably, f is nonsmooth and nonconvex. Besides, the original signal x
can only be recovered up to a global phase ambiguity as x - ¢/? preserves both the
magnitude measurements and the sparsity pattern.

We solve problem (7.35) using the STELA algorithm in [82], which is built on
the majorization-minimization (MM) techniques in [47] and the block successive
convex approximation (BSCA) framework in [75, 83]. The algorithm finds a
stationary point of (7.35) according to a generalized concept of stationarity via
a sequence of approximate problems that can be solved in parallel [88]. As f in
the objective function of (7.35) is nonconvex and nonsmooth, in each iteration we
first construct a smooth upper bound function for f. Then, a descent direction of
the upper bound function is obtained by solving a separable convex approximate
problem, and a step size along the descent direction is computed efficiently by exact
line search. A decrease of the original objective function / is ensured as its upper
bound is decreased. Let x) be the current point in the /-th iteration. Specifically,
the algorithm performs the following three steps in each iteration:

1. Smooth majorization. The quadratic function f in (7.35) can be expanded as
f® = 5(lzI3 + [Ax]3) — 2" Ax]. (7.36)
Further, we note that for any x € C and ¢ € [0, 27)

Ix| = |x - e/?| > Refx - €/}, (7.37)
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and equality holds for ¢ = —arg(x). Thus, defining z») = z © ¢/ arg(AXm),
where ¢ and arg(-) are applied element-wise and ® denotes the Hadamard
multiplication, we obtain the following smooth and convex upper bound for f
in the /-th iteration [47]:

_ ) )
FPx) = L(l1zl13 + 1Ax|13) — z" Re {Ax © ¢ 7/ A = 120 — Ax3,
(7.38)

which is tight at ¥, i.e., fO(x?) = £(x?). Consequently, function #") (x) =
FO(x) + g(x) is also an upper bound of the objective function / and tight at x©.

2. Descent direction computation. Departing from the conventional MM algo-
rithm, we minimize a separable convex approximation of 20 because 7 is
computationally too expensive to minimize exactly for our present purpose.
Based on the Jacobi algorithm [75], the convex approximate problem in the /-th
iteration around point x) is constructed as

K
%0 = argmin Y 7O (. x7) + gx), (7.39)
xeCK ;-4

where X_y is a (K —1)-dimensional vector obtained by removing the k-th element
x; from x. Problem (7.39) is decomposed into K independent subproblems,
which can be solved in parallel with suitable hardware [74]. Each subproblem is a
Lagrangian form of single-variate LASSO, which admits a closed-form solution.
According to [75, Prop. 1], the vector X*) — x) represents a descent direction of
h®_ This motivates us to update x) as follows:

x+D — xO 4 y(l)(’i‘(l) _ X(Z)), (7.40)

where y® e [0, 1] is the step size. When X? = x©, the algorithm has
converged to a stationary point of 2), which is also stationary for the original
problem (7.35) [83, Thm. 1].

3. Step size computation. To efficiently find a proper step size y ) for the update
in (7.40), we perform an exact line search on a differentiable upper bound of
h® [75]. Thus, the computation of step size y ) is formulated as

y = argmin fOO+y @D —xD) +5 N1y (s&")—gx ™). 741
=y=

The line search (7.41) corresponds to minimizing a convex quadratic function
in the interval [0, 1], which can be solved in closed form. Using the step size y )
obtained by the line search (7.41) in the update (7.40), a monotonic decrease of
the original objective function /4 in problem (7.35) is ensured, cf. [82].
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The mathematical expressions for the solutions of approximate problem (7.39)
and line search (7.41) can be further found in [82]. Simulation results with Gaussian
random sensing matrix A are also provided in [82]. The convergence analysis
of the BSCA framework is presented in [83]. Besides, several other applications
of the BSCA framework can be found in [37, 38, 76, 78, 79, 81]. Furthermore,
nonconvex regularization functions can be employed to resolve the defect that the
£1-regularization tends to produce biased estimates when the sparse signal has large
coefficients [80]. In addition, a comprehensive review of recent advances in phase
retrieval from a numerical perspective is presented in [10]. The conditions for unique
and stable reconstruction in sparse phase retrieval are discussed in [24, 43].

7.6.2 Phase Retrieval with Dictionary Learning

In the previous subsection, we considered the phase retrieval problem for signals that
are sparse in the standard basis. However, in some cases, the signals that need to be
recovered may only be sparse with respect to an unknown dictionary. Therefore, in
this subsection, we consider the phase retrieval with dictionary learning problem,
which jointly learns a dictionary and sparse representations for reconstructing
unknown signals. This recovery problem is involved in several applications such as
diffraction imaging [47, 66] and blind channel estimation in multi-antenna random
access network [39, 88].

We consider a special case of the system depicted in Fig. 7.1 with a known mixing
matrix ® and 7{-} = ||

z(t) = |[PAXx(¢)|+n(), t=1,...,D. (7.42)
Given D time samples Z = [z(1), ..., z(D)], the objective is to jointly recover the
unknown sensing matrix A and sparse transmitted signals X = [x(1),...,x(D)].

The recovery problem is then formulated as the following phase retrieval with
dictionary learning problem [39, 88]:

min h(A,X) = % |Z — |<I>AX|||%+)L X q - (7.43)
AeA XeCk*D — ) — —
FAX) ¢X)
To avoid scaling ambiguities, we restrict A to be in the convex set A = {A €
CMxK . lagll2 < 1,Vk = 1,...,K}. Also, D > K is required to avoid trivial

solutions.

Analogously, a stationary point of problem (7.43) according to a generalized
concept of stationarity can be found by using the majorization technique in (7.37)
and the BSCA framework [88]. In addition to the procedure described in Sect. 7.6.1,
we also partition the variables into two blocks, i.e., A and X, and select a given
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number kp € {l,2} of block variables to update in each iteration. The block
variables can be selected by cyclic or random update rules [83].

Let (A(l), X([)) be the current point in the /-th iteration. We first consider the
case where both block variables A and X are selected to update. Then, the three
main steps that are performed in each iteration by the BSCA-based algorithm for
problem (7.43) are outlined as follows:

1. Smooth majorization. Exploiting the same majorization technique given
in (7.37), we construct a smooth upper bound for f in (7.43). Defining
ZO = 7 © /e @AXD) e can obtain the following smooth upper bound
for f in the /-th iteration:

FPAX) = 11z - eAX|iE, (7.44)

which is tight at (AD, XDy, Similarly, we construct function MDA X) =
FO(A, X) + g(X) as an upper bound of the objective function /4 that is tight
at (A(l), X(l)). However, we remark that, unlike in Sect. 7.6.1, the upper-bound
function £© in (7.44) is nonconvex due to the bilinear terms AX. Therefore, the
convex approximation in the next step becomes necessary for efficiently finding
a descent direction.

2. Descent direction computation. Based on the Jacobi algorithm [75], the
separable convex approximation for the minimization of 2() is constructed as

e MK A AD XD
(A(l), XU)) € argmin Zm:j\} Zk_Z(ll) f (x?;)k’ (1)’ - , (7.45)
AcaX |+ Xmer fO(ar, AL XD) + ¢(X)

where A_j is an M x (K — 1) matrix obtained by removing the k-th column
a; from A and X_,,; denotes the collection of all entries of X except the
(m, k)-th entry x,,;. Problem (7.35) can be decomposed into K + (K x D)
independent subproblems. Each subproblem can be solved either in closed form
or by an efficient algorithm. Then, the difference (A — A®,X® — X®)
represents a descent direction of 1® in the domain of problem (7.43). Defining
AA = AD —AD and AX = XD — X the following simultaneous update rule
can be applied:

AFD = AD 4 yOAA  and XD =XO 4 yDAX, (7.46)
with a proper step size y) € [0, 1]. When (K(l),f((”) = (AW, XD), the

algorithm has converged to a stationary point of 2(), which is also stationary
for the original problem (7.43) [83, Thm. 1].
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3. Step size computation. We perform an exact line search on a differentiable upper
bound of 2 to efficiently find a step size y ) that ensures a monotonic decrease
of the original objective function 4 in (7.43). The computation of step size y )
is then formulated as

y© = argmin (7.47)

{f@ (AD +yAA XD +yAX) }
O0<y<1 .

+8(X0) +7 (g(X0) - g(X))

Problem (7.47) can be solved by rooting its derivative, a third-order polynomial,
which admits a closed-form expression.

In contrast to the above joint update case, if only one block variable is selected to
update in the [-th iteration, then we solve the approximate problem (7.45) only with
respect to the selected block variable, which requires solving only the corresponding
subproblems. Moreover, the update (7.46) is also performed only on the selected
block variable, which is equivalent to setting the difference of the non-selected block
variable to be all zero. Further, when either of the matrices AA and AX is all zero,
the line search problem (7.47) reduces to a simple convex quadratic program.

Details of the BSCA-based algorithm for phase retrieval with dictionary learning
and results from numerical experiments can be further found in [39].

7.7 Conclusions

Compressed sensing (CS) is a powerful technique for estimating sparse signals,
which can be recovered, under mild conditions, from far fewer samples than
otherwise indicated by the Nyquist-Shannon sampling theorem. Moreover, it was
observed that incorporating side constraints not only improves the recovery guar-
antees but also reduces the required number of samples. This chapter builds on
this important observation by addressing sparse signal reconstruction under various
types of structural side constraints, including integrality, constant-modulus, row-
and rank-sparsity, and strict non-circularity constraints. Moreover, this chapter
addresses the measurement system design for linear and nonlinear measurements of
sparse signals. For the linear measurement systems, two mixing matrix design meth-
ods based on mutual coherence minimization are proposed, where constant-modulus
constraints are imposed element-wise to satisfy the mixing matrix hardware that
involves cost-efficient analog phase shifters. For nonlinear measurement systems,
parallel optimization design algorithms are proposed to efficiently compute the
stationary points in the sparse phase retrieval problem with and without dictionary
learning.
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Chapter 8 ®
Compressive Sensing and Neural Qe
Networks from a Statistical Learning
Perspective

Arash Behboodi, Holger Rauhut, and Ekkehard Schnoor

8.1 Introduction

Learning representations of, or extracting features from, data is an important aspect
of deep neural networks. In the past decade, this approach has led to impressive
results and achieved state-of-the-art performances, e.g., for various classification
tasks. However, due to the black-box nature of the end-to-end learning of neural
networks, such features are usually abstract and difficult to interpret. On the other
hand, algorithms such as the iterative soft-thresholding algorithm (ISTA) can be
regarded as neural networks. Thus, with the help of modern deep learning software
libraries, they can easily be implemented and optimized, such that the trained
parameters can adapt to datasets of interest. When such algorithms are well-
understood, it can be possible to transfer results shown for the classical variant
to their neural network variant and in this way increase our understanding of deep
neural networks. A class of neural networks that we discuss in the present work aims
at joint reconstruction and dictionary learning problem based on unfolding iterative
soft-thresholding algorithm. Here, unfolding means that each step of an iterative
algorithm constitutes a neural network layer whose parameters can be learned from
data.

Here, the learned representation (a dictionary) is a very well-understood model
in image and signal processing, which can be easily interpreted and visualized. As
a practical application, one may think of reconstructing images from measurements
taken by a medical imaging device. Instead of only trying to reconstruct the image,
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we would also like to implicitly learn a meaningful representation system that
is adapted to the image class of interest and leads to good generalization (e.g.,
when taking measurements of new patients). More generally, this is the approach
of solving inverse problems in a data-driven way, e.g., by training neural networks
[3, 16].

The natural question arises how well these learned reconstruction methods work.
We take the viewpoint of statistical learning theory and assume the data (signals,
images, etc.) to be generated independently by some unknown distribution. Gener-
alization bounds give probabilistic estimates on the difference between the true error
(with respect to the unknown distribution) and the empirical error for a hypothesis
function. Thereby, such bounds predict how well a learned neural network performs
on yet unseen data. By now, classical results bound the generalization error in terms
of the VC dimension or based on the Rademacher complexity [4, 41]. More recent
methods include a compression approach [2] and a PAC Bayesian approach [36].
So far, generalization properties of neural networks have been studied mostly in the
context of classification using feed-forward neural networks, see, e.g., [5, 15, 36].
Especially, in the overparameterized scenario with more network parameters than
samples that is common in deep learning, it is still a mystery why learned networks
generalize very well, and the present bounds cannot yet explain their success
[21, 33, 54], although some works attribute this to the so-called implicit bias of
learning algorithms [8, 34, 35, 37] such as the commonly used (stochastic) gradient
descent. We will, however, not pursue this direction further in this chapter.

The case studied here, a recurrent neural network used for a regression problem,
has received less attention so far from the perspective of generalization.

Due to the weight sharing, this is a non-overparameterized network. However,
it is straightforward to decouple the layers and thus obtain a network that is
more similar to standard feed-forward neural networks. Furthermore, we impose
an orthogonality constraint on the dictionary, which in fact constitutes the learned
parameters of the network. We derive generalization bounds for such thresholding
networks with orthogonal dictionaries. In order to upper bound the Rademacher
complexity of the hypothesis class consisting of such deep networks, we apply a
generalization of Talagrand’s contraction principle [28] for vector-valued functions,
which is typically not needed when considering real-valued hypothesis classes, e.g.,
with the ramp loss (applied to the margin) in a multiclass classification problem
[5]. A similar idea for multiclass classification tasks has been tried in [37]. We
further estimate the resulting expectation of the supremum of a certain Rademacher
process via Dudley’s integral (which in particular involves covering numbers) to
upper bound the Rademacher complexity of hypothesis classes consisting of such
deep networks.

Sample complexity of dictionary learning has been studied before in the literature
[14, 18, 19, 40, 46]. The authors in [46] also use a Rademacher complexity analysis
for dictionary learning, but they aim at sparse representation of signals rather
than reconstruction from compressed measurements, and moreover, they do not
use neural network structures. Fundamental limits of dictionary learning from an
information-theoretic perspective have been studied in [22, 23]. Uniqueness about



8 Compressive Sensing and Neural Networks from a Statistical Learning Perspective 249

our perspective and different to the cited papers is our approach for determining the
sample complexity based on learning a dictionary by training a neural network.

This chapter is structured as follows. In Sect. 8.2, we introduce learned soft
iterative thresholding architecture, define the generalization error, and review some
of the related works. We discuss works on generalization bounds for deep neural
networks in Sect. 8.3 and introduce Rademacher complexity analysis. The main
result of this chapter with detailed proofs is given in Sect. 8.4. Finally, we present
the numerical results in Sect. 8.5.

8.1.1 Notation

Vectors x € RY and matrices A € R are denoted with bold letters, unlike
scalars & € R. We will denote the spectral norm by ||A |22 and the Frobenius norm

by ||AllF. The N x m matrix X contains the data points, X{,...,X, € RY as its
columns, analogously Y € R"*™ to collect the measurements yy, ..., ¥, € R". As
a short notation for indices, we use [m] := {1, ..., m}. To make the notation more

compact, with a slight abuse of notation, for functions f : R" — RY, we denote
by f(Y) the matrix whose i-th column is f (y;). The unit ball of the n-dimensional
normed space R” is denoted by Bﬂ’_ | = {x € R" : ||x|| < 1}. The covering number
N (M, d, €) of a metric space (M, d) at level € is defined as the smallest number of
balls of radius € with respect to d required to cover M. When the metric is induced
by some norm, we write N' (M, || - ||, €). We denote the N-dimensional orthogonal
group by O(N).

8.2 Deep Learning and