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Preface

The Internet of Things (IoT) is a paradigm that aims to deliver processing and com-
munication capabilities to physical objects through integrated sensors and actuators 
with Internet access. IoT may prove to be a crucial framework for the design of 
novel smart environments. The book covers a range of major research subjects that 
will foster future implementations. These include smart learning environments, 
crowdsensing applications, participatory citizen sensing, and multimodal percep-
tion systems. Moreover, security challenges are addressed. The aim of this book is 
to discuss recent advances in IoT and its applications for smart environments. A 
total of seven chapters have been contributed by several authors from across the 
globe, namely Australia, Bangladesh, China, Czech Republic, India, Iran, Italy, 
South Korea, Turkey, and the USA.

Chapter, “Smart Learning Environments: Overview of Effective Tools, 
Methods, and Models,” explores the possibilities of IoT and the applications of 
machine learning in the development of smart environments and smart cities. Digital 
learning has become one of the most rapidly developing areas in recent times. 
Designing only digital technologies or tools does not make environments smart, but 
it is, above all, the presence of methods and models oriented towards digitization 
that makes the process innovative. Furthermore, the frontier of contemporary digi-
tization lies in the creation of hybrid environments in which the virtual and the real 
coexist to provide services that are increasingly flexible in adapting to the needs of 
users. Today’s virtual models or real models do not enable systems to be innovative 
if they are separate; a design that mixes the elements of the present system (space, 
contents, subjects) with digital elements (design, media, technologies) has the 
capacity to make university education more competitive.

Chapter, “IoT for Smart Environment Applications,” reviews recent applica-
tions related to education, smart buildings, transportation, smart health, water qual-
ity, waste management, and traffic management. Moreover, it also emphasizes the 
use of IoT-based applications in marketing, which have changed the industry as 
such. IoT-based military applications and disaster recovery are also explored. The 
chapter begins with a description of some of the smart city attributes. Then, the 
challenges of different types of smart city applications are analyzed and the 
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techniques that are applied are overviewed. Moreover, real examples of smart cities 
all around the world are discussed along with the challenges they face.

Smart city is a concept where infrastructure and structural facilities utilize a 
fusion of information technology for the citizens. Smart citizens demand technology- 
based services to improve their quality of life. IoT plays a pivotal role in the collec-
tion of sensor data from the citizens of smart cities and in using these data to acquire 
knowledge for user-centric applications. There are a variety of smart city applica-
tions. Chapter, “IoT-based Crowdsensing for Smart Environments,” introduces 
the basic paradigm, tools, and technologies required for monitoring the different 
dynamics of a city, such as pollution, traffic and road condition, smart home appli-
cations, and citizens’ health using IoT-based crowd/participatory sensing. Acquiring 
data from crowdsensing or participatory sensing is used to create the data input of 
smart environments. In this chapter, an IoT cloud based on an end-to-end architec-
ture is presented as the solution of smart city-centric infrastructure.

Water is one of the essential key substances on Earth. The existence of the human 
race depends on it. Although 71% of the earth’s area is covered by water, only 0.3% 
is usable by humans, which makes it more precious than any other substance. 
Quality water is essential not only for drinking but also for agriculture, fisheries, 
and all other sectors. However, for the past few years, the quality of usable water has 
been decreasing at an alarming rate, so for a smart city and its environment, a water 
quality monitoring system is essential to ensure human and animal safety. Among 
the different approaches for water quality monitoring, an IoT-based system could be 
effective, cost friendly, and easy to use. Chapter, “Water Monitoring Using 
Internet of Things” presents an IoT-based water pollution monitoring system that 
provides real-time results and a comparison report on water quality and pollution 
using different parameters.

Participatory citizen sensing (PCS) means using sensors to gather and share the 
data to generate knowledge, solve problems, exchange information, or have fun. 
PCS projects deal with smart environments at three levels: nature and ecology (air 
pollution, noise), urban issues (traffic, condition of roads and sidewalks), and 
extreme events (floods, earthquakes, epidemics). Compared to the broader concept 
of the IoT, sharing in this context is always intentional; participants either actively 
share their data or agree with the sharing. From the technical viewpoint, the IoT and 
PCS devices are similar. Chapter, “Participatory Citizen Sensing with a Focus on 
Urban Issues,” brings a comprehensive and systematic view of the PCS, addressing 
the following three issues: (1) the areas in which PCS is used, (2) the means by 
which citizens are recruited and motivated, and (3) what technical issues must 
be solved.

Chapter, “Design Strategy of Multimodal Perception System for Smart 
Environment,” focuses on the design strategies for sensing human behavior and 
intentions in architectural spaces so that they may be upgraded to intelligent envi-
ronments in the future. Creating a perceptual system for an architecture environ-
ment is the basis for allowing buildings to have an intelligent system that can 
continuously iterate and evolve into an intelligent and autonomous entity. The inte-
grated processing of multimodal perceptual information helps improve the accuracy 
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of the information from a building relating to all kinds of behaviors and needs 
within the building’s space. In the context of IoT, the perceptual system of building 
space can be extended from a single building component to all home appliances in 
multi-dimensional space-time, forming a three-dimensional integrated multimodal 
perceptual system. In this process, the designer’s systematic and logical design of 
the intelligent environment multimodal perception system can help cover all corners 
of the road space and avoid the waste of repeated sensor arrangement, facilitating 
the upgrade iteration and evolution of the intelligent environment perception system 
over time. This chapter describes the classification of multimodal perceptual sys-
tems, design principles, information processing methods, technical routes, and 
design strategies to improve environmental intelligence with the help of relevant 
design cases and knowledge from psychology, biology, and other related fields.

IoT technology continues to develop in many areas. In developed countries, the 
concept of IoT is rapidly increasing the use of applications that facilitate human life 
in smart cities. Technological development also directly contributes to people’s 
social lives. Smart cities collect data using IoT technology and use the information 
obtained from this data to manage resources and services efficiently. Thus, the liv-
ing conditions of people living in cities are facilitated by the quality services offered 
to them. Smart city IoT applications, especially smart parks, smart buildings, smart 
homes, smart health, smart business, and smart environment applications, are 
widely used. As systems and applications become smart in smart cities, it is impor-
tant to evaluate them, especially in terms of security, and this topic is addressed in 
Chapter, “Cyber-Attack Measures in Smart Cities and Grids.” The fact that IoT 
devices used in smart cities have intelligence does not mean that they are safer. In 
smart environments and cities, the IoT applications’ data communications protocols 
should be geared towards security. All smart systems should be managed from a 
security perspective and necessary precautions should be taken. In addition, all sys-
tems used in smart cities that have a smart environment should be one hundred 
percent environmentally friendly.

Aiming to give background for future research, a detailed description of the 
recent advances in IoT for smart environments is provided. This book is intended to 
support the development and research of future IoT systems for smart environments. 
Finally, we would like to express our gratitude to everyone participating in this 
project for their contributions and for allowing us to edit this book. We would also 
like to thank the European Alliance for Innovation (EAI) and Springer who collabo-
rated with us, especially Eliška Vlčková (Managing Editor), for their assistance and 
support during the preparation of this book.

Oliveira do Hospital, Portugal  Gonçalo Marques
Salamanca, Spain  Alfonso González-Briones
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About the Book

This book aims to introduce recent advances in IoT and its applications for smart 
environments. The state of the art is reviewed with a focus on the technologies, 
applications, challenges, and opportunities. At this stage, a comprehensive under-
standing of the formal and practical applications of IoT in the different scenarios of 
smart environments is necessary to support future research. Therefore, the main 
contribution of this book is a comprehensive study of the most recent proposals for 
smart environments. In addition, this book synthesizes existing information and 
highlights common threads and gaps that lead to new and complex areas of future 
research. The book covers a range of major research subjects which will foster 
future implementations. The topics include smart learning environments, crowd-
sensing applications, participatory citizen sensing, multimodal perception systems, 
and security challenges. This book seeks to provide a valuable framework for future 
research projects by expounding the topic to academics, engineers, and industry 
professionals, which is necessary for the design of future IoT architectures for smart 
environments.
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Smart Learning Environments: Overview 
of Effective Tools, Methods, and Models

Limone Pierpaolo and Toto Giusi Antonia

1  Introduction

Digital learning has been accelerated in response to the COVID-19 pandemic glob-
ally, and it will impact the future of education in learning institutions [1]. 
Paradoxically, the recorded problem concerns accessibility to the Internet and is 
instrumental rather than a matter of scarcity in terms of the effectiveness and effi-
ciency of the teaching and learning process. The imposition of social distance and 
telematic relationships has demonstrated the structural insufficiency of many sec-
tors of production and daily life.

Research has found that the expenditure on education technology is deemed to 
expand rapidly in the near decades. Most education systems have embraced tech-
nology by encouraging tutors to be tech-savvy. They use technology purposefully 
for effective learner interactions in the classroom and portray the basic technology- 
related tutoring skills. Digital learning differs from traditional face-to-face learning 
significantly in various ways, such as the place where learning occurs, the learning 
materials, and social interaction. The shift to digital learning has provoked mixed 
reactions, especially by parents who have protested for the full resumption of tradi-
tional learning after the COVID-19 pandemic [2]. School tutors have responded to 
the protests by devising ways to integrate digital and face-to-face learning, thus 
incorporating the hybrid learning models. Indeed, the availability of necessary 
resources to support digital learning is significant to its success and benefits attrib-
uted to it, such as enhancing collaboration, student engagement, and achievements 
[3]. The adoption of digital learning in the future will require tools, methods, and 
models that support digitization. Digital learning environments mostly use 
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computer-based technological advancements that have general and specific domain 
contents to support student and teacher interactions as well as Internet access. The 
main reasons for the development and triggering of innovations develop from the 
digital skills of the subjects involved in the process, ensuring a real transformation 
of the physical environment. The realization of this process depends on the degree 
of adaptation of the subjects to the phenomena of digitization of society. It is clear 
that the transformation of the real-life context requires an increase in digital literacy 
and digital skills to accept and support innovation. Contemporary evolution in the 
post-COVID-19 era concerns precisely the hybrid evolution (also defined as blended 
or mixed) of digital environments.

The methods that will be incorporated by learning institutions in the future are 
digital-friendly; the main ones are presented below.

2  Learning Methods

2.1  Mobile Learning

Mobile technology has revolutionized over the years, from offline landline tele-
phones to more sophisticated digital smartphones that have increased connectivity 
and social interaction. Browsing and learning through mobile applications will con-
tinue to be a vital part of e-learning in the future of education. Mobile devices will 
indeed expand learning beyond the traditional classroom because they are charac-
terized by unique features such as increased connectivity, affordability, unique edu-
cational tools such as cameras to support video conferencing, flexibility, and the 
ability to customize learning features [4]. Since mobile technology is the most 
familiar globally, the students and tutors will be more familiar with the essential 
tools to expand their knowledge, achieve satisfaction, and improve education out-
comes. Another essential feature of mobile learning is that it helps achieve social 
interaction via relevant platforms, thus achieving learner synchronization. However, 
the value of such systems may be reduced due to the emotions that students experi-
ence, including fear of poor grades, stress from family circumstances, and sadness 
from losing friends [5].

2.2  Open Education Resources

This new learning approach is crucial for the future of education since it is charac-
terized by free accessible resources available for the public online [6]. It also 
requires relevant open licensing and collaboration. There are, therefore, no issues of 
unaffordable costs, and learners will utilize them to achieve various educational 
outcomes. In addition, they are content- and practice-based approaches enabling 
users to redistribute, revise, and reuse content, thus making them unique for future 
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education. Learners will access quality content long-term learning ideas to help 
them achieve the desired educational outcomes while remaining innovative and 
active. Open online resources (OERs) differentiate content and complexity accord-
ing to the level of education and degree of complexity in learning [7].

2.3  Online Courses

The adoption of online educational courses has improved gradually, and many 
learners have incorporated this form of learning for both formal and informal educa-
tion. Many e-learning platforms support learning online courses. According to 
researchers, the future will be characterized by more individuals enrolling for online 
courses to achieve their academic goals such as degrees and certificates [8]. Tutors, 
therefore, ought to be motivated to prepare the most relevant online course materials 
for their students to learn effectively. However, the main challenge will be to ensure 
that dropouts are minimized and learners remain motivated with relevant work-
loads, equality, and detecting fake student registrations. Online learning allows a 
perfect integration between life and learning times. Thanks to digital media, it is 
possible to connect anywhere, and at the same time, technology is perfectly inte-
grated into daily life (not only in the area of entertainment). The flexibility of the 
model allows it to be open to multiple users with different training characteristics. 
The quality of the courses is also very high because wherever the users reside in the 
world, it is possible to access the best teachers in the world [9]. However, the lack 
of experimentation in traditional training contexts has emphasized the system’s 
unpreparedness with respect to online teaching, and school courses have become 
less fun and less interesting, have reduced the value of learning, have encouraged 
less attention and effort, and have incorporated less cultural content since the transi-
tion to online instruction.

2.4  Cloud Platforms

These are ICT-based interactive platforms to support learning. Moreover, they con-
tain relevant websites, applications, and social media. Various cloud platforms dur-
ing the pandemic incorporated teleconferencing via Zoom, Microsoft, and Google 
Meet to enhance communication between tutors and students, thus improving inter-
actions. The future of digital learning is anticipated to continuous use of the cloud 
platforms in diverse ways [10]. For instance, they share classroom ideas via group 
discussions and textbooks through tools such as laptops, built-in cameras, and sen-
sors supported by Internet access. Education institutions in the future will upload 
relevant content in their servers to ensure that virtual classrooms are robust, increase 
student accessibility, and secure data storage while transferring learning content 
between users. The digital platform makes it possible to make classrooms in schools 
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much more hybrid and allows for the integration of laboratory and collaborative 
teaching methods within the classroom.

2.5  Adaptive Learning

The adaptive learning technology is a relatively new concept that will be imple-
mented in future digital learning scenarios. This method uses artificial intelligence 
by computers to generate algorithms that adjust educational content to suit learners’ 
pace and style. The algorithms are in a position to detect various patterns depending 
on the students’ feedback on the educational content. Therefore, in the future, stu-
dent and teacher interventions will be more accessible since adaptive learning 
 algorithms will help detect anomalies and propose relevant revisions and recom-
mendations according to the needs and abilities of learners. Improving education 
networks to be innovative, faster, and safer will be relevant to the success of adap-
tive learning [11]. In fact, adaptive learning systems incorporate big data and the 
use of artificial intelligence, especially to focus interest on the dimensions of moti-
vation, attention, and emotion in learning processes.

Digital learning environments in the future will also implement various models 
to enhance education in schools. These models assist in acknowledging the rele-
vance of technology to enhance student outcomes, and they are as follows.

3  Models of Digital Learning Environments

3.1  Connectivism Model

Technological shifts in the digital age have increased the ability of learners to be 
independent and access relevant information on topics of concern. This model will 
be relevant for future digital learning since learners will easily connect past infor-
mation and current information to create better understanding, decisions, and new 
meanings. Since technology has become more personalized, it will be easier for 
students to learn through digital devices. Also, physical student connections can be 
enhanced through engaging in extracurricular activities where advisors and educa-
tors converse and interact with learners. This will integrate physical and digital 
interactions to assist learners in making the best decisions and improve self- 
motivation in learning [12]. A specific model concerns self-regulated learning 
(SRL) and is considered fundamental to lifelong learning. In addition, SRL skills 
are necessary for personal fulfillment, self-determination, and motivation, and stu-
dents’ SRL skills are considered essential to make high-quality teaching possible in 
large groups of students [13]. An evolution of the theory concerns the studies of 
Sanna Jarvela [14], who identifies the component of collective synchronization in 
learning processes in social and self-regulated learning.

L. Pierpaolo and T. G. Antonia
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3.2  RAT (Replacement, Amplification, Transformation) Model

This model is commonly known as the RAT model in the field of education. The 
relevance of this model is to help in understanding whether technology replaces, 
amplifies, or transforms education practice. Focusing on replacement, technology 
will not replace student learning processes or overall institutional practices, but it 
serves as a different means to reach educational goals through different mediums. 
Moreover, amplification suggests the improved efficiency and productivity in stu-
dent learning linked to technology while tasks remain unchanged and improved 
capabilities. Transformation gives new insights powered by technology, such as the 
availability of new content, restructuring ideas, and revolution in learning and 
instructing students [15]. In the RAT model, the transformation will be more rele-
vant in integrating technology by tutors to explore means of digitization that help 
improve practice and problem-solving. This process allows for the emergence of 
critical thinking if properly guided in the development phase by the teaching inter-
vention. The minds of individuals who live immersed in digital technology are 
experiencing profound changes at the cognitive level and in the organization of 
thought [16].

3.3  TPACK (Technological Pedagogical Content 
Knowledge) Model

Technological pedagogical knowledge of content is the primary definition of this 
model. It implies how technology is a relevant factor by integrating it into tutors’ 
content and pedagogical knowledge in this digital era. This model will be relevant 
in future education since teachers are incorporating digital means of conveying edu-
cation content and complex concepts to learners, such as uploading an online video 
to explain a subject matter. Moreover, the model will act as a guide to tutors’ educa-
tion and curriculum development. First, learning outcomes are chosen, followed by 
the type of activity, and finally, the best education technology tools to support the 
classroom activity are implemented to help learners [17]. This model will ensure 
productivity since it considers a wide array of knowledge and how tutors can utilize 
it and also serves as a basis for instructor professional development and training. 
The quality of teaching and learning can be found in balancing and rethinking those 
three components in a systemic key (content, technology, and pedagogy) and in 
using strategies that address real and contextualized problems [18]. The enthusiasm 
and pedagogical fervor for these innovations have brought to light three interesting 
issues on the international scene: (1) the sense of community and participation in 
virtual teaching, (2) the learning of digital skills by students and teachers, and (3) 
the dissemination of digital technology in classrooms.

Smart Learning Environments: Overview of Effective Tools, Methods, and Models
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3.4  SAMR (Substitution Augmentation Modification 
Redefinition) Model

This model comprises four major approaches to educational technology that can be 
divided into enhancement and transformation. Teachers have experienced more 
straightforward ways to replace the traditional learning methods using substitution 
as a mechanism where classroom lectures will be replaced by digital content such 
as PDFs uploaded online via sharing devices such as Google Drive. Lectures held 
through videoconferencing are made accessible to learners anytime when the tutor 
records them, thus enhancing student engagement in classroom activities. 
Augmentation is a student interactive approach where they are able to give feedback 
on how they understand specific topics through digital portfolios, comments, post-
ing questions, and using hyperlinks. Modification is where tutors use virtual class-
rooms to track student progress, communication, posting assignments, and calendar 
updates. This is a significant feature because it will be inclusive to students who 
have been marginalized in physical classrooms [19]. Redefinition is a critical fea-
ture in this model, allowing for the impossible activities in the physical classroom 
to be made possible in the virtual classroom. Therefore, this will allow collaboration 
and connectivity to other students globally, interactions with experts, and sharing 
ideas to solve common setbacks in the community. Computer technology will be 
essential in the implementation of the SAMR model. This model demonstrates that 
the use of the integration of various digital technologies inside and outside the class-
room improves student learning.

3.5  ADDIE (Analyzing Design Development Implementation 
Evaluation) Model

This will be a valuable model for complex technology-based teaching and training. 
It is characterized by clear objectives, structured content, relevant workloads for 
learner activities, and integrated media. Moreover, the ADDIE model is built on the 
principles of instructional design, thus supporting virtual learning. The rapidly 
changing digital era of learning will have to adjust this model to meet the relevant 
education goals in the future.

Digital Tools for the classroom that will enter the school curriculum is compre-
hensive for teachers’ and students’ innovations. These are tools that help in making 
presentation videos, questions, assessments, and information graphics [20]. Students 
become more engaged and curious, resulting in a better understanding of the subject 
matter. For instance, YouTube Channels are digital tools for various academic con-
tents through visual representation and explanation of concepts. Therefore, they 
will continue to gain relevance in the future since they enable self-directed studying 
through instructions. Similarly, Dropbox is another tool that will continue being 
helpful in enhancing learning where file sharing, backup, and storage are possible 

L. Pierpaolo and T. G. Antonia



7

over the Internet. Mobile application tools such as Quizlet will enable learners to 
make quick assessments of their learning by using games and other fun activities. 
Teachers can also use the Socrative tool to get information about their students’ 
knowledge more interactive. Another emerging digital tool is BoomWriter, and it 
allows learners to engage in writing activities collaboratively, thus motivating those 
that may seem reluctant. Creating animated videos is made possible through a digi-
tal tool known as Animoto, and both students and learners can use it for education. 
Enhancing children’s skills via visuals is also possible through tools such as Pixton, 
and it will indeed improve their imagination and creativity. The relevant data sets 
obtained from the digital tools will help tutors to identify the strong and weak areas 
that their learners may be experiencing.

Following this, the necessary measures to improve skills and enhance improve-
ment are recommended to promote better education.

The goal of this project is to investigate the impact of digital technology on 
teachers’ school practices or work environments in the context of COVID-19. This 
impact has been studied in relation to the constructs of motivation, perceived stress, 
sense of self-efficacy, and resistance to/acceptance of technologies [21]. The mas-
sive and coercive use of digital technologies (and the relationship with innovation 
and change) is a predictor of motivation and perceived stress. Therefore, the integra-
tion of technology with physical environments and actual use passes through a 
period of acceptance to and modification of the perceptive systems of the entire 
society.

4  Hybrid School Models

The emergence of the COVID-19 pandemic created new perceptions on hybrid 
learning for the future by showing that education happens in physical classrooms by 
face-to-face tutoring and online digital platforms. Parents, teachers, and students 
have adapted to using the new education mechanism, which is more flexible with a 
wide array of learning methods in the long term. Hybrid learning is an approach that 
combines traditional face-to-face classroom learning and online learning methods 
to happen simultaneously [22]. Indeed, it is deemed to be the future of education 
since there is no going back to the old practices. In the future, there is the possibility 
that schools will have students learning from home and at school on a part-time 
basis. Since hybrid learning is a new strategy in the education system, various mea-
sures and strategies have been put in place to enhance its effectiveness in meeting 
future needs. There is a need to improve connectivity in schools by ensuring that the 
relevant technical requirements are available such as stable Internet connection, 
adequate training for teachers on technology use, simplicity of procedures, and 
improved connectivity.

There are various advantages linked to hybrid learning that will impact future 
learning environments positively. For example, it will enable monitoring progress 
easily where teachers can track performance on their dashboards and evaluate the 
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strengths and weaknesses that students may face. Therefore, getting immediate 
feedback allows teachers to make proper adjustments according to students’ needs. 
Also, personalized learning is achieved via hybrid learning where competency- 
based learning activities and modules are created to meet the students’ needs, thus 
increasing retention and achieving deeper comprehension and personalized healthy 
interactions with their teachers. Additionally, tutors are more empowered to meet 
the needs of each student due to diverse interactive options beyond the physical 
classroom, thus addressing potential learning barriers. Learning through the hybrid 
model will be more interactive and engaging due to the availability of multiple 
learning models that are more engaging as compared to the traditional model that 
was monotonous. Therefore, learners will develop additional skills that help in 
social interactions. Deeper learning by accessing more diverse education material is 
another advantage of hybrid learning since it enables students to have flexible 
schedules for their classrooms [23].

Connectivity is crucial to the success of hybrid school models for students and 
learners [24]. Some technological solutions will be needed for the model to thrive in 
the future. Safe access to data is one of the core solutions where students are guar-
anteed safety while accessing data, and unacceptable content is filtered and blocked. 
Also, sensitive information in the student database ought to be protected from mali-
cious cyber-attacks and breaches. Bridging the take-home assignment gap with 
smartphone connectivity is also crucial. Regardless of the learning conditions of 
students, there should be adequate Internet devices connectivity from their homes. 
Parents need to ensure that wireless connection is accessible from home to enhance 
continuous learning. On the other hand, relevant digital resources should also be 
available in learning institutions to facilitate hybrid learning because inadequate 
technological tools are limited. Governments also have a significant role in ensuring 
the resources required for hybrid learning are availed to learning institutions through 
regular funding and the adoption of supportive curriculums and policies. A specific 
new learning space is the hybrid or blended synchronous learning environment, 
where both on-site and remote students can participate in learning activities simul-
taneously. As synchronous hybrid learning is relatively new, few studies have inves-
tigated its use and effectiveness.

Conversely, hybrid learning is characterized by various significant challenges in 
its implementation process [25]. First, there are considerable hardships in student 
engagement. In this context, tutors will admit that it is indeed challenging to ensure 
students in the physical classroom are engaged with those learning remotely from 
home for equality in learning experiences. These phenomena occur due to different 
teaching methodologies that lead to unequal engagement. The solution could be 
tutors focusing on activities that can improve engagement, such as discussion 
groups and tests, through engaging technological platforms such as live streaming 
and sharing screens. Learner body language can also provide awareness of their 
engagement levels. In addition, there are possibilities of technical malfunctioning in 
hybrid learning environments. Technical issues result in lessening disruptions since 
they interfere with the students’ access to critical information. For example, Internet 
connection problems limit access to live streams and online meetings, sound issues 
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disable learner comprehension, and complex software can limit the students’ ability 
to access information. To overcome technical issues, there is a need to train teachers 
on how to overcome them. Also, connecting remote learners before beginning les-
sons is crucial since the technical issues will be detected beforehand and friendly 
solutions provided. Another technique to minimize technical issues is uploading 
previously covered lessons for future reference to the learners that were unable 
to access.

Moreover, the issue of facilitating collaboration, teamwork, and social interac-
tion is a significant challenge for hybrid school models [27]. Placing learners in a 
shared physical setting as groups is not achievable due to remote learning, thus lead-
ing to collaboration setbacks. However, technology can help resolve the collabora-
tive barrier by incorporating synchronized communication through live streaming 
and online chats, thus duplicating the advantages of personal interactions. Besides, 
sharing learning materials can be pretty challenging in hybrid models due to the 
phenomena where students use different learning software. Therefore, there are 
situations where a remote learning student and the one in the classroom cannot col-
laborate with similar learning materials, thus causing potential delays and disrup-
tions. Resolving this issue requires standardization of educational technology to 
enable easier access to all learners and promote uniformity in delivering learning 
outcomes. For example, using cloud platforms for file sharing is safe and secure for 
all students.

The process triggered by the pandemic that produced a sudden acceleration of 
the diffusion and experimentation of digital teaching in all segments of training has 
promoted moments of profound reflection on the results of this phenomenon in the 
post-COVID-19 era and the need to build theoretical models that translate into con-
crete paths of intervention within traditional training. Not only has the university 
education system been affected by a renewal request that overcomes the physical 
limits already questioned by the open logic of distance learning, but also, the change 
in market rules in the last 10 years has not been matched by an equal change in rules 
of the so-called training market that exploded in a moment of crisis.

Collecting the requests of the training actors involved and capitalizing them in a 
theoretical model are the aims of this research. The hybrid model of the university 
is divided into three main features: the porous university, the transferability of skills, 
and the new professionalism of professors. These characteristics across the hybrid 
model are broken down between elements of training (users, market rules, and 
didactics) and dimensions in training (time, space/place, media and technology, 
learning design, and content). These elements are shown in Table 1.

The dimensions hybridized with the elements of training create a composite 
chessboard that represents the five key rules for a hybrid university:

 1. Time: In the contemporary situation, students approach university at the age of 
18 (at the end of the secondary school path) and finish their path 3–5 years later. 
This organization of the training system no longer works because a further 
5–6 years of vocational education does not meet the needs of the labor market. 
This model provides knowledge pills that can be achieved in a short time (MOOC 
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Table 1 Elements of the hybrid university

Elements 
of 
training Time Space/place

Media and 
technology Learning design Content

Users Flexible profiling Blended and 
hybrid space

Traditional 
tools and ICT 
(use and 
training)

Badging or 
microcredentials

Responding to 
the world of 
work

Market 
rules

Explosion of the 
standard years in 
courses adapted to 
the subjects

Blended 
simulation 
systems for 
the 
professions

Certified 
evaluation 
systems

Hybrid and 
professional 
courses

Training 
reform (rigid 
structure of 
degree 
program)

Didactics Personalization 
and 
individualization 
(hands-on, 
blended courses, 
peer evaluation)

Ubiquitous 
learning 
(classroom, 
laboratory, 
e-learning 
platform)

Learning 
management 
system – 
Gamification

Codesign of the 
didactic 
intervention

Flexible 
disciplinary 
teaching with 
respect to 
multiple 
integratable 
paths, 
professional 
teaching

logic) and can be combined to achieve the learning objectives step by step. The 
last point goes beyond the logic of the didactic systems and the preparatory 
aspects between the courses. In this way, we can truly personalize the learning 
path for each student. In this highly diversified path, which should last for a life-
time (lifelong learning), the entire existential path of the subjects is sewn and can 
cross various topics.

 2. Space/place: Hybrid education must be a mix of physical and online learning, in 
which the experiences of machines and humans and their interactions converge. 
Places and spaces for working and learning collaboration should be integrated. 
Multiple access to training should also be available – that is, it must be enjoyed 
not only as a physical experience but also as an integrated process (to e- learning), 
giving full realization to the concept of ubiquitous learning.

 3. Media: Polarization between physical instruments and digital media should no 
longer exist; there are holders of both instrumental forms. The world of training 
needs new experiences in the use of media oriented toward a certified system of 
skills and co-designed didactic frameworks (LMS and gamification).

 4. Learning design: The need to redesign the university appears clear to live the 
teaching experience and to adapt to an omnipresent learning need, which explores 
study plans and professional training courses. A concrete example of hybrid 
design is the use of skills certification systems such as badging or microcreden-
tials. The demands of employment take the form of educational offers that are 
also hybrid and professionalizing (which involves experiential moments of 
experimentation with the knowledge acquired).
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 5. Content: The content, especially in the frontal lesson, is characterized by the 
immediate and comprehensive transmission of codified information. 
Contemporary contents change because times, spaces, tools, and didactic plan-
ning (the previous dimensions) have changed, which retroact on knowledge. The 
pressing demands of the labor market require content that is more responsive to 
professional needs and a more flexible qualification mechanism. From a didactic 
point of view, this requirement translates into greater interdisciplinarity and 
awareness of the learning process.

The reimagining of the existing university system proposed in this model is by 
no means superficial but must be radical enough to make the international university 
system competitive. The educational crisis faced in terms of changing educational 
ecosystems must be a cultural, perceptive, and identity phenomenon. In other words, 
the model must be accepted socio-culturally to allow a real overcoming of the cur-
rent crisis; it must effectively affect the processes of perception of the training sys-
tems by all the actors of training (students and teachers) and establish itself as a new 
identity structure of the subjects and institutions involved in the evolutionary pro-
cess. An idea of a university, therefore, which is open to and utilizes the potential of 
the context and safeguards the role of the student (and of the teacher as a designer 
of training) as an active constructor of knowledge. Such structural and cultural inno-
vation at the same time requires reflection in relation to the barriers, problems, pos-
sibilities, and challenges [26]. The barriers concern the obstacles that block the 
realization of the action, the problems instead (less insurmountable) do not obstruct 
but delay the possibilities for the redefinition of contexts in relation to the emerging 
needs, and finally, the challenges foresee a planning process in relation to the pro-
spective future realization. In the context of hybridization of training, all five of 
these dimensions must be considered for the best future implementation of 
this system.

5  Conclusion

The bottom line is that the COVID-19 pandemic has significantly transformed edu-
cation, and the future of digital learning environments is expected to revolutionize. 
Achieving potential educational outcomes will necessitate the adoption of neces-
sary methods, tools, and models. Students have been significantly affected by the 
pandemic causing discontinue learning to many of them, due to financial burdens. 
This trend has necessitated many students to work part-time to afford education 
facilities. The availability of hybrid learning will assist them in pursuing education 
and careers since they can study online at their desired time. Indeed, various stake-
holders in the education systems such as governments, administrators, parents, stu-
dents, and the community as a whole are vital to ensuring that digitization in 
education will come to success [28]. While teachers pursue their education, it is 
necessary to include technology-related tutoring skills so that they can conveniently 
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engage students learning with the necessary digital technologies. There is also a 
need to revise educational expectations to facilitate better and more transparent 
learning modes in the future. Given the necessary infrastructure, teaching curricu-
lums, financial support, and networking applications, students and teachers will be 
self-motivated and competitive to transition to a new education era.

Most of the existing literature is exploratory and qualitative in nature and has 
focused primarily on describing student experiences, organizational implementa-
tion, and technology design. Future research perspectives should therefore also con-
centrate on the quantum analysis of the hybridization process of learning 
environments. Digital transformation is seen as a major change process that takes 
time and often encounters resistance and avoidance from those involved. The 
COVID-19 epidemic forced teacher and student training to skip the gradual trans-
formation and transfer of educational activities online, which emphasized the lack 
of digital skills in training paths. The digitization of systems and skills, however, 
does not only concern the world of schools but also that of services and businesses. 
Also, there has been strong shortcomings in these areas in relation to smartworking 
or teleworking; therefore, the instrumental apparatus alone does not guarantee inno-
vation if it is not accompanied by a real revolution that also innovates cultural and 
social systems.
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IoT for Smart Environment Applications

Azadeh Zamanifar and Ali Yamini

1  Introduction

Internet of Things (IoT) features a large number of technologies. It processes the 
types of objects around us through unique means of addressing and standard com-
munication protocols that can communicate with each other and cooperate with 
their neighbors to achieve common goals [1].

Considering communications, we have always sought to develop human interac-
tion with humans by sending and receiving data (or information) using different 
methods and environments. In the present world, it is done using the Internet or the 
World Wide Web, which, if we look closely, we see that is between humans and 
humans. To break this connection between humans and humans, we can soon create 
a human connection with objects, objects to humans, and objects to objects. All 
objects can be connected. The network of machines (objects) that can be connected 
directly and captured or placed in virtual data can be known as the IoT. Usually, the 
IoT uses the secure service layer (SSL), connected to a central command and con-
trol server in the cloud [2].

The IoT is the ability to connect various objects to the virtual world. Thus, all 
household appliances, cars, stationery, and everything you want to be connected to 
the Internet. These tools are sent to the Internet by connecting to the Internet, receiv-
ing data, and receiving the required data and change. If required, to change itself or 
by notification to its user. In addition to this feature, the possibility of connecting 
two or more objects is another feature that can be mentioned. The main conse-
quence of the IoT is the internal communication of the devices. In this case, the 
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devices will be smart with consistency and security, so the “IoT” scheme needs a 
communication network [3].

The search for any particular service offered by the Internet devices represents a 
crucial point; the number of objects connected to the network increases, resulting in 
a vast search space. Also, the number of Internet devices is increasing every day. 
The interactive models are currently based on human–object interaction. However, 
shortly, interactions will be an object–object interaction so that objects seek to pro-
vide complex services for the interests of humans. Finally, the scalability issues will 
occur due to an appropriate object search for the desired service. In IoT environ-
ments, many natural-world objects, from sensors to vehicles, have become intelli-
gent objects that can provide information and service capabilities to users. In 
addition, mobile services such as smartphones, mobile phones, and wearable 
devices are becoming more powerful and more common every day. They are con-
sidered an integral part of the IoT environment. The IoT enables objects to share 
tasks and information between humans and causes inanimate objects to have a digi-
tal identity. A significant challenge in the IoT environment is to find the appropriate 
services for an out-of-service activity in the environment. To determine the quality 
and prioritize the available services based on their capabilities, quality of service 
(QoS) parameters are considered to increase the accuracy and speed of the service.

Sensor nodes related to various Smart City applications create much information 
that is now essentially under-utilized. Utilizing the existing ICT framework, created 
heterogeneous data can be brought together. A portion of the current remote innova-
tions that can be misused to accomplish this data collection is 3G, LTE, and Wi-Fi. 
With regard to the use of installed gadgets and existing web foundations, the IoT 
incorporates PC and other encompassing electronic gadgets. The Smart City vision 
is reliant upon working billions of IoT gadgets from a typical spot. The new devel-
opment of low-cost remote organization principles for sensors and actuators has 
empowered supervision and control broad scopes of sensor organizations and actua-
tors distantly. The proposition is to send the engineering on a help stage. Sensor 
applications can be associated and used by various web applications for brilliant 
working conditions [1, 2]. IoT applications have influenced every person’s life and 
have changed human applications more conveniently.

Smart urban communities utilize different innovations to make the health frame-
work, power, learning, and water supply more proficient for their occupants. This 
implies bringing down costs and utilizing energy and making correspondences with 
staff more productive and imaginative. A thorough examination of information is a 
similar innovation that will broaden the smart metropolitan foundation. Information 
mining has prompted enormous numbers and can be utilized in various significant 
manners, as a critical component of regular day-to-day existence is digitalization. 
The misuse of various information is significant in numerous scenarios and utilities 
in the smart metropolitan domain [3]. Figure 1 shows a different part of a smart city.
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Fig. 1 Smart city parts

In this chapter, we aim to review some crucial applications in this regard. Smart 
city has gathered many intelligent applications. In Sect. 2, we review the general 
attributes of the smart city. In Sect. 3, we discuss smart city architecture. Then, we 
take a look at some smart city applications in Sect. 4. In Sect. 5, we review some 
notable real implementations of smart city and the challenges. Section 6 discuss 
notes and the chapter is ended with a conclusion.

2  Smart City Attributes

The IoT, which is referred to as the “new industrial revolution,” has revolutionized 
the interactions between the governments and their surrounding world with the vir-
tual world and technology because of the change in life, work, entertainment, and 
travel. The arrival of the smart car with the set of applied instruments to create 
interaction between the user, house and intelligent buildings, the possibility of play-
ing music by a few words, and thousands of other applications in smart city, trans-
portation, agriculture, defense industry, the insurance industry, oil gas and mining 
industries, monitoring and security of public and private, retail, logistics, banks, 
health and treatment, and the hotel are excellent indications of the importance of IoT.

Expanding the norm and building more powerful specialized arrangements 
inside different metropolitan organizing administrations of the city life is a feature 
of the intelligent cities’ philosophy [4]. IoT is a standout among other known 
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models for making a smart city, and it is an IoT capacity for making and overseeing 
intelligent applications for smart networks. IoT coordinates sensors in everyday 
items and interconnects them across the web to and share data to various adminis-
trations and metropolitan occupants. IoT is an incredible assortment of things con-
veying over a system administration or the Internet.

In IoT, things join gadgets, sensors, and programming to control how different 
pieces of the object perform. Each object creates, catches, and moves information 
from its current circumstance through sensors to other objects or channels. One of 
the most significant difficulties in IoT today is to keep this information and its prog-
ress and is one of the most significant issues for all organizations utilizing IoT 
innovation [5].

3  IoT Smart City Architecture

The basis of providing more intelligent services on the IoT is collecting, aggregat-
ing, and processing data. The high volume of connections and processing of the 
collected data associated with them provide various requirements. In short, IoT 
applications are the primary sources of big data production. Data on the IoT are 
generated by recording data in the registration of users’ performance, billions of 
daily multi-structure interactions, logs of mobile sensors, etc. The big data and data 
generated traditionally are different and are rapidly evolving interactively. For 
example, the data rate that 20 sensors produce per hour is equal to 240 records per 
hour, which hits 5760 records per day; if that amount per 10,000 equipment (not too 
high for IoT applications) is multiplied, it reaches 2,400,000 records per hour and 
57,600,000 records per day.

The product design of the IoT smart city intends to boost the utilization of 
cutting- edge correspondence advances as help for city and resident organization 
administrations [4, 6]. Military, mechanical technology, smart administrations, 
schooling, vision and sound, and social mindfulness are not covered by the IoT 
programming engineering, and extra work is expected to adjust to the product 
design [7]. As per  an adaptable programming engineering segment-based, IoT 
applications can be coordinated with security instruments to recognize dangers and 
inconsistencies for investigation and advancement of incorporated security [8]. 
Applying IoT programming design to cloud arrangements empowers Cloud of 
Things, another product engineering based on IoNT (Internet of Nano-Things). The 
mix of these strategies and arrangements brings a broad scope of new framework 
usefulness called IoT [9]. The IoT programming engineering has openings for 
development in the semantic also, security section. One answer for further develop-
ing the product design might be to create a specific cosmology or philosophy 
design [10].

Gadgets that help programming engineering segments do not have normalized 
web availability aside from systems administration conventions. Along these lines, 
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security highlights are an issue (sensors, gadgets inside electronic vehicles, houses), 
and it is crucial to empower expanded security and assurance of data [11]. It is fea-
sible to see programming segments as independent parts that have the capacity (uti-
lizing a specific calculation) to get data about client inclinations, accessible assets, 
accessibility of context-oriented data, and organization correspondence [12]. 
Sending application administrations and unified cloud forms empower handling 
information from billions and even trillions of heterogeneous items through layered 
programming engineering. The layers ought to be run on the gadgets through the 
“Administration Composition” layer, which gather and measure the information. 
The improvement of product engineering for the smart city should incorporate the 
said layered programming engineering progression to accelerate the handling of 
information from different gadgets in the framework [13].

Furthermore, the identified parts’ product design abilities empower correspon-
dence with the sensor organization and distinguish all the climate requirements for 
which the product item is planned [14]. The product engineering ought to incorpo-
rate an intelligent framework that organizes client collaborations, an interface for 
the client that empowers cooperation with the framework, the Internet that permits 
various information from different sources (sensors). The actors might be inside the 
product parts of the identified programming design and the kinds of sensors that 
gather information inside the framework [15].

The execution of a smart structure offers extra help to the control and association 
of a smart city, just as lessening support costs and improving energy efficiency. The 
IoT arrangement of innovative structure incorporates sensors for estimating tem-
perature, development (in light of development in the structure and flexible control), 
and stickiness, which make it simpler to work the structure. Inside the smart work-
ing, there is a cloud building (smart Building Cloud Server) on the lower level in the 
building itself, which speaks with the different sensors introduced in the structure. 
The hybrid geography of the network (star and cross-section geographies that offer 
high shortcoming resistance) gives a dependable organization without any problem 
figuring out how to investigate and resolve mistakes. Cloud-based layered design 
can likewise be utilized to oversee smart homes utilizing camera gadgets for object 
recognition. The framework utilizes a calculation to distinguish different actions  
under different lighting and different distances [16]. The layered design permits any 
outside asset such as a sensor, IoT smart gadget, or AI programming to call middle-
ware (that use REST and JavaScript Object Notation-JSON) to trade messages. 
Because of data from outside assets, it is feasible to start activities inside the frame-
work [17]. Multi- sensor convention (NAMRTP) can dependably send information 
from a far-off climate to multi-sensor information that is constant. Cost decrease, a 
more secure climate for clients’ lives, basic applications to oversee, and the compat-
ibility of an energy-efficient smart structure (and surprisingly a green smart build-
ing) can be accomplished by applying new advancements—furthermore, different 
kinds of sensors for monitoring inside the structure [18]. If the state of a structure is 
appropriately controlled, such a framework can be applied to any structure in a 
smart city and consequently work on the energy efficiency of the whole smart city. 
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The main thing inside smart homes and smart building frameworks is anticipating 
occasions and learning given specific qualities and propensities for framework cli-
ents. In this way, the framework gathers data and can react to changes in client 
conduct whenever [19]. Calculations and procedures for keeping up power supply 
of a smart structure or complete smart city climate permit all framework usefulness 
to run as planned. Different kinds of deviations caused by noise, sounds, and spikes 
can prompt energy utilization problems and issues inside the whole smart city net-
work. The insightful mixture execution of a five-layer power lattice gives depend-
ability, settling time, a decrease of identified deviations to acquire low energy in a 
total smart city framework [20]. Sensors set through the nearby sensor network in 
various items (home or building) give a structure for gathering and handling infor-
mation inside an IoT framework. The expert unit makes an assortment of informa-
tion from the sensor organization and identifies the conditions between them. 
Sensors are utilized progressively to diminish the repetition of power utilization 
[18]. Inside the IoT framework, a few cycles are executed to change the data read on 
the sensors into information that can be utilized in the client’s application. To more 
likely distinguish the genuine circumstance inside the IoT framework, the following 
cycles are performed:

Information acquisition—using different sensors, advanced filtering, and partition 
capacities (gathering different data and changing over to many qualities) [20].

Information preparing— removes superfluous commotion and noise that is gathered 
on sensors with other information. The point of this interaction is to isolate appli-
cable data from minor signs.

Highlight extraction—addresses getting valuable data from the information filtering 
measure and finding the most efficient qualities from different capacities.

Characterization choice or model coordinating—the last stage is design acknowl-
edgment, design classification, or model coordination.

The improvement of the IoT framework is reflected in the improvement of the 
calculation to save energy and work, as indicated by the data obtained from the sen-
sors [21]. In light of these investigated works, there is a need for an examination that 
will dissect the product structures of the web of things frameworks specifically for 
the spaces of smart city, medical care, and agribusiness and suggest the improve-
ment of presently accessible programming planners.

4  IoT Application

4.1  Healthcare System

There are many wearable devices like ECG, EEG, and temperature sensors. The 
data from sensors are either gathered in the patient’s smartphone that acts as a gate-
way [23] or sends them directly to the fog or cloud to further computing. In this 
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phase, some machine learning approaches are applied to extract some knowledge 
from data. The result is sent to the doctor at the remote to decide for the patient 
either by sending an ambulance to the patient’s location or calling the patient. 
Predicting a patient’s health status is one of the main goals of these systems [24–
27]. Figure 2 shows a typical IoT-based health care system.

Versatile ICT can uphold well-being checking and intercession at different scales 
going from personal information assortment to a whole city. At the individual level, 
cell phones have become a backbone for individual medical services. Ongoing mea-
surements report that 52% of cell phone clients accumulate well- being- related data 
on their telephones, and 61% of clients have downloaded a mHealth application. 
Most regularly, individuals look for experiences on a clinical or protection issue. 
However, clients likewise search for hints on nutrition, wellness, medications, and 
specialist decisions.

As well as researching explicit clinical issues, another famous individual use for 
versatile and wearable ICT is step counting, which gives an establishment to numer-
ous wellness applications. Cell phones and applications provide step checks from 
the 3D accelerometer signals. While there can be an absence of consistency among 
elective advance checking gadgets, the more significant part of the conflict is the 
wearing site of the tracker instead of the installed signal preparing calculation that 
computes knowledge from the accelerometer information. Studies have shown that 
these gadgets also perform and are solid for ordinary conditions, even though they 
encounter execution problems when the individual moves along with an adornment 

Fig. 2 Typical IoT-based health care system
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(e.g., walker, shopping basket) or performs enthusiastic non-strolling action to the 
cell phone following site [28].

A benefit of versatile ICT-driven medical care is that constant checking of per-
sonal conduct standards works with recognition of health problems side effects that 
are generally hard to notice and connect with analysis. For instance, older adults 
may encounter psychological decay, but since they hold several levels of self-rule, 
this change might be hard to catch and treat. Be that as it may, the beginning phases 
of dementia are related to successive episodes of spatial confusion and an improved 
probability of not doing significant day- by- day activities [31]. These progressions 
convert into strange portability designs. The SIMPATIC project [32] investigates 
these portability examples to convey distinguished anomalies to patients and care 
suppliers. On account of strange paths, versatile direction likewise directs the per-
son back to their home. As far as infection observation, Patsakis et al. [29] proposed 
a mechanical design that could be utilized to permit people to send their well-being 
information without unveiling their character, which may be valuable for constant 
metropolitan scale virologic and epidemiological information checking. Concerning 
accident recognition, Shikhar et al. [30] proposed an information system to foresee 
and lessen the effect of auto collisions and reveal significant examples. Important 
information for investigation was obtained by the Office of the Traffic Commissioner 
at Bangalore and incorporated the accident, light condition, seriousness, speed 
zone, and alcohol utilization. As to checking of natural conditions, four articles 
were recovered: Sánchez Bernabeu et  al. [31] proposed the advancement of an 
application to screen the file of electromagnetic radiation of structures also, spaces 
of a smart city, devoted to people who experience the ill effects of the pathology of 
electromagnetic excessive radiation; Wray et  al. [32] recommended a miniature 
level checking network of static gadgets that could monitor air toxins and UV radia-
tion with the intend to anticipate cellular problems in the lungs and skin cancer, 
individually, by further improve air quality and diminishing UV exposition; Federico 
et al. [33] proposed an application to supervise singular conditions (e.g., infrastruc-
ture, climate, or social connections) to all the more likely comprehend the connec-
tion between hereditary problems further, diseases by utilizing genome-wide 
affiliation contemplates; and Guo et al. [34] introduced a versatile application to 
monitor the level of sun radiation in every individual was exposed to at some ran-
dom time and also area. As to observation of proactive tasks, Clarke and Steele [35] 
depicted particular kinds of wellness sensor applications and introduced a calcu-
lated design for information assortment and accumulation just as the sorts of 
optional uses for this gathered information inside smart urban areas. Six articles 
were investigated [36]: Dipsis et al. [17], Roza and Postolache [37], Guo et al. [38], 
Jianqiang [39], and De Oliveira and Painho [40] proposed an online system through 
which people could give individual information (e.g., age, sex, or family pay) along 
with their emotions; Guthier et al. [36] gave an outline of the applicable emotional 
states and showed how they could be distinguished separately and afterward totaled 
into a worldwide model of influence, which could be utilized to advance an influ-
ence mindful city; Roza and Postolache [37] introduced a cell phone application 
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that analyze people’s feelings and their connection to various city regions; Guo 
et al. [38] endeavored to plan, also relate, broad information to metropolitan geol-
ogy highlights and therefore tried to comprehend the fundamental sources of satis-
faction in the city scene; Jianqiang [39] investigated different pre-handling 
techniques to evaluate what they meant for the exhibition of Twitter related classi-
fiers; and they [40] pointed to introduce a surrounding geographic data (AGI) way 
to deal with collect geo-labeled information identified with a people’s discernment 
and sentiments about a city from Twitter, Flickr, Instagram, and Facebook.

4.2  IoT-Based Marketing

One of the main paradigms in knowledge management is the real-time concept. This 
means getting the correct information from the right people at the right time without 
any delays.

A knowledge system is a searching processing system that provides knowledge 
sharing infrastructure in the logistics operational environment. The system structure 
consists of five modules. The goods and equipment (such as trucks and goods) and 
all identification cards of arrival and exit have RFID labels. The reader has one or 
more antennas embedded in the reading frame in each device to detect hundreds of 
tags in the reading frame. Therefore, it can be determined through operational logis-
tic data, such as equipment location and the current location of human resources.

In some marketing stores like Walmart, each item is placed in a part. Each part 
has an RFID that sends the availability and type of item to the RFID reader, which 
shows the remaining item. Each basket is also smart that shows the total price of the 
items that the customer picks.

It has decided to use multiple palettes along with the sensor and the handwheel 
that maintains the product. It measures the increase or reduction of the temperature 
in real time. The strategy to use IoT in logistics is to be integrated into Data Diagrams 
to ensure that the current situation is safe. It uses several databases and uses specific 
modeling to maintain moisture and detect temperature. Products use them to pre-
serve their freshness [41]. Some labels show the recent time of sold and the number 
of times that the items were sold. Walmart shop will soon become a robotic market-
place. Life would be more comfortable for the employees of a bigger store. Walmart 
plans to use such robots in the future. For example, the payment process has man-
aged to maintain quality by allowing customers to purchase at a low cost. According 
to Gartner research company, the retail market should be 200 billion dollars in new 
establishments that they announce. They should know the need of customers. The 
Internet can be considered as a key system in this area. IoT makes customers feel 
comfortable inside and out of the stores, and thousands of technologies can go 
through this technology.
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4.2.1  Amazon Go

This application is one of the smart applications that use IoT. It provides a comfort-
able environment in which people can take the products and go out of the store. It is 
possible via RFID technology. Customers register once. When they pick a product, 
the price is read by an RFID reader at the store and is added to the basket [22]. When 
they go outside of the market, they not stop at the cashier. The Amazon Go app must 
be installed on the smartphone. The total price is generated, and the customer 
receives a receipt.

4.3  Disaster Recovery

Cataclysmic events like tremors, tropical storms, tidal waves, and volcanoes can 
cause broad impact, at times with practically zero notice and planning time. At the 
point when such enormous scope catastrophes happen, they request similarly huge 
scope recuperation tasks to help the casualties, which are very difficult and spot 
critical requests on different assets, including nearby, provincial, public, and global 
crisis reaction staff, non-governmental associations (NGOs), Public Guard, and the 
military. During these catastrophe recuperation tasks, quite possibly the most neces-
sary is for the responders to have the option to comprehend the circumstance in the 
space of tasks – an idea named Situational Awareness (SA). Getting and keeping up 
with cutting-edge SA is essential to arranging and executing the recuperation tasks, 
including settling on allotting assets and focusing on recuperation activities. As the 
recuperation activities proceed, the SA should be consistently refreshed, dependent 
on changing conditions in the influenced regions. Conventional sources of SA 
incorporate reports from the casualties of the catastrophe, just as perceptions made 
by the crisis responders. Be that as it may, this SA can be exceptionally upgraded 
through the IoT innovations, which can fundamentally decrease the idleness in 
acquiring SA and simultaneously increase the degree of detail just as the topo-
graphical inclusion. Specifically, in an intelligent city climate with a massive send-
ing of IoT sensors, they have the potential to change SA according to numerous 
viewpoints, including expansive also, exact detailing of conditions in the influenced 
region, the status of administrations, and coordination [42]. Figure 3 shows an IoT-
based disaster recovery example in firefighting.

4.4  Military

Setting up a smart city foundation incorporates establishing a wide assortment of 
sensors, actuators, and correspondence methods. This hardware may be commercial- 
off-the-shelf (COTS) IoT gadgets or existing inheritance gadgets to fit in the differ-
ent use cases and situations required. For instance, for the smart city traffic observing 
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Fig. 3 IoT-based disaster recovery mechanism

framework, traffic signal posts may consolidate cameras to screen the traffic stream 
at intersections. There may be sensors to screen the level of contamination and cur-
rent climate conditions at the equivalent areas. These and other data sources assist 
the city with arranging traffic progression to adjust contamination just as diminish 
gridlock [43].

Furthermore, the Alliance countries’ military can bring their own IoT sensors 
and interchange hardware to check the ground conditions. These could be statically 
sent to critical areas or even be mounted on UxVs. This data can then be imparted 
to neighborhood specialists to work on their administration of the circumstance. 
Combining these irregular data sources is essential to giving and keeping up with 
SA and empowering powerful military tasks [44].

4.5  Transportation

In IoT environments, many natural-world objects, from sensors to vehicles, have 
become intelligent objects that can provide information and service capabilities to 
users. In addition, mobile services such as smartphones, mobile phones, and wear-
able devices are becoming more powerful and more common every day. They are 
considered an integral part of the IoT environment. The IoT enables objects to share 
tasks and information between humans and cause inanimate objects to have a digital 
identity.

Transportation is affected by the IoT a lot. It grows the quality of life and makes 
it possible to reduce the traffic too. For instance, in Madrid, EMT [17] works the 
city transport lines (altogether 215 lines) through an armada of 2095 vehicles, which 
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have a regular period of 6.04  years. Figure  4 shows an example of IoT-based 
transportation.

In 2011, EMT worked a sum of 7.11 million hours and 95.45 million kilometers, 
with a normal working rate of 13.43 Km/h. Given the enormous number of vehicles 
and their activity, the objective of the situation is to advance the driving states of the 
transports to limit air contamination.

The transports are outfitted with GPS gadgets giving data in regards to their area 
and speed. Besides, the City of Madrid has conveyed sensors on the roads for the 
traffic signals, the ecological conditions, the traffic clog, and so forth. In this situa-
tion, some researchers consider the accessible data from portable sensors conveyed 
in the transports, for example, vehicle speed, street slope, area data from GPS gad-
gets, just as from static city sensors like road cameras, traffic signals area and evolv-
ing stretches, speed of vehicles, street lights, and temperature in everyday climate 
data (for example, ice, downpour, and so on). Residents from their cell phones 
might give extra data (for example, cell phones and tablets), providing from the 
gadgets’ cameras regarding street conditions or expected mishaps. Through this 
data, an inventive situation alludes to the upgrade of transports control to consider 
different perspectives (for example, eco-efficiency, climate, gridlock, and so forth). 
Some applications will offer eco-saving features, considering the area of the trans-
port, the street slope, and the speed of other vehicles in the course (for example, no 
compelling reason to speed up and accordingly devour gas when in 1 km the speed 
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Fig. 4 An example of IoT-based transportation system
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of the vehicles is 40% less than the cruising speed or when a traffic signal will 
become red). IoT advances will deal with the unwavering quality of things and 
comparing data streams. They will separate information at ongoing out of the infor-
mation streams contributing to the situational mindfulness both in regard to the 
transports and different vehicles (for example, position, CO2 outflows, plan, and so 
forth) just as in regard to the climate (for example, gridlock, traffic signals, CO2 
emanations, temperature, dampness, and so on). In addition, security will be 
expanded by using data concerning the area and speed of the transports, the street 
lights, potholes, the climate conditions (for example, ice), and the speed of different 
vehicles. IoT advances will permit things to gain from the others and accordingly 
adjust to continuous circumstances. To accomplish ideal breaking, things used to 
find and recognize the transport development will give data to the transport frame-
work (for example, breaks or tires) response for exact circumstances such as the 
climate, the driving conditions and the temperature. This data will be imparted to 
other transports with similar attributes (for this situation with the same breaks or 
then again tires) to advance their cruising [45].

5  Real Implementation of Smart City

The Smart Campus project two at the Indian Institute of Science, the top graduate 
school in India, is one such effort to configure, create, and approve a vast IoT 
scheme [46]. This “living research facility” will offer a stage to attempt novel IoT 
innovations and smart city administrations, with a hostage base of about 10,000 
understudies, workforce, staff, and family who, to a great extent, live nearby. The 
gated grounds spread across 1.8 km2 have more than 50 offices, and around 100 
structures have workplaces, auditoriums, research labs, supercomputing offices, 
inns, staff lodging, coffee shop, and well-being focus supermarkets. This is illustra-
tive of massive networks and towns in India and offers an actual novel environment 
to approve IoT advancements for Smart Cities. The task means to configure, create, 
and convey a reference IoT engineering as a flat stage that can uphold different 
vertical utilities like smart force, water, and transportation. The exertion for this task 
is to filter through and choose the prescribed procedures and principles in the public 
space across different layers of the IoT stack, coordinate them to work flawlessly, 
and approve them for one sanctioned area at the ground scale. By its actual nature, 
these cutoff points work in a lab arrangement yet are infeasible, unrealistic, exorbi-
tant, or do not scale. At the equivalent time, engineering additionally offers an open 
stage for examination into detecting, systems administration, cloud and big data 
stages, and examination. Figure  5 shows a different part of the smart city as an 
example.
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Fig. 5 Different parts of smart city

6  Discussion

The value chain of data analysis and data management in IoT applications includes 
data collection, integration, storage, analysis, and presentation. As mentioned in the 
previous sections, gathering, preparing, and analyzing this data volume is not an 
easy task because the data volume is not fixed. The data type (type and nature) also 
has inherent complexity. The existence of complexity due to variation in the form of 
data gathered together and the fact that it produces analytical solutions also changes 
the type of application or level of application. The value chain is an essential part of 
the business model. The chain shows how the service is delivered to the end cus-
tomer. The IoT has a complex value chain because it contains many processes.

Smart city has many challenges, which are addressed in research and also in a 
real application. However, still, some challenges are not addressed. We enlist it 
as below:

 1- Security: In IoT applications, many data must be collected to increase intelli-
gence, which needs decreasing security and privacy.

 2- Speed of analyzing: The speed of analyzing the data collected from IoT infra-
structure is increased due to fog computing and serverless computing, but there 
are some unsolved problems in this area.

 3- Accuracy of the decisions and predictions taken in smart applications autono-
mously is still a challenge.

These challenges can be addressed in upcoming research. Smart city applications 
pave the way for a better life and increase the quality of life.
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7  Conclusion

For the first time in 1999, the IoT was used by Kevin Ashton, describing a world in 
which anything, including inanimate objects, can have a digital identity for itself 
and allow computers to organize and manage them. In other words, the IoT can be 
viewed as the next evolution of the Internet, which has a giant leap in collecting, 
analyzing, and distributing. The most important result of the spread of the IoT is the 
ability to connect all kinds of objects and devices to the virtual world. Thus, all 
household appliances, cars, hotels, stationery, and whatever you like will connect to 
the Internet.

These devices communicate the required data by connecting to the IoT, receiving 
the required data, changing the necessary change if required, or noticing to your 
audience. In addition to this feature, it is possible to connect two or more objects 
from other traits that can be learned.

The primary outcome of the IoT is the internal communication of machines. 
Devices with compatibility and security are equipped with high intelligence, so IoT 
design requires a communication network. The statistics of different global associa-
tions, as discussed, indicate an increase in the number of objects connected to the 
Internet in the coming years, followed by an increase in the use of IoT.

In this chapter, we explain different smart applications in smart city related to 
different industries and requirements. The discussion part is about some challenges 
that have not been addressed properly and can help the researcher to focus on more.
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IoT-Based Crowdsensing for Smart 
Environments

Asif Iqbal Middya , Paramita Dey , and Sarbani Roy 

1  Introduction

Sensing and monitoring of different aspects of a city (pollution, traffic, and heath) 
for improving the quality of citizens’ life is an essential component of building 
smart city environments. In recent years, Internet of things (IoT)-based crowdsens-
ing has grown as a captivating approach for sensing and acquiring data for smart 
environments. Sensors and communication technologies incorporated in regularly 
utilized smart handheld devices (e.g., smartphones and tablet) and wearables are 
employed in crowdsensing systems. These devices typically include a large number 
of sensors, allowing them to acquire a variety of data such as image, audio, video, 
geo-location, and environmental information. In this context, these smart IoT 
devices could be utilized for effective monitoring of different dynamics, namely 
traffic and road condition, environmental pollution, smart home and health. More 
specifically, IoT-based crowdsensing is helpful to monitor and manage a city’s 
infrastructures as well as its resources efficiently based on the acquired sensor data.

IoT-based crowdsensing has several benefits over standard sensor networks that 
require the installation of a huge number of stationary wireless sensor units, espe-
cially in urban settings [1]. The widespread availability of smartphones and wear-
ables, as well as a large number of built-in sensors, are unquestionably significant 
facilitators for the effectiveness of the crowdsensing paradigm. The sensors such as 
accelerometers, microphones, gyroscopes, and cameras are some of the examples 
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that have aided the creation of a variety of applications in a variety of settings, 
including traffic and road conditions, environmental pollution, smart home, and 
health monitoring. A lot of crowdsensing-based applications were already designed 
and implemented in the past and are in use today. In order to provide representative 
examples, Nericel [2], Wolverine [3], and ScanTraffic [4] are some systems for traf-
fic and road condition monitoring. For this purpose, these applications utilize 
smartphone- equipped sensors like accelerometers and GPS (global positioning sys-
tem). On the other hand, applications like AirSense [5], HazeWatch [6], Common 
Sense [7], and GasMobile [8] develop light weight and low-cost devices for air 
quality assessment. These applications depend on citizens’ direct involvement in air 
quality monitoring, which necessitates the use of IoT-based modules to acquire 
data. Similarly, several applications are also available for health monitoring and 
smart home. HealthAware [9] and SPA [10] are examples of smartphone-assisted 
systems for health care and well-being. Dutta and Roy [11], Lee et al. [12], and 
Froiz-Míguez et al. [13] are some existing works on various smart home solutions.

In this chapter, the details of IoT-based crowdsensing applications for various 
city dynamics, available techniques, issues, and solutions are presented. A general 
four-layered architecture is presented in order to better illustrate different existing 
crowdsensing-based systems of different dynamics and their working methodology. 
More specifically, an IoT–cloud-based architecture is provided for this purpose con-
sisting of four layers: sensing layer, communication layer, data processing, and 
application layer. Several existing crowdsensing-based systems are compared and 
analyzed in this chapter depending on various aspects such as techniques used, 
nature of the system, real-time behavior and types of sensors used. Moreover, some 
open research issues (namely incentives, reliability, privacy, security, and quality) 
and constraints are also presented to direct future researchers.

The rest of the chapter is organized in the following sections: Section 2 presents 
four applications of the smart environment of the city. Section 3 provides the system 
overview explaining the layered architecture and the components used in each layer. 
Section 4 elaborates the methodology and paradigms used for these applications. 
Section 5 highlights the current research issues for IoT-based crowdsensing and 
Sect. 6 concludes the chapter.

2  Smart City Application

2.1  Smart Home

In present days, improvements of low-cost sensors, remarkable progress in crowd-
sensing along with edge and cloud computing, and a new era of smart homes have 
been created. Previously in most of the cases, all smart home appliances used 
expensive controllers as the controlling mechanism. But with the use of IoT–cloud- 
based system, a wide range and less expensive solutions for smart home are 
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possible. Moreover, in controller-driven systems, control operation is only possible 
in short-range communication. But for cloud-based systems, as we are using the 
Internet through our smartphones, it is possible to control the IoT device from any-
where in the world.

In [11], a prototype for smart building/home is generated using IoT, cloud, and 
fog computing. Different sensors like optical, ultrasound, and gas are used for auto-
mation and security of the building. Arduino-UNO is used as a cross-platform soft-
ware for the connection of firmware attached to the sensors. In [12], an integrated 
solution for a cloud-based home management system is described. Home manage-
ment system connected with surroundings generates a solution for community 
infrastructure, and a community broker is deployed to manage the architecture as a 
whole. A low-cost fog-based solution for smart home is presented in [13]. Due to 
fog computing, instead of cloud, the latency of the solution is greatly reduced. Other 
existing works for smart homes are presented in [14–16]. A review work on fog- 
based framework is presented in [17]. A detailed review of IoT-based application of 
smart homes and the related publication statistics are elaborated in [18].

2.2  Health Monitoring

Smart healthcare has gradually developed with the advent of paradigms evolved in 
computation and information technology. A real-time solution of the detection of 
medical emergencies can be possible through a smart healthcare system. Similarly, 
in the remote or ad hoc infrastructure, smart healthcare can be a solution in emer-
gency medical situation.

There are several applications of smart healthcare systems like (i) Personalized 
smart device: in different standard smartwatches, like the Apple Watch and Galaxy 
Watch Active2, it can monitor heart rate and keep a step count and irregular heart 
rhythm notification; blood oxygen application is also available in these kinds of 
devices. It may be used for the recording of 30-second ECG (electrocardiogram). 
(ii) Safe home: smart homes for senior citizens and disabled persons with embedded 
medical facilities like medical sensors, and  monitoring IoT devices. Deviations 
from the normal conditions are notified through the notification systems in cloud 
and appropriate authorities take the measures against the data. (iii) Patient monitor-
ing system: patients can monitor their health conditions using different applications 
embedded in sensors and data are stored in cloud via IoT devices. The recommenda-
tion system of cloud analyzes the data and sends a warning in case of any anomaly 
from the normal distribution is recorded.

Several approaches of smart healthcare systems are proposed in different litera-
ture. In [19], the authors propose a health monitoring system based on certain basic 
parameters like heart rate, oxygen saturation, eye movement, and temperature. In 
[20], a patient and room conditions of the patients are monitored using an IoT envi-
ronment. In [21], a survey on different aspects of smart healthcare is presented. This 
paper also discussed the threats related to security and data privacy of 
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crowdsourcing- based health monitoring systems. In [22], using two smartphones a 
heart monitoring system is proposed. Several other applications of smart health 
monitoring systems are proposed in several research papers [23–26].

Another approach of smart healthcare systems is personalized health monitoring 
system known as digital twin. Combining machine learning and artificial intelli-
gence in health centers led to the use of human health digital twin, also referred to 
as patient’s digital twin. In [27, 28], a framework for health twinning is designed for 
the citizen health and fitness. In [29], a smartphone-based digital framework is 
designed for smart city. Review works on health twinning have been presented in 
different recent literatures [30–32].

2.3  Traffic and Road Condition Monitoring

One of the key problems that the city authorities face is managing and tracking city 
traffic and road conditions. Specifically, effective monitoring of several dynamics 
like traffic flow, traffic density, aggressive driving, traffic jams and road conditions 
is proved to be a very important and challenging task these days. For instance, due 
to inadequate managing and tracking of city traffic, road traffic accidents (RTA) 
have become one of the world’s major causes of injury and death, that not only 
responsible for the loss of human lives but also result in considerable economic 
losses. According to the World Health Organization, RTAs claim the lives of about 
1.35 million people per year. Additionally, non-fatal accidents affect approximately 
20–50 million more individuals, with most of them resulting in disability due to 
injury. In the above-mentioned context, constant assessment of traffic and road con-
ditions at a large scale is necessary for citizens and policy makers for better 
decision-making.

Several existing works [2–4, 33, 34] focus on building effective road traffic and 
road condition monitoring systems based on IoT devices. In [2], Mohan et  al. 
developed a system called Nericel in order to monitor road and traffic conditions 
of a city using the inbuild sensors (e.g., accelerometer, and GPS) of a smartphone. 
They showed that Nericell could be used for monitoring chaotic traffic conditions 
(like honking and  braking). Another interesting system named Wolverine [3] is 
presented by Bhoraskar et al. for estimating traffic and road conditions. Specifically, 
they utilized a variety of smartphone-equipped sensors (accelerometer, magnetom-
eter, and GPS) for identifying congested traffic as well as road conditions (e.g., 
speed bumps).

Hull et al. introduced a mobile computing framework called CarTel [33] that 
acquires various sensor data from On-Board Diagnostic (OBD-II) interface on 
vehicles to monitor their movements. The task to collect, process, distribute, and 
view data in this environment has been simplified considerably by CarTel. In 
order to build an Intelligent Transport System (ITS), Alessandrelli et al. designed 
and implemented a system called ScanTraffic [4] using a network of smart cam-
eras. For parking monitoring, the system collects vehicle flow data and parking 
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area occupancy status. In [35], Thiagarajan et  al. present a framework named 
VTrack for estimating road travel times based on smartphone sensors. Specifically, 
they focus on providing an energy-aware solution for traffic delay prediction. 
Moreover, there are several research works on estimating traffic flow [36]  and 
driving patterns [34, 37]. The details of the applications are provided in Table 1 in 
terms of their contributions, end-to-end system, real-time monitoring, reference, 
and year.

2.4  Pollution Monitoring

The adverse effects of rapid urbanization and population growth have negative envi-
ronmental consequences. The existing works highlight that urban air and noise pol-
lution have become a growing source of concern for both the citizens and 
policymakers around the world [38–42]. In this context, several research activities 
and community-based initiatives are focused on pollution monitoring in smart cit-
ies. More specifically, various IoT-based applications are developed for continuous 
as well as high granular monitoring and mapping of air and noise pollution levels in 
smart cities. This subsection provides the details of existing IoT-based pollution 
monitoring applications.

Several approaches for air quality monitoring in smart cities are described in [5, 
43–47]. To illustrate representative examples, the applications like AirSense [5], 
HazeWatch [6], Common Sense [7], and GasMobile [8] develop light weight and 
low-cost devices for urban air pollution monitoring. It is worth noting that those 
systems rely on the active participation of citizens for such monitoring where they 
need to carry IoT devices for collecting air pollution data. Also, there exist some 
systems like CUPUS [48] that makes use of wearable sensors to sense ambient air 
quality levels. Mobile air quality sensors, which are mounted on the tops of public 
transportation vehicles, are another important research direction that is currently 
being investigated [49]. Here, air pollution data are recorded as the vehicles travel 
around the city. Most of the above-mentioned applications employed cloud services 
from various cloud computing platforms (e.g., AWS—amazon web services [50], 
GCP—google cloud platform [51]) to store and analyze high granular data for 
exploring pollution dynamics of the city. Existing literature [52] also assesses urban 
air quality by combining traditional monitoring stations along with IoT-based air 
pollution monitoring. Similar to the air quality monitoring, several urban noise pol-
lution monitoring applications [53–56] are available that acquire ambient sound 
levels to study noise pollution dynamics of the city. These applications mainly uti-
lize citizens’ smartphones as IoT devices, which citizens are encouraged to carry for 
urban noise pollution data collection. For instance, an application called NoiseTube 
[53] uses GPS-equipped smartphones to collect geotagged ambient noise measure-
ments as well as contextual inputs from the citizens. They provide PoI (point of 
interest) based pollution maps for visual assessment of urban noise pollution. 
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Similarly, in [54], the authors developed an end-to-end framework called Ear-Phone 
for participatory-based urban noise mapping. Becker et  al. created a smartphone 
application named the WideNoise [55], which allows citizens to participate in noise 
measurement activities. It was created to collect both the objective (i.e., ambient 
noise) and the subjective (feelings, opinions, and so on) data. Also, there are real- 
time noise monitoring systems like NoiseSPY [56] in which the developers per-
formed experiments and displayed noise pollution maps. Finally, there are unified 
frameworks [57, 58] that can combine both air and noise pollution monitoring 
applications for smart city. For instance, in [58], an urban sensing system named 
JUSense combines applications like NoiseSense (for noise monitoring), 
and AirSense (for air pollution monitoring), to gain benefits from their interactions.

3  System Overview

This section presents the details of crowdsensing systems [11, 63, 64] that are used 
to study various dynamics of a city (e.g., pollution and traffic condition). As shown 
in Fig. 1, the crowdsensing system can be introduced as a layered architecture. The 

Fig. 1 Framework of crowdsensing system
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major parts (i.e., layers) of the architecture are arranged as follows. The bottom 
layer is the sensing layer that mainly includes the city, its dynamics, and the sensors 
used to sense those dynamics. The communication layer is the second layer of the 
architecture, which consists of communication technologies for delivering data 
from sensors. Data processing layer is the third layer, which has responsibility for 
the storage, analysis, and processing of the data that has been collected. The last 
layer is the application layer that includes top-level features like participant alloca-
tion, assignment of sensing tasks, and services. The following subsections present 
the major components of different layers in detail.

3.1  Sensor

The sensors used for data collection are the heart of any crowdsensing-based smart 
city application. The sensing layer involves data acquisition from different dynamics 
(e.g., traffic dynamics, health dynamics, pollution dynamics, home dynamics, etc.) 
through IoT devices including smartphones. Specifically, smartphone-equipped sen-
sors along with the specialized sensor modules are employed for the sensing tasks for 
various applications. Examples of smartphone-equipped sensors include micro-
phones, magnetometers, GPS, gyroscopes, proximity sensors, accelerometers  and 
light sensors. On the other hand, IoT-based external sensor modules often expand the 
sensing capacity of a smartphone by adding sensing capabilities that the smartphone 
alone does not provide. Table 2 presents the details of smartphone sensors as well as 
external sensors used in various applications of different city dynamics.

3.1.1  Smartphone-Based Sensing

In this subsection, we will discuss how smartphone-equipped sensors are utilized to 
monitor different dynamics of a city.

As given in Table 2, the accelerometer and gyroscope sensors’ data were exten-
sively studied as a potential means of developing methods for detecting traffic and 
road surface irregularities [3, 65]. Most existing traffic and road condition monitor-
ing approaches require that the smartphone be kept in the proper orientation, with its 
axes aligned with the vehicle’s axis. The 3-axes accelerometer’s data indicate the 
acceleration of the vehicle in all three directions. Along with the accelerometer sen-
sor, the GPS sensor is used in many applications for sensing the current location 
estimates (latitude and longitude) of the vehicle [66, 67]. Moreover, images captured 
from smartphone cameras are used in various applications to monitor road surface 
anomalies [65]. Similarly, in the case of city pollution monitoring, smartphone- based 
sensing is utilized to sense the ambient environment. For instance, environmental 
sound levels are collected using the microphone sensor of a smartphone along with 
the GPS location for ambient noise pollution monitoring and mapping. Smartphone 
sensing can also be used along with the IoT-based external sensor modules for 
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Table 2 The details of smartphone sensors as well as external sensors used in various applications 
of different city dynamics

City dynamics
Application 
name/Author Smartphone sensors External sensors

Traffic and road 
condition 
monitoring

CarTel [33] – Camera, OBD device, WiFi
Nericell [2] GPS, microphone, 

accelerometer
–

Wolverine [3] GPS, accelerometer, 
magnetometer

–

RCM-TAGPS 
[69]

– GPS, accelerometer

PotSpot [65] GPS, camera –
Pollution 
monitoring

NoiseTube [59] GPS, microphone –
HazeWatch [6] – Gas sensor, Bluetooth sensor
AirSense [5] GPS MQ-135, HC-05
NoiseSPY [56] GPS, microphone –
GasMobile [8] GPS MiCS-OZ-47
Idrees et al. [70] – MQ-135, MQ-7, MQ-9, 

GP2Y1014AU0F, DSM501
Health monitoring Liu et al. [27] ECG, DBO, blood pressure 

meter
Smartwatch [71] Blood pressure, heartbeat
Tamilselvi et al. 
[19]

Heartbeat, SpO2, temperature, 
and eye blink sensors

Acharya et al. 
[26]

Blood pressure, eco cardiogram 
sensor

Islam et al. [20] Heartbeat, ambient and body 
temperature sensor

PGFIT [68] Google fit app, 
smartphone sensors

Smart home Dutta et al. [11] LED, laser, gas, flame, 
ultrasonic sound, movement 
detection

Lee et al. [12] Touch panel, environmental 
sensor

monitoring citizens’ air pollution exposure (details are provided in Sect. 3.1.2). For 
example, in [5], ambient air pollution data (PM2.5 and PM10) are collected using 
DSM501 sensor along with the smartphone data (GPS, user context, and timestamp) 
for spatial and temporal air pollution monitoring. In smart home systems, different 
cross- platform software packages like Arduino IDE are used for code editing and 
compilation of different firmware attached with the sensors. It can be used as the web 
service and can be attached with smartphones with different applications. In health 
monitoring systems, smartphones can act as sensors or a sensor can be attached into 
smartphones. As the mobile device has an advantage of being easily carried out by 
patient all time, it is easy to collect data on 24X7 basis without restricting the move-
ment. For example, in [22], two mobile phones are used to collect the ECG data, and 
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data is delivered to the system, which enables an online detection (in the present 
scenario, holter monitoring is used to record continuous ECG data, which is very 
inconvenient to carry and the data can be retrieved only when all data are recorded 
and analyzed by a medical person; therefore, a real-time detection or measure of any 
anomaly is not possible). In [28], a smartphone-based twin network for fitness man-
agement of athletes is generated. An app is created in the framework, where athletes 
have to submit various inputs like their food, rest, practice schedule, and also some 
qualitative quantity like mood, for the analysis. Similar smart healthcare systems for 
the citizen based on smartphones are generated in [29], where five sensors collect the 
data and send the data in smartphones. In [68], the Google fit app is used for data 
collection, and smartphone sensors are used to capture the input data. Some smart-
phone-based data collection software packages used for health monitoring are 
described here: (i) Teamscope: it can be used in Android, iOS, and web applications. 
It is a secure and user-friendly app for the collection of sensitive clinical data. It is 
cross-platform software and has a high-security feature; (ii) Open data kit: it is open-
source software used in Android applications. It is open-source and free software. A 
large community support is available for this software; (iii) Kobo ToolBox: it is free 
and open-source software used in Android and web. It is widely used in nonprofitable 
organizations for the collection of patient data; (iv) REDcap: this software can be 
used in Android, iOS, and web application. It is used for secure electronic data cap-
ture; (v) Magpi: it is a mobile data recording app used in Android and iOS. It can be 
used to generate excel data from different unstructured input; (vi) Jotform: it is used 
in Android, iOS, and web to collect different data types and organize the data. It can 
generate an alert system or notification to the end user; (vii) Survey CTO: it is a reli-
able, secure, and scalable mobile data collection app that can be used in Android and 
web for researchers and professionals; (viii) CommCare: it is a data collection plat-
form in Android and web. It is widely used for medical data collection. The platform 
supports both cross-sectional and longitudinal data and data collection through web 
and is very user friendly.

3.1.2  Sensing Using IoT-Based External Sensor Module

IoT-based dedicated sensor modules are also popularly used for sensing various city 
dynamics. In the case of monitoring road and traffic conditions, a set of sensors/
devices like on-board diagnostic (OBD) scanners, GPS, accelerometers and cam-
eras, are installed in cars for monitoring the movements and behavior of vehicles. 
Note that OBD is a tool that can continuously monitor the status of the vehicle. 
Similarly, for different air pollution monitoring applications, several IoT-based 
external sensor modules are proposed in the literature. In [5], an IoT device called 
AQMD (air quality monitoring device) is developed that consists of a gas sensor 
(MQ-135) and a Bluetooth module (HC-05). Note that the MQ-135 is an air quality 
sensor that can detect the presence of various gaseous pollutants such as NH3, 
CO2 and NOx. There exist several other IoT-based systems such as HazeWatch [6] 
and JUSense [58] that also use MQ-135 for acquiring air quality data. Sensor 
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modules like GP2Y1014AU0F and DSM501 are mainly used as dust sensors for 
measuring particulate matters (PM2.5, PM10). IoT-based external sensor modules 
containing MiCS-OZ-47 are used for the purpose of sensing the pollutant O3. Laser 
(used for security), DHT 11 (temperature and humidity), MQ2/MQ6/MQ7/MQ9 
(gas sensor), and flame sensor (used for fire security) are some examples of com-
monly used sensors for smart homes.

In smart patient monitoring systems, sensors collect data from the patients and 
send it to some Wi-Fi systems, from where data are collected and processed in cloud. 
Smartphones are generally used for data collection and security. Some sensors like 
smartwatch are directly connected with mobile phones, and the information like heart-
beats is continuously monitored through smartphones. Another application of mobile 
smartphones is that to collect data when patients are in a mobile state. Pressure sen-
sors (used to measure blood pressures, almost similar to clinical meter but with a digi-
tal display), blood sugar monitoring sensors (used to collect data from blood about the 
sugar level), and pulse oximetry sensors (measure oxygen saturation and pulse rate) 
are commonly used sensors used to measure health condition in home. Force sensors 
(used on dialysis machine to monitor pressure and dialysate weight), thermistors 
(temperature control), and airflow sensors (detection of ultra-low levels of oxygen) 
are some of the sensors used in medical facilities. These sensors are Wi-Fi connected, 
and the data are warehoused in cloud/server for analysis.

3.2  Communication Technologies

The communication layer, depicted in the framework of Fig. 1, contains technologies 
and methodologies for delivering sensing data to the cloud from smartphones and 
other IoT devices. Smartphones and IoT-based external devices generally have many 
radio interfaces (like Bluetooth and Wi-Fi), and there are numerous optimizations 
that may be made to make the communication interfaces more effective such as 
avoiding repeated sensor measurements or encoding unnecessary data. The commu-
nication technologies could be broadly divided into two classes, namely (i) infra-
structured and (ii) infrastructure-less. Cellular and WLAN (wireless local area 
network) are examples of infrastructured technologies, in which the network depends 
on the base stations or access points to create a communication connection. On the 
other hand, technologies like Bluetooth, Wi-Fi-Direct and LTE-Direct, come under 
infrastructure-less category to enforce proximity-based communication.

3.3  Computation Layer

The computation layer in a crowdsensing framework is mainly responsible for data 
management in cloud and data processing. The storage, format, and dimension of 
collected sensor readings are different aspects of data management. Both databases 
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and data storage are usually employed to store the data collected via smartphones 
and external IoT devices. The data storage could be centralized or distributed 
depending on the applications. The format of the data on the other hand indicates 
whether the data is structured or unstructured. Another aspect of data management 
involves the data dimension that is associated with the types of data acquired. For 
instance, multidimensional data involves different types of data from different sen-
sors; e.g., accelerometer data of vehicle and road segment images from dash camera 
creates a multidimensional dataset for monitoring road condition dynamics. A par-
ticular type of sensor, on the other hand, generates single-dimensional data, such as 
data produced by air quality sensors for air pollution dynamics.

In crowdsensing-based applications, data processing is a critical step. 
Preprocessing, analysis, and postprocessing are the three major components of data 
processing. Before analysis, preprocessing tasks are conducted on the acquired data. 
Frequently used preprocessing tasks in crowdsensing systems involve missing value 
imputation, context-aware data cleaning, calibration, and map-matching. Through a 
variety of methodologies, data analysis tries to extract and disclose valuable informa-
tion. These methodologies generally include various statistical, machine learning 
and deep learning techniques. Also, several postprocessing tasks are performed for 
predictive analysis. For instance, in the case of air pollution dynamics, forecasting air 
pollution levels can be considered as a postprocessing task.

4  Methodologies

In this section, the details of the methods used in data preprocessing, analysis, and 
postprocessing is provided.

The raw sensor data from various city dynamics suffer from missing sensor read-
ings due to the factors like power disruptions, device failure and irregular mainte-
nance. The methods of imputation are roughly classified into two categories: 
univariate methods (use single predictor variable to estimate the missing values) and 
multivariate methods (use multiple predictor variables to estimate the missing val-
ues). Unconditional mean (UM), median (MD), last observation carried forward 
(LOCF), next observation carried backward (NOCB), auto regressive (AR), and 
auto regressive integrated moving average (ARIMA) are some examples of univari-
ate methods of missing value imputation. On the other hand, several machine 
learning- based multivariate methods of imputation exist such as random forest 
(RF), artificial neural networks (ANN) and k-nearest neighbors (KNN). Now, 
context- aware data cleaning is a preprocessing task to eliminate inaccurate sensor 
readings not collected in the proper sensing context. Existing literature highlights 
that machine learning algorithms could be used to first identify the sensing contexts. 
If an identified sensing context is not appropriate, then the corresponding sensor 
readings are eliminated to enhance the quality of data. For example, in [72], Rana 
et al. developed a context discovery module using k-nearest neighbor (kNN) algo-
rithm for noise pollution monitoring in urban areas. Now, calibration is also needed 
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as a preprocessing task to estimate actual sensor readings from the responses of 
low-cost IoT devices. It is because low-cost IoT devices may not always provide 
precise, high-quality readings. The existing literature usually develops calibration 
models by estimating a relationship between the sensor readings and actual ground 
truth measurements [58]. In applications like pollution monitoring or traffic and 
road condition monitoring, map-matching is used as a preprocessing procedure that 
involves mapping raw sampling coordinates (i.e., places where sensor data samples 
were taken) onto existing road networks. Interactive-voting-based technique [73], 
probabilistic approach [74], force-directed technique [75], and feature-based tech-
nique are some examples of map matching approaches.

In the previous works, after data preprocessing step, several predictive methods are 
usually employed to perform analysis on the preprocessed data. The statistical, 
machine learning and deep learning techniques are popularly used as predictive meth-
ods. These methods are used to infer knowledge, spot patterns, and discover trends. 
Environmental pollution monitoring, traffic and road condition monitoring, smart 
health and smart home, are some of the city dynamics where the crowdsensing- based 
applications use these techniques. For instance, the application Wolverine [3] uses 
machine learning techniques in traffic and road condition monitoring. Specifically, 
they use models like K-means clustering and Support Vector Machine (SVM) to 
detect road bump, vehicle braking, etc. Statistical techniques like spatial and temporal 
interpolation are used in many applications of city pollution monitoring for air and 
noise pollution mapping [1, 58]. In [1], IDW (inverse distance weighting)- and OK 
(ordinary kriging)-based interpolation techniques are proposed for spatially continu-
ous urban noise pollution mapping. In the case of smart health and smart home 
dynamics, machine learning- and deep learning-based techniques are frequently uti-
lized for various event detection. For example, in [76], fall detection is performed 
using machine learning (SVM and NB) and deep learning models. Finally, postpro-
cessing techniques are sometimes employed for predictive analysis, such as forecast-
ing future values. In various application domains of city dynamics, statistical models 
(ARIMA, Seasonal ARIMA, etc.) as well as deep learning models (recurrent neural 
network (RNN), long short-term memory (LSTM), bidirectional- LSTM, etc.) are 
popularly used for forecasting future values [39–41].

5  Research Issues

In IoT-based smart sensing, there are several unresolved issues that required atten-
tion from the researchers. For crowdsensing, data are collected from user level, 
which is an uneven distribution set. It is important that users should participate in 
data collection, but it is obvious that everyone will not be enthusiastic in a similar 
manner. Therefore, it is required to device incentive strategies in such a way that 
quality information can be collected. Now uneven distribution of smart devices for 
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data collection may reduce the reliability of the system. For example, smartphone 
sensors may vary in a wide range depending on the pricing. Security of the data of 
the crowd sense system is another research issue to be addressed. As data are stored 
in public or private cloud, it is difficult to maintain the security of the information 
both in plain or cryptic text. Sensitive data like medical records should be secured 
in IoT-based systems. Therefore, lots of research work addressed cloud security. 
Another research issue in this area is to maintain the quality of service (QoS) of the 
system. In each layer of the architecture, some quality control measures have to 
maintain, and it is a challenge for the researchers to improve the standard.

5.1  Incentive

As previously stated, crowdsensing (also known as participatory sensing) is a new 
paradigm of sensing in which participants acquire high granular data using IoT 
devices such as smart handheld devices. These data can then be used to investigate 
different aspects of a city’s dynamics (e.g., traffic condition, urban air and noise pol-
lution and road condition). In the case of crowdsensing-based systems for collecting 
sufficient data for such investigations, active participation of a large number of partici-
pants is necessary. However, in crowdsensing-based monitoring of city dynamics, 
users incur costs because of the energy requirement, bandwidth requirements for sens-
ing, processing, and uploading of data. Therefore, the users might not be able to con-
tribute their resources as the cost issues demotivate them from actively participating 
in the sensing. In this context, a satisfactory reward or incentive would compensate 
users and encourage them to participate in the sensing process. An effective reward 
mechanism would therefore have an important role in sensing and overall perfor-
mance of the crowdsensing systems for monitoring various city dynamics.

Several incentive strategies [77–80] for crowd/participatory sensing-based 
frameworks have been developed in the literature to motivate participants in the 
sensing task. It is observed that most of the existing incentive mechanisms come up 
with a game theoretic solution. For instance, in [80], Yang et al. introduced an incen-
tive mechanism called IMCC based on a Stackelberg game. Some auction-based 
game theoretic models such as reverse auction and double auction-based models are 
also frequently used. Lee et al. [77] developed a dynamic price incentive mecha-
nism with virtual participation credit using a reverse auction. In [81], Wang et al. 
developed a quality-aware, truthful, individual rational, and budget-balanced incen-
tive mechanism called MeLoDy based on the reverse auction. They consider long- 
term characteristics of workers’ quality that can dynamically change over time. 
Table 3 provides a detailed list of existing literature that focuses on the issue of 
incentives in crowd/participatory sensing-based systems. Some attempts are also 
made to develop incentive mechanisms for air pollution monitoring [82], health 
monitoring [83] and traffic monitoring [84].
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Research issue Mechanism/framework name Author Year Contribution

Incentive RADP-VPC Lee et al. 
[77]

2010 A dynamic pricing incentive model, 
using reverse auction

IMCC Yang et al. 
[80]

2015 A Stackelberg game-based incentive 
model

ABT Wang et al. 
[105]

2017 An incentive mechanism, developed 
for crowdsourcing system ability-
balanced team

Geo-QTI Dai et al. 
[106]

2018 A quality-aware incentive model for 
cyber-physical participatory sensing

MeLoDy Wang et al. 
[81]

2018 A quality-aware, truthful, individual 
rational, budget- balanced incentive 
mechanism called MeLoDy is 
developed based on the reverse auction

BiCrowd Zhang 
et al. [107]

2020 Formulate the incentive model with 
two optimization goals (namely 
maximizing the reliability and 
maximizing the spatial diversity of 
selected workers) based on the reverse 
auction

Reliability and 
quality

Liu et al. 
[27]

2019 Standardize sensor and 
communication link

Restuccia 
et al. [85]

2017 Develop privacy-preserving, 
budget-feasible, truthful 
crowdsourcing-based dataset 
purchasing framework, quality of 
information in mobile crowdsensing.

Truong 
et al. [86]

2019 Developed a system for evaluating 
trust in mobile-based crowdsourcing

Dasari 
et al. [87]

2020 Game theoretic approach to generate 
reliable data

SecPMS Maitra 
et al. [115]

2017 Security for patient monitoring system

Ray et al. 
[104]

2020 Proactive fault-tolerant system for 
reliability enhancement in cloud

Privacy and 
security

CKD Chi et al. 
[89]

2017 This paper focuses on combining 
k-anonymous and differential 
privacy-preserving mechanisms to 
preserve location privacy

Crowd buy Zhang 
et al. [90]

2018 Develop a privacy-preserving, 
budget-feasible, truthful 
crowdsourcing-based dataset 
purchasing framework

PEPSI Cristofaro 
et al. [91]

2011 A framework called PEPSI is 
proposed for protecting the privacy of 
both data consumers and producers in 
participatory sensing

PMP Agarwal 
et al. [92]

2013 A system is developed for detecting 
the access to private data and provide 
privacy recommendations using 
crowdsourcing

PPDCA Tsou et al. 
[93]

2018 A C-RR (complementary randomized 
response) method is developed to 
ensure the data privacy of individuals

SecBCS Lin et al. 
[94]

2020 Designed a block chain-based security 
system for crowdsourcing hierarchy

Table 3 A detailed list of works that focus on the issue of incentives, reliability, quality, privacy, 
and security in crowd/participatory sensing-based systems
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5.2  Reliability

In crowdsourcing-based monitoring, reliability is an important criterion. In crowd-
sensing, one of the components is human entity. Therefore, the sensing can be 
biased, judgmental, or even mischievous [85]. For real-time crowd sense systems, 
another parameter that is connected with the reliability of the architecture is the 
response time and variation in delay. As the system includes different layers in the 
architecture, it faces congestion and other communication delays in the system. 
Delay can be reduced using larger bandwidth, load balancing, and other mecha-
nisms, but variation in delay may cause a reduction of the reliability of the system. 
Different methodologies for assurance of reliability in crowdsensing-based systems 
are proposed and tested. Though the reliability of the system is very application 
specific and no common framework is emerged to date, a lot of research work has 
been done in that direction. In [86], a trust evaluation mechanism is proposed. In 
[87], a comprehensive survey on reliability based on the game is done. Another fac-
tor that may cause a lack of reliability is the sensor device used for input data col-
lection. Unidrive is a consumer cloud storage application enhances the reliability of 
the cloud service [88].

5.3  Privacy and Security

The crowdsourcing-based mechanisms usually suffer from potential privacy and 
security problems because sensitive data of the users are disclosed. For instance, the 
sensed data might include location information that could implicitly reveal the 
mobility of a participant. Security refers to preventing illegal access, use, alteration, 
or damage of the acquired data. In addition to security, a crowdsourcing-based sys-
tem should protect the privacy of both the users and the crowdsourcer. In most 
cases, privacy refers to an entity’s ability to choose whether, when, and to whom its 
information is shared or revealed. Hence, an effective crowdsourcing system should 
be able to handle security and privacy threats, keep the acquired data and processing 
results out of the hands of unauthorized users, and also keep the system running 
normally. Issues of security and privacy are becoming increasingly important and 
challenging in crowdsourcing systems because of human involvement, dynamic 
network topology and heterogeneity in various communication networks.

The scientific community has spent considerable time and effort in the last few 
years looking into privacy and security concerns [89–94]. Ding et al. [95] present an 
application for s-Health (i.e., smart health) and the associated privacy issues. The 
privacy-aware solution enables them to easily deal with people who have respira-
tory disorders by suggesting low-pollution paths for individuals in order to alleviate 
their respiratory-related issues. In [96], Xie et al. proposed a system called PAMS 
for privacy-aware traffic monitoring. They demonstrated that the collected informa-
tion can preserve the location privacy of drivers while ensuring effective traffic 
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monitoring. In [97], Zavalyshyn et al. developed a privacy-aware framework called 
HomePad for home environments. The framework intends to offer the users with 
control over how applications access and process confidential data acquired by 
smart devices (such as web cams), as well as to stop applications from running 
unless they adhere to the privacy constraints set by the users. Also, several other 
existing works [98–100] focus on the security aspect and privacy of IoT-based 
health and home environment. Some IoT-based pollution monitoring applications 
are also focused on privacy issues of the end users [56, 101]. In [27], the authors 
propose a security system in eight levels, which consider security in the system 
level, network security, users’ personal privacy, information, and application secu-
rity. Another security system for patient body monitoring system is proposed as 
SecPMS [102], where a cryptosystem is generated both on user data and sensor data.

5.4  Quality

Quality of service is used to measure the overall service we are delivering through 
the smart system we are using. It depends on each component used in the system 
hierarchy. In crowdsourcing, input data are collected from sensors and transferred 
through a wireless communication system. Data of the crowd sending systems are 
generally stored in the cloud system, where the quality of service is dependent on 
the cloud service provider. Moreover, a huge data is processed for analytics in 
crowdsensing, which can lose the reliability of personalized information. Therefore, 
to maintain the overall quality, it is required to standardize each level.

5.4.1  Standardization of Sensor

Sensors used for collecting data input from the users are not very standardized in the 
present scenario. They are different proprietary devices and generate different stan-
dardization. ISO/IEEE11077(X73) is a standard protocol for the standardization of 
the sensors. But only a few devices are using this standardization. Therefore, the 
other devices have to be standardized. A proper calibration is required for this pur-
pose. A standardization mechanism for sensors and communication link compliant 
with X73 is discussed in [27]. Quality control of sensors is a prospective research 
domain for future crowdsensing.

5.4.2  Standardization of Communication System

As discussed in the previous section, the hierarchy uses different kinds of commu-
nication link/systems. It can be structured wireless or mobile systems, or unstruc-
tured systems. For the unstructured communication, links are not always standardized 
and may cause interference. For example, Wi-Fi communication may create 
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resonance to other devices used in medical infrastructure. This can be solved using 
other wireless technologies like Zigbee.

5.4.3  Expert System

Expert recommendation systems for the crowdsourcing data systems should be reli-
able and secured. The service we are delivering in crowdsensing is very much 
dependent on the expert systems we are generating. Statistical approaches or 
machine learning systems are dependent on the input feed used to train or learn the 
system. It cannot have 100% accuracy. Therefore, for surveillance systems, it can be 
used in a proper manner but where a critical decision has to be taken, a manual 
intervention along with the recommendation of an expert system is required. For 
statistical-based approaches, better interpolation and in machine learning, proper 
learning and training can deliver a precise recommendation system. Proper feed-
back from the user level also assures quality service from an expert system.

5.4.4  Cloud Infrastructure

Cloud services used for infrastructure services are not always maintained by all 
service providers. Moreover, security and privacy of user information are two 
important issues for quality services. There are different approaches like game theo-
retic approaches and load distribution algorithms to ensure the quality of services of 
cloud infrastructure [103]. Cloud federation is a concept where cloud providers 
share unused resources to generate a fault-tolerant system. It is important for the 
crowdsourcing system to access a reliable and fault-tolerant cloud hierarchy for 
storage and computation. In [104], the authors propose a proactive fault-tolerant 
system for enhancing cloud federation to ensure the reliability of the crowdsourcing 
system for a smart environment.

6  Conclusion

Crowdsensing and its application can be emerged as key components of the smart 
environment of a city. This chapter presents the details of crowdsensing systems 
that are used to explore city dynamics in forms of four applications: smart homes, 
smart health monitoring systems, air and noise pollution monitoring systems, and 
road and traffic condition monitoring systems. In this chapter, we introduce the 
crowdsensing system in a layered architecture. The lowermost layer is the sensing 
layer, which mainly includes the city, its dynamics, and the sensors used to sense 
those dynamics. It can be defined as the data collection layer. Both smartphone sen-
sors as well as connected sensors are elaborated. The communication layer is the 
second layer of the architecture, which consists of communication technologies for 
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delivering data from sensors. The third layer is the data processing layer, where all 
data preprocessing, analysis, and expert systems are generated. The topmost layer is 
the application layer that generates the services through the crowdsourcing systems.

In this chapter, we have classified sensors into two divisions: smartphone sen-
sors, where built-in sensors of smartphones are used, and wearable sensors that are 
connected through IoT devices. A detailed discussion on the sensors generally used 
in four applications is presented. In the communication layer, both infrastructured 
and infrastructure-less wireless communication are used. In the computation layer, 
data is preprocessed and analyzed, and results are generated with feedback. All 
these components are discussed in the methodology section. Research issues related 
to crowdsensing are also presented in the chapter.

In crowdsourcing-based applications, paradigms like the IoT, mobile-based or 
Wi-Fi-enabled sensors, cloud, edge and fog computing, and big data analytics gen-
erate a big leap over existing technologies. Crowdsourcing is a concept where inputs 
are generated by the citizens of smart city collectively. Shared data generates a 
recommendation system. Sensors are utilized to acquire the data from the individu-
als. These sensors are cheap, easy to use, generally movable in nature, and con-
nected or communicate with the smartphone device. These collected data are stored 
in cloud servers, and analytics are derived in the server. For thin client services, 
analytics can be performed in IoT devices also (fog or edge computing), which is 
very useful in real-time operation. Privacy, security, and quality of services are of 
great concern in the real-life implementation of crowdsensing-based infrastructure. 
Cloud service providers, public or private, are prone to security attack and a lack of 
data secrecy. Sensitive data can be hacked from the system. Another issue is the 
power consumption of IoT devices and consequent harm to the environment. 
Therefore, green computing is another aspect, where the focus should be 
concentrated.

An in-depth analysis of the chapter focuses and elaborates the scope, architec-
ture, and recommendation system relevant to crowdsensing-based applications in 
smart city. The review in each topic of concern can serve as a reference for future 
research work in this area. Moreover, in the future, the research issues and chal-
lenges identified in this chapter may be useful to the research community in devel-
oping more robust IoT–cloud-based crowdsensing systems.
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Water Monitoring Using Internet of Things

Md. Monirul Islam, Jahid Hasan Rony, Md. Nasim Akhtar, 
Shalah Uddin Perbhez Shakil, and Jia Uddin

1  Introduction

As far as human technology has reached, the earth is the only planet to have an 
ecosystem where live species can survive. The most important link that maintains 
the earth’s ecosystem is water [1]. In the cyclic process of our ecosystem, water 
cannot be replaced with another substance. In our society, water plays the most vital 
role. It is indispensable in our homes, industries, transport, food, farming, and daily 
activities to have usable water. However, the rapid civilization and population 
growth in past decades have caused a frightening effect on water quality [2]. If this 
situation does not change, then it could disrupt the natural balance of the ecosystem.

On the other hand, up to 60% of the human body is water so drinking enough 
water is important to stay healthy [3]. But contaminated water can cause great harm; 
for example, according to the World Health Organization, almost half a million 
people die every year only because of diarrhea by drinking contaminated water [4]. 
However, now, people are more aware than at any other time about the ecological 
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balance and the effect of pollution on the human race. Leaders are making rules to 
discourage activities that cause pollution, and people are getting mindful of 
such acts.

But the pollution monitoring system, especially for water, is not readily available 
to our community [5, 6]. Many garments and industries dispose of their chemical 
contaminated water without proper treatment behind the authority’s back and pol-
lute the river and canals [7–9]. In most impoverished and underdeveloped countries, 
water pollution monitoring does not get enough precedence. The situation comes to 
light only after the final deterioration, for example, in the river of Markanda in 
India, water measures of pollution with organic matter  – BOD rate is 490  mg/l 
where 1–2  mg/l of BOD indicates good water [10], which is not only unusable 
human water but also any aquatic life that cannot survive there. Then, the conditions 
of the pond water are also much miserable.

In megacities like Dhaka, Delhi, or others, because of the rapid population over-
growth, ponds are often filled up and turned into land for housing and industries, 
and the remaining are mostly unusable because of the dangerous water quality [11, 
12]. Now, as the water quality checking and pollution monitoring process is less 
prior to work and the authority gets notified after an alarming situation, people 
already suffer from various health hazards and economic disruption. Also, in farm-
ing and fisheries, people are not always able to easily monitor water quality and 
make the right decisions [13]. In that condition, if water pollution and monitoring 
systems can be easily available to the public, it can give them an opportunity to get 
all the necessary information in hand, get aware of the situation, and act smartly. 
Nowadays, IoT is a popular word for everyone. IoT or the Internet of Things enables 
electronics devices to communicate among themselves and establish a low-cost 
embedded system for automation [14]. For water quality and monitoring systems, 
IoT can be both a cheaper and reliable method to provide real-time sensor data feed 
to cloud databases. As a result, we have proposed an IoT-based water pollution and 
monitoring system that can monitor and show real-time conditions and pollution 
information of different water like ponds, rivers, or drinking water.

The main objective of this study is to provide a universal water pollution 
 monitoring system at a competitive cost, and the contribution of this paper is as 
follows:

• Low-cost IoT model for water pollution monitoring.
• Cloud base data storage and monitoring system.
• Discussion on the various sensors specification.

We have organized the paper in the following manner: Section 2 for literature 
review, Section 3 for proposed methodology, Section 4 for results and discussion 
analysis, and Sect. 5 for conclusion.
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2  Literature Review

Due to a rising global crisis, different methods have been proposed for water quality 
and pollution monitoring. A narrow-band Internet of things-based water quality 
monitoring for aquaculture has been proposed by Huan et al., which collects differ-
ent pond water parameters and helps maximize aquaculture production [15]. Pasika 
and Gandla have shown a system designed to monitor drinking water quality using 
IoT to ensure drinking water quality [16]. Besides that, a machine learning and IoT-
based drinking water quality monitoring system has been shown by Koditala and 
Pandey [17]. Ramón Martínez et al. have proposed an IoT system for wastewater 
treatment plants to monitor the quality of water [18]. For detecting the contamina-
tion and flow of water, Saravanan et  al. have proposed a system combined with 
supervisory control and data acquisition (SCADA) and IoT [19]. Earlier, Moparthi 
et al. have shown [20] a system to detect the pH level of water using IoT. Those 
papers have proposed either a discrete water quality measurement system based on 
a parameter or targeted to work on a specific type of water such as drinking water. 
Then, a paper proposed a water quality monitoring system based on IoT combined 
with radio-frequency identification (RFID), wireless sensor network (WSN), and 
Internet protocol [21].

Rony et al. have proposed a model for sewerage water monitoring systems using 
IoT sensors and cloud services [22]. Aqua fishing-related work such as prediction 
using different approaches has shown IoT-based approach for data collection [23, 
24] and then processed those data using machine learning for prediction. Different 
water parameter checking studies have been conducted earlier; for example, Alam 
et al. tested water samples of the Surma river with respect to different water quality 
parameters [25]. Water toxicity analysis was done by Vijaya Kumar et al. where the 
industrial area’s water quality was analyzed [26]. Tube-well is the primary drinking 
water source for a large number of people. A study was conducted in a Bangladeshi 
flood-prone area to analyze the tube-well water quality and contamination 
check [27].

A comparative study is shown in Table 1.

Table 1 Comparison study

Paper Year Water type Method

[15] 2020 Aquaculture NB-IoT
[16] 2020 Drinking water IoT
[17] 2018 Drinking water IoT & ML
[18] 2020 Wastewater IoT
[19] 2018 Surface water SCADA & IoT
[20] 2018 Drinking water IoT
[21] 2017 Surface water IoT
[22] 2021 Wastewater IoT
[23] 2021 Aquaculture IoT & ML
[24] 2021 Aquaculture IoT & ML
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In this study, we have proposed a model that is both budget friendly and has a 
wide range of usability from different perspectives. To ensure a smart city environ-
ment, water pollution monitoring is a vital issue, and this study proposed a user- 
friendly and cost-effective solution to address the problem.

3  Methodology

The system diagram of the proposed model is shown in Fig. 1. Required different 
water quality checking information is input through different sensors such as pH 
sensor, temperature sensor, and turbidity sensor. The whole process can be divided 
into three main parts: data collection, processing, and monitoring.

3.1  IoT Devices for Water Monitoring

There are some popular sensors for monitoring water quality like pH sensor, tem-
perature sensor, turbidity sensor, MQ7 sensor, and HC-SR04 sensor.

pH Sensor Chinese robotics manufacturer “DFRobot” manufactured a pH mea-
surement sensor that can measure at a range of 0–14 with ±0.1 accuracies at 25 °C 
temperature. The specification of the pH sensor is shown in Table 2.

The pH sensor kit may be used in water quality monitoring devices, water tanks, 
and fish aquariums. It can also be used with a GSM phone and a nodemcu esp8266 
Wi-Fi module for remote notifications.

Temperature Sensor The model of the waterproof temperature sensor is DS18B20. 
It is manufactured by US company “Adafruit Industries.” The specification of this 
sensor is shown in Table 3.

Temperature Sensor

pH Sensor

Turbidity Sensor

Micro

Internet

Monitoring

Cloud
controller
(ESP32)

Fig. 1 Block diagram of the proposed system
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Table 2 Specification of pH sensor

Type Analog pH sensor/Meter Kit for Arduino

Manufacturer DFRobot, China
Parts Power indicator, a BNC connector, and a PH2.0 sensor 

interface
Accuracy range ±0.1
Supply voltage 5 V
Measuring range 0–14 pH
Measuring temperature 0–60 °C
Response time ≤5 s

Table 3 Specification of temperature sensor

Type One-wire digital temperature sensor

Manufacturer Adafruit industries
Power supply range 3.0 V to 5.5 V
Operating temperature range −55 °C to +125 °C
Accuracy ±0.5 °C (between the range − 10 °C to 85 °C)
Pin 3 pins:

GND DQ VDD

Turbidity Sensor Turbidity is a measurement of how many suspended particles 
are present in a stream. Aside from potable uses, water is employed in a wide range 
of industrial and domestic settings; for example, water is used to clean the wind-
shield of a vehicle, it is used to cool the reactors of a power plant, and washing 
machines and dishwashers rely on it like fish.

The specification of the turbidity sensor is shown in Table 4.
There are some applications of turbidity sensor including washing machines, 

dishwashers, industrial site control, environmental sewage collection, water quality 
monitoring using IoT, and oil quality monitoring.

Ultrasound Sensor This sensor is used for measuring water levels. The most pop-
ular model of this sensor is HC-SR04. It uses SONAR to determine the distance of 
an object. It can measure from 2 cm to 400 cm or 1 to 13 feet. The specification of 
HC-SR04 is shown in Table 5.

In this study, we utilized three sensors for collecting real-time values. They are 
temperature value, pH value, and turbidity value.

All the device connects to an Arduino UNO microcontroller, and the microcon-
troller transfers data through WIFI communication using the Arduino WIFI shield. 
In Fig. 2, the complete hardware setup is shown.
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Table 4 Specification of turbidity sensor

Manufacturer DFRobot

Power supply range 5.V DC
Operating current 40 mA (max)
Response time <500 ms
Insulation resistance 100 M (min)
Output method Analog and digital
Analog output 0–4.5 V
Operating temperature 5 °C–90 °C
Storage temperature −10 °C–90 °C
Weight 30 g
Adapter dimensions 38 mm × 28 mm × 10 mm/1.5 inches × 1.1 inches × 0.4 inches
Pin 3 pins:

GND Signal VCC

Table 5 Specification of HC-SR04 sensor

Manufacturer ETC2

Power supply range 5.V DC
Working current 15 mA
Quiescent current <2 mA
Measuring angle 30 degrees
Resolution 0.3 cm
Ranging distance 2–400 cm/1–13 ft
Actual angle <15°
Pin 4 pins:

GND TRIG VCC ECHO

3.2  Processing Unit

Microcontroller: As the brain of the system, a low-power microcontroller Arduino 
UNO is used, and to provide communication, an Arduino WIFI shield is used. This 
device has sufficient analog and digital input/output pins, enough processing power, 
a compact size board, and many other features at a very competitive market price. 
The microcontroller is directly connected to all the sensors; it reads and processes 
all the sensor values after a period of time. The processed information is shown in 
the attached display. Besides that, network connectivity is established to store the 
data in a cloud database for remote monitoring and further usage.
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Fig. 2 Combined circuit with all the sensors

3.3  Monitoring Unit

Data can be monitored in a web app with digital devices. The web app shows the 
processed data in a graphical meter for a user-friendly view in both phone and lap-
top/desktop environments.

River Water Sample: The river water sample for this study is collected from “the 
Padma,” one of the major rivers of both Bangladesh and India. This river flows 
almost 120 km, and the confluence with the Meghna river then meets the Bay of 
Bengal. This particular water sample collection location is in Rajshahi city, the 
northern part of Bangladesh.

Pond and Drinking Water Sample: Pond water, as well as drinking water sam-
ples, is collected from another part of Bangladesh, Jamalpur district, Melandah 
upazilla, Malancha village. In this particular place, villagers usually use tube-well 
water as their primary drinking water source, so we have collected the sample from 
10 different tube-well as the drinking water sample in this study.

4  Results and Discussion

After processing, the final outcome is visible in a web app shown in Fig. 3, where 
different sensor and its corresponding output are shown, respectively. However, the 
standard value and the inputted value from the sensors are compared to get the 
analysis. The standard value used in this study is shown in Table 6.

From every source of the water, data was tested a large number of times. Table 7 
shows the ten data samples from actual test results.
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Fig. 3 (a) Temperature sensor testing. (b) Temperature sensor output monitoring in web app. (c) 
The turbidity sensor testing. (d) Turbidity meter monitoring in web app. (e) pH sensor testing. (f) 
pH sensor output monitoring in web app

Table 6 Standard of different water quality

Drinking water [28, 29] Pond water [30] River water [31]

pH 6.5–8.5 6.5–8.5 5–9
Temperature 6–20 °C 20–23 °C <32 °C
Turbidity <4 NTU <30 NTU <10 NTU
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Fig. 4 Graphical view of table data sets

Table 7 Sample data from actual test results

created_at entry_id field1 (Temperature) field2 (pH) field3 (Turbidity)

2021-07-14 13:38:05 UTC 1 17.62 6.02 1.26
2021-07-14 14:38:07 UTC 2 17.5 6.01 1.07
2021-07-14 15:46:32 UTC 3 17.56 6 1.92
2021-07-14 16:38:05 UTC 4 17.75 6.09 2.65
2021-07-14 17:46:37 UTC 5 17.56 6.93 2.75
2021-07-14 18:37:50 UTC 6 17.69 6.42 2.22
2021-07-14 19:46:02 UTC 7 17.69 6.48 1.15
2021-07-14 20:37:53 UTC 8 17.56 7 2.4
2021-07-14 21:39:58 UTC 9 17.5 7.27 1.54
2021-07-14 22:37:52 UTC 10 17.62 7.24 2.97

A chart from Table 7 is shown in Fig. 4 to present a graphical view of the data 
set. All the data are from one single source, so the changes are tiny changes in 
data points.

5  Conclusion

This study showed an IoT-based water quality and pollution monitoring model that 
collects different water quality parameters using sensors and store them in a cloud 
database. A graphical water quality meter of those parameters is shown by compar-
ing the data that are stored in the cloud and data from the standard value. Multiple 

Water Monitoring Using Internet of Things



68

water samples from different places and sources were tested, and the system showed 
the expected result. Water samples from almost ten tube-wells, one pond, and rivers 
all around Bangladesh were tested during this study. Water is one of the most vital 
substance. Therefore, a water quality monitoring device like this one is highly 
needed to ensure water safety. However, there are a few limitations in this study that 
need to be addressed in the future; for example, in the thingspeak server, the data 
refresh rate is limited. As a result, data can be written once every 15  seconds. 
Besides that, for future work, long-range data communication and compact size 
module designing can be done.
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Participatory Citizen Sensing with a Focus 
on Urban Issues

Hana Kopackova 

1  Introduction

The concept of participatory citizen sensing (PCS) emerged in 2006 with the first 
publications about citizens serving as sensors [1, 2]. A wide spread of PCS systems 
was further enabled by the mass exploitation of smartphones, which lowered time 
demand and brought new capabilities (e.g., built-in camera, GPS locator, and other 
devices). Despite the popularity of PCS systems, their deployment is even now 
rarely accompanied by a clear vision, investigation of success factors, potential pit-
falls, and measurable outcomes. The aim of this chapter is to bring a comprehensive 
view of this contemporary phenomenon.

The first issue in this domain is the vague definition of the PCS concept. We can 
find many different terms with similar meanings, making orientation in this field 
complicated. This subchapter brings clarification and definition of the PCS concept 
(Table 1).

The first distinctive PCS feature from other concepts is the sensing activity, 
which means collecting data. This feature separates it from e-participation and citi-
zen sourcing. Although both terms cover participatory activities of citizens, they 
may involve other activities than data collection. For example, citizens can be a 
source of action, ideas, material, opinion, etc. PCS tools are, therefore, a special 
case of e-participation and citizen sourcing.

The second distinctive PCS feature is the consciousness of the sensing. The word 
“participatory” in the PCS name expresses that people are aware of data gathering 
and that the data will be processed somehow. This feature excludes PCS from 

H. Kopackova (*) 
Faculty of Economics and Administration, Institute of System enginnering and Informatics, 
University of Pardubice, Pardubice, Czech Republic
e-mail: hana.kopackova@upce.cz

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
G. Marques, A. González-Briones (eds.), Internet of Things for Smart 
Environments, EAI/Springer Innovations in Communication and Computing, 
https://doi.org/10.1007/978-3-031-09729-4_5

https://orcid.org/0000-0001-6648-4990
mailto:hana.kopackova@upce.cz
https://doi.org/10.1007/978-3-031-09729-4_5


72

Table 1 PCS-related concepts

Related concepts Explanation of the relationship Sources

Live sensors, citizen 
sensing, Crowdsensing

People act as sensors gathering data, but the gathering 
can be unconscious.

[3–5]

Citizen sourcing, 
crowdsourcing

The purpose is to take some action in public interest. 
Sensors may not be part of the solution (co-creation).

[6, 7]

E-participation Broad concept covering all forms of civic engagement, 
enhanced by the e-government 2.0.

[8, 9]

Citizen science, extreme 
citizen science

Citizens gather data for research purposes. [10–13]

PPGIS, VGI, CGI, 
Geocollaboration

It covers all information systems designed for the public 
to gather spatial data. Geographic data are a necessary 
part.

[14, 15]

citizen sensing based on social networks, where people do not know that their data 
(Tweets, Facebook, Reddit, or other posts) will be mined. An example of such 
unconscious sensing was put forward by Ayora et al. [5], who described streaming 
API to distill tweets based on hashtags.

However, sometimes it is not easy to adhere to this categorization. For example, 
cities can make profiles or discussion groups on social networks to promote citi-
zens’ participation [16–18]. In this case, citizens intentionally publish their opinion, 
comments, or report problem issues on social networks with the awareness that their 
posts will be gathered and mined.

Data collectors (local governments, scientists) can even combine conscious and 
unconscious sensing to evaluate data’s timeliness, importance, and relevance. The 
example can be found in Anantharam et al. [4]. They extracted traffic events from 
Twitter and 511.org (incidents reporting) events over San Francisco. This experi-
ment showed that posts on social networks, especially Twitter, can be used as a 
complement to PCS.

The division line between conscious and unconscious citizen sensing can be even 
more blurred. For example, reporting tools, which are used knowingly, also gather 
data that users may not be aware of (frequency of use, issues watched, type of 
device, etc.).

A third distinctive feature of PCS is the possibility to use spatial data. Concepts 
of PPGIS (Public Participation Geographic Information System), VGI (Volunteered 
Geographic Information), CGI (Contributed Geographic Information), and 
Geocollaboration expect the gathering of geographic data. Although data gathered 
by PCS mostly have a spatial component, it is not necessary. The data can refer to 
the whole city or defined territory.

Summative Definition of PCS Participatory citizen sensing (PCS) is defined as an 
open call, meaning that the task is offered to the public. The task is specified as 
sharing data, either personal or other types of data related to the territory. 
Participatory sensing explicitly means intentional sharing of data in contrast with 
opportunistic sensing, when data are collected in an automated manner without 
user involvement. Sensing equipment provides the government, third party, or citi-
zens to use their own.
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The rest of the chapter is divided into two parts. The next section focuses on cur-
rent trends in PCS tools through the lens of applicable domains, motivation of citi-
zens, and demands for technical solutions. The third section introduces a case study 
evaluating the quality of citizen reporting tools used in the urban environment to 
report non-emergencies. The presented case study covers 13 Czech regional 
capitals.

2  Fundamental Issues of PCS Concept

This section is based on the review held in April 2021. Articles were gathered from 
the Web of Science using keywords (participatory citizen sensing, citizen sensing, 
citizen science, citizens as sensors, citizen engagement sensors).

Compilation of sources after duplicate removal brought 756 papers. Abstract 
reading lowered the number to 206, which was further reduced to 104 papers avail-
able for download and thematically correct. The review should answer three 
questions:

 1. In which areas are PCS used?
 2. How are citizens recruited and motivated?
 3. What issues must be solved on the technical level?

2.1  PCS Domains

The review showed that most PCS projects focus on nature and ecology (air pollu-
tion, noise, water and soil quality, biodiversity, etc.). The second most frequent topic 
considers urban issues (traffic, condition of roads and sidewalks, litter, street light-
ing, illegal activity, etc.). Finally, extreme events (floods, hurricanes, earthquakes, 
epidemy, etc.) are another PCS domain, which is popular.

Description of PCS domains leads us to different outcomes that initiators expect. 
The first expected outcome is the generation of knowledge. This outcome is espe-
cially true for citizen science. The second expected outcome is problem solution, 
which is highly visible in urban space. Finally, the third outcome is less specific and 
covers the exchange of information and fun.

2.1.1  Nature and Ecology

Nature and ecology cover the biggest category in the review, which consists of 43 
papers. The most common project in this category is air quality measurement. 
Measurement methods differ according to the equipment that citizens use. Most 
studies used dedicated stationary sensors placed in the garden, porch, sheds, inside, 
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etc. [19–24]. For example, Brienza et al. focused on gathering of different air pol-
lutant data (i.e., Ozone (O3), carbon monoxide (CO), and nitrogen dioxide (NO2)) in 
cooperative manner [20]. Through uSense, a user can monitor the air quality near 
her/his house, just by placing a small sensor node in her/his property, for instance in 
a garden, a balcony, a window sill, or hung to an outside wall. Basically, the node 
periodically measures—through proper sensors—the concentrations of some air-
borne pollutants. Then, the obtained data are sent to the uSense database via the 
Internet, and are made accessible to all the other uSense users. This way, in a coop-
erative fashion, each user contributes to monitor part of the city. Similar results 
brought dedicated mobile devices placed on bikes, cars, busses, or the participant’s 
body [25–28]. Hybrid approaches combine data from mobile and stationary sensors 
[25, 29, 30]. A completely different way of data collection is represented by smart-
phone applications, which mainly support collecting qualitative data in the form of 
reporting  – smoke sensing, smells [31, 32]. However, smartphones can also be 
equipped with gas sensors [33].

The second most frequent topic is noise measurement using also stationary 
devices, mobile devices, and smartphone applications. The difference is in the fre-
quency of use of smartphone applications, which is much higher [33–41]. This situ-
ation is understandable as the microphone is the necessary equipment of smartphones, 
whereas gas sensors represent additional costs, as they need to be professionally 
installed and calibrated. However, examples of dedicated sensors were also found 
[41–43].

The monitoring of the quality and quantity of water, whether fresh or marine, is 
another topic in this field. A technically simple solution for freshwater monitoring 
is from Africa. Citizens send SMS messages via standard mobile phones to report 
the lack or poor quality of water at a public water point: “no” for no water and 
“dirty” for dirty water [44]. Another example from Africa focuses on monitoring of 
wells and river flow [45]. Five monitoring wells are manually dipped every two days 
with a dip meter and the rain gauge is measured daily at 9 am by reading the level 
of the internal graduated cylinder. The river gauges are monitored daily at 6 am and 
6 pm by reading the river stage from the permanently installed gauge boards. Hard 
copy records of measurements are provided by community monitors on a monthly 
basis to the Dangila woreda office, where they are transferred to an Excel spread-
sheet and forwarded to the research team. Citizens acted as sensors also in the 
experiment of dams mapping. In this case, participants used reporting applications 
on their smartphones to report dams, locks, or other obstructions on rivers [46]. 
Algal blooms on lakes were monitored with reporting application CyanoTRACKER 
[47]. Marine Debris Tracker mobile app was used to monitor litter and debris in the 
ocean [48].

Wildfires and forest preservation are other topics of PCS research. Forest Fuels 
Measurement Application was designed for the public to visually classify fuel con-
ditions (the amount of wood debris on the ground surface, height and the closure of 
conifer crown, and understory vegetation coverage), aided by reference images and 
illustrations [49]. The Forest Fire reporting (FFR) mobile application aims to tackle 
forest fire incidents at the preliminary stage [50]. The forest department tested the 
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solution, but it is possible to use it also by the public. Different approaches to forest 
preserving offer the Relasphone Measurement Application that implements the dig-
ital relascope, augmented with metadata and computed forest variables to get forest 
inventory data, including basal area, tree species, tree height, and age [51].

Biodiversity is an essential topic for the preservation of the world and life as we 
know it. Various studies have addressed the monitoring of endangered species, and 
PCS can be a powerful tool in this research as the amount of gathered data can be 
significantly expanded. For example, the BAYSICS project from Germany monitors 
plants, animals, trees, and allergens [12]. Collaborative investigation of species 
through soundscapes was used in Dema et al. [52] as acoustic sensing is a noninva-
sive approach to monitor species and the environment. Observation and reporting 
were used in the following example that focused on amphibians and reptiles [53]. 
Participants monitored road-kills of amphibians and reptiles along 97.5 km of ter-
tiary roads covering agricultural, municipal, and interurban roads as well as cycling 
paths in eastern Austria.

2.1.2  Urban Issues

Solving urban issues is the second most common PCS domain, in which citizens 
can help improve the quality of life in urban and even rural areas. The specificity of 
this domain is that citizens gather data considering the man-made environment. The 
most frequent approach in this field is the use of smartphone applications that use 
GPS coordinates and cameras to capture problematic issues complemented with 
textual description. Types of issues that are solved mainly by these apps are non- 
emergencies (damaged benches, mess, broken pavement, uncut grass, landfills, pot-
holes, broken lights, or abandoned vehicles). Examples of these applications are 
CityCare [54], SeeClickFix [55], Be Responsible [56], CityWatch [57], City Probe 
[58], Amsterdam reporting app [59], and CitizenConnect [60].

Transportation in cities is often a problem as many people commute to work; that 
is why some PCS tools are focused on this area. For example, the MITOS platform 
combines dedicated stationary sensors with citizen sensing in the form of free text 
or predefined messages (e.g., “heavy traffic,” “too much noise,” etc.) and/or images 
[61]. A different approach was brought by Barnwall et al. [62], who used data from 
Waze (reporting app for traffic events) to predict the accuracy of users’ reports.

Issues of the road surface such as potholes and bumps, which are closely con-
nected to traffic flow, affect driver safety, fuel consumption, and road maintenance 
costs. Although urban reporting applications mostly cover reporting of potholes in 
textual form, some cities use more sophisticated ways of data gathering. For 
example, the combination of microelectromechanical systems (MEMS) acceler-
ometers in smartphones and GPS allows for road surface condition assessment 
[63, 64].

Another problem in cities is queuing, whether those are queues of people or cars. 
Wang et al. [67] presented CrowdQTE, a mobile crowdsensing system for real-time 
queue time information for different scenarios. In places where people wait in a 
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line, accelerometer sensor data is collected to automatically detect the queueing 
behavior and calculate the queue time. In places where people do not wait in a line, 
the participants manually report the queuing status. Technologies for smart build-
ings are also representants of PCS. They can be used to measure the humidity level 
at homes [65] or manage energy consumption [66]. A particular type of PCS proj-
ect, which is more rural than urban, was introduced in Poland. The project aims to 
preserve the cultural landscape and natural environment together with the activation 
of their residents. A dedicated application LC-CApp (Land Consolidation- 
Crowdsourcing Application) was created in the GIS environment. This app offers a 
possibility to supplement data used in land consolidation works by adding the per-
ception level based on lived experience, preferences, associations, and memories of 
the local community members related to their local area [68].

2.1.3  Extreme Events

The use of PCS in extreme events can be preventive, emergency, or both. The infor-
mation about past events helps researchers and local governments prepare contin-
gency plans and preventive measures. Data gathered by citizens (video, photography, 
description) are beneficial in this process. These data can be used, for example, to 
calculate the water depth. Singh [69] and Sy et al. [70] describe the projects where 
citizens were asked to indicate the water depth affecting their houses during histori-
cal flood events by localizing this information.

Sensing applications can use more than form, camera, and GPS. For example, 
smartphones’ accelerometers can also be used to measure the strengths of shakes. 
Faulkner et  al. [71] described CSR (Community Sense and Response system), 
which exploits accelerometers in smartphones combined with dedicated devices to 
monitor earthquakes.

Early warning flooding systems FloodCitySense in Birmingham, Brussels, and 
Rotterdam were described in Veeckman and Temmerman [72]. Although this proj-
ect brought some success, at the same time, it draws attention to the problems that 
can occur when using these technologies. The following reference shows what 
problems a similar project may encounter. In the case of Birmingham and Rotterdam 
the activities stopped after the experimentation phase. This was mostly due to tech-
nical performance issues of the low-cost sensors, the low perceived data quality of 
the crowdsourced flood reports, lack of integration with existing systems and the 
high perceived efforts involved in data control and validation of the crowdsourced 
information. The original way of disaster data collection is described in Di Felice 
and Iessi [73]. They used reporting application TwitterEarth with the predefined 
form (GeoReport). This application is participatory because people know that their 
posts will be collected, even if they use Twitter as a collecting medium. A unique 
hashtag is generated for reports from a given territory in order to retrieve the data 
quickly. Each GeoReport can concern only one warning, written by selecting either 
the field Damaged Asset or Damaged Infrastructure.
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One more example of PCS in extreme events is from the recent past and present. 
PCS can be used to trace contacts during pandemics. The example is Singapore 
[74], but most countries applied any type of tracing PCS either at the national or 
local level. Contact tracing means that citizens diagnosed with the virus fill the 
form; a user’s data are collected from their phone, centralized, and redistributed to 
others. The app uses Bluetooth for communicating between devices over short dis-
tances. When two phones remain in proximity, TraceTogether uses Bluetooth to 
exchange temporary ID numbers between the apps on the two phones. Citizens 
using this app are informed about infected people nearby, so in the case they feel 
some symptoms, they can be treated earlier.

2.2  Citizen Involvement: Recruitment and Motivation

The implementation of PCS systems needs acceptance on the level of initiators 
(researchers, local government) and the level of citizens. The willingness of the 
initiators to accept citizens as qualified partners is the first assumption for the suc-
cessful start of the implementation. Nevertheless, they can just offer the PCS tools 
to citizens, which is only the supply side. Real success happens when citizens adopt 
these tools, get used to them, and are satisfied with their results.

Many papers in the review addressed citizens’ motivation and recruitment, men-
tioning either monetary, non-monetary, or both incentives, e.g., [75, 76]. As mone-
tary incentives, we can take real money and virtual money, credit, or some other 
reward that is perceived as valuable by citizens. Different approaches to setting the 
price can be found in the literature. Static incentive means that the price for a task is 
estimated in advance and stays the same for all participants. On the other hand, 
dynamic incentive means that the price changes based on the minimum amount of 
money a participant is willing to accept for a sensing task. Another distinguishing 
feature is the entity that determines the price. According to this division, we can see 
a user-centric model and a platform-centric model.

 1. User-centric model: Citizens offer the price for which they are willing to under-
take the task. Lee and Hoh [77] introduced a reversed-auction-based incentive 
mechanism called “RADP.” Participants in this scheme sent their incentive 
expectations to the platform, and those with the lowest expectations are chosen 
as auction winners to carry on the sensing task. Krontiris and Albers [78] 
adapted the RADP model with more dimensions, especially with the quality of 
data participants can offer. They argued that it is unfair for participants when 
the platform only considered their bidding prices but entirely ignored the data 
quality. Other types of auction models were also introduced for assigning sens-
ing tasks – threshold-based auction [79] or reputation-based incentive mecha-
nism [80].

 2. Platform-centric model: Initiator of the sensing task sets the price to maximize 
the profit. For example, Khazankin et al. [81] offered participants a defined 
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amount of reward if they can finish the task in a given time. Participants could 
“book” a task if they assumed rewards and allotted sensing time attractive to 
them. A different approach, described in Luo and Tham [82], can give the 
platform more decisive power. In contrast to the Price-Decision-First model 
described so far, participants’ data were uploaded without knowing the price, 
thus giving the platform more privilege to allocate payment (Data-Upload-
First model). The platform encouraged participants to provide more sensing 
data for the rewards given to participants with more contributions. Reddy et al. 
[83] experimented with five different settings of payments. The experiment 
was held on campus for 5 days. Participants were asked to take photos of out-
door waste bins’ contents and optionally add a label to the photo. MACRO 
payment promised individuals 50 dollars for involvement in the study, 
MEDIUMμ, HIGHμ, and LOWμ involved 20, 50, and 5 cents per valid sub-
mission respectively, COMPETEμ payment was based on ranking among 
peers determined by the number of samples taken (which was reset daily) and 
ranged from 1 to 22 cents per valid submission. COMPETEμ members had 
access to all participant ranking/submission numbers in real-time on the 
phones. The total pay out for the micro-payments was capped at 50 dollars per 
participant. As a result, the MACRO payment group collected the lowest num-
ber of photos (1291), the highest percentage of them was invalid (7%), but they 
added the highest percentage of labels (70%). Compared to that, COMPETE 
payment group collect the highest number of photos (5256), the average percent-
age was invalid (6%), and they added the lowest percentage of labels (6%). Other 
price models were among these extreme variants.

Monetary incentives represent only one form of incentive mechanism. Citizens’ 
motivation is often activated by nonmonetary incentives as social interaction, access 
to other users’ data, the possibility to learn new things, gain prestige, enjoyment, or 
just pure altruism. This statement is especially true for citizen science as proved by 
Koss [84] – motivation incentives were “want to protect the coastal environment,” 
“sense of achievement,” “meet new people,” “being part of the group,” and “feeling 
good about myself.”

Another example from coastal citizen science was reported by He et al. [85], who 
verified that environmental citizen science could deepen the connection between 
people, place, and ecosystem. Their research showed that both altruism and self- 
interest are powerful motivators in initial and continued participation. Moreover, 
volunteers who remain engaged adopt the mission of the program as their own.

Ganzevoort and van den Born [86] studied which experiences in nature are 
incredibly memorable and impactful for participants to motivate them in future 
research. They proved that surprise in discovering the biodiversity and learning 
were the two most prominent participants’ experiences. In contrast, only a few 
respondents expressly referred to their contribution to science and conservation 
through submitting collected records.
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A popular approach to recruiting more participants for PCS tasks is the use of 
gamification. For example, Sirbu et al. [87] describe the AirProbe web game, a map 
management game, where participants (Air Guardians) annotate the map with 
AirPins – geo-localized flags tagged with an estimated or perceived pollution level. 
In addition, Martí et al. [88] described the NoiseBattle prototype to move around a 
city, taking noise samples. The city is split into cells of a grid, so the user can con-
quer the cells by taking more and better measurements than other users in the area. 
The sounds that can be sent to the rivals are used to show the power obtained by the 
sender of the noise. The rivals have the option of re-conquering previously con-
quered cells by performing better quality measurements or more recent measure-
ments. Comparison of gamified and non-gamified PCS approach presented 
Palacin-Silva et al. [89] for capturing lake ice coverage data in the sub-arctic region. 
They found out a much higher number in gamified approach, participants under this 
approach were much active, and the dropout in this group was significantly lower. 
Although they found that gamification affected the participants’ engagement posi-
tively, the user experience was the same. This statement is in line with Nacke and 
Deterding [90]. They concluded that adding simple visual manifestation of gamifi-
cation elements or deterministic mechanics to the interface is not enough without 
considering other aspects of engagement. Similarly, Aoki et al. [91] brought a criti-
cal view on citizen science. They emphasized the complexity of the sensing task and 
the fact that participants’ interests need to be sufficiently aligned with the desired 
science outcomes to get expected results.

Different perspectives for citizen involvement were proposed by Willet et  al. 
[92], who focused their attention on the problem, how to make sensing tasks easier 
for novice participants. Their solution was to break analysis tasks into discrete 
mini- applications designed to facilitate novice contributions. This strategy helped 
novice users to identify relevant phenomena and generate local knowledge 
contributions.

2.3  Procedural Issues and Technical Solutions

PCS systems differ according to domains, various providers, and technical solu-
tions. However, we can find elements, which occur in all PCS systems. A use case 
diagram capturing the most common functional elements is depicted in Fig.  1. 
There are four actors (users, participants, data collector, and administrator). This 
division means roles but not necessarily different people. Data collectors can also 
gather data, which means they are in the role of participants. as Also, the role of 
administrator and data collector can be combined in one person (organization).

The essential functionality of any PCS system is the gathering of data, which 
can be regular (data are gathered at defined time intervals for a given period) or 
irregular (data are gathered when necessary). This difference affects the require-
ments of technical equipment and battery life. Requirements on battery life are 
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Fig. 1 Functional elements of PCS systems (use case diagram)

significantly higher for regular data gathering. Technical equipment for citizen sci-
ence projects needs to be more sophisticated (e.g., sensors for CO2, NO2, PM2.5, 
humidity, etc.). On the other hand, technical equipment requirements for reporting 
systems are pretty low. They need mostly smartphone cameras, microphones, and 
GPS location in combination with the form-based application.

The data gathering process also differs in demands on how active the participants 
must be. In regular data gathering, participants mostly give their consent to data 
collection and check that everything works (battery life, connection). Irregular data 
collection is usually more dependent on participants’ activity (take a photo, fill the 
form, or check if there is already some data about the same issue, upload data, etc.). 
There are two most frequent problems related to data gathering: privacy and data 
quality. While participants are primarily interested in the possibility of maintaining 
privacy, the data collector requires a high quality of the collected data. These two 
requirements are closely connected but in contradiction; therefore, the scientists try 
to find a way to transmit each observation with sufficient anonymity. At the same 
time, the data collector de-anonymizes the data with acceptable accuracy.

Perez and Zeadally [93] summarized contemporary approaches to privacy pro-
tection in crowdsensing applications and divided them into two classes: hiding the 
identity and hiding contextual facts. Based on this review, they proposed the 
Privacy- Enabled ARchitecture (PEAR), a layered architecture that consists of four 
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abstraction layers (communication, anonymization, security and privacy, and 
processing).

 1. Hiding the identity: Metadata, such as network addresses/identifiers (e.g., IP 
addresses, MAC addresses, and cookies) needed by network protocols to send 
and receive data, can be used to reveal the identity of participants. Protection 
mechanisms can use, for example, double encryption via brokers [94], peer-to- 
peer (P2P) anonymization networks [95], utilization of disposable network 
 identifiers such as pseudonyms [96], the use of anonymization networks [97], 
group-based signatures [98], or data aggregation [99].

 2. Hiding of contextual facts: Associate aspects considered private by participants 
include inferring contexts such as places, activities, behaviors, and/or health 
state based on the collected data. Protection mechanisms include, for example, 
k-anonymity, l-diversity, t-closeness, or their combination [100–103]. Different 
approach represents the attribute-centric scheme introduced by Abrar et  al. 
[104]. Another privacy approach for measuring air pollution was proposed by 
Markert et al. [105]. They proposed to combine Private Proximity Testing and an 
anonymizing MIX network with cross-sensor calibration based on sensor 
rendezvous.

A new approach to privacy protection, which gives decisive power to participants, 
was introduced by Pournaras et  al. [106]. They proposed a self-regulatory 
information- sharing model with the supply–demand system supported by computa-
tional markets. Citizens make incentivized but self-determined choices about the 
level of information they are sharing. That results in an equilibrium between privacy 
preservation and accurate analytics.

Data search is primarily independent functionality for users (participants or not) 
and data collectors. Nevertheless, it can be part of the data gathering function unless 
it is desired to duplicate the data.

Sufficient data quality is a necessary requirement on data gathered by PCS in 
order to use this data for aggregation, display, analysis, and decision-making. 
However, as most campaigns do not pay participants for the data, their motivation 
to improve data quality is not high, especially if it takes additional effort (time, 
walking, equipment, etc.). Some participants may send wrong data nonintentionally 
(malfunction of a sensor, wrong position, mistakes made by insufficient knowledge 
of software and hardware, etc.). In contrast, others can sabotage the sensing process 
by sending false, corrupted, or fabricated data. Therefore, data verification mecha-
nisms must be employed either at the side of the participant, data collector, or both.

One group of verification mechanisms is implemented as a trusted platform mod-
ule (TPM), which is a hardware chip responsible for authorized access to sensors 
and data upload that resides on the participant’s device [107, 108]. However, 
although TPM secures participant authentication and data integrity by encryption, it 
cannot ensure that appropriate data collection procedures are followed. Moreover, 
the price of TPMs, which are currently not manufactured for the mainstream mar-
ket, is relatively high.
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Another way to enhance data quality at the participant level is to provide thor-
ough training, prepare introductory materials, and incorporate help and additional 
reminder mechanisms into sensing software (e.g., the question “Are you sure your 
microphone points to the sound source of the sensor device?”).

Reputation is another concept helping to provide accurate data. Reputation- 
based trust assessment methods are applied to the participants, who can influence 
their level by their contributions. Trust systems can be designed as centralized, col-
laborative, or hybrid [108]. Centralized trust systems use trust servers that receive 
all contributions and feedbacks, calculate and maintain the score, and distribute it to 
all participants. Collaborative trust systems treat all nodes as a source and sink 
simultaneously, thus using their computation power and storage capacity to calcu-
late and maintain the reputation score. The hybrid approach combines both types.

The last type of data verification is focused on the side of data collectors. In repu-
tation systems, collectors can assign a higher weight to data collected by more repu-
table participants. However, in equal contributions, collectors need some other 
mechanisms to verify the data and select only accurate ones. One possible way is to 
let more participants gather the same data and then compare the data quality. In 
reporting systems, this way can be very successful as more people can point out the 
same problem, thus assuring data collectors about the problem’s urgency. Finally, 
the most demanding but sometimes necessary way of data verification is a manual 
data check.

Data collectors are also responsible for data administration and maintenance. 
All the invalid data must be removed, and the status of the data must be updated 
according to changes. This activity can be demonstrated on urban reporting PCS 
systems. When citizens report some issue, then the status of the report is submitted. 
After verification, the status is changed either on rejected, in process, or transmitted. 
When the process of repair is done, then the status changes to finished. By publish-
ing the report’s status, the local government can inform its citizens about its actions. 
In return, citizens strengthen their confidence in the local government if they see 
their needs are met.

The last important feature of PCS systems is the possibility to prepare an analy-
sis of gathered data. Either this option is valid only for data collectors who then 
distribute the results or the system is prepared for simple analytics even on the 
user’s side (selecting data defined by date, location, topic, status, etc.).

3  Citizen Reporting of Issues on Public 
Infrastructure (CRIsPI)

This chapter introduces a case study evaluating urban reporting systems used at the 
municipal level in the Czech Republic. Cities often try to introduce smart initiatives 
that link together citizen participation and the efforts to improve the quality of life 
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in the city. Citizen Reporting of Issues on Public Infrastructure (CRIsPI) is such an 
initiative focused on reporting of non-emergency incidents.

A study held in 2018 proved that 22.8% of municipalities with 1000 inhabitants 
and more use one or more types of urban PCS [109]. All municipalities above 
50,000 inhabitants provide at least one PCS tool, whereas small cities use mostly 
none. Particular interest in this study was given to regional capitals, which evaluated 
the accessibility of citizen reporting systems in 13 Czech regional capitals.

The evaluation process covered finding city web pages and searching for infor-
mation on how to report a non-emergency incident. If the search was done within 
1 min, the searchability was evaluated as high; if the time necessary was higher but 
still under 5  min, then the searchability was medium. Longer time means low 
searchability. Possible non-emergencies covered: damaged benches, mess, broken 
pavement, uncut grass, landfills, potholes, broken lights, or abandoned vehicles. 
The coverage of topics was divided into three categories: HIGH (>5 topics), 
MEDIUM (3–5 topics), and LOW (<3 topics). Another criterion was the presence 
of visual geolocation (YES/NO) and the form of display of sent reports (MAP/
LIST/NO).

As the data from 2018 can be obsolete now, the study was replicated with the 
same procedure in May 2021 to see what changed for 3 years (see Table 2). It must 
be considered that the global situation with COVID-19 does not favor investment in 
technologies that do not solve acute problems. So little if any progress in the adop-
tion of this type of technology is expected.

Table 2 Evaluation of CRIsPI tools used at regional capitals

Category 
2021

Coverage of 
topics

Visual 
geolocation

Display of 
sent reports

Search- 
ability

Category 
2020

Plzeň 
(Pilsen)

A HIGH YES MAP HIGH A

Brno A HIGH YES MAP HIGH B
Olomouc A HIGH YES MAP HIGH C
Liberec A HIGH YES MAP HIGH A
Pardubice A HIGH YES MAP HIGH B
České 
Budějovice

A HIGH YES MAP HIGH A

Ostrava B HIGH YES LIST HIGH B
Praha 
(Prague)

B HIGH YES NO HIGH B

Jihlava B HIGH YES NO HIGH B
Karlovy Vary C HIGH NO LIST HIGH C
Zlín C HIGH NO NO HIGH C
Hradec 
Králové

C LOW NO NO HIGH C

Ústí Nad 
Labem

C – – – – C
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3.1  Category A: Reporting Systems with Full Functionality

This section cover six cities (Plzeň, Brno, Olomouc, Liberec, Pardubice, and České 
Budějovice) with reporting systems that offer all necessary functions in high quality:

 1. Coverage of topics is high (at least six out of eight types of issues are covered).
 2. Reporting systems use GPS or visual geolocation (location of the issue can be 

selected by clicking on the map).
 3. Display of sent reports on a map.
 4. Searchability of reporting system is high (easy to find by Google search or there 

is a link at municipal pages).

Three regional capitals (Plzeň, Brno, and Olomouc) use their own mobile appli-
cation and desktop webGIS solution to show the location of incidents and their 
status or report a new one. While Plzeň scored the highest in 2018, so they did not 
change anything, Brno and Olomouc did not get such a high score. In the last evalu-
ation, Brno had lower coverage of issues (roads, streetlights, and suburban forests), 
which improved. Now it is possible to report all emergencies, display them on the 
map, and use the search function through location, type, or status. Olomouc in 2018 
used only electronic form without the possibility of geolocation of reported issues 
and did not display sent reports. All cities now use dedicated custom-made solu-
tions, which they administer themselves.

One city in this group uses a third-party solution (Marushka® map application 
server) that is not dedicated to citizen reporting. Instead, it is a map server based on 
GeoStore® component technology with the possibility of cartographic presentation 
of data. The city of Liberec use this solution for the evidence of municipal property, 
and one of its functionality is the display of incidents in the map and the possibility 
to report new one. The description of the issue is displayed after clicking on the 
object in the map. However, it is impossible to filter issues according to issue type, 
as it is possible in Plzeň, Brno, and Olomouc. The solution supplier is Geovap, but 
the administration of the geoportal is up to the city of Liberec. The solution did not 
change between 2018 and 2021.

Two cities use DejTip, a mobile application operated by a third party, related to 
a broader area than the city, and specialized in reporting. Pardubice, České 
Budějovice, and some Prague districts use this mobile application, allowing users to 
take a picture, select one of the categories, and add a comment. The server then 
locates a tip to the appropriate municipality based on the position of the GPS phone, 
completes the report of the nearest address, and passes it to the appropriate munici-
pality. The municipality participating in the program receives an email twice per 
day, or it can have an admin interface for sorting messages. DejTip web pages show 
the map with the content of reports and their status. The solution is the same as 
in 2018.
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3.2  Category B: Reporting Systems Violating One Condition 
to Full Functionality

Three cities (Ostrava, Prague, and Jihlava) do not display reported issues in a map, 
but they comply with all other functional requirements. For example, the city of 
Ostrava displays reports in the form of a list, whereas Prague and Jihlava do not 
display reports at all. Ostrava, Prague, and Jihlava cities have the same reporting 
system as in 2018.

3.3  Category C: Reporting Systems with More 
Functionality Issues

In this category fall four cities (Karlovy Vary, Zlín, Hradec Králové, and Ústí nad 
Labem) violating more than one functional requirement. The best in this category is 
the city Karlovy Vary. The problems are that it does not offer geolocation for report-
ing new issues and displays reported issues only in the form of a list. The city of Zlín 
uses the electronic form without geolocation and does not display reported issues. 
City Hradec Králové uses a similar electronic form with the same problems. In addi-
tion, this city has a reporting system only for problems with streetlights. The worst 
score has city Ústí nad Labem, which does not offer its citizens any tool to report 
non-emergency issues.

4  Conclusion

Participatory citizen sensing is a young and dynamic discipline bringing new pos-
sibilities as well as challenges that need to be solved. Internet of things for smart 
environments is mostly studied from the point of view of technical challenges and 
developments. This chapter also dealt with technical issues, but it applied a more 
holistic view of this phenomena. This approach is rather rare, which confirmed the 
literature review presented in this chapter. No publication in this review brought a 
comprehensive study of PCS tools and combined different views on this topic.

This chapter showed the main direction of development, the domains in which 
PCS is used and the possibilities of motivating citizens. All presented information is 
up to date in 2021, but we can expect rapid development in future. The direction of 
future research will depend on the overall global situation. If the COVID-19 pan-
demic continues, then we can expect a development toward better tracing and over-
all healthcare PCSs. If the situation improves, the trend toward citizen science 
should continue.
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Design Strategy of Multimodal Perception 
System for Smart Environment

Jie Liu, Dan Luo , Xinyi Fu, Qi Lu, and Karen Yixin Kang

1  Introduction

With the rapid development of artificial intelligence (AI), Internet of Things (IoT), 
big data, 5G, and other technologies, the information society we live in is gradually 
evolving into a smart society, and our living space is also starting to transform 
towards the direction of intelligent empowerment. Since the global outbreak of the 
COVID-19 pandemic in 2020, people have been forced to endure self-isolation at 
home for extensive periods and thus, have become increasingly aware of the need to 
improve the quality of life, as well as the intelligence level of their living spaces.

As an important branch of the applications of intelligent technologies, Smart 
Environments can not only create sustainable building spaces by enhancing energy 
efficiency but also facilitate the inhabitants’ daily lives by positively impacting their 
emotional states [1–3], acting as a healthy environment conducive to their well- 
being. In our previous studies, we investigated the essential elements that create a 
building space in a smart environment. Drawing on the characteristics of smart 
products proposed by Wolfgang Maass [4], we have constructed a framework out-
lining three basic capabilities of a smart environment [5] as follows: first, 
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context- awareness, that is, the ability of the smart environment to perceive and 
understand the surroundings and the states of the users; second, behavioural adapta-
tion, that is, the ability to optimise the building space according to the users’ needs 
and the external environment; and third, social connection, that is, the ability to 
promote the exchange of information and interconnection between smart environ-
ments and smart devices. Among these three capabilities, context-awareness is the 
basis for developing smart environments because it determines the intelligence level 
of the environment and the potential for upgrading.

2  Related Works

Building context-aware smart objects has been extensively studied in academia. 
Installing sensors on smart objects is the most frequently used method to enhance 
their information-acquisition ability [6–8]. The choice of sensors varies depending 
on the function of the smart object [9, 10]. For example, Georgios Galatas suggests 
the use of multiple RFID tags and Kinect cameras in the living space to facilitate the 
understanding of users’ behaviours by the environment itself [11]; Pratool Bharti 
et al. added gyroscopes and Bluetooth sensors detecting acceleration, temperature, 
humidity, and air pressure to smart bands, so they can analyse the users’ positions 
and behaviours in space [12]; Houssem Eddine Degha et al. managed to empower 
the built environments with context-awareness by monitoring the energy usage in 
different rooms with sensors [13].

Many scholars have also attempted to improve the context-awareness corre-
sponding to a particular function segment of the space by investigating the charac-
teristics of space users [14, 15]. António Teixeira et al., for instance, set up multiple 
means of perception, such as voice and gesture recognition to better serve the elder-
ly’s needs [16]. D.  Kavitha et  al. propose an IoT and situational awareness 
technology- based approach for monitoring health and wellness information for 
patient populations [17]. Quanfeng Luo targets the students in educational spaces, 
proposing the use of several information acquisition methods, including keyboard, 
mouse, pen, and voice, to better understand the specific types of students’ behav-
iours [18]. Li-Shing Huang et al. also focus on how to build a context-aware intel-
ligent system architecture for classrooms with a smart classroom prototype, a 
technology integration model, and supporting measures for smart classroom opera-
tion [19]. M. Swarnamugi analyses the most suitable service model for the system 
in the IoT environment and how to provide more efficient services through context- 
aware technologies for the intelligent transportation space [20].

Moreover, some scholars have proposed theoretical frameworks to enhance the 
context-awareness of smart environments in a complex system of scenarios [21–
23]. Nuno Almeida argues that the perceptual system of an architectural space 
should consider the information collected by various devices in addition to sensors 
situated in the space [24]. Banos et  al. suggest a method of deriving high-level 
context-awareness from a sensory dataset comprising recognitions of low-level 
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contexts (i.e. simple activities, emotions, and locations) as it allows the perceptual 
system to identify and analyse an individual’s emotional state at a given time in 
space [25]. Gallardo et al. propose to model the time, location, and behaviour during 
human–computer interaction to infer users’ future behaviour and possible prefer-
ences [26]. Lin Zhao et al. argue that a smart home with situational awareness can 
be built by constructing a sensing system with five levels: temperature sense, gas 
sense, infrared sense, light sense, and security sense [27].

Although existing studies have proposed methods for enhancing the context- 
awareness of smart environments, there is still limited research about systematic 
classification of different types of context-awareness and systematic strategies for 
establishing such awareness in a given space from a design perspective.

3  The Context-Awareness System in Architecture Space

Considering that context-awareness aims to enable the built environments to achieve 
an ability equivalent to that of humans to perceive and process information of the 
surrounding environment, the construction of such awareness for smart environ-
ments may be approached with reference to the formation principle of similar 
awareness in humans. From the perspective of cognitive psychology, the perception 
of our surroundings depends on a set of processes in the perceptual system by which 
we recognise, organise, and make sense of the sensations we receive from environ-
mental stimuli [28]. Developing context-awareness is a three-stage process: starting 
with the lower-level sensory data, the information, which may be in a disorganised 
state, is mapped from the external object to the subject through the sensory organ; 
next, on the cognitive level, the raw information from the previous stage is relayed 
to the brain, then, filtered, analysed, and processed to form new, organised informa-
tion; finally, compared with past cognitive experiences, the perception becomes rec-
ognisable, comprehensible signals or images to the subject, thereby, influencing the 
individual subject’s possible actions or behaviours.

Concurrently, constructing context-awareness in smart environments also 
requires a similar two-level process: the first level, that is, the sensory level, is built 
by adding sensing elements (i.e. electronic sensors), which act as sensory organs 
and form perceptual channels to the building space, thus, accomplishing the process 
of mapping information from external stimuli to the interior environment. The sec-
ond level, that is, the cognitive level, is achieved by adding a central processor, 
which functions as the brain of the smart environment to further filter, analyse, and 
process the raw information collected through the sensory organs. It, thus, tran-
scribes the received contextual information into meaningful signals comprehensible 
to the smart environment to further build the possibility for the behaviour of the 
building.

Therefore, this chapter will discuss the methods of constructing the context- 
awareness system in an architectural space from sensory and cognitive perspectives. 
First, it will explore how a smart environment can develop sensory organs and 
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perceptual channels on a sensory level. Then, it will examine the possible factors 
that influence the effectiveness and efficiency of the brain of the environment to 
process the information collected by the perceptual system and their solutions, 
thereby establishing a framework and corresponding design strategies for the per-
ceptual system of the smart environment.

4  Perceptual Systems in Smart Environments

The establishment of smart environments is the process of equipping the building 
space with sensory organs, that is, receptors of sensory information. Various sensory 
organs are the basis for capturing information; for example, vision requires the eyes 
to collect lights emitted by the surroundings, while hearing requires the presence of 
the ears to receive sound waves. By analysing and synthesising the sensory informa-
tion captured by each sensory receptor, the brain generates a comprehensive cogni-
tion and builds a holistic image of the external space. Likewise, the perceptual 
system of architectural space also involves different sensory organs, which are, in 
this case, various embedded sensors, to gather information from surroundings and 
form an understanding of the external environment with the aid of the brain of the 
environment. According to the five basic sensory systems of humans, the perceptual 
system of smart environments can also be divided into five categories: visual, audi-
tory, haptic (partially mimicking the somatosensory system that includes proprio-
ception and haptic perception), olfactory, and gustatory. Nonetheless, as the 
olfactory and gustatory senses both reflect the sensation of odours and flavours, the 
study tentatively integrates the olfactory and gustatory systems into the odour sys-
tem when building the sensors.

4.1  The Visual System

Vision is the perception of objects in the environment through the light they emit or 
reflect [29]. The visual system includes the eyes, the connecting pathways through 
to the visual cortex, and other parts of the brain. The eyes are used to detect the 
variables of contour, texture, spectral composition, and transformation in light. In 
humans, vision is based on the information extracted from visible electromagnetic 
waves in the external environment by the eyes and the processing of visual informa-
tion by the brain. In this sense, visual processing may be richer in other organisms 
capable of capturing ultraviolet and infrared radiation. In architecture, the visual 
system can capture various types of electromagnetic wave information in the sur-
roundings via different optical sensors, such as light intensity sensors, gesture sen-
sors, cameras, and so on, and analyse the information recorded by the sensors to 
finally form valid visual perception using implanted algorithms.
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The visual system produces the most amount of information, which is most eas-
ily captured from people’s daily lives. The visual system of the built environment 
can be divided into three parts according to the complexity of the visual information 
and the difficulty of the brain’s cognitive functioning: the perception of static, three-
dimensional information regarding the environment (e.g. intuitive image informa-
tion such as lighting, colour, depth), the perception of the dynamic information 
relative to the temporal dimension of the environment (e.g. movement and deforma-
tion), and the perception of symbolic information about the environment (e.g. iden-
tifying the categories of objects in the environment, human emotions, and other 
information related to previous experiences) [30].

 Perception of Static Information

The acquisition of physical information about static objects or surroundings in the 
third dimension is the basis of the visual system. Although the dimensionality of 
this type of information is relatively homogeneous, the analysis of even the simplest 
kind of optical stimuli may help the architecture form a perception of the built envi-
ronment—we can still sense the light intensity with our eyes closed and form a 
perception of our surroundings, although this information is entirely transmitted by 
the optic nerve. For a given architecture, a single light sensor would suffice to detect 
the light intensity of the environment and thus help determine whether the building 
space is being used, whether the real-time lighting environment meets the users’ 
needs, whether adverse effects such as glare are produced, and so on. When groups 
of light sensors are installed, the building has a visual ability comparable to an 
insect with compound eyes. Just as a cell phone screen forms image information 
through pixel arrangement, the aggregated information from groups of light sensors 
can help the building acquire visual information similar to greyscale images, which 
can help the building to determine the shape, boundary, distance, and even type of 
objects in the environment.

In fact, human vision is based on the uptake of visible light, but the latter is only 
a small part of the natural spectrum. In addition to the vision created by visible light, 
the visual system of buildings also processes infrared or ultraviolet light, which is 
not visible to the human eye. In the design of the architectural space installation 
Ca-Fi Robot, infrared sensors were used as the visual channel of the installation 
(Fig. 1).

The installation is equipped with three main types of vision sensors: infrared 
pyroelectric sensors, infrared distance sensors, and infrared obstacle avoidance 
modules. The visual system of the installation is created by integrating the informa-
tion captured by the three types of sensors, each with its distinctive responsibilities. 
Infrared pyroelectric sensors collect the infrared light of a fixed range of wave-
lengths in the environment, which is an indirect measure of temperature based on 
the principle that people emit infrared rays due to their body temperature. They are 
widely used in environmental detection, where people are present. Infrared range 
sensors emit a fixed wavelength of infrared light into space and calculate the time it 

Design Strategy of Multimodal Perception System for Smart Environment



98

Fig. 1 The Ca-Fi Robot installation

takes for the infrared light to bounce back to the sensor to analyse its proximity to 
various objects in space. The infrared obstacle avoidance module works similarly to 
the infrared distance sensor in that it also emits a fixed wavelength of infrared light 
into the environment to detect the presence or absence of objects in the environ-
ment. The difference is that the infrared obstacle avoidance module intelligently 
detects the presence of objects within a very small range but cannot determine the 
distance of the object; the infrared distance sensors can determine the distance, 
although they are slightly slower, but cannot identify whether the object is a person; 
the infrared pyroelectric sensors can determine whether someone is present but not 
the location of or the relative distance to the person. Therefore, the three must coop-
erate to determine whether there is someone in the space, the distance of the person 
from the installation, and the location of the person through the multi- angle arrange-
ment of the infrared obstacle avoidance module.

 Perception of Dynamic Information

The perception of dynamic changes in the temporal dimension of the environment 
is a way of perceiving movements based on changes in the position or shape of 
objects at different points in time in the environment. Perceiving movement in the 
ambient time dimension allows the built environment to pay more attention to the 
objects in motion in space and be prepared to respond to these objects. The percep-
tion of movement in the ambient time dimension requires the visual system to func-
tion over a continuous period. For example, the state of the environment can be 
visually captured between fixed intervals of time by installing cameras in the build-
ing, and these images at different points in time can be compared to locate the 
changes for analysing which direction the objects in the space are moving towards 
and what motion they are performing. For example, an installation named Keywin 
(Fig. 2), which takes on the prototype form of a window, employs an eye-tracking 
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Fig. 2 The Keywin installation

sensor as the visual channel that continuously records the relative position of the 
user’s pupils to determine the direction of their gaze and compares the pupils’ posi-
tions at different points in time to map the trend of eye movement. The installation 
receives information about the direction of the user’s gaze through the eye-tracking 
sensor and responds to this information at a specific position on the window. When 
a person gazes at a point on the window, the ice cracks in this area of the window 
are rotated and reconfigured into a combination of rectangles, thus, allowing the 
user to see without being blocked by the window ribs and feel as if the window ribs 
are the view frame of the landscape outside. In this sense, the Keywin window acts 
not only as a tool responsible for transmitting the landscape but also as a part of the 
interpretation of the landscape.

 Perception of Symbolic Information

Symbolic information refers to the form of abstract information that requires peo-
ple’s experience to be extracted into a concrete expression of meaning based on 
visual information. In the case of visual-based symbolic information, which may be 
a person’s age, level of appearance, emotional state, and so on, to process such 
information, it is necessary to first discover the patterns in a given characteristic by 
studying a sufficiently large sample of images. Using human age detection as an 
example, the computer first analyses images of faces marked with different ages and 
finds the general patterns in the pictures based on the arrangement of features such 
as colour values and greyscale values for each pixel in the image; it, then, learns a 
method to determine the age of a portrait picture and deduces the age of the person 
in an unseen picture by applying this method. Nowadays, thanks to the popularisa-
tion of image recognition services, the work of extracting and perceiving symbolic 
information about the environment can be directly subcontracted to the cloud server, 
and the API can be recalled to help designers implement the corresponding func-
tions quickly, easily, and concisely. The interactive installation Flipped Space 
chooses to use the camera as a sensor to capture real-time image information of the 
site and uploads this information to the cloud (Fig. 3). Using the cloud image recog-
nition server, it processes symbolic information and generates a perception with 
help from facial recognition and emotion recognition technologies, thus, providing 
its users with a personalised spatial experience. For example, when a person appears 
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Fig. 3 Sensory and interactive system for Flipped Space

in the space, the installation uses facial recognition to determine whether the person 
has appeared in the space before; if so, it retrieves the user’s basic information from 
the database, such as name and preferences. Then, based on this existing informa-
tion, the user is provided with personalised chat content to help them feel con-
nected. Simultaneously, the user is provided with an ambient light colour design 
that influences their mood positively according to their mood changes and the the-
ory of colour psychology. In addition, the installation can also analyse whether the 
user has made meaningful gestures through the cloud server. When the user 
expresses affection for a heart gesture, the installation will respond by displaying a 
heart-shaped pattern on the wall.

4.2  The Auditory System

Hearing is a response to vibrating air molecules [29]. It is formed when the cochlea 
stimulates the auditory cells after receiving vibrations from the air. Depending on 
the frequency, intensity, and medium of the vibrations, the sound waves will have 
different characteristics, leading to different tones and even languages. The estab-
lishment of an auditory system in smart environments can be divided into two types: 
the perception of the physical realities of sound and the interpretation of linguistic 
encoding [30].

 Perception of the Physical Realities of Sound

Owing to variations in frequency and intensity, sound itself encompasses a lot of 
information, such as pitch, loudness, and rhythm. This information can be further 
extracted and used as an element to activate interactive behaviours. In the design of 
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Fig. 4 The Klyntar955 installation

the interactive installation Klyntar955, sound is used as the main design element to 
facilitate the initiation and continuation of interactive behaviours (Fig. 4). The goal 
of the design is to create an ambience for the singer to perform. This installation can 
automatically analyse the mood of the songs played by the singer so that the built 
space can automatically resonate with the rhythm and melody of the song, thus 
facilitating the singer’s performance. The audio sensor module acts as an auditory 
channel for installation. The installation collects music information through small 
microphones placed on both the left and right sides, as well as analyses the music at 
seven different frequencies with a frequency divider. The rhythmic state, beat, and 
pitch of the music are inferred through analysing the arrangement and combination 
of the sound intensity at each audio stage. The installation, then, matches these 
rhythms with movements of the air muscle components in the installation; for 
example, with heavy bass, the air muscle appears to bend significantly, and with 
high pitch, the air muscle vibrates in small increments. Thus, the installation space 
exhibits a sense of rhythm that reacts to music.

 Interpretation of Linguistic Information

Human language encodes abstract information that must be interpreted through 
acquisition. Languages enable people to communicate information directly and effi-
ciently. They are formed based on the fact that each word is pronounced with differ-
ent vocal-cord vibrations, resulting in different sound sequences, which can, then, 
be interpreted by humans in the form of linguistic information [31–33]. Therefore, 
by running the recurrent neural network (RNN), Long Short-Term Memory (LSTM), 
Gated Recurrent Unit (GRU), and other algorithms [34, 35], the built environment 
is programmed to identify the words represented by each sound wave to interpret 
the encoded linguistic information. The application of natural language processing 
technology in intelligent buildings and the interpretation of linguistic information 
can help the built space accurately understand the users’ needs and intentions, as 
well as proactively offer them personalised solutions and services.

The interactive installation Flipped Space is also designed to have embedded 
language recognition systems. The installation is equipped with a microphone 
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acting as a perceptual channel for linguistic information, and the information 
encoded in the user’s speech is interpreted by a cloud server, which analyses the 
captured sound data when there is a sudden increase in loudness. The linguistic 
encoding is relayed to the language database of both the local central processor and 
the cloud in order to find the best matching response, and the feedback is conveyed 
to the user through speakers and other components of the installation to meet their 
demands. For example, when the installation picks up the anger or annoyance of the 
person in the space, it adjusts the lighting to blue to calm the user down, and when 
it detects emotions of joy and happiness, it adjusts the lighting to pink to prolong the 
positive emotions. When the installation perceives the space to be in a lively, 
dynamic state, it adjusts the lighting to a colour pattern changing at a certain fre-
quency to mirror the personal sentiments into a shared space (Fig. 5).

4.3  The Haptic System

When cells in the skin or muscle tissue of a living creature are squeezed and 
deformed, a tactile sensation results from the deformation. Given that the sense of 
touching is found in every cell and is the largest sensory channel of the human 
body—the skin—it is the most direct perception of contact with external objects 
[36]. As touching is the most extensive and reliable form of perception, people’s 
judgements about external objects or environments tend to be based on haptic per-
ceptions [37]. Many visual perceptions, such as the perception of roughness and the 
perception of shape and size, are based on the sense of touch [38, 39]. The building 
space can establish its direct haptic system by physically sensing the pressure, 
capacitance, resistance, and so on, as well as its indirect haptic system that detects 
intangible factors such as temperature, humidity, air pressure, and electromagne-
tism [30].

Fig. 5 Flipped Space adjusts the lighting to a colour pattern changing at a certain frequency to 
mirror the personal sentiments into a shared space
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 Direct Haptic System

A direct haptic system refers to the process of direct physical contact between a 
person and the environment. The building space determines the meaning expressed 
by the touch by calculating the magnitude of multiple forces by analysing the physi-
cal deformation of the sensing elements. Broadly speaking, traditional buildings 
contain many haptic receptors, such as light switches and the use of remote controls. 
For smart environments, such haptic systems can also be pressure sensors placed on 
the surface of the building space, and the number of people in the space and the 
characteristics of their behaviour can be analysed by modelling the pressure value 
felt on the surface.

One may consider the interactive installation Leaf–Wrap–Weave as an example 
(Fig. 6). The concept of the installation is to provide a shaded area with privacy for 
users in urban spaces to relax. The installation creates a haptic system by placing 
pressure sensors on the seat. When someone sits on the installation, the sensors 
detect an instantaneous rise in pressure and activate the bending of the top branch of 
the installation to create a semi-enclosed private space. The installation may also 
adjust the amplitude of the bending of the branch and leaf elements according to the 
pressure exerted, changing the scale of the semi-enclosed space to adapt to different 
user characteristics.

 Indirect Haptic System

Indirect haptic systems monitor intangible information about the user and environ-
ment in the architectural space. In people’s daily lives, we observe the phenomenon 
that we can perceive the existing physical properties of an object despite the lack of 
direct contact with the skin. We can sense the heat and humidity of the flames and 
fountains, even without touching them. Most of this indirect contact depends on air, 
which is the so-called medium of information transmission. The type and physical 
attributes of an object can be identified by sensing airflow conditions. Smart envi-
ronments rely on indirect haptic systems for activating interactive behaviours, such 
as the perception of the strength of the wind, the temperature level, and the strength 
of the magnetic field.

Fig. 6 The Leaf–Wrap–Weave installation
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Fig. 7 The Interactive Pavilion

In the design process of the Interactive Pavilion, the building operates on an 
indirect haptic system consisting of temperature, humidity, and wind sensors 
(Fig. 7). The cabin can control its form and turn on different sensing devices accord-
ing to the changes in the external environment perceived by the indirect haptic sys-
tem. When the outdoor temperature is between 16 and 29 °C, the three walls of the 
cabin will open at different angles to enable natural ventilation and view of the 
outdoor scenery; when the outdoor temperature is below 16 °C, the walls will auto-
matically close and activate the coiled floor heating system for heating; when the 
outdoor temperature is above 29 °C, the walls will close and activate the air condi-
tioning system for cooling; when it is windy or rainy, the building will also remain 
closed to prevent weather erosion. The cabin is designed with an indirect haptic 
perceptual system to ensure that it meets the functional needs of the inhabitants and 
achieves dynamic energy conservation.

4.4  The Odour System

Both smell and taste are produced from the reaction of proteins in the human body 
with one or more chemical elements in the external environment, which stimulates 
the nerve centres of the brain and constitutes a specific impression of this element. 
Different combinations of chemical reactions within human body fluids allow peo-
ple to determine the flavour of an object or substance [40, 41]. For humans, the 
perception of smell and taste is accomplished through different perceptual channels, 
as smell is based on nasal cells and taste on oral cells. However, for architecture, 
both smell and taste can be seen as products of chemical interactions and can be 
unified into an odour system for smart environments.
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The establishment of an odour perceptual system in a smart environment can 
help the built space quickly identify invisible safety hazards in the environment, 
such as gas leakage and food spoilage. It can also infer the behaviour of inhabitants 
and the contextual state of the space based on the distribution of odours in the smart 
environment. In addition, the smart environment can actively record the odour dis-
tribution status in the space, form an odour log, and reproduce and modify the odour 
in space to create an atmosphere for a particular scene in the future. In the design of 
the olfactory sensing device OBean M1, a set of 20 different odour sensor arrays—
each having a strong electrical signal response to different odour molecules—are 
used to construct special chemical patterns for different substances (Fig. 8). Through 
the acquisition of the 20 different electrical signals, the temperature, and humidity 
information of the test environment, the OBean M1 can detect and notify odours 
such as food, toiletries, garbage, and gas in the environment. The electronic nose 
can upload the collected odour composition data to the server, and by comparing it 
with the odour big data from the cloud server, it can precisely determine the specific 
category of this odour. For example, it can analyse the specific variety of apples, as 
well as locate and categorise the users who also have such odour, and form the user 
classification dataset of the odour dimension, which is convenient for building 
odour sharing and odour searching functions in future living.

The establishment of an odour system for smart environments can also be 
extended to the perception of people: the human body secretes a substance called 
pheromone, which is composed of chemical molecules similar to proteins. Similar 
to the way a dog can form a perception of a person through the sense of smell, a built 
space can also form a perception and understanding of its users through analysing 
pheromones. Analysing the composition ratio of different types of pheromones, it is 
possible to form a cognition of the physiological condition and emotional state of 
the human body, thus, helping the smart environment to form an intelligent building 
space with a healing colour that is oriented towards improving the user’s physiolog-
ical condition.

Fig. 8 A set of 20 different odour sensor arrays used to construct special chemical patterns for 
different substances
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5  Smart Environment Cognitive System Construction

In the process of constructing the context-awareness capability of the smart envi-
ronment, the information collected from various sensory channels needs to be anal-
ysed and processed to turn into valuable and meaningful signals and complete the 
cognition and understanding of human behaviour in the smart environment. In this 
process, the context-awareness capability of the smart environment needs to focus 
on the following two aspects of the cognitive system construction. First, the cogni-
tive system needs to reduce the information noise of each perception channel to 
enhance the information’s effectiveness. In this process, in addition to the quality of 
the hardware of the sensors themselves, the location of the sensors of each percep-
tion channel in the building space is also an important factor affecting the informa-
tion’s effectiveness, which is also more closely related to the architectural design. 
Second, the cognitive system needs to deeply explore the potential mapping rela-
tionships between different dimensions of information to enhance the accuracy of 
behavioural decisions. In this process, in addition to selecting the appropriate 
machine learning algorithm for each sensory channel information, it is also impor-
tant to integrate and process the multimodal information of different perception 
channels to increase the robustness of the system. Therefore, the following section 
will focus on the design strategies for optimising the distribution of various percep-
tion systems in the environment and for the information processing of cognitive 
systems.

5.1  Design Strategies for Optimizing the Distribution 
of Various Perception Systems

When optimising the distribution position of each sensory organ in the smart envi-
ronment, the mechanisms of information formation and noise generation of each 
organ need to be considered. In this process, we can borrow the distribution of 
human organs to generate a strategy for optimising the distribution of perceptual 
systems in a smart environment. To better represent the relationship between human 
sensory organs and human perception of the environment, the brain science field has 
developed the ‘Sensory Homunculus’, an abstract image of a human being formed 
to express the proportional relationship between human senses and the areas of the 
cerebral cortex in charge of the senses [42]. The ‘Sensory Homunculus’ shows that 
vision and hearing are located in the brain at a point scale, while touch, smell, and 
taste are located at a zoned scale, corresponding to the physiological structure of our 
body organs.

Vision, which is based on light, receives information from a small sensory point, 
but, as it is located near the highest position of the head, it can acquire a wide range 
of information, even from the farthest distance in all kinds of human perceptual 
systems. However, vision is isolated and directional, and we cannot see objects 
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behind one thing or other directions while gazing in one direction. Therefore, the 
distribution of the visual system for intelligent space requires a multi-point layout, 
depending on the type of information collected about the target. The visual sensors 
for environmental data should be placed as high as possible so that the global envi-
ronment can be seen, and the visual sensors for face-to-face interaction with the user 
should be placed at a position even with the human line of sight to ensure that the 
user’s micro-expressions and postures can be clearly observed. Simultaneously, 
when arranging the visual sensors, it is important to place them in a place free of 
glare and reflection to prevent parallax caused by light to increase the accuracy of 
visual information.

Unlike the linear propagation characteristic of light, the propagation of sound 
information is multi-directional. Regardless of where the sound is emitted, it spreads 
in all directions and dives into the ear. To receive sound in a wider and more efficient 
way, our ears are located on both sides of our head, close to parallel to our mouths 
so that we can achieve a maximum sound reception field and prevent sound from 
being absorbed by too many obstacles in the transmission process. Simultaneously, 
people can also distinguish the location of the sound through the difference in the 
intensity of the sound received by the two ears, allowing a more sensitive sense of 
hearing. The smart environment auditory system distribution needs to make the sen-
sor as close as possible to the location of the target sound source; for example, lan-
guage collection sensors should be placed on the desktop or wall closer to the 
location of the human mouth. In addition, the sensors need to consider multi- 
directional multi-point placement, which can, in turn, eliminate environmental 
noise by analysing the situation of the sound received by different sensors and deter-
mining the location of the sound source by comparing the intensity of the sound 
received by different sound receivers.

As the closest and most intimate sense of perception, it requires direct contact 
between our haptic organ (i.e. skin) and a substance to create a perceptual stimulus 
based on temperature and pressure. Haptic sensation requires direct contact with a 
substance; thus, the area of the haptic organ needs to be large because of its limited 
accessibility. Our skin, as the largest organ in our body, guarantees that the entire 
body is covered by the tactile organs. Through this large-area and low-dimensional 
information recognition, we can establish a more authentic sense of scale and dis-
tance. The haptic system of a smart environment is also the most extensive area 
coverage of information in access to space. All physical interfaces in space can be 
designed as haptic sensors. This haptic sensor is not presented as a ‘point’, but as a 
‘surface’, helping the space to know the size, position, strength, hardness, and other 
multidimensional information of the relevant things in the environment.

The senses of olfaction and gustation occupy the second-largest compartment in 
the brain after the sense of touch. Unlike vision, hearing, and touch, which rely on 
physical reactions (either displacement, reflexes, or vibrations) to establish percep-
tion, the odour system is based on molecular-chemical reactions to create percep-
tion. Physical reactions only change the state of the substance, while chemical 
reactions change the content of the substance and create new substances. The senses 
of olfaction and gustation usually require a pure environment, and their sensitivity 
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depends on the difference between the stimulus and the environmental factors; for 
example, if people are exposed to an odour for a long time, their sensitivity to the 
odour will decrease. Therefore, in the smart environment, the arrangement of odour 
sensors should be placed in a location with fewer surrounding odour interference 
sources; simultaneously, the interfering chemical substances should be decomposed 
in time to prevent the problem of induction failure of sensors.

In general, the design of a perceptual system in a smart environment needs to 
optimise the location of perceptual sensors according to the characteristics of vari-
ous perceptions to ensure that the sensors can have a broad and effective range of 
perception. Second, the arrangement of sensors should minimise the interference of 
signals; for example, visual sensors should be arranged in a position with no obstruc-
tion; auditory sensors should be arranged in a position where noise has less influ-
ence; haptic sensors should be arranged on the exposed plane; odour sensors should 
be arranged in a position where odour changes are obvious, and so on. Furthermore, 
the arrangement of the sensing system should meet the ergonomics requirements; 
for example, the microphone for talking with people should be arranged at the 
height of the head and neck as much as possible, and haptic sensors for interacting 
with people should be arranged at the height of their limbs as much as possible.

To address these distribution strategy principles, we conducted an experimental 
project called Future Habitat to optimise the distribution of sensors in different per-
ceptual channels. We selected a two-bedroom apartment and placed four different 
types of perceptual systems in the space (Fig. 9). For the visual system, multiple 
RGB cameras, depth cameras, and infrared cameras were placed on the ceiling of 
the foyer, living room, study, kitchen, and other common areas for collecting infor-
mation to fully understand the properties, shape, location, and movement trajectory 
of various items in the room. Cameras were also placed at eye level at the make-up 
table and the TV stand to capture human expressions. For the auditory system, we 
arranged array microphones on the desktop and walls of each room from multiple 
angles so that the volume and audio changes of each microphone could be analysed 
to precisely locate the sounding objects and analyse the language information. For 
the haptic system, capacitive pressure-sensitive flooring was installed throughout 
the room to collect information about the user’s position, gait, and movement trail 
in the room, while pressure sensors were placed on the sofa to detect the pressure 
distribution of the user’s sitting position proximally to analyse their physiological 
and emotional state. For odour systems, electronic nose sensors were placed in the 
living room, bedroom, kitchen, and bathroom, where the air circulation is fast, to 
detect odours in the space, such as rotten food, abnormal breath, and so on, for 
determining the air quality status and the health condition of the occupants in 
the space.

Among the collected information, the purpose of information cognition shows a 
high degree of overlap. For example, the perception of human emotions can be 
simultaneously evaluated using visual, auditory, and haptic information. The accu-
racy of the information analysis generated by different perceptual channels will 
differ and even contradict each other. At this time, the brain of the smart environ-
ment is needed to intelligently analyse and recognise multimodal information.
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Fig. 9 Placement of four different types of perceptual systems in a two-bedroom apartment

5.2  Design Strategies for Information Processing 
of Cognitive Systems

In addition to optimising the spatial layout of the perceptual system with different 
modalities, the complex data collected by the sensors need to be learned and anal-
ysed for transforming it into meaningful cognitive information about the spatial 
situation. This process requires deep data mining and learning by constructing 
appropriate algorithmic models to achieve accurate analysis and cognition of spe-
cific behaviours or emotional states in a scenario.

 Design Strategies for Unimodal Information Processing

First, for each modality of cognitive data, a suitable algorithmic model needs to be 
selected to analyse and process the data to improve the accuracy of the information 
of each perceptual channel. For different perceptual channels and different cogni-
tive goals, the algorithmic models selected by the system will be vastly different. 
For example, the convolutional neural network (CNN) model is superior for visual 
information interpretation, whereas the RNN model is more accurate for linguistic 
information interpretation. Even the data size for the same type of feature can affect 
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the choice of the data analysis algorithm model. For example, in our experiments on 
electronic nose odour data analysis, we tried both k-nearest neighbour (KNN) and 
artificial neural network (ANN) algorithms to analyse and identify different odours. 
It is found that when the amount of training data is limited, the KNN algorithm with 
simple principles and few parameters is preferred, and when the amount of training 
data is large, the ANN, which is suitable for learning complex data representations, 
is preferred [43].

Simultaneously, the choice of algorithmic models and the selection of features 
vary for different scenarios. For example, a user’s emotional state in a smart envi-
ronment is an important factor affecting spatial usage. The most common and accu-
rate emotion recognition method is camera-based facial expression recognition. 
However, in a large building space environment, people are usually in the move-
ment mode, and the camera is often unable to see the user’s facial expressions 
clearly, which objectively reduces the accuracy of the user’s emotion recognition. 
Therefore, in this scenario, the analysis of a user’s gesture changes to form the cog-
nition of their emotion will significantly improve the effectiveness of spatial emo-
tion cognition. Our previous research has shown that a gesture-emotion computation 
method based on the bidirectional recurrent gated unit fusion neural network 
(BGRU-FUS-NN) can effectively determine eight different emotional states by 
observing human gestures [44]. By using virtual reality (VR) devices to allow users 
to experiment with some scenario tasks, the study redefined 19 human motion key 
points by collecting users’ non-performance action data and converting that data 
into 3D coordinates of the corresponding skeletal points. Based on the existing 
basic features, advanced dynamic features are added to construct an 80-dimensional 
feature list that can describe the limb motion more accurately. Based on the fusion 
neural network model, we propose a BGRU-FUS-NN model by using gated recur-
rent units (GRUs) instead of long short-term memory neural networks (LSTM), 
adding layer-normalisation and layer-dropout, as well as reducing the number of 
stacked layers. By classifying emotions based on the valence and arousal emotion 
models, the cognition and determination of the eight categorised emotional states of 
excitement, happiness, pleasure, sedation, fatigue, sadness, anxiety, and nervous-
ness are effectively formed.

 Design Strategies for Multimodal Data Processing

In most cases, the context-awareness of smart environments is not based on single- 
modal behaviour perception but requires a comprehensive perception of multimodal 
behaviour patterns in a complex scene system. In this process, accurately compre-
hending users’ intentions is a challenge in improving the perception capability of 
smart environments. When constructing an intelligent cognitive system for the 
entire smart environment, it is necessary to face a series of problems, such as signifi-
cant differences in sensor data structures, large data sizes, and conflicting data fea-
tures. In response to this, this study proposes a system of algorithmic model 
frameworks for a multimodal perception system (Fig. 10).
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Fig. 10 Model frameworks for a multimodal perception system

First, there is the problem that the data structure of different sensors varies 
greatly. The types and dimensions of the data returned by different sensors vary 
dramatically, and the information calculation methods of each sensor also differ, 
which lead to the inability of the computer to analyse and process the data returned 
by each sensor according to a unified standard. Therefore, first, the CPU system in 
the environment needs to convert these multi-source heterogeneous data into a uni-
fied data form to facilitate the analysis and processing of further characteristics of 
multimodal data.

Second, owing to a large number of sensors inside the smart environment, the 
amount of data generated is huge, which leads to the formation of massive data sets 
in a short period. These data, if stored in the processors in a flat pattern, will inevi-
tably result in slow data analysis and data recall speed. Therefore, the analysis of the 
data, in this case, needs to be processed in a distributed manner to improve the speed 
of data feature analysis and processing. For example, spatial data processing system 
can adopt ‘Not Only SQL’ (NoSQL) database construction method that supports 
multi-source heterogeneous massive data, Hadoop-based distributed storage sys-
tem, and multi-source heterogeneous massive data storage and computing scheme 
based on HBase/Hive and MapReduce. By combining different databases, we can 
enhance the data processing speed and increase the data invocation methods by tak-
ing advantage of their strengths and weaknesses.

Third, the smart environment needs to construct the contextual features of the 
entire space comprehensively by extracting the data features fed back by each sen-
sor. At this stage, it is necessary to use multimodal machine learning technology to 
fuse, organise, and analyse the information of each sensing system in the space for 
data mining. The multimodal cognitive data for a certain target feature must follow 
the principle of clearly identifying the data priority of the same feature and multidi-
mensional fusion of different data features. The determination of data priority is 
related to situation type and target features. For example, a standard multimodal 
data fusion framework can be as follows: hv is the feature vector of visual data 
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processed by a CNN; ha is the feature vector of auditory data processed by LSTM; 
hh is the feature vector of haptic data processed by a deep neural network (DNN); ho 
is the chemical molecule data of the odour processed by graph neural network 
(GNN) processed feature vectors; the fused features are the Kronecker product of 
multimodal features.

 
h h h h hfusion v a h o= ⊗ ⊗ ⊗

 

Subsequently, hfusion accesses the Fully Connected (FC) layer of the neural net-
work, and the last layer is the scenario-specific user behaviour demand prediction 
layer, whose optimisation function is
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where N is the sample size, W is the model parameter of FC, L(∙) is the loss func-
tion, and y(n) is the label of the nth scene sample. In the process of multimodal 
machine learning, the model needs to be continuously optimised and trained by 
manual labelling and active learning so that the average difference between the 
predicted and true labels of all samples is as small as possible to achieve the goal of 
improving the accuracy of data analysis. This allows the smart environment to form 
an accurate cognition of user behaviour and emotional state for specific scenarios 
and build context-awareness for the smart environment.

6  Conclusion

This chapter discusses the design strategies related to multimodal perception sys-
tems in smart environments from two aspects: the type design of multimodal per-
ception systems for smart environments and the design optimisation strategies for 
enhancing spatial perception systems. Regarding the design of multimodal percep-
tion system types, this chapter proposes building a human-like perception system 
for smart environments, forming a multimodal perception system with vision, audi-
tory, haptic, and olfactory-gustatory senses, as well as illustrates the design methods 
of each type of sensory system in smart spaces with related design cases. In terms 
of design optimisation strategies to enhance spatial cognitive systems, this article 
illustrates the strategic principles from the perspective of optimising the spatial lay-
out of perceptual systems and from the perspective of establishing multimodal data 
processing algorithm models. As an important direction for the future development 
of smart technologies, establishing a multimodal smart perception system will help 
smart environments explore an effective path to enhance the intelligence of archi-
tectural spaces.
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Cyberattack Measures in Smart Cities 
and Grids

Cevat Özarpa, İsa Avci , and Bahadır Furkan Kinaci 

1  Introduction

With the development of information and communication technologies, cybersecu-
rity problems in smart cities and networks are increasing rapidly. For this reason, 
increasing population, construction and mega investments, increasing energy needs 
in cities, and the need for smart grids come to the fore. However, this shows that the 
smart grid concept needs to be invested in and developed. With the frequent use of 
advanced network technologies used in smart cities, cyber risks and security vulner-
abilities have come to the fore. Smart grids cover the areas of use of electricity, 
water, and natural gas networks, which are critical infrastructures of smart cities.

Anonymity and deniability are the facts that cyberattacks present an opportunity. 
It is also very difficult to identify the states and individuals behind these attacks. In 
such an environment, it is not possible to protect systems without mentioning abso-
lute cybersecurity. For this reason, it is aimed to keep cybersecurity risks at a man-
ageable and acceptable level. It is important to protect data in smart systems and to 
use them continuously. Cyberattack incidents should be handled with a holistic 
approach in smart grids and cities.
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Intelligent buildings are often part of a smart city project. Sensors can detect the 
deterioration of the building and can notify the authorities if necessary. Sensors can 
also be used to detect leaks in water mains and other piping systems, reduce costs, 
and help increase network efficiency. Also, smart city technology, in addition to job 
creation, energy efficiency, and sustainable use of space, increases the production 
and productivity of urban agriculture, including more fresh food for urban 
consumers.

While continuing to increase the population in cities, urban areas and infrastruc-
ture of these assets need to adapt to the increasing population by using them more 
efficiently. Smart city applications can enable these improvements, and cities can 
improve their operations and improve the quality of life of residents. From traffic 
lights to bus stops and even roads, all the elements that make up smart cities are 
interconnected, so they need to be protected from hackers. While cybersecurity 
techniques are designed to make it harder for hackers to work, those who run smart 
cities should always be on the alert. In this chapter, we will talk about what we need 
to do to prevent smart city software from being hacked by data thieves.

The process starts with smart grid and city applications, improving existing grids 
and making them smart. It enables to find and create new value from the existing 
infrastructure of networks and cities. This study aims to give general information 
about smart grids and cities and to explain the concept of systems. First of all, the 
concepts of smart city, smart grid,  Internet of Things (IoT), and cybersecurity 
attacks in smart cities and networks are defined. The most common cyberattacks are 
given in smart grids and cities.

2  Smart Cities

Smart cities are human and nature-oriented and redesigned to provide maximum 
efficiency. In addition, smart cities have a framework that focuses on change, strat-
egy, development and change, humans, and the environment in the management 
approach. For these reasons, smart cities are urban structures that have improved 
living standards by raising the living standards of society. These structures aim to 
use innovative and sustainable methods that reduce environmental problems. 
Moreover, it is based on creating new living spaces where the resources used are 
consumed efficiently and wisely. The smart city and grid, in other words, should 
provide human and social capital, sustainable economic support, and high lifetime 
value in classical and modern communication infrastructure. In addition, natural 
resources must be reasonably managed through competent management [1] (Fig. 1).

With the development of technology in recent years, smart grids have gained 
great importance by being widely adopted in many countries and cities. However, 
these new technologies have security disadvantages. Systems such as open data, 
education, IoT devices, smart agriculture, and smart energy form the basis of smart 
grids. However, it is very important to control and manage the structures in these 
smart grids (Fig. 2).

C. Özarpa et al.



119

Fig. 1 The main purpose of developing and popularizing smart cities [2]

Fig. 2 Smart city overview [3]

The development of smart grids and cities and the prevention of security vulner-
abilities that may arise in them is one of the most important issues. This study 
details the cybersecurity vulnerabilities of applications in smart grids and cities and 
the measures to be taken against them. These must necessarily require minimal 
precautions to be taken. It will be inevitable that there will be material and data 
losses in the face of measures not taken.

In addition to the emergence of new hardware and applications due to the changes 
in cyberattack methods and the development of technologies, an increase in security 
vulnerabilities is observed. In recent years, malware, distributed denial of service 
(DDoS), and advanced persistent threats have increased, especially among cyberat-
tack methods. This study tried to determine the cyberattack methods that were 
detected and frequently used.
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The continuity of all smart systems used in smart grids in terms of their operation 
and the availability of data, confidentiality, and integrity are the main components 
of information security. Furthermore, experienced personnel will be needed for the 
best management of these systems. The main components of success in the field of 
information security are people, technology, and the company. These are critical to 
the successful management of smart grids.

3  Smart Grids

Smart grids are an energy system that integrates the supply and consumption behav-
ior of all market participants connected to them and aims to reduce loss and leakage, 
continuity in use, economic efficiency, and continuous data flow. Infrastructure ser-
vices play an important role as an indispensable element of urban life. Control over 
these utilities became vital as the urban population grew. Population increases make 
it difficult to manage the use of information technology (IT) infrastructure, without 
software applications and made it impossible to manage [5].

ISO (which deals with the best management of physical assets by the International 
Organization for Standardization) argues that the management of infrastructure, as 
a whole should be systematic, risk-based, optimal and sustainable. Organization of 
systematic and interrelated movements manages assets and systems to achieve suc-
cess and performance through a structure that is needed to control the risk and cost 
of organizational life cycle plans [4]. This requires intelligent networks for system-
atic monitoring.

The scope of the IEC 61850 (International Electrotechnical Commission) com-
munication standard is based on the intelligent network protocol transformer. 
Otherwise, the same or different manufacturers use such non-parallel multiple pro-
tocols and interfaces [6]. The smart grid concept covers the use of information tech-
nology and communication systems, storage and consumption for the distribution 
and transmission system, and efficient, reliable supply of energy and materials 
through flexible management. In addition, the operating company has networks and 
wastewater systems designed for processes similar to information technology and 
electricity distribution in this sector, as well as processes for natural gas and water 
distribution [7].

In the classical network systems used today, problems such as power cuts, meter 
failures, low efficiency, and energy leaks can be detected by the subscribers by 
sending them to certain centers or by the work of distribution companies. In smart 
grids, on the other hand, these problems can be detected instantly and automatically 
resolved remotely without any interruption in service. Thanks to its real-time com-
munication infrastructure, smart grids detect overloads, regulate energy flow direc-
tions, and contribute to preventing energy loss and leakage. At the same time, they 
manage the energy supply–demand balance and energy distribution, providing a 
fairer consumption price and more balanced resource use. Smart grids are more 
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resilient to natural disasters and offer energy systems to distribution companies and 
consumers, which are quickly reactivated in the case of any natural disaster.

The working principle of the smart grid is based on the principle of managing the 
entire energy production and consumption infrastructure from a single center. Each 
of the natural gas, electricity, water, and telecommunication systems is managed 
from a single center within itself, and infrastructure management is carried out by 
ensuring the efficient operation of the systems. From this point of view, smart grids 
are the integration of computer and network technology into today’s networks 
through geographic information systems. They process and interpret the data intel-
ligently and manage the needs according to the data analysis they receive [8].

Smart grids, an essential component for smart cities, play a major role in bring-
ing reliability, availability, and efficiency into the era. Testing, technology improve-
ments, consumer education, standards, legislation development, and information 
sharing between projects will be critical in the transition from conventional grid 
systems to smart grids (Fig. 3).

In particular, the electrical grid, natural gas distribution is also very critical in a 
smart grid. The necessity to supply natural gas sustainably and efficiently requires 
smart network systems. The gas distribution network is a system that supplies 

Fig. 3 Smart grid overview [7]
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low-pressure gas from city gates to industrial, commercial, and residential buildings 
through pipelines of steel and polyethylene (PE) pipes at different pressure levels. 
Natural gas distribution networks consist of (i) Regulation and Metering Stations 
(RMS), (ii) mainline (steel) communication lines, (iii) regional stations and distri-
bution lines, and (iv) service boxes and service lines. Due to critical safety issues in 
these systems, there can occur several cyberattacks. For instance, the set pressure 
and temperature levels of heating units can be altered remotely in the case of a 
cyberattack. This can damage the customer stations as well as the entire natural gas 
network [8].

An important element that effectively recognizes the full value of the smart grid 
process is its performance and capabilities to implement integrated, scalable, and 
interoperable engineering activities. In this new and more intelligent world, the cus-
tomer’s energy consumption of mobile devices, which can be watched via the 
Internet or a private home monitor, does the same things as meter data management 
systems. The counter also detects power surges and power outages, and the service 
will serve as a network sensor that can be used to connect or disconnect the remote 
connection [9].

The smart grid provides the integration of two-way communication between 
utilities and consumers through smart meters using Advanced Measurement 
Infrastructure (AMI). Thus, AMI is designed to provide real-time information on 
energy parameters such as prices, demand, capacity, and quality. If so, it would be 
surprising if the service company is properly navigating in terms of return on invest-
ment in an already deployed technology. Like all technological advances in energy 
efficiency, the smart grid has an important advantage to be noted and is highlighted 
in Fig. 4 [10].

Cybersecurity attacks are at the forefront of the difficulties experienced in smart 
grid deployment. Systems are protected against these attacks by using independent 
interfaces. It also provides energy efficiency and significant cost savings as an 
energy management tool called CISCO Energy Wise [11]. A smart grid system 
should have the following features.

Digitization means having a secure and fast digital platform for smart systems. 
Also, to be smart is to have good technology. Resilience, on the other hand, means 
that the developed intelligent systems can provide continuity without being affected 
by cyberattacks in the case of any abnormality. Personalization means tailoring cus-
tomers to their needs. Finally, flexibility means that the smart grid is extensible, 
adaptable, and can work harmoniously within itself [12].

4  IoT in Smart Grids and Cities

In general, referring to the smart grid concept and the field of smart infrastructure, 
IoT applications in cities, transportation, industry, health, and other sectors are 
widely used. With the technologies that develop according to IoT application areas, 
its use has gained importance and provides significant convenience to human life. 
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Fig. 4 The fundamental building block of the smart grid [10]

With the use of IoT devices, the security risks that will occur in the communication 
of data come to the fore. Studies in this area must be carried out and developments 
in this direction must be followed. All sectors and fields are given in detail in Fig. 5.

Smart cities use a combination of applications developed and interfaces created 
for the user to use devices, the IoT, and communication networks. The data col-
lected by the communication of these devices with each other is stored in the cloud 
or on the server. With the development of these technologies, people’s lives are get-
ting easier. At the same time, the efficiency of both the public and private sectors is 
at the highest level.

5  Cybersecurity in Smart Grids and Cities

With advancing information technologies, cybersecurity threats have been an ever-
increasing trend in recent years. From this point of view, it is clear that institutions 
strengthen their internal information security dynamics and place their strategic tar-
gets in the first place in terms of cybersecurity. In the field of cybersecurity, coun-
tries aim to protect computer networks in public and private sectors by following 
and adapting to international standards.
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Fig. 5 Fields of application of IoT [13]

In terms of cybersecurity, no software application can guarantee companies a 
hundred percent security. For this reason, each institution should take its security 
measures, namely, technological, managerial, and education. Significant measures 
should be taken. For instance, employee information security awareness training 
should be done every year, the institution must have competent and senior experts 
in the field, and employment of cybersecurity experts to train the personnel, user, 
and system access logs should be kept: Cyber Incidents Response Team (CIRT), 
Cyber Security Center (CSC), Cyber Intelligence Center (CIC), and Software 
Security Testing Laboratory (Pentest Lab.) In order to respond immediately to cyber 
incidents, a Cyber Fusion Center (CFC) should be established, a corporate cyberse-
curity policy should be established, and the top management should support imple-
menting them.

There are many sectors covered by smart grids and cities in Fig. 6. The exposure 
to cyberattacks against these sectors is shown as a percentage. Considering the 
impact of these cyberattacks, it is seen that the sector that has the highest risk and 
attacks with 26% is the energy sector [14].

5.1  Most Common Cyberattack Methods in Smart Grids 
and Cities

First of all, it is possible to define the subject threat in smart grids and cities, espe-
cially electricity, water, and natural gas. Looking at the smart city concept in gen-
eral, it covers health, transportation, water supply, energy infrastructure, traffic 
management, waste management, and other services. A smart city can interoperate 
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Fig. 6 Cyberattacks by sectors worldwide between 2016 and 2017 [14]

systems by establishing a mutual interaction between service providers and citizens. 
In this context, there are many concepts/methods such as cyber terrorism, cyber-
crime, cyber warfare, and cyber intelligence, each with different motivations, and 
different types of attacks. In this study, cyberattacks will be used for all of these 
methods. Cybersecurity violations intended to damage these structures are all func-
tionally considered cyberattacks. In particular, this study investigates cyberattacks 
in smart grids and cities [15].

Cybersecurity aims to protect from external harmful applications, viruses infect-
ing personal computers, advertisements from e-mails, and antivirus programs that 
need to be updated. In addition, when it comes to cybersecurity, one of the first 
things that come to mind is smart cities and grids. Because in terms of national 
security, loss of services in smart grids and cities can cause loss of life, large-scale 
economic damage, or weakening of national security. In particular, these systems 
are the most important assets to be protected in terms of cyberattacks. The main 
cyberattack methods are listed against smart grids and cities ([15–24]) (Fig. 7).
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Fig. 7 The main cyberattack methods in smart cities and grids [2]

5.2  Measures Against Cyberattacks in Smart Grids and Cities

Some of the measures to be taken against cyberattacks in the smart networks and the 
main group of actions are shown in Fig. 8. The main groups given here have been 
determined based on the previous studies examined in the literature. In subsequent 
academic studies, these articles can be further expanded, and this chapter can moti-
vate the studies to be carried out in this area.

The measures mentioned here must be given importance and attention in the 
critical infrastructures of state institutions and private companies. In addition, the 
mentioned cybersecurity measures motivated the creation of this article as a result 
of the studies and academic studies examined.

When building smart cities, they must take responsibility for understanding the 
systems they use and establish transparent relationships with the companies they 
support, from system construction to maintenance. In addition, every smart city 
should have trained cybersecurity emergency response teams to counter possible 
cyberattacks and their negative effects. Not knowing how to react to attacks can 
cause great confusion and stop normal city traffic. Therefore, serious cybersecurity 
strategies should be developed. But just as bacteria become resistant to antibiotics, 
threats can emerge with greater force to counter a change in strategy. Thus, each 
heightened security strategy often faces a new security threat. Therefore, security 
measures need to be constantly updated and monitored. For this reason, those who 
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Fig. 8 Overview of measures against cyberattacks smart grids and cities

want to be protected from attacks should always be one step ahead of hackers 
(Table 1).

Considering most of the identified attacks in general, they are among the most 
important issues that every institution should pay attention to. Because institutions 
and organizations do not want to be exposed to a cyber incident by experiencing a 
cyberattack, smart grids and cities can become more resistant to cyberattacks with 
technology.

Data that can be easily captured by taking advantage of vulnerabilities in smart 
systems such as face recognition over security cameras are used to threaten society. 
In particular, a system with a security vulnerability can be captured more easily than 
other systems. But, it is difficult to add a new system because all systems in smart 
cities work in an integrated manner. For this reason, the security strategy should be 
considered as a whole and at the same time, all security vulnerabilities should be 
minimized or even eliminated for each system. A security system is also required 
for the protection, monitoring, and control of smart grid and systems network traffic 
in cities. Firewalls aim to make systems more secure by preventing attackers from 
accessing data without authorization.
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Table 1 Most common cyberattacks methods and measures [15–24]

Most common 
cyberattacks methods Most common measures

1 Distributed denial of 
service
(DDoS-DoS) [14]

Determining cybersecurity performance targeted by top 
management and keeping performance records of all individuals.

SYN flood Determining the mode of action of the system to prevent 
unintentional disclosure of sensitive information related to the 
design, operations, and safety of the system.

UDP flood For third-party applications, patch management should be followed 
and a procedure or instruction should be prepared and followed up 
periodically.

HTTP flood The configuration controls and management of the software and 
hardware should be fully performed and monitored.

DNS flood It requires awareness to be resistant to cyber risks at all levels, from 
employees to senior management levels.

2 Botnet (zombie) [15] The institutions should always keep risk management regulations 
against cyberattacks.

3 Zero-Day Exploits 
[16]

The institutions should always keep their inventory lists of 
information technologies against cyberattacks.

4 Advanced persistent 
threats (APT) [16]

Organizations should conduct personal access management on 
computers and servers.

5 Attack Kits [16] Wired and wireless networks should be protected by strong 
authentication systems.

6 Sending unwanted 
bulk messages
(E-mail) [17]

Institutions should perform event and log management.

Spam The institutions should conduct 24/7 emergency incidents and 
monitor management against cyberattacks.

Bulk Modem connections, local networks, connections with partners, 
internet, wireless networks, and satellite connections should be 
considered separately.

Junk mail To ensure a high level of cybersecurity, unnecessary network 
connections and unnecessary ports must be closed.

7 Network sniffing 
(monitoring) [18]

Institutions should use corporate networks and operational 
networks separately.

Active sniffing The security of SCADA systems used in smart grids and cities is 
mostly provided by the protection levels of the protocols produced 
specifically to communicate with the field vehicles and servers.

Passive sniffing Organizations should apply multiple access controls for user access 
to the internet and the applications in their network.

Address resolution 
protocol poisoning 
(ARP)

Institutions should clearly define policies and procedures for 
cybersecurity and information security.

8 Malware [19] Institutions should set up intervention teams against cyber 
incidents.

Virus The institutions should take the expert training of information 
security personnel and this training should be repeated periodically.

(continued)
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Table 1 (continued)

Most common 
cyberattacks methods Most common measures

Worm Institutions should have penetration testing at regular intervals and 
keep their reports regularly.

Trojan horse In smart networks, standards on cybersecurity should be prepared 
and legally audited.

Ransomware Collaborative work should be done with universities, government, 
and private institutions on cybersecurity in smart grids and cities.

Adware Native and national software on cybersecurity should be developed 
in smart grids and the government should encourage this process.Backdoor-trapdoor

Spyware
Key logger
Exploits

9 Rootkit [20]
10 Cryptographic Attacks 

[21]
11 IP Spoofing [20]
12 Wire Tapping [22]
13 IPS Attacks [21]
14 SQL Injection [21]
15 Logic Bomb [21]
16 Phishing [21]
17 Social Engineering 

[21]

6  Conclusion

Cyber   threats in smart grids and cities continue to grow day by day in an organized 
manner. Especially in terms of cyber incidents, the rate of attacks against the energy 
sector in the world is very high. Approximately 26% of cyberattacks worldwide are 
against the energy sector. Cyber   threats and attacks have been detected in the energy 
sector, especially in natural gas, electricity, and water networks. Such attacks are 
expected to increase further in the coming years. However, the increase in the num-
ber of devices used in the concept of smart cities causes an increase in big data and 
wireless communication. The increase in the size of this data carries a high risk to 
ensure data security in terms of cyberattacks. Necessary security measures should 
be taken to reduce the risks of these cyberattacks, and cities should be made livable. 
Precautions to be taken should be preferred in terms of cybersecurity and newly 
developed hybrid prevention methods. Especially artificial intelligence and machine 
learning applications developed against new attack dimensions should be preferred.

Smart city leaders should be alerted, stating that many cities are not planning 
cyberattacks, although cities have plans for natural disasters such as floods and 
earthquakes as a result of research done by security research companies. Since the 
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target of cyberattacks is a human-centered system, it is necessary to consider that 
they can lead to major events and to develop reasonable strategies against cyberat-
tacks. As technologies improve in smart grids and cities, cyberattacks and vulnera-
bilities are also increasing. Therefore, in this study, cyber threat methods and 
solution suggestions are discussed in detail. It is shown that cybersecurity and infor-
mation security are in every aspect of our lives, and it is recommended that institu-
tions pay attention to the solutions given here. For this reason, the communication 
of the systems must be secure, the use of secure models, the protection of data, etc. 
In cases, the safety precautions given in this study should be taken into consider-
ation. Finally, 17 cyberattacks were detected in smart cities, grids, and IoT systems 
used. However, measures that can be taken in these systems against cyberattacks 
have been given. Along with these measures, all stakeholders should cooperate 
among themselves and make suggestions for the measures to be taken against these 
cyberattacks. All countries should develop secure maturity models against cyberat-
tacks for smart cities and grids. Moreover, investments should be made in this field, 
and joint work should be carried out by leading the way on these issues.
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