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Preface

This book and its companion volumes, LNCS vols. 13344 and 13345, constitute
the proceedings of The Thirteenth International International Conference on Swarm
Intelligence (ICSI 2022) held during July 15–19, 2022 in Xi’an, China, both onsite and
online.

The theme of ICSI 2022 was “Serving Life with Swarm Intelligence.” ICSI 2022
provided an excellent opportunity for academics and practitioners to present and discuss
the latest scientific results and methods, innovative ideas, and advantages in theories,
technologies, and applications in swarm intelligence. The technical program covered
a number of aspects of swarm intelligence and its related areas. ICSI 2022 was the
thirteenth international gathering for academics and researchers working on aspects of
swarm intelligence, following successful events in Qingdao (ICSI 2021), Serbia (ICSI
2020) virtually, ChiangMai (ICSI 2019), Shanghai (ICSI 2018), Fukuoka (ICSI 2017),
Bali (ICSI 2016), Beijing (ICSI-CCI 2015), Hefei (ICSI 2014), Harbin (ICSI 2013),
Shenzhen (ICSI 2012),Chongqing (ICSI 2011), andBeijing (ICSI 2010),which provided
a high-level academic forum for participants to disseminate their new research findings
and discuss emerging areas of research. The conference also created a stimulating
environment for participants to interact and exchange information on future challenges
and opportunities in the field of swarm intelligence research.

Due to the continuous global COVID-19 pandemic, ICSI 2022 provided both online
and offline presentations. On one hand, ICSI 2022 was normally held in Xi’an, China.
On the other hand, the ICSI 2022 technical team enabled the authors of accepted papers
who were restricted from traveling overseas to present their work through an interactive
online platform or video replay. The presentations by accepted authors were available
to all registered attendees onsite and online.

The host city of ICSI 2022, Xi’an in China, is the capital of Shaanxi Province. A
sub-provincial city on the Guanzhong Plain in Northwest China, it is one of the oldest
cities in China, the oldest prefecture capital, and one of the Chinese Four Great Ancient
Capitals, having held the position under several of the most important dynasties in
Chinese history, including Western Zhou, Qin, Western Han, Sui, Northern Zhou, and
Tang. The city is the starting point of the Silk Road and home to the UNESCO World
Heritage site of the Terracotta Army of Emperor Qin Shi Huang.

The ICSI 2022 received a total of 171 submissions and invited submissions from
about 368 authors in 15 countries and regions (Brazil, China, the Czech Republic,
Germany, India, Italy, Japan, Mexico, Portugal, Russia, South Africa, Taiwan (China),
Thailand, the UK, and the USA) across five continents (Asia, Europe, North America,
South America, and Africa). Each submission was reviewed by at least 2 reviewers, and
onaverage2.6 reviewers.Basedon rigorous reviewsby theProgramCommitteemembers
and reviewers, 85 high-quality papers were selected for publication in this proceedings
volume with an acceptance rate of 49.7%. The papers are organized into 13 cohesive
sections covering major topics of swarm intelligence research and its development and
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applications along with a competition session entitled “Competition on Single Objective
Bounded Optimization Problems (ICSI-OC 2022).”

On behalf of the Organizing Committee of ICSI 2022, we would like to express
our sincere thanks to the International Association of Swarm and Evolutionary
Intelligence (IASEI), which is the premier international scholarly society devoted to
advancing the theories, algorithms, real-world applications, and developments of swarm
intelligence and evolutionary intelligence (iasei.org). We would also like to thank
Peking University, Xi’an Jiaotong University, Shaanxi Normal University, Xi’dan
University, Xi’an University of Posts & Telecommunications, and the Southern
University of Science and Technology for their co-sponsorships, the Computational
Intelligence Laboratory of Peking University and IEEE Beijing Chapter for their
technical co-sponsorships, and Nanjing Kanbo iHealth Academy for its technical and
financial co-sponsorship, as well as our supporters: the International Neural Network
Society, theWorld Federation on SoftComputing,MDPI’s journal ‘Entropy’, the Beijing
Xinghui Hi-Tech Co., and Springer.

We would also like to thank the members of the Advisory Committee for their
guidance, themembers of the international ProgramCommittee and additional reviewers
for reviewing the papers, and the members of the Publication Committee for checking
the accepted papers in a short period of time. We are particularly grateful to Springer
for publishing the proceedings in the prestigious series of Lecture Notes in Computer
Science.Moreover, wewish to express our heartfelt appreciation to the plenary speakers,
session chairs, and student helpers. In addition, there are many more colleagues,
associates, friends, and supporters who helped us in immeasurable ways; we express
our sincere gratitude to them all. Last but not the least, we would like to thank all the
speakers, authors, and participants for their great contributions that made ICSI 2022
successful and all the hard work worthwhile.

May 2022 Ying Tan
Yuhui Shi
Ben Niu
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Abstract. Nature-inspired algorithms have been successfully applied to
autonomous robot path planning, vision and mapping. However, concur-
rent path planning and mapping with replanning feature is still a chal-
lenge for autonomous robot navigation. In this paper, a new framework
in light of the replanning-based methodology of concurrent mapping and
path planning is proposed. It initially performs global path planning
through a developed Gravitational Search Algorithm (GSA) to generate
a global trajectory. The surrounding environment can then be described
through a monocular framework and transformed into occupancy grid
maps (OGM) for autonomous robot path planning. With updated mov-
ing obstacles and road conditions, the robot can replan the trajectory
with the GSA based on the updated map. Local trajectory in the vicinity
of the obstacles is generated by a developed bio-inspired neural network
(BNN) method integrated with speed profile mechanism, and safe border
patrolling waypoints. Simulation and comparative studies demonstrate
the effectiveness and robustness of the proposed model.

Keywords: Autonomous robot path planning · Gravitational Search
Algorithm (GSA) · Bio-inspired Neural Networks (BNN) · Occupancy
Grid Maps (OGM) · Replanning-based path planning

1 Introduction

Modeling, perception, and understanding of the environment are critical for
autonomous robots with the assistance of nature-inspired algorithms. It still
remains a daunting task to achieve safe motion planning for autonomous
robots while robustly and efficiently sensing, mapping, and modeling the sur-
rounding environment. In recent decades, there have been numerous studies to
resolve navigation and motion planning issues, such as sampling-based algo-
rithm [1], graph-based method [3,5], and neural networks models [11,12,19].
Adiyatov et al. [1] proposed a modified sampling-based algorithm for rapidly
c© Springer Nature Switzerland AG 2022
Y. Tan et al. (Eds.): ICSI 2022, LNCS 13345, pp. 3–16, 2022.
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exploring random tree (RRT) to generate a collision-free robot path. A graph
theory-based model has been proposed in Lei et al. [5] to conduct point-to-
point robot navigation with smooth modulation through a workspace, while
simultaneously avoiding obstacles. Luo and Yang [11] developed a coverage path
planning algorithm for real-time map building and robot navigation in unknown
environments.

Most recently, nature-inspired algorithms advance autonomous navigation,
such as fireworks algorithm (FWA) [6], ant colony optimization (ACO) [7,16],
bat-pigeon algorithm (BPA) [8], etc. A hybrid FWA-based navigation model
is proposed in [6], which features concurrent mapping and navigation. It can
effectively navigate the robot to the final target. Lei et al. [7] proposed an ACO
model in conjunction with a variable speed module, which can decrease the robot
motion speed in vicinity of the obstacles. To efficiently interact with road condi-
tions, a Bat-Pigeon algorithm with a speed modulation is proposed. It adaptively
adjusts speed and refines the generated path according to updated road condi-
tions and decelerate on cracked roads [8]. However, few studies have considered
concurrent mapping and path planning in light of monocular techniques.

Semantic 
Segmentation

Global map 

GSA Path Planner

Ocupancy 
Grid Map

Planned Trajectory

RGB Data

LiDAR/GPS/
Digital Compass Data

Update

BNN Local 
Navigator

Monocular 
Camera

Target
Linear/Anugular Velocity Excution

Decision
Maker

Input

Fig. 1. The overall framework of our proposed method. The components enclosed in
dashed box represent our proposed method for an autonomous robot.

In this paper, an autonomous robot trajectory planning method based on
gravitational search algorithm (GSA) with replanning feature is proposed. In
trajectory planning, local maps in the form of occupancy grid maps (OGM)
originated from a Bird-Eye-View (BEV) intermediate representation through a
monocular camera are used to generate replanned trajectories. A replanning-
based method of concurrent mapping and path planning is proposed as shown
in Fig. 1. Collision-free trajectories are generated by a bio-inspired neural net-
work (BNN) local navigator via the local occupancy grid method converted from
monocular frames in which the surrounding environment is described.

2 Proposed Algorithm for Autonomous Path Planning

The gravitational search algorithm (GSA) is a nature-inspired optimization algo-
rithm proposed by Rashedi et al. [13]. Thanks to the optimization capability of
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GSA, the trajectory with minimum time is obtained through the workspace
information. In GSA, agents are treated as objects and their performance is
measured by their mass. Each agent is affected by the gravitational pull of the
other agents in the workspace and produces accelerations toward heavier massive
agents. The agents with lighter mass gradually approach the optimal solution of
the optimization problem in the process of approaching the heavier mass. The
GSA has convincing exploitation capability to search the entire workspace.

Algorithm 1: GSA-based Path Planning Algorithm
Initialization:
Load the Nx × Ny map; Set (Psx, Psy) as the start point, (Pgx, Pgy) as the target point; Set

f(i, j) = 0, if (i, j) is free space; Set f(i, j) = 1, if (i, j) is obstacle; Set Pathbest = ∅ and
the maximum number of iteration as Tmax.

Random generate Np agents in the workspace ∀ 1 ≤ i ≤ Nx, 1 ≤ j ≤ Ny with f(i, j) = 0;
Initialize the global best as Fbest, local best as X(bestX, :).

for τ = 1 : Tmax do
X = spacebound(X, up, low); // Check the location of the agent in the workspace
fitness = evaluateF (X, Findex); // Evaluate the fitness for each agent
[best, bestX] = min(fitness);
if best < Fbest then

Fbest = best;Lbest = X(bestX , :) // Minimization
End

G(τ) = G0 × e−λτ/Tmax ;// Update the gravitational constant
for i ≤ Np do

Mi(τ) =
mi(τ)

∑N
j=1 mj(τ)

; // Update mass for each agent

F k
i (τ) =

∑N
j=1,j �=i randj F k

ij(τ);// Update the force for each agent

ak
i (τ) =

F k
i (τ)

Mi(τ) ;// Update acceleration for each agent

vk
i (τ + 1) = randi ×vk

i (τ) + ak
i (τ); x

k
i (τ + 1) = xk

i (τ) + vk
i (τ + 1);// Update

velocity and position for each agent
End

Pathbest = bestX
End

Since the real-time map is dynamically updated in light of the visual images
in the subsequent Sect. 3, the grid-based map with OGM presented in Sect. 3
is utilized for environment modeling. The proposed method integrates the local
search heuristic to search and find the short and reasonable trajectory with
the GSA in a graph. The first stage of seeking the optimal path is to find a
feasible solution since the unfeasible ones are not realistic. In order to improve
the performance of finding the optimal path through the GSA algorithm, the
path is gradually constructed from the generated random points. On the basis of
Dijkstra’s algorithm to find the shortest path in a graph, the path is built from
the start point, whereas the next path point is chosen from the N randomly
generated points. Each point is recursively connected with the other points,
while the distances of connection lines passing through obstacles are assigned
with infinite number. As a result, the point-to-point navigations with obstacles
are excluded out, and the feasible solutions are retained. The shortest paths
between each pair of points are selected from those feasible solutions. The model
of the GSA-based autonomous robot path planning is presented in Algorithm1.
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3 Monocular Camera and Semantic Occupancy Grid
Mapping

Autonomous robots estimate the surrounding free space to determine whether
they encounter any obstacles (such as pedestrians, curbs or other robots) [18].
There are various sensors to estimate free space, such as Radar, LiDAR, or cam-
eras. Monocular vision, inspired by only one eye used in animals and humans,
enhances field of view of surrounding environments of autonomous robots while
depth perception is limited. The 2D image provided by the RGB monocular cam-
era is integrated with an occupancy grid to estimate the available space through
semantic segmentation, and the output is the semantic grid of the environment
from a bird’s eye view perspective.
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Image Pooling

3×3 Conv rate 12
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Decoder1×1 Conv
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Fig. 2. The proposed network model by employing an encoder-decoder structure.
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Fig. 3. The framework of the proposed model and the diagram of information flow
connected with GSA model (BEV is bird’s-eye view; OGM is occupancy gird map).
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Segmentation is essential for tasks of image analysis in our applications [17].
Semantic segmentation describes the relevance between each pixel of an image
and category labels, such as some geometric structures (sky, ground, buildings,
etc.). With convolutional neural networks (CNNs) in image processing demon-
strating the power of accurately estimating dense depth maps from a single
image, it needs to estimate free space (road) in this paper by performing semantic
image segmentation on images obtained during the operation of our autonomous
robot. The deep convolutional neural network (DCNN) has a significant improve-
ment over other systems on the benchmark task. We utilize a simple and effective
decoder module as shown in Fig. 2. The CamVid dataset of Cambridge University
is utilized for training [2]. This data set is a collection of images containing street
views obtained while driving, and 32 semantic classes including cars, pedestri-
ans, and roads provide pixel-level labels. The obtained OGM is then updated in
the global map for further replanning by the GSA model and local navigation
by the BNN model in Sect. 4, depicted in Fig. 3.

4 Biologically Inspired Dynamic Path Planning

The biologically inspired neural network (BNN) model is derived for trajectory
planning of an autonomous robot [4]. The topologically organized neural net-
works with nonlinear analog neurons are effective for collision-free navigation.
Each neuron is locally connected with adjacent neurons to transmit neural activ-
ities to each other, and its receptive field is regarded as a circular area with a
radius R. The symmetric connection weights wij between the ith neuron and
the jth neuron and the dynamics of neural network is described as

wij =

{
e−ρ|xi−xj |, |xi − xj | � R

0, |xi − xj | > R
; aτ+1

i = g

⎛
⎝Iτ

i +
∑

j∈N(i)

wija
τ
j

⎞
⎠ , (1)

where |xj − xi| is the Euclidian distance between the ith neuron to the jth
neuron, ρ > 0 is a constant coefficient. g is the transfer function and N(m) is
the neighborhood set in the radius R. Iτ

i is the external stimulus at time τ . If
it is a target, Ii = E, which is excitatory input for the corresponding grid; If
it is an obstacle, whereas Ii = −E, which is inhibitory input for the purpose
of obstacle avoidance. Otherwise, Ii = 0. The transfer function g is designed
to normalize the activity landscape of the whole neural network. Therefore, the
function is redefined as

aτ+1
i = {

Iτ
i +

∑
j∈N(i) wijaτ

j
∑M

i=1,Iτ
i

�0(Iτ
i +

∑
j∈N(i) wijaτ

j )
, Iτ

i � 0

0, Iτ
i < 0

. (2)

Real-time collision-free robot motion is planned based on the dynamic
activity landscape of the neural network and the location of the robot. The
activity landscape of a neural network changes dynamically due to different
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external inputs from targets and obstacles, as well as internal activity propaga-
tion between neurons. While the location of the robot is simultaneously updated
via varying environments. For a given current robot location in C denoted by
LC , the next robot location LN is obtained by

LN = argmax
i,j

(x(i, j)) ∈ {Nk | (i, j)} . (3)

Since the BNN model is based on the grid-based map obtained in Sect. 3.
The computational complexity of the BNN depends on the workspace size. The
number of neurons required is equal to N = Nx ×Ny. Thus, the size of the local
navigation workspace should be restricted in a small size [10].

To ensure that the resulting path is safe and consistent with the kinetic of
autonomous robots, several safe reference waypoints based on an obstacle safe
border patrolling paradigm is proposed (Fig. 4). We refer to the classic model
of this robot ẋ = v cos θ, ẏ = v sin θ, and θ̇ = u ∈ [−Ω,Ω], where x, y is the
pair of the robot’s Cartesian coordinates, θ gives its orientation, v and u are
the linear and angular velocity, respectively. The maximal angular velocity Ω is
given. The minimal turning radius of the robot at speed v equals Rmin = v

Ω . The
obstacle O is assumed to have a C3-smooth boundary ∂O. Let ψ(o) represent
the signed curvature of the obstacle boundary at point o ∈ ∂O and the unsigned
curvature radius Rψ(o) := |ψ(o)|−1. The point p on the robot path at time
τ as p = p(τ) and related minimum-distance point õ ∈ ∂O. Let �(s) ∈ R

2

represent a regular parametric of the boundary ∂O in a vicinity of õ = �(s̃)
where s is the arc length. Let �T = �

′
be the unit tangent vector and �N be the

unit normal vector directed inwards O. The vector p − o is perpendicular to a
common nonzero vector ṗ(τ). There exists a minimum-distance point õ ∈ ∂O
such that ds = ‖p − õ‖ = Rψ(õ), ψ(õ) < 0. We have õ − p = ds

�N(s̃). In view of
Frenet-Serret formulas [14], thereby we have �T ′ = ψ �N and �N ′ = −ψ�T .
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Fig. 4. Illustration of the proposed navigation framework for real-time obstacle avoid-
ance on a construction site. When encountering obstacles, the trajectory will be re-
planned by the GSA and dynamically connected by the BNN model in local navigation.
It is further refined through safe reference points according to the robot speed.

Since the trajectory of the robot is parametrically represented by p(s) :=
�(s) − ds

�N(s), it yields that p′ = (1 + ψds) �T , p′′ = ψ′ds
�T + ψ (1 + ψds) �N . Let

I :=
(

0 1
−1 0

)
and let T stand for the transposition. Then the curvature radius

R of the trajectory is given by

R =
‖p′‖3∣∣∣(p′)

�T
Ip′′

∣∣∣ =
|1 + ψds|3

|ψ| |1 + ψds|2
= |ds + Rψ sgn ψ| . (4)

Note that R should not be less than the minimum turning radius of the
robot. Therefore, we utilized the safe reference points are utlized to ensure the
robot travels at the safe distance ds from the boundary of obstacles at the speed
v > 0. |ds + Rψsgnψ| ≥ v

Ω is required for any point on its trajectory, where v
Ω

is the minimal turning radius of the robot for given speed v, and the curvature
ψ and the curvature radius Rψ are computed at the minimum distance point.
sgn is the signum function.
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GSA plans an initial global route while the autonomous robot traverses along
the planned path, it simultaneously updates the OGM through the on-board
monocular camera. When it is found that the previously planned GSA path fails
to be executed through OGM, the GSA re-plans the global route in light of the
newly observed obstacles (barrier, cones). The global path obtained is intermit-
tent with multiple re-planning shown in Fig. 4. Each time the GSA re-planning
occurs, it indicates that there are unknown obstacles, and local navigation is
required to assist the autonomous robot to navigate. The detecting point of
each re-planning phase is considered as the starting point of local navigation.
The local navigation is dynamically guided by the BNN model. BNN dynami-
cally plans the trajectory locally in the space of 30×30. It makes the decision of
the next step by comparing the neural activities of nearby neurons of the current
neuron. The neural activities of neurons in the field is dynamically updated on
the basis of the obtained local environment information to guide the robot to
avoid unknown obstacles. Afterwards, the path is refined based on the current
speed of the robot and the shape of the obstacle to obtain the safe reference
point, which achieves a safe patrolling distance from the obstacle at different
speeds. Figure 4 shows a case of an autonomous robot passing through a con-
struction area with many obstacles in the workspace. The pink dotted line is the
initial planned GSA path. After encountering the obstacles blocked the road,
the GSA re-plans the trajectory. For instance, a blue dotted GSA path is a re-
planned path. The detailed local navigation is shown by four windows α, β, γ
and δ in Figs. 4 and 5. The local navigation function through neurons in the δ
graph in light of the target point is updated within a range of 30 × 30, which
ensures its operation efficiently. On the way of planning, the robot selects the
neuron with the highest neural activities in the adjacent neurons. After planning
the local path by the BNN model, the safe point is obtained from the shape of
the obstacle and the current estimated speed of the autonomous robot, as shown
by the red circles in Fig. 5. A safe and collision-free trajectory is finally achieved
by the proposed framework.
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5 Multi-speed Profile Method

Algorithm 2: Overall Procedure of Proposed Framework
Load the Nx × Ny global map;
while The robot is not at the target do

Obtain the Pathbest from Algorithm 1;
Update the global map with OGM from Monocular Camera in Section 3;
if Road is blocked then

Re-plan the trajectory Pathbest with updated global map;

Update neural activity field aτ+1
i = g

(
Iτ

i +
∑

j∈N(i) wijaτ
j

)
;

Obtain the safe reference waypoint R = |ds + Rψ sgnψ|;
Generate the BNN-based local trajectory;
End

Update the a�
i , j�

i , aη
i , jη

i and current velocity.
End

Let the trajectory generated by the proposed GSA-BNN method on the Carte-
sian plane be represented by p, which is a one-dimensional manifold parameter-
ized by points qi evenly sampled in view of the distance of the path, p(q) ∈ R

2

shown in Fig. 6. The speed profile is represented by curve C = {(si, ti)}i, which
is a monotonic curve. Denote the path length as si := p(qi) and time interval
between si and si+1 as τi = ti+1 − ti. When the time interval ti and the dis-
tance between qi and qi+1 are relatively small, the speed vi, acceleration ai and
acceleration rate (jerk) ji at point qi can be approximated as

vi =
si+1 − si

τi
, ai =

2 (vi − vi−1)
τi + τi−1

, ji =
3 (ai − ai−1)

τi + τi−1 + τi−2
. (5)

Denote the heading of the robot at point qi as θi := arctan (ṗ (si)). The
longitudinal and lateral directions at qi are denoted as  (θi) := [cos θi, sin θi]
and η (θi) := [sin θi,− cos θi]. The longitudinal velocity and lateral velocity are
defined as v�

i = vi ·  (θi) and vη
i = vi · η (θi). The longitudinal acceleration

and lateral acceleration are defined as a�
i = ai ·  (θi) and aη

i = ai · η (θi). The
longitudinal jerk and lateral jerk are defined as j�

i = ji ·  (θi) and jη
i = ji ·η (θi).

To improve the operating quality of the autonomous robots, a�
i and j�

i should
be minimized for longitudinal stability, aη

i and jη
i should be minimized for lateral

stability. The reference longitudinal velocity vr is the autonomous robot safe
operating speed. Therefore, the time optimization model can be described as

min
t1,··· ,tn

ω1

∑ ∣∣a�
i

∣∣2 + ω2

∑
|aη

i |2 + ω3

∑ ∣∣j�
i

∣∣2
+ ω4

∑
i

|jη
i |2 + ω5

∑ (
vr − v�

i

)2
s.t. τi ∈ [

tmin
i , tmax

i

]
, |ai| ≤ Ω ,

(6)

where w1, w2, w3, w4 and w5 are positive weights. Ω represents acceleration
limits. [tmin

i , tmax
i ] represents the feasible time stamps for robot to pass through

without collision with other moving obstacles. The cost function in Eq. (6) could
be treated as F1(τ) and F2(y), where F1(τ) is strictly convex. F2(y) reaches
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minimum at y = 0 and it is symmetric also strictly convex. Since the optimiza-
tion problem satisfies the preliminaries, it could be converted into a quadratic
program sequence within the framework of the slack convex feasible set (SCFS)
algorithm [9]. With the assistance of the speed profile method, the optimal speed
change based on the time is obtained during the navigation.

Fig. 6. The system architecture of the proposed framework.

The architecture of the proposed framework is shown in Fig. 6. The blue
dotted line is the originally planned path. When the obstacle sawhorse is found,
the purple path is replanned by the GSA based on the updated map. Inside the
rectangular black dashed border is the local navigation of the BNN. A waypoint
is generated according to the current speed of the robot in the pink circle outside
the safe distance from the obstacle to assist the robot to avoid the obstacles. The
speed profile is utilized to control the speed of the robot. The overall procedure
of the proposed framework is summarized in Algorithm2.
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6 Simulation and Comparison Studies

In this section, two simulated experiments and comparison studies are conducted.
In the first experiment, the proposed GSA is applied using the benchmarks in
comparison with other state-of-the-art path planning algorithms. In the second
experiment, the algorithm is applied to navigation in real environments.

6.1 Comparison Studies with Other Path Planning Models

To validate the adaptability and efficiency of our algorithms in various environ-
ments, the London and Sydney city maps from the benchmark [15] are selected
with resolution 256 × 256 for simulation and comparative studies. Among these
maps, the initial and target positions of the robot are randomly set. The white
and black nodes represent obstacle-free nodes and obstacle nodes, respectively.
The path smoothness rate sm in the Table 1 is described in [8].

Table 1. Comparison of path length, path smoothness rate, autonomous robot travel
time, and success rate of PRM, RRT*, A*, and the proposed GSA. The values are
reported as mean ± standard deviation for 20 executions.

Map name Map size Model name Minimum path length Path length (m) Smoothness rate (rad) Success rate (%)

London 256 × 256 PRM 338.45 383.29 ± 35.65 11.62 ± 2.68 55

RRT* 384.53 496.86 ± 68.41 86.75 ± 15.50 95

A* 336.931 336.931 ± 0 53.40 ± 0 100

GSA 328.205 331.67 ± 10.66 7.51 ± 0.37 100

Sydney 256 × 256 PRM 378.80 394.14 ± 10.97 9.87 ± 2.82 55

RRT* 448.75 496.85 ± 44.40 85.56 ± 8.75 100

A* 368.51 368.51 ± 0 40.05 ± 0 100

GSA 347.43 348.79 ± 2.44 15.37 ± 2.22 100

Three state-of-the-art path planning algorithms are utilized for comparison:
Probabilistic roadmap (PRM), Rapidly-exploring random tree star (RRT*), and
A* search algorithm. The number of PRM sampling points is set to 800. The
maximum iteration time of RRT* is set to 500000 and the maximum connection
distance is set to 4 in all environments. We iteratively perform 20 executions to
compute the mean and standard deviation of each metric. The results show that
the proposed GSA method outperforms PRM, RRT* and A* in Fig. 7. These
results may be explained by the fact that our proposed GSA model can consis-
tently generate better and more robust routes in terms of length, smoothness,
and safety. The performance of each model is summarized in Table 1.
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Fig. 7. Illustration of two city maps from [15], composed of 256 × 256 nodes. (a) London,
(b) Sydney.

6.2 Autonomous Navigation Under Real-World Scenarios

The simulation in this section aims to validate the GSA path planning model
with fusion of semantic information generating OGMs. The real map at the
Mississippi State University scene is adopted. The workspace has a size of
900m × 500m, which is topologically organized as a grid-based map. In order
to achieve BNN-based real-time local navigation, the workspace is restricted
to 30 × 30 to update surrounding varying environment and obtain safe tra-
jectory with time-optimized speed control. The proposed GSA path planner
initially obtains the dashed dark blue trajectory with the real world map as
shown in Figs. 8 (a) and (b). Along the obtained path, while the autonomous
robot approaches the location as shown in yellow squares as road blocks in the
Fig. 8(b), the on-board monocular camera captures the image of road blocks.

For multiple roadblocks encountered on the planned road, the GSA planer
along with the BNN local navigator obtains the replanned paths by updating
the map as shown in dashed green and solid orange trajectories in Fig. 8. The
simulated experiments show that our proposed model is effective and robust.
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Fig. 8. Illustration of the proposed framework for replanning in real-world scenarios.
(a) Real world map from Google Maps. (b) Initial planned trajectory and replanned
trajectory with updated map by GSA path planner and BNN local navigator.

7 Conclusion

A new framework for concurrent mapping and path planning was presented in
this paper. Collision-free trajectory is generated in light of occupancy grid map
method converted from monocular frames in which surrounding environment
is described. Once obstacles are detected, the robot can replan its trajectory
and navigate locally in light of built OGM. A global path planning has been
achieved by GSA method to create a global trajectory. The BNN local navigator
integrated with speed profile and safe border patrolling waypoint method ensures
the robot traverses at the safe speed locally with obstacle avoidance.

References

1. Adiyatov, O., Varol, H.A.: Rapidly-exploring random tree based memory efficient
motion planning. In: 2013 IEEE International Conference on Mechatronics and
Automation, pp. 354–359 (2013)

2. Brostow, G.J., Fauqueur, J., Cipolla, R.: Semantic object classes in video: a high-
definition ground truth database. Pattern Recogn. Lett. 30(2), 88–97 (2009)

3. Chen, J., Luo, C., Krishnan, M., Paulik, M., Tang, Y.: An enhanced dynamic
Delaunay triangulation-based path planning algorithm for autonomous mobile
robot navigation. In: Intelligent Robots and Computer Vision XXVII: Algorithms
and Techniques, vol. 7539, pp. 253–264. SPIE (2010)

4. Glasius, R., Komoda, A., Gielen, S.C.: Neural network dynamics for path planning
and obstacle avoidance. Neural Netw. 8(1), 125–133 (1995)

5. Lei, T., Luo, C., Ball, J.E., Rahimi, S.: A graph-based ant-like approach to optimal
path planning. In: 2020 IEEE Congress on Evolutionary Computation (CEC), pp.
1–6. IEEE (2020)

6. Lei, T., Luo, C., Ball, J.E., Bi, Z.: A hybrid fireworks algorithm to navigation
and mapping. In: Handbook of Research on Fireworks Algorithms and Swarm
Intelligence, pp. 213–232. IGI Global (2020)

7. Lei, T., Luo, C., Jan, G.E., Fung, K.: Variable speed robot navigation by an ACO
approach. In: Tan, Y., Shi, Y., Niu, B. (eds.) ICSI 2019. LNCS, vol. 11655, pp.
232–242. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26369-0 22

https://doi.org/10.1007/978-3-030-26369-0_22


16 T. Lei et al.

8. Lei, T., Luo, C., Sellers, T., Rahimi, S.: A bat-pigeon algorithm to crack detection-
enabled autonomous vehicle navigation and mapping. Intell. Syst. Appl. 12, 200053
(2021)

9. Liu, C., Tomizuka, M.: Real time trajectory optimization for nonlinear robotic
systems: relaxation and convexification. Syst. Control Lett. 108, 56–63 (2017)

10. Luo, C., Gao, J., Murphey, Y.L., Jan, G.E.: A computationally efficient neural
dynamics approach to trajectory planning of an intelligent vehicle. In: International
Joint Conference on Neural Networks (IJCNN), pp. 934–939 (2014)

11. Luo, C., Yang, S.X.: A bioinspired neural network for real-time concurrent map
building and complete coverage robot navigation in unknown environments. IEEE
Trans. Neural Netw. 19(7), 1279–1298 (2008)

12. Luo, C., Yang, S.X., Krishnan, M., Paulik, M.: An effective vector-driven
biologically-motivated neural network algorithm to real-time autonomous robot
navigation. In: 2014 IEEE International Conference on Robotics and Automation
(ICRA), pp. 4094–4099 (2014)

13. Rashedi, E., Nezamabadi-Pour, H., Saryazdi, S.: GSA: a gravitational search algo-
rithm. Inf. Sci. 179(13), 2232–2248 (2009)

14. Sternberg, S.: Lectures on Differential Geometry, vol. 316. American Mathematical
Society (1999)

15. Sturtevant, N.R.: Benchmarks for grid-based pathfinding. IEEE Trans. Comput.
Intell. AI Games 4(2), 144–148 (2012)

16. Wang, L., Luo, C., Li, M., Cai, J.: Trajectory planning of an autonomous mobile
robot by evolving ant colony system. Int. J. Robot. Autom. 32(4), 406–413 (2017)

17. Wang, P., Xue, B., Liang, J., Zhang, M.: Multiobjective differential evolution for
feature selection in classification. IEEE Trans. Cybern. (2021)

18. Zhao, W., et al.: A privacy-aware Kinect-based system for healthcare professionals.
In: IEEE International Conference on Electro Information Technology (EIT), pp.
0205–0210 (2016)

19. Zhu, D., Tian, C., Jiang, X., Luo, C.: Multi-AUVs cooperative complete coverage
path planning based on GBNN algorithm. In: 29th Chinese Control and Decision
Conference (CCDC), pp. 6761–6766 (2017)



Hybrid Topology-Based Particle Swarm
Optimizer for Multi-source Location

Problem in Swarm Robots

JunQi Zhang1,2, Yehao Lu1,2, and Mengchu Zhou3(B)

1 Department of Computer Science and Technology, Tongji University,
Shanghai, China

zhangjunqi@tongji.edu.cn
2 Key Laboratory of Embedded System and Service Computing,

Ministry of Education, Shanghai, China
3 Department of Electrical and Computer Engineering, New Jersey

Institute of Technology, Newark, NJ 07102, USA

zhou@njit.edu

Abstract. A multi-source location problem aims to locate sources in an
unknown environment based on the measurements of the signal strength
from them. Vast majority of existing multi-source location methods
require such prior environmental information as the signal range of
sources and maximum signal strength to set some parameters. How-
ever, prior information is difficult to obtain in many practical tasks. To
handle this issue, this work proposes a variant of Particle Swarm Opti-
mizers (PSO), named as Hybrid Topology-based PSO (HT-PSO). It com-
bines the advantages of multimodal search capability of a ring topology
and rapid convergence of a star topology. HT-PSO does not require any
prior knowledge of the environment, thus it has stronger robustness and
adaptability. Experimental results show its superior performance over
the state-of-the-art multi-source location method.

Keywords: Swarm robots · Multi-source location problem · Particle
Swarm Optimizer

1 Introduction

A source location problem is an area of growing interest [6,8,9,13,15]. It arises
in many application scenarios, such as chemical spill investigation [8], fire spot
discovery [12], disaster zone rescue [3] and target search for military use [7].
Since these tasks may be in a dangerous environment or pose a risk to humans,
there has been great interest in deploying autonomous systems to solve it. In
order to cope with such problem, the similarity between a particle swarm and
a robot swarm is considered. They both try to find the optimal solutions in a
certain area through the cooperation of individuals in a swarm. The former is to
find multiple optima in a multi-dimensional search space. The latter is to find
c© Springer Nature Switzerland AG 2022
Y. Tan et al. (Eds.): ICSI 2022, LNCS 13345, pp. 17–24, 2022.
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multiple source locations with the highest signal strength in a physical space.
Thus, by performing PSO as a self-organized strategy, a robot swarm can find
sources in reality.

In order to achieve better performance, most existing multi-source location
methods require some environmental prior information to set parameters for the
algorithm. For example, in [9], the signal threshold parameter is used to con-
struct subgroups. The robots whose obtained signal value exceeds this threshold
are selected as candidate cluster centers. However, such prior information is dif-
ficult to obtain in practical tasks. When an environment changes, these methods
may no longer work well. In this work, a novel PSO variant named as Hybrid
Topology-based PSO (HT-PSO) for a robot swarm is proposed. HT-PSO utilizes
a ring topology to select elite particles as cluster centers for adaptive grouping
in each generation. The remaining robots choose their closest cluster center to
form groups. Each group uses a star topology to accelerate the convergence.
HT-PSO does not require any prior knowledge of the environment, thus it has
stronger robustness and adaptability. In addition, this hybrid topology achieves
finer search performance and faster convergence speed than its competitors.

The rest of this paper is arranged as follows. Section 2 reviews the related
work of PSO and source location methods. Section 3 develops HT-PSO in detail.
Section 4 experimentally validates HT-PSO in different type of environments by
comparing it with its peers’ performance and gives the visual simulation results.
The conclusion is drawn in Sect. 5.

2 Related Work

In this section, we introduce the related work about the description of a multi-
source location problem and the framework of standard PSO in detail.

2.1 Multi-source Location Problem Description

A multi-source location problem considers several sources which are located on
a plane and continuously transmit signals. A robot swarm explores the envi-
ronment to locate them. The robots have the capability to measure the signal
strength at their current locations. However, they have no information about the
exact locations of sources, the number of sources and their decay profiles. The
objective of robots is to find the locations of these sources, i.e., the locations
where the signal strengths are the maximum. Meanwhile, robots are expected to
converge around the sources in the end of their entire search mission.

2.2 Standard PSO

Standard PSO [1] contains two classic topological structures, i.e., star topology
and ring one. The fomer allows information sharing between any pair of particles.
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Thus, it tends to lead to the fastest convergence. Each particle maintains two
attributes: velocity vi and position xi, which are updated as:

vd
i = χ(vd

i + c1r
d
1(p̂

d
i − xd

i ) + c2r
d
2(ĝ

d − xd
i )), (1)

χ =
2

|2 − ϕ −
√

ϕ2 − 4ϕ| , ϕ = c1 + c2, (2)

xd
i = xd

i + vd
i (3)

where d ∈ {1, 2, ...,D} and D means the dimension of the solution space; p̂i

is the personal historical best position discovered by the i-th particle; ĝ is the
global historical best position found so far by the whole particle swarm; c1 and
c2 are two acceleration coefficients to weigh the relative importance of p̂i and ĝ,
respectively; rd

1 and rd
2 two random numbers sampled from the uniform distri-

bution over [0, 1]; and χ represents the constriction factor which is derived from
the existing constants in the velocity update equation. When ϕ > 4, convergence
would be fast and guaranteed according to [1].

A ring topology aims to increase diversity during PSO’s search process. It
allows each particle to interact only with its immediate left and right neighbors.
Each particle’s velocity is updated as
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q̂i = argmax(f(xi), f(
←
x), f(

→
x)) (5)

where
←
x and

→
x are the positions of particle i’s immediate left and right neighbors,

q̂i is the neighborhood historical best position of particle i.

3 Proposed Algorithm

In this section, an hybrid topology-based PSO, called HT-PSO, is proposed to
solve a multi-source location problem with swarm robots.

3.1 Cluster Centers Selection

In HT-PSO, there is a one-to-one correspondence between robots and particles.
At first, a robot swarm is randomly initialized in a search space. In each gener-
ation, robots measure the signal strength f(x) at their current positions. Each
robot updates its personal historical best position p̂i as follows:

p̂i = argmax(f(xi), f(p̂i)) (6)

Grouping is a crucial step in multi-source location. The number of subswarms
and their search directions determine the number of sources that can be located.
In HT-PSO, a ring topology is utilized to select elite robots as cluster centers
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for adaptive grouping. The robots whose personal historical best positions are
same with their local historical best positions, i.e.,

p̂i = q̂i (7)

are considered as cluster center candidates. If the signal strength value detected
by these candidates in two adjacent generations does not change, they are
excluded. Because these robots are likely to be in a no-signal area.

In the meanwhile, a cluster center aging mechanism is proposed to enhance
the convergence performance of the swarm. Each robot has an aging attribute
θi, which represents the remaining time for robot i as a cluster center and is
initialized to 0. Once a robot satisfies the above condition, its age θi is increased
by 1. Otherwise, θi is decreased by 1. Note that θi is not less than 0.

θi =

{
θi + 1, p̂i = q̂i

max(0, θi − 1), p̂i �= q̂i

(8)

All robots with θi > 0 are selected as cluster centers. This process is adaptive
and does not require any environmental prior information.

3.2 Fast Convergence

The remaining robots choose their closest cluster center to form groups. Each
group utilizes a star topology structure to achieve fast convergence, which allows
information sharing among all robots in the group. The global historical best
position ĝi is calculated for each group Γi as:

ĝi = argmax
∀rk∈Γi

(f(p̂k)) (9)

where rk represents robot k and p̂k is rk’s personal historical best position.
Finally, robots update their velocities and positions by (1) and (3) respectively.

3.3 Overall Framework

HT-PSO utilizes a ring topology to select cluster centers for adaptive grouping
in each generation. Then, the remaining robots choose their closest cluster center
to form groups. Each group uses a star topology to accelerate the convergence.
This hybrid topology aims to help HT-PSO achieve fine search performance and
fast convergence. HT-PSO is realized via Algorithm 1.
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Algorithm 1. The pseudo code of overall framework
1: Initialize the swarm robots randomly
2: Initialize t = 1, θ = [0, ..., 0]
3: while t ≤ G do
4: Swarm robots measure the signal strength by sensors
5: Calculate p̂i and q̂i for each robot by (6) and (5), respectively
6: Calculate cluster centers
7: Form groups and achieve fast convergence
8: t = t + 1
9: end while

4 Experimental Settings

4.1 Environment Description

In this work, the environment is set as a 16 × 16 square area. There are an
unknown number of signal sources randomly distributed in the environment.
Each source has a signal range and its signal strength gradually weakens with the
distance to the source. In order to verify the effectiveness and robustness of the
proposed strategy, four different environments are designed, as shown in Fig. 1.
The environmental parameters are presented in Table 1, where N means the
number of sources, R denotes the signal range of each source and W represents
the maximum signal strength. In practice, the signal strength is measured by
the robots’ sensors. In experiments, for each position xi, it can be calculated as:

ď = min
Si∈S

dxi,Si
, (10)

f(xi) =

{
W − ď ∗ (W/R), ď ≤ R

0, ď > R
(11)

where S represents the set of source locations, ď represents the distance between
xi and the nearest source. To reduce statistical error, each test is repeated for
1000 times independently and the locations of signal sources in each experiment
are random.

(a) Basic (b) Smaller range (c) Weaker strength (d) dense sources

Fig. 1. Four different environments.
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Table 1. Different environments

Environment W R N

Basic environment 18 3 5

Smaller signal range environment 18 1 5

Weaker signal strength environment 13 3 5

Dense sources environment 18 1 16

4.2 Experimental Results

In this section, the proposed algorithm is compared with the state-of-the-art
multi-source location method to show its effectiveness and robustness. Search-
ing Auxiliary Points-based Constriction Factors PSO (SAP-CFPSO) [9] is the
latest multi-source location method. It is a two-stage search algorithm. The
first stage makes robots explore the whole searched area randomly and groups
them by estimating the number and location of targets roughly. The second
stage makes robots exploit their nearby area in groups guided by CFPSO. The
parameter settings are given in Table 2, where NA means not applicable, n is
the number of robots, G represents the total number of generations and Vmax

means the maximum velocity of robots. Besides, η is the proportion of the ran-
dom search stage that is related to the size of the search environment, fth is
the threshold parameter for dividing elite robot swarm that is related to the
maximum source signal strength, ld is the distance parameter, which is designed
for grouping and related to the influence range of sources. All the parameters
are set by following [7]. These parameters affect the performance significantly.
However, they are typically difficult to set because the environmental informa-
tion is unknown. Especially, when the environment changes, these parameters
may no longer work well. In comparison, our proposed strategy eliminates such
parameters successfully.

Table 2. Parameter Settings

Method c1 c2 n G Vmax η fth ld

SAP-CFPSO 2.1 2.1 80 100 0.2 0.2 10 6

HT-PSO 2.1 2.1 80 100 0.2 NA NA NA

In order to evaluate the performance, a multi-source location task has two
basic metrics, i.e., locating accuracy “A” and convergence distance “Δ”. If the
distance between a robot and a signal source is less than 0.01 when the search
ends, it means that this source has been successfully located.

“A” means the success rate of finding sources:

A =
N

′

N
(12)
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where N
′

donates the number of found sources and N donates the number of
total sources.

“Δ” is the average of the distance between each robot and the source closest
to it when the search ends:

Δ =
n∑

i=1

dxi,Sri
/n (13)

where n is the number of robots and dxi,Sri
represents the distance between xi

and the source closest to it.
The total comparison results are presented in Table 3, which indicate that

HT-PSO outperforms the state-of-the-art multi-source location method. HT-
PSO improves the search accuracy by 46.75% and reduces the convergence dis-
tance by 34.21%. It significantly improves the locating accuracy and reduces
the convergence distance. Meanwhile, it eliminates the sensitive environmental
parameters in a search process. Thus, HT-PSO exhibits stronger robustness and
applicability.

Table 3. Comparison results

Method Basic Smaller range Weaker strength Dense sources

A Δ A Δ A Δ A Δ

SAP-CFPSO 88.1% 0.0304 54.5% 0.1741 43.8% 0.5330 48.7% 0.1074

HT-PSO 93.9% 0.0194 87.2% 0.1558 94.2% 0.0182 51.3% 0.1143

5 Conclusion

In this work, a novel multi-source location approach called Hybrid Topology-
based PSO (HT-PSO) is proposed. It has two distinct features. First, HT-PSO
significantly improves the locating accuracy and greatly accelerates the con-
vergence speed. Second, HT-PSO does not require any prior knowledge of the
environment to set some parameters, thus it has stronger robustness and adapt-
ability. Compared with the state-of-the-art multi-source location method, the
search accuracy is improved by 46.75% and the convergence distance is reduced
by 34.21%. Future work should focus on more benchmark studies with other
recently proposed intelligent optimization methods [2,4,5,10,11,14].
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Abstract. With thedevelopment ofmulti-UAVs technology, detecting and search-
ing unknown areas by using autonomous multi-UAVs have become a frontier
research direction with difficult in this field. To illustrate the progress of coopera-
tive target searching bymulti-UAVs, firstly, the significance of cooperative search-
ing and its application inmilitary and civil fields are systematically described. Then
the current research status of the multi-UAVs cooperative searching is described,
and three aspects are analyzed, including environment modeling, cooperation
architecture and searching methods. Finally, the conclusions are made in terms of
the autonomous and cooperation ability of multi-UAVs. The future research trend
of improving the efficiency of multi-UAVs cooperative search is discussed and
prospected from the perspectives of UAVs’ perception, cognition, autonomy, as
well as human-machine cooperative technology.

Keywords: Multi-UAVs · Swarm intelligence · Target searching · Environment
modeling · Cooperative architecture · Search method

1 Introduction

SwarmUAVs technology involves the design, construction anddeployment of large-scale
UAV group to solve problems or perform tasks in a cooperative manner [1]. Due to the
limited mission capabilities of a single UAV, the performance of multi-UAVs system is
superior to that of an independent individual UAV system through effective cooperation
between UAVs [2]. Multi-UAVs system has unique system attributes and functions such
as high robustness, scalability and flexibility, which makes the execution of complex
tasks more effective and reliable [3]. With the development of multi-UAVs technology,
it plays an increasingly important role in military and civil field. In military, with the
development of science and technology and the deepening of informationwarfare, robots
have become the best choice to perform dull, hash and dangerous tasks. For example,
in recent years, the frequent occurrence of Predator, Global Eagle and other combat
UAVs in the Afghan and Syrian wars shows the advantages of UAVs in reconnaissance
and search. In civil, the rapid development of multi-UAVs technology has gradually
changed people’s lifestyle and working style, such as in forest areas where fires occur,
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multi-UAVs plays an important role in the troubleshooting of thermal power plant [5].
Therefore,multi-UAVs cooperative search technology is a crucial technology formodern
war, civil rescue and other activities.

The autonomous control system of UAV means that the system can automatically
generate optimal control strategies, complete various strategic tasks, and have fast and
effective task adaptive ability without human intervention through online environment
perception and information processing [6]. Challenges faced by UAV systems include
complex, unstructured dynamic environments, and various real-time external threats and
accidents. The U.S. Department of Defense believes that the first technology for future
UAVs is to increase autonomy and collaboration, all tasks of UAV systems depend
on autonomous environmental awareness. Therefore, how to achieve high efficiency
cooperation of swarm autonomous UAVs in complex environment is the key to the
research of multi-UAVs cooperative search. This paper will review the research progress
of multi-UAVs cooperative target searching technology around the environment mod-
eling, cooperative architecture and searching method in multi-UAVs cooperative target
searching.

2 Advances of Key Technologies for Multi-UAVs Cooperative
Target Searching

The US military proposed the concept of swarm UAVs operation in the late 1990s. At
present, the requirement for intelligent control of UAV is increasing, as shown in Fig. 1,
the U.S. Department of Defense classifies the Autonomous Control Level (ACL) of an
UAVs system into 10 levels [7]. With the improvement of the autonomy of the UAVs
system, the UAVs system has different requirements from remote control (level 1) to full
autonomy (level 10), the corresponding perception, coordination and decision-making of
the UAVs system have different requirements. In the area of UAVs system, US Predators
(RQ-1/MQ-1) and Global Eagles (RQ-4) can achieve ACL 2 to 3, while Joint UAV(J-
UCAS) and X47-B can achieve ACL 5 to 6. Unmanned combat armed rotator (UCAR)
achieves ACL 7 to 9. However, most UAVs systems are still at a low level of autonomy,
so it is necessary to combine swarm UAVs with specific task requirements to improve
the autonomy of the UAV and the efficiency of performing operational tasks.

At present, the multi-UAVs technology has become the frontier hot spot in the
research of swarm intelligence [8]. Most of the literatures on the theory of swarm UAVs
cooperation focus on the research of the algorithm of swarm UAVs cooperation. For
research on algorithm and simulation of swarm UAVs cooperation, the research direc-
tions include swarm UAVs autonomous formation [9], swarm UAVs cooperative target
searching [10], swarm UAV cooperative area coverage [11], swarm UAVs cooperative
target allocation [12]. For the problem of multi-UAVs cooperative search, due to a vari-
ety of uncertain factors, the search environment is dynamic. Many fruitful works have
been carried out on the research of multi-UAVs cooperative target searching technol-
ogy in complex environment, most of which are focused on three aspects: environment
modeling, cooperation architecture and search method.

For the research of swarm UAVs cooperation technology, we must start from the
characteristics and task requirements ofUAVs. Firstly, we need tomodel the environment
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Fig. 1. The autonomous control level of UAV defined by AFRL and the development of UAV
autonomy system.

according to the task requirements, and then improve the efficiency of UAVs completing
the task through appropriate swarm UAVs cooperation architecture and search method.
This paper analyzes and discusses the environment modeling, cooperation architecture
and search method in the cooperative search of swarm UAVs.

2.1 Environment Modeling

The main methods of environment modeling of swarm UAVs cooperation include grid
method, artificial potential field method and graph theory method. Grid method divides
the task environment of UAVs into several grids at fixed interval, as shown in Fig. 2,
in the task area of LX × Ly, the task area is divided into M × N grids according to the
�d interval distance, the size of a single grid directly affects the memory required by
the computer to store environmental information. Environment grid search maps mainly
include target probability map, digital pheromone map, return map, and search maps
generated by different methods. Artificial potential field is a method to model the task
environment based on the attractiveness of the target and the repulsion of the threat,
swarm UAVs can achieve obstacle avoidance search of the target under the combined
action of target gravity and threat repulsion. Graph theory method divides the area into
several sub-areas based on the terrain and environmental characteristics of the area, and
combines the task characteristics of each sub-area to assign search tasks and plan flight
routes for UAVs. The more common method is based on Voronoi, as shown in Fig. 3.

Song et al., proposed a swarm robots search algorithm based on neural network,
corresponding the neural network to the grid environment, and constructed a digital
pheromone map [13]. Pehlivanoglu et al., and Zhang et al., constructed multiple robots
cooperative area models based on Voronoi to achieve search coverage for unknown
environment [14, 15]. Zheng et al., divided the area to be searched into several sub-
areas, calculated the probability of the existence of the target in each area, constructed the
target probability map, and achieved the multi-UAVs cooperative search dynamic target
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Fig. 2. Area division based on grid method.

Fig. 3. Area division based on Voronoi.

in unknown environment [16]. Zhen et al., rasterized the UAV task area and represented
the threat area in a grid map, built the environmental cognitive model of target attraction
field and threat repulsion field, and built the target probability map based on the grid
map [17].

2.2 Cooperation Architecture

In order for swarm UAVs to accomplish the complex tasks in a cooperative manner,
an architecture for controlling its movements must be established. The main task of
the autonomous control system for UAVs is to connect each sub-system into a whole,
manage and dispatch each sub-system in a unified way, so that each sub-system can
complete the overall task in unison, and an excellent autonomous control system can
improve the efficiency of multi-UAVs task completion. Multi-UAVs control systems
are generally divided into centralized architecture, distributed architecture and hybrid
architecture.

As shown in Fig. 4, it is the centralized architecture, which has a control center,
all the information of the UAVs should be sent to the control center centrally, and all
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the information in the system will be processed centrally. The centralized architecture
is relatively simple and the system management is convenient, but when the number of
UAVs is large, the computational complexity of the centralized control method increases
significantly, resulting in a significant reduction in the work efficiency of UAVs. When
the control center fails, the whole system will be paralyzed [18]. Wei et al., adopted an
architecture of centralized control of multi-UAVs in the case of a small number of UAVs,
and realized the coverage search of the task area by operating the actions of multi-UAVs
through the control center [19].

Fig. 4. Centralized architecture.

As shown in Fig. 5, it is a distributed architecture, which adopts the way of autonomy
and cooperation, the complex solution problem is divided into sub problems that can be
solved by each UAV. There is an equal cooperative relationship between UAVs, and they
can communicate directly. Distributed architecture can increase the number of robots and
has high flexibility. It is suitable forworkspace in dynamic environment. At present, most
multi-UAVs cooperation methods use distributed architecture. Li et al., and Bakhshipour
et al., used the distributed architecture on the cooperative search of multi-UAVs [20, 21].

Fig. 5. Distributed architecture.

The hybrid architecture is the integration of the first two architectures, with a dis-
tributed architecture between the swarm UAVs, and a centralized architecture between
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the swarmUAVs and the control center, as shown in Fig. 6. The hybrid architecture com-
bines the advantages of the two structures to make the swarm UAVs more intelligent.
Hou et al., adopted a hybrid architecture to divide the swarmUAVs into multiple groups,
the UAVs in each group can communicate with each other, and the leading UAV in each
group can communicate with each other, so as to realize the communication between
groups, and each group is centrally controlled by the control center [22].

Fig. 6. Hybrid architecture.

2.3 Cooperative Searching Method

For the multi-UAVs cooperative target searching task in unknown environment, from
the perspective of scalability and applicability, this paper focuses on the scanning search
method, dynamic search method and intelligent optimization method.

Scanning search method mainly searches the task area for the purpose of area cover-
age. This method can ensure that UAVs can traverse the whole area. Common scanning
search methods include parallel search and spiral reconnaissance [23]. As a simple
and practical coverage search method, the scanning search method has the advantages in
searching for static targets, but it has poor adaptability to dynamic environment. Because
it mainly focuses on area coverage, the time efficiency under the target search task is not
as efficient as other methods.

Dynamic search methods mainly include discrete Markov decision-making process
and distributed Model Predictive Control (DMPC). Dynamic search algorithm is widely
used in complex multi-UAVs cooperative target searching task because of its simple
calculation and fast response to dynamic events. Elamvazhuthi et al., and Zhou et al.,
divided and modeled the environment, added information to the environment based
on discrete Markov chain, and combined the constructed model with other advanced
algorithms to complete the cooperative search task of multi-UAVs [24, 25].

Model Predictive Control (MPC) uses the control system model and optimization
technology to design the optimal control input of the system for a predictive cycle.
The core idea is to solve the problem by rolling optimization. DMPC uses a distributed
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structure to improve the decision-making speed of the whole system. Zhao et al., Lun
et al., and Yu et al., controlled the motion of UAVs based on DMPC, and solved the
problem of cooperative search of multi-UAVs in unknown environment [26–28].

In the multi-UAVs cooperative search problem, the current related research is mostly
based on intelligent optimization methods. Traditional optimization methods have less
application because of the rapid increase of time and space complexity and poor solu-
tion results when solving large-scale problems. The concept of swarm intelligence first
appeared in cellular robotic systems proposed by Beni and Wang in 1989 [29]. Intel-
ligent optimization methods derive from intelligent behaviors of cooperation between
biological groups, for example, inspired by the behavior of social groups of organisms
such as bird flocks, ants, bats, wolves, and plant populations [30]. Numerous studies
have shown that intelligent optimization algorithms can be applied cooperative control
of multi-UAVs, and can improve the efficiency of UAVs in solving problems in com-
plex environments. Common intelligent optimization algorithms include particle swarm
algorithm, ant colony algorithm, bat algorithm, gray wolf optimizer, bean optimization
algorithm and bacterial colony algorithm.

MD et al., proposed a new particle swarm algorithm based on motion coding for
multi-UAVs searching for dynamic targets [31]. Hta et al., proposed a new adaptive
robot grey wolf optimizer algorithm to solve the cooperative search target problem of
swarm robots in unknown environment. An adaptive speed adjustment strategy was used
to track the dynamic target, and compared with other methods, this method has obvious
advantages in the efficiency of target searching [32].Wang et al., constructed an intrusion
model of dynamic targets, and proposed an improved bat algorithm for hismodel to solve
the trajectory optimization problem of UAVs tracking the intrusive targets [33]. Not
limited to the research on social animal groups, the adaptive strategy of plant population
also provides novel ideas for the research of swarm intelligence and swarm robots, and a
swarm UAVs search algorithm based on the evolution of plant population distribution is
constructed [34, 35], and effective simulation experiments are carried out for the problem
of pollution source search. Kyriakakis et al., usedmoving peak to simulate themovement
ofmultipleUAVs searching formultiplemoving targets [36]. An onlinemulti-population
framework was constructed, which is suitable for most intelligent optimization methods
and meets the experimental requirements of multi-UAVs searching for multiple targets
in unknown environments.

3 Research Summary and Prospect

The main problem of multi-UAVs cooperative target searching technology is how to
make full use of the autonomy, cooperation and reduce the time and space complexity of
the algorithm. In recent years, swarm intelligence andmachine learning technology have
been gradually introduced into the multi-UAVs cooperative problem. The application
of these technologies makes the UAVs have stronger self-learning and self-organization
ability in complex environment. The complexity of the algorithm is lower than other
traditional algorithms. The combination of distributed architecture and centralized archi-
tecturemakesUAVsfleetmore cooperative, enabling swarmUAVs to remain cooperative
to complete tasks even when a single UAV fails or is threatened by the environment.
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With the increasing complexity of task environment, there is no effective means to
achieve the autonomous control of UAVs in dynamic unknown complex environment
and time-sensitive situation, and to achieve fast and effective acquisition and processing
of information and the control ability of the platform. The contents that need further
research on the autonomous control technology of swarm UAVs systems include:

(1) The comprehensive environmental awareness and intelligent battlefield situation
awareness capabilities of the UAVs. Due to the harshness and complexity of the
battlefield environment, the impact of emergencies such as single UAV failures and
threat in the environment cannot be ignoredwhen performing target searching tasks.
In the future, UAVs need to have a more comprehensive environmental awareness,
be able to timely perceive and respond to changes in the battlefield environment,
improve the awareness of the battlefield situation, and achieve better search results.

(2) Human-machine intelligence integration and learning adaptability. Operators
should give proper guidance to multi-UAVs systems in order to achieve more accu-
rate control, how to use the characteristics of each human-machine effectively to
achieve the integration of human-machine intelligence, and how to design a more
efficient control structure of human-machine cooperation system to improve the
usability and overall operational efficiency of multi-UAVs systems is the further
research content to improve the cooperative efficiency of multi-UAVs systems.

(3) The autonomous navigation, planning and control capabilities of the UAVs under
complex conditions. In order to realize the in-depth cognition of complex environ-
ment of swarm UAVs, future UAVs systems should establish intelligent develop-
ment mechanism, which can make UAVs systems have similar stable learning and
intelligent development mechanisms to human beings, improve the self-learning,
self-reasoning and self-organization capabilities of UAVs systems, and give full
play to the real-time decision-making advantages of swarm UAVs. Enhance the
ability to cope with complex environment, such as combining traditional methods
with swarm intelligence and machine learning, to make UAVs more autonomous.

4 Conclusion

This paper systematically combs the problem of multi-UAVs cooperative target search-
ing. The key technologies of target searching, including environment modeling, cooper-
ative architecture and search method, are discussed in depth. The development trend of
multi-UAVs cooperative target searching is analyzed. The key to improve the efficiency
ofmulti-UAVs cooperative search is to improve the autonomy and cooperative capability
of multi-UAVs system.Multi-UAVs system has made great progress in self-organization
and cooperative control of UAVs. The integration of swarm intelligence and other meth-
ods enables multi-UAVs to have certain autonomous decision-making ability. In the
future, for complex unknown environment, improving environment modeling method,
improving UAVs perception and cognitive ability, designing a more reasonable cooper-
ative architecture, realizing more efficient human-machine cooperative control technol-
ogy, building swarm self-learning and intelligent development mechanism will greatly
improve the effectiveness and efficiency of multi-UAVs cooperative target searching.
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Abstract. In this article, we consider the multi-agent control based on
the artificial potential field (APF) method with predicted state and input
threshold. APF is a very practical and efficient method for multi-agent
control. However, the accuracy of APF is susceptible to communica-
tion delay. Hence, we introduce the predictive state model to reduce the
impact of this delay when the agent is avoiding collisions and maintain-
ing formation. Meanwhile, the input threshold is applied to ensure the
safety of the system. The introduction of the predicted state and the
input threshold leads to the failure of traditional APF. Therefore, we
propose a new controller based on the improved APF. Then, the Lya-
punov stability of the designed controller is analyzed. Simulation results
show the effectiveness of the proposed controller and its superiority over
the original method.

Keywords: Multi-agent system · Artificial potential field · Input
threshold · Predicted state model

1 Introduction

Considering the poor performance and the limited load of a single agent, the
formation of multiple agents must be dispatched. In a rapidly changing environ-
ment, the multi-agent system needs to adjust the current state, which not only
requires fast and stability but also needs to ensure that communications of the
whole system remain connected [1,2]. At the same time, the multi-agent system
needs to avoid obstacles in real-time and avoid collisions between individuals
in formation [3]. Therefore, further research is urgently needed by facing the
cooperative control problem under many constraints.

Formation control of multi-agent is a vital issue that has been maturely
researched [4,5]. Through effective information interaction, the swarm formation
can quickly converge to the desired formation and remain unchanged or change

c© Springer Nature Switzerland AG 2022
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within the allowable error range. The main formation control algorithms include
the leader-follower method, artificial potential field (APF) function method, con-
sensus theory-based method, and so on. In [6], authors transform the track-
ing errors into new virtual error variables and limit the state tracking errors
within the prescribed bounds based on a new adaptive fuzzy output-feedback
method. In [7], authors respectively define formation errors of position and veloc-
ity and design the controller based on the consensus theory. In [8], authors apply
consensus-based approaches to deal with the time-varying formation control
problems for swarm systems and put forward the conditions needed to form
a time-varying center. However, the application of formation flying in the actual
environment still faces many problems. We aim to study further and find a more
effective method.

Formation control and obstacle avoidance control are often inseparable. For
multi-agent formation flying, a minor collision may cause a chain reaction, so
how to achieve collision avoidance is a crucial technology to ensure the safe
flight of formations [9,10]. Authors in [11] propose a barrier function-based for-
mation navigation controller based on only local information to achieve collision
avoidance. It has the characteristics of fast and small consumption but cannot
effectively prevent the deadlock problem. Authors in [12] design a novel Barrier
Lyapunov functions to limit the position of the agent to achieve the location
constraints of the multi-agent system, which is similar to APF based methods.
Researchers have proven that the APF method is a mature and efficient real-time
path collision avoidance method [13].

Taking into account the communication delay, physical delay, or some state
uncertainty in the real situation, the distance between the two agents may be less
than the safe distance [14]. Authors in [15] investigate the latest developments
in personalized driving assistance systems, and they find that online learning
to adjust driving thresholds is the future development direction. Authors in [16]
introduce the estimate position obtained by additional information to design the
controller and make the agents converge to consensus in a cooperative manner.
However, too much information makes it more challenging to achieve. Therefore,
we aim to design an APF function based on the predicted state to make the
control simpler and more effective.

The contributions of this paper are discussed as follows.

(1) We propose predicted state modeling to improve APF and give the agent
more buffer to better complete the tasks of collision avoidance and target
tracking, which reduces the impact of delay to a certain extent.

(2) To avoid the uncertainty caused by severe velocity changes, we design the
controller so that the speed of each agent is limited to the maximum safe
speed.

(3) A new controller is designed to realize collision avoidance and formation
maintenance.
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2 Problem Statement

2.1 Multi-agent Dynamics Modeling

Consider a multi-agent system with N agents. We define the dynamics model of
the agent i in the system as

ṗi = vi.
v̇i = ui.

(1)

where pi ∈ R
d, vi ∈ R

d are the position vector and the velocity vector of the
agent i, and ui ∈ R

d is the acceleration vector applied on the ith agent as control
input in d-dimensional space, i = 1, 2, · · · , N .

2.2 Predicted State Modeling

In this section, we take into account the actual situation of the movement with
certain inertia and define a predicted state as

p̂i(t) � pi(t) + μ1vi(t) + μ1μ2ui(t − 1). (2)

where μ1 > 0 and μ2 > 0 are the predicted position impact factor and the
predicted velocity impact factor, respectively, and their size are related to the
delay. i = 1, 2, · · · , N .

2.3 Problem Formulation

The APF method based on the predicted state is designed to realize agents mov-
ing with collision avoidance and formation maintenance. The expected distance
between the agent is dij and the collision occurs if the distance is less than rin.
The constraints in formation control problems are as follows.

(1) For collision avoidance, |pi − pj | ≥ rin.
(2) For formation maintenance, |pi − pj | = dij .

To realize the purpose, we define system potential Lyapunov function as
V (t) =

∑N
i=1 Vi, where Vi is the potential function of agent i. Therefor, the

maximum upper limit of designed collision avoidance part Gmax
1 and formation

maintenance part Gmax
2 should Satisfy

Vi(t) < min {Gmax
1 , Gmax

2 } . (3)

Assumption 1: The system can provide as much control as we need to ensure
the steady work of the multi-agent system.
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3 Controller Design

We define the predicted distance between agents i and j is

x̂ = |p̂i − p̂j | . (4)

and the measurement distance between agents i and j is

x = |pi − pj | . (5)

for i, j = 1, 2, · · · , N .

3.1 Collision Avoidance

This part is designed to keep each agent at a boundary distance to avoid the
collision. The obstacle avoidance term function works when rin ≤ x̂ ≤ rout,
where rout is collision avoidance range.

The set of all agents entering collision avoidance distances of agent i is
designed as

N l
i (t) = {j ∈ {1, . . . , N} : x̂ ≤ rout} . (6)

To make the potential function change smoothly, the potential function is
chosen as

G1(x̂) =
{

k1
∫ rout

x̂
g(s)ds, x̂ ∈ [rin, rout]

0, otherwise . (7)

where k1 is the coefficients of the collision avoidance potential function, and

g1(x̂) =
1
2

[

1 + cos
(

π
x̂ − rin

rout − rin

)]

+ 1. (8)

Then the collision avoidance control input of agent i can be design as

uc
i = −

∑

j∈N l
i (t)

∇p̂i
G1(x̂i). (9)

where ∇p̂i
represents the gradient along p̂i.

3.2 Formation Maintenance

The formation maintenance part function works when rout < x̂ ≤ R, where R is
the maximum communication distance.

The set of communication connections with agent i is design as

Nn
i (t) = {j ∈ {1, . . . , N} : (i, j)}. (10)

To generate the desired formation, the potential function is chosen as:

G2(x̂) =
{

k2
∫ d

x̂
g2(s)ds, x̂ ∈ (rout, R]

0, otherwise
. (11)
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where k2 is the coefficients of the formation maintenance potential function, and

g2(x̂)=

⎧
⎨

⎩

1
2

[
1+cos

(
π x̂−rout

dij−rout

)]
, x̂ ∈ (rout, dij ]

1+cos
(
π x̂−R

R−dij

)
, x̂ ∈ (dij , R]

. (12)

Then the formation maintenance control input of agent i can be design as

ut
i = −

∑

j∈Nn
i (t)

∇p̂i
G2(x̂i). (13)

3.3 Control Law Design

Through the previous explanation, We can design control law of intelligent agent
i in pi as

ui(t) = −
∑

j∈Nl
i (t)

∇p̂iG1(x̂)−
∑

j∈Nn
i (t)

∇p̂iG2(x̂) − S (epi , vm) − S (evi , um) +ud. (14)

where −∑
j∈N l

i (t)
∇p̂i

G1(x̂) is the collision avoidance part, −∑
j∈Nn

i (t)

∇p̂i
G2(x̂) is the formation maintenance part, ud is the control input of global

leader and

S (epi , vm) �
{

vm

‖epi ‖epi , ‖epi ‖ > vm

epi , ‖epi ‖ ≤ vm
. (15)

S (evi , um) �
{

um

‖evi ‖evi , ‖evi ‖ > um

evi , ‖evi ‖ ≤ um

. (16)

where vm is maximum safe speed, and um = v̇m is the maximum threshold input.
epi = pi − pd, evi = vi − vd, the target postilion is given as pd, vd = ṗd is the
target velocity. Velocity tends to be consistent when agents reach target points.

3.4 Stability Analysis

To prove the convergence of the proposed controller, we design a integral Lya-
punov function

V =
N∑

i=1

⎡

⎣
∑

j∈N l
i

G1(x̂) +
∑

j∈Nn
i

G2(x̂)

+
∫ epi

0

S (τ, vm)T dτ +
∫ evi

0

S (τ, um)T dτ

]

.

(17)

By derivation of V ,

V̇ =
N∑

i=1

⎡

⎣ ˙̂pTi
∑

j∈N l
i

∇p̂i
G1(x̂) + ˙̂pTi

∑

j∈Nn
i

∇p̂i
G2(x̂)

+ S (epi , vm)T (vi−vd) + S (evi , um)T (ui−ud)
]
.

(18)
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According to the definition in (16), um

‖evi ‖ will be a positive number that is

always less than 1 so that evi ≥ S (evi , um), and then substitute ˙̂pi = ṗi = vi and
ui in (14), we can get

V̇ ≤
N∑

i=1

vT
d

⎡

⎣
∑

j∈N l
i

∇p̂i
G1(x̂) +

∑

j∈Nn
i

∇p̂i
G2(x̂)

⎤

⎦ − (evi )
T (evi ) . (19)

Due to the reciprocity of forces, the repulsion between two agents is equal in size
and opposite in direction. So there is

V1 =
∑

j∈N l
i

∇p̂i
G1(x̂) +

∑

j∈Nn
i

∇p̂i
G2(x̂) = 0. (20)

Substitute the above formula into V̇ ,

V̇ ≤ − (evi )
T (evi ) ≤ 0. (21)

Since V (t) ≥ 0 and V̇ ≤ 0, it proves that V (t) is bounded which implies
vi → vd and pi → pd as t → ∞ for each agent, which means the difference
between predicted position and measurement position p̂i − pi will also tend to a
constant value.

In practice, it will happen that although the actual position has not entered
rin, the predicted position has entered rin which will cause the system to freeze.
Because of such the uncertainty of the predicted state, we need to limit the
predicted position. According to the definition of predicted position in (2), we
have

|x̂i| = |xi| + |μ1 [vi(t) − vj(t)]| + |μ1μ2 [ui(t − 1) − uj(t − 1)]| . (22)

Since um = v̇m, vi and vj will not exceed vm if |vi(0)| ≤ vm and |vj(0)| ≤ vm.
We set pm = 2μ1vm + 2μ1μ2um, and we can get

|xi| − pm ≤ |x̂i| ≤ |xi| + pm. (23)

If |x̂i| ≥ rin + pm we further have

rin + pm ≤ |x̂i| ≤ |xi| + pm. (24)

which means |xi| ≥ rin. The same can be obtained that if |x̂i| ≤ R − pm, we
have

|xi| − pm ≤ |x̂i| ≤ R − pm. (25)

which means |xi| ≤ R.
The collision avoidance part reach the maximum value at rin + pm and the

formation maintenance part at R − pm. We define
{

Ḡ1
.=

∫ rout

rin+pm
g1(s)ds,

Ḡ2
.=

∫ R−pm

rout
g2(s)ds.

(26)



Artificial Potential Field Method with Predicted State and Input Threshold 41

We assume the system can provide the largest collision avoidance potential
function as Gmax

1 = k1Ḡ1 and the largest formation maintenance potential func-
tion as Gmax

2 = k2Ḡ2. To ensure the effectiveness of collision avoidance and
formation maintenance, we need to ensure

Vi(0) < min
{
k1Ḡ1, k2Ḡ2

}
. (27)

In other words, if we choose a large enough parameter k1 and k2 to make the
above formula true, we can ensure the designed controller have the functions of
collision avoidance and forming a predetermined formation.

4 Simulation

In order to verify the feasibility of the proposed method, simulations have been
performed by a multi-agent system of 12 agents. When changing from follower
to leader, the agent 8 needs to bypass the agent on the path, while still keeping
the overall configuration unchanged. The path of the swarm is shown in Fig. 1.
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Fig. 1. Initial positions and target positions

We set rin = 1, rout = 5, R = 20, k1 = k2 = 2, vm = 35, μ1 = μ2 = 0.35.
Figure 2 reflects the minimum distance between agents with and without the pre-
dicted state. The comparison result shows that our proposed method increase the
minimum distance between agents and thus achieve better collision avoidance.
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Fig. 2. Minimum distance between agents

Because a stable formation can eventually be formed, both sets of experiments
can obtain the same minimum distance. Figure 3 shows the sum of errors between
initial positions and target positions, which can prove the iterative convergence
of the proposed control laws in this article. It can be see that the method with
predicted position does not increase the time to converge to the target location.

0 5 10 15 20 25 30
Time(s)

0

100

200

300

400

Su
m

 e
rr

or
s(

m
)

with predicted position
without predicted position

Fig. 3. Sum of errors between current positions and target positions

5 Conclusion

In this paper, we design an improved APF method for multi-agent system con-
trol, and the predicted state has been introduced into the new controller, which
gives each agent a larger buffer to avoid collisions and prevent the uncertainty
of the actual operation of the system. The control input threshold has been set
to make agents’ speed not exceed the maximum safe speed. The distributed con-
troller has been designed based on the improved APF method to ensure collision
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avoidance and preserve communication topology during the formation change.
The simulation results demonstrate the effectiveness of the designed algorithm.
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Abstract. Multi-robot scheduling and navigation methods are critical
for efficient warehouse handling. In this paper, we propose a Robot
Operating System (ROS) based scheduling and navigation method for
multi-mobile robots. In order to solve the problem of multi-robot multi-
task point assignment in the warehouse environment, we establish a tar-
get model that minimizes the total transportation time and propose a
hierarchical Genetic Algorithm-Ant Colony Optimization algorithm. By
repeating the upper and lower operations, the shortest total transport
time allocation scheme for multi-robot multi-tasking can be obtained. In
order to realize the multi-robot path planning after task assignment, a
multi-robot communication system is designed on the basis of ROS, and
the autonomous navigation of mobile robots is employed with the help
of SLAM map. The experimental results show that the proposed multi-
robot scheduling method can effectively reduce the overall transportation
time, realize the reasonable allocation of multi-robots and multi-tasks,
and successfully complete the cargo transportation task.

Keywords: Multi-robot scheduling · Genetic Algorithm · Ant Colony
Optimization algorithm · Navigation · SLAM

1 Introduction

With the rapid development of computer technology and automation technol-
ogy, mobile robots have become an irreplaceable part in the industrial production
process. In some applications with high task complexity or large number of tasks,
many enterprises have replaced the simple and repetitive manual labor links in
the traditional production process with the use of various multi-mobile robots
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with different functions, which not only reduces the consumption of human
resources and improves the efficiency and quality of production.

Multi-mobile robot scheduling is to assign more tasks to relatively few robots
and arrange the processing order of the tasks. The solutions to the robot task
assignment problem are mainly divided into online methods and offline meth-
ods. The offline algorithms mainly include heuristic swarm intelligence algo-
rithms, such as Ant Colony Optimization algorithm [1,2], Genetic Algorithm
[3], Particle Swarm Optimization algorithm [4], etc. Nowadays, many scholars
combine a variety of intelligent algorithms to solve some problems, which can
effectively solve some problems and improve the efficiency and accuracy of the
solution. Kong et al. [5] proposed a multi-robot task assignment strategy com-
bining improved particle swarm optimization and greedy algorithm. Tao et al. [6]
proposed a Genetic Particle Swarm Optimization (GPSO) to solve the schedul-
ing optimization problem of multiple automated guided vehicles (multi-AGV) in
the production workshop. Online algorithms are mainly auction algorithms. Wu
et al. [7] considered the dynamic problems related to multi-robot detection and
task execution, and proposed an improved auction algorithm. The auction algo-
rithm can realize online task assignment in dynamic scenarios, but cannot obtain
the global optimal solution. So far, most of the distribution methods aim to min-
imize the transportation path, which is not suitable for scenarios with uneven
task distribution, which may cause large differences in the running time of each
robot, resulting in a longer overall task execution time. This paper considers a
warehouse cargo handling scenario, where robots with a load limit can handle
multiple cargoes. With the goal of minimizing the overall transportation time, a
hierarchical Genetic Algorithm-Ant Colony Optimization (GA-ACO) algorithm
is proposed to solve the problem.

After the task assignment is completed, the path planning of the robots can
be completed by robot navigation. Traditional navigation methods such as road
sign navigation, magnetic navigation, and two-dimensional code navigation [8]
are greatly affected by the environment, and auxiliary equipment needs to be
laid on the site, and the robot has no autonomous decision-making. At present,
autonomous navigation solutions such as laser navigation and visual navigation
solutions have become mainstream navigation solutions. The simultaneous local-
ization and mapping (SLAM) [9] and navigation scheme based on laser [10] is
not affected by ambient light, and it has better effect and performance as a
multi-robot [11] navigation scheme.

The rest of the paper is organized as follows: Sect. 2 details the objective
model and hierarchical GA-ACO to minimize the total transit time, as well as
the robot navigation method. We present our experimental results in Sect. 3 and
conclude the paper in Sect. 4.
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2 Methods

2.1 Problem Description

In the warehousing environment, a batch of orders has P tasks, and there are N
mobile robots of the same type. The mobile robots start from the starting point,
go to the task point to load the goods, return to the starting point to unload the
goods after executing the assigned task point, and then execute the next pick-up
task. Robots stay at each task point and start point for t seconds to pick up or
unload the goods, and the load cannot exceed its maximum capacity. Assuming
that the robot has a constant velocity of v, the acceleration and deceleration
of the robot during the start-stop phase and the power problem of the robot
are not considered. It is required to design a reasonable route to achieve the
goal of minimum overall transportation time. In our work, the robot with the
longest transportation time when its tasks are finished is actually the shortest
transportation time consumption of the overall scheduling. Therefore, we have
the objective function:

f = min{max
i

Li∑

j=1

[[
nij∑

k=1

drij(k−1)rijk
/v + drij0rijnij

δ(nij)/v] + (nij + 1)tδ(nij)]}

(1)
Subject to:

δ(nij) =
{

1, nij ≥ 1
0, otherwise

(2)

nij∑

k=1

wrijk
≤ Wi (3)

N∑

i=1

Li∑

j=1

nij = P (4)

Rij ∈ {rijk|rijk ∈ [1, 2, · · · , P ], k = 1, 2, · · · , nij} (5)

Rij(1) ∩ Rij(2) = ∅,∀ij(1) �= ij(2) (6)

where nij represents the number of pick-up task points for the j-th transporta-
tion of robot i, Li is the round-trip transportation times of robot i, rijk repre-
sents the k-th pick-up task point of robot i for the j-th transportation, rij0 is
the starting point of the robot, and the distance between the task points a, b is

the Euclidean distance dab =
√

(xa − xb)
2+(ya − yb)2. The robot transport time

calculated by the objective function includes two components: the path travel
time between task points and the dwell time at each task point.
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Equation (2) describes that when the pick-up task point of the j-th trans-
portation of robot i is greater than or equal to 1, i.e., nij ≥ 1, indicates this
transportation is required, then δ(nij) = 1, When the task point is less than 1,
i.e., nij < 1, indicating that this transportation is not required, then δ(nij) = 0;
Eq. (3) means that the total weight of the goods at the task point on each path
shall not exceed the load of the mobile robot, where Wi is the maximum load of
each mobile robot. The weight of the cargo at the k-th pick-up task point of the
j-th transport of robot i is wrijk

; Eq. (4) indicates that each pick-up task point
can be completed, P is the number of tasks, and N is the number of mobile
robots; Eq. (5) represents the task composition of each path, and Rij represents
the j-th transportation path of robot i; Eq. (6) shows that there are no identi-
cal tasks in any two robot paths. It restricts that each task point can only be
transported once by one mobile robot.

2.2 Hierarchical Structure of GA-ACO

The hierarchical Genetic Algorithm-Ant Colony Optimization (GA-ACO) is
divided into two layers. As shown in Fig. 1, The gray squares represent robot 1
and the gray circles are the corresponding assigned tasks, while the white squares
represent robot 2 and the white circles are its assigned tasks. Connecting lines
indicate the path of the robot. In the upper layer, the Genetic Algorithm is used
to calculate the solution space to be searched, i.e., the task point set of each
mobile robot is determined. In the lower layer, the Ant Colony Optimization
algorithm is used to search each solution space for the optimal solution, i.e., the
optimal task route of each robot is searched. By repeating the upper and lower
operations, the optimal solution of the entire system can be obtained, which is
a reasonable allocation of multi-robots and multi-tasks. The flow chart of the
algorithm is shown in Fig. 2.

2.2.1 Genetic Algorithm to Solve the Upper Layer

Code: First, the task set is encoded with natural numbers, and the encoding
length is the number of task points. The task set breakpoints assigned to each
robot are encoded with natural numbers. The encoding length is the number of
robots minus one. If there are 10 task points (numbered 4-13), 3 mobile robots
(numbered 1-3), the task set code is 11-4-8-12-10-6-9-13-5-7, the task set break-
point code is 3-8, decode Later, it indicates that the No. 1 robot task set is “11,
4, 8”, the No. 2 robot task set is “12, 10, 6, 9, 13”, and the No. 3 robot task set
is “5, 7”.

Fitness: The fitness function of designing a Genetic Algorithm can be mapped
by the objective function as follows:

F =
1

tmax
(7)
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Fig. 1. Conceptual diagram of hierarchical structure of GA-ACO

tmax = max
i

Li∑

j=1

[[
nij∑

k=1

drij(k−1)rijk
/v + drij0rijnij

δ(nij)/v] + (nij + 1)tδ(nij)]

(8)
where tmax is the longest robot transportation time when all tasks are com-
pleted, and the shortest task set path of each robot is obtained. The path length
and robot speed are known, and the time consumption of the path is obtained,
plus the pickup and starting point of each task point. The unloading time can
be used to obtain the time consumed by all robots to perform tasks, and the
transportation time of the robot with the longest time can be obtained, which
is the total transportation time. Genetic algorithms need to generate the next
generation population through selection, crossover and mutation.
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Selection: This algorithm adopts the method of tournament selection. The tour-
nament selects the elite individuals in the population with shorter consumption
time as the parent and retains their breakpoint genes.

Crossover: The sequential crossover method (OX) was used. For this task assign-
ment problem, it is to exchange the position of task points in the code of the
total task set, and the method of random generation within the rules is adopted
for the code of task set breakpoints.

Variation: Randomly select individuals to exchange two random positions of the
coding chromosome to obtain a new generation of chromosomes. The task points
in the two robot task sets are randomly exchanged.

After the selection, crossover and mutation operation, a new population will
be generated, and then the ant colony optimization algorithm is repeated to
solve the lower layer, and the genetic algorithm calculates the operation until
the maximum number of iterations is reached, the optimal task allocation scheme
will be obtained.

2.2.2 Ant Colony Optimization Algorithm to Solve the Lower Layer
After decoding the Genetic Algorithm, the task point set of each robot is
obtained, and the Ant Colony Optimization algorithm is used to solve the most
task path of each robot. First, generate a path table for each ant, put the start-
ing point of the robot into the starting point of the path table, and calculate
the selection probability of going to other task points according to the transition
probability. At time t, the probability of ant moving from city i to city j is:

pk
i (t) =

⎧
⎨

⎩

[τij(t)]
α[ηij(t)]

β

∑

s∈Jk(i)
[τis(t)]

α[ηis(t)]
β , j ∈ Jk(i)

0, j /∈ Jk(i)
(9)

Jk(i) = {1, 2, · · · , n} − tabuk, ηij = 1/dij (10)

where τij(t) is the pheromone between task points i and j at time t, ηij(t) is
the heuristic factor between task points i and j at time t, α and β represent the
relative importance of the pheromone and the heuristic factor respectively, dij

is the distance between task points i and j, tabuk is the tabu table for storing
all task points, and n is the number of task concentration points of the robot.
Select the next task point from the robot’s set of task points according to the
transfer probability using the roulette wheel method, determine whether the
accumulated weight exceeds the robot’s load when adding the weight of the next
task point’s cargo, and if not, add this task point to the path table, otherwise
add the starting point to the path table (return to the starting point). Repeat
until all task points in the task set are added to the path table, and finally add
the starting point (back to the starting point). Calculate the path lengths in all
ant path tables, select the shortest path to store, and update the pheromone on
the path:

τij(t + 1) = (1 − ρ)τij(t) + Δτij (11)
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Δτij =
m∑

k=1

Δτk
ij

,Δτk
ij

=
{

Q
LK

, if ant k passes ij during this tour

0,otherwise
(12)

where ρ(0 < ρ < 1) represents the evaporation coefficient of the pheromone on
the path, Q is a constant, and Lk represents the length of the path that the k-th
ant traveled in this tour.

Repeat the above steps to reach the number of iterations of the ant colony
algorithm, and obtain the shortest task set path of each robot.

Fig. 2. Hierarchical GA-ACO algorithm flow chart

2.3 ROS-Based Multi-robot System

We first build a multi-robot system based on ROS by using a host computer
and multiple robot industrial computers as slaves. By giving robots different
namespaces, we can manage and schedule multiple robots.

The host directs a mobile robot to use the Cartographer algorithm [12] to
build an environmental grid map through the carried radar, and obtain the shelf
coordinate points in the map and the starting point of each mobile robot in the
map. A message sending node is set up. When the order comes, the path of each
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robot task set is calculated by the hierarchical GA-ACO algorithm. We define
the task point coordinates as a differently named array message type, which is
sent to the node manager of the multi-robot system in the form of a topic.

Each robot subscribes to the path message of its own task set, obtains the
order of task points and their coordinates, calculates the number of task points in
the message, and starts to execute the navigation function according to the order.
The navigation of the robot to the task point first calculates the global path
to the target point, and performs local path planning and obstacle avoidance
when encountering obstacles during the path execution process. The Monte Carlo
positioning algorithm is used to realize the positioning of the robot’s pose. After
the robot reaches a task point, it stays at the task point for a fixed period of
time, waits for the completion of the pickup task, and then goes to the next task
point in the list. Repeat the above operations until the picking and unloading
tasks at all task points are completed, and the robot stays at the starting point
of the robot. Waiting for the next batch of order tasks to be assigned.

3 Experimental Results

To test the performance of our proposed shortest overall transport time objective
function and hierarchical GA-ACO algorithm, we implemented it in MATLAB
(R2020a) on a 2.9 GHz processor computer with 16G random access memory.

We compare this with another classical K-means-Ant Colony Optimization
algorithm (K-ACO), which takes a K-mean clustering approach in the upper
layer to assign task points to robots in close proximity based on the distance
between the task point and the robot starting point, and uses the same Ant
Colony Optimization algorithm as ours in the lower layer to solve for the task
point path of a single robot.Our algorithm is similar in structure to the K-ACO,
but the genetic iteration mechanism used makes our algorithm superior.

We set up two robots with a load of 90kg and a travel speed of 0.1m/s.
There are 20 cargo points of different weights to be completed, and the robot
picking and unloading time is 10s.We set the Genetic Algorithm population of
the hierarchical GA-ACO to 40, the number of iterations to 100, the crossover
rate to 0.9, and the variation rate to 0.1. The upper layer of the K-ACO uses
the principle of proximity assignment. The Ant Colony Optimization algorithms
of the two algorithms are set as follows: the number of ant colonies is 20, the
number of iterations is 20, the pheromone importance factor α is 1, the heuristic
factor importance factor β is 5, and the pheromone volatility factor ρ is 0.5.

The solution path of hierarchical GA-ACO is shown in Fig. 3, which shows
that this algorithm can effectively solve the multi-robot multi-task assignment
problem. Additionally, 10 independent runs are calculated and the statistic
results are shown in Fig. 4. Furthermore,a comparison experiment is conducted
with different combinations of 2, 3, 5 robots and 20, 30, 50 task points as shown
in Fig. 5. The parameters of the two algorithms are set as in the two-robot
experiment in the previous paragraph. It is observed from Figs. 4 and 5 that the
hierarchical GA-ACO solves the overall transportation time significantly shorter
than the K-ACO.



An Efficient Scheduling and Navigation Approach for Warehouse 53

(a) Robots and mission points dis-
tribution

(b) Robots task path

Fig. 3. The solution result of hierarchical GA-ACO

Fig. 4. Comparison of the overall transportation time by K-ACO and hierarchical GA-
ACO

Fig. 5. Comparison of the completion times of K-ACO and hierarchical GA-ACO algo-
rithms for different number of robots and number of tasks
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Finally, our approach is validated through a two-robot system, and it suc-
cessfully controlled two robots to complete their individual tasks. In Fig. 6, we
controlled two robots to complete 20 tasks in a real scene. Figure 6(a) shows the
actual scene that simulates a warehouse environment, in which the black rectan-
gles are obstacles. Figure 6(b) shows the visualization map by rviz after building
a map, in which the black squares denote the obstacles in Fig. 6(a), while the
white areas represent the accessible areas of robots, and the blue marked points
are 20 task points. The red square is the starting point of robot 1 and the yellow
square is the starting point of robot 2. Figure 6(c) shows the results of rviz when
two robots are performing task point navigation. Both robot 1 in the upper left
corner and robot 2 in the lower right corner are performing navigation of their
respective task points. The robots travel from the current locations to their indi-
vidual blue dots at the end of the green lines, each representing the obtained
global path planning, and the lavender area on the map is the map expansion
layer for local obstacle avoidance.

(a) Testing scene (b) Map, robot starting
points and 20 task points

(c) Navigation in rviz

Fig. 6. Experimental verification of a two-robot dispatch navigation system (Color
figure online)

4 Conclusions

In this paper, we propose a multi-mobile robot scheduling and navigation method
in a warehouse environment, and propose a hierarchical Genetic Algorithm-Ant
Colony Optimization algorithm by establishing an objective function model that
minimizes the overall transportation time, and the upper and lower layers repeat
the operation to obtain the shortest time scheme for multi-robot multi-task
assignment. The task assignment scheme is executed by establishing a ROS-
based multi-robot system to control multi-robot navigation. The results show
that our proposed method can effectively reduce the overall transportation time
and achieve a multi-robot navigation execution task set.
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Abstract. The control principle of mobile robots, self-organized in convoy struc-
ture, is considered. It is shown that in this case a high autonomyof swarmoperation
may be achieved, due to such parameters of motion, as swarm azimuth angle and
velocity of movement may be set only for the master robot, while slave robots
follow master one at the pre-determined distance. The flowchart of the swarm
control system is worked out, according which all slave robots measure their
own deviation from the direction on previous swarm unit and distance till it, and
actuate mechanics of the robot for zeroing azimuth angles difference and setting
pre-determined distance. Mathematical models of the swarm, as the united object
under control, and of the distributed Von Neumann controller, which closes con-
trol system, are worked out. It is shown, that characteristic equation of closed
system have complex exponent at the left side, which is due to time delays, born
by Von Neumann type controllers. Method of evaluation of time delays, based
on semi-Markov simulation of control algorithm, is proposed. Theoretical results
are confirmed by modeling the motion control of a convoy, including pair mobile
robots.

Keywords: Swarm · Mobile robot · Convoy · Von Neumann · Control
algorithm · Closed control system · Transfer function · Delay · Semi-Markov
process

1 Introduction

Unmanned vehicles, operating autonomously on terrestrial surface, below referred as
mobile robots (MR), presently are widely used in various domains of human activity:
such as on transport, during environmental monitoring, in the defense sector, etc. [1–
3]. Effectiveness of MR utilization increases significantly, when they are gathered in
swarms, aligned in those or that order [4]. Managing by MR swarm is a much more
difficult problem, than control by a single robot due to the fact, that it is necessary not
only to provide the specifiedmovement parameters of each robot, but also tomaintain the
swarm structure [4, 5]. In this case the soft runtime of Von-Neumann type controllers
are superimposed on the inertial properties of swarm units during maneuvers in the
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space, and both interfering factors deteriorate swarm performance, and make it difficult
to maintain its structure.

One of possible application of terrestrial MR, which makes the control problem
easier, is the ordering swarm in master-slave convoy structure, in which control system
of master robot determines velocity and azimuth angle of movement the swarm as a
whole, while control systems of slaves MRs maintain distance till previous unit, for
example using a rangefinder [6, 7], and direction on previous robot, using information
about deviation from direction, obtaining from sensor, installed [8] on the slave robots
itself. Changes in speed and direction due to obstacles that arise at a trace both themaster,
and a slave robots are compensated by their control systems. Toorganize themovement of
the swarm according to master-slave convoy principle, an adequate model of the swarm
as an object under of vector control, and an integrated control system, including Von
Neumann controllers distributed among MRs, is required [5]. Such a control principle
has a high degree of self-organization, since when one of the moving objects leaves the
convoy, the moving object following it begins to maintain the distance to the previous
one, i.e. of the object that the retired object followed before the elimination.

However, there is a certain difficulty when control swarm with such structure, due
to the fact that the Von Neumann controllers born delays in closed loop system, whose
effect is enhanced by cross links between control contours, which emerging according
chosen principle of self-organizing and control [9–11].

Methods for assessing the quality of control, which would take into account both the
complexity of the structure of the MR column and the delay in the feedback contours,
are not sufficiently developed in engineering practice, which explains the urgency and
relevance of the study.

2 Model of the MR Convoy Swarm as the Object Under Control

MR master-slave convoy swarm, operating under Von Neumann type controllers, dis-
tributed onto vehicles, is shown on the Fig. 1 [12]. Self-organizing convoy swarm
includes master robot MR0 and K slave robots MR1,…, MRk ,…, MRK . Distributed
digital control system, consists of digital controllers, nominated asWc,k(s)/Intk , where
0 ≤ k ≤ K , s is the Laplace differentiation operator. Parameters of swarmmovement are
set with vectors Fk(s), which are inputted into controllersWc,k(s) from outer source (on

the Fig. 1 is not shown). The vectorF0(s) = [
F0,1(s), F0,2(s)

]θ, where θ is the transposi-
tion operation sign, defines parameters of swarmmovement in common, namely, azimuth
angle F0,1(s) and swarm velocity F0,2(s). Vectors Fk(s) = [

0, Fk,2(s)
]θ, 1 ≤ k ≤ K ,

define distance xk−1,k(s) from MRk till previous MRk−1. Except Fk(s), feedback vec-

tor signal Vb,k(s) = [
Vb,k,1(s), Vb,k,1(s)

]θ is inputted through Intk into k-th digital

controller, which, in turn, computes action vector Uc,k(s) = [
Uc,k,1(s), Uc,k,1(s)

]θ,
actuated MRk . The computed action vector Uc,k(s) is outputted through the Intk ,
and as analogue vector signal Uk(s) = [

Uk,1(s), Uk,1(s)
]
is applied to actuators of

MRk . Except the control signal action Uk(s) on the MRk affects the physical resis-
tance force Rk(s) = [

Rk,1(s), Rk,2(s)
]θ, and MRk mechanics generate state vector
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Vk(s) = [
Vk,1(s), Vk,2(s)

]θ, inwhichVk,1(s) is longitudinalmovement velocity,Vk,2(s)
is azimuth angle change velocity.

Feed-forward control by robots is described as

Vk(s) = Wu,k(s)Uk(s) + Wr,k(s)Rk(s), 0 ≤ k ≤ K, (1)

where

Wu,k(s) =
[
Wu,k,11(s) Wu,k,21(s)
Wu,k,12(s) Wu,k,22(s)

]
; Wr,k(s) =

[
Wr,k,11(s) Wr,k,21(s)
Wr,k,12(s) Wr,k,22(s)

]
.

Wu,0(s)
U0(s)

V0(s)

R0(s)

Wb,0(s)
Vb,0(s)

Wc,0(s)

Vcb,0(s)

Uc,0(s)
F0(s)

In
t 0

... ...

MR0
Wr,0(s)

Wu,0(s)
U1(s) V1(s)

R1(s)

Wb,1(s)
Vb,1(s)

Wc,1(s)

Vcb,1(s)
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MR1
Wr,0(s)

Wu,K(s)
UK(s) VK(s)

RK(s)

Wb,K(s)
Vb,K(s)

Wc,K(s)

Vcb,K(s)

Uc,K(s)
FK(s)
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t K

MRK
Wr,K(s)

Fig. 1. Master-slave convoy swarm structure

Feedback in the MR convoy swarm is provided with blocks Wb,k(s) 0 ≤ k ≤ K ,
which measure state Vk(s) of MRk and return to k-th digital controller feedback vector
signalVb,k(s). In the master robot MR0, sensor subsystemmeasures velocity with speed
sensor, and azimuth angle with, f.e. inertial measurement system. So matrix transfer
function, which converts V0(s) into Vb,0(s), is as follows:

Vb,0(s) = Wb,0(s) · V0(s) =
[ κb,0,1

s 0
0 κb,0,2

]
· V0(s), (2)

where κb,0,1 is transmission ratio of master robot MR0 azimuth angle sensor; κb,0,2 is
transmission ratio of MR0 speed sensor.

In slave robots, MR1÷MRK , sensor subsystemmeasures distance till previous robot
[6, 7] and the difference between azimuth angles [8] of MRk and MRk−1, and converts



Self-organizing Mobile Robots Swarm Movement Control Simulation 59

it into the vector signal Vb,k(s) = [
Vb,k,1(s), Vb,k,2(s)

]θ. The measuring principles is
explained with Fig. 2, where xk−1,k is the distance from MRk till MRk−1; vk−1 and vk
are vectors of MRk−1 andMRk velocities, correspondingly;ψk−1,k is the angle between
vk−1 and vk ; AC is the MRk axial line, which coincides with direction of angle sensor
sight mark; AB is the direction on the measured mark, situated on the MRk−1; BC is the
transverse component of vector vk−1, respectfully to vector vk ; ϕk−,k is the measured
angle between MRk axial line and the direction on the measured mark, which tends to
zero, when angle ψk−1,k tends to zero too, that is sufficiently to control MRk movement
direction.

vk

vk-1

xk-1,k ψk-1,k

ϕk-1, k

A

B

C

Fig. 2. The feedback measuring principle

According the flowchart, shown on the Fig. 1, and feedback measurement principle,
shown on the Fig. 2, feedback signal Vb,k(s) = [

Vb,k,1(s), Vb,k,2(s)
]θ is formed as

follows:

[
Vb,k,1(s)
Vb,k,2(s)

]
= Wb,k(s)

⎡

⎣
Vk−1,2(s)
Vk,1(s)
Vk,2(s)

⎤

⎦, (3)

where Vk−1(s) is the second component of the vector Vk−1(s); Wb,k(s) is the 2 × 3
matrix

Wb,k(s) =
[

κb,k−1,10
s

κb,k,11
s

κb,k,12
s

κb,k−1,20
s 0 κb,k,22

s

]

; (4)

κb,k−1,10, κb,k,11, κb,k,12, κb,k−1,20, κb,k,22 are transmission ratios.
As it follows from the (3), measured angle between MRk axial line and the direction

on the measured mark depend on the rotation angle of MRk−1 respectfully to MRk , and
distance between MRk−1 and MRk , which in turn is the product of difference velocities
integration.

VectorsUk(s),Vb,k(s),Rk(s) andmatricesWu,k(s),Wr,k(s)Wb,k(s)may be ordered
into common feed-forward matrix equation, describing MR swarm convoy as united
object under control:

V(s) = Wb(s) · [W(s) · U(s) + Wr(s) · R(s)], (5)

where U(s) = [U0(s), ..., Uk(s), ..., UK (s)]θ is the united action vector; R(s) =
[R0(s), ..., Rk(s), ..., RK (s)]θ is the united resistance vector; W(s) and Wr(s) are
united matrices, describing mechanics of MRs under control action and under resistance
forces, respectively, of cellular diagonal type; Wb(s) is cellular matrix, which null row



60 E. V. Larkin et al.

consists of matrix Wb,0(s) and K 2 × 2 zero matrices, while rows from the one till the
K include 2 × 2 matricesW ′

b,k−1(s) andW
′′
b,k(s), situated on the (k − 1)-th and the k-th

place, correspondingly, and 2 × 2 zero matrices, situated on all other places;W ′
b,k−1(s)

is 2 × 2 matrix, in which the first column is the zero one, and second column is the null
column of matrix Wb,k(s); W ′′

b,k(s) is 2 × 2 matrix, including first and second matrix
Wb,k(s) columns.

Self-organizing of convoy swarmat the physical level is provided through descending
master-slave interconnections between previous and next MR, according to which MRk
maintain direction on MRk−1 and distance till it.

3 Model of Distributed Control System

The swarm control system has a distributed structure, shown on the Fig. 1 at the left.
Movement parameters Vb,0(s) ÷ Vb,K (s) through interfaces Int0 − IntK are inputted to
Von Neumann type controllersWc,0(s)÷Wc,K (s) in discrete formVcb,0(s)÷Vcb,K (s),
processed by their software as discrete data, and control discrete vectors Uc,0(s) ÷
Uc,K (s) through corresponding interface are outputted to MR’s mechanical parts as
analogue control actions U0(s) ÷ UK (s) [13–15]. If in the software principle of linear
processing is laid, then computation of united data vector is produced according matrix
equation

Uc(s) = Wc,f (s) · F(s) + Wc,v(s) · V ñb(s), (6)

where Uc(s) = [
Uc,0(s), ..., Uc,k(s), ..., Uc,K (s)

]θ, F(s) =
[F0(s), ..., Fk(s), ..., FK (s)]θ and Vcb(s) = [

Vcb,0(s), ..., Vcb,k(s), ..., Vcb,K (s)
]θ

are column vectors of size 2(K + 1); Wc,f (s) and Wc,u(s) are cellular diagonal type
matrix of transfer functions of processing Uc(s) and F(s), correspondingly, in which on
the main diagonal 2 × 2 matrices Wc,f ,k(s), Wc,v,k(s) are situated, and all other 2 × 2
sells are the zero ones.

Von Neumann controllers interpret processing algorithm sequentially, operator-by-
operator, so in k-th controller there is delay between inputting data Vcb,k(s), and out-
putting data Uc,k(s). Let control algorithm sequentially inputting data Vcb,k,1(s) into
controller, that in time domain form the starting point of cycle. After that, with delay τ0,
data Vcb,k,2(s) are inputted into controller [16–19]. A computation of action takes some
time. So signals Uc,k,1(s) and Uc,k,2(s) are outputted with delays τ1 and τ2 respectively
to the starting point. With taking into account delays, matrixWc,v,k(s) takes the form

Wc,v,k(s) =
[
Wc,v,k,11(s) · exp(−τk,1s

)
Wc,v,k,21(s) · exp(−τk,1s + τk,0s

)

Wc,v,k,12(s) · exp(−τk,2s
)
Wc,v,k,22(s) · exp(−τk,2s + τk,0s

)
]
, (7)

where Wc,v,k,11(s) ÷ Wc,v,k,22(s) are transfer functions, realizing in control algorithm;
exp

(−τk,1s
)
is Laplace transform of shifted Dirac function.

Desired parameters of swarm movement are inputted into controllers in advance, in
such away, delays in processingmay be omitted from consideration andmatrixWc,v,k(s)
is as follows:

Wc,f ,k(s) =
[
Wc,f ,k,11(s) Wc,f ,k,21(s)
Wc,f ,k,12(s) Wc,f ,k,22(s)

]
; (8)
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where Wc,f ,k,11(s) ÷ Wc,f ,k,22(s) are transfer functions, realizing in control algorithm.
To estimate time delays between transactions in polling algorithm of arbitrary com-

plexity the ergodic semi-Markov chain should be formed [17, 20, 21]. Structure of
semi-Markov process coincides with the structure of algorithm and in most common
case is represented by complete graph without loops (Fig. 3 a).

Process of transactions generation is described with semi-Markov matrix

h(t) = ⌊
hi,j(t)

⌋ = ⌊
gi,j(t)

⌋ ⊗ ⌊
pi,j(t)

⌋
, (9)

where h(t) is the N × N semi-Markov matrix; t is the physical time; pi,j(t) is the
probability of direct switching from the state i to the state j; gi,j(t) is the time of sojourn
at the state i, when a priori is known, that next switching will be to the state j; ⊗ is
the direct multiplying sign; N is the number of states in semi-Markov process, equal to
number of operators in polling algorithm.

i=ξ 1

j=ηN

i=ξ 1

j=ηN
a b

Fig. 3. Structure of polling control algorithm (a), semi-Markov process for delays estimation (b)

Contribute to time interval τ̃between f.e., inputtingofVcb,k,1(s) (i=ξ) andoutputting
ofUc,k,1(s) (j=η) both the direct switching, and thewandering through the semi-Markov
chain from ξ to η. For estimation of time delay τ̃ the semi-Markov matrix (13) should
be transformed as follows (Fig. 3 b):

h(t) → h′(t) =
⌊
g′
i,j(t) · p′

i,j

⌋
, (10)

where g′
η,j(t) = 0 and p′

η,j = 0 for all 1 ≤ j ≤ N ; g′
i,ξ(t) = 0 and p′

i,ξ = 0 for all

1 ≤ i ≤ N ; p′
i,j = pi,j

1−pi,ξ
for all columns except η-th and for columns, except ξ-th.

The time density of wandering from ξ to η is as follows:

g̃ξ,η(t) = IR,ξ · L−1

[ ∞∑

κ=1

{
L
[
h′(t)

]}κ

]

· IC,η (11)

where IR,ξ is the row vector of size N, all elements of which, except ξ-th, which is equal
to 1, are equal to zero; IC,η is the column vector of size N, all elements of which, except
η-th, which is equal to 1, are equal to zero.

According to «three sigma rule» [22, 23] delay τ̃ may be estimated as follows:

τ̃ = T̃ + 3
√
D̃, (12)
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where T̃ =
∞∫

0
g̃ξ,η(t)tdt; D̃ =

∞∫

0

(
t − T̃

)2
g̃ξ,η(t)(t)dt.

Matrix Eqs. (5), (6) should be used for obtaining of closed loops system matrix
description.

V(s) = [
E − Wb(s) · W(s) · Wc,v(s)

]−1 · Wb(s) · W(s) · Wc,f (s) · F(s)
+ [

E − Wb(s) · W(s) · Wc,v(s)
]−1 · Wb(s) · Wr(s) · R(s),

(13)

where E is the identity matrix.
It is necessary to admit, that performance of theMR swarm, as awhole, is determined

by following characteristic equation:
∣∣E − Wb(s) · W(s) · Wc,v(s)

∣∣ = 0. (14)

Equation (14) contains complex exponent on the left side, which brings the system
closer to stability boundary, or even takes it beyond the boundary [24, 25].

4 Example

Confirm the approach to simulation of swarm control systemwith example inwhich con-
voy consists of master and one slave robot, having acceleration characteristics, described
with first order differential equation with time constant, equal to 0,1 s. Responses of the
system on the standard Heaviside function, when delay in feedback contour is equal to
0 s, 0,01 s, 0,02 s and 0,04 s in dimensionless form is shown on the Fig. 4 a), b), c), d),
correspondingly.

From the curves picture it is clear, that overshooting and transient time of swarm,
as a whole, directly depends on a soft runtime of Von-Neumann type controller due to
the fact, that both sampling intervals and delays in feedback contours are determined
by polling, embedded into the structure of control algorithm, and time of operators
interpreting. An overshooting in the slave MR is more, than in master robot due to a
resonant phenomenon, which emerging in the slave closed control system, when it has
just the same characteristic equation, as master closed control system. It should also be
noted rather uneven curve, according which distance between robots is set, that is linked
with the same resonance, but already in speed control contours.

To minimize resonant phenomena one should to vary performances of slave robots
with respect to previous master/slave robots, for example by changing their polling
algorithm.
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5 Conclusion

As a result, the model of managing a swarm, organized in the convoy structure according
to the “master/slave” principle, is proposed. It is shown that the main factor, determining
the result of management is a time, spent by swarm units Von Neumann controllers on
“thinking over” the control action, based on the processing of information from sensors.
Delays in the feedback contours lead to a significant overshooting and an increase of
performance time. This factor should be taken into account when designing unmanned
mobile robots and their control systems. The method of simulation proposed may be
recommended to hard- and software designers for utilization in a wide engineering
practice of working out principles of organizing and control by swarms.

Further research in this area can be directed to the development of optimal polling
algorithms that ensure, with minimal computational complexity, the control quality is
not worse than the specified one.

This article was written within the framework of project RSF 22-29-00808: Fun-
damental interdisciplinary research on the development of “smart” personal protective
equipment against infectious diseases transmitted by airborne droplets.
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Abstract. In real-world robot applications such as service robots, min-
ing mobile robots, and rescue robots, an autonomous mobile robot is
required to visit multiple waypoints that it achieves multiple-objective
optimizations. Such multiple-objective optimizations include robot trav-
elling distance minimization, time minimization, turning minimization,
etc. In this paper, a particle swarm optimization (PSO) algorithm incor-
porated with a Generalized Voronoi diagram (GVD) method is proposed
for a robot to reach multiple waypoints with minimized total distance.
Firstly, a GVD is used to form a Voronoi diagram in an obstacle pop-
ulated environment to construct safety-conscious routes. Secondly, the
sequence of multiple waypoints is created by the PSO algorithm to min-
imize the total travel cost. Thirdly, while the robot attempts to visit
multiple waypoints, it traverses along the edges of the GVD to form
a collision-free trajectory. The regional path locally from waypoints to
nearest nodes or edges needs to be created to join the trajectory. A Node
Selection Algorithm (NSA) is developed in this paper to implement such
a protocol to build up regional path from waypoints to nearest nodes
or edges on GVD. Finally, a histogram-based local reactive navigator
is adopted for moving obstacle avoidance. Simulation and comparison
studies validate the effectiveness and robustness of the proposed model.

1 Introduction

With the increasing demands and limited on board resources of autonomous
robot, an autonomous robot requires the ability to visit several targets in one
mission to optimize multiple objectives, such objectives include time, robot travel
distance minimization, and spatial optimization [3,12,15,26,28,30]. Developing
an autonomous robot multi-waypoint navigation system is crucial to effectively
deploy robotics in various real-world fields [4,6,10,13]. Many algorithms have
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been proposed to solve autonomous robot navigation issue, such as graph-based
model [5], ant colony optimization (ACO) [7,25], bat-pigeon algorithm (BPA) [8],
neural networks [14,16], fuzzy logic [18], artificial potential field (APF) [21],
sampling-based strategy [24], etc. Lei et al. produced a hybrid graph based algo-
rithm associated with ant colony optimization (ACO) method used to optimize
the trajectory of the global path generated [5]. Lei et al. [7] proposed an ACO
model integrated with a variable speed module, which can decrease the robot
motion speed in vicinity of the obstacles. In order to effectively control the speed
modulation of autonomous vehicles, Lei et al. developed a bat-pigeon algorithm
with the ability to adjust the speed navigation of autonomous vehicles [8]. Luo
and Yang [14] set out to develop a complete coverage path planning algorithm
for real-time map building and robot navigation in unknown environments. Luo
et al. [16] then extended the model for multiple robots complete coverage navi-
gation while using a bio-inspired neural network to dynamically avoid obstacles.
Sangeetha et al. [18] developed a fuzzy gain-based navigation model to plan
smooth and collision-free path in real time. Shin et al. [21] used a combination
of potential risk fields to generate a hybrid directional flow, which can guide
an autonomous vehicle with obstacle avoidance. Wang et al. [24] presented a
sampling-based strategy with an efficient branch pruning model to avoid unnec-
essary growth of the tree and rapidly search a collision-free trajectory for the
robot [11].

Autonomous robot multi-waypoint navigation as a special topic of robot path
planning has also been studied for years [9]. For instance, Brunch et al. [2] pro-
posed a model for real-world waypoint navigation using a variety of sensors for
accurate environmental analysis. Nakamura and Kobayashi [17] brought about a
multi-waypoint navigation system based on unmanned systems controller. The
safety-conscious road model is developed utilizing the Generalized Voronoi dia-
gram (GVD) approach. Once the safety-conscious roads are defined, a particle
swarm optimization (PSO) algorithm-based multi-waypoint path planning algo-
rithm is proposed to visit each waypoint in an explicated sequence while simul-
taneously avoiding obstacle. The Node Selection Algorithm (NSA) is developed
in this paper to select the closest nodes on the safety-conscious roads to generate
the final collision-free trajectories with minimal distance. Furthermore, within
our hybrid algorithm, we utilize a reactive local navigator to avoid dynamic and
unknown obstacles within the workspace.

2 Safety-Conscious Model

Voronoi diagrams (VD) model is an elemental data structure used as a minimiz-
ing diagram of a finite set of continuous functions [19]. The VD model decom-
poses the workspace into several regions, each of which consists of the points
near a given object than to the others. Let P = {p1 · · · , pn} be a set of points of
R

d to each pi associated with a specific Voronoi region V (pi). This is expressed
by

V (pi) = {x ∈ R
d : ‖x − pi‖ ≤ ‖x − pj‖,∀j ≤ n} . (1)
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The intersection of n − 1 half spaces can be denoted by the region V (pi).
Within each half space holds a point pi along with other point of P. The regions
V (pi) are convex polyhedron due to the bisectors acting as hyperplanes between
each region. Using the Generalized Voronoi diagram (GVD) method we can
establish the most obstacle-free path. The GVD model represents the workspace
as a graph comprised of nodes, edges and vertices [22].

GVD nodes are the Euclidean distance between two or more obstacles, while
the edges are the junction of two nodes that represent the distance between each
neighboring nodes to another. Using these features from the GVD model, we
can effectively create an obstacle-free path for our safety-conscious model. The
safety-conscious roads are the clearest path between obstacles that occupies the
available space in the map, this can be seen in Fig. 1.
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0
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Edges

Nodes

Fig. 1. Illustration of the safety-conscious model by creation of the GVD. The gener-
ated safety-conscious roads are represented by the yellow line, which are the edges in
the GVD graph. (Color figure online)

3 PSO Based Multi-waypoint Navigation

The PSO algorithm is an optimization algorithm that uses an iterative method-
ology to optimize random initialized particles to define a path from the initial
position to the target. This heuristic based algorithm can be utilized to resolve
different types of optimization issues often confronted in engineering, such as
multi-waypoint navigation problems.
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3.1 Multi-waypoint Visiting Sequence

In the real-world applications of multi-waypoint navigation and mapping, mul-
tiple waypoints are provided by GPS coordinates. These waypoints are a series
of targets needed to be reached and the associated cost of traveling is based on
the distance between each waypoint. The goal is to search for the route of all
waypoints at once and find the minimal cost of overall trajectories. The proposed
model first uses the PSO algorithm to find waypoint order for the shortest path
in the environment with only the information of the waypoints’ coordinates. PSO
algorithm uses randomized particle to find the best sequence to visit waypoints.
In the system the local best position is denoted as pbest, and the global best
positions is defined as gbest. The randomized particles use a fitness value to
attract the particles to the local and global best positions. The velocities of the
particles are updated as follows [20]:

vp(τ + 1) = vp(τ) + c1r1[pbestp(τ) − xp(τ)] + c2r2[gbestp(τ) − xp(τ)] , (2)

where vp(τ) represents the velocity of particle p at instant τ , xp(τ) is the position
of particle p at instant τ , c1 and c2 are the positive acceleration constants used
to scale the contribution of cognitive and social components. r1 and r2 are the
uniform random number between 0 and 1. pbestp(τ) is the best position the par-
ticle p achieved up to instant τ at current iteration, gbestp(τ) is the best position
that any of p’s neighbors has achieved up to instant τ . Using this method, we
can optimize the order in which each waypoint is visited.

The algorithm for the implemented PSO for finding multi-waypoint visit-
ing sequence is explained in Algorithm 1. The objective of the algorithm is to
minimize the total path length of Cartesian coordinates (Xn, Yn) of waypoints
given.

Algorithm 1: PSO Algorithm: Finding Order for Multi-waypoint
Initialize a population of particles
while a stop criterion is not satisfied do

for each particle p with position xp do
if xp is better than pbestp then

pbestp ← xp

end

end
Define gbestp as the best position
for each particle p do

vp ← Compute velocity(xp, pbestp, gbestp)
xp ← update position(xp, vp)

end

end
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3.2 Safety-Conscious PSO Multi-waypoint Path Planning

By taking advantage of the pre-established information from the safety-conscious
model we can construct our obstacle-free paths as seen in Fig. 2. A new Node
Selection Algorithm (NSA) is developed as shown in Algorithm 2 for connecting
each waypoint to a node in the graph. The NSA finds this entry point by employ-
ing two different methods. The first method constructs a path in the free-space
between the waypoint and the node, while the other, constructs a path around
obstacles that lie between the waypoint and node. In the first case, we calculate
the distance from the nodes to the waypoint using the Euclidean distance. Then
the node with the shortest distance from the waypoint is used as the entry point
in the graph, but in case such as in Fig. 2, it is not that simple.

Nodes

(a) (b) (c)

Waypoints Connection path Final path

Obstacles Obstacles Obstacles

Edges

Node A Node B

Edges

Waypoint

Waypoint Waypoint

Waypoint

Waypoint

Waypoint

Edges
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Final path

Fig. 2. Illustration of the NSA. (a) The workspace with nodes, edges and waypoints.
(b) The connection path from the waypoints to the nodes. (c) The final generated path.
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Fig. 3. Illustration of NSA method within a more specific sense, where an obsta-
cle obstructing the connection path. (a) The multiple connection paths have been
obstructed by the obstacles. (b) Selected the nodes in the defined range. (c) Conducted
PSO point-to-point algorithm to achieve the optimal path to the selected node.
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In Fig. 2 at the low left corer, the left node (Node A) is within proximity to
the waypoint and would make the more obvious selection, but given a second
opinion that the right node (Node B) is the most optimal node and they would
be correct due to the path generated by using node A to reach the next waypoint
being significantly greater than the path created by Node B. Thus, establishing
a general method for node selection that is necessary to ensure that the minimal
distance is always obtained. The NSA algorithm employs a second method for
developing a path around obstacles that are between the waypoint and the node.

The algorithm constructs a path by utilizing nodes within a given range and
selecting one of those nodes as an entry point, while constructing an obstacle-free
path. The NSA defines the range by calculating the average length of all edges
within graph R, which is then used to create a field around the waypoint. Nodes
that lie within that field will be utilized as an entry point in to the graph. Given
the case in Fig. 3, where there are no direct path to any nodes we conduct point-
to-point navigation using the PSO algorithm to obtain an obstacle-free path.
R is utilized to reduce the number of nodes we have to conduct point-to-point
navigation for. This enables us to find an optimal path from the waypoint to the
node that avoids all obstacles. Utilizing these two methods in our NSA model
we can construct an optimal path from each waypoint to its entry point.

Algorithm 2: Node Selection Algorithm for Waypoint Access Point
Initialize Parameters
N ←nodes within the graph
R ← Average Lenght(E)
PAT H ←contains all paths to all possible nodes
WP ← the position of the current waypoint
while PAT H ∈ Oi do

if N ∈ R then
NWR ← N

end
for N ∈ NWR do

NP ← PTP Path(WP,NWR)
end
PAT H ← min(NP)

end

4 Reactive Local Navigation

We use the Vector Field Histogram (VFH) model as a local navigator for obstacle
avoidance. The local navigator determines the velocity commands that enable
the autonomous mobile robot to move towards its waypoints. When applying
VFH to a sequence of markers, the global trajectory can be broken down into
a sequence of segments, which makes the model more efficient for workspaces
that are heavily populated with obstacles. The VFH 2D cell-based map is filled
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with equally sized cells that are classified as either free or containing an obstacle
[23]. The map is simultaneously being constructed as the mobile robot moves
throughout the workspace as shown in Fig. 4. Concurrent map building and nav-
igation are essential in autonomous obstacle avoidance [29]. A precise estimate
of the robot pose (X,Y, Y aw) is demanded by map building so that precise reg-
istration of the local map on the global map is capable of being carried out.
This map building aims to construct a occupancy-cell-based map. When the
VFH model is used in conjunction with the GVD and PSO algorithm we can
successfully navigate through our map and avoid all obstacles.

Fig. 4. Illustration of how the VHF uses a probability along with histogram based grid
to detect and build a map simultaneously.

5 Simulation and Comparison Studies

In this section, simulations are reported to validate the effectiveness and robust-
ness of the proposed model.

5.1 Comparison Study with Benchmark Datasets

We evaluate our PSO based waypoint order model through a comparison study in
conjunction with well-known TSP test data sets and heuristic based algorithms,
in which multi-target is implemented by various traveling salesman problem
(TSP) algorithms. The chosen data sets are the 150-city problem by Chur Ritz
(ch150), 200-city problem A, by Krolik/Felts/Nelson (kroA200), 299-city prob-
lem by Patberg/Rinaldi (pr-299), and 561-city problem by Kleinschmidt. The
chosen data sets are well known previously used to verify other efficient TSP
models [1].

The heuristic algorithms chosen for the comparison study were Ant Colony
Optimization (ACO) algorithm, Genetic Algorithms (GA), Simulated Anneal-
ing (SA) algorithm, and Grey Wolf Optimization (GWO) algorithm. Due to
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the heuristic nature of the PSO algorithm, we were able to use the same set
of parameters for each model. In our TSP comparison study, we focused on six
key factors being min length (m), average length (m), length standard deviation
(STD), min time (s), average time (s), and time standard deviation (STD). By
evaluating parameters we can show a distinct difference between each model.
Table 1 illustrates the effectiveness of the proposed model and its ability to gen-
erate the shortest path to connect waypoints. In respect to the time parameter,
the proposed model does not achieve the shortest run time. However compared
to the paths established by other models, the path generated was significantly
larger than the proposed model. The STD parameter also showed the signifi-
cance of our proposed model. From the obtained results, we can more than show
the validly of our PSO based model in obtaining an optimal waypoint order.

Table 1. Comparison of minimum path length, average path length, STD of path
length, minimum time, average time and STD of time with other models. The param-
eter for the test each model where: 100 initialized particles, 10 run per data set, and a
maximum of 10 min per run

Test data

set

Model Min length

(m)

Average

length (m)

Length

STD (m)

Min time

(s)

Average

time (s)

Time STD

(s)

Ch150 Proposed model 1.67E+04 1.77E+04 5.99E+02 1.75E+04 1.31E+01 6.09E−02

ACO 1.84E+04 2.23E+04 4.40E+03 1.67E+04 1.76E+02 1.32E+00

GA 4.22E+04 5.04E+04 5.38E+03 1.79E+04 1.39E−02 1.25E−03

SA 2.47E+04 3.05E+04 4.11E+03 1.75E+04 6.51E+00 7.25E−01

GWO 3.23E+04 3.66E+04 2.64E+03 5.78E−01 9.39E−01 1.73E−01

KroA200 Proposed model 1.09E+05 1.17E+05 5.50E+03 2.15E+01 2.15E+01 9.73E−02

ACO 1.30E+05 2.81E+05 4.09E+05 2.44E+02 5.17E+02 8.36E+02

GA 2.39E+05 2.57E+05 1.15E+04 1.21E−02 1.54E−02 4.45E−03

SA 1.96E+05 2.13E+05 1.18E+04 6.27E+00 6.62E+00 8.70E−01

GWO 2.17E+05 2.40E+05 1.24E+04 1.12E+00 1.45E+00 3.68E−01

PR299 Proposed model 2.77E+05 2.89E+05 5.92E+03 4.28E+01 4.29E+01 6.06E−02

ACO 3.37E+05 4.33E+05 4.82E+04 2.09E+02 2.37E+02 1.41E+01

GA 3.19E+05 3.44E+05 1.17E+04 3.24E−02 3.38E−02 8.43E−04

SA 5.26E+05 5.59E+05 1.94E+04 6.27E+00 6.52E+00 6.68E−01

GWO 2.90E+05 3.90E+05 8.15E+04 6.71E+01 8.00E+01 7.51E+00

PA561 Proposed model 1.11E+05 1.14E+05 1.60E+03 1.41E+02 1.42E+02 3.65E−01

ACO – – – – – –

GA 1.37E+05 1.93E+05 6.30E+04 9.36E−02 9.57E−02 2.19E−03

SA 1.88E+05 1.92E+05 2.07E+03 6.27E+00 6.42E+00 4.29E−01

GWO 3.02E+05 4.21E+05 5.94E+04 7.64E+01 8.26E+01 2.21E+00

5.2 Model Comparison Study

We also conducted a model analysis using Zhang et al. [27] model proposed in.
They developed a model to address the issues with multi-waypoint navigation
within an indoor environment. They implemented an improved A* algorithm
with the dynamic window approach (DWA) to handle multi-waypoint dynamic
path planning. We selected this paper based on map configuration and overall
efficiency in solving the multi-waypoint navigation problem. Our comparison
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study analyzes the number of nodes, the paths generated, and the total time to
achieve the fastest route.

We first observe at the waypoint order and paths obtained by each model in
an obstacle-free environment, as depicted in Fig. 5(a). The length generated by
the Zhang’s model was 240.84 m while the proposed model generated a shorter
path of 219.99 m. We can see that this is due to the established waypoint orders
in the environment. As seen from Table 2, we can see that the proposed model
creates more nodes and has an increased length is 1.09% greater than Zhang’s
model, but the overall time spent by the proposed model was 6.1% faster than
Zhang’s model. Another advantage over the compared model is that there is no
need for a node selection algorithm. We analyze the model before the critical
node selection method is initialized and found the number of nodes and path
generated were vastly greater than our proposed model. This further validates
the proposed model ability to surpass and outperform compared model. The
proposed model require no an addition method to achieve measurable results,
which gives the proposed model significant advantage over Zhang’s model.

Fig. 5. Illustration of the waypoint sequencing (a) and how both models traverse
through the map (b). The blue path indicates Zhang’s method and red indicating
the proposed method. The waypoints illustrated by the orange circles. (Color figure
online)



Multi-Objective Optimization Robot Navigation by PSO 75

Table 2. An illustration of the number of nodes, distance, and time spent traversing
the map to each waypoint.

Model Nodes Distance Time spent (s)

Zhang’s model before node reduction 242 271.1 2.25

Zhang’s model after node reduction 24 253.4 0.66

Proposed model 38 277.7 0.40

6 Conclusion

We proposed the safety-conscious multi-waypoint navigation method by a PSO
and GVD model. We use a PSO-based multi-waypoint algorithm to define an
order for waypoint navigation. Then NSA algorithm is developed to establish
connections between the waypoints and the safety-conciseness roads to reach
multi-objective optimization. We proved the feasibility and effectiveness of our
model by performing a benchmark test and model comparison analysis.
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Abstract. This work considers a challenging Deep Neural Network
(DNN) quantization task that seeks to train quantized DNNs with-
out involving any full-precision operations. Most previous quantization
approaches are not applicable to this task since they rely on full-precision
gradients to update network weights. To fill this gap, in this work we
advocate using Evolutionary Algorithms (EAs) to search for the optimal
low-bits weights of DNNs. To efficiently solve the induced large-scale dis-
crete problem, we propose a novel EA based on cooperative coevolution
that repeatedly groups the network weights based on the confidence in
their values and focuses on optimizing the ones with the least confidence.
To the best of our knowledge, this is the first work that applies EAs to
train quantized DNNs. Experiments show that our approach surpasses
previous quantization approaches and can train a 4-bit ResNet-20 on the
Cifar-10 dataset with the same test accuracy as its full-precision coun-
terpart.

Keywords: Cooperative coevolution · Evolutionary algorithm ·
Large-scale discrete optimization · Neural network quantization

1 Introduction

Deep Neural Networks (DNNs) are powerful and have a wide range of applica-
tions in several fields such as image recognition [9], object detection [31], visual
segmentation [8], text classification [15], etc. However, DNNs generally require a
lot of computational resources. For example, the size of the well-known VGG-16
model built by Caffe is over 500MB and it consumes 16 GFLOPs, which makes
it impractical to be deployed on low-end devices. Hence, over the past few years,
many methods have been proposed to reduce the computational complexity
of DNNs, such as pruning [7], low-rank decomposition [41], knowledge distil-
lation [38], and quantization [6,7,11,30,36,37,42,43]. Specifically, DNN quanti-
zation maps the network weights from high bits to low bits, significantly reducing
memory usage, speeding up inference, and enabling the deployment of networks
on mobile devices with dedicated chips [12].
c© Springer Nature Switzerland AG 2022
Y. Tan et al. (Eds.): ICSI 2022, LNCS 13345, pp. 81–93, 2022.
https://doi.org/10.1007/978-3-031-09726-3_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-09726-3_8&domain=pdf
https://doi.org/10.1007/978-3-031-09726-3_8


82 F. Peng et al.

Although existing quantization approaches have achieved notable success,
most of them rely on full-precision gradients to update the network weights [6,
11,30,43], hindering their practical usages. In real-world applications, one may
need to quantize a pre-trained full-precision DNN on different low-end devices
for better adaptability, and the quantization procedure that is conducted on the
device cannot involve any full-precision operations [36]. On the other hand, as
a powerful search framework, EAs do not use any gradient information [18,20],
which is naturally suitable for this scenario. Therefore, in this work we advocate
using EAs to search for the low-bits weights of quantized DNNs.

Specifically, we first formulate DNN quantization as a large-scale discrete
optimization problem. Since this problem involves a huge number of variables
(network weights), e.g., ResNet-20 has 269722 parameters, we propose a novel
EA based on cooperative coevolution to solve it. Given a pre-trained full-
precision DNN, our algorithm first quantizes it to obtain an initial solution
and then leverages estimation of distribution algorithm (EDA) to optimize the
low-bits weights. To improve search efficiency, the algorithm repeatedly groups
the network weights according to the confidence in their values and focuses on
optimizing the ones with the least confidence. Finally, we compare our algorithm
with exiting quantization approaches by applying them to train a 4-bit ResNet-
20 on the Cifar-10 dataset, without involving any full-precision operations. The
results show that our algorithm performs better and the quantized DNN obtains
the same test accuracy as its full-precision counterpart, i.e., quantization with-
out loss of accuracy. In summary, we make the following contributions in this
paper:

1. We propose a novel EA based on cooperative coevolution to train quantized
DNNs. To the best of our knowledge, this is the first work that applies EAs
to search for the optimal low-bits weights of DNNs.

2. We conduct experiments to verify the effectiveness of the proposed algorithm.
Notably, it can train a 4-bit ResNet-20 without accuracy degradation com-
pared to the full-precision DNN, which indicates the great potential of EAs
in DNN quantization.

2 Related Work

This section presents a brief literature review on the field of DNN quantization
and cooperative coevolution.

2.1 DNN Quantization

DNN quantization is a popular research area, and researchers have proposed
many quantization approaches [12], which can be classified into two categories:
quantization-aware training (QAT) and post-training quantization (PTQ).

PTQ directly quantizes well-trained full-precision networks without re-
training [37]. Two representative PTQ approaches are Outlier Channel Splitting
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(OCS) [42] and Deep Compression [7]. The former deals with outliers during
quantization by duplicating channels containing outliers and halving the channel
values. The latter introduces a three-stage pipeline: pruning, trained quantiza-
tion, and Huffman coding, which work together to reduce the memory storage
for DNNs.

Unlike PTQ, QAT quantizes and finetunes network parameters in the train-
ing process [25], which usually obtains better performance, thus attracting much
more research interest. BinaryConnect [6] restricts the weights to two possible
values, i.e., −1 or 1, but the activations are still full-precision. BNN [11] quan-
tizes both weights and activations to −1 or 1. XNOR-Net [30] proposes filter-
wise scaling factors for weights and activations to minimize the quantization
error. To further accelerate the training of DNNs, some work also attempts to
quantize gradients. DoReFa-Net [43] uses quantized gradients in the backward
propagation, but the weights and gradients are stored with full precision when
updating the weights as the same as previous works. To the best of our knowl-
edge, WAGE [36] is currently the only work that updates the quantized weights
with discrete gradients.

2.2 Cooperative Coevolution

Cooperative coevolution is a powerful framework that leverages the “divide-
and-conquer” idea to solve large-scale optimization problems. As first shown
by Yang and Tang [5,14,22,39,40], the framework of cooperative coevolution
consists of three parts: problem decomposition, subcomponent optimization, and
subcomponents coadaptation. Among them, problem decomposition is the key
step [29]. An effective decomposition can ease the optimization difficulty of a
large-scale problem [33]. In contrast, an improper decomposition may lead the
algorithms to local optimums [21,22,32].

There are three categories of problem decomposition approaches: static
decomposition, random decomposition, and learning-based decomposition [21].
Static decomposition approaches do not take account into the subcompo-
nents interactions and fixedly decompose the decision variables into subcom-
ponents [3,4,28]. Conversely, selecting decision variables randomly for each sub-
component is the main idea of random decomposition approaches [13,27,35,39].
One of the most famous random decomposition methods is EACC-G proposed
by Yang and Tang [39]. The main idea of this method is to divide the interde-
pendent variables into the same subcomponent, but the dependencies between
subcomponents should be as weak as possible. The learning-based approaches
try to discover the interactions between variables [5,23,26].

3 Method

In this section, we first formulate DNN quantization as a large-scale discrete
optimization problem and introduce our quantization functions. Then we detail
the EDA applied to this problem. Finally, to further improve the algorithm
performance, the cooperative coevolution framework is proposed.
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3.1 Problem Formulation

In a DNN with L layers, let wl represent the full-precision weights and ŵl rep-
resent the k bits quantized weights at layer l, which both are an nl-dimension
vector, i.e., there are nl paremeters at layer l. We combine the quantized weights
from all layers into ŵ = [ŵ1, ŵ2, . . . , ŵL ]. The parameters in ŵl can only take
one of 2k possible discrete values, i.e., ŵl ∈ {tl1, tl2, . . . , tl2k}nl . We formulate
the DNN low-bit quantization problem as the following large-scale discrete opti-
mization problem.

max
ŵ

f(ŵ) s.t. ŵl ∈ {tl1, tl2, . . . , tl2k}nl , l = 1, 2, ..., L, (1)

where f(ŵ) represents the accuracy of the quantized DNN. Since a DNN usu-
ally has a huge number of parameters, e.g., ResNet-152 has around 11 million
paremeters, this is a large-scale discrete optimization problem.

3.2 Quantization Functions

To obtain a quantized DNN and construct the search space of our algorithm, we
need to identify all the possible discrete values for each weight and activation.
Moreover, the initial solution of our algorithm is obtained from a full-precision
DNN. Based on the above two considerations, we design two linear quantization
functions to map full-precision weights and activations to discrete ones separately.

For the weights, let the maximum and minimum values of each layer weights
wl be [wmin

l , wmax
l ], then the full-precision weights wl at layer l are discretized

with a uniform distance δl:

δl(k) =
wmax

l − wmin
l

2k − 1
, (2)

where k is the number of bits. The quantization function for weights can be
represented as:

Q(wl) = Clip{round(
wl

δl(k)
) · δl(k), wmin

l , wmax
l }, (3)

where the Clip function is the saturation function, and the round function maps
continuous values to their nearest integers.

For the remaining parameters including activations and the parameters in
batch normalization layers, we assume that the range of parameters is [−1, 1]
as WAGE [36]. The quantization function for activations al at layer l can be
represented as:

Q(al) = round(
al

δl(k)
) · δl(k). (4)

3.3 Estimation of Distribution Algorithm

We propose to use the Estimation of Distribution Algorithm (EDA) to search
for discrete weights. The overall framework of EDA for training quantized DNNs
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Algorithm 1. Estimation of Distribution Algorithm
Require: the number of best individuals Nbest to update the probabilistic model;

updating step α ; generation number G; the size of population S
Output: best individual Ibest
1: Initialize best individual Ibest = [ŵ1 = a1, ŵ2 = a2, . . . , ŵn = an]
2: Initialize probabilistic model P using σ-greedy strategy
3: for generation i from 0 to G do
4: Generate S new individuals according to P
5: Get the fitness values of the new individuals
6: Rank the new individuals by fitness values in descending order
7: Update the best individual Ibest
8: Select the first Nbest best individuals
9: Construct the probabilistic model Pbest of the Nbest best individuals

10: Update the probabilistic model P : P = (1 − α)P + αPbest

11: end for

is summarized in Algorithm 1. We encode the quantized DNN weights into a
fixed-length 1-dimensional array as the representation of our solution, i.e., ŵ =
[ŵ1, ŵ2, . . . , ŵn], where n represents the total number of parameters in a DNN.
Then we construct a probabilistic model over it. For simplicity, we assume that
the weights of the neural network are all independent of each other like PBIL [2].
Specifically, for each weight ŵi, there are 2k possible values. Each possible value
corresponds to a probability pj , where j = 1, 2, . . . , 2k, k is the bit length of

weights, and
∑2k

j=1 pj = 1. After the initial quantized network is obtained (Line
1), i.e., ŵ = [ŵ1 = a1, ŵ2 = a2, . . . , ŵn = an], we initialize the probabilistic
model P of the weights using σ-greedy strategy (Line 2), which is shown as
Eq. (5):

{
P (ŵi = ai) = σ,

P (ŵi = one of the other possible values) =
1 − σ

2k − 1
.

(5)

That is, if ŵi takes the value ai, then P (ŵi = ai) = σ. The probability of other
possible values is (1 − σ)/(2k − 1), where 0 < σ < 1. For each generation, we
sample weights from the probabilistic model to generate new individuals (Line
4), get the fitness values of them (Line 5) and rank them by their fitness values
in descending order (Line 6). To update the probabilistic model P , we calculate
the probability of each possible value for wi according to the first Nbest new
individuals and construct the probabilistic model Pbest of them (Line 9). Finally,
we update P using (1 − α)P + αPbest (Line 10), where α is updating step.

3.4 Cooperative Coevolution

Since our optimization problem has a huge number of decision valuables, to
further improve the search efficiency, we propose a novel cooperative coevolution
algorithm based on EDA inspired by Yang and Tang [39], namely EDA+CC.

The most important part of the cooperative coevolution algorithm lies in the
efficient grouping of variables. As the EDA searches, the probabilistic model P
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Fig. 1. P (wi) converges gradually as EDA evolving

Fig. 2. EDA+CC framework

gradually converges. However, different decision variables have different conver-
gence rates. Figure 1 gives a simple example of the convergence of the proba-
bilistic model when applying EDA to a 0/1 optimization problem. Suppose the
decision variables are encoded as w = [w1, w2, . . . , wn] and variables are inde-
pendent of each other. Initially, P (wi = 1) = 0.5. As the evolution proceeds,
P (wi = 1) gradually converges to 1. For wi, if P (wi) converges quickly, it intu-
itively shows that EDA is confident about the value of wi, which means wi

should not be changed in the subsequent searching process; conversely, if P (wi)
converges slowly, then wi should be further optimized.

Based on this intuition, we group the decision variables according to the
confidence in their values, i.e., the speed of convergence. Specifically, we rank
the decision variables according to the convergence speed of the probabilistic
model in descending order during the EDA run. We divide the first β ·n variables
(which converge fast) into one group and the remaining variables (which converge
slowly) into another group, where β ∈ [0, 1] is a random number and n is the total
number of weights in the network. For the former, we fix them. For the latter,
we first perturb the probabilistic model of them with the σ-greedy strategy and
then use EDA to optimize them. Figure 2 shows the framework of EDA+CC.
Detials of EDA+CC are shown in Algorithm2. Every G generations we regroup
the variables, perturb the probabilistic model, and run EDA again until the
network accuracy reaches the threshold.

4 Experiments

We use EDA+CC to train 4-bit quantized ResNet-20 on the Cifar-10 training set
and test its performance on the test set. Firstly, we compare our EDA+CC algo-
rithm with WAGE [36] (See Sect. 4.2). WAGE is the only work that can update
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Algorithm 2. EDA+CC
Require: the number of best individuals Nbest to update the probabilistic model;

updating step α ; generation number G; the size of population S; accuracy threshold
T ; flag F ; total number of weights n; random number β

Output: best individual Ibest
1: Initialize best individual Ibest = [ŵ1 = a1, ŵ2 = a2, . . . , ŵn = an]
2: Get the fitness values of Ibest
3: Initialize probabilistic model P using σ-greedy strategy
4: F ← 0
5: while fitness value of Ibest ≤ T do
6: if F=1 then
7: Sort the weights by the convergence speed of P in descending order
8: Divide the first β · n weights into group A
9: Divide the remaining weights into group B

10: Reinitialize the probabilistic model over group B using σ-greedy strategy
11: end if
12: for generation i from 0 to G do
13: Generate S new individuals according to P
14: Get the fitness values of the new individuals
15: Rank the new individuals by fitness values in descending order
16: Update the best individual Ibest
17: Select the first Nbest best individuals
18: Construct the probabilistic model Pbest of the Nbest best individuals
19: Update the probabilistic model P : P = (1 − α)P + αPbest

20: F ← 1
21: end for
22: end while

discrete weights with quantized gradients. Secondly, we investigate the influence
of different initial quantized DNNs by ablation study (See Sect. 4.3). Finally,
besides EDA we also test the performance of Genetic Algorithm (GA) [24] and
Local Search Algorithm (LS) [10] (See Sect. 4.4).

4.1 Experiment Settings

We implement EDA+CC based on TensorFlow 2.1.0 with python 3.6.9 and run
the experiments on Nvidia RTX 2080ti. The settings of algorithms are as follows.
The number of generations G is 500, the size of population S is 20, the number
of best individuals Nbest for each generation is 20, the updating step α is 0.1,
and the parameter σ in the σ-greedy strategy is 0.95. To enforce the randomness
of the algorithm, we set β as a random variable that obeys uniform distribution,
β ∼ N(0.4, 0.6).

In the following, we show how to construct an initial quantized network, in
which the range of weights of each layer is known. First, we use Eq. (3) and (4)
to quantize the pre-trained full-precision ResNet-20. To increase the randomness
of the initial quantized network we randomly select s% of all its parameters
and perturb them to adjacent values (s = 20, 30, 40 separately). We denote the
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Table 1. Accuracies of different initial quantized networks obtained by perturbing
different proportional parameters. We also list the accuracy of the pre-trained full-
precision network, namely ResNet20-Float.

Network Training set Test set

ResNet20-Float 98.65% 91.00%

ResNet20Q-Switch-20% 88.20% 85.38%

ResNet20Q-Switch-30% 46.65% 46.79%

ResNet20Q-Switch-40% 20.32% 19.60%

quantized network obtained by the above process as ResNetQ-Switch-s% and
the pre-trained full-precision network as ResNet20-Float. Table 1 summarizes
the accuracies of the different initial quantized DNNs.

Since ResNet-20 has 269722 parameters, to reduce the search space, we
restrict weights to two possible values, i.e., the value before perturbation and
the value next to it. Thus, the problem becomes a binary optimization problem
and the search space size is 2269722. Note that this is still a huge search space,
it is 1081022 times larger than the Go search space.

4.2 Verifying the Effectiveness of EDA+CC

To verify the effectiveness of EDA+CC, we first compare EDA+CC with
WAGE [36], a representative quantization method that quantizes gradients. The
code of WAGE is available at [1]. To further examine the performance of the
cooperative coevolution algorithm, we also compare EDA+CC with EDA w/o
CC. EDA w/o CC re-initializes the probabilistic model using the σ-greedy strat-
egy without grouping the decision valuables when EDA restarts. Both EDA+CC
and EDA w/o CC use 150K fitness evaluations and take about 23.3 h separately,
in which the time complexity is acceptable.

Table 2 shows the accuracies of the quantized DNNs obtained by different
approaches. We use ResNet20Q-Switch-30% as our initial solution. The initial
accuracy of ResNet20Q-Switch-30% is 46.50%. For EDA+CC, the training set
accuracy only decreases by 0.15% and the test set accuracy increases by 0.4%
compared to the full-precision network. In comparison, the accuracy of the net-
work obtained by WAGE training is only about 43%, which is much worse than
EDA+CC. We speculate the reason for the poor performance of WAGE might
be that WAGE is designed for quantized DNNs with 2-bit weights and 8-bit
activations, while our paper uses a more rigorous and hardware-friendly setting:
4-bit weights and 4-bit activations quantized DNNs. Comparing EDA+CC with
EDA w/o CC, we can see the positive effect of cooperative coevolution. Applying
cooperative coevolution increases the training accuracy from 98.05% to 98.50%
and the testing accuracy from 89.40% to 91.40%. The effectiveness of cooper-
ative coevolution is mainly shown in two aspects: improving the quality of the
solution and accelerating the convergence. Figure 3 shows the training curves of
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Table 2. Compare EDA+CC with WGAE and EDA w/o CC.

Algorithm Training set Test set

EDA+CC 98.50% 91.40%

EDA w/o CC 98.05% 89.40%

WAGE 43.44% 41.35%

Table 3. Results of different initial quantized networks.

Initial quantized DNN Training set Test set No. of FEs

ResNet20Q-Switch-20 99.25% 91.50% 50K

ResNet20Q-Switch-30 98.50% 91.40% 150K

ResNet20Q-Switch-40 90.09% 82.75% 150K

EDA+CC and EDA w/o CC, i.e., the accuracy of the best individual in each
generation. As Fig. 3 shows, after using the σ-greedy strategy to re-initialize the
probabilistic model P and restarting EDA, EDA+CC can accelerate the conver-
gence and help EDA find a better solution.

4.3 Ablation Study

We conduct more detailed studies on different initial quantized networks for
EDA+CC. Table 3 shows the accuracies of the quantized networks obtained by
EDA+CC with different initial networks. It can be seen that EDA+CC reaches
90.09% accuracy after 150K fitness evaluations for ResNet20Q-Switch-40. We
estimate that it will take about 500K fitness evaluations(FEs) for EDA+CC to
reach around 98% accuracy because each restart of EDA with σ-greedy strategy
can improve the accuracy by about 0.9%. In summary, Table 3 illustrates that as
the initial accuracy decreases, EDA+CC requires more FEs to train a quantized
DNN without accuracy decay compared to the full-precision network.

4.4 Comparison of EDA, GA and LS

We compare three search algorithms, GA, LS, and EDA. We use ResNet20Q-
Switch-50% as the initial quantized network. Each algorithm uses 100K fitness
evaluations. Figure 4 shows the training curves of the three algorithms. It can be
seen that EDA performs significantly better than LS and GA, which indicates
that the distribution estimation mechanism is more suitable than the crossover
and mutation mechanisms for the problem considered in this study. The crossover
and mutation mechanisms might break some good patterns in the individuals
imperceptibly, while the distribution estimation mechanism optimizes the indi-
viduals in a global way. It is worth noting that, theoretically, in the binary space,
ResNet20Q-Switch-50% corresponds to random initialization, because half of the
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Fig. 3. Training curves of EDA+CC and EDA w/o CC.

Fig. 4. Training curves of EDA, GA and LS.

parameters are randomly perturbed. All three algorithms can obtain better accu-
racy than ResNet20Q-Switch-50%, which illustrates the potential of search-based
algorithms in training quantized DNNs.

5 Conclusion and Future Work

In this paper, we investigate search-based training approaches for quantized
DNNs, focusing on exploring the application of cooperative coevolution to this
problem. Unlike existing works, EDA+CC does not need gradient information.
Considering the search space of this problem is extremely large (e.g., in our
experiments it is 1081022 times larger than the Go search space), we propose to
use cooperative coevolution to help solve this problem. The results show that
our method can obtain quantized networks without accuracy decay compared to
floating-point networks in our experiment setting.

Overall, this work is a proof of concept that EAs can be applied to train
quantized DNNs. There are many subsequent lines of research to pursue, e.g.,
the effects of other variable grouping mechanisms. Moreover, the method of
determining the ranges of discrete values should also be studied. Finally, based
on the cooperative coevolution framework, it is interesting to investigate on
solving different sub-problems by different algorithms [16,17,19,34], hopefully
leading to better optimization performance.
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10. Hoos, H.H., Stützle, T.: Stochastic Local Search: Foundations and Applications.
Morgan Kaufmann, San Francisco (2004)

11. Hubara, I., Courbariaux, M., Soudry, D., El-Yaniv, R., Bengio, Y.: Binarized neural
networks. In: Proceedings of the 29th Advances in Neural Information Processing
Systems: Annual Conference on Neural Information Processing Systems, NeurIPS
2016, Barcelona, Spain, pp. 4107–4115. Curran Associates Inc, December 2016

12. Krishnamoorthi, R.: Quantizing deep convolutional networks for efficient inference:
a whitepaper. arXiv preprint arXiv:1806.08342 (2018)

13. Li, X., Yao, X.: Cooperatively coevolving particle swarms for large scale optimiza-
tion. IEEE Trans. Evol. Comput. 16(2), 210–224 (2012)

https://github.com/boluoweifenda/WAGE
https://github.com/boluoweifenda/WAGE
https://doi.org/10.1007/978-3-642-15871-1_31
http://arxiv.org/abs/1510.00149
http://arxiv.org/abs/1806.08342


92 F. Peng et al.

14. Liu, J., Tang, K.: Scaling up covariance matrix adaptation evolution strategy using
cooperative coevolution. In: Yin, H., et al. (eds.) IDEAL 2013. LNCS, vol. 8206, pp.
350–357. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-41278-
3 43

15. Liu, S., Lu, N., Chen, C., Tang, K.: Efficient combinatorial optimization for word-
level adversarial textual attack. IEEE/ACM Trans. Audio Speech Lang. Process.
30, 98–111 (2022)

16. Liu, S., Tang, K., Lei, Y., Yao, X.: On performance estimation in automatic algo-
rithm configuration. In: Proceedings of the 34th AAAI Conference on Artificial
Intelligence, AAAI 2020, New York, NY, pp. 2384–2391. AAAI Press, February
2020

17. Liu, S., Tang, K., Yao, X.: Automatic construction of parallel portfolios via explicit
instance grouping. In: Proceedings of the 33rd AAAI Conference on Artificial Intel-
ligence, AAAI 2019, Honolulu, HI, pp. 1560–1567. AAAI Press, January 2019

18. Liu, S., Tang, K., Yao, X.: Memetic search for vehicle routing with simultaneous
pickup-delivery and time windows. Swarm Evol. Comput. 66, 100927 (2021)

19. Liu, S., Tang, K., Yao, X.: Generative adversarial construction of parallel portfolios.
IEEE Trans. Cybern. 52(2), 784–795 (2022)

20. Liu, S., Wei, Y., Tang, K., Qin, A.K., Yao, X.: QoS-aware long-term based service
composition in cloud computing. In: Proceedings of the 2015 IEEE Congress on
Evolutionary Computation, CEC 2015, Sendai, Japan, pp. 3362–3369. IEEE, May
2015

21. Ma, X., Huang, Z., Li, X., Wang, L., Qi, Y., Zhu, Z.: Merged differential grouping
for large-scale global optimization. IEEE Trans. Evol. Comput. 1 (2022)

22. Ma, X., et al.: A survey on cooperative co-evolutionary algorithms. IEEE Trans.
Evol. Comput. 23(3), 421–441 (2019)

23. Mei, Y., Omidvar, M.N., Li, X., Yao, X.: A competitive divide-and-conquer algo-
rithm for unconstrained large-scale black-box optimization. ACM Trans. Math.
Softw. 42(2), 13:1–13:24 (2016)

24. Mitchell, M., Holland, J.H., Forrest, S.: The royal road for genetic algorithms:
fitness landscapes and GA performance. Technical report, Los Alamos National
Lab., NM, USA (1991)

25. Nahshan, Y., et al.: Loss aware post-training quantization. Mach. Learn. 110(11),
3245–3262 (2021)

26. Omidvar, M.N., Li, X., Mei, Y., Yao, X.: Cooperative co-evolution with differential
grouping for large scale optimization. IEEE Trans. Evol. Comput. 18(3), 378–393
(2014)

27. Omidvar, M.N., Li, X., Yang, Z., Yao, X.: Cooperative co-evolution for large scale
optimization through more frequent random grouping. In: Proceedings of the 2010
IEEE Congress on Evolutionary Computation, CEC 2010, Barcelona, Spain, pp.
1–8. IEEE, July 2010

28. Potter, M.A., De Jong, K.A.: A cooperative coevolutionary approach to func-
tion optimization. In: Davidor, Y., Schwefel, H.-P., Männer, R. (eds.) PPSN 1994.
LNCS, vol. 866, pp. 249–257. Springer, Heidelberg (1994). https://doi.org/10.1007/
3-540-58484-6 269

29. Potter, M.A., Jong, K.A.D.: Cooperative coevolution: an architecture for evolving
coadapted subcomponents. Evol. Comput. 8(1), 1–29 (2000)

30. Rastegari, M., Ordonez, V., Redmon, J., Farhadi, A.: XNOR-Net: ImageNet classi-
fication using binary convolutional neural networks. In: Leibe, B., Matas, J., Sebe,
N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9908, pp. 525–542. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-46493-0 32

https://doi.org/10.1007/978-3-642-41278-3_43
https://doi.org/10.1007/978-3-642-41278-3_43
https://doi.org/10.1007/3-540-58484-6_269
https://doi.org/10.1007/3-540-58484-6_269
https://doi.org/10.1007/978-3-319-46493-0_32


Training Quantized Deep Neural Networks via Cooperative Coevolution 93

31. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object
detection with region proposal networks. In: Proceedings of the 28th Advances
in Neural Information Processing Systems : Annual Conference on Neural Infor-
mation Processing Systems, NeurIPS 2015, Montreal, Canada, pp. 91–99. Curran
Associates Inc, December 2015

32. Son, Y.S., Baldick, R.: Hybrid coevolutionary programming for nash equilibrium
search in games with local optima. IEEE Trans. Evol. Comput. 8(4), 305–315
(2004)

33. Sun, Y., Kirley, M., Halgamuge, S.K.: A recursive decomposition method for large
scale continuous optimization. IEEE Trans. Evol. Comput. 22(5), 647–661 (2018)

34. Tang, K., Liu, S., Yang, P., Yao, X.: Few-shots parallel algorithm portfolio con-
struction via co-evolution. IEEE Trans. Evol. Comput. 25(3), 595–607 (2021)

35. Trunfio, G.A., Topa, P., Was, J.: A new algorithm for adapting the configuration of
subcomponents in large-scale optimization with cooperative coevolution. Inf. Sci.
372, 773–795 (2016)

36. Wu, S., Li, G., Chen, F., Shi, L.: Training and inference with integers in deep
neural networks. In: Proceedings of the 6th International Conference on Learning
Representations, ICLR 2018, Vancouver, Canada. OpenReview.net, April 2018

37. Wu, Y., et al.: Rotation consistent margin loss for efficient low-bit face recogni-
tion. In: Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and
Pattern Recognition, CVPR 2020, Seattle, WA, pp. 6865–6875. Computer Vision
Foundation/IEEE, June 2020

38. Xu, Y., et al.: Positive-unlabeled compression on the cloud. In: Proceedings of
the 32nd Annual Conference on Neural Information Processing Systems, NeurIPS
2019, Vancouver, Canada, pp. 2565–2574. Curran Associates Inc., December 2019

39. Yang, Z., Tang, K., Yao, X.: Large scale evolutionary optimization using coopera-
tive coevolution. Inf. Sci. 178(15), 2985–2999 (2008)

40. Yang, Z., Tang, K., Yao, X.: Multilevel cooperative coevolution for large scale
optimization. In: Proceedings of the 2008 IEEE Congress on Evolutionary Com-
putation, CEC 2008, Hong Kong, China, pp. 1663–1670. IEEE, June 2008

41. Yu, X., Liu, T., Wang, X., Tao, D.: On compressing deep models by low rank
and sparse decomposition. In: Proceedings of the 2017 IEEE Conference on Com-
puter Vision and Pattern Recognition, CVPR 2017, Honolulu, HI, pp. 67–76. IEEE
Computer Society, July 2017

42. Zhao, R., Hu, Y., Dotzel, J., Sa, C.D., Zhang, Z.: Improving neural network quan-
tization without retraining using outlier channel splitting. In: Proceedings of the
36th International Conference on Machine Learning, ICML 2019, Long Beach, CA,
pp. 7543–7552. PMLR, June 2019

43. Zhou, S., Wu, Y., Ni, Z., Zhou, X., Wen, H., Zou, Y.: DoReFa-Net: training low
bitwidth convolutional neural networks with low bitwidth gradients. arXiv preprint
arXiv:1606.06160 (2016)

http://arxiv.org/abs/1606.06160


An Improved Convolutional LSTM
Network with Directional Convolution
Layer for Prediction of Water Quality

with Spatial Information

Ziqi Zhao1, Yuxin Geng2, and Qingjian Ni1(B)

1 School of Computer Science and Engineering, Southeast University, Nanjing,
Jiangsu, China
nqj@seu.edu.cn

2 Chien-Shiung Wu College, Southeast University, Nanjing, Jiangsu, China

Abstract. The prediction of water quality indicators is an important
topic in environmental protection work. For the prediction of water qual-
ity data with multi-site data, this paper proposes an improved model
based on ConvLSTM, which achieves the introduction of multi-site spa-
tial relationships in water quality indicators prediction. On the basis
of ConvLSTM, a directional convolutional layer is introduced to deal
with the spatial dependence of multiple information collection stations
with upstream and downstream relationship of a river to improve the
prediction accuracy. The model proposed in this paper is applied to a
dataset from three data collection stations to predict several indicators.
Experiments on real-world data sets and results demonstrate that the
improvements proposed in this paper make the model perform better
compared to both the original and other common models.

Keywords: Water quality prediction · Convolutional LSTM network ·
Spatial dependence

1 Introduction

The monitoring and prediction of water quality data is an important topic in
environmental protection work. The establishment of water quality information
collection stations allows researchers to obtain enough data and use machine
learning methods to predict future water quality indicators. Although water
quality will change with natural weather and human factors, itself has a certain
periodicity. At the same time, the spatial dependence of water quality indicators
on the upstream and downstream is distinctive, so it is necessary to introduce
spatial dependence in the task of predicting water quality indicators. Addition-
ally, by introducing water quality data from multiple stations for modeling, we
can further locate the location of the triggering factors while finding the water
quality indicators anomaly.
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At present, there have been some preliminary studies on water quality, which
define it as a time series prediction problem. Existing methods for precipitation
water quality can roughly be categorized into three kinds: statistical analysis
methods, machine learning methods and neural network models. For the statis-
tical analysis methods, the autoregressive model (AR), moving average model
(MA) and autoregressive integrated moving average model (ARIMA) are com-
monly used [5]. The advantage of these approaches is that the model can be
trained quickly. The drawback is that it does not perform well on water qual-
ity data that is subject to more human interference. For the machine learning
methods, support vector machine (SVM), bayesian network (BN), random forest
(RF), decision tree (DT) and other models are applied to water quality predic-
tion problems [1,3,16,17]. In addition to the application of existing models to the
field of water quality prediction, more and more researchers began to improve
the model according to the characteristics of water quality data [2].

In essence, water quality indicator prediction is a time-series prediction prob-
lem. Past water quality indicators are used as input, and a fixed number of future
water quality indicators are used as output. However, statistical or regression-
based models in practice face a problem: it highly requires smooth data sets,
so that the prediction results are too smooth, leading to a lack of practical sig-
nificance in the predicted results. Recent advances in deep learning, especially
gate recurrent unit (GRU) and long short-term memory (LSTM) models, pro-
vide some useful insights on how to tackle this problem. In order to improve the
accuracy of water quality prediction, more and more neural networks and hybrid
models have been proposed. Long short-term memory (LSTM) deep neural net-
works, usually used in time series prediction, is also applied in the prediction of
water quality [10]. And the hybrid model LSTM-MA is also applied for water
indicator prediction [14]. Similarly, another hybrid model to improve RNN in
the prediction of water indicator data is proposed [6]. As can be seen, current
approaches to water quality prediction are mainly based on traditional time-
series prediction machine learning models or deep learning networks. These pre-
diction methods tend to ignore the spatial dependence of several different data
collection sites in the same water system.

Fig. 1. An example of some sites in the same water system
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Although there have been some studies that have introduced spatial infor-
mation into time-series data predictions, the focus of their work wasn’t on the
relationships between individual sites [8]. In other fields, however, there are prob-
lems with the introduction of spatial dependencies in the analysis of time series
forecasts. Examples include radar cloud prediction, traffic flow prediction, etc.,
and one of the representative methods is ConvLSTM [12]. So this paper proposes
an improvement based on ConvLSTM, which is able to introduce spatial data in
water quality indicators prediction and improve the prediction accuracy, having
the following improvements and contributions:

1. Introducing spatial information. ConvLSTM is adopted for water quality pre-
diction, taking the spatial relationship between different sites into considera-
tion.

2. Improvement of ConvLSTM. ConvLSTM is usually used to solve problems
where the spatial relationship has high uncertainty, but the river has a stable
upstream and downstream relationship. So we introduce directional convolu-
tion layer to improve it.

3. Real evaluation. We evaluate our approach based on real-world data sets.
Extensive experiments show the advantage that our method has a better
performance.

This paper is organized as follows: in Sect. 2, this paper will introduce the
research problems and related methods involved in our model; in Sect. 3, we will
introduce the proposed model in detail; Sect. 4 is about experimental settings
and results of experiments; the last section is the summary and prospects.

2 Basic Definitions

2.1 Problem Formulation

The goal of forecasting water indicators data is to use the previously observed
data sequence to forecast the future water indicators of a fixed length in a water
system (rivers or pools). In practical applications, the data are usually collected
from the sites every 4 h. To predict 1-day ahead, this problem can be regarded
as a spatiotemporal sequence forecasting problem.

In our experiments, we predict ammonia nitrogen and dissolved oxygen data
from 3 monitoring stations with upstream and downstream relationships. Sup-
pose we observe a dynamical water system over a spatial region represented by
an 1 × N grid which consists of 1 row and N columns. This vector implies a par-
tial order relationship, indicating the upstream and downstream between sites.
Thus, the observation at any time can be represented by a tensor χ ∈ R1×N

where R denotes the domain of the observed features and N denotes the domain
of N stations. If we record the observations periodically, we will get a sequence
of tensors. The spatiotemporal sequence forecasting problem is to predict the
most likely length-K sequence in the future given the previous observations. In
our experiments, we use χt−w, χt−w+1, ..., χt to predict χt in different stations,
where w is the time window. Because in general, the influence of historical data
on future data in time-series data forecasting decreases until it can be ignored.
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2.2 Convolutional LSTM for Sequence Modeling with Spatial
Information

ConvLSTM has been shown to be able to extract spatial relationships from
temporal data. ConvLSTM not only inherits the advantages of the traditional
LSTM, but due to its internal convolutional structure, it is well suited to spatial
data and therefore can be applied to the prediction of the variation of various
materials in a river with the movement of water [4,18]. The major innovation
of ConvLSTM is that it extends FC-LSTM by using convolutional layers of
variable sizes rather than fully connected layers to capture the motion patterns
of objects with different velocities. This allows ConvLSTM to quickly capture
spatial features in the data while discarding a certain degree of generality in the
processing of time-series data. ConvLSTM may be seen as a universal version of
FC-LSTM where the filter can take different values. When the filter size equals
the size of input vector, it becomes FC-LSTM. In this paper, we follow the
formulation of ConvLSTM as in paper [12]. The key equations are shown below.

it = σ(Wxi ∗ χt + Whi ∗ Ht−1 + WciCt−1 + bi),
ft = σ (Wxf ∗ χt + Whf ∗ Ht−1 + WciCt−1 + bf ) ,

ot = σ (Wxo ∗ χt + Who ∗ Ht−1 + WcoCt + bo) ,

Ct = ftCt−1 + it tanh (Wxc ∗ Xt + Whc ∗ Ht−1 + bc) ,

H = ot tanh (Ct) .

(1)

ConvLSTM can be combined with other deep learning models to form more
complex structures. These structures have been applied to solve many real-world
problems [7,9,11].

3 The Proposed Method

The proposed improvement structure is shown in figure (See Fig. 2). Although
the ConvLSTM has been proved to be powerful at handling spatiotemporal
data, it contains too much redundancy for water indicator data. To address this
problem, we propose an extension of convolutional layer only in the input. By
adding the layer that has fixed direction, we are able to build a network that can
capture only the speed of data flow, not the direction of data flow. This means
that the new structure will no longer apply to more general issues. At the same
time, however, the new structure will perform better in water quality indicator
predictions.

3.1 Reshaping Input Structure

The major drawback of ConvLSTM in handling water indicator data is its usage
of convolutional layer, in which spatial information will be taken into account
with all directions. In water quality data prediction tasks, however, the flow of
data between sites is directed. This can be thought of as a specialised problem
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Fig. 2. The overview structure of the proposed model

for ordinary spatio-temporal data prediction. In this case, the individual stations
form a partial order set with each other through upstream and downstream rela-
tionships. Their spatial dependence is unidirectional, i.e. from upstream to down-
stream. To overcome this problem, we have redesigned the data input form so
that water quality data can contain both multiple indicators and spatial informa-
tion in a two-dimensional tensor (See Fig. 3). In order to capture the potential
linkages between multiple indicators and multiple sites, we reconstructed the
data into a 2D tensor. One dimension of the matrix is the data originating from
multiple sites. We will subsequently capture the spatial dependencies through
a special convolution layer. The other dimension of the matrix is the multiple
water quality indicators collected at the same site (if present). This provides the
possibility of multiple indicators prediction.

3.2 Directional Convolution Layer

After reshaping the input structure, the convolutional layer used in ConvLSTM
to extract spatial relations would no longer be applicable. Accordingly, they
are replaced by two special convolutional layers in this paper instead. Their
convolutional kernels are used to extract upstream-downstream relationships
and relationships between multiple indicators at the same site, respectively (See
Fig. 4).
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Fig. 3. Reshaping input structure

In proposed model, the directional kernel size is adjustable, which based on
specific upstream-only relationships. The size of indicator kernel used to capture
relationships between indicators is usually n, which is the number of indicators.
Here is a special case, when predicting only one indicator, the input becomes a
one-dimensional vector and the indicator kernel is no longer needed.

Fig. 4. Directional convolution layer proposed in this paper

4 Experiments and Results

We first compare our improved network with the LSTM network on data sets to
gain some basic understanding of the performance of our model. To verify the
effectiveness of our model, we also compared it with common models used for
water quality indicator prediction. The results of the experiments lead to the
following findings:
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1. ConvLSTM with directional convolution layer performs better than pure
LSTM and other time-series prediction models in handling water quality indi-
cators data set.

2. Directional convolution layer can help capture the spatial relationships.
3. Directional convolution layer can speed up the training of the model to a

great extent by simplifying convolutional layer operations.

4.1 Dataset and Preprocessing

In this paper, we used real-world water quality data from automatic monitoring
stations in southern China. We conducted experiments on data from 3 moni-
toring stations with upstream and downstream relationships. The water quality
indicators that we were committed to study is ammonia nitrogen and dissolved
oxygen, which were important to pollution monitoring and ecological protection
of rivers. The time range is from 2019/8/18 to 2020/8/18, and the time interval
is 4 h. Other specific condition of data sets is in Table 1.

Our implementations of the models are in Python with the help of Keras.
We run all the experiments on a computer with a single NVIDIA GTX2080Ti
GPU.

Table 1. The condition of data set

Indicator Max Min

Ammonia nitrogen 17.77 0.13
Dissolved oxygen 12.29 0.09

In order to supplement the missing data, we mainly adopted the Seasonal
and Trend decomposition using Loess (STL 2) to decompose the data into three
parts so that we could obtain the cyclical and trend components of the data.
According to this method, the sliding average of the time-series data (Yt) can
represent its trend. After subtracting the trend component (Tt) from the data, a
fitting method allows the period component (St) to be obtained and finally the
residuals (Rt).

Yt = Tt + St + Rt, t = 1, · · · , N. (2)

Here is an example of STL used to process dissolved oxygen data (See Fig. 5).
The original data is decomposed into 3 parts: Trend, Seasonality and Residu-
als. From the ‘Trend’ sub-graph we can learn the variation of indicators over
time. The ‘Seasonality’ sub-graph shows that the change of certain indicator.
The ‘Residual’ sub-graph represents the amount of noise generated by irregular
disturbance in the data.
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Fig. 5. Data decomposed by Trend decomposition using Loes (STL)

4.2 Baseline Methods for Comparision

In this paper, the proposed model is compared with some latest machine learning
models in time series prediction.

1. Prophet: a procedure for forecasting time series data based on an additive
model [13].

2. RNN-LSTM: LSTM recurrent neural network.
3. CNN: Convolutional neural network.
4. TCN: Temporal convolutional network.
5. Transformer: A network based solely on attention mechanisms, dispensing

with recurrence and convolutions entirely [15].

4.3 Evaluation Metrics

In our datasets, since we have compared the proposed model with other models,
we follow the metrics RMSE, which is defined as follow:

RMSE =

√
√
√
√

∑

(i,t)∈Ωtest

(

Yit − Ŷit

)2

|Ωtest| . (3)

where Y and Ŷ are true values and predicted values respectively. And the lower
RMSE means better performance.

4.4 Results and Analysis

Since our model is based on the LSTM network framework and applies an
improvement mechanism, the study is carried out to compare with the original
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model by introducing spatial dependency information. We conduct experiments
in terms of RMSE and model training time. The comparison results are shown
in figure (See Fig. 6 and Fig. 7). And raw data is presented in the table.

Fig. 6. Comparison of RMSE results between proposed model and baselines

The results (See Fig. 6, 9 and Table 2) show that our model can improve the
accuracy of water quality indicators prediction by introducing spatial depen-
dency information, which leads to an improved result and best between base-
lines.

Table 2. The experimental results of RMSE

Model RMSE Training time

Proposed model 0.70 33.91
RNN-LSTM 0.87 1105.64
Prophet 1.49 6.37
CNN 1.58 319.31
TCN 1.81 155.15
Transformer 2.04 734.89

At the same time, it can be seen in figure (See Fig. 8) that our directional convo-
lution layer plays a role in assisting in the capture of spatial information. In fact the
RMSE of results of Site 1 and Site 2 are a little higher than RMSE using the orig-
inal model. It is because we make reduction in the number of network layers in the
improved model, which is also the reason why our models can be trained and used
in a short response time. However, when we tend to predict indicators of Site 3, the
directional convolution layer can help us capture spatial relationships and improve
predictionaccuracywhilehavinga small impactonthe sizeof themodel.The results
in figure (SeeFig. 7) show that ourmodel’s training time is only slightly higher than
Prophet while at the highest levels of accuracy.
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Fig. 7. Comparison of training time results between proposed model and baselines

Fig. 8. RMSE of 3-site prediction Fig. 9. Prediction results of ammonia
nitrogen

5 Conclusion

In this paper, aiming at the prediction of time-series prediction of water quality
indicators with multi-site, directional convolution layer is proposed, which is an
improvement of convolution LSTM. Our model introduces two special convolu-
tion kernels before the input layer of original ConvLSTM for capturing spatial
correlation between data. At the same time, it also provides a possibility to make
multivariate predictions. Based on the real-water quality data, we predict water
quality indicators on a 3-site data set. The experiments prove that the prediction
accuracy of our model is significantly better than that of other models. What’s
more, by applying our improvement, the model can not only capture the spatial
relationship but also make a significant reduction in model size, which leads to
a short training time.

The experimental results show that the proposed improvement of ConvL-
STM performs well in water indicator forecasting, through which, environmen-
tal authorities can analyse water quality more easily. Also, accurate prediction
of water quality indicators for fixed stations can be an important basis for us
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to capture anomalous values and detect polluting discharges, which has a great
effect on the monitoring of water quality.

In the future, the following problems deserve further study:

1. In the current study, this paper is more concerned with correctly predicting
future data. In the field of environmental monitoring, however, we would also
like to be able to assess existing data to determine when a particular body
of water is unusually polluted. In future research, we expect to be able to
construct a model for anomaly detection.

2. While this paper proposes a multivariate approach to time-space data predic-
tion, it currently only introduces spatial relationships between multiple sites.
In further experiments, we will try multivariate forecasting.

3. In the current study, this paper only predicts through water quality indicators
as factors. However, water quality indicators are also influenced by other
factors such as precipitation, temperature, air quality, etc. In future studies,
we will consider introducing these factors to further improve the prediction
accuracy.
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Abstract. Since 2020, the Novel Coronavirus virus, which can cause
upper respiratory and lung infections and even kill in severe cases,
has been ravaging the globe. Rapid diagnostic tests have become one
of the main challenges due to the severe shortage of test kits. This
article proposes a model combining Long short-term Memory (LSTM)
and Convolutional Block Attention Module for detection of COVID-19
from chest X-ray images. In this article, chest X-ray images from the
COVID-19 radiology standard data set in the Kaggle repository were
used to extract features by MobileNet, VGG19, VGG16 and ResNet50.
CBAM and LSTM were used for classifcation detection. The simula-
tion results showed that the experimental results showed that VGG16–
CBAM–LSTM combination was the best combination to detect and clas-
sify COVID-19 from chest X-ray images. The classification accuracy of
VGG-16-CBAM-LSTM combination was 95.80% for COVID-19, pneu-
monia and normal. The sensitivity and specificity of the combination
were 96.54% and 98.21%. The F1 score was 94.11%. The CNN model
proposed in this article contributes to automated screening of COVID-19
patients and reduces the burden on the healthcare delivery framework.

Keywords: Attentional mechanism · Long short-term memory ·
COVID-19 · Deep learning

1 Introduction

1.1 A Subsection Sample

In 2020, COVID-19 spread worldwide on March 11, 2020, COVID-19 (WHO)
World Health Organization (WHO) announced that the new crown pneumonia
became a global pandemic and a sudden health event, mainly caused by SARS-
CoV-2. The novel coronavirus pneumonia has high transmission and is a new
form of detection. It is mainly used to detect Reverse Transcription Polymerase
Chain Reaction (RT-PCR) virus nucleic acid. It is an applicable form for detect-
ing new crown pneumonia. However, RT-PCR has many disadvantages, such as
high operation requirements, long time-consuming and low positive rate. There-
fore, the development of reasonable and cost-effective diagnostic technology in
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the early stage is of great significance to detect the spread of the virus [4]. Chest
X-ray image, as a relatively easy to obtain medical image, is very suitable for
diagnosis and detection in emergency. It is one of the effective ways to study the
lung and its health status.

In recent years, deep learning has many applications in the infectious of dis-
ease diagnosis. The relevant research of Ghoshal et al. shows that the use of deep
learning technology can make chest CT imaging applied to identify COVID-19
patients [5]. Wang et al. studied 453 CT images of COVID-19 confirmed cases,
of which 217 images were used as the training set, and 73.1% accuracy was
obtained using the initial model [12]. Hemdan et al. proposed a CNN based
model, which is a variant of VGG-19. The model uses 50 images achieving 90%
accuracy [6]. Ahsan et al. developed COVID-19 diagnostic model for mixed data
(digital/classified data and image data) using multilayer perceptron and convo-
lutional neural network (mlp-cnn) [1]. Apostolopoulos et al. used the transfer
learning strategy and added it to CNN, so that CNN can automatically diag-
nose COVID-19 cases by learning the basic features in the chest film data set [2].
Wang et al. constructed a new database, chestx-ray8, containing 108948 X-ray
frontal images of 32717 unique patients [13]. Song et al. used deep learning to
detect COVID-19 on CT images, and the accuracy rate reached 90.8% [10].

2 Materials and Methods

The data processing model for COVID-19 detection proposed in this article is
shown in Fig. 1. After the original X-ray image is preprocessed by size adjust-
ment, transformation and normalization, the data is divided into training set
and test set. Then we use the training set to train the cnn-cbam-lstm archi-
tecture we proposed. At the same time, the accuracy and loss of training are
measured every certain time by using 50% cross verification, and the accuracy
and loss of the whole system are verified. We used confusion matrix, accuracy,
area under ROC curve (AUC), specificity, sensitivity and F1 score to evaluate
the performance of the whole system.

Fig. 1. Data processing model



108 W. Zhu and X. Lei

2.1 The DataSet

COVID-19 data sets were organized into 3 folders (new crown pneumonia, pneu-
monia, normal). Since a large number of specific data sets could not be obtained,
X-ray samples of COVID-19 were obtained from different sources. First, 1401
COVID-19 samples were collected using GitHub repository, radiopedia, Italian
Society of Radiology, figshare data repository website. In addition, 912 enhanced
images were collected from mendeley instead of explicitly using data enhance-
ment technology. Finally, samples of 2313 normal and pneumonia cases were
obtained from kaggle. A total of 6939 samples were used in the experiment, and
2313 samples were used in each case. We adjusted the size of the data set to 224
pixels, and divided it into 80% and 20% for training and testing, respectively.
The data set used in this article are from https://data.mendeley.com/datasets/
mxc6vb7svm and the division results of it is shown in Table 1.

2.2 Development of Network Models

The model structure proposed in this article is the combination of convolutional
neural network (CNN) [8], attention mechanism [14] and long-term and short-
term memory network (LSTM) [3] to learn kaggle dataset.

Table 1. Data set partition

Data/Cases COVID-19 Normal Pneumonia Overall

Train (centered) 1480 1480 1480 4440

Test 463 463 462 1388

Val 370 370 371 1111

Overall 2313 2313 2313 6939

2.3 The Architecture Proposed

For the existing COVID-19 X-ray images, we combine combines the existing
widely used pre training models VGG-16, VGG-19, ResNet50 and MobileNetv1
with the model proposed in this article, and tests the performance of classifying
the images into COVID-19 positive cases, bacterial pneumonia and normal sam-
ples respectively. The following describes the structure combining different CNN
with the model proposed in this article. In this article, the pneumonia X-ray
image obtained from kaggle database is preprocessed and adjusted to 224 pixels.
The convolution layer and CBAM are used to extract the features, and then it
is input into LSTM. Finally, COVID-19 is classified through the full connection
layer.

https://data.mendeley.com/datasets/mxc6vb7svm
https://data.mendeley.com/datasets/mxc6vb7svm
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VGG-16 and VGG-19. In the current research, researchers have developed
learning models VGG-16 and VGG-19 in the image recognition task of Imagenet
[9]. We add these two pretraining models to the proposed CNN-CBAM-LSTM
system, which can transfer the parameters of the original pretraining model
instead of starting from scratch, so as to reduce its computational cost. VGG-16
model is a network composed of 16 layers network structure based on Imagenet
database, which is mainly used for image recognition and classification. VGG-
19 has a similar structure to VGG-16, except that VGG-19 has 16 convolution
layers.

Fig. 2. CNN—CBAM—LSTM structural model

MobileNet. MobileNet is one of the representative networks of lightweight
neural networks. With the application effect of deep learning network model
getting better and better, deep learning also promotes the development of neu-
ral networks towards miniaturization . In this article, mobilenet is used as the
convolution layer of CNN-CBAM-LSTM model system to extract features. The
basic unit of mobilenet adopts depth level separable convolution. The deep con-
volution in the deep separable convolution is to turn the convolution kernel into
a single channel and finally stacks it. The point by point convolution is the same
as the traditional convolution layer, taking 1 × 1 Convolution kernel. This article
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preprocesses the X-ray images obtained from the kaggle database, adjusts them
to 224 pixels, uses the convolution layer of MobileNetV1 and CBAM to extract
features, then inputs them into LSTM to extract feature information, and finally
realizes the classification of COVID-19 through the full connection layers.

ResNet. The residual network is obviously different from the proposed network.
Its main idea is to add a direct channel in the whole network, which allows to
retain the proportion and output of the previous network layer. The traditional
convolutional network or fully connected network will more or less have problems
such as information loss when transmitting information. At the same time, it
will lead to the disappearance or explosion of gradient, which makes the deep
network unable to train. ResNet retains the integrity of information after using
the direct channel, which solves this problem to a certain extent. In this article,
we uses ResNet50 as the backbone network of the model, adjusts the pictures of
the data set to 224 pixels, and inputs them into the whole model to realize the
classification.

2.4 The Evaluation Index

In this article, the Formula 1–4 were used to measure the performance of the
proposed model: TP represents the correct prediction of COVID-19 cases, FP
represents the normal cases or pneumonia cases that were systematically misclas-
sified, TN represents the normal cases or pneumonia cases that were correctly
classified, and FN represents the normal cases or pneumonia cases that were
systematically misclassified.

Accuracy = (TP + TN)/(TN + FP + TP + FN) (1)

Sensitivity = TP/(TP + FN) (2)

Specificity = TN/(TN + FP ) (3)

F1 − score = (2 ∗ TP )/(2 ∗ TP + FP + FN) (4)

3 Analysis of Experimental Results

This section describes the experimental device, data set and performance
indicators, and then analyzes the performance of different combination using
MobileNetV1, ResNet50, VGG-16 and VGG-19 respectively to find the best as
the model structure proposed in this article.

3.1 The Experimental Device

In this article, the obtained data set, namely chest X-ray images, was converted
into 224 × 224 × 3 pixel values, and then implemented using Keras and ten-
sorflow2.0 on Intel I5, 3.30 GHZ processor. The overall dataset had 80% and
20% backed up for training and testing, respectively. The maximum number of
iterations in this article was 100, and a fivefold cross validation approach was
used to conduct the experiments.
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3.2 Results Analysis

We conduct experimental analysis on the proposed different system models to
verify their performance. Figure 3 shows the confusion matrix of the system
model proposed in this article when VGG-19, VGG-16, MobileNetv1 and ResnR-
Net50 are used as CNN respectively. Where a, b, c and d respectively represent
the confusion matrix obtained by combining VGG-19, VGG-16, MobileNetv1
and ResNet50 with the system proposed in this article. Among 1380 images,
58 images in VGG-19-CBAM-LSTM system were misclassified, including 18
COVID-19 cases, 58 images in VGG-16-CBAM-LSTM system were misclas-
sified, including 16 COVID-19 cases, and 58 images in MobileNetv1-CBAM-
LSTM system were misclassified, including 18 COVID-19 cases. In the model
with ResNet50 as the backbone network, 149 images were misclassified. In the
above confusion matrix, we observed that VGG-16 has better true value and
true negative value, and there are few misclassification cases.

Figure 4 shows the change of the accuracy value with the number of iterations
of different systems in the training and verification stage,in which a, b, c and
d represent the change in accuracy of the combination of the system proposed

Fig. 3. Confusion matrix (a) VGG-19 (b) VGG-16 (c) MobileNet (d) ResNet 50
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in this article and VGG-19, VGG-16, MobileNetV1 and ResNet50, respectively.
In this article, 5-fold cross validation is adopted, and the number of iterations
of training validation is 100. As shown in Fig. 4, when VGG-19 convolution
is used for feature extraction, the accuracy of training and verification reaches
98.31% and 97.31%, respectively. When VGG-16 is used for feature extraction, its
accuracy reaches 99.45% and 99.81% respectively. When MobileNetV1 is used for
feature extraction, its accuracy reaches 98.20% and 98.88% respectively. When
ResNet50 is used as the backbone network, the accuracy of its training set and
verification set is only 85.71% and 90.39%.

Fig. 4. Accuracy varies with the number of iterations (a) VGG-19 (b) VGG-16
(c) MobileNet (d) ResNet50

Figure 5 depicts the change of cross entropy with the number of iterations
when CNN-CBAM-LSTM classifier uses different networks as the feature extrac-
tion layer. Where a, b, c and d represent the change in cross entropy as the num-
ber of iterations increasing which is obtained by combining the system proposed
in this article and VGG-19, VGG-16, MobileNetV1 and ResNet50, respectively.

It can be seen from the image that in the architecture proposed in this article,
the cross entropy of VGG-19 is 0.05 and 0.07 in training and verification respec-
tively. The cross entropy of VGG-16 is 0.016 and 0.004 in training and verification
,respectively. The cross entropy of MobileNetV1 is 0.05 and 0.09 respectively. The
cross entropy of ResNet50 is 0.38 and 0.50 in training and verification, respec-
tively. According to the change of cross entropy, VGG16-CBAM-LSTM shows
better performance.



COVID-19 Detection Method Based on Attentional Mechanism and LSTM 113

Fig. 5. Loss changes with the number of iterations (a) VGG-19 (b) VGG-16
(c) MobileNet (d) ResNet50

Table 2. Performance index of each method

CNN Class Acc (%) Spe (%) Sen (%) F1-score(%)

VGG16-CBAM-LSTM COVID-19 91.79 98.21 96.54 94.11

Normal 99.11 98.92 99.80 98.45

Pneumonia 96.85 96.58 93.07 94.92

VGG19-CBAM-LSTM COVID-19 92.68 98.00 95.68 94.16

Normal 98.06 99.03 99.56 98.80

Pneumonia 96.82 96.67 92.21 94.46

MobileNetV1-CBAM-LSTM COVID-19 91.60 98.00 94.17 92.86

Normal 98.65 99.03 96.27 97.45

Pneumonia 93.26 96.68 92.86 93.06

ResNet50-CBAM-LSTM COVID-19 88.76 91.94 83.58 86.10

Normal 84.90 94.47 95.16 89.74

Pneumonia 94.70 95.16 88.96 91.74
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Table 3. The existing method is compared with the method proposed in this article

Author Model Acc(%) Acc(COVID-19)(%) Dataset size

Wang et al. [12] Inception 73.1 — 453 CT

Ghoshal et al. [5] Bayes —CNN 89.92 — 5941 X-ray

Ahsan et al. [1] MLP-CNN 95.4 — 168 X-ray

Hemdan et al. [6] VGG19 90 — 50 X-ray

Wang et al. [11] Tailored CNN 92.3 80.0 5941 X-ray

Bessinana et al. [2] VGG19 93.48 — 1428 X-ray

Song et al. [10] — 90.8 — 275 CT

Li et al. [7] DenseNet 88.9 79.2 537 X-ray

Proposed method VGG19-CBAM-LSTM 94.93 92.68 6939 X-ray

Proposed method VGG16-CBAM-LSTM 95.80 91.79 6939 X-ray

Proposed method MobileNet-CBAM-LSTM 94.42 91.60 6939 X-ray

- SVM 82.89 9− 6939X-ray

Table 4. The existing method is compared with the method proposed in this article

Model Accuracy(%) Acc(COVID-19)(%) Dataset size

VGG16 91.56 90.01 6939 X-ray images

VGG19 90.85 89.83 6939 X-ray images

MoBileNetV1 89.04 88.82 6939 X-ray images

SVM 82.89 80.0 6939 X-ray images

DenseNet 88.90 79.20 6939 X-ray images

VGG19–CBAM–LSTM 94.93 92.68 6939 X-ray images

VGG16–CBAM–LSTM 95.80 91.79 6939 X-ray images

MobileNet–CBAM–LSTM 94.42 91.60 6939 X-ray images

Table 2 summarizes the overall accuracy, specificity, sensitivity and F1 score
of the proposed system under different networks. As shown in Table 2, the system
proposed in this article shows better comprehensive performance under different
neural networks, among which VGG-16 has the best performance. For COVID-19
cases, the specificity is 98.21%, the sensitivity is 96.54% and F1 score is 94.11%.
The specificity for pneumonia cases was 96.85%, the sensitivity was 93.07%,
and the F1 score was 94.92%. For normal cases, the specificity was 98.92%,
the sensitivity was 99.80%, and the F1 score was 98.45%. Compared with other
systems proposed in this article, the specificity and sensitivity of normal cases
and F1 score are higher, while the sensitivity of pneumonia is lower.
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In Fig. 6, VGG-16, VGG-19, MobiNetV1 and ResNet50 are successively
added to the ROC curve (AUC) in the system model proposed in this arti-
cle. It can be seen from the image that the area under the ROC curve exceeds
96% for COVID-19, normal and pneumonia, and the AUC value of COVID-19
of VGG-16 reaches 99.93%.

Fig. 6. ROC curve (a) VGG-16 (b) VGG-19 (c) MobileNet (d) Res Net50

The above experimental results show that the proposed CBAM and LSTM
using CNN combined with attention mechanism have good performance. Among
them, VGG-16 combined with the model proposed in this article obtains the best
results. For COVID-19 cases, the specificity is 98.21%, the sensitivity is 96.54%,
F1 score is 94.11%, and the AUC value reaches 99.93%. The main purpose of
this experiment is to obtain a good effect in detecting COVID-19 cases, which
is also confirmed in various indicators of the experimental results.
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4 Discussion

As mentioned in Sect. 3, we use different backbone networks to conduct sepa-
rate experiments on them, and presents the results in the form of performance
indicators and confusion matrix. The model structure of VGG-16 combined with
CBAM and LSTM obtained the highest accuracy, reaching 95.80%. The ROC
curve in Fig. 6 also proves the advantages of VGG-16-CBAM-LSTM model com-
pared with other networks tested in this article, and the model based on VGG-16
also shows better advantages in other performance indexes.

At the same time, this article compares the accuracy of the proposed system
with some existing systems. The comparison results are shown in Table 4.

It can be seen from the chart that the proposed calculation model still has
the disadvantage of low accuracy, and the data set used is relatively small. 6939
chest X-ray images are used in this article, which has the characteristics of rich
and balanced. And in the architecture method proposed in this article, VGG-
19, VGG-16, ResNet50 and MobileNetV1 are used as the convolution layer of
feature extraction respectively. Their accuracy have reached more than 94% and
have good scalability.

At the same time, we compare the system proposed in this article with the
existing models under the unified data set, and the results are shown in Table 4.
The VGG-16-CBAM-LSTM used in this article has a good accuracy of 95.80%,
and has a good performance in the prediction of COVID-19.

5 Conclusion and Future Work

In this article, a system of CNN combining CBAM and LSTM in attention
mechanism is proposed. VGG-19, VGG-16, ResNet50 and MobileNetV1 deep
learning technologies are adopted on a large data set kaggle respectively. The 5-
fold cross validation results show that VGG16-CBAM-LSTM combination is the
best for detecting COVID-19 from chest X-ray images. The multi classification
accuracy of this system is 95.80%, F1-score is 94.11%, sensitivity is 96.5% and
specificity is 98.21%. The AUC value in ROC curve exceeds 0.98 for COVID-19,
pneumonia and normal, and the whole network has good robustness. The system
proposed in this article has good performance and can help medical practitioners
reduce their workload. Under the current global epidemic, we hope to develop
a method to reduce the pressure of doctors to fight the epidemic according to
X-rays and contribute to the fight against the epidemic in terms of artificial
intelligence.
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HDVs to enhance the cooperative positioning accuracy of vehicles with
different positioning capabilities. Experimental results show the accuracy
and timeliness of our proposal for enhancing vehicle positioning accuracy
and sharing vehicle positioning information.

Keywords: Cooperative positioning · Deep neural network (DNN) ·
Accuracy enhancement · Positioning error

1 Introduction

Connected and autonomous vehicles (CAVs) and intelligent transportation sys-
tems (ITSs) have made breakthrough progress in order to solve the problems of
efficiency, cost and safety in the transportation field. The accurate positioning
technology of autonomous vehicles is the key technology to ensure the safety and
travel efficiency of ITSs [1]. Global Navigation Satellite System (GNSS) is the
most dominant technology for positioning and navigation signals can be used
in most cases [2]. Nonetheless, despite the widespread use of GNSS position-
ing technology, accurate positioning in urban canyons and under heavy traffic
remains challenging [3].

Under the influence of building occlusion and multi-path effect in urban areas
[4], GNSS cannot meet the positioning accuracy requirements of intelligent vehi-
cle infrastructure cooperative systems (IVICS) and automatic driving applica-
tions. The vehicular carrier-phase differential Global Navigation Satellite System
(CDGNSS) can achieve better positioning performance in deep urban without
the aid of inertial and odometry sensors [5], but it is still affected by the distance
between the reference station and the user and the signal is unstable. In order
to solve the problems of GNSS positioning, many researches are based on sensor
technology [6], machine learning and IoV technology to improve the positioning
accuracy of vehicles.

Autonomous vehicles can sense the environment through LiDAR and then
match with the known 3D point clouds to estimate the position, which is a non-
cooperative positioning method based on the vehicle’s own sensor [7]. Based on
vehicle-to-vehicle (V2V) and dedicated short-range communication (DSRC), the
real-time relative position prediction method of adjacent vehicles is realized [8].

There are also some studies on vehicle cooperative positioning based on multi-
agent reinforcement learning, such as the deep reinforcement learning, using
decentralized scheduling algorithms to optimize a partially observable Markov
decision process, can improve vehicle positioning accuracy [9]. El-Sheimy et al.
proposed two multi-sensor information fusion schemes based on artificial neural
networks (ANN) to reduce positioning system errors by utilizing multilayer feed-
forward neural networks with a conjugate gradient training algorithm [10]. The
cooperative positioning of CAVs with the same positioning ability was mainly
studied, and the existing road measurement facilities were not fully utilized to
form a systematic positioning system framework in the previous work. However,
HDVs will still occupy a large proportion of the driving vehicles on the road.
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In this paper, we focus on the cooperative positioning of vehicles with differ-
ent positioning capabilities in the traffic scenario where CAVs and HDVs coexist.
We first predict the positioning error of vehicles by constructing deep neural net-
work (DNN) model, in which the vehicle motion state information and position
information obtained by CAVs within the identification range of traffic signs
are used as the training set of network model. We also propose three position-
ing error information sharing methods and compare their performance. Using
the high accuracy positioning capability of CAVs, we provide positioning error
information based on DNN for HDVs to enhance the cooperative positioning
accuracy of vehicles with different positioning capabilities.

The rest of the paper is organized as follows: In Sect. 2, we show the sys-
tem model and discusses assumptions that our work is based on. Following this
positioning error prediction algorithm and positioning accuracy enhancement
method are shown in Sect. 3, while Sect. 4 gives the numerical results of the
simulation and discusses a lot. Finally, the conclusions are presented in Sect. 5.

2 System Model

In this section, we introduce the vehicle positioning scenario and the overall
system architecture. At the same time, we analyze the feasibility of improving
positioning accuracy by sharing vehicle positioning errors.

2.1 Positioning Scenarios

In this part, we give a detailed description of the vehicle positioning scenario
and its road facilities.

– Road section description: Road sections with continuous characteristics are
equipped with special traffic signs. Passing vehicles identify these special traf-
fic signs through electronic signals (such as RFID) to determine the road and
obtain the location of traffic signs.

– Vehicle description: There are two kinds of vehicles with different positioning
capabilities in the vehicle positioning scenario, CAVs and HDVs. All vehi-
cles are equipped with the same GNSS receiver. In addition to using GNSS
to obtain positioning information, CAVs are equipped with other on-board
sensors to assist in precise positioning. Therefore, CAVs can recognize the
roadside traffic sign and obtain its coordinates, and then calculate its exact
position through the relative distance and angle with sign. However, there is
a large error in the positioning information obtained by GNSS for HDVs.

– Communication and computing capability: The vehicle can realize V2V and
vehicle-to-infrastructure (V2I) communication through the DSRC commu-
nication module. Among them, CAVs have stronger computing power and
larger data storage space while HDVs can only do some simple calculations.
And All vehicles have access to the mobile edge computing nodes (MECNs)
within communication range.
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Fig. 1. System architecture of positioning error sharing.

Our overall system architecture is shown in Fig. 1. In this vehicle positioning
scenario, we will solve the positioning error problem of two types of vehicles with
different positioning capabilities respectively:

1) For CAVs, when the vehicle’s turning is too large to recognize the traffic
sign or the traffic sign is not continuous, the current position of the vehicle
cannot be calculated by obtaining the coordinates of the traffic sign and the
positioning error of the vehicle cannot be corrected.

2) For HDVs, large positioning errors always exist in the driving process
because the vehicle positioning information is only obtained by GNSS.

3) For the positioning scene where vehicles with different positioning abilities
coexist, the positioning scene is enhanced through the cooperative positioning
method of high precision positioning vehicles and vehicles with positioning errors.

2.2 Feasibility Analysis of Sharing Positioning Error

Some researches divide error sources into systematic error and random error [11].
Then GNSS positioning error can be expressed as

E = Es + Er (1)

where Es is the systematic error and Er is the random error.And the value of
the random error is much less than the systematic error.

In the positioning scenario of this paper, the satellite clock difference and
ionospheric delay which are the source of systematic error are basically the same
under the condition that the satellite combination observed by different vehicles
is basically the same in the similar time period and all vehicles are equipped with
the same type of GNSS receiver. The position difference of two vehicles driving
on the same road section is far less than the distance between vehicles and the
satellite. For vehicle i and vehicle j that can share positioning error information,
the systematic error between vehicles is considered to be approximately equal in
this paper, that is, Esi ≈ Esj . We can get

‖ΔEij‖ ≤ ‖(Eri − Erj‖ (2)
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In GNSS positioning error, the random error Er is too small to participate in
the calculation of positioning error compared with the systematic error Es [12].
According to the above analysis, Ei ≈ Ej is considered to be established.

3 Positioning Error Prediction Algorithm

As mentioned above, CAVs are equipped with abundant sensors, which can rec-
ognize traffic signs and obtain accurate positioning information of the vehicles
themselves to correct GNSS positioning errors. However, positioning errors need
to be predicted for areas not covered by traffic signs or for HDVs that only
obtain positioning information through GNSS.

In this section, we develop an algorithm for vehicle positioning error predic-
tion with DNN. Furthermore, we use DNN algorithm to predict the positioning
error information at the current time and discuss how to train the DNN.

3.1 Design of the DNN Algorithm

Deep learning models can not only simulate multilayer nonlinear mapping but
also have high fault tolerance and adaptive ability [13]. In the vehicular posi-
tioning problem, there are many factors that affect the accuracy of positioning
and the correlation of each factor is complex. Therefore, DNN with nonlinear
problem-solving ability can be used to predict vehicular positioning error. The
data obtained when CAV is within the identification range of traffic signs are
used as DNN training data. The proposed DNN prediction algorithm runs on
MECNs with powerful computing power and data storage space.

1) DNN structure: We use a fully connected neural network with multiple
hidden layers and multiple hidden nodes to predict location errors. The number
of nodes in each hidden layer is the same if the hidden layer is greater than 1.
The DNN we designed as shown in Fig. 2.

Fig. 2. Structure of DNN.

2) Input and output nodes: We mainly consider the motion state of the
vehicle in the process of driving as the input node. There are 8 input nodes in
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total, including the vehicle speed vi(t−1), acceleration ai(t−1), GNSS position
pxGi(t−1) and pyGi(t−1) at the last moment; The vehicle speed vi(t), acceleration
ai(t), GNSS position pxGi(t) and pyGi(t) at the current moment.

The output nodes are the positioning errors we need to predict, which are
the positioning error in the X direction ΔEx

i and the positioning error in the Y
direction ΔEy

i respectively.
3) Hidden layers and nodes: The number of hidden layers can affect the accu-

racy of network training while too many layers will also lead to time-consuming
problems.Therefore, we need to balance network accuracy and time cost and the
value of hidden layer is between the number of input nodes and the number of
output nodes [14].

The number of neurons in each hidden layer is an important parameter affect-
ing network performance. An appropriate number of neurons will enable the net-
work to have excellent information processing ability without reducing training
efficiency or even falling into local optimal. In this paper, we consider the num-
ber of training set samples, input nodes and output nodes to define the number
of hidden layers nodes of the network that does not lead to overfitting [15]:

N =
S

λ ∗ (I + O)
(3)

where S is the number of training set samples. The number of input nodes and
output nodes is represented by I and O. The constant λ is a scaling factor
satisfies λ ∈ [2,10].

As shown in Fig. 2, zl represents the input vector of l’th layer, al represents
the output vector of l’th layer and bl represents the bias vector of l’th layer.
Therefore, the relationship between them can be expressed as

zl = W l ∗ al−1 + bl (4)

where W is the weight of output and input between two hidden layers.By defining
the activation function σ(·), we can get

al = σ(zl)

= σ(W l ∗ al−1 + bl)
(5)

3.2 Training Phase

In this section, the parameter learning and model training process of DNN are
introduced. In order to reduce the dependency between parameters and prevent
over-fitting, Linear rectification function (ReLU) was selected as the activation
function of the hidden layer

σ(z) =

{
z z ≥ 0
0 z < 0

(6)
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In the process of training, the cost function is constantly minimized. In order
to be applicable to numerical prediction problems, we choose the mean square
error (MSE) of output value and target value as the cost function, that is

J(W, b, x, y) =
1
2n

n∑
i=1

(yx − aL
x )2 (7)

where yx and aL
x are the target value and output value of each sample respec-

tively. There are L hidden layers in the network. W and b are the coefficient
matrix and bias vector respectively. x and y are input vectors and output vec-
tors respectively. According to (5), we can get the gradient of the output layer

∂J

∂WL
=

∂J

∂aL

∂aL

∂zL
∂zL

∂WL
= (aL − y) ◦ σ′(zL)(aL−1)T (8)

and

∂J

∂bL
=

∂J

∂aL

∂aL

∂zL
∂zL

∂bL
= (aL − y) ◦ σ′(zL) (9)

where ◦ represents Hadamard product.
According to the forward propagation (4), we can obtain the gradient of the

l-th

∂J

∂W l
= δl(al−1)T (10)

and
∂J

∂bl
= δl (11)

Combining (5) and considering the relationship between zl and zl+1, we can
obtain

∂J

∂bl
= (W l+1)T δl+1 ◦ σ′(zl) (12)

and
∂J

∂W l
= (W l+1)T δl+1 ◦ σ′(zl)(al−1)T (13)

Therefore, the adjustment rules of W l and bl are as

W l = W l − α ∗ δl(al−1)T (14)

and
bl = bl − α ∗ δl (15)

where α is learning rate.
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3.3 Positioning Accuracy Enhancement Method

In this paper, CAVs and HDVs use the positioning information of CAVs in
the identification range of traffic signs as training sets to predict the current
positioning error of vehicles. The positioning accuracy of HDVs is so low that it
needs to be enhanced by positioning error information provided by CAVs. The
following three methods are proposed to enhance the positioning accuracy of
vehicles using the precise positioning information provided by CAVs, as shown in
Fig. 3. The workflow of the proposed positioning accuracy enhancement method
is as follows:

– Sharing current positioning error (SPE) : For the vehicle i, the positioning
error of other J vehicles at the current moment is directly used and the
average value is taken as itself current positioning error. Thus, The positioning
error Ei can be expressed as ΔEi = 1

J

∑J
i=1 ΔEj .

– Sharing positioning error data (SPD) : The positioning information data of
CAVs are uploaded to edge nodes as a training set to train DNN model to
predict positioning errors. The HDVs send requests to the MECNs within
the communication range to obtain the trained DNN model and predict vehi-
cle positioning errors by combining their own GNSS positioning and vehicle
motion state information.

– Sharing error prediction model (SPM) : The model parameters and position-
ing errors of J vehicles were averaged on the MECN and a hidden layer was
added to the DNN model to continue the training with the transfer learning
strategy, so as to obtain new error evolution to predict the positioning errors
of other vehicles. HDVs can send a request to the nearby MECN, and then
can use the trained DNN prediction model to predict the vehicle positioning
error combined with their own GNSS positioning and vehicle motion state
information.

Fig. 3. The methods of positioning accuracy enhancement.



126 A. Zhang et al.

4 Simulation and Results

In this section, a series of experiments are carried out to verify the feasibility and
superiority of our proposed positioning error prediction algorithm and sharing
method. Firstly, the accuracy of the proposed DNN-based error prediction algo-
rithm is evaluated. Then, the improvement of positioning accuracy of a single
CAV through the above three sharing methods is compared and the influence
of the number of shared vehicles on positioning results is evaluated. Finally, the
robustness and timeliness of the proposed method are discussed.

We use data from the publicly available NGSIM data set for our experiments
[16]. The data set includes the speed, acceleration and position information of
the vehicle when driving on the road. The data in the data set is collected and
recorded by 8 synchronous cameras with relatively accurate location information,
which can be regarded as the data obtained by CAVs after accurate position-
ing by recognizing traffic signs. By reference [17,18], this paper sets the GNSS
positioning system error Es as 10m, and the random error follows the Gaussian
distribution Er ∼ N(0, 4). According to this rule, we will add system error and
random error to the original data, and the processed data will be used as the
positioning information of HDVs.

The vehicle trajectory data is selected from the data set as the positioning
error information to share and its parameter requirements meet the requirements
in Table 1. According to Sect. 3.1, the number of hidden layers is between 2 and
8. The number of neurons in each hidden layer is calculated according to (3).
By comparing with the simulation experiments, it is found that the convergence
and function loss are better when the number of hidden layers is set to 4 and
the number of hidden layers is 5 after adding a hidden layer in SPM method in
this paper. The specific parameter settings of DNN are shown in Table 2.

Based on the DNN model constructed in Sect. 3.1, we predict the vehicle
positioning error and use the vehicle positioning error sharing method proposed

Table 1. Data selected

Parameters Values

Maximum speed (m/s) 30

Acceleration (m/s2) [−4, 4]

Sampling frequency (Hz) 10

Number of shared vehicles [1, 4]

Table 2. DNN settings

Parameters Values

Input nodes 8

Output nodes 2

Hidden layers 4, 5

Hidden layer nodes 50, 100, 150, 200

Scaling factor 2

Learning rate 0.005

Batch size 32

Loss function MSE

Optimization Stochastic

Algorithm Gradient descent [19]
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in Sect. 3.3 to correct the vehicle positioning error. The results of positioning
error correction by three methods are discussed in the following when the number
of shared vehicles is different.

For convenience of comparison, only the first 80 sampling points are extracted
here. The positioning error result after the positioning accuracy enhancement by
SPE is shown in Fig. 4. The three broken lines in Fig. 4 are the real position-
ing error of the vehicle, the vehicle positioning error corrected by using the
shared positioning information of one vehicle and the vehicle positioning error
corrected by using the shared positioning information of two vehicles. The posi-
tioning accuracy enhancement effect is not obvious, so we stopped the experi-
ment when we added two vehicles. The reason for this is that the positioning
accuracy enhancement method based on SPE directly uses the error informa-
tion provided by other vehicles, but does not combine with the vehicle motion
state to improve its own positioning accuracy, thus affecting the performance of
positioning accuracy enhancement.

Compared with SPE, SPD and SPM re-estimate the positioning error pre-
diction model based on the vehicle’s own data and information shared by other
vehicles, which is closer to the situation of the vehicle itself, as shown in Fig. 5
and Fig. 6. The four broken lines in Fig. 5 and Fig. 6 are the real positioning
error of the vehicle and the vehicle positioning error corrected by using the
shared positioning information of one to three vehicles. SPD and SPM have sim-
ilar positioning accuracy enhancement performance. The positioning accuracy
of vehicles with low positioning ability can be enhanced by sharing positioning
error information with other vehicles and correcting positioning error. However,
there are still differences between vehicles, leading to small positioning errors
after enhanced positioning accuracy. It can be seen from the two figures that
the fluctuation of broken line after the error correction of SPD method is larger
than that of SPM method, indicating that the error correction effect of SPM
method is more stable.

Fig. 4. The positioning accuracy
enhancement of different shared vehicle
numbers based on SPE.

Fig. 5. The positioning accuracy
enhancement of different shared vehicle
numbers based on SPD.
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The number of vehicles sharing positioning error information increases from 1
to 3. With the increase of the number of vehicles, the positioning error gradually
decreases, that is, the performance of the positioning accuracy enhancement
method becomes more obvious. In order to further compare SPD and SPM,
we compared the timeliness of enhanced positioning accuracy under the same
condition that 4 vehicles jointly provided positioning error information, as shown
in Fig. 7.

It can be seen that the loss function value of SPM decreases faster than SPD,
indicating that SPM has a higher training efficiency. This is because for SPD,
the vehicle needs to retrain the DNN model based on the data shared by itself
and other vehicles. For SPM, ordinary vehicles continue training after adding a
hidden layer on the basis of other vehicle training network architecture. Since
the previous network model has been trained and the network parameters have
been determined, the loss function can be reduced more quickly to save time.

Fig. 6. The positioning accuracy
enhancement of different shared vehicle
numbers based on SPM.

Fig. 7. The loss function decline curves of
SPD and SPM.

In addition, in order to more intuitively compare the positioning accuracy
enhancement effects of SPD and SPM, When the number of shared vehicles is
set to 4, the positioning accuracy enhancement effect in the X and Y directions
is shown in the Fig. 8 and Fig. 9. And the prediction results of positioning error
in the process of positioning accuracy enhancement based on 4 shared vehicles
are summarized in the in Table 3, which are the maximum, minimum, mean and
MSE of the error between the real value and predicted value of SPD and SPM
respectively.

The positioning errors in the X and Y directions become smaller after correc-
tion, that is, the positioning accuracy is significantly enhanced. As can be seen,
the mean square error of each method is 0.9935 and 0.5305 respectively, indi-
cating that positioning error of vehicles can be accurately predicted by SPM.
The minimum value indicates that the predicted result is very similar to the
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Fig. 8. The positioning accuracy
enhancement of x direction and y
direction based on SPD.

Fig. 9. The positioning accuracy
enhancement of x direction and y
direction based on SPM.

Table 3. Error prediction performant of different cases

SPD SPM

Maximum (m) 2.690 1.8571

Minimum (m) 0.2425 0.1686

Mean (m) 1.1883 0.8943

MSE (m2) 0.9935 0.5305

actual error, which indicates that it is feasible to enhance the vehicle positioning
accuracy by sharing the positioning error information.

The comparison of the three methods shows that the SPE does not perform
well in enhancing the positioning accuracy because it does not combine the
vehicle’s own motion state and other information. SPD and SPM have similar
positioning accuracy enhancement performance. When the number of shared
vehicles is 4, the positioning error based on SPD can be reduced by 82.48% while
that based on SPM can be reduced by 86.81%. Both of them can significantly
reduce the positioning error of vehicles and enhance the positioning accuracy of
vehicles. Among them, SPM is better than SPD in timeliness because it considers
the transfer learning strategy and uses the trained model to continue training
with its own data to make the network convergence faster. In addition, our
shared information is the positioning error of the vehicle rather than the location
information of the vehicle, which can protect the privacy of the vehicle and avoid
some security problems.

5 Conclusions

This paper addressed the problem of enhancing the cooperative positioning accu-
racy of vehicles by combining the existing high-precision positioning technology
and IoV technology in the traffic positioning scene where vehicles with different
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positioning abilities coexist in accordance with the actual situation. We build a
vehicle positioning error prediction model based on DNN and proposed vehicle
positioning error information sharing methods. Among them, SPD and SPM
have better performance in enhancing positioning accuracy, while SPM has bet-
ter convergence effect with the help of transfer learning strategy. Although highly
preliminary, we believe that the proposal is promising in terms of enhanced
positioning accuracy and error information sharing. The results provide many
perspectives for future research on the enhancement of positioning accuracy of
vehicles with different positioning abilities.
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Abstract. Neutral Hopfield neural networks have widely used in optimization
problems while its stability analysis has received a great deal of attention. This
paper investigates the problem of the global asymptotic stability of stochastic
neutral Hopfield neural networks with multiple time-varying delays. Different
form the previous reported results, the neural networks are affected by not only
stochastic perturbations, but also the time delays including discrete, distributed
and neutral types which are a variety of functions related to neural nodes. By
constructing a novelLyapunov functional andusing stochastic analysis techniques,
we derive the sufficient criteria of the global asymptotic stability of the networks.
Finally, some numerical simulations are given to verify the effectiveness of the
theoretical results.

Keywords: Hopfield neural networks · Stability · Multiple time-varying delays

1 Introduction

Neural network model was first proposed by scholars Culloch and Pitts imitating the
structural characteristics and working principle of biological neurons [1]. Due to the
needs of engineering application and theory, a variety of neural network models are
designed, such as Hopfield neural networks [2], convolutional neural networks [3], cell
neural networks [4], etc. Because of its powerful nonlinear mapping ability and parallel
processing ability, neural networks are now widely used in intelligent optimization,
image analysis, intelligent computing, machine learning and other fields [5–7]. Some
engineering applications often involve the stability of neural networks. For example,
when using neural networks to handle the optimization objective problem, the network
states must converge to a constant solution independent of the initial conditions, which
means that the unique equilibrium point of the network is required to be stable in a certain
range [8]. Stability means the system to return to the equilibrium state after deviating
from the equilibrium state, which reflect the system’s ability to resist small external
disturbance [9].
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Y. Tan et al. (Eds.): ICSI 2022, LNCS 13345, pp. 132–142, 2022.
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When scholars analyze the stability of neural networks, they find that time delays
play an important part. The signal propagation is not instantaneous due to the extension of
neurons in space, which leads to time delays in the network and cause network instability
or oscillation [10]. Moreover, the change of neural network state is not only related to the
current state of neurons, but also depends on the previous state of neurons. If the neural
network has both the current state derivative and the past state derivative of neurons,
this type of network is called the neutral neural network [11]. Neutral neural networks
with time delays have complete delay characteristics, which are more suitable for the
analysis of practical problems. In addition, environmental noise inevitably exists in
various systems,whichmay also lead to system instability. Recently, the stability analysis
of stochastic neutral neural networks with time delays has attracted great attention [12].

At present, scholars have come up with a variety of neural networks, of which
the typical representative is Hopfield neural networks. Hopfield neural network was first
designed and implementedbyHopfield and John [2].Nowadays,Hopfieldneural network
is widely used in various fields such as intelligent computing, optimization calculation,
super-resolution recognition of remote sensing images, suppression of communication
interference and so on [13]. For example, application of arbitrary order Hopfield neural
networks to optimization problems was studied by doing experiments about solving
Diophantine equation, Hamiltonian cycle and k-colorability problems [14]. Up to now,
many scholars have put forward a large number of stability theories aboutHopfield neural
networks. Faydasicokd deduced the stability condition expressed by the parameters of
the networkmodel, which is completely independent of time delay and neutral time delay
[9]. Arik studied the system and multiple delays, and obtained the stability conditions
independent of delay parameters [11]. Xiao studied the stochastic stability of neutral
systems with fractional Brownian motion and Markov jump [23]. It can refer to [13–23]
for more details of stability achievement. However, previous studies are often based on
linear matrix inequality (LMI) method, which cannot deal with multi delay problems
related to nodes. In addition, some studies are limited to fixed constant delays for the
most important time delays.

In this paper, the Hopfield neural networks are affected by not only stochastic per-
turbations, but also the time-varying delays including discrete, distributed and neutral
types related to neural nodes. By constructing a novel Lyapunov functional avoiding
the use of LMI method, with the help of stochastic analysis techniques, we derive the
stability criteria of the networks. Finally, some numerical simulations are given to verify
the effectiveness of the theoretical results.
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2 Stability Analysis

Throughout this paper, the superscript ‘T’ denotes transposition of a vector or a matrix,
C([−�, 0],R)denotes all continuous functions from [−�, 0] toR.‖·‖ represents 1-norm
of vector or a matrix while ‖·‖2 represents Euclidean norm. Let N = {1, 2, ...,N } The
model of stochastic neutral Hopfield neural network systems with multiple time-varying
delays is mathematically expressed as:

d
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where xi(t) represents the state of the ith neuron.Constant ci is a real positive number. The
constant elements aij, bij, oij, αi and βij represent the values of neuron interconnections,
and eij represents neutral weight coefficient. FunctionsGj
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)
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, fi(xi(t)) and
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are nonlinear functions determining the relationships between the states and

the outputs of neurons. And B(t) is 1-dimensional standard Brownian motion. Delay
function τij(t),μij(t), andμi(t) are time-varying functions satisfying specific conditions.
Let � = max{τij(t), μij(t),υij(t), μi(t)}, i ∈ N . The initial conditions of neutral type
neural network (1) are described by xi(t) = ϕi(t) which are included in C([−�, 0],R).

For the stochastic neutral Hopfield neural network system (1), suppose that
Hypotheses 1–3 are always satisfied.
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Hypothesis 2. There exist normal numbers μi, τij and μij such that

μi < μ̇i(t) < 1, τij < τ̇ij(t) < 1, μij < μ̇ij(t) < 1, i, j = 1, 2, · · · , n.

Hypothesis 3. Network (1) has only one equilibrium point.

Based on above assumptions, we will analyze the global asymptotic stability of the
network (1). In this paper, we use the following expressions for the sake of brevity:
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Theorem 1. The stochastic neutral Hopfield neural network system (1) is globally
asymptotically stable if the parameters of system satisfy the following inequalities:
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Proof : Constructing the following Lyapunov functional as
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Taking the stochastic differential operator LVi(xi(t), t) in the Lyapunov functional
(2) along the trajectories of neutral system (1) yields:
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≤
n∑

i=1

n∑
j=1

n∑
k=1

∣∣eijoik ∣∣x2j (t − τij(t)
) +

n∑
i=1

n∑
j=1

n∑
k=1

∣∣∣eikoikvikh2k ∣∣∣x2k (t)
∑n

i=1
2

∑n

j=1
eijxj

(
t − τij(t)

) ∑n

j=1
aijGj

(
xj(t)

)
(4)

≤ 2
n∑

i=1

n∑
j=1

n∑
k=1

|eijaikxj
(
t − τij(t)

)
Gk(xk(t))|

≤
n∑

i=1

n∑
j=1

n∑
k=1

∣∣eijaik ∣∣x2j (t − τij(t)
) +

n∑
i=1

n∑
j=1

n∑
k=1

∣∣eijaik ∣∣G2
k (xk(t)) (5)

n∑
i=1

2
n∑

j=1

eijxj
(
t − τij(t)

) n∑
j=1

bijGj
(
xj

(
t − μij(t)

))

=
n∑

i=1

2
n∑

j=1

eijxj
(
t − τij(t)

) n∑
k=1

bikGk(xk(t − μik(t)))

≤ 2
n∑

i=1

n∑
j=1

n∑
k=1

|eijbikxj
(
t − τij(t)

)
Gk(xk(t − μik(t)))|

≤
n∑

i=1

n∑
j=1

n∑
k=1

∣∣eijbik ∣∣x2j (t − τij(t)
) +

n∑
i=1

n∑
j=1

n∑
k=1

∣∣eijbik ∣∣G2
k (xk(t − μik(t))) (6)

Thus, inserting (3)–(6) into LVi(xi(t), t) yields

LVi(xi(t), t)

≤ −2cix
2
i (t) +

n∑
j=1

∣∣aij∣∣(x2i (t) + G2
j

(
xj(t)

)) +
n∑

j=1

∣∣bij∣∣x2i (t) +
n∑

j=1

∣∣cieij∣∣x2i (t)
+

n∑
j=1

n∑
k=1

∣∣eijaik ∣∣G2
k (xk(t)) +

n∑
j=1

(∣∣oijυijhj|+|ojiυjihi
∣∣)x2i (t)

+
n∑

j=1

n∑
k=1

∣∣∣ekiokiυkih2i ∣∣∣x2i (t) +
n∑

j=1

∣∣cjeji∣∣
1 − τji

x2i (t) +
n∑

j=1

∣∣bij∣∣
1 − μij

G2
j (xj(t)

+
n∑

j=1

n∑
k=1

ξijk

1 − τij
x2j (t) +

n∑
j=1

n∑
k=1

∣∣eijbik ∣∣
1 − μik

G2
k (xk(t))

+
∣∣α2

i

∣∣
1 − μi

f 2i (xi(t)) +
n∑

j=1

∣∣∣β2
ij

∣∣∣M 2
ij

(
xj(t)

)

= (−2ci + ζi + i)x
2
i (t) +

n∑
j=1

∣∣aij∣∣G2
j

(
xj(t)

) +
n∑

j=1

n∑
k=1

∣∣eijaik ∣∣G2
k (xk(t))

+
n∑

j=1

n∑
k=1

∣∣eijbik ∣∣
1 − μik

G2
k (xk(t)) +

n∑
j=1

∣∣bij∣∣
1 − μij

G2
j (xj(t))
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+
∣∣α2

i

∣∣
1 − μi

f 2i (xi(t)) +
n∑

j=1

∣∣∣β2
ji

∣∣∣M 2
ji (xi(t)) (7)

Utilizing Hypothesis 1, we have

LVi(xi(t), t)

≤ (−2ci + ζi + i)x
2
i (t) +

n∑
j=1

∣∣∣aijg2j ∣∣∣x2j (t) +
n∑

j=1

n∑
k=1

∣∣∣eijaikg2k ∣∣∣x2k (t)
+

n∑
j=1

n∑
k=1

∣∣eijbikg2k ∣∣
1 − μik

x2k (t) +
n∑

j=1

∣∣bij∣∣
1 − μij

G2
j

(
xj(t)

) +
∣∣α2

i

∣∣
1 − μi

f 2i (xi(t))

+
n∑

j=1

∣∣∣β2
ji

∣∣∣M 2
ji (xi(t))

= (−2ci + ζi + i)x
2
i (t) +

n∑
j=1

|ajig2i |x2i (t) +
n∑

j=1

n∑
k=1

∣∣∣ekjakig2i ∣∣∣x2i (t)
+

n∑
j=1

n∑
k=1

|ekjbkig2i |
1 − μki

x2i (t) +
n∑

j=1

∣∣bjig2i ∣∣
1 − μji

x2i (t) +
∣∣α2

i κ
2
i

∣∣
1 − μi

x2i (t) +
n∑

j=1

∣∣∣β2
jiθ

2
ji

∣∣∣x2i (t)
= (−2ci + ζ ′

i + ′
i

)
x2i (t)

Therefore, according to condition A1, there is a positive constant λ such that

LV(x(t), t) =
n∑

i=1

LV(x(t), t) ≤
n∑

i=1

(−2ci + ζ ′
i + ′

i

)
x2i (t) ≤ −λ‖x(t)‖22.

Let yi(t) = xi(t) + ∑n
j=1 eijxj

(
t − τij(t)

)
, T be a sufficiently large positive constant

such that 0 ≤ t ≤ T , then

|xi(t)|≤|yi(t)| +
n∑

j=1

|eijxj
(
t − τij(t)

)|
≤ |yi(t)| +

∑n

j=1

∣∣eij∣∣(sup0≤t≤T |xj(t)
∣∣+sup−�≤t<0|xj(t)

∣∣) (8)

Formula (8) can be written as

n∑
i=1

sup0≤t≤T |xi(t)| ≤
n∑

i=1

sup0≤t≤T |yi(t)|

+
n∑

i=1

n∑
j=1

|eij|(sup0≤t≤T |xj(t)| + |sup−�≤t≤0|xj(t)|).
(9)
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From (9), we have

n∑
i=1

(
1 −

n∑
j=1

∣∣eji∣∣
)
sup0≤t≤T |xi(t)| ≤

n∑
i=1

sup0≤t≤T |yi(t)| +
n∑

i=1

n∑
j=1

∣∣eij∣∣sup−�≤t≤0|xj(t)|
(10)

According to condition A2, let

α = min{1 −
n∑

j=1

∣∣eji∣∣} > 0

then

α
n∑

i=1
sup0≤t≤T |xi(t)| ≤

n∑
i=1

sup0≤t≤T |yi(t)| +
n∑

i=1

n∑
j=1

∣∣eij∣∣sup−�≤t≤0|xj(t)| (11)

implying that

αsup0≤t≤T ||x(t)|| ≤ sup0≤t≤T ||y(t)|| +
n∑

i=1

n∑
j=1

|eij|sup−�≤t≤0|xj(t)|. (12)

Since
∑n

i=1
∑n

j=1

∣∣eij∣∣sup−�≤t≤0|xj(t)| is bounded, ‖y(t)‖ → ∞ as ||x(t)|| → ∞.

Based on the expression of V (x(t), t), it has V (x(t), t) ≥ ∑n
i=1 y

2
i (t) ≥ α‖y(t)‖22.

In addition, since ‖yi(t)‖22 ≥ 1
n‖y(t)‖2, we have V (x(t), t) ≥ α

n ‖y(t)‖2. Thus, we can
know that V (x(t), t) → ∞ as ‖y(t)‖ → ∞. It is obtained that the system (1) is globally
asymptotically stable. The proof is complete.

Remark 1. It is worth noting that the delays of the neural network studied in many
literatures are limited to fix constants. For example, only one delay μ was used in
literature [19]. In literature [20], the neural network involved multiple delays of μi and
neutral delays τi. Literature [11, 21] extended the study of multiple time delays μij. The
delay studied in the literature [22, 23] is a function τ(t), but it is limited to a single delay.
The delays studied in this paper are time-varying functions μij(t) and τi(t) related to
neuron nodes, which contain more rich delay information. Furthermore, above literature
did not consider the distributed delay and stochastic factor. In sum, this paper is a further
generalization of the theorem of above papers.

3 Numerical Example

In order to visually verify the validity of Theorem 1, a numerical example is given.

Example 1. Suppose the network (1) has the following network parameters:
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c = [443.8 4], α = [0000], eij = 1/16,

aij = 0.25 ×

⎛
⎜⎜⎝

1 −1 −2 1
−1 −2 1 1
2 0 −1 1
1 1 −1 2

⎞
⎟⎟⎠

bij = 0.2 ×

⎛
⎜⎜⎝

−2 1 −1 1
−1 −2 1 1
1 1 −1 1

−1 2 −1 1

⎞
⎟⎟⎠

oij = 0.25 ×

⎛
⎜⎜⎝

2 −1 1 1
−1 −1 2 1
1 2 −1 1

−1 1 −1 2

⎞
⎟⎟⎠

Besides, we set functions μi(t) = 0.01|sint|,τij(t) = 0.01 sin2(t), μij(t) =
0.01|cost|,υij(t) = 0.01|cos t|, which means μi = μij = −0.01,υij = 0.01. Besides,
we let Gj(x) = sin x,Fij(x) = |x|, Hi(x) = cos x, Mij(x) = |cos x|. Thus, it is easy to
calculate that gi = hi = κi = θij = 1, and we can get that δi = 0.75 > 0, ζ ′ =
[5.59 5.53 4.92 5.39], ′ = [2.06 2.06 2.00 2.06] and ρ = [0.35 0.400.68 0.55].
Therefore, it can be concluded that conditions of Theorem 1 are satisfied, which means
the system is globally asymptotically stable. The neuronal state of system (1) is shown
in Fig. 1.

Fig. 1. Neuronal state of system (1).
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4 Conclusions

In this paper, the stability of stochastic neutral Hopfield neural networks with multi-
ple time-varying delays has been analyzed. Compared with previous studies, the time
delays in this paper are time-varying and related to neuron nodes. By constructing a
novel Lyapunov functional, the sufficient criteria of global asymptotic stability of the
studied network are derived. Our theoretical results are the generalization of previous
conclusions, which improves the applicability of the networks.
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reviewers. This work was supported by Social science and technology development project in
Dongguan under grant 2020507151806 and Natural Science Foundation of Shenzhen under Grant
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Abstract. Traditional vehicle edge network task offloading decision is based on
the nature of tasks and network status, and each vehicular nodemakes a distributed
independent decision. Nevertheless, the network state considered in the decision
is single and lacks global information, which is not conducive to the overall opti-
mization of the system. Therefore, this paper proposes a task offloading decision
algorithm for vehicular edge network based on deep learning ofmulti-dimensional
information.With the optimization goal of minimizing system overhead, the algo-
rithm uses hybrid neural networks to deeply learn the state information of multi-
dimensional networks and constructs the central task offloading decision model.
A large number of simulation experiments show that the task offloading deci-
sion model trained by the hybrid neural network in this paper has high validity
and accuracy when making the offloading decision and can significantly reduce
system overhead and task computing delay.

Keywords: Vehicular edge network · Task offloading · Deep learning ·
Multi-dimensional information · System overhead

1 Introduction

With the rapid application of 5G communication technology, the Internet of Vehicles
(IoV) has not only a wider range of applications [1] but also more and more types of
applications carried, which puts forward higher requirements for the computing and
transmission capabilities of the IoV [2]. Due to the limited capabilities of the vehicle
itself, task offloading methods can be used to complete tasks’ calculations from the
remote cloud on the IoV. However, cloud computing has problems such as large tasks’
calculations delays, high-energy consumption and low data security. The shortcomings
of cloud computing will become more prominent as the number of data increases so
some scholars have proposed mobile edge computing (MEC) technology to solve these
problems and improve the efficiency of offloading in recent years [3]. Mobile edge
computing provides users with fast and powerful computing capabilities and efficient
offloading efficiency, etc. It allows users to enjoy a high-quality network experience
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while having features such as ultra-low latency, ultra-high bandwidth, strong computing
power and firm real-time performance [4].

The offloading decision is one of the core problems of mobile edge computing. In
the Internet of Vehicles environment, the main solution is whether and where vehicular
tasks need to be offloaded [5]. The main goals of the offloading decision are the shortest
time delay, the smallest energy consumption, the smallest trade-off value between delay
and energy consumption, the largest system utility and so on. The problem of time delay
minimization under mobile edge computing and designed an efficient one-dimensional
search algorithm to find the optimal task offloading decision is proposed in [6]. In [7],
Zhang proposed energy consumption problem of the offloading system under mobile
edge computing. It designs a computing offloading scheme to jointly optimize offloading
and wireless resource allocation, and obtain the minimum energy consumption under
relevant constraints.All of the above are single optimization goals and the comprehensive
influence ofmultiple goals on task offloading is ignored.Apriority based joint computing
offloading algorithm is proposed to solve the offloading decision problem of minimizing
time delay and energy consumption in [8]. The offloading methods of vehicle tasks are
mainly divided into local computing, full offloading, partial offloading, cloud servers,
etc. In [9], each overall task follows the binary calculation offloading decision (local
computing and full offloading). S. Bi proposed a joint optimization method based on
ADMM to solve this problem. In [10], considering that MEC is unavailable or not
enough, the surrounding vehicles are used as offloading points for calculation and a
distributed computing offloading decision based on DQN is proposed to find the best
offloading method.M. Yuqing proposes to implement offloading decision by drawing on
the idea of the simulated annealing algorithm, improving the particle swarm algorithm
and offloading tasks to local vehicles, MEC servers and nearby vehicles for decision in
[11]. J. Long proposed a solution for computing offloading through moving vehicles in
the edge cloud network of the Internet of Things in [12]. The device generates tasks and
sends the tasks to vehicle and vehicle decides to calculate the task in the local vehicle,
the MEC server or the cloud center. With the diversification of offloading scenarios,
deep learning and deep reinforcement learning as a new algorithm are gradually used in
offloading decision making. In [13], a deep learning based shunting decision algorithm
for single server mobile edge computing network is proposed for computing shunting.
However, offloading types are limited to local computing and full offloading.

By summarizing and analyzing existing work, we find that these algorithms describe
the optimization goal as a function of a single statewhen performing offloading decisions
while other networks’ states and tasks’ statesmake idealized assumptions, which reduces
the applicability of the algorithms. This kind of distributed offloading decision is difficult
to realize the rational use of the vehicle network edge network resources and reduces
network performance. Based on the above analysis, this paper proposes a hybrid neural
network algorithm that adopts the central decision method of MEC server centralized
management and uses the advantages of deep learning technology. Starting from the
comprehensive multi-dimensional state information, this paper takes minimizing time
delay and energy consumption as the optimization goal, training and maintaining an
offloading decision model suitable for the current network state, thereby realizing the
global optimal offloading decision.
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2 System Model

Fig. 1. Edge network structure diagram of typical vehicles.

The edge network structure diagram of typical vehicles adopted in this paper is
shown in Fig. 1. The whole edge network system is composed of several MEC servers
and vehicles. Each MEC server provides edge computing services for multiple vehi-
cles within its coverage. The work in this paper only addresses problem of offloading
decisions between a single MEC server and multiple vehicles within its coverage.

The notations and definitions involved in this paper are shown in Table 1.

Table 1. Notations and definitions

Notation Definition Notation Definition

Λ Weight of time delay Vlocal Speed of local computing

M Weight of energy consumption Vwait Speed of waiting computing

ak Task split switch Rup Task upward transmission speed

bk Task parallel switch Rdown Task downward transmission speed

Mi Task data generated by vehicle VMEC Computing speed on the MEC server

ρi Mission launching power Plocal Local computing power

hi Channel gain PMEC MEC server computing power

Σ Noise power Pup Task upward transmission Power

mi Offloading decision Pdown Task downward transmission power

Ck Queuing switch Ω Data transmission bandwidth

H Processing rate on the MEC Pwait Task waiting power on MEC server

Mf Idle computing ability on the MEC server
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2.1 Time Delay and Energy Consumption Model

There are three decision results when the vehicle performs task offloading.

• Local computing: Tasks are all calculated on the vehicle.
• Full offloading: All tasks are offloaded to the mobile edge computing server for
calculation.

• Partial offloading: Part of the task is calculated on the local vehicle and the rest is
offloaded to the mobile edge computing server for calculation.

In local computing mode, tasks are calculated directly in vehicular ECU (Electronic
Control Unit). At this point, the time delay T1 and energy consumption E1 of the task
calculation are shown in formulas (1) and (2).

T1 = Mi

Vlocal
(1)

E1 = T1 · Plocal (2)

All tasks of the vehicles are offloaded to the edge server for calculation. When the
edge server completes the calculation, the calculation results are transmitted back to the
vehicles from the edge server. According to Shannon’s formula, its transmission rate can
be obtained by

Rb = ωlog2

(
1 + ρi · hi

σ 2

)
(3)

In full offloading mode, the computation time delay T2 of the tasks consists of four
parts: upward transmission time delay t1, queue time delay t2, processing time delay t3
and downward transmission time delay t4.

T2 = t1 + Ck · t2 + t3 + t4 (4)

where, t1 = Mi/Rup, t2 = (Mi – Mf )/Vwait , t3 = Mi/VMEC and t4 = Mi·η/Rdown. If Mi

is greater than Mf , then CK is 1 and vice versa.
The energy consumption E2 of the tasks consists of four parts: upward transmis-

sion energy consumption e1, queuing cache energy consumption e2, processing energy
consumption e3 and downward transmission energy consumption e4.

E2 = e1 + Ck · e2 + e3 + e4 (5)

where, e1 = Mi·Pup/Rup, e2 = (Mi – Mf )·Pwait /Vwait , e3 = Mi·PMEC/VMEC and t4 =
Mi·η·Pdown/Rdown.

If tasks can be divided, the partial offloading decision can be used. In partial offload-
ing mode, the partial offloading delay includes two parts: the local delay t5 and the
offloading delay (t6 , t7 , t8, t9), as shown in formula (6).

T3 = ak · [bk · T31 + (1 − bk) · T32] (6)
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T31 = max{t5, t6 + Ck · t7 + t8 + t9} (7)

T32 = t5 + t6 + Ck · t7 + t8 + t9 (8)

where, T31 is the time delay when the task is calculated in parallel and T32 is the time
delay when the task is not calculated in parallel. where, t5 = Mi·(1 − x)/V local, t6 =
Mi·x/Rup, t7 = (Mi ·x– Mf )/Vwait , t8 = Mi·x/VMEC and t9 = Mi·η·x/Rdown. x is the
offloading ratio, ak is equal to 1 if the task can be divided and 0 otherwise, bk is equal
to 1 if the task can parallel and 0 otherwise.

Energy consumption E3 of partial offloading at this time is shown in formula (9).

E3 = e5 + e6 + Ck · e7 + e8 + e9 (9)

where, e5 = Mi·(1 − x)·Plocal/V local, e6 = Mi·x·Pup/Rup, e7 = (Mi ·x– Mf ) ·Pwait /Vwait ,
e8 = Mi·x·PMEC/VMEC and e9 = Mi·η·x·Pdown/Rdown.

2.2 System Overhead Model

System overhead is a representation of system performance under different offloading
decision and is defined as the weighted sum of task computation time delay and energy
consumption. The algorithm proposed in this paper aims to find the offloading decision
that minimizes the system overhead and the specific description is shown in formula
(10).

Q =
3∑

i=1

λ · (mi ∗ Ti) + μ · (mi ∗ Ei) (10)

S.T

0 ≤ λ, μ ≤ 1 (11)

λ + μ = 1 (12)

3∑
i=1

mi = 1 (13)

mi ∈ {0, 1} (14)

Constraint (11) and (12) are time delay and energy consumption weights. Weight of
energy consumption is inversely proportional to the remaining electric quantity of the
vehicle. Constraint (13) and (14) indicate that the offloading decision can only be made
in one of the ways: local computing, full offloading and partial offloading.
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3 Offloading Decision Algorithm

Since solving the minimum system overhead problem needs to consider multi-
dimensional dynamic state information, an offloading decision algorithm (multi-
dimensional information deep learning, MDL) based on deep learning is proposed. The
algorithm learns the existing state information through the neural network, trains the
offloading decision model and then makes rapid decisions based on the current state
information.

3.1 Convolutional Deep Neural Networks

Based on CNN [14] and DNN [15], this paper designs a convolutional deep neural net-
works (CDNN) to learn multi-dimensional state information and then train the required
offloading decision model. The structure of CDNN is shown in Fig. 2.

Firstly, in the data preprocessing stage, the calculated labels of the generated data
are divided into training set and test set according to 10:1, and sixteen-dimensions
are divided into nine-dimensions and seven-dimensions. Then, the nine-dimensional
information that is closely related is used to CNN extract features and use DNN model
to reduce complexity for other seven-dimensional information parameters.What’s more,
the twomodels are processed in parallel andmerged into a fully connected layer. Finally,
the model is constructed to complete the offloading classification.

Generate  data

Calculate label

Train data: Test 
data=10:1

Divide dimension

Data preprocessing

convolution 
kernel

Pooling 
kernel

Convolution Pooling Fully connected

Input layer Hidden layer Output layer

Connection 
layer

Achieve
epochs Build model

Output classification

CDNN

Y

N

Fig. 2. CDNN structure diagram.

3.2 Offloading Decision Based on CDNN Model

The offloading decision model is the core of the algorithm in this paper. The model is
learned and trained on known data through CDNN. The whole training process includes
two stages: the forward propagation stage and the back propagation stage [16]. We
separate task data and labels according to a ratio of 10:1 where the first 10 pieces of data
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and labels are used to train the model and the next piece of data and labels are used to
test the model. The specific training process is shown in Algorithm 1.

Algorithm1.          Training CDNN algorithm  

It is worth noting that the data set input here will be updated with the appearance
of new state information and the offloading decision model of CDNN will also be
continuously learned and updated so as to reach the optimal state model.

3.3 MDL Algorithm

Using the offloading decision model obtained by training and taking the current state
information as input, the offloading decision that meets the minimum system overhead
can be quickly obtained.

Algorithm 2.           MDL algorithm 
Input: Sixteen-dimensional status information 

Output: Offloading decision 
1: Initialization 

2: 
Input current state information into the model  
calculate the probability of three offloading methods 

3: Choose the offloading method with the biggest probability 
4: Output the results of the offloading decision 
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4 Simulation and Result Analysis

4.1 Simulation Parameter Setting

The performance parameters of the mixed neural network (CDNN) model used in the
simulation are shown in Table 2.

Table 2. Related parameters of CDNN.

Name Parameter Name Parameter

Activation Relu, softmax Neurons 3–512

Learning rate 0.2 Epoch 30

Optimizer Adadelta Batch_size 16

4.2 Multidimensional Status Information Data Set

Due to the lack of a real state data set of vehicular edge network, matlab is used to
generate a state information data set. Let the state information P < λ, μ, ak , bk , Mi,
η, Mf , Vlocal , Vwait , Rup, Rdown, VMEC , Plocal , PMEC , Pup, Pdown> be a collection of
sixteen-dimensional information. According to the structure and characteristics of the
typical vehicle edge network, the status information should meet the following five basic
conditions.

• In general, the edge server CPU processes tasks faster than the local vehicle ECU
processes tasks.

• The sum of the weight of the delay and the weight of the energy consumption is “1”.
• Tasks are divided into two states: divisible and indivisible.
• Divisible tasks are divided into two cases: parallel processing and non-parallel
processing.

• In edge computing, tasks are divided into cache waiting and direct computing.

As a result, a total of 17,600 groups of data are generated and each set of data is a
collection of sixteen-dimensional state information. In addition, according to the system
overhead formula, the task’s offloading decision and offloading ratio are calculated. In
this paper, the offloading decision is used as a label to be used as a result training and
testing model. Table 3 exhibits three samples of data.

4.3 Results and Analysis

In this paper, the accuracy rate and the loss function are used to evaluate the offloading
decision model.

Figure 3(a) shows the accuracy ofDNN,CNNandCDNNat different epochs.Where,
Train represents the training set and Val represents the test set. It can be seen that the
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Table 3. Data set information

Parameters 1 2 3 Parameters 1 2 3

λ 0.52 0.19 0.92 Vlocal GB/s 0.956 0.568 0.459

μ 0.48 0.81 0.08 VMEC GB/s 7.238 5.846 7.276

ak 1 1 1 Vwait GB/s 7.997 6.988 8.920

bk 0 1 1 Rup GB/s 0.564 1.413 1.499

η 0.84 0.80 0.71 Rdown GB/s 0.883 1.445 0.899

Plocal w 1.072 0.992 0.856 Mi GB 7.724 6.129 6.128

PMEC w 2 2 2 Mf GB 9.440 91.150 76.69

Pup w 0.189 0.129 0.182 Label 1 2 3

Pdown w 0.110 0.143 0.110

accuracy of the three neural networks increaseswith the number of epochs and eventually
stabilizes. Obviously, CDNN has the highest accuracy rate, followed by DNN and CNN
has the lowest accuracy rate.

Figure 3(b) shows the loss function values of DNN, CNN and CDNN at different
epochs. Where, Train represents the training set and Val represents the test set. It can
be seen that the loss function values of the three neural networks all decrease as the
number of epochs increase and eventually stabilize. Obviously, CDNN has the smallest
loss function value, followed by DNN and CNN has the largest loss function value.

Fig. 3. (a). The accuracy of CNN, DNN and CDNN at different epochs. (b). Loss functions of
CNN, DNN and CDNN at different epochs.

Table 4 shows the accuracy and loss function when the three models reach their
optimal performance.

As shown in Fig. 4(a) this is the value of the system overhead for the first 30 groups
of local computing, full offloading, partial offloading and using MDL algorithm in the
test set. Theoretically, the value of system overhead is greater than 0, and there is 0 in
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Table 4. Comparison of the three models

Name Accuracy Loss function

DNN 0.9075000286102295 0.3253644686724874

CNN 0.6518750190734863 0.883384276330471

CDNN 0.9599999785423279 0.10568311154143885

Fig. 4. (a). System overhead of different tasks. (b). Offloading decision result.

the figure because some tasks are inseparable and the value of Q is 0. Consequently,
partial offloading is not applicable to all tasks. By comparison, it is found that the use
of the MDL algorithm is the smallest overhead of each task.

Corresponding to the value of the system overhead in Fig. 4(a), this paper verifies the
accuracy of the MDL algorithm in the offloading decision result in Fig. 4(b). Each task
in the two pictures has a one-to-one correspondence. The minimum value in Fig. 4(b). is
used to verify the type of offloading in Fig. 4(b). where, type 1 means local computing,
type 2 means full offloading and type 3 means partial offloading. Correct represents the
correct offloading decision in the tag and Predict represents the prediction result of the
MDL algorithm. From this, it can be seen that the decision result of the MDL algorithm
has a high correct rate.

Due to the segmentation of tasks, partial offloading is not common to every task so
the values calculated by the task in local computing, full offloading and MDL algorithm
are listed, as shown in Fig. 5. The MDL algorithm has the lowest system overhead. The
reason is that each task overhead of the MDL algorithm is the optimal solution which is
the lowest among the three offloading results. In contrast, other offloading methods are
not the optimal solution for every task.
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Fig. 5. Test set system overhead.

5 Conclusion

Task offloading calculation is one of the core technologies of the vehicular edge net-
work. An efficient and intelligent offloading decision can effectively improve the service
capability of the network. Different from the traditional distributed offloading decision,
this paper proposes a centralized offloading decision (MDL) algorithm based on multi-
dimensional information deep learning. The algorithm proposes a convolutional deep
neural network (CDNN) to learn from the existing multi-dimensional information data
and train to obtain an offloading decision model. Using this model, the offloading deci-
sion can be quickly implemented based on the current multi-dimensional status infor-
mation. Simulation experiments show that the CDNN network proposed in this paper
has high accuracy and small loss function value. The proposed MDL algorithm has the
advantages of the low system overhead, short execution time and is more suitable for
the edge network environment of the car network. However, considering that the static
model of a single MEC server constructed by deep learning has certain limitations, the
focus of the next step will be to try to start with multiple MEC servers, linking with rein-
forcement learning to build a dynamic model and achieve a more effective offloading
decision.

Acknowledgement. This work was supported in part by the NSFC under Grant 61501102.
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Abstract. Neural networks are fragile because adversarial examples can
readily assault them. As a result of the current scenario, academics from
various countries have paid close attention to adversarial examples: many
research outcomes, e.g., adversarial and defensive approaches and algo-
rithms. However, numerous people are still baffled about how adversar-
ial examples affect neural networks. We present hypotheses and devise
extensive experiments to acquire more information about adversarial
examples to verify this notion. By experiments, we investigate the neu-
ral network’s sensitivity to adversarial examples in diverse aspects, e.g.,
model architectures, activation functions, and loss functions. The con-
sequence of the experiment shows that adversarial examples are closely
related to them. Peculiarly, sensitivity’s property could help us distin-
guish the adversarial examples from the data set. This work will inspire
the research of adversarial examples detection.

Keywords: Adversarial examples · The neural network · Attack &
defense · The activation functions · The loss functions · Security of AI

1 Introduction

The adversarial examples were first proposed by Szegedy, Zaremba, and
Sutskever in a paper titled “Intriguing properties of neural networks” [21] in
2014. Then, in recent years, research on adversarial attack and defense has
made significant advances. The Fast Gradient Sign Method (FGSM) presented
by Goodfellow, Shlens and Szegedy [6] is the most representative. To generate
adversarial examples, this method makes use of the image’s high-dimensional fea-
ture properties. FGSM’s suggestion broadens the concept of adversarial example
research and is credited with founding the discipline of adversarial white’s box
attack. Madry et al. presented Project Gradient Descent (PGD) [14], an innova-
tive framework that combined the advantages of attack and defense algorithms
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to improve the robustness of neural networks. There are still numerous varieties
of adversarial attack and defense researches, including such C&W [1], deepfool
[15], and JSMA [16]. There are studies on adversarial examples not just in the
discipline of image, but also in the field of speech recognition. Yakura et al. [25]
and Qin et al. [17], for example, have done extensive research on this. Regardless
of the fact how we have investigated adversarial examples, we still do not grasp
the nature of adversarial attacks. Ilyas, Andrew et al. recently concluded that the
adversarial examples are not bugs, but rather features of images [8]. This view-
point piqued our interest, therefore in order to further explore the interpretabil-
ity of the adversarial example, we supplemented following four investigates as
contributions to consummate the interpretability of the adversarial example:

• From the aspect of the model architecture: We change the neural network
architecture with a simple structure to the DenseNet [7] neural network archi-
tecture, and then we find that the model more with more complex architecture
occurs more stable performance.

• From the activation function aspect, we employ eight diverse activation
functions of neural networks without any other changes, respectively, to be
assaulted by adversarial examples. We discover that the neural networks
model will be more sensitive in changing the diverse activation functions by
calculating the standard deviation to measure fluctuation.

• From the loss function aspect, we utilize the Cross-Entropy and Focal as loss
functions of the neural network, respectively, to be attacked by adversarial
examples. Ultimately, the Focal loss function performs more sensitive than
the Cross-Entropy loss function.

• We ulteriorly explore the variance fluctuation of attack success rates accord-
ing to those mentioned above. The attack success rates will dramatically
alter when we utilize diverse components, e.g., model architecture, activa-
tion function, and loss function. Therefore, we can investigate the strategy of
adversarial examples detection based on this characteristic.

The rest of the paper is structured as follows. The strategy of adversarial attack
is discussed in Sect. 2. Section 3 is dedicated to discussing the adversarial defense
and adversarial examples detection. Then we present the method and experiment
in Sect. 4 and Sect. 5. Ultimately, we conclude the main contributions with the
future perspectives of this research direction in Sect. 6.

2 Adversarial Attacks

2.1 Identifying Adversarial Examples

Szegedy et al. [21] discovered a fascinating characteristic of neural networks.
We can add a little disruption to the picture’s surface that might not be readily
perceived by human vision because of the high dimensional features of image. To
validate the above hypothesis, we use the formula to construct a mathematical
model.

Minimize ‖δ‖2 s.t.C(x + δ) = I;x + δ ∈ [0, 1]m , (1)
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where δ denotes a perturbation, x denotes the source image, C denotes a classi-
fier, and I denotes the attacked target’s class.

Minimize c|δ| + J(x + δ) s.t.x + δ ∈ [0, 1]m , (2)

where the c denotes the minC(x + δ) = I, and c > 0. We use the cross-entropy
loss function J in the formula since the value of ‖δ‖2 is difficult to optimize [21]
and the J denotes the cross-entropy loss function [20].

That is the essential notion behind creating adversarial examples. The inves-
tigation of adversarial examples has ushered in rapid growth based on this notion.

2.2 Attack Algorithm Based on Gradient

Goodfellow et al. [6] proposed an attack algorithm named Fast gradient sign
method (FGSM), which would be the originator of all gradient-based attack
algorithms. We need to increase disturbance in the opposite direction of the
gradient. Then we can generate an image with a disturbance that will interfere
with the neural network. The FGSM algorithm is defined as follows [6]:

x′ = x + ε ∗ sign(∇xJ(θ, x, y)) , (3)

where ε ∗ sign(∇xJ(θ, x, y)) is a perturbation, ε is a parameter of step, the sign
is the SIGN function, x is the source image, J is the cross-entropy loss function,
and θ is the class of the attacked target.

2.3 Attack Algorithm Based on Generative Adversarial Network

Xiao et al. [23] presented a novel attack algorithm with the current generative
adversarial network (GAN) short for AdvGAN (Fig. 1). On the one hand, we
put the raw image into the Generator of GAN. Then we add the perturbation
to the generator’s output and put the composite image into the discriminator
of GAN. To keep the adversarial examples and authentic images as similar as
possible, we minimize GAN loss (Eq. 4). On the other hand, we optimize the loss
of the classifier to confuse the neural network to the point of misclassification
(Eq. 5). To constrain the magnitude of the perturbation, we employ the Eq. 6 to
constraint it. Ultimately, we combine all of the loss functions and minimize this
loss function to provide adversarial examples (Eq. 7). The Fig. 1 demonstrates
the entire process. The following formulas are derived from [23].

LGAN = ExlogD(x) + Exlog(1 − D(x + G(x))), (4)

Ladv = Ex�C(x + G(x), t), (5)

Lhinge = Ex max(0, ‖G(x)‖2 − c), (6)

L = Ladv + αLGAN + βLhinge, (7)

where the LGAN represents the loss of generative adversarial network; the Ladv

represents the loss of generating adversarial examples; the Lhinge represents
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the loss to limit the scale of the disturbance; D(x) and G(x) represent the dis-
crimination function and generation function; the c denotes minimize scale of
perturbation; the t denotes the target of adversary.

Fig. 1. AdvGAN process and architecture

3 Adversarial Defense

3.1 Transformation-Based Defenses

This method defends the adversarial attacks by transforming the input object.
Kurakin et al. [10] presented the JPEG compression method to defend the adver-
sarial attacks. Subsequently, Yang et al. [26] randomly deleted pixels of the input
object and reconstructed the deleted pixels by using matrix estimation to restrain
the effect of the adversarial examples. Raff et al. [18] utilized the random trans-
formation of the input image to suppress the attack effect, which was generated
by a potential adversary with the efficient computational strategy.

3.2 Manifold-Based Defenses

Ma et al. [13] investigated the relationship between the manifold of input data
sets and the property of adversarial attacks. They proposed that the input
samples closer to the boundary of the manifold were more vulnerable to being
attacked easily. Wu et al. [27] presented a novel method to defend the adversarial
attacks. They used the peculiarity of attacking gradient to defend the adversarial
attacks.
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3.3 Adversarial Examples Detection

Zhang et al. [28] visualized the attacking process and demonstrated how to take
advantage of neuron sensitivity to detect the adversarial examples. Wang et al.
[22] mutated the architecture of the model to recognize the adversarial examples.
One of the fascinating research in this field was presented by Liu et al. [12]. They
applied the perceptual hash to the field of adversarial examples detecting.

4 Method

4.1 Motivations

We propose the following three questions to be clarified or tested by the following
designed hypotheses and experiment.

• The model architecture: Whether the adversarial examples are aggressive
depends solely on the (non) robust feature of the original image from data
set [8]?

• The activation function: Are the adversarial examples’ aggression and the
neural network model’s traits, such as the hyperparameters, the activation
functions, or the model’s architecture, entirely separate?

• The loss function: Ultimately, we give this query with certain intuitions, in
terms of prior studies, whether the aggression of adversarial examples corre-
lates to the loss function?

4.2 Proposed Hypotheses

We believe that the aggressivity of the adversarial examples is connected to the
various components from the model architecture, the activation function, and the
loss function, based on our past work and relevant literature [1,6,14–16,21,23].

4.3 Design of Experiment

We intend to design an experiment that is separated into three phases to examine
the reliability of the aforementioned hypotheses:

1. In terms of the model architecture, we use two diverse model architectures
to test this hypothesis and investigate the attacking influence on the neural
network model when we change diverse model architecture.

2. In terms of the activation function, we take the same data set and loss func-
tion in the experiment and establish a second neural network model that is
different from the past one by modifying the model’s structure, such as the
hyperparameters, activation function, and so forth.

3. In terms of the loss function, we manage the data set in the same way as
we control the neural network model, and we utilize the Cross-Entropy loss
and the Focal loss as loss functions to investigate the relationship between
adversarial examples and loss functions.
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Combining our previous analysis and literature review above, we cannot gener-
ate the adversarial examples without the construction of model, the activation
function and the loss function, so what roles do these three components play in
adversarial examples? We carry out the experimental verification of the aspects
of these three components. We create a four-layer neural network as experimen-
tal subject as the Fig. 2 shown, and the Fig. 3 express the entire processing of
the experiment.

Fig. 2. The architecture of neural network

4.4 Introduction for Loss Functions

Cross-Entropy Loss Function. The Cross-Entropy loss function is commonly
employed in machine learning, particularly for target classification and target
detection. Shannon [20] introduced the all of the theories of Cross-Entropy in
the paper “A mathematical theory of communication”. The Cross-Entropy for-
mula has been expressed as follows.
Binary classification [20]:

L =
1
N

∑

i

Li =
1
N

∑

i

−[yi · log(pi) + (1 − yi) · log(1 − pi)] . (8)

Multi-class classification [20]:

L =
1
N

∑

i

Li = − 1
N

∑

i

M∑

c=1

yic log(pic) . (9)
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Fig. 3. The processing of experiment

Focal Loss Function. To balance the influence of positive samples and negative
samples on the model, Lin et al. present the Focal loss function to replace the
Cross-Entropy loss function [11].

FL(pi) = −αt(1 − pt)γ log(pt) . (10)

The αt can balance the importance of positive samples and negative samples,
and by adjusting the γ, we can balance the influence of the complex and straight-
forward examples. The pt denotes the probability density.

5 Experiment

5.1 Environment

The environment of experiment is shown in the Table 1.

Table 1. The experiment environment

GPU Tesla P100

CPU 12 * Xeon Gold 6271

Python Python 3.7

Deep learning Frame Pytorch1.8.1

Dataset Mnist [24]/CIFAR-10 [9]
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5.2 Process of Experiment

First, we create a four-layer neural network with ReLU [5], Sigmoid [19],
LeakyReLU [2], Tanh [2], ELU [2], ReLU6 [2], Logsigmoid [3] and Softplus [4]
as activation functions. The overall structure of the neural network can be seen
in the Fig. 2, and the Fig. 3 demonstrates the entire process of the experiment.
The details of these three controlled trials are as follows:

Experiment 1. Change the Model Architecture

• First, we use the Model we built before and DenseNet [7] with sigmoid as
activation function, utilize the Cross-Entropy as the loss function, and use
MNIST [24] and CIFAR10 [9] to test this hypothesis.

• We take advantage of the Model to fit MNIST [24] data and use DenseNet
[7] to fit CIFAR10 [9].

• We train the diverse epoch of the neural network model with these two data
sets separately.

• Ultimately, we attack both models with adversarial examples and gain the
result of the attack as the Table 2 shown.

Table 2. The consequence of EXP.1

Model+MNIST DenseNet+CIFAR10

Sigmoid40 Sigmoid80 Sigmoid120 Sigmoid40 Sigmoid80 Sigmoid120

Ori.Tra.Acc. 0.996000 0.997617 0.998550 0.620000 0.830000 0.890000

Ori.Tes.Acc. 0.988800 0.990000 0.990100 0.590000 0.690000 0.690000

Clea.Acc.(TestData) 0.994752 0.995459 0.996064 0.580600 0.688900 0.687700

Att.Acc.(TestData) 0.294278 0.287516 0.285296 0.542600 0.678800 0.679300

Sigmoid40 Sigmoid80 Sigmoid120 Sigmoid40 Sigmoid80 Sigmoid120

Clea.Acc.(TestData) 0.996261 0.996767 0.996261 0.580500 0.688900 0.687700

Att.Acc.(TestData) 0.209255 0.196120 0.188239 0.569300 0.623500 0.625400

Sigmoid40 Sigmoid80 Sigmoid120 Sigmoid40 Sigmoid80 Sigmoid120

Clea.Acc.(TestData) 0.996053 0.997268 0.996559 0.580500 0.688900 0.687700

Att.Acc.(TestData) 0.223133 0.207448 0.208561 0.573000 0.648300 0.615800
1 The Model+MNIST and DenseNet+CIFAR10 are the applied neural network architectures and datasets.

2 Sigmoid40, Sigmoid80 and Sigmoid120 denote the number of training epochs with Sigmoid as activation function.

The objects in bold are the attacked models.

3 The Ori.Tra.Acc. and Ori.Tes.Acc. are the abbreviation for Original Training dataset Accuracy and Original

Testing dataset Accuracy.

4 The Clea.Acc(TestData) and Att.Acc.(TestData) are short for Clean samples recognition Accuracy and Attacked

samples recognition Accuracy.

Experiment 1. Analysis. As the Table 2 illustrated, we investigate the sensi-
tivity of diverse architecture of the neural network. When we use more complex
architecture as a training object, better performance and more stability will
occur, such as DenseNet is a more complex architecture than the Model we built
before.
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Experiment 2. Change the Activation Function

• We use the Mnist and Cross-Entropy loss function but change the activation
function of the neural network.

• We utilize eight functions that is mentioned above as activation functions of
this neural network model and train these models respectively.

• Then we use the FGSM algorithm to attack these models to obtain the
adversarial examples. Afterwards, we let the adversarial examples attack the
trained models separately. The result of experiment shows as Table 3.

Table 3. The consequence of EXP.2

Model+MNIST Sigmoid Relu leaky relu tanh ELU Relu6 LogSigmoid Softplus Standard Deviation

Ori.Tra.Acc. 0.999800 0.999950 0.999967 0.999967 0.999950 0.999917 0.999883 0.999950 0.000053

Ori.Tes.Acc. 0.991000 0.993700 0.994700 0.992100 0.994300 0.993000 0.990300 0.992800 0.001443

Clea.Acc.(TestData) 0.991700 0.994500 0.994600 0.991700 0.993300 0.993900 0.990800 0.993800 0.001349

Att.Acc.(TestData) 0.862700 0.974700 0.976100 0.921000 0.983100 0.969600 0.963500 0.968900 0.038283

Sigmoid Relu leaky relu tanh ELU Relu6 LogSigmoid Softplus Standard Deviation

Clea.Acc.(TestData) 0.992300 0.993500 0.995000 0.992000 0.994100 0.993700 0.989400 0.993200 0.001595

Att.Acc.(TestData) 0.976700 0.912500 0.970100 0.968400 0.979200 0.973600 0.981200 0.981300 0.021414

Sigmoid Relu leaky relu tanh ELU Relu6 LogSigmoid Softplus Standard Deviation

Clea.Acc.(TestData) 0.992000 0.994200 0.994900 0.992400 0.994500 0.993900 0.989900 0.992900 0.001542

Att.Acc.(TestData) 0.974800 0.971400 0.911600 0.962700 0.977400 0.970700 0.979600 0.980100 0.021250

Sigmoid Relu leaky relu tanh ELU Relu6 LogSigmoid Softplus Standard Deviation

Clea.Acc.(TestData) 0.991400 0.993900 0.994100 0.991900 0.993700 0.994100 0.990200 0.993400 0.001382

Att.Acc.(TestData) 0.974200 0.981400 0.976300 0.901600 0.983800 0.979000 0.979000 0.984400 0.026042

Sigmoid Relu leaky relu tanh ELU Relu6 LogSigmoid Softplus Standard Deviation

Clea.Acc.(TestData) 0.990000 0.993300 0.994200 0.992400 0.993700 0.994000 0.990300 0.993000 0.001519

Att.Acc.(TestData) 0.982300 0.980300 0.980100 0.975500 0.937900 0.979700 0.983300 0.984700 0.014437

Sigmoid Relu leaky relu tanh ELU Relu6 LogSigmoid Softplus Standard Deviation

Clea.Acc.(TestData) 0.992200 0.994000 0.994400 0.990800 0.994000 0.993200 0.990600 0.992300 0.001367

Att.Acc.(TestData) 0.976200 0.976800 0.974500 0.963700 0.982500 0.943100 0.979700 0.980900 0.012245

Sigmoid Relu leaky relu tanh ELU Relu6 LogSigmoid Softplus Standard Deviation

Clea.Acc.(TestData) 0.991300 0.993600 0.994500 0.992200 0.994100 0.993600 0.989300 0.992500 0.001605

Att.Acc.(TestData) 0.967700 0.982700 0.983800 0.956800 0.984800 0.977900 0.908200 0.978300 0.024114

Sigmoid Relu leaky relu tanh ELU Relu6 LogSigmoid Softplus Standard Deviation

Clea.Acc.(TestData) 0.991400 0.994200 0.994900 0.991600 0.993700 0.993900 0.989500 0.993100 0.001687

Att.Acc.(TestData) 0.962000 0.976500 0.974000 0.961200 0.982400 0.972600 0.971300 0.935800 0.013502
1 The Model+MNIST denotes the applied neural network architecture and dataset.
2 The Sigmoid, Relu, leakyrelu, ELU, Relu6, Logsigmoid and Softplus are the experimental
activation function that we used and Standard Deviation reflects the fluctuation.
The objects in bold are the attacked models.
3 The Ori.Tra.Acc. and Ori.Tes.Acc. are the abbreviation for Original Training dataset
Accuracy and Original Testing dataset Accuracy.
4 The Clea.Acc(TestData) and Att.Acc.(TestData) are short for Clean samples recognition
Accuracy and Attacked samples recognition Accuracy.

Experiment 2. Analysis. As the Table 3 shows, we implement training with
eight diverse functions as activation functions and peculiarly compute the stan-
dard deviation to visualize the attack accuracy rates fluctuation. The attack
success accuracy rate fluctuation of attacked example is more intensive than the
clean sample’s.
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Experiment 3. Change the Loss Function

• To begin, we add diverse loss functions to the neural networks and train them
with the Mnist data set. We employ Cross-Entropy loss function and Focal
loss function for loss function as Fig. 3 describes it.

• We get two pre-trained classification models with different loss functions once
we finish training.

• Furthermore, we utilize the FGSM [6] to attack the model that employs the
Cross-Entropy as the loss function and generate the adversarial examples.

• Then we put the generating adversarial examples into the model that employs
Focal as loss function and verify the accuracy of both models.

• Ultimately, we get the evaluation result of the two models. (Table 4)

Table 4. The consequence of EXP.3

Model+MNIST CrossEntropy Focal Standard Deviation

Ori.Tra.Acc. 0.9903 0.9871 0.0016

Ori.Tes.Acc. 0.9805 0.9771 0.0017

Clea.Acc.(TestData) 0.9804 0.9776 0.0014

Att.Acc.(TestData) 0.8128 0.9000 0.0436

CrossEntropy Focal Standard Deviation

Clea.Acc.(TestData) 0.9809 0.9760 0.0025

Att.Acc.(TestData) 0.9511 0.6547 0.1482
1 The Model+MNIST denotes the applied neural network architecture and dataset.

2 The CrossEntropy and Focal are the experimental loss function that we used and Standard Devi-

ation reflects the fluctuation. The objects in bold are the attacked models.

3 The Ori.Tra.Acc. and Ori.Tes.Acc. are the abbreviation for Original Training dataset Accuracy

and Original Testing dataset Accuracy.

4 The Clea.Acc(TestData) and Att.Acc.(TestData) are short for Clean samples recognition Accuracy

and Attacked samples recognition Accuracy.

Experiment 3. Analysis. When we use different loss functions, Cross-Entropy
and Focal, to train the classification model, they converge almost at the same
time after several iterations, and the prediction accuracy is very similar. However,
from the Table 4, we can conclude that diverse loss functions will affect the
aggressivity of the adversarial examples, and the model with Focal loss will
remain more sensitive than the model with Cross-Entropy.

6 Conclusion

This paper advances the research on the interpretability of adversarial examples
and the principle of aggression. According to the consequence of experiments,
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we investigate the neural network’s sensitivity to adversarial examples in diverse
conditions. This property of sensitivity could be helpful to detect the adversarial
examples. In addition, we introduce an innovative and necessary direction for
research of adversarial examples to examine the internal mechanism of adver-
sarial examples. We need to focus more on strengthening neural networks to
reduce the impact of adversarial examples, such as creating more sophisticated
and appropriate loss functions or hiding the loss function’s information when
the neural networks are infiltrated.

We intend to think more about the interpretation of the adversarial examples,
and a further study is made on the relationship between the three variables
discussed in this paper and the adversarial examples.
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Abstract. Graph Neural Networks (GNNs for short), a generalization of neu-
ral networks to graph-structured data, performance good in closed setting with
perfect data for variety tasks, including node classification, link prediction and
graph classification. However, GNNs are vulnerable to adversarial attacks, i.e.,
a small perturbation to the graph structure and node features in wild setting can
lead to non-trivial performance degradation. Non-robustness is one of the main
obstacle to applying GNNs in the wild. In this work, we focus on one of the
most popular GNNs, Graph Convolutional Networks (GCN for short), and pro-
pose Stochastic Activation GCN (SA-GCN for short) to improve the robustness of
GCN models. More specifically, we propose building a roust model by directly
introducing a regularization term to the objective function and maximizing the
feature distribution variance. Extensive experiments show that this simple design
makes SA-GCN achieving significantly improved robustness against adversarial
attacks. Moreover, our approach generalizes well and can be equipped with var-
ious models. Conducted empirical experiments demonstrate the effectiveness of
SA-GCN.

Keywords: Graph neural networks · Adversarial attacks · Stochastic neural
networks

1 Introduction

Graphs are the fundamental element of non-Euclidean data representation in real world.
Many complex relationships between entities, including molecular networks [26], dat-
ing networks [16], physical networks [1] and even implicit networks in images [10],
can be represented by graphs. Graph data analysis has become one of the core tasks in
the deep learning community.

Recent years, Graph Neural Networks (GNNs for short), with the ability to effec-
tively leverage the inherent structure, has attracted great attentions on graph-structured
data analyzing task. Currently, GNNs have produced state-of-the-art performance on a
variety of challenging tasks including node classification [6], link prediction [30], sub-
graph classification [25] and graph classification [12]. It can be said that GNNs have
become one of the most essential tools for graph-structural data analyzing.
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Despite successful use in in a wide range of applications, GNNs, known to be vul-
nerable to a variety of adversarial attacks, remain difficult to develop in wild setting.
Recent studies [3,33] have shown that small imperceptible perturbations to graph data
can rapidly degrade the classification performance of GNN. This limits the applica-
tion in risk and safety-critical scenarios. For example, the popular Graph Convolutional
Networks (GCN for short), which rely on aggregating message passes from a node’s
neighborhood, are not immune to structure attacks [3], wherein an attacker adds limited
edges between nodes.

Though there exists a vast literature on adversarial attacks and defense on graph-
structural data [23,32], we focus on designing defense mechanisms for graph attacks,
which is a more critical research. While most existing GNN models assume that the
given graph perfectlly depicts the ground-truth of the relationship between nodes, we
proposed that such assumptions are bound to yield sub-optimal results as real-world
graphs might be malicious perturbated. For example, Zheng et al. [29] proposed that
the graph we obtained are almost with many missing edges or disconnected edges. In
this case, GNNs employing deterministic propagation mechanisms are generally not
robust to graph attacks.

In this work, we investigate GCN stochastic activation and consistency regulariza-
tion strategies for improving the robustness of GCNmodels. Specifically, we present the
Stochastic Activation GCN (SA-GCN for short), a simple yet robustness graph learning
framework. We focus on semi-supervised node classification task. Through introduc-
ing a regularization term to the objective function and maximize the variance of the
feature distribution, SA-GCN obtained more uncertainty while preserved abundant fea-
tures. Extensive experiments also show empirically that SA-GCN improved robustness
against adversarial attacks on semi-supervised node classification task on GCN bench-
mark datasets and mitigate the issue of non-robustness, which are commonly faced by
existing GCNs, to a great extend.

The key contributions of this work are summarized as follows:

– A novel architecture for graph representation learning, SA-GCN, that is robust to
attacks by design;

– An uncertainty learning strategy for achieving robustness to structural and features
perturbations;

– Across a series of adversarial attacks, SA-GCN outperforms existing methods in
most cases.

The paper is structured as follows. Section 2 is dedicated to the introduction of
related work. It is followed by our finding in Sect. 3 on analysing the methodology
of SA-GCN, which is the backbone of our metholody. The experiment results and con-
clusion are the last two section of this paper.

2 Related Work

2.1 Adversarial Attack and Defense on Graph Neural Networks

Graph Neural Networks have achieved excellent results in various graph-related tasks
[6,12,25,30]. However, recent studies have shown that GNNs can be esaily fooled by
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small perturbation on the input graph data [3,18,21,33]. Dai et al. [3] attacks on both
node and graph classification tasks by modifiying the graph structure with reinforce-
ment learning. Zügner et al. [33] proposes a greedy approximation scheme to attack
attributed graphs. Furthermore, researchers [18,21] present more realistic graph injec-
tion attacks. Interested readers please refer to the review [9].

While previous work has shown that GNNs are vulnerable to attacks, we focus on
the more critical question, how can we improve the robustness of GNNs against adver-
sarial attacks. One line to solve the problem is to design empirical defense mechanisms
[22,24]. Another line suggests developing certified robustness guarantees [2,34]. Our
work falls into the previous line.

2.2 Stochastic Neural Networks for Graph

Recent years, Stochastic Neural Networks (SNNs for short) have achieved great success
in the deep learning community [7,8,14], inspiring several exploration of using SNNs
on graph data [17,20,28,31]. Among them, Bayesian graph neural networks [28] uses a
parametric random graph model to incorporate uncertainty information, and derive the
graph stochastic neural network formulations theoretically. Graph Stochastic Neural
Networks [20] employ variational inference to approximate the intractable joint poste-
rior. Uncertainty-Matching Graph Neural Networks [17] utilize epistemic uncertainties
to defend against poisoning attacks and achieves significant improvements. While the
most relevant work is Robust GCN [31], which adopts Gaussian distributions in each
layer and uses graph structure uncertainties to reduce the impacts of adversarial attacks,
our method is indeed simpler and achieves similar performances.

3 Methodology

In this section, we present the proposed framework, SA-GCN, on semi-supervised node
classification task. The idea is to design stochastic activation mechanism through adding
Gaussian noise at each layer. With this simple mechanism, we can generate more uncer-
tainty into the latent presentation of the nodes and induce an activation loss function to
improve robustness under adversarial attacks.

3.1 Stochastic Mechanism

We consider a graph convolution network trained for semi-supervised node classifica-
tion. Instead computing fixed hidden representation of feature vectors, we propose to
use stochastic learning mechanism. As illustrated in Fig. 1, we describe the stochas-
tic mechanism with the l-th layer and (l+1)-th layer. Given arbitrary entire graph,
G = (V, E) with features for all nodes xv , ∀v ∈ V are provided as input. In partic-
ular, we assume that we have obtained the hidden presentation hl at layer l. For single
layer l + 1, [11] directly aggregate the representations of nodes in its immediate neigh-
borhood

{
hl

u,∀u ∈ N (v)
}
into a single vector hl+1

N (v). In adversarial setting, due to the
presence of attacks and noise in the graph structure and node features, we cannot use
these representations directly. To alleviate the challenge, we propose to add a stochastic



170 Z. Yu et al.

Fig. 1. Overall architecture of the proposed SA-GCN method for semi-supervised node classifi-
cation.

learning module before the aggregation operation to output a series of univariate distri-
butions. Then, we sample from the distribution with parameterized mean fμ

(
hl

)
and

variance fσ
(
hl

)
independently, and get a random hidden representation hl

u.
Finally, with the design described above, we choose to replace all the layer of the

classical GCN and get a modified multi-layer message passing which obey the follow-
ing layer-wise propagation rule:

H(l+1) = σ
(
D̃− 1

2 ÃD̃− 1
2 Z(l)W (l)

)
(1)

where Z(l) ∼ N (
μ(l), σ(l)

)
, μ(l) = fμ

(
h(l−1)

)
and σ(l) = fσ

(
h(l−1)

)
. In this paper,

we consider a three-layer SA-GCN for semi-supervised node classification task.

3.2 Loss Function

As shown in [11], the vanilla GCN use cross-entropy over all labeled nodes to calculate
the classification loss:

LossC = −
∑

i∈yL

c∑

j=1

Yij lnZj(i) (2)

where yL denote the set of labeled nodes, and Yij =

{
1, if the label of node i is j

0, otherwise
.

Since stochastic learning module added in the framework, this design with Gaussian
distribution derives a max-entropy regularization term. Thus, following [27], the loss
function can be written as

LossSA = LossC − λ

N∑

i=1

lnσi (3)

where the first term LossC corresponds to the cross-entropy loss defined in equation
(2), the second term is used to generate randomness so that the model can obtain more
robustness. Moreover, λ is the hyper-parameter used to control the ability of the pro-
posed stochastic learning module, and the logarithmic operation lnσi is introduced to
safeguard the numerical calculation. With this loss function, we can make robust clas-
sification predictions.
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4 Experiment

In this section, we empirically evaluate the proposed SA-GCN method on semi-
supervised node classification in adversarial setting.

4.1 Experimental Settings

Datasets. We conduct experiments on two widely used benchmark datasets, Cora [15]
and Citeseer [4], where nodes represent documents and edges represent citation rela-
tionships, for classifying the research topic of papers. Each node is associated with a
bag-of-words feature vector and a ground-truth label. Table 1 summarizes the statis-
tics for the two benchmark datasets, including the number of nodes, edges, classes, the
dimension of features and the datasets partitioning. Our preprocessing scripts for Cora
and Citeseer are based on DeepRobust [13], a widely used pyTorch library for adversar-
ial machine learning. By default, the loaded deeprobust.graph.data.Dataset will select
the largest connect component of the graph. Follow the experimental setting of liter-
ature on semi-supervised graph mining, we sample 10% nodes for Cora and Citeseer
to compose the training set. All the training set has no overlap with validation and test
sets.

Table 1. Dataset Statistics. Following [12, 39, 40], we only consider the largest connected com-
ponent (LCC).

NLCC ELCC Classes Features Train/val./test

Cora 2,485 5,069 7 1,433 247/249/1988

Citeseer 2,110 3,668 6 3,703 210/211/1688

Baseline and Attack Used for Evaluation. In this paper, we compare the performance
of GCN [11] and our proposed SA-GCN under NETTACK [33]. In particular, GCN is
one of the most classic GNN models and defines the graph convolution in the spectral
domain, which uses the first-order approximation to reduce the number of parameters
when aggregating the neighbor information. For NETTACK, it is a well known targeted
attack, which aim at degrading the overall performance of graph deep learning models.

More specifically, in this attack, new edges are randomly introduced between two
previously unconnected nodes. Although simple, this attack is considered effective,
especially with high noise ratios and sparse graphs. We implement NETTACK using
the publicly available DeepRobust library.

Parameter Settings. For GCN and SA-GCN, we set the number of layers and hidden
units as 3 and 32 in our experiments, respectively. We set the learning rate as 0.01 and
weight decay as 5 ∗ 10(−4). The hyper-parameters λ for SA-GCN is set as 0.5 on all
datasets. For a fair comparison, we follow literature [11] and set the dropout rate for
GCN and SA-GCN as 0.8. Additionally, we initialize all weights with the widely used
Xavier initialization [5].
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4.2 Results Analysis

We evaluate the classification accuracy of different methods against NETTACK. In
the experiments, we vary the number of perturbations per node in the original graph
between 1 and 5 because more perturbations, which will lead to too low performance,
is unbearable in practice.

Fig. 2. Results of GCN and SA-GCN (ours) when adopting NETTACK as the attack method.

As shown in Fig. 2, We can see that SA-GCN outperforms GCN on all datasets
most of the time. Experimental results show that, despite its simplicity, our proposed
framework can significantly improve the robustness of GCNs.

5 Conclusion

In this paper, we presented SA-GCN, a simple and effective stochastic learning mech-
anism to enhance the robustness of GNN models. SA-GCN introduced the stochastic
learning module with Gaussian distribution at GCN layers and derive an activation reg-
ularizer that encourages high activation variability via an entropy-maximization regu-
larization term. Considerable experiments on GCN benchmark datasets have verified
that SA-GCN can generally and consistently promote the performance of current popu-
lar GCNs in adversarial setting. Although we implement the stochastic learning mecha-
nism using the graph convolution layers in [11], we can plug it in other message passing
operators, such as GraphSAGE [6], GAT [19], etc. to further boost performance on vari-
ety datasets. We will carry out this work in the future.
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Abstract. Under the continuous optimization and development of var-
ious algorithms in machine learning, the performance of the algorithm
model on classification and regression prediction problems has become
an important evaluation metric for the quality of algorithms. In order
to solve the problems of low testing accuracy and unsatisfactory gener-
alization performance of the models trained by the traditional extreme
learning machine, this paper proposes an extreme learning machine algo-
rithm based on adaptive convergence factor matrix iteration. This algo-
rithm optimizes the calculation method of solving the hidden layer out-
put weight matrix, while retaining the network structure model of the
traditional extreme learning machine. This algorithm is implemented
with a matrix iterative method that includes an adaptive convergence
factor to compute the output weight matrix. As a result, it can adap-
tively select the optimal convergence factor according to the structure
of the iterative equations, and thus use iterative method to solve lin-
ear equations efficiently and accurately upon ensuring the convergence
of the equations. The experiment results show that the proposed algo-
rithm has better performance in model training efficiency and testing
accuracy, compared with the traditional extreme learning machine, the
support vector machine, and other algorithms for data classification and
regression prediction.

Keywords: Machine learning · Extreme learning machine · Adaptive
convergence factor · Matrix iteration · Model optimization · Data
classification

1 Introduction

The multi-layer neural network has the advantages of strong fitting ability and
high training accuracy, but due to its complex network structure [1], the multi-
layer neural network needs to set a large number of parameters during model
training and needs to go through multiple iterations, making the training It is
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easy to fall into the local optimal solution, over-fitting the model and occupy a
lot of computing resources and time in the learning process. In order to solve the
above problems, Huang proposed extreme learning machine(ELM) [2], which is
a single hidden layer feedforward neural network algorithm. Due to its simple
structure and its characteristics that input weights and biases can be randomly
generated during training and the output weights are determined by solving the
minimum norm solution of linear equations. Compared with many traditional
algorithms, the ELM algorithm can have faster training speed and better gener-
alization ability on the basis of ensuring the learning accuracy [3]. It is used in
image classification [4] and data prediction [5] and other fields.

In the development of ELM, the regularized extreme learning machine
(RELM) solved the problem of model overfitting [6], and the ADMM-ELM pro-
posed by Lai et al. [7] based on the convex optimization theory improved the
convergence rate of the algorithm, Huang based on the kernel method proposed
KELM [3] to promote the development of the algorithm. On the other hand, due
to the large number of hidden layer nodes in the extreme learning machine, the
randomly given weights and biases cannot obtain the best network structure.
In order to solve this problem, researchers continue to optimize the network.
Huang and Rong proposed the self-increasing [8] and pruning [9] algorithms
respectively to optimize the network structure, and Ye et al. proposed the QRI-
ELM algorithm based on the increment of QR decomposition [10] and so on.
Although the above research has promoted the research process of ELM, it has
not fundamentally solved the problem of insufficient ELM modeling accuracy.

Although ELM has the advantages of simple network structure and few set-
ting parameters, due to the characteristics of its single-layer network struc-
ture and parameter randomness, the accuracy of the model trained by it has
great instability. The Moore-Penrose generalized inverse method used by ELM
to solve the output weight matrix also has certain defects. In many scenarios,
the obtained model is often a nonlinear model [11], and the correlation matrix
often has a large order. At this time, solving the model by generalized inverse
is often inefficient and cannot obtain a more accurate solution. In this case, it
is generally considered to use some common matrix iteration methods to solve
the output weight matrix, such as Jacobi iteration algorithm, Gauss-Seidel iter-
ation algorithm [12], successive over-relaxation iterative algorithm [13] and so
on. Although these algorithms are more efficient in some cases [14], they are not
suitable for all cases. For example, Gauss-Seidel iteration requires the coefficient
matrix to be non-singular, and in the case where the dimension of the coefficient
matrix is low, the solution obtained by iteration is much less accurate than that
obtained by generalized inverse.

The shortcomings of the above optimization of the ELM algorithm are mainly
manifested in two aspects: 1) These optimizations are all aimed at the ELM net-
work structure [15], which has certain limitations. While the network structure is
continuously optimized, the complexity of model training will increase. With the
increase, the efficiency of data processing cannot meet the requirements of many
scenarios. 2) Solving the output weight matrix is an extremely important step in
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the ELM algorithm, which has a great impact on the accuracy of the model and
the time and space resources occupied. The method of using generalized inverse
to solve the output weight matrix has some defects. How to solve the problem
of insufficient model accuracy on the basis of retaining the fast modeling of the
ELM algorithm should become the direction of algorithm research.

In response to the requirements of model operation efficiency and accuracy,
this paper proposes an extreme learning machine algorithm based on adap-
tive convergence factor matrix iteration. The algorithm uses a matrix iteration
method with adaptive convergence factors to calculate the output weight matrix,
and uses the established model predictive analysis of the data. The experimen-
tal results show that the algorithm has higher test accuracy compared with
extreme learning machine, regularized extreme learning machine and support
vector machine. In experiments on large datasets, the resources and time con-
suming of our algorithm are less. In addition, the experiment also found that
when training some datasets with specific characteristics, the accuracy of AC-
ELM is even better than some multi-layer convolutional neural network structure
algorithms.

2 Extreme Learning Machine

The extreme learning machine is a feedforward neural network (SLFN) composed
of a single hidden layer. It consists of an input layer, a hidden layer and an output
layer. Its input weights and biases are randomly generated, and the output weight
is calculated from this. Unlike SLFN, ELM does not have output bias.

Given M training samples (xi, ti), i = 1, 2...M , xi = [xi1, xi2, · · · , xim]T ∈
Rn, ti = [ti1, ti2, · · · , til]

T ∈ Rm, where xi and ti represent the input feature
vector of the i−th sample and the output feature vector corresponding to its
label. Let g(x) be the activation function,the network structure of ELM consists
of an input layer with m nodes, a hidden layer with N nodes and an output
layer with l nodes.Its mathematical model is

N∑

i=1

βig (wixj + bi) = tj , j = 1, 2 · · · ,M (1)

where wi = [wi1, wi2, · · · , wim]T represents the input weight vector connecting
the ith hidden layer node and the input layer node, βi = [βi1, βi2, · · · , βil] is the
output weight matrix connecting the i−th hidden layer node and the output
layer node, and bi is the bias of the i−th hidden layer node.

Let βi = [β1,β2, · · · ,βN ]T , Ti = [t1, t2, · · · , tM ]T and

H =

⎡

⎣
g (w1x1 + b1) · · · g (wNx1 + bN )

· · · · · · . . .
g (w1xM + b1) · · · g (wNxM + bN )

⎤

⎦

M×N

then Eq. (1) can be simplified as

Hβ = T (2)
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where H is the output matrix of the hidden layer in the ELM network, and the
least squares solution of the output weight can be easily obtained by solving the
linear matrix Eq. (2),

β̂ = H+T (3)

H+ is the generalized inverse of H.
The specific process of the AC-ELM algorithm is as follows:

3 Adaptive Convergent ELM Algorithm

3.1 AC-ELM

Based on the matrix equation iteration method given in Ref. [16], this paper
proposes a matrix iteration method including adaptive convergence factors, and
combines this method with the ELM algorithm to obtain Obtain an extreme
learning machine algorithm based on adaptive matrix iteration (AC-ELM). The
algorithm uses the adaptive convergence factor to iterate the matrix equation,
and iteratively solves the output weight matrix of the ELM. AC-ELM can be
well applied to the situation that the output matrix of the hidden layer H is
a high-order, non-square matrix. In many cases It can have higher accuracy
and efficiency than solving matrix equations by generalized inverse and classical
iterative methods of solving matrix equations, and has good performance in both
classification and regression tests.

The implementation method of the core of the AC-ELM algorithm is as
follows:

1) Obtain the matrix equation Hβ = T according to the training samples.
2) Through the decomposition iterative method mentioned in references [17,18],

this paper constructs the following adaptive iterative algorithm:

β(k) = β(k − 1) + μN−1HT [T − Hβ(k − 1)] (4)

where μ is the convergence factor and N is the diagonal matrix of the matrix
HTH.

3) Set the number of loops k and randomly generate the initial solution Best =
β0, and use the following pseudocode to solve the output weight matrix β:

Algorithm 1: Search for the optimal solution of the output weight matrix

1 For i = 0 to k do
2 Best ← f(Best)

where f(·) is the iterative equation of formula (4).
Two points need to be added to the above algorithm flow:
For similar iterative algorithms, we find that users do not have a good strat-

egy for determining the value of μ when solving practical problems. In this paper,
a method of adaptively selecting the convergence factor is given by combining
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the sufficient and necessary conditions for the convergence factor to satisfy the
convergence and the actual experimental effect.

μ =
2

λmax [N−1HTH] + |λmin [N−1HTH]| (5)

2) The formula of formula (4) can be further simplified to obtain

β(k) =
(
Im − μN−1HTH

)
β(k − 1) + μN−1HTT (6)

Here the notation β̃(k) = β(k) − β(k − 1) is introduced, and further simpli-
fication can be obtained as

β̃(k) =
(
Im − μN−1HTH

)
β̃(1) (7)

The above simplification is to facilitate the proof of the convergence of the
algorithm in the next section.

3.2 Convergence of AC-ELM Algorithm

According to the two lemmas in the literature [18], we can know from the analysis
of formula (7) that formula limx→∞[β(k) − β(k − 1)] = 0 holds if and only if
ρ

[
Im − μN−1HTH

]
< 1, and the m eigenvalues of matrix N−1HTH can be

expressed as

1 + ρ1, 1 + ρ2, · · · , 1 + ρp, 1, 1 · · · , 1, 1 − ρp, · · · , 1 − ρ2, 1 − ρ1

where ρ1 ≥ ρ2 ≥ · · · ≥ ρp. Assuming that λi, i = 1, 2, · · · ,m is the eigenvalue
of matrix N−1HTH, the eigenvalue of the iterative matrix Im − μN−1HTH
can be expressed as 1 − μλi. Then the necessary and sufficient condition for the
convergence of the iterative algorithm in Eq. (7) is if and only if the eigenvalues
of the iterative matrix satisfy −1 < 1 − μλi < 1. From the above theorem, it is
easy to verify that the adaptive parameter in Eq. (4) satisfies the convergence
condition, so the adaptive convergence factor iteration algorithm proposed in
this paper satisfies the convergence condition.

At this time, taking the limit on both sides of iterative Eq. (4) at the same
time can obtain the unique solution.

4 Experiment

In this section, different standard datasets are used to conduct experimental
analysis on the performance of the AC-ELM algorithm. The selected datasets are
from the UCI database and the MedMNIST medical image analysis dataset [19].
In order to ensure the accuracy and authenticity of the experimental results,
all the experimental indicators in this paper are repeated twenty times and the
average is taken as the final result.
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4.1 UCI Dataset Classification Experiment Test

In this section, eight sets of data sets for classification in the UCI database are
selected for comparative experiments. The number of samples, training, testing,
features, and categories of the dataset are shown in Table 1 below.

Table 1. Basic information on the eight datasets

Data set Number of training Number of tests Number of features Number of categories

Glass 150 64 9 7

Seeds 158 52 7 3

Breast cancer 455 114 30 2

Balance scale 500 125 5 3

Madelon 1600 1000 500 2

Spambase 3000 1600 58 2

Dry bean 12249 1362 16 7

Avila 10430 10437 10 12

In this paper, ELM, KELM [3], ADMM-ELM [20] and AC-ELM proposed
based on convex programming problem are classified and compared with different
numbers of nodes, and the test accuracy of the four algorithms is compared.
In the experiment of each dataset, the interval of the number of hidden layer
nodes is set to [10, 100], and ten different numbers of hidden layer nodes are
uniformly selected in the interval. The activation function of the hidden layer
of the four algorithms uses the sigmoid function, the iteration number of the
AC-ELM algorithm is set to 200, and the KELM selection function is the RBF
Gaussian kernel function. The cycle number K of ADMM-ELM is set to 1000, β
is set to 0.001, and λ is set to 0.0001. The results of the comparative experiment
are shown in Fig. 1. In this paper, four representative datasets of Breast Cancer,
Spambase, Dry Bean and avila are selected for presentation.

From the analysis of the experimental results in Fig. 1, it can be seen that
under the premise of the same number of hidden layer nodes, the accuracy of
the model trained by the AC-ELM algorithm is generally better than that of
the ELM. Compared with the KELM and ADMM-ELM algorithms, the model
accuracy of AC-ELM is slightly lower than these two algorithms under individual
nodes in a few datasets. At the same time, when the number of hidden nodes is
small, the test accuracy of the model established by AC-ELM is often the best.
In addition, with the increase of the number of nodes, the accuracy gap between
the AC-ELM algorithm and the other two algorithms will gradually increase,
which indicates that when the dimension of the correlation matrix is large, the
accuracy of the model solved by the adaptive iterative equation is better than
that by the generalized inverse method.

On this basis, the experiment added the BLS (width learning) [21] algorithm
to conduct comparative experiments on the above eight datasets. BLS is also
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Fig. 1. Experimental results with different number of hidden layer nodes.

an algorithm that randomly generates weight bias, and its output weight is also
obtained by generalized inversion. The experiments show the best test accuracy
and training time of each algorithm on different datasets. Table 2 shows the
experimental results of the five algorithms on the classification data set, and the
experimental data with the highest accuracy is recorded for all algorithms.

Table 2. Comprehensive training results of datasets based on each algorithm

Data set ELM KELM ADMM-ELM AC-ELM BLS

Index N Acc (%) T (s) N Acc (%) T (s) N Acc (%) T (s) N Acc (%) T (s) Acc (%) T (s)

Glass 50 42.19 0.03 50 53.13 0.03 30 54.69 0.16 40 68.75 0.05 60.94 0.19

Seeds 50 96.15 0.07 50 96.46 0.06 50 96.46 0.23 50 98.08 0.05 90.38 0.34

Breast cancer 90 87.12 0.06 70 91.23 0.07 60 92.11 0.25 50 98.25 0.06 95.61 0.35

Balance scale 90 87.20 0.07 70 88.80 0.09 70 89.60 0.28 50 91.20 0.06 87.20 0.21

Madelon 90 53.40 0.29 70 54.60 0.30 80 53.60 0.98 70 54.10 0.23 52.70 0.92

Spambase 90 91.00 0.37 80 90.31 0.42 80 92.44 2.85 60 92.38 0.30 91.88 0.38

Dry bean 90 92.22 0.16 90 92.51 0.23 90 92.36 4.97 70 92.95 0.14 90.97 0.21

Avila 100 58.64 0.42 90 59.30 0.53 100 59.00 5.67 70 61.76 0.27 49.93 0.31
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By analyzing the data in the table, it can be seen that, compared with ELM,
the AC-ELM algorithm based on the adaptive convergence factor matrix itera-
tion method has better accuracy on most data sets when the appropriate number
of hidden layer nodes is set, and can have a faster model training speed when
the data sample size is large. The KELM and ADMM-ELM algorithms are gen-
erally better than the traditional ELM algorithm in terms of accuracy when
selecting suitable nodes, but they are still slightly lower than the AC-ELM algo-
rithm, and due to iterative optimization, the time spent in training the model
by the ADMM-ELM algorithm will be greatly increased. Compared with BLS,
the convergence speed and accuracy of the AC-ELM algorithm are higher on all
datasets used in the experiments. On the other hand, when training on datasets
with large sample size such as Spambase, Dry Bean and avila, AC-ELM con-
sumes less time than the other four algorithms, which is determined by the time
complexity of the algorithm. In addition, from the point of view of the number of
hidden layer nodes, the AC-ELM algorithm can train a model with higher accu-
racy with fewer nodes than ELM, KELM and ADMM-ELM, which also makes
the training speed of the algorithm further improved.

4.2 MedMNIST Image Dataset Experiment

In order to more comprehensively verify the performance of the algorithm pro-
posed in this paper in terms of classification, the MedMNIST dataset [?] is
selected for the experiments in this section. In this experiment, four represen-
tative datasets, BreastMNIST, RetinaMNIST, DermaMNIST and PathMNIST,
were selected for classification performance comparison with AC-ELM, ELM
and the more advanced ResNet [18] and ResNet [50] respectively. Table 3 lists
the basic features of the four datasets. This experiment combines the training
accuracy, test accuracy and model training time to evaluate the performance.

Table 3. Basic information on the four datasets

Data set Number of training Number of tests Number of features Number of categories

Breast 546 156 784 2

Retina 1080 400 2352 5

Derma 7007 2005 2352 7

Path 89996 7180 2352 9

In the experiment, for the same data set, AC-ELM and ELM both use the
sigmoid activation function and the same number of hidden layer nodes. On the
BreastMNIST and RetinaMNIST datasets, the hidden layer nodes are set to 50,
and the number of AC-ELM iterations is 500. On the DermaMNIST dataset,
the hidden layer nodes are set to 80, and the number of AC-ELM iterations is
selected 1000; On the set, the hidden layer nodes are set to 100, and the number
of AC-ELM iterations is selected to be 3000. In all experiments in this section,
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ResNet [18] and ResNet [50] use the SGD optimizer and the learning rate is set
to 0.1.

The experimental results are shown in Table 4. It can be seen that compared
with the traditional ELM algorithm, the AC-ELM algorithm has an improve-
ment of more than 10% 20% in the model test accuracy. Compared with the
neural network ResNet [18], the algorithm in this paper slightly improves the
training accuracy, but greatly shortens the training time of the model. Com-
pared with ResNet [50], the classification accuracy of the algorithm in this paper
is significantly improved on small image datasets. Although AC-ELM performs
generally on large-sample datasets, the training time of AC-ELM is greatly short-
ened compared to ResNet [50] in terms of convergence speed. Combined with
the training accuracy, AC-ELM guarantees the generalization performance of
the model under the premise of rapid convergence.

Table 4. Comprehensive results on the MedMNIST dataset

Data set ELM AC-ELM ResNet [18] ResNet [50]

Index Training Testing T (s) Training Testing T (s) Training Testing T (s) Training Testing T (s)

Breast 78.02 74.13 0.02 82.98 82.05 0.06 81.50 77.56 32.34 78.57 74.80 136.56

Retina 56.67 46.21 0.04 56.11 54.25 0.08 53.98 52.75 72.34 55.33 53.00 215.26

Derma 69.05 67.33 4.05 73.00 72.56 0.27 72.73 71.02 285.45 72.00 71.87 1148.71

Path 40.43 52.34 21.36 68.01 77.89 1.68 68.98 77.51 4034.56 71.47 82.67 14109.04

Table 5. Basic information on the three datasets

Data set Number of training Predicted samples Number of feature

Shanghai composite iindex 3450 60 5

Appliances energy prediction 10000 9735 28

SGEMM GPU kernel 141600 100000 14

4.3 Regression Prediction Experiment of AC-ELM

In the experiments in this section, regression predictions are performed on the
Shanghai Composite Index opening, Appliances energy prediction and SGEMM
GPU kernel performance datasets respectively. The number of training, predic-
tion and features of the dataset are shown in Table 5.

In order to test the effect of the AC-ELM algorithm on data prediction com-
pared with several mainstream ELM algorithms, the experiment sets different
hidden layer nodes for each data set according to the scale of the data set to
compare ELM, KELM, ADMM-ELM and AC-ELM. The number of iterations
for the three data sets AC-ELM is set to 500, 800 and 1000 respectively, the ker-
nel function of KELM is selected as the RBF Gaussian kernel function, and the
parameter settings of ADMM-ELM are the same as those in Sect. 4.1. The time
and error of several algorithms under different nodes are recorded respectively,
and the experimental results are shown in Figs. 2, 3 and 4.
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Fig. 2. Shanghai stock exchange opening index forecast curve.

Fig. 3. Appliances energy prediction prediction curve.

Fig. 4. SGEMM GPU kernel performance prediction curve.
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Combining the results of the three figures (a), when the same number of
nodes is set, the modeling efficiency of ADMM-ELM is significantly lower than
that of the other three algorithms, while the modeling efficiency of AC-ELM
algorithm is relatively high. As can be seen from Figure (b), compared with
the other three algorithms, the root mean square error between the predicted
value and the true value is basically smaller in the case of the same number of
hidden layer nodes in the AC-ELM algorithm, and as the number of hidden layer
nodes increases, the AC-ELM algorithm has more obvious advantages in terms
of prediction accuracy. Combining graphs (a) and (b) for each data set, it can
be found that the number of nodes with the smallest error is found in graph (b),
and AC-ELM consumes less time under this number of nodes.

It is not difficult to see from the experiments in this section that the algorithm
in this paper performs well in regression prediction, especially when predicting
large data sets and large number of nodes, AC-ELM is better than the current
mainstream ELM algorithm in terms of speed and accuracy.

5 Conclusion

Aiming at the problems that the traditional extreme learning machine has insuf-
ficient model accuracy in data classification and fitting prediction and takes too
long to train a large data set model, this paper proposes an extreme learn-
ing machine algorithm based on adaptive convergence factor matrix iteration.
The algorithm uses the model of the classic extreme learning machine, and on
the basis of retaining the optimized network structure of the extreme learning
machine, it solves the output weight matrix through a matrix iterative method
including an adaptive convergence factor. The algorithm can obtain a model
with higher accuracy by training with fewer iterations, which effectively solves
the problems of low model learning accuracy and low model establishment effi-
ciency in traditional algorithms. The algorithm in this paper performs well on
both classification and regression datasets, which proves the effectiveness of the
algorithm.
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Abstract. As a powerful tool for regression prediction, Incremental
Extreme Learning Machine (I-ELM) has good nonlinear approximation
ability, but the original model has the problem that the uneven out-
put weights distribution affects the generalization ability of the model.
This paper proposes an Incremental Extreme Learning Machine method
based on Attenuated Regularization Term (ARI-ELM). The proposed
ARI-ELM adds attenuation regularization term in the iterative process
of output weights, reduces the output weights of the hidden node in the
early stage of the iteration and ensuring that the new nodes after mul-
tiple iterations are not affected by the large regularization coefficient.
Therefore, the overall output weights of the network reach a relatively
small and evenly distributed state, which would reduce the complexity of
the model. This paper also proves that the model still has convergence
performance after adding the attenuated regularization term. Simula-
tion results on the benchmark data set demonstrate that our proposed
approach has better generalization performance than other incremental
extreme learning machine variants. In addition, this paper applies the
algorithm to specific weight prediction scene of intelligent manufactur-
ing dynamic scheduling, and also gets good results.

Keywords: Incremental Extreme Learning Machine · Attenuated
regularization term · Weight distribution · Generalization ability ·
Intelligent manufacturing · Dynamic scheduling

1 Introduction

As the earliest type of artificial neural network, feedforward neural network is
widely used in many fields, such as image classification, target recognition and
so on. Compared with recurrent neural network, the hidden layer of feedfor-
ward neural network has no horizontal connection, and its structure is simple
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[10,15]. Feedforward neural network is generally composed of input layer, one
or more hidden layers and output layer, and uses weighted average and acti-
vation function to transfer feature information to the next layer. Traditional
neural network theory holds that all parameters in neural network need to be
adjusted, and back-propagation algorithm is often used to train feedforward
neural network. The feedforward neural network with many layers and updating
the weight by back-propagation method can obtain better learning results, but it
has the problems of long training time and many parameters. Subsequently, the
researchers proved that the adjustment of Single Layer Feedforward Networks
(SLFNs) parameters does not need to use the method of error back propagation,
and SLFNs with random hidden layer nodes also have general approximation
ability [4,5,7–9]. Huang et al. [6] proposed the limit learning machine algorithm,
which is a SLFN, in which the input weight is obtained randomly, and the learn-
ing task can be completed efficiently by analytically solving the output weight.
Extreme learning machine has a simple network structure and fewer network
parameters. It does not need to update the iterative network weight through
the back-propagation algorithm. The training speed is much faster than that of
deep neural network. It overcomes the defects of traditional deep neural net-
work, such as long training time, complex network structure and troublesome
parameter adjustment. It shows great advantages and application prospects in
machine learning [1,3,12,14,18].

Extreme Learning Machine (ELM) avoids the weight iterative updating pro-
cess based on back propagation and simplifies the learning method, but there
are also many problems. In particular, the number of ELM hidden layer nodes
needs to be set by people themselves. How to select the optimal number of hidden
nodes is still unknown. The number of hidden layer nodes needs to be determined
through experience or a large number of experiments. Given a large number of
training data, ELM has high computational complexity, and it is often neces-
sary to calculate the generalized inverse of a large matrix. To solve the above
problems, Huang et al. [4] proposed an incremental limit learning machine. Its
core idea is to construct a SLFN that can add hidden nodes, randomly initialize
the input matrix and deviation, add a single hidden layer node each time to fit
the current residual of the network, calculate the output weight corresponding
to the new node by using the least square method, and obtain the appropriate
network structure through iteration. I-ELM solves the defects of fixed structure
of traditional ELM network, difficult to obtain the optimal number of hidden
layer nodes and high computational complexity. By adding hidden nodes, I-ELM
can adaptively obtain the optimal fitting effect, and will not produce local opti-
mal solution in theory, so it has good generalization ability. In addition, Chen et
al. [5] added the convex optimization idea to I-ELM and proposed the Convex
Incremental Extreme Learning Machine (CI-ELM) algorithm. After adding new
hidden nodes, the convex optimization method is used to update and calculate
the output weight of existing hidden nodes, so as to further improve the conver-
gence speed of I-ELM algorithm. Feng et al. [2] proposed an EM-ELM algorithm
based on minimum error. The algorithm allows to add hidden nodes one by one
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or group by group, and the output weight will be updated continuously when
adding hidden nodes, which improves the learning speed of the algorithm. There
are still some problems in I-ELM algorithm. In this paper, it is found that the
output weight distribution of I-ELM network nodes is uneven. The weight of
new nodes in the early stage of iteration is often large, while the weight of new
nodes in the middle and late stage of iteration is small or even close to 0. The
large weight distribution difference leads to the complexity and instability of the
network [11,13], and the generalization ability needs to be further improved.

In order to solve the above problems, this paper adds the attenuatable regu-
larization term to the weight solution process of I-ELM, and sets a large initial
regularization coefficient to reduce the output weight of the new hidden nodes
in the early stage of the iteration. With the increase of the number of iterations,
the regularization coefficient decreases exponentially, so as to prevent the node
weight from approaching 0 due to the excessive regularization coefficient in the
middle and later stages of the iteration, so as to ensure that the node weight of
the whole network is small and evenly distributed, It limits the complexity of the
model and increases the generalization performance. The experimental results
of this algorithm show that the performance of one or more groups of implicit
regression algorithms is very good.

2 Proposed ARI-ELM

2.1 Model Framework

In order to solve the problem of uneven weight distribution of I-ELM and improve
the generalization performance of the model, the attenuation regularization term
is added to the original algorithm to reduce the network complexity. At the same
time, new nodes can be added individually or in groups to improve the network
learning efficiency.

Generally, L2 penalty term is added after the loss function of standard limit
learning machine to limit the output weight parameters of the model and obtain a
smaller and more decentralized weight matrix [16]. The smaller the regularization
coefficient, the closer the output parameter is to the real parameter.

The ARI-ELM topology of adding a single node is shown in Fig. 1(a), and the
ARI-ELM topology of adding multiple nodes and multi-dimensional regression is
shown in Fig. 1(b), where X is the input variable, y is the target output variable,
an and bn respectively represent the input weight vector and deviation of the
nth hidden node, βn represents the output weight obtained after adding the
regularization term to the nth single hidden node, σn is the iteration coefficient,
and Hn(an,X, bn) represents the activation value of the nth hidden node.

2.2 Convergence Analysis

Theorem 1. Assuming that cn and dn are nonnegative sequences and B is
constant and greater than zero. An incremental single hidden layer feedforward
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Fig. 1. Output weight distribution of I-ELM and ARI-ELM

neural network with arbitrary piecewise continuous activation function and Any
non constant continuous objective function f are given. There are obtaining the
hidden layer input matrix and offset parameter (ân, b̂n) randomly, and setting
the hidden layer output matrix as Gn(ân · x + b̂n). If c1 < B, c2 < B, cn <(
1 + d2n

)
cn−1−d2n is satisfied, for any integer n, n ≥ 2, when d2n > 1

(n+1)(n2−n−1) ,
there must be cn < B

(n+1)n .

Proof. According to the mathematical induction, if cn−1 < B
(n+1)n , we have:

cn − B

(n + 1)n
<

(
1 + d2n

) B

n(n − 1)
− d2nB − B

(n + 1)n

= B

(
(n + 1)

(
1 + d2n

) − (n − 1) − d2n
(
n3 − n

)

(n − 1)n(n + 1)

)

=
B

(n − 1)n(n + 1)
(
1 − d2n

(
n3 − 2n − 1

))
.

(1)

Thus, when 1 − d2n(n3 − 2n − 1) < 0, that is d2n > 1
(n+1)(n2−n−1) , we can get

cn < B
(n+1)n , and the certificate is completed.

Theorem 2. For a feedforward neural network with increasing hidden layer
nodes, if an arbitrary non constant piecewise continuous function H : R → R
is given as the hidden layer excitation function, a continuous and identically
distributed random hidden layer output matrix Ĥn(an ·x, bn is generated. Then,
for the objective function f with any continuous non constant value, if the reg-
ularization coefficient λn and the output weight correction value β̂n satisfy Eq.
(2) and Eq. (3) there is limn→∞

∥
∥
∥f − β̂nĤn (an · x + bn)

∥
∥
∥ = 0:

λn = ce−n. (2)
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β̂n =

〈
en−1, Ĥn (an · x + bn)

〉

∥
∥
∥Ĥn (an · x + bn)

∥
∥
∥
2

+ λn

. (3)

Proof. First, we need to prove that ‖en‖ is a monotonically decreasing function
and has a lower bound of zero, that is limn→∞ ‖en‖ = 0.

Let Ĥn be the output matrix of a single hidden layer feedforward neural
network with n hidden layer nodes. Let the network residual be Δ = ‖en−1‖2 −
‖en‖2, where en−1 = f −

[
Ĥ1, Ĥ2, . . . , Ĥn−1

]
·
[
β̂1, β̂2, . . . , β̂n−1

]T
, then we

can get en = en−1 − β̂nĤn, and then we can deduce:

Δ = ‖en−1‖2 −
∥
∥
∥en−1 − β̂nĤn

∥
∥
∥
2

= 2β̂n

〈
en−1, Ĥn

〉
− β̂2

n

∥
∥
∥Ĥn

∥
∥
∥
2

= β̂2
n

∥
∥
∥Ĥn

∥
∥
∥
2

> 0.

(4)

Huang et al. have proved ‖en‖2−
∥
∥
∥en − β̂n+1Ĥn+1

∥
∥
∥
2

≥ 0, which means that
‖en‖ > ‖en+1‖. Therefore, We can have ‖en−1‖ > ‖en‖ > ‖en+1‖, and we can
further draw the conclusion that ‖en‖ is monotonically decreasing and bounded.

Thus, we have:

‖en‖2 =
∥
∥
∥en−1 − β̂nĤn

∥
∥
∥
2

= ‖en−1‖2 + β̂2
n

∥
∥
∥Ĥn

∥
∥
∥
2

− 2β̂n

〈
en−1, Ĥn

〉

<
(
1 + β̂2

n

)
‖en−1‖2 − β̂2

n

⎛

⎝2

〈
en−1, Ĥn

〉

β̂n

−
∥
∥
∥Ĥn

∥
∥
∥
2

⎞

⎠

=
(
1 + β̂2

n

)
‖en−1‖2 − β̂2

n

∥
∥
∥Ĥn

∥
∥
∥
2

.

(5)

According to Theorem 1, we have:

‖en‖2 <
(
1 + β̂2

n

)
‖en−1‖2 − β̂2

n

∥
∥
∥Ĥn

∥
∥
∥
2

<
(
1 + β̂2

n

)
‖en−1‖2 − β̂2

nB.
(6)

Let cn = ‖en‖2, d2n = β̂2
n, when n = 1 we have:

c1 = ‖e1‖2 = ‖f − f1‖2 =
∥
∥
∥f − β̂1Ĥ1

∥
∥
∥
2

≤ ‖f‖2 + β̂2
1

∥
∥
∥Ĥ1

∥
∥
∥
2

− 2β̂1

〈
f , Ĥ1

〉
.

(7)
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According to the theorem, we have:

β̂1 =

〈
e0, Ĥ1

〉

∥
∥
∥Ĥ1

∥
∥
∥
2

+ λ1

. (8)

Bring the above-mentioned Eq. (8) into Eq. (7), we have:

‖e1‖2 < ‖f‖2 +

〈
f , Ĥ1

〉2

(∥
∥
∥Ĥ1

∥
∥
∥
2

+ λ1

)2 ·
∥
∥
∥Ĥ1

∥
∥
∥
2

− 2

〈
f , Ĥ1

〉2

∥
∥
∥Ĥ1

∥
∥
∥
2

+ λ1

< ‖f‖2 +

〈
f , Ĥ1

〉2

(∥
∥
∥Ĥ1

∥
∥
∥
2

+ λ1

)2 ·
(∥

∥
∥Ĥ1

∥
∥
∥
2

+ λ1

)
− 2

〈
f , Ĥ1

〉2

∥
∥
∥Ĥ1

∥
∥
∥
2

+ λ1

= ‖f‖2 +

〈
f , Ĥ1

〉2

∥
∥
∥Ĥ1

∥
∥
∥
2

+ λ1

− 2

〈
f , Ĥ1

〉2

∥
∥
∥Ĥ1

∥
∥
∥
2

+ λ1

= ‖f‖2 −
〈
f , Ĥ1

〉2

∥
∥
∥Ĥ1

∥
∥
∥
2

+ λ1

< ‖f‖2 < B.

(9)

When n = 2, we can have:

c2 = ‖e2‖2 = ‖f − f2‖2 =
∥
∥
∥f − f1 − β̂2Ĥ2

∥
∥
∥
2

=
∥
∥
∥e1 − β̂2Ĥ2

∥
∥
∥
2

≤ ‖e1‖2 + β̂2
2

∥
∥
∥Ĥ2

∥
∥
∥
2

− 2β̂2

〈
e1, Ĥ2

〉
.

(10)

According to the theorem, we have:

β̂2 =

〈
e1, Ĥ2

〉

∥
∥
∥Ĥ2

∥
∥
∥
2

+ λ2

. (11)
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Bring the above-mentioned Eq. (11) into Eq. (10), we have:

‖e2‖2 < ‖e1‖2 +

〈
e1, Ĥ2

〉2

(∥
∥
∥Ĥ2

∥
∥
∥
2

+ λ2

)2 ·
∥
∥
∥Ĥ2

∥
∥
∥
2

− 2

〈
e1, Ĥ2

〉2

∥
∥
∥Ĥ2

∥
∥
∥
2

+ λ2

< ‖e1‖2 +

〈
e1, Ĥ2

〉2

∥
∥
∥Ĥ2

∥
∥
∥
2

+ λ2

− 2

〈
e1, Ĥ2

〉2

∥
∥
∥Ĥ2

∥
∥
∥
2

+ λ2

= ‖e1‖2 −
〈
e1, Ĥ2

〉2

∥
∥
∥Ĥ2

∥
∥
∥
2

+ λ2

< ‖e1‖2 < B.

(12)

If the following inequality holds:

β̂2
n >

1
(n + 1) (n2 − n − 1)

. (13)

According to Eq. (9) and (12) and Theorem 1, we have:

‖en‖ <

√
B

√
(n + 1)n

. (14)

where B is a constant, thus we have limn→∞ ‖en‖ = limn→∞
√
B√

(n+1)n
= 0.

2.3 Learning Steps

In ARI-ELM, when the network adds hidden nodes one by one and performs one-
dimensional regression, q = 1, h and T are vectors. H and T are replaced by H
and e respectively, and the corresponding output weight calculation formula is:

βL =
e · hT

(
h · hT + λL

) . (15)

If the number of hidden layer nodes increased in each iteration is Q or when
multi-dimensional regression training is carried out, the corresponding output
weight can be:

β′
L =

(
HT

LHL + λLI
)−1

HT
LE, (16)

where β′
L denotes the weight matrix corresponding to q new nodes in the Lth

iteration, HL represents the matrix after nonlinear activation of q new nodes,
and E represents the residual matrix of the current network.
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Table 1. Regression dataset

Regression datasets Features Training data Test data

Short-term traffic flow prediction 4 276 92

Jialing river water quality evaluation 6 350 50

Shanghai stock index forecast 5 3663 916

Autompg 9 314 78

Airfoil Self-Noise 5 1202 301

Superconduct 81 17010 4253

PowerPlant 4 7654 1914

ConcreteCS 8 824 206

OnlineNewsPopularity 58 31715 7929

Residential Building 103 297 75

Winequality-white 11 3918 980

Winequality-red 11 1279 320

3 Experiment

3.1 Weight Distribution

In order to verify the generalization ability and convergence speed of the algo-
rithm, we selects 12 regression data sets for comparative experiments. The first
three data sets are from the book 43 case analysis of MATLAB neural network,
and the last nine data sets are from UCI database. The characteristic number,
training number and test number of the data set are shown in Table 1.

The evaluation indexes of regression problems involved in this paper include
RMSE, MAPE and R2 [17]. we compares the output weight distribution of I-

Fig. 2. Output weight distribution of I-ELM and ARI-ELM
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ELM and ARI-ELM algorithms in benchmark data set prediction. Figure 2 shows
the weight comparison diagram of Short-term traffic flow prediction, Jialing river
water quality evaluation, Shanghai stock index forecast, Autompg, Superconduct
and Winequality datasets, in which there are 25 incremental nodes and one
hidden node is added each time. Compared with I-ELM algorithm, the output
weight distribution calculated by ARI-ELM algorithm is more uniform. The
weight is relatively small, and there is no obvious extreme weight. Figure 3 shows
the relative error of RMSE of I-ELM and ARI-ELM in training data and test
data. The maximum value of hidden nodes in this experiment is [1000:50:2000].
From the analysis, it can be seen that the relative error of ARI-ELM test data
RMSE and training data RMSE is smaller. The generalization performance of
ARI-ELM algorithm is better than I-ELM. Under the same accuracy, Table 2
compares the convergence time required by I-ELM and ARI-ELM under different
activation functions. It can be seen from Table 2 that on most datasets, the
convergence speed of ARI-ELM is faster than that of I-ELM.

Fig. 3. RMSE relative error of test and training of I-ELM and ARI-ELM

3.2 Comparison of Experimental Results

In terms of model performance, we compared the generalization ability of I-ELM,
CI-ELM, EM-ELM and ARI-ELM algorithms on 12 regression datasets. Two
different activation functions, sigmoid function and RBF function, are applied.
The maximum number of hidden layer nodes of each algorithm is set to 300.
Finally, take the average value of RMSE of 200 experimental results. In Table 3,
the best results of the experiment are marked in bold, and the similar results
are underlined. Under the same maximum number of hidden nodes, except on
the winequality white dataset, the root mean square error of em-elm algorithm
is smaller than that of ARI-ELM algorithm. The root mean square error of
ARI-ELM algorithm in other datasets can reach the minimum or close to the
minimum. So, ARI-ELM has good generalization performance and stability.
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Table 2. Comparison of training time between I-ELM and ARI-ELM under different
activation functions

Regression datasets Sigmoid RBF

I-ELM ARI-ELM I-ELM ARI-ELM

Short-term traffic flow prediction 0.0140 0.0109 0.5987 0.5578

Jialing river water quality evaluation 0.0879 0.0085 0.6188 0.5340

Shanghai stock index forecast 0.0279 0.0243 7.5548 7.2151

Autompg 0.0169 0.0159 0.8667 0.8256

Airfoil Self-Noise 0.0360 0.0410 5.2530 2.9303

Superconduct 3.6440 3.3637 31.3877 30.4426

PowerPlant 0.2673 0.2038 15.2263 14.7853

ConcreteCS 0.0110 0.0110 1.7274 1.0261

OnlineNewsPopularity 5.7203 4.9370 65.5311 64.3698

Residential Building 0.1046 0.0159 0.8846 0.7536

Winequality-white 0.0580 0.0439 6.7537 6.2951

Winequality-red 0.0139 0.0118 2.1281 2.0809

Table 3. Comparison of root mean square error of algorithms under different activation
functions

Regression datasets Sigmoid RBF

I-ELM CI-ELM EM-ELM ARI-ELM I-ELM CI-ELM EM-ELM ARI-ELM

Short-term traffic flow prediction 0.3134 0.3107 0.3124 0.3011 0.3212 0.3129 0.3102 0.3059

Jialing river water quality evaluation 0.0732 0.0714 0.0691 0.0412 0.1168 0.1222 0.0948 0.0742

Shanghai stock index forecast 0.1925 0.1850 0.1903 0.1834 0.3927 0.3801 0.3917 0.3923

Autompg 0.4242 0.4032 0.3846 0.3198 0.4683 0.4652 0.4598 0.4572

Airfoil Self-Noise 0.6833 0.6798 0.6814 0.6772 0.6125 0.6079 0.6201 0.6062

Superconduct 0.6099 0.6120 0.6012 0.6061 0.8706 0.8710 0.8413 0.8368

PowerPlant 0.3226 0.3124 0.3189 0.3125 0.3756 0.3645 0.3690 0.3621

ConcreteCS 0.6383 0.6140 0.5879 0.5077 0.7012 0.7121 0.6911 0.7004

OnlineNewsPopularity 0.8010 0.7918 0.7613 0.6490 0.8824 0.8637 0.8606 0.8579

Residential Building 0.5481 0.5180 0.4832 0.4095 0.8280 0.8081 0.7957 0.7909

Winequality-white 0.8464 0.8291 0.8045 0.8136 0.8996 0.9012 0.8736 0.8962

Winequality-red 0.8282 0.8187 0.8231 0.7968 0.9024 0.8945 0.8997 0.8874

4 Conclusion

This paper analyzes the principle and existing problems of incremental limit
learning machine. Aiming at the uneven distribution of i-elm output weights,
an incremental limit learning machine based on attenuation regularization term
is proposed, which obtains small and evenly distributed output weights and
improves the generalization ability of the model; At the same time, it allows a
single or a group of hidden nodes to be added, which speeds up the efficiency
of model training. Compared with the traditional algorithm, the algorithm pro-
posed in this paper shows better generalization performance on the benchmark



Attenuated Regularization I-ELM 199

data set and production scheduling data set, and can effectively meet the real-
time and diversity of production scheduling. However, there is no in-depth study
on the choice of increasing the number of hidden nodes in this paper. How to
select the optimal hidden nodes to increase the number and how to carry out
more efficient regression on large-scale samples still need further research and
experiments.
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Abstract. Coronary heart disease is the most common type of organ
lesion caused by atherosclerosis. It is a common disease that endangers
the health of middle-elderly people. Predicting the future risk of coronary
heart disease in advance is beneficial for efficient prevention. We provide
an algorithm entitled by kernel discriminative analysis to complete the
purpose in this paper. It is a kernel expansion of discriminative PCA,
which enables the extraction of data features effectively. Results on the
Framingham CHD dataset reveal its prediction ability.

Keywords: Kernel discriminative analysis · Coronary heart disease ·
Risk prediction · Feature extraction

1 Introduction

According to the findings in [1,2], Coronary heart disease (CHD) is the third
leading cause of death globally and is associated with around 17.8 million deaths
each year. Even the death probability declines widespread from age 70–90,
mainly due to mortality reduction of cardiovascular diseases, they are still one
of the most notable causes of disease burden in 2019 [3]. Precise future risk pre-
diction of CHD is efficient for active prevention. Among diverse CHD causes, a
complication is non-negligible. Such as in Type 2 diabetes mellitus (T2DM), a
common chronic disease caused by insulin secretion disorder, CHD is the most
common and severe complication [4]. The authors proposed an online predictive
model to determine the risk probability of T2DM patients developing CHD in
[4]. It’s beneficial to precision diabetes mellitus care in providing early warning
personalized guidance of CHD risk for T2DM patients and clinicians.

Predicting CHD risk is valuable for clinicians, healthcare planners, and
researchers. It is a critical information source for individual patients. Study [5]
provides a useful tool for clinical assessment. During the 10-year prediction for
CHD-related issues like a heart attack or stroke, the scientists integrate mul-
tiple elements by the pooled cohort equation (PCE). The factors include age,

c© Springer Nature Switzerland AG 2022
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sex, race, cholesterol, blood pressure, medication use, diabetes, and smoking
history. It worked well for most people but overestimated the atherosclerotic
cardiovascular disease (ASCVD) risk for moderate to severe obesity individuals.
It concludes that as a risk-estimation tool, PCE enables guide prevention and
treatment strategies in adults regardless of obesity status. Similarly, the work
done in [6] is to assess the cardiovascular risk among seafarers and to compare
lifestyle factors between Kiribati and European crew members. Results show a
higher risk of cardiovascular diseases for Kiribati crew members due to alimen-
tary habits.

Differing from the work concerning risk factors, machine learning, and AI-
related techniques are attractive solutions to predict CHD from another view.
They enable addressing the challenges of high complexity and correlations in
CHD data for conventional techniques. In research [7], the scientists apply three
supervised learners of Näıve Bayes, Support Vector Machine, and Decision tree,
to improve the prediction rate for CHD data. Similarly, the authors exploit six
machine learning algorithms to provide an open-source solution to detect coro-
nary artery disease (CAD) [8]. Among various machine learners, random forest,
K nearest neighbors (KNN), decision tree, artificial neural networks (ANN), and
support vector machines (SVM) are popular choices like the work done in [9–12].

To effectively utilize machine learning-related models to predict CHD, we
explore a useful feature extraction technique to improve the prediction per-
formances. Providing an efficient feature extraction technique could fully mine
latent information. We thereby aim to design such a model to extract intrin-
sic features. More specifically, getting nonlinear discriminative information. In
detail, we transform original data into high-dimensional kernel space. The pro-
ceed implementation is using discriminative PCA proposed by [13] in the kernel
space. We abbreviate this approach as KDPCA. The relevant information is
described in the forthcoming section.

2 Kernel Discriminative Analysis

The essential tackle of KDPCA is firstly to find a nonlinear transformation for
original data. Suppose that there are M training samples totally with c classes

and li elements with dimensions D for each class, M “
c∑

i“1

li. Using ωij repre-

sents the jth observation of ith class. ϕ : X → F is an implicit transformation.
The original data represented as

Ω “ [ω11, . . . , ω1l1 , · · · , ωc1, . . . , ωclc ]
DˆM . (1)

KDPCA firstly map Ω into feature space F as the following way:

Ωϕ “ [ϕ(ω11), . . . , ϕ(ω1l1), · · · , ϕ(ωc1), . . . , ϕ(ωclc)]
FˆM . (2)

its mean vector by column is Ω̄ϕ “ 1
M Ωϕ1Mˆ1. We use of the “kernel trick”,

i.e., k(x1, x2) “ ϕt(x1)ϕ(x2) to overcome the implicit limitation. The kernel
matrix is
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K1 “ ΩT
ϕ Ωϕ “

⎛

⎜⎝
ϕt(ω11)ϕ(ω11) · · · ϕt(ω11)ϕ(ωcl)

...
. . .

...
ϕt(ωcl)ϕ(ω11) · · · ϕt(ωcl)ϕ(ωcl)

⎞

⎟⎠

MˆM

. (3)

To facilitate the discriminative ability, we calculate the between- and within-
class matrices Kb, Kw of K1. Applying the idea of DLDA to obtain the dis-
criminative matrix WMˆm

K of K1, the satisfying processes ordered as the follow
steps:

1. Calculating the eigenvectors eb corresponding to their eigen values λb to con-
struct spaces Eb “ [e1, . . . , eM ] and Λb “ diag(λ1, . . . , λM )

2. Discarding the eigenvectors corresponding to the zero eigenvalues to obtain
the subspaces Êb “ [e1, . . . , em] and Λ̂b “ diag(λ1, . . . , λm) and then B “
ÊbΛ̂

−1/2
b

3. Computing the eigenvectors ew of BTKwB and the corresponding eigenvalues
λw to construct its eigen-subspaces Ew, Λw and then Wk “ BÊwΛ̂

−1/2
w

Now the discriminative matrix WΩϕ
can be derived from the following rela-

tionship:
WΩϕ

“ ΩϕWK. (4)

Note that ϕ is implicit, which means that we cannot compute WΩϕ
directly. We

skip the go-ahead to the next step, which is calculating the covariance CW of
centred WΩϕ

and then diagonalise CW .

CW “ 1
m

(WΩϕ
− WΩϕ

)(WΩϕ
− WΩϕ

)T

“ 1
m

(ΩϕWK1 − ΩϕWK1
)(ΩϕWK1 − ΩϕWK1

)T . (5)

However, CW is still unknown because ϕ is implicit. We convert to calculate
1
m

(ΩϕWK1 − ΩϕWK1
)T(ΩϕWK1 − ΩϕWK1

) instead of CW . Thanks to the

fact that the eigenvectors of AAT can be obtained by the eigenvectors of ATA
through

ATAuk “ λkuk → AAT(Auk) “ λk(Auk) . (6)

Therefore,

C̃W “ 1
m

(WK1 − W̄K1)
TK1(WK1 − W̄K1) . (7)

Suppose Ũp is the eigenvectors of C̃W corresponding to the top p largest eigenval-
ues. Their eigenvectors of CW are Up “ (ΩϕWK1 − ΩϕW̄K1)Ũp. Normalization
is the proceed operation to get the coordinates of the projected samples in the
following way:

Up “ (ΩϕWK1 − ΩϕW̄K1)Ũ
′
p . (8)
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where Ũ ′
p “

[
ũ1
�1

· · · ũp

�p

]
and �i “

√
ũT

i (WT
K1

− W̄T
K1

)K1(WK1 − W̄K1)ũi, the
project coordinates of training centred samples thereby are

Yϕ “ Ũ ′T
p (WT

K1
− W̄T

K1
)(K1 − K1) . (9)

Suppose Π is the testing dataset with N elements, ti is the number of samples
of each class, then

Π “ [π11, . . . , π1t1 , · · · , πci, . . . , πctc
]DˆN . (10)

therefore, the transformed Π in F is

Πϕ “ [ϕ(π11), . . . , ϕ(π1t), · · · , ϕ(πci), . . . , ϕ(πct)]FˆN . (11)

analogy to Ω̄ϕ, the mean of Πϕ can be obtained by

Πϕ “ 1
N

Πϕ1Nˆ1. (12)

therefore, the project coordinates of centred test samples are

Y′
ϕ “ Ũ ′T

p (WT
K1

− W̄T
K1

)(K2 − K2) . (13)

where K2 “ ΩT
ϕ Πϕ.

Algorithm 1. Kernel Discriminative PCA for feature extraction
Input: Sample datasets as training Ω and testing Π
Output: The projected Yϕ, Y′

ϕ

1: Choosing various kernerls to generate the corresponding kernel matrix K1 and
computing K2

2: Calculating Kb and Kw of K1

3: Obtaining the optimal discriminant matrix WK1 by DLDA algorithm as described
steps

4: Computing ˜CW as formula (7) and Ũp

5: Normalizing Ũp to get Ũ ′
p

6: Projecting Ωϕ and Πϕ onto normalized Up as formula (9) and (13) to output Yϕ

and Y′
ϕ

7: return Yϕ, Y′
ϕ

The processes of KDPCA are listed in Algorithm 1. The common kernels are
Gaussian, Matérn, Wendland, and thin-plate spline (TPS). We choose in this
paper are the specific Matérn with v “ 1

2 and TPS to analyze.

3 Experimental Results

We analyze the prediction results of multiple diseases and the ten-year risk for
CHD to verify the proposed method. Experiments on the CHD dataset named



Kernel Discriminative Classifiers in Risk Prediction of CHD 205

Framingham and the multiple disease dataset. The former is publicly available
on the Kaggle website, and it is from an ongoing cardiovascular study on Fram-
ingham residents. It includes 4240 samples with 15 attributes and corresponding
labels. After data cleaning, there are 3658 samples left. We delete the irrelevant
attribute, i.e., education. The experimental purpose is to predict the 10-years
risk of whether a patient will have CHD. To accomplish this task, we randomly
choose 3000 samples for training and the remaining 658 records for testing.

There are 4962 records totally in the multiple disease dataset. Each record
includes 132 attributes, and the disease category is 42. The experimental goal
of this dataset is to classify which disease a patient takes. We train a classifier
by randomly choosing 3000 samples. The testing performances use the remain-
ing 1962 ones. To analyze the effectiveness of KDPCA as a feature extraction
technique, we apply the KNN and the decision tree to evaluation.

Table 1. The average prediction accuracy of run five times on the Framingham CHD
dataset.

KDPCA KNN KDPCA Decision tree KNN Decision tree

0.7781 0.8049 0.7736 0.7863

Table 1 displays the average prediction accuracy on the Framingham CHD
dataset five times running. The RBF kernel is TPS. It’s clear that with the
help of KDPCA to extract features, both KNN and the decision tree perform
better than those without KDPCA. However, there only are 557 among 3658
who will take CHD disease in 10-years on the Framingham dataset. It shows
such an imbalanced prediction task that accuracy is not enough. To overcome
this limitation, we analytically compare the confusion matrix in Fig. 1. It displays
the risk prediction ability on the Framingham CHD dataset when using KDPCA
to extract features.
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Fig. 1. Comparison of confusion matrix using KNN and Decision tree with- and without
KDPCA on the Framingham CHD dataset.
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Fig. 2. Comparison of confusion matrix using KNN and Decision tree with KDPCA
for multiple disease prediction.
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Similar situations occur in the classification of multiple diseases, as Fig. 2
shows. In this case, the RBF kernel is Matérn when v “ 1

2 . We can classify all
diseases precisely when using KNN, whereas the decision tree performs worse a
bit.

4 Conclusions

Kernel expansion is an effective technique to extract latent information in data
features. In this paper, we map the original data into the kernel space. Then use
the discriminative PCA to do feature extraction. We abbreviate this approach as
KDPCA. Drawing support of various kernels like Matérn and TPS in KDPCA
to bring better performances in multiple disease classification and the ten-year
risk prediction for CHD disease. The evaluation results verify the effectiveness
of the proposed method. However, the shape parameter in kernels influences the
results. How to choose an optimized shape parameter for practical applications
is a promising study.
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Abstract. Ensemble learning has recently been explored to achieve a better gen-
eralization ability than a single base learner through combining results of multiple
base learners. Genetic programming (GP) can be used to design ensemble learning
via different strategies. However, the challenge remains to automatically design an
ensemble learning model due to complex search space. In this paper, we propose
a new automated ensemble learning framework, based on GP for face recognition,
calledEvolvingGenetic ProgrammingEnsembleLearning (EGPEL). Thismethod
integrates feature extraction, base learner selection, and learner hyperparameter
optimization, into several program trees. To this end, multiple program trees, a
base learner set, and a hyperparameter set are developed in EGPEL. Meanwhile,
an evolutionary approach to results integration is proposed. The performance of
EGPEL is verified on face benchmark datasets of difficulty and compared with
a large number of commonly used peer competitors, including state-of-the-art
competitors. The results show that EGPEL performs better than most competitive
ensemble learning methods.

Keywords: Ensemble learning · Genetic programming ·Multiple program
trees · Face recognition

1 Introduction

Ensemble learning, which is one of the most popular machine learning approaches,
shows its strong learning and generalization capability while applied to various real-
world prediction problems [1, 2]. It aims to improve the performance of a single learner
by combining the prediction results ofmultiple base learners [2].Many studies have been
designed to achieve a batter ensemble, such as stacking, bagging and boosting methods
[3]. However, existing ensemble methods for selection and combination of base learners
are often manually determined [4]. This process needs a considerable amount of expert
experience and trial and error, limiting the further development of the algorithm [5].
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Thus, designing an automated ensemble learning model can be extremely useful for
community development.

During recent years, the application of evolutionary computation has gained a lot of
progress [6–9]. Especially, automated ensemble learning using evolutionary computa-
tion has been designed [4]. For example, [14] proposed a multi-objective evolutionary
optimization algorithm for ensemble learning to obtain a set of Pareto solutions with
good diversity and accuracy. Genetic programming (GP) [15] as an automatically evolv-
ing technique can easily solve recognition problem due to flexible representation and
good search ability, where each individual is often represented by a tree [16]. How-
ever, most of the existing approaches use the principle of ensemble learning to design
multi-GP trees and then solve downstream tasks (i.e., image classification tasks).

This paper aims at designing a new evolving ensemble learning for face recognition.
The new approach will provide end-to-end solutions for given problem via perform-
ing base learner selection, and learner hyperparameter optimization automatically and
simultaneously. To achieve above points, a multiple program trees, a base learner set,
and a hyperparameter set are designed in EGPEL.

The rest of this work is organized as follows. Sections 2 and 3 introduce the related
work and framework of EGPEL. Section 4 experimental results are shown to prove the
performance of the EGPEL on theAR face dataset and give some discussion and analysis
on the relation between the EGPEL and relevant methods. Finally, Sect. 5 concludes the
work.

2 Related Work

2.1 Ensemble Learning

Training
Set

Learner

Cn

C2

C1

Pn

P1

P2
Pf

Base
Learners

Prediction
Results

Fig. 1. Framework of stacking.

Ensemble learning has become a promising technique for model performance enhance-
ment [1, 2]. It combines multiple base models (e.g., Multilayer Perceptron (MLP) and
Decision Tree (DT)) to obtain a better supervised model. The idea of ensemble learning
is that if one base learner gets an incorrect prediction, other weak classifiers can also
correct the error back [17–20]. We can generally divide ensemble learning into four
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categories, i.e., Bagging, Boosting, Stacking, and Blending [21]. This paper focuses on
the Stacking method. Readers who are interested in other methods can refer to [18, 22,
23].

For Stacking method, the entire dataset is divided into several sub-datasets, which
are divided into a training set and a validation set. The base learner fits the data in
the training set to generate the underlying model. The predictions of the learner on the
validation set are used as input to the second layer [24–26]. In this way, the higher-level
learner is able to further generalize and enhance the model, which is the reason why the
Stacking approach always achieves good prediction performance on the test set [27–29].
Figure 1 illustrates the framework of Stacking.

Input: m: population size; n: Maximum No. of Run;
Output: the best-so-far individual;

1:   for i = 1 to n do
2:  Generate Initial Population Randomly

3:   while not (Terminate Condition for Run)

4:             Evaluate fitness of each individual;

5:     for j = 1 to m do;

6:          Op ← Select Genetic Operator;;

7:          Case Op is UNARY;
8:                     Select one individual based on fitness;
9:      Perform Reproduction with Probability Pr;

10:             Copy the offspring into new Population;
11:                 Case Op is BINARY;
12:                     Select two individuals based on fitness;
13:                     Perform Crossover with Probability Pc;
14:                    j = j + 1;
15:  Insert two offspring into new Population;

16:               end
17:         end
11:   end

Algorithm 1: Framework of GP

2.2 Genetic Programming

Evolutionary computation and swarm intelligence algorithms have attracted a lot of
attention in various application scenarios [30]. There are many emerging directions
to be addressed by evolutionary computing as well [31]. Genetic Programming (GP)
is a type of Evolutionary Algorithms (EA), which inherits the basic idea of Genetic
Algorithms (GA), i.e., reproducing offspring from parents according to the fitness value
[32]. Different from GA (e.g., fixed-length encoding), the most common is tree-based
representations, including three types of nodes i.e., root node, internal node, and leaf
node, where the root node and internal node include some functions from predefined
function set and the leaf node often contains variables and constants [33]. The Algorithm
1 shows framework of GP.

In recent years, many works [34–36] have been undertaken on GP and ensemble
learning. In [37], a novel GP-based approach is proposed to generate an ensemble
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with low computational complexity from a single run. Karakatič et al. [38] designed
a GPAB approach for classification problem, where AdaBoost and GP-based classifier
are combined together to improve model performance.

3 Proposed Approach

3.1 Overall Algorithm

In Algorithm 2, we describe the overall algorithm of EGPEL for face recognition. The
inputs of the EGPEL approach are image dataset. The algorithm consists of three main
parts, namely, the feature extractionmodule (see Sect. 3.2), the base learner selection and
optimization module (see Sect. 3.3), and the result integration module (see Sect. 3.4).

Input: N: population size; D: face data; T: Number of iterations
Output: the best-so-far program tree;
1: t = 0;
2: for t T do:
3: Features← Reduce the original image feature dimension by feature extraction module;
4: i = 0;
5: for i < T do:
6: trees←Initialize trees through a set of learners and hyperparameters;
7: result←Calculate the fitness value for each tree model on test data;
8:           Results of integrating base learners using evolutionary computation;
9: Generation of offspring using genetic operators;

10: i = i + 1;
11: end
12: t = t + 1;
13: end
14: Return the best-so-far program tree;

Algorithm 2: Framework of EGPEL

3.2 Feature Extraction Module

In order to extract effective features from the images as well as to reduce the input
dimensionality of the base learner, we construct feature extraction module, including
two convolutional operations, one pooling operation and one flatten operation, as shown
in Fig. 2.

The convolution operation is used to extract features; the pooling operation is used to
reduce dimensionality, remove redundant information, compress features, and simplify
network complexity; flatten operation converts the features frommatrix format to vector
format.

3.3 Base Learners Selection and Optimization Module

To batter select and optimize base learners from learner and hyperparameter set, we
design the base learner as a binary tree, where the root node indicates the base learner
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Fig. 2. Feature extraction module.

type and the terminal nodes represent the hyperparameter to be optimized, as shown in
Fig. 3(a). Each individual can contain multiple learners (see Fig. 3(b)) with different
lengths.

(a) (b)

Learner

Type

H1 H2

Individual_1

Individual_2

Individual_3

Fig. 3. Learner encoding. (a): An example of a tree-based encoding learner, where H1 and H2
denote hyperparameters. (b): Individuals of different lengths

Crossover: it is that two randomly selected crossover points on two chromosomes are
crossed without changing the hyperparameters of the internal learner.

Mutation: it is mainly involved in adding, deleting and modifying information about
base learners in chromosomes.

3.4 Results Integration Module

By validating on the dataset we can obtain the predicted values for each base learner.
Unlike traditional methods for integrating results (e.g., average and voting method), we
use an evolutionary approach to optimize the weights of each result and thus improve
the accuracy of the final prediction, as shown in Fig. 4.
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Fig. 4. Results integration module

Table 1. The hyperparametric collections

Type Name Value

KNN K [6, 7, 8]

p [Euclidean, Minkowski]

ANN Learning rate [0.01, 0.05, 0.07]

Activation function [Sigmoid, Tanh, ReLu]

DT Criterion [Entropy, Gini]

Max_depth [5, 9, 10, None]

SVM Kernel [Sigmoid, Linear]

Degree [2, 4, 6]

LR Penalty [L1, L2]

Optimizer [NAG, AdaGrad]

RBF Kernel [Polynomial, Laplacian, Gaussian]

Number of hidden layer neurons [3, 5, 7]

4 Experiments and Results

4.1 Parameter Settings and Dataset

The parameter settings for EGPEL are based on the commonly applied settings for GP.
In EGPEL, the population size is 100 and the number of iterations is 50. The rates for
elitism, crossover and mutation are 0.05, 0.9 and 0.15, respectively. An individual can
contain up to 7 base learners. Table 1 collates the hyperparameter values needed for each
type of base learner, including K-Nearest Neighbor (KNN), Artificial Neural Network
(ANN), Decision Tree (DT), Support vector machine (SVM), Linear regression (LR),
Radial basis function (RBF).

Face recognition experiments have been run on the AR face dataset, which includes
over 4,000 color images corresponding to 126 people’s faces images (70 men and 56



Genetic Programming for Ensemble Learning in Face Recognition 215

women) with different facial expressions, illumination conditions, and occlusions (e.g.,
glasses and scarf). The proportion of training set, validation set, and test set is 6:2:2.

4.2 Result and Discussion

Table 2 reports the comparison between EGPEL and the advanced competitors on AR.
Training, validation, test accuracy obtained by all approaches are listed advanced in
Table 2. The models obtained by the algorithm achieved a superiorities in all three types
of accuracy. Training accuracy is 2% higher than the best competitor (i.e., EGPEL-A);
Verification accuracy and test accuracy higher than AdaBoost 1.7%, 1.6% respectively.
Meanwhile, the results integration using our proposed method improves 2.2% and 2%
on test set over the voting (i.e., EGPEL-V) and average (i.e., EGPEL-V), respectively.

Figure 5 shows the search result, which contains a total of 15 base learners for a total
of 3 lengths of base learner sets. The root node of the base learner indicates the selected
hyperparameter. We can find that ANN and RBF appear more often.

ANN ANNSVM RBF DT

Tanh 0.01 ReLU 0.05Sigmoid 4 Gaussian 3 NoneGini

ANN DTRBF LR

Sigmoid 0.01 NAGGaussian 3 L1 5Gini

ANN RBF KNN DTSVM LR

ReLU 0.05 Laplacian 5 7 Euclidean Sigmoid 6 Entropy 10 L1 AdaGrad

Fig. 5. Search result of EGPEL.
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Table 2. Comparison with other baselines on AR face dataset

Method Accuracy

Training set (%) Validation set (%) Test set (%)

SVM 89.3 89.7 89.1

RBF 90.2 90.1 90.4

Random Forest 91.8 91.6 92.0

AdaBoost 94.5 94.2 94.6

XGBoost 93.4 92.9 92.7

GBDT 92.9 92.4 92.2

LightGBM 92.8 92.6 92.0

EGPEL-V 93.4 93.1 93.3

EGPEL-A 94.8 94.2 94.5

EGPEL 96.8 96.4 96.6

5 Conclusion

The objective of this paper is to propose aGP-based ensemble learningmethod (EGPEL)
that can automatically build an ensemble learning model which can improve the perfor-
mance of a single weak learner on image datasets. The goal was achieved by designing
base learners and hyperparameters sets for constructing ensemble learning configuration.
A new results integration is proposed to better improve model performance.

Performances of the EGPEL are compared with advanced methods on the Face
datasets. Results on the two image datasets show that EGPEL is not only more effective
in almost all performance indicators but also more efficient than existing methods.

In the future, more base learners and hyperparameters will be optimized. To this
end, some effective local search strategies may be needed for GP-based approach. A
more efficient method should be used for image feature extraction. Finally, the construc-
tion of automated ensemble learning on large-scale datasets (i.e., ImageNet) will be a
challenging direction [39].
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Abstract. Evaluating ovarian cancer prognosis is important for patients’ follow-
up treatment. However, the limited sample size tends to lead to overfitting of the
supervised evaluation task. Considering to get more useful information from dif-
ferent perspectives, we proposed a semi-supervised deep neural network method
called MCAP. MCAP introduced the heterogeneity information of the tumors
through unsupervised clustering constraint, to help the model better distinguish
the difference in the prognosis of ovarian cancer. Besides, the data recovering
constraint is used to ensure learning a high-quality and low-dimensional repre-
sentation of the genes in the network. For making a comprehensive analysis for
ovarian cancer, we applied MCAP to seven gene expression datasets collected
from TCGA and GEO databases. The results proved that the MCAP is supe-
rior to the other prognosis prediction methods in both 5-fold cross-validation and
independent test.

Keywords: Bioinformatics · Survival analysis · Ovarian cancer

1 Introduction

Ovarian cancer is the deadliest gynecological tumor, which caused 207,252 deaths in
2020 based on the global cancer statistics [1]. Clinical studies found the same treatment
used for ovarian cancer patients may lead to different treatment outcomes, which is the
main reason for the high mortality of ovarian cancer. It is an ideal condition that patients
should be administered different treatment regimens, based on the evaluated prognosis
risks. Therefore, an accurate method is required for ovarian cancer prognosis prediction.

Currently, different machine learning methods have been used for cancer prognosis
prediction. The traditional proportional hazard model proposed by Cox was the first
used method in medical research for cancer survival analysis [2]. It was widely used
to evaluate the impact of a few clinical features on the prognosis of patients. Based
on the proportional hazard model, Wang et al. designed the random survival forests
(RSF) for predicting cancer outcomes by utilizing the bootstrapping strategy [3]. With
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the fast development of gene sequencing technology, more and more high-dimensional
genomic data were made available [4]. However, the high-dimensional omics data limits
the prediction accuracy of these methods. Different solutions were designed to solve this
challenge. One way is to use the reconstructed low-dimensional representation instead
of the high-dimensional features. Jhajharia et al. used PCA to reconstructed the high-
dimensional gene data, and the compressed features were used to predict breast cancer
outcomes [5]. In another way, different penalized functions were added to the loss of the
Cox proportional hazard model [6]. For example, Wang et al. used a group lasso-based
Cox regression model to predict cancer prognosis and identified risk-related protein
complex [7]. However, the high-dimensional nonlinear features limit the performance
of these methods.

In recent years, deep neural networks were shown to have advantages in dealing with
nonlinear features[8]. Katzman implemented DeepSurv by combining the proportional
hazards function and deep neural network [9]. It was proved that DeepSurv achieved bet-
ter cancer prognosis prediction performances by comparing with the traditional machine
learningmethods. In another way, Chaudhary applied the Coxmodel to predict liver can-
cer outcomes by using the Autoencoder processed low-dimensional features (AE-Cox)
[10]. Nevertheless, the two-step framework affects the robustness of the model. Chai
et al. designed TCAP, a multi-tasks deep learning-based method by combing the data
reconstruction loss and risk prediction loss [11]. To improve the performance of the
deep learning method with small size samples, Qiu proposed a meta-learning-based
method for cancer outcomes prediction (MTLC) [12]. The results proved that MTLC
can speed up the convergence of deep neural networks effectively. Though these studies
have been carefully designed for predicting the prognosis of different cancers, the cancer
heterogeneity and the small sample size of cancer data hinder the prognosis prediction
performance. In addition, a deeply analyzing of ovarian cancer is lacking in these studies.

To improve the prognosis prediction accuracy of ovarian cancer, we made a com-
prehensive analysis by collecting seven ovarian cancer datasets from TCAG and GEO
databases, and proposed a novel deep semi-supervised learning method with multi-
constraint (MCAP). MCAP can get more useful information for cancer prognosis anal-
ysis from different perspectives. The unsupervised similarity constraint introduced the
heterogeneity information of the tumors, to help the model better distinguish the differ-
ences between the ovarian cancer patients. Besides, the data recovering constraint is used
to ensure learning a high-quality and low-dimensional representation of the features in
the middle-hidden layer. The optimized representation was used to estimate the ovarian
cancer prognosis in the proportional hazard module.

The experimental results show MCAP achieved a 2.64% higher C-index value than
the state-of-the-art method, and 7.39% higher than the commonly used methods on aver-
age. The higher |log10(P)| proved that by using the heterogeneity information between
the tumors in different patients, MCAP can separate the high-risk patients from low-risk
ones more significantly. The independent test showed it can accurately predict ovarian
cancer prognosis (C-index > 0.6) and divided the patients into different risk subgroups
significantly (p < 0.05). Based on the divided risk subgroups, we identified the top 10
differential expressed genes related to ovarian cancer prognosis: CCL21, SERPINB7,
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LRRC15,OMD, ITGBL1, PRSS1, PKHD1,DRYSL5,GSTT1, andHNF1B, among which
6 genes have been proved by literature review.

2 Methods

2.1 Datasets

In this study,we collected seven ovarian cancer datasets fromTCGAandGEOdatabases.
We used the common 10326 gene features shared by all these ovarian cancer datasets
and normalized the expression data by log transformation. The batch effect was removed
by using the “limma” package [13]. Details about the used data are given in Table 1.

Table 1. Details about the used 7 ovarian cancer datasets

Dataset Sample Uncensored

TCGA-OV 296 177 (59.8%)

GSE17260 108 46 (42.6%)

GSE26193 107 76 (71.0%)

GSE26712 185 129 (69.7%)

GSE32062 260 121 (46.5%)

GSE53963 174 153 (87.9%)

GSE63885 75 66 (88.0%)

ALL 1205 768 (63.7%)

2.2 The Deep Neural Network in MCAP

As shown in Fig. 1a, after the ovarian cancer gene expression data X is input into the
deep neural network, the extracted low-dimensional representation Z is compressed in
the middle-hidden layer. In this layer, a new feature matrix is constructed by combining
the compressed Z and the tumor heterogeneity label C of the ovarian cancer patients.
The initial values of the tumor heterogeneity label C are clustered by the k-means, and
are updated in every training epoch in the deep neural network by the unsupervised
similarity constraint. In this neural network, multiple different constraints are optimized
through a multi-task learning strategy [14]. It is worth noting that, the heterogeneity
labels optimized by the similarity constraint will be seen as the extra features in the
middle-hidden layer, and be updated with model training, for giving the cancer patients
information from another perspective, to improve the accuracy of the ovarian cancer
prognosis prediction.

Figure 1b shows that MCAP contains three constraints: The data recovering con-
straint can ensure the deep neural network gets the high-quality compressed representa-
tion in the middle-hidden layer. The similarity constraint is used to offer patients’ tumor



222 H. Chai et al.

heterogeneity information about the ovarian cancer patients by the KL divergence-based
loss function. Besides, the proportional hazard constraint can predict the cancer patients’
prognosis.

Fig. 1. The workflow of MCAP for ovarian cancer prognosis prediction. (a) The deep neural
network in MCAP. (b) The multi-constraint framework in MCAP for cancer prognosis prediction

Supposing X = (x1, x2, . . . xn) represents the gene expression of the ovarian cancer
patients, Z is the compressed low dimensional features of X in the middle-hidden layer,
for the data recovering constraint, it can be seen as the encoder-decoder part. Supposing
E is the encoder function and D is the decoder function, the compressed Z is written
as: Z = E(X), and the recovered X ′ can be expressed: X ′ = D(Z). The loss of the data
recovering constraint is written as:

LR =
∑n

i=1

(
xi − x

′
i

)2
. (1)

The similarity constraint is used to extract the tumor heterogeneity information of
ovarian cancer patients. The initial clustering labels were given by k-means (k = 2).
In the middle-hidden layer, the reconstructed feature matrix F was formed by merging
the compressed representation of the high-dimensional gene expression features and
the clustered labels. In the deep neural network, the loss of the similarity constraint is
defined as KL divergence between the two distributions P and Q by the following [15]:

Lc = KL(P||Q) =
∑

i

∑
j
pijlog

pij
qij

. (2)

where qij is used to describe the similarity between the cluster center μj and the cluster
point sj, and the initial μj and sj were obtained by k-means, pij is the target distribution
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derived from qij:

qij =
(
1 + ∥∥sj − μj

∥∥2
)−1

∑
j

(
1 + ∥∥sj − μj

∥∥2
)−1 ; pij = q2ij/

∑
i qij

∑
j

(
q2ij/

∑
i qij

) . (3)

After obtaining the tumor heterogeneity information, the proportional hazard con-
straint is used to predict ovarian cancer patient’s prognosis. Supposing S(t) = Pr(T > t)
represents the survival probability that the ovarian cancer patient will survive before time
t. The time interval T is the time elapsed between data collection and the patient’s last
contact. The risk function of the risk probability at time t can be expressed as:

λ(t) = lim
δ→0

Pr(t ≤ T 〈t + δ|T ≥ t)

δ
. (4)

By following Katzman’s work [9], the loss function of the proportional hazard
constraint is written as:

LP = −
∑

i=1

(
hθ (x) − log

∑
j∈�(Ti)

exphθ (xj)
)

. (5)

where the neural network updates the h(x) by the weight θ , and �(Ti) is the risk set of
patients still alive at time Ti.

As the network structure shown in Fig. 1, the objective of MCAP can be expressed
as:

lMCAP = γLR + βLC + LP. (6)

The γ and β were used to adjust the importance of three constraints. They are seen as the
hyper-parameters that can be chosen by the 5-fold cross-validation (CV). In this study,
the values of γ and β were set 1 and 10, respectively.

2.3 Hyper-parameter Selection by CV

In this study, the average C-index (CI) values of the 5-fold CV were used for parameters
selection and methods comparison. The parameter list in 5-fold CV was given in below:
The number of nodes in hidden layer 1 was set 1000, the number of nodes in hidden
layer 2 was set 500, and the dimension of Z in middle-hidden layer 3 was selected
in [50, 20, 10]. The learning rate (LR) was set to [1e−6, 5e−7, 1e−7], and the max
iteration in the neural network was set to 2000. The L1-norm regularization and L2-
norm regularization coefficients were both set 1E−5. After a 5-fold CV performance
comparison, we excluded the single ovarian cancer dataset from the combined datasets
as the independent tests.

3 Results

3.1 5-fold CV for Method Comparison

In Table 2, we compared the 5-fold CV C-index values obtained by different methods in
seven ovarian datasets. The TCGA_OV represents the ovarian cancer dataset collected
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from TCGA, and the OV_ALL is the dataset that includes all ovarian cancer patients
in this study. MCAP was compared with six methods mentioned in the introduction
section: The Cox proportional hazard model with elastic net (Cox-EN), Deep_surv, Cox
proportional hazard model with Autoencoder (AE-Cox), MTLC, and TCAP. For the
compared methods, Cox-EN achieved the lowest C-index value 0.544 on average. By
Comparing with Cox-EN, the average C-index value achieved by Deepsurv is signifi-
cantly improved (6.2%). MTLC performed better than other methods, but worse than
our proposedmethodMCAP.MCAP achieved the highest C-index values between 0.601
(TCGA_OV) and 0.647 (GSE63885), with an average of 0.622. Compared with MTLC,
it improved 2.64% C-index value on average.

For comparing the difference significance of the divided risk subgroups, in Table
3 we give the |log10(P)| values obtained by different methods. The higher |log10(P)|
value indicates more significant differences in survival between different prognosis risk
groups. As illustrated in Table 3, we got similar conclusions as in Table 2: MCAP
achieved the best performance for separating the high-risk ovarian cancer patients from
low-risk ones, MTLC and TCAP ranked 2nd and 3rd, respectively.

Table 2. The C-index values of different methods in ovarian cancer datasets

Cox-EN Deepsurv AE-Cox TCAP MTLC MCAP

TCGA
_OV

0.547 (±
0.053)

0.564 (±
0.057)

0.572 (±
0.044)

0.575 (±
0.061)

0.585 (±
0.030)

0.601 (±
0.016)

GSE
17260

0.490 (±
0.077)

0.565 (±
0.091)

0.573 (±
0.013)

0.582 (±
0.104)

0.587 (±
0.088)

0.614 (±
0.119)

GSE
26193

0.538 (±
0.094)

0.582 (±
0.085)

0.599 (±
0.021)

0.584 (±
0.077)

0.612 (±
0.104)

0.624 (±
0.090)

GSE
26712

0.596 (±
0.083)

0.570 (±
0.037)

0.607 (±
0.022)

0.593 (±
0.035)

0.597 (±
0.041)

0.620 (±
0.058)

GSE
32062

0.566 (±
0.036)

0.619 (±
0.071)

0.598 (±
0.080)

0.631 (±
0.075)

0.639 (±
0.077)

0.621 (±
0.077)

GSE
53963

0.562 (±
0.029)

0.572 (±
0.042)

0.552 (±
0.054)

0.578 (±
0.058)

0.575 (±
0.034)

0.606 (±
0.043)

GSE
63885

0.504 (±
0.119)

0.584 (±
0.064)

0.572 (±
0.160)

0.602 (±
0.078)

0.620 (±
0.025)

0.647 (±
0.022)

OV
_ALL

0.551 (±
0.030)

0.585 (±
0.017)

0.582 (±
0.013)

0.611 (±
0.016)

0.629 (±
0.006)

0.645 (±
0.020)

AVE 0.544 0.580 0.582 0.595 0.606 0.622

3.2 Parameter Sensitivity Study

In Fig. 2a, we show the C-index evaluated by 5-fold CV in MCAP for convergence
analysis in OV_ALL dataset as an example. We show the C-index curves obtained with
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Table 3. The |log10(P)| obtained by different methods in ovarian cancer datasets

Cox-EN Deepsurv AE-Cox TCAP MTLC MCAP

TCGA
_OV

0.425 (±
0.265)

0.969 (±
0.857)

0.668 (±
0.792)

0.832 (±
0.769)

0.422 (±
0.547)

0.771 (±
0.429)

GSE
17260

0.196 (±
0.149)

0.226 (±
0.182)

0.581 (±
0.414)

0.212 (±
0.184)

0.347 (±
0.138)

0.783 (±
0.507)

GSE
26193

0.456 (±
0.178)

0.468 (±
0.273)

0.483 (±
0.283)

0.688 (±
0.493)

0.454 (±
0.496)

1.008 (±
0.496)

GSE
26712

0.586 (±
0.182)

0.349 (±
0.191)

0.600 (±
0.516)

0.536 (±
0.502)

0.922 (±
0.819)

1.364 (±
0.819)

GSE
32062

0.515 (±
0.494)

0.939 (±
0.963)

0.858 (±
0.704)

0.733 (±
0.798)

1.04 (±
0.882)

0.794 (±
0.895)

GSE
53963

0.462 (±
0.306)

1.063 (±
0.798)

0.677 (±
0.451)

0.876 (±
0.887)

0.694 (±
0.693)

0.990 (±
0.701)

GSE
63885

0.321 (±
0.218)

0.481 (±
0.314)

0.574 (±
0.283)

0.972 (±
0.841)

0.782 (±
0.729)

0.598 (±
0.479)

OV
_ALL

1.259 (±
0.691)

2.884 (±
0.814)

2.323 (±
0.326)

3.570 (±
0.150)

4.756 (±
1.389)

4.947 (±
0.181)

AVE 0.527 0.922 0.846 1.052 1.180 1.407

different nodes number in the middle-hidden layer with LR = 1E−7. It indicated that
the C-index increased sharply with an increase of epoch when the epoch is less than 400,
and the values increased slowly until the epoch reached 1400. Then the curves flatten
out or even decreased when the epoch reached 2000.

In Fig. 2b, we analyzed the effects of the parameters on the OV_ALL dataset. We
show the C-index values with different LR and middle-hidden node sizes. It shows that
the LR has a greater influence on the prediction performance of MCAP than the number
of nodes. Compared with LR, the effect of middle-hidden node size is small. Hence, for
achieving the best performance in ovarian cancer prognosis prediction, the parameters
were selected by 5-fold CV.

3.3 Independent Test

In Table 4, we show the C-index values by excluding the single ovarian cancer dataset
from the combined datasets as the independent tests. Deepsurv performed better than
Cox-EN, which is similar to AE-Cox. MCAP achieved the C-index values ranging from
0.601 to 0.693 with the highest one in -GSE1726 and the lowest one in -GSE63885. By
comparison, MCAP performed best with an average C-index value of 0.617, the MTLC
and TCAP ranked 2nd and 3rd, respectively. The results show that MCAP achieved a
7.62% higher C-index value (0.617) than other methods in the independent test (C-index
= 0.570 on average). The |log10(P)| values in Table 5 also supported our conclusion:
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Fig. 2. The parameter sensitivity study inMCAP. (a) The convergence analysis in OV_all dataset.
(b) The parameter sensitivity about the learning rate and middle-hidden node size.

MCAP achieved better prediction performances in independent tests by comparing with
other methods.

Table 4. The C-index values in independent test obtained by different methods

Cox-EN Deepsurv AE-Cox TCAP MTLC MCAP

-TCGA_OV 0.573 0.562 0.570 0.570 0.591 0.619

-GSE17260 0.558 0.593 0.618 0.616 0.688 0.693

-GSE26193 0.553 0.608 0.536 0.577 0.616 0.604

-GSE26712 0.525 0.551 0.568 0.584 0.583 0.628

-GSE32062 0.586 0.578 0.591 0.581 0.572 0.604

-GSE53963 0.564 0.523 0.520 0.519 0.533 0.570

-GSE63885 0.482 0.531 0.553 0.563 0.615 0.601

AVE 0.549 0.564 0.565 0.573 0.600 0.617

Table 5. The |log10(P)| values in independent test obtained by different methods

Cox-EN Deepsurv AE-Cox TCAP MTLC MCAP

-TCGA_OV 1.846 1.389 1.634 0.642 3.20 1.929

-GSE17260 1.004 0.768 1.517 1.490 4.038 4.819

-GSE26193 0.002 0.181 0.097 0.597 2.057 1.801

-GSE26712 0.306 0.952 2.103 1.599 1.220 3.240

-GSE32062 1.140 1.880 1.984 2.668 1.532 3.542

-GSE53963 1.816 0.771 0.727 0.601 0.570 1.435

-GSE63885 0.125 0.280 1.373 0.477 1.685 1.835

AVE 0.891 0.889 1.348 1.153 2.043 2.657
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3.4 Ovarian Cancer Prognosis Related Gene Identification

Based on the divided risk subgroups of ovarian cancer patients by MCAP, we per-
formed differential expression analysis by using R package “limma” (Fig. 4). The dif-
ferential expressed genes which | log2 fold change|>0.5 and the p-values < 0.05 are
seen as the cancer-realted genes. The top 5 genes with the highest log2 fold change
values in up-regulated and down-regulated groups were seen as the important targets
related to ovarian cancer prognosis. As given in Fig. 4, 10 ovarian cancer prognosis
related genes (CCL21, SERPINB7, LRRC15,OMD, ITGBL1, PRSS1, PKHD1,DRYSL5,
GSTT1, and HNF1B) were identified by MCAP. Among these genes, CCL21, LRRC15,
ITGBL1, PRSS1, GSTT1, and HNF1B have been proved by literature review. For the
remained genes, SERPINB7, PKHD1, and DRYSL5 have been proved to be associated
with other cancers, they may also be potential prognostic targets for ovarian cancer. This
result illustrated thatMCAP has advantages in potential ovarian cancer prognosis targets
identification.

Fig. 4. The ovarian cancer prognosis related genes identification by MCAP.

4 Conclusion and Discussion

Ovarian cancer is the deadliest gynecological cancer. Accurately assessing the patients’
prognosis can help clinicians choose appropriate treatment. In this research, we designed
a deep semi-supervised learning methodMCAPwith three constraints: the data recover-
ing constraint, the similarity constraint, and the proportional hazard constraint. The data
recovering constraint can make the deep neural network learn a high-quality compressed
representation of the high-dimensional gene expression. The similarity constraint is used



228 H. Chai et al.

to learn the heterogeneity information of the tumors, to help the deep neural network
better distinguish the differences in the prognosis of the ovarian cancer patients from
another perspective.

By comparing with the state-of-the-art methods in cancer prognosis prediction, the
results demonstrated that MCAP achieved higher C-index values both in the 5-fold CV
experiments and independent test, respectively. Though these results proved the accuracy
and robustness ofMCAP, there are still some interesting questions worth to be discussed.
Firstly, the purity issue in ovarian cancer datasetsmay increase the difficulty of accurately
predicting patients’ outcomes. We will further investigate the effect of different ages and
races on the prognosis of ovarian cancer. Secondly, in the future, we will collect more
different omics data for ovarian cancer patients, and update our method and model by
multi-omics integration.
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Abstract. The cascade digital circuit system based on DNA strand dis-
placement is investigated in this paper. In order to more accurately rep-
resent the reaction process, the loss of reaction substrate caused by base
pair mismatch and “hairpin structure” in the process of DNA strand
displacement are taken into account. Meanwhile, the time delay of DNA
double-strand molecular breaks is also added to the constructed system
model. The positivity of solutions, the stability and bifurcation at equi-
librium point are investigated at length. It can be observed that when
the time delay parameter pass some critical values, Hopf bifurcation may
appear near the equilibrium point. By choosing different initial param-
eters, the equilibrium state reached by the system is different, and the
stability of the system under equilibrium state will also be different.

Keywords: Cascade digital circuit · DNA strand displacement · Time
delay · Hairpin structure · Hopf bifurcation

1 Introduction

In recent years, more and more researchers have paid attention to DNA molecular
technology [5,17,27], in which the research on DNA digital circuit technology
[20,24,30] is particularly prominent. As an excellent material for biochemical
circuit engineering, DNA molecule is easy to chemically synthesize and provides
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convenience for practical operation in vitro. At the same time, the unique orga-
nizational structure and pairing principles of DNA molecules make it dynamic
compilability [4,23]. This inspired the abundant theories based on DNA strand
replacement [6,9,15,26] and promoted its considerable development and practice.

A large number of studies have shown that time delay [13,21] is an impor-
tant research parameter of nonlinear system models. Considering the transfer
process of input strand, time delay is added to the model of DNA strand dis-
placement reaction based on toehold exchange, and dynamic behaviors such as
local stability, Hopf bifurcation and chaos are discussed [14]. About the digi-
tal circuit model of cascade amplification involved in [19], because the separa-
tion of DNA double-strands and the combination with “invasion” single-strands
take a certain amount of time to complete, and the multi-layer cascade circuit
[16,25] includes two processes of thresholding and catalysis, the time delay of
this process also cannot be ignored. In addition, the sequence of bases in the
DNA molecular chain design process is very lengthy, and it is inevitable that
base pair mismatches occur during the binding process [1,12]. Simultaneously,
because the base sequence may have a certain repetitiveness, if small fragments
of complementary base pairs appear at the head and tail of the DNA molecule,
then during the reaction process, the DNA single-stranded molecule may bind
itself head and tail to form a “hairpin structure” [28,29]. No matter what kind
of situation occurs, the DNA strand cannot be combined with the “invading”
strand. Therefore, the loss of reaction substrate cannot be ignored in the analysis
of the system model. Adding the reaction substrate loss item to the constructed
nonlinear system model makes constructed mathematical model more accurate
and in line with reality.

The stability of system at the equilibrium point determines the direction
of system model improvement. Bifurcation [7,8,11,18] always appears under the
condition of system instability. In dynamic system [10], the phenomenon that the
topological structure of each variable changes suddenly with change of control
parameters is bifurcation, and the stability of system changes. It is the premise
for bifurcation to occur. Bifurcation has multiple branches, among which Hopf
bifurcation has more research value. Many new methods have been proposed for
the study of Hopf bifurcation [2,3,10,22].

Motivated by the above discussions, a system model is established based on
the cascade digital circuit. According to the characteristics of the DNA strand
displacement reaction, the loss of the reaction substrate has influence on the
circuit. Thus, the loss term and time delay parameter are added to the system
model. Furthermore, the positivity of solutions, the performances of stability and
bifurcation of the system are investigated. Finally, by setting input parameters,
the state variable response diagrams of the systems are drawn to analyse the
relationships and differences between them. The main contributions of this article
are as follows: (1) The process of cascade digital circuit based on DNA strand
displacement is modeled and presented in the form of differential equations. (2)
According to the actual reaction mechanism, the loss item and the time delay
parameter related to reaction substrate are added to the system model of DNA
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digital circuit. (3) The performance of stability and Hopf bifurcation are analysed
under different initial situations, which helps to better understand the reaction
law of cascaded digital circuits based on DNA strand displacement.

2 Model Establishment

Fig. 1. Digital circuit model of DNA strand displacement cascade amplification [19]

The realization process of cascade-amplification digital circuit [19] is shown in
Fig. 1. W2,5, G5,5,6, Th2,5,5 and Rep6 represent the initially added reactants and
the fluorescent reporter product, respectively.

The reaction process can be simplified into the following form
⎧
⎪⎪⎨

⎪⎪⎩

A + B
k1←→

k−1
C + D

A + E
k2−→ F + G

D + H
k3−→ I + J.

(1)

A nonlinear system model describing cascaded digital circuit can be built as
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ȧ(t) = − k1A(t)B(t) + k−1C(t)D(t) − k2A(t)E(t)

Ḃ(t) = − k1A(t)B(t) + k−1C(t)D(t)

Ċ(t) = k1A(t)B(t) − k−1C(t)D(t)

Ḋ(t) = k1A(t)B(t) − k−1C(t)D(t) − k3D(t)H(t)

Ė(t) = − k2A(t)E(t)

Ḟ (t) = k2A(t)E(t)

Ġ(t) = k2A(t)E(t)

Ḣ(t) = − k3D(t)H(t)

İ(t) = k3D(t)H(t)

J̇(t) = k3D(t)H(t).

(2)
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where A(t), B(t), E(t),H(t) are the concentrations of the reaction substrates
A,B,E and H at time t; D(t) represents the concentration of intermediate prod-
uct D at time t; C(t), F (t), G(T ), J(t) respectively represent the concentration
of the accompanying product at time t; I(t) represents the concentration of the
fluorescent reporter product I at time t; k1, k−1, k2 and k3 represent the reaction
rate of each stage.

Let A0, B0, E0 and H0 be the reaction substrate the initial concentration of
W2,5, G5,5,6, Th2,5,5 and Rep6. Because the reaction is carried out in a separate
space, the consumption of reactants should be equal to the amount of products
produced. According to this principle, the following relationship can be derived

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

A0 = A(t) + D(t) + I(t) + F (t)
B0 = B(t) + C(t)
E0 = E(t) + F (t)
H0 = H(t) + I(t).

(3)

Substituting the equivalent relationship of Eq. (3) into the system Eq. (2)
can get the three-dimensional system model as shown below

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Ȧ(t) = − k1A(t)[B0 − A0 + E0 + A(t) − E(t)]
+ k−1(A0 − A(t) − E0 + E(t))(A0 − E0 − A(t) + E(t)
− I(t)) − k2A(t)E(t)

Ė(t) = − k2A(t)E(t)

İ(t) = k3(A0 − E0 − A(t) + E(t) − I(t))(H0 − E(t)).

(4)

It is shown that the reaction between substrates W2,5 and G5,5,6 of the DNA
strand displacement reaction requires a transfer process [14]. What’s more, due
to its special structure, a single-stranded DNA molecule has multiple base pairs
at the head and tail of the molecule. The single-stranded molecule is likely to
combine head and tail to form a “hairpin structure”. Unable to participate in
subsequent reactions. Part of the reaction substrate will be consumed in this
process. Therefore, in order to describe the system more accurately, the time
delay parameter and the loss part are added to the model.

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

Ȧ(t) = − k1A(t − τ)[B0 − A0 + E0 + A(t − τ) − E(t)]

+ k−1(A0 − A(t − τ) − E0 + E(t))(A0 − E0 − A(t − τ) + E(t) − I(t))

− k2A(t − τ)E(t) − KA(t − τ)2

Ė(t) = − k2A(t − τ)E(t) − KE(t)2

İ(t) = k3(A0 − E0 − A(t − τ) + E(t) − I(t))(H0 − E(t)) − KI(t)2.

(5)

where A(t − τ) represents the concentration of the logic operation input chain
A at time t − τ , and τ is the time lag constant term.
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3 Positivity of Solutions

The initial conditions of the state variables are A0 > 0, E0 > 0 and H0 = 0. H(t)
is the concentration of product Rep6 at time t, so H(t) > 0. A(t) represents the
initially added reactant, assume t = t1 > 0, A(t1) = 0 can be obtained. From
Eq. (4) we can get

A′(t1) = k−1(A0 − E0 + E(t1))(A0 − E0 + E(t1) − I(t1)) > 0.

which shows that A(t) < 0 for t ∈ (t1 − δ, t1). But A0 > 0, δ is an arbitrar-
ily small positive number. There is at least a t2 ∈ (0, t1) ensures A(t2) = 0.
This contradicts to the hypothesis, so A(t) > 0. From system (4), E(t) =
E(0) exp(

∫ t

0
(−k2A(θ))dθ) can be obtained. It is obvious that A(t) > 0. As a

result, all of the solutions of system (4) are positive.

4 System Stability and Hopf Bifurcation Analysis

In this section, we will focus on the stability and Hopf bifurcation performance of
system (5) near its positive equilibrium point (A∗, E∗, I∗). Let A∗(t) = A(t)−A∗,
E∗(t) = E(t) − E∗, I∗(t) = I(t) − I∗. Linearize the system equation.

⎧
⎪⎨

⎪⎩

Ȧ∗(t) = a1A
∗(t − τ) + a2E

∗(t) + a3I
∗(t)

Ė∗(t) = b1A
∗(t − τ) + b2E

∗(t)

İ∗(t) = c1A
∗(t − τ) + c2E

∗(t) + c3I
∗(t).

(6)

where

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a1 = −k1(B0 −A0 + E0 − I∗)− k−1(2A0 − 2E0 − 2A∗ + 2E∗ − I∗)E∗(t)− k2E
∗ − 2KA∗

a2 = k1A
∗ − k2A

∗ + k−1(2A0 − 2E0 − 2A∗ + 2E∗ − I∗)
a3 = −k−1(A0 − E0 −A∗ + E∗)
b1 = −k2E

∗

b2 = −k2A
∗E∗(t)− 2KE∗

c1 = −k3H0

c2 = −k3(A0 − E0 −H0 −A∗ + E∗ − I∗)
c3 = −k3H0 − 2KI∗.

The characteristic equation of system (6) is

|λe − J | = (λ − b2)[λ2 − c3λ − a1λe−λτ + a1c3e
−λτ − c1a3e

−λτ ]

= λ3 − (b2 + c3)λ2 − b2c3λ + [(a1c3 − a3c1 − a1λ)λ

− b2(a1c3 − a3c1 − a1λ)]e−λτ = 0.

(7)

Suppose there is a τ0 that makes the characteristic equation of system have
a pair of pure imaginary roots, denoted as λ = iω (ω > 0), we can get
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⎧
⎪⎪⎨

⎪⎪⎩

sin ωτ =
g1ω

5 + g2ω
3 + g3ω

g4ω6 + g5ω4 + g6ω2 + g7

cos ωτ =
g8ω

5 + g9ω
4 + g10ω

3 + g11ω
2 + g12

g4ω6 + g5ω4 + g6ω2 + g7
.

(8)

where

g1 = a1, g2 = −a1b2c3 + a3b2c1 + a1b2, g3 = −b2c3(a1b2c3 − a3b2c1)

g4 = a3
1, g5 = a((a1b2c3 − a3b2)

2 + (a1b2c3 − a3b2c1)a1 + 2a2
1((a1b2c3 − a3b2c1)

g6 = a1(a1b2c3 − a3b2c1) + (−a1b2c3 + a3b2c1)(−a1c3 − a3c1 + a1b2)
2

g7 = (a1b2c3 − a3b2c1)(a1b2c3 − a3b2c)
2
, g8 = (b2 + c3)(a1b2c3 − a3b2c1 − a1b2)

g9 = (a1c3 − a3c1 + a1b2)(a1b2c3 − a3b2c1 − a1b2,

g10 = b2c3(b2 + c3)(−a1b2c3 + a3b2c1), g11 = b2c3(a1c3 − a3c1 + a1b2),
g12 = a1c3 − a3c1 + a1b2.

In the light of cos2θ + sin2θ = 1, it can be solved

h1ω
12 + h2ω

10 + h3ω
8 + h4ω

6 + h5ω
4 + h6ω

2 + h7 = 0. (9)

where

h1 = g24 , h2 = g28 − 2g2 + g21 , h3 = 2(g3 + g1g2 − g8g9)g24
h5 = 2(g1g4 + g2g2 − g5g7 − g9g10) − g29 , h6 = 2(g3g4 − g10g11) − g27

h7 = − (g27 + g210).

Substitute z = ω2 into Eq. (9) to get

f(z) = h1z
6 + h2z

5 + h3z
4 + h4z

3 + h5z
2 + h6z + h7 = 0. (10)

In line with Intermediate Value Theorem, lim
x→+∞ f(z) = +∞ can be got, if

h7 < 0, then there at least one point z0 ∈ (0,+∞) exists to make f(z0) = 0
hold.

There is a series of τ i
k > 0(k = 1, 2, ...6; i = 0, 1, 2...) such that characteristic

Eq. (7) has a pair of pure imaginary roots ±iω.

τ i
k =

1
ω0

a cos
g8ω

5 + g9ω
4 + g10ω

3 + g11ω
2 + g12

g4ω6 + g5ω4 + g6ω2 + g7
+

iπ

ωk
. (11)

where τ0 = min
{
τ i
k

}
and correspond to τ0.

Consulting Hopf Bifurcation Existence Theorem, the following conclusions
can be drawn.

Theorem 1. When τ ∈ [0, τ0), the system (6) is locally asymptotically stable.
When τ ≥ τ0, the system (6) loses its steady state at the equilibrium point and
Hopf bifurcation occurs. The system switches between a stable equilibrium state
and a limit cycle, where τ0 is the critical parameter.
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5 Numerical Simulations

Because adding different concentrations of the reaction substrate to the same
reaction process will reach different equilibrium states, so here are two different
equilibrium states.

Case 1. Initial reaction substrate Th2,5,5 is excessive, and W2,5 reacts com-
pletely. Parameters are presented in Table 1 and Table 2.

Table 1. The initial concentration of substrate in Case 1.

Reaction substrate W2,5 G5,5,6 Th2,5,5 Rep6

Concentration (nm) 4 * (1e−7) 1 * (1e−7) 1.2 * (1e−7) 1 * (1e−7)

Table 2. Approximate the reaction rate constant in Case 1.

Reaction rate k1 k−1 k2 k3 K

nm/s 1 * (1e6) 2 * (1e5) 2 * (1e6) 1 * (1e6) 1 * (1e6)

Fig. 2. System trajectory diagram and state variable diagram when τ = 1.

After calculation, it can be seen that the critical value of bifurcation control
parameter is τ0 = 3.576 in Case 1. Comparing Fig. 2 and Fig. 3, it can be known
that changing control parameter τ , the state of system will change accordingly,
but the system is still in stable state.

Case 2. Initial reactant W2,5 is excessive and Th2,5,5 reacts completely. Param-
eters are demonstrated in Table 3 and Table 4.
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Fig. 3. System trajectory diagram and state variable diagram when τ = 3.576.

Table 3. The initial concentration of substrate in Case 2.

Reaction substrate W2,5 G5,5,6 Th2,5,5 Rep6

Concentration (nm) 4 * (1e−7) 1 * (1e−7) 1 * (1e−7) 1 * (1e−7)

Fig. 4. System trajectory diagram and state variable diagram when τ = 4.

Similarly, the critical value can be calculated as τ0 = 5.524 in Case 2. When
τ = 4 < τ0, the bifurcation control parameter is less than the critical value,
and the system should be in stable state. From system trajectory diagram and
state variable diagram in Fig. 4, it can be seen that system has a small period
of fluctuation at the beginning of the reaction, and finally tends to be locally
asymptotically stable near the equilibrium point (A0 − B0 − E0, 0, B0).

When τ = 5.524 = τ0, the control parameter reaches the critical value, It can
be seen from Fig. 5 that the shock of system is obviously aggravated, and the
state of system is switched between a stable equilibrium point and a limit cycle.

When τ = 6 > τ0, the bifurcation control parameter exceeds the critical
value. At this time, the system has lost stability near the equilibrium point and
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Table 4. Approximate the reaction rate constant in Case 2.

Reaction rate k1 k−1 k2 k3 K

nm/s 1 * (1e6) 2 * (1e5) 2 * (1e6) 1 * (1e6) 1 * (1e6)

Fig. 5. System trajectory diagram and state variable diagram when τ = 5.524.

Fig. 6. System trajectory diagram and state variable diagram when τ = 6.

Hopf bifurcation occurs. The simulation results in Fig. 6 can verify the correct-
ness of conclusions.

Remark 1. Combining Case 1 and Case 2, for the improved model (5), the
reaction will reach a different equilibrium state when the initial substrate con-
centration is different. When the initial reaction substrate Th2,5,5 is excessive
and W2,5 is completely reacted, the system is always in a stable state during
the reaction process. When the initial reactant W2,5 is excessive and Th2,5,5

is fully reacted, the equilibrium state reached by the system will change with
the time delay parameter τ . When the value of parameter τ reaches the critical
value τ0, the system will change from a locally asymptotically stable state to a
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stable equilibrium point and limit cycle switching state, and Hopf bifurcation
occurs. Therefore, choice of initial concentration of the reaction substrate is also
important for design of reaction model, and the correct initial concentration con-
figuration can avoid erroneous results. This result indicates that the choice of
initial reaction substrate concentration for the same reaction process will have a
great impact on the reaction process. For the DNA cascade amplification digital
circuit model discussed in this article, selecting a sufficient amount of Th2,5,5

will be more conducive to the observation and control of the reaction process.

6 Conclusions

In this article, our research focuses on the modelling and dynamics of cascaded
digital circuit systems based on DNA strand displacement. Firstly, a nonlinear
system model was established and improved, the loss and time delay parameters
of the reaction substrate were added to the system model. The positivity of state
variables of the nonlinear system is proved. After that, time delay is used as a
control parameter to analyze the stability of system and the Hopf bifurcation
near the equilibrium point. Given different initial concentrations and reaction
rates, the system will reach different equilibrium states, and the stability of
system under distinct equilibrium states will be different. By changing the bifur-
cation control parameters, the original stability of the system will be broken, and
Hopf bifurcation will appear near the equilibrium point. In the future, feedback
control for DNA strand replacement reaction with time delay will be the focus
of our research.
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Abstract. The island model is one technique to tackle complex and
critical difficulties of evolutionary algorithms. This paper will design a
two-replacements policy and warp-based island mapping mechanism in
TRPIM with ring topology on GPU Nvidia’s CUDA programming. Each
thread in the warp-based island executes the same instruction sequence
in parallel to eliminate thread divergence. The two-replacement policy
would replace the worse individuals with the better ones asynchronously
and synchronously, reducing the waiting duration. We conduct experi-
ments on the knapsack problem to verify the warp-based island mapping
mechanism’s effectiveness and two-replacement policy in TRPIM. And
the results show that the proposed TRPIM improves the speedup time
and solution quality on the GPU version compared to the CPU.

Keywords: Graphics processing units · Island model · CUDA
programming · Knapsack problem · Warp

1 Introduction

Evolutionary algorithms (EAs) have been successfully applied in real-world opti-
mization [14]. Island Models (IM) are one possibility considered for improving
EAs’ problem-solving capabilities [13]. An island model is a distributed EAs in
which the population spreads onto multiple islands [7]. This model introduces
a new evolutionary operator migration that allows individuals to migrate from
one island to another. To accelerate Island Model optimization, we examine how
Island Model implementations could be implemented on Graphics Processing
Units (GPU) using CUDA programming.

The GPU has initially used for computer graphics, but it is now widely used
for scientific computing, machine learning, etc. The GPUs are perfect for tasks
requiring many threads to execute parallel, using the same instruction set on
heterogeneous input data. GPU chips contain a set of streaming multiproces-
sors (SMs). Each SM is divided into N threads per block. The CUDA kernel
uses a thread hierarchy to support hundreds of threads [8]. Through the CUDA
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architecture, blocks are executed in warps, which allows the execution of single
instructions multiple times (SIMT). For more details on GPU/CUDA, architec-
ture can review in [2]. The island model (IM) approach for EAs is practical and
powerful in solving real-world optimization problems, and GPU-based implemen-
tation of IM has become attractive. The authors proposed a GPU-based genetic
algorithm implementation [9], where every thread controls one individual and
each block has one unique island. The sub-population is saved in shared mem-
ory, while the global memory is used for migration. Griewank’s, Michalewicz’s,
and Rosenbrock’s functions assessed speed and convergence. They reported the
results that speed up 2600 times by CUDA software model with 100 iterations.
To improve the performance of EAs by using GPUs, the authors proposed three
different schemes [6]. The CPU is responsible for all evaluations on any given
island in the first scheme, and the GPU is responsible for the parallel assess-
ment. In the second scheme, all sub-populations of the island model (IM) are
stored in global memory, and one block per island is parallelized. A third scheme
distributes the IM through shared memory on GPU. A shared memory holds all
sub-populations, while a global memory allows migration between islands. The
approach solved the Weierstrass-Mandelbrot numerical optimization problem
2074 times faster than the CPU. However, for these results, the number of itera-
tions is fixed at 100. Based on the island model and simulated annealing [5], the
authors proposed a parallel Genetic algorithm on GPU. A benchmark study is
conducted on travelling salesman problems (TSP). In a global memory, the sub-
populations of each island are mapped by blocks. Recently, the authors proposed
[15,16] island model genetic algorithm (IMGA) on GPU/CUDA for solving the
unequal area facility layout problems (UA-FLP) and achieving a performance
ratio as high as 84. This strategy executes the algorithm based on GPU with
one block per island. The global memory stores all populations and is used for
migration among blocks. And the shared memory is used for the selection phase
data. In [4], the authors proposed a genetic Algorithm on GPU/CUDA plat-
form. In this algorithm, multiple islands are mapped to the thread block on each
SM and assigned numerous threads for each individual. The migration is per-
formed using global memory. This method is used for the N-Queen problem and
achieved a speedup of 45.5 times faster. Furthermore, in [3], the authors pro-
posed GPU acceleration of the IMGA using the CUDA programming platform
and achieved speedups as much as 18.9 times faster than their own work pub-
lished in [4]. However, numerous research has attempted the algorithm speedup
and the best solution. The focus is on the length of blocks to exchange data via
global memory or shared memory. And use the different number of generations,
crossover rate, mutation rate, and replacement according to the environment.
The core will wait for the crossover and mutation operation to complete so the
replacement for the best solution quality can do. It takes a lot of time to replace
them. As a result, choosing a good individual and replacing its offspring affect
the solution’s speed, time, and quality.

This paper describes the GPU’s Two-replacements Policy Island Model
(TRPIM), which executes SM via warps. The warp granularity implies a suf-
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ficient number of individuals and the size of each individual, most of which
are unaffected by correct mapping. GPU warps control the organized popula-
tion into islands. However, the other genetic parameters such as tournament
selection, uniform crossover, bit flip mutation, and replacement are employed to
create the entire island with the two replacements methods. Every evolutionary
operation beyond islands to the generational process requires synchronization
barriers. The global memory stores sub-populations, offspring populations, fit-
ness values, and data exchange among islands. The following are the categories
for this paper’s contributions:

1. The island model divides the population into multiple sub-populations to
accelerate and execute each population’s evolutionary process simultaneously.
However, the sub-population distribution on the GPU is critical in time con-
sumption. Instead of a block-based island, we propose a warp-based island
mapping mechanism that maps a sub-population to a warp and stores all
information in the shared memory. The warp based island reads the instruc-
tions one time, and all threads in the warp execute them parallel, which
removes the thread divergence.

2. For implementing the island model on GPU, before the replacement, the
algorithm has to synchronize and wait for the done of crossover and mutation.
To reduce the time consumption of waiting duration, we propose a Two-
replacements Policy Island Mode to replace the worse individuals with better
ones asynchronously and synchronously, respectively.

3. Present a general framework of the Two-replacements Policy Island Model
(TRPIM) on GPU and empirically evaluate it on the 0–1 knapsack problem.

The remainder of the paper is presented under the following sections: Sect.
2 details our new algorithm’s methods. Section 3 contains the results of the
experimental investigation. Finally, in Sect. 6, This paper is summarized and
discusses future work.

2 Methodology

First, the warp based island structure for the island model on GPU is presented.
Then, we describe the other components of TRPIM, including two-way replace-
ments, migration policy, and other genetic operators.

2.1 Warp Based Island Structure for Island Model on GPU

In TRPIM design, the warps mapping structure is shown in Fig. 1. There are n
Streaming-Multiprocessors (SMs), and the cores of an SM divides into r blocks.

A design structure consists of r blocks within n SM. There are k warps in a
block, each used as a sub-population. After fs generations, k islands exchange
information in r blocks in global memory. Matrix threads are mapped to the y
dimension of individual size, and the x dimension runs along the k warps is con-
structed. In the warp, each thread executes the same instruction simultaneously.
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Fig. 1. General framework of warp based island mechanism on GPU

2.2 Two-Replacements Policy in Warp Based Island

Each warp in TRPIM represents one island. Each island is processed by genetic
operators such as Tournament selection, uniform crossover, bit flip mutation,
replacement, and migration. To ensure the accuracy of our design TRPIM algo-
rithm, we used a two-replacement policy. First, the replacement policy applies
to one thread to find a better fitness value for one individual solution. In this
case, an individual would do better to replace the worst value in a thread. This
will happen in each generation.

In the second replacement, we will select the best fitness values of solutions
for the individual from each thread as a new offspring. And replace the worse
values of an individual in the island/sub-population synchronously, as shown
in Fig. 2. We will choose the best fitness values of solutions for the individual
in the second replacement from each island as illustrated in Fig. 2. The R1 is
the first replacement policy for one thread that replaces worse individuals with
better ones asynchronously. The stopping criteria of R1 are 0.1 s. R2 represents
the second replacement that applies to the individual island synchronously after
every 100 generations. And get the new offspring of the individuals of an island.

2.3 Migration Policy

Migration is an essential part of the island model. If migration didn’t happen,
the islands would merely be a collection of isolated individuals. The migratory
mechanism would allow isolated islands to exchange their best individuals. In
the island model, the frequency and interval of migration are essential variables.
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Fig. 2. Illustration of two replacements in island on GPU

Maximum warps in SM require more than one block to be active. As shown
in Fig. 3, in every round of fs generations, the k island saves the best individual
in global memory. These individuals are executed using four threads with copy
operations in global memory. These four threads will select the best individual
for the second block warps to migration. In each generation, the k islands write
information to global memory to choose the best individual.

Fig. 3. Migration policy with global memory
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2.4 Genetic Operators

Tournament Selection: The typical tournament selection [1,17] randomly
chooses n individuals with replacement from the current sub-population size N
into a tournament of size c and selects the optimal fitness value for crossover. We
employ a warp-level parallel reduction strategy to maximize threads utilization
for tournament selection to conduct tournaments with n individuals.

Crossover: Uniform crossover [11] ensures that the bits from two individual
pa and pb are combined. The selecting uniform random numbers between 0 to
1 bit-wise procedures are needed. And executes the process of swapping bits in
the individuals pa and pb to create the new offspring. In our algorithm, every
warp reads individual pa and pb in chunks of i integer components. Each thread
initially creates a z bit random number for the crossover mask.

With the EA approach, large instances size i uses to tackle the knapsack
problem. Conditional code is eliminated from the crossover to save evaluation
time. In this case, the thread divergence is not occurring.

Mutation: Mutation operator at the bit level, randomly flipping bits inside the
current island. Every thread generates z bit random numbers with the mutation
probability rate. However, the bit-wise operation is performed on the offspring to
change the a element values. The bit-flip mutation operator is extensively used
on binary string representations. This operator changes the value of each bit in
a solution (from 0 to 1) with probability p. The p is an operator parameter. This
parameter’s recommended value is p = 1/w, where w is the length of the binary
string.

3 Experimental Study

To evaluate the performance of TRPIM, we analyze the execution time and effec-
tiveness of solution quality on knapsack problem instances. In the experimental
setting, we explain the parameters of GPU architecture and EA parameters val-
ues used to execute the parallel evolutionary process. Then next, we describe
the solution quality, speedup and the effectiveness of two-replacement policy in
TRPIM.

3.1 Experimental Settings

We used the GeForce GTX 1080 Ti card for experiments with 28 SMs, and
each SM has a 128 CUDA core. The experiments on CPU were executed on
an Intel(R) Core(TM) i3-4170 CPU @ 3.70 GHz. The parameters of the GPU
device are listed in Table 1.

Based on our TRPIM evaluation, the island model and evolutionary algo-
rithm parameters are listed in Table 2. The evolutionary algorithm parameters
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Table 1. GeForce GTX 1080 Ti

SMs 28

Total CUDA core 3584

Maximum threads per block 1024

Maximum threads per multiprocessor 2048

Maximum shared memory per block 49152

have a fixed size and rate for all experiments: The uniform crossover has the
probability of 0.07, and the bit-flip mutation rate is 0.01. The migration size is 4
individuals in migration policy, and the migration frequency is 100. The bi-tonic
sort is used to sort the population to determine which individuals are best suited
for migration. We used the number of islands as 8, 16, 32, 64, 128, 256, 512. Each
island has 32 individuals. The maximum number of generations is 10,000.

Table 2. The island model evolutionary algorithm parameters setting based on GPU

Parameters Values

Number of individuals 32

Number of islands 4, 8, 16, 32, 64, 128, 256, and 512

Crossover type Uniform

Crossover probability 0.07

Mutation type Bit-flip

Mutation probability 0.01

Migration size 4

Migration frequency 100

All experimental results time costs and solution quality are the average cost
of 20 runs. And the execution time is in milliseconds.

3.2 Benchmark Problem

A knapsack benchmark problem [10,12] with different items is selected to eval-
uate our TRPIM.

maximize
n∑

i=1

vixi (1)

s.t.
n∑

i=1

wixi � C, xi ∈ {0, 1} (2)

We have n kinds of items in the knapsack problem, 1 through n. Each kind of
item i has a value vi and a weight wi along with a maximum weight capacity C.
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3.3 Solution Quality of TRPIM

In TRPIM on GPU, We analyze the solution quality of the two-replacement
policy on knapsack problems. In this experiment, we take 32 islands, and one
island has 32 threads. The knapsack problem is constructed at random, with
item sizes in the range from 10000, 15000, 20000, 25000, 30000, 35000, 40000,
and 45000. After every 100 generations, the best fitness values from one island
are copied from global memory and replaced with worse values of individuals
with neighbour islands on GPU. In without TRP, except the two replacements
policy, the island model on GPU would have the same parameter values as given
in Table 2. In Table 3 the TRP means two replacements policy. These 8 instances
of problems are solved 20 times, with a maximum generation size of 10,000. The
elements of individual instances are the same as the number of items in the
knapsack problem. The average execution time and fitness values of the solution
are listed in Table 3.

Table 3. Solution quality comparison with/without two replacements policy of TRPIM

Items
(size)

Without TRP With TRP

Time (ms) Best solutions Time (ms) Best solution Improvement

10000 1598 87695 1097 92925 +5230

15000 2287 128954 1659 136154 +7500

20000 3225 159415 2253 175866 +16451

25000 3601 188462 2947 217565 +29103

30000 4896 225018 3508 259318 +34300

35000 5220 253911 4184 301267 +47356

40000 5989 292117 4601 341277 +49160

45000 7126 331258 5404 382150 +50892

As shown in Table 3, in experiments without TRP on GPU, we gain the best
fitness values in solution as 87695, 128954, 159415, 188462, 225018, 253911,
292117, and 331258. Respectively, 8 problem instances the average execu-
tion time 1598 ms, 2287 ms, 3225 ms, 3601 ms, 4896 ms, 5220 ms, 5989 ms, and
7126 ms. Next, we test the results with TRP on GPU, the 8 instances have
gained the better fitness values of the solution as compared to without TRP.
With TRP the improvement in solutions are 5230, 7500, 16451, 29103, 34300,
47356, 49160, and 50892. And the average time, respectively all instances are
1097 ms, 1659 ms, 2253 ms, 2947 ms, 3508 ms, 4184 ms, 4601 ms, 5404 ms. These
results show that the version of TRPIM on GPU with a two-replacements policy
affects the solution quality and average run-time.

To measure the solution quality of TRPIM on GPU vs CPU on Knapsack
problem, we use 8 problem instances as shown in Table 4. The knapsack problem
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has instances 10000, 15000, 20000, 25000, 30000, 35000, 40000, and 45000. Every
100 generations, the best fitness values on one island are copied to global memory
and then replaced by the worst values on neighbour islands on the GPU. A CPU
island model would have the same parameter values as Table 2 except for the two-
layered replacement policy. An average of 20 runs is used to determine solution
quality.

Table 4. The effectiveness solution quality of TRPIM

Problem
instances

CPU GPU

Time (ms) Best solutions Time (ms) Best solutions

10000 178162 81154 1097 92925 (+11771)

15000 260524 120125 1659 136154 (+16029)

20000 295151 159381 2253 175866 (+16485)

25000 360177 198699 2947 217565 (+18866)

30000 426998 236441 3508 259318 (+22877)

35000 508972 277826 4184 301267 (+23441)

40000 551220 312964 4601 341277 (+28313)

45000 – NA 5404 382150

Using the 8 problem instances, we test the GPU version’s solution quality.
The bits of individual instances are the same as the number of items, the z bit
indicating the presence of i item in the knapsack. The assigning of 32 islands has
32 individuals in respect of each island. The experiment shows that the GPU has
better results with 10000, 15000, 25000, 30000, 35000, 40000, and 45000 items
and gain the improvements of the best fitness values of solution respectively 8
problem instances are 11771, 16029, 16485, 18866, 22877, 23441, 28313, 382150.
As we assign many problem instances, the CPU time increases more than GPU.
The CPU version gain the better fitness values of solutions are 81145, 120125,
159381, 198699, 236441, 277826, 312964. When we chose the problem instances
45000, the experiment on CPU didn’t gain the best fitness values. However,
in the experiments with problem instances 45000 on GPU, our fitness values
improved correspondingly at 382050 and took an average of 5404 ms.

3.4 Speedup

We conducted experiments with a two-replacement policy to evaluate the speed
with different islands on GPU. The 8, 16, 32, 64, 128, 256, and 512 are the number
of islands with 32 individuals as given in Table 5, are executed with problem
instances 10000. The algorithm will terminate if it finds a better solution from
the maximum number of generation 10000 when testing the speedup time of
TRPIM. The island model on the CPU has the same parameter settings except
for the two replacements policy.
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Table 5. The average time with knapsack problem instances size 10000 on GPU vs
CPU

Number of
islands

CPU GPU

Time (ms) Time (ms) Speedup

8 43698 1106 39.5x

16 86103 1142 75.3x

32 173938 1161 149.8x

64 345142 1252 275.6x

128 688854 1953 325.7x

256 1370257 3322 412.4x

512 2936476 7029 417.7x

As shown in Table 5 two-replacements policy gain the speedup time as 39.5,
75.3, 149.8, 275.6, 325.7, 412.4, 417.7, respectively the number of islands 8, 16,
32, 64, 128, 256, 512. When increasing the number of islands, the speedup time
also increases. The CPU time increases more than GPU when the number of
islands increases. With 512 islands, the TRPIM speeds up 417.7x time faster
than the CPU version.

3.5 The Effectiveness of Two-replacements Policy

Finally, in Table 6, we investigate the efficacy of TRPIM with problem instances
20000 and 35000. And the number of islands 64, 128, and 256 is assigned for this
experiment. The algorithm terminated when it found the best individuals from
the maximum number of generations as 10000, which performed an average time
cost of 20 runs.

Table 6. The average time and solution quality of TRPIM on knapsack problem
instances

Number of

islands

Problem

instances

CPU GPU

Time (ms) Best solutions Time (ms) Best solution

64 20000 666183 200363 1014 233638 (+33275)

35000 961501 350082 2671 399709 (+49627)

128 20000 1367273 200103 1322 220448 (+20345)

35000 2058922 346124 2059 391533 (+45409)

256 20000 2310954 200982 1649 222771 (+21789)

35000 4060857 349478 3288 379551 (+30073)

The number of islands 16 in respectively problem instances 20000 gives the
improved the fitness values of solution 33275 and with 35000 problem instances
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have the solution quality as 49627. In the next experiment, we select the 128
islands respectively 20000 items and get a better solution as 20345. And get a
solution with 35000 problem instances size. We choose 256 islands with 20000
problem instances and get the efficiency 21789 times better, and with 35000
problem instances gain the improved fitness values of solution 30073.

3.6 Conclusion

In this paper, we proposed a new model named TRPIM on GPU. We empiri-
cally conducted the island based warp mechanism and two-replacement policy
in TRPIM with the migration via global memory on the knapsack problem
to evaluate the performance. The island models divide populations into many
sub-populations for a parallel evolutionary process to speed up the execution
of the evolutionary algorithm. In an island-based mapping mechanism, a sub-
population is mapped to warps rather than GPU blocks. We demonstrated that
our design TRPIM gains 382150 average improvements of the solution to the
knapsack problem, with a speedup of over by 417.7 ms times faster.

In the future, we intend to develop more effective methods for optimizing the
TRPIM, such as improving the fitness evolution, managing memory to accelerate
the island model, utilizing shared memory, and designing a new model for large
problem instances without crossover parameters, and so on.
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Abstract. Named Entity Recognition (NER) is one of fundamental
researches in natural language processing. Chinese nested-NER is even
more challenging. Recently, studies on NER have generally focused on
the extraction of flat structures by sequence annotation strategy while
ignoring nested structures. In this paper, we propose a novel model,
named LACNNER, that utilizing lexicon-aware character representation
for Chinese nested NER. We select the typical character-level framework
to overcome error propagation problem caused by incorrect word separa-
tion. Considering the situation that Chinese words always contain much
richer semantic information than single characters do, it firstly obtains
more significant matching words through external lexicon in our LAC-
NNER model, and then generates lexicon-aware character representa-
tions that make full use of word-level knowledge for nested named entity.
We also evaluate the effectiveness of LACNNER by taking ACE-2005-
Zh dataset as a benchmark. The experimental results fully verified the
positive effect of incorporating lexicon-aware character-representation in
recognition of Chinese nested entity structure.

Keywords: Chinese nested NER · Character embedding · Information
extraction

1 Introduction

As one of the fundamental researches in natural language processing, Named
Entity Recognition (NER) aims to extract text spans representing a certain
entity. NER includes two parts: entity mention extraction and entity mention
classification. According to the text span boundary, entities can be divided into
flat structured entities, where there is no inclusion between the word boundaries
of any two entities mentioned in the sentence. However, a lot of NER studies
generally extract flat structured entities while ignoring the nested ones. Figure 1
shows some examples of flat entity structures and nested entity structures. The
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inner entity usually reflects some property of the external entity. For example, a
Location (LOC) or a Geo-Political Entity (GPE) nested within an organizational
entity may indicate the location or attribution of the organization like the second
case in the Fig. 1, so it is also necessary to identify nested named entities.

Fig. 1. Flat and nested structure of the entity. Person (PER), Geo-Political Entity
(GPE), and Organization (ORG) types are indicated by different text background
colors. The two entities of the first sentence belong to flat structure, and the entities
of the last two sentences exist ORG nested GPE and ORG nested ORG, respectively.

The sequence annotation extraction architecture applied to flat NER is no
longer applicable to nested NER. Several previous studies have proposed to
decode nested entities using special structures such as hypergraphs or syntactic
parsers, but these models suffer from structural ambiguity and complex manual
design in the inference phase. Some other studies extract nested entities by
hierarchical extraction from inside to outside or from outside to inside, and the
extraction of the current layer depends on the extraction results of the previous
layer, which is prone to error propagation issues.

In Chinese, a word is generally composed of more than one character. Consid-
ering that words contain richer semantic information than characters in Chinese,
the character-level model does not capture the whole information of the sentence.
Simply building a word-level model which uses divided words as input would
lead to the propagation of segmentation error. So it is challenging to extract
nested entities in Chinese. In this paper, we propose the model called LAC-
NNER (Lexicon-Aware Character Representation for Chinese Nested Named
Entity Recognition) to solve this problem. In detail, LACNNER uses a multi-
headed self-attentive mechanism to encode both characters and word embeddings
to obtain a representation of each character with word-level knowledge and then
applies a biaffine classifier to decode the entity type of each text span, which
can extract both flat and nested entity mentions. The words are obtained by
matching the original text with an external lexicon. The position relationship
between the matching words and the characters of the original text is reflected
by the position embedding.
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In summary, our main contributions are as follows: 1) We propose a simple
but effective model to extract entity mentions with nested structures. 2) Taking
into account the semantic gap between words and characters, we incorporate
word-level information into the character-level model. 3) We validate the effec-
tiveness of our model on the ACE2005-Zh dataset and obtain 1.48% gains.

The paper is organized in the following way. Section 2 presents related work
on nested NER and Chinese NER. Section 3 is concerned with the methodology
of LACNNER. Section 4 describes the experiments on ACE2005-Zh and analyzes
the effectiveness of LACNNER. Section 5 summarizes the focus of the study as
well as the experimental findings.

2 Related Work

In early studies, NER mainly focused on flat entities instead of nested enti-
ties, thus the sequence annotation framework is the most traditional solution.
But this approach is not suitable for identifying nested structures. Some stud-
ies extract nested entities by constructing special data structures. Finkel et al.
extract nested entities by constructing a constituent syntactic parser [5]. Some
works propose to represent the nested structure by a hypergraph [11,17,19,26],
but illegal structures and structural ambiguities need to be avoided when mod-
eling hypergraphs, which can make modeling more complicated. Fu et al. use
Tree-CRF to decode the nested structure [7], and Wang et al. converts a sen-
tence into a tree structure and identifies nested entities by adjusting the structure
of the tree through state transfer operations [26]. Lin et al. proposed the con-
cept of anchor words and then identified the anchor words before calculating the
complete entity boundaries [15].

There are also some studies that use a layered extraction approach to identify
nested entities hierarchically from inside to outside or from outside to inside using
sequence annotation. Ju et al. and Li et al. identifies and classifies them from
inside to outside by dynamically stacking the extraction layers [10,12]. Fisher et
al. uses layered merging to combine tokens belonging to the same entity. In addi-
tion to introducing error propagation issue [6], the layered structure also tends
to prevent the model from capturing the entity relationships between different
layers. Wang et al. designed a character-level normal pyramid and inverse pyra-
mid structure with bidirectional interactions between neighboring layers [27],
but the model is complex and inefficient.

A few works recognize nested entities by extracting and classifying text spans
of arbitrary length within a sentence. Sohrab et al. and Yu et al. enumerates all
the text spans in a sentence and classifying the text spans [21,29]. There is also
some work based on the pipeline approach [20,24,28,31], where the boundaries of
the entity mentions are first extracted and then classified. The pipeline method
inevitably introduces error propagation issue. Other studies transform NER into
other NLP task forms. Strakova et al. uses sequential-to-sequence architecture
to generate all labels of tokens [22], and Li et al. proposes that MRC model can
also be used to solve NER [14], and some priori knowledge can be introduced
based on the design of the query.
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Chinese NER using the character-level model is better than the word-level,
but extracting entity words needs to be sensitive to the boundaries of words while
the character-level model is missing the lexical information. Zhang et al. was the
first to propose that text and matching words connected can form a lattice
structure [30], and incorporating word-level information to the model requires
the ability to encode this structure. Some researchers uses Lattice-LSTM, GNNs,
and CNNs as feature extractors [8,9,23,30]. Li et al. flattens the lattice structure
into a sequential structure using Transformer layer to enhance the computational
speed of the model [13]. Another method is fuse lexical features by training
token embeddings with lexical information rather than by modifying the model
structure [4,16,18].

3 Approach

We mainly focus on nested NER in Chinsese text, and propose a kind of model,
named LACNNER, its overall structure is shown in Fig. 2. The model firstly
generates lexicon-aware character representations that contain word-level knowl-
edge, and then concatenates them with the features extracted by the BiLSTM.
Finally, the concatenation vectors are fed into a biaffine classifier to obtain entity
classification results.

Fig. 2. The overall architecture of LACNNER. The solid arrows indicate the data flow
direction and the light gray arrows indicate the self-attentive mechanism. (Color figure
online)
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Formally, we denote the inputs to the model as s = {c1, c2, . . . , cn}, where
ci denotes the ith character of sentence s, and n is the length of s. We use L to
represent the external lexicon. The words obtained by matching each sentence
s in the corpus with L are represented by ws = {w1, w2, . . . , wk}, where wj

denotes the jth matched words and there are k words in total.

3.1 Embedding Layer

Character unigram embeddings, character bigram embeddings and words embed-
dings are pretrained on a large Chinese corpus to represent characters, two
characters and words as static vectors. For the unigram embedding and bigram
embedding of ci we denote xuni

i and xbi
i , respectively. Similarly, the embedding

of wj is written as xw
j . For ci we use the concatenation of xuni

i and xbi
i as the

final character embedding xc
i :

xc
i = [xuni

i ;xbi
i ] (1)

3.2 Character Representation

The BiLSTM encoder can model the long-range dependencies to extract dynamic
features containing contextual information. Taking Xc = {xc

1, x
c
2, . . . , x

c
n} as

input, we use the concatenation of the BiLSTM’s hidden states in both directions
as the character representation containing contextual information of ci:

hlstm
i = [

−−−−→
LSTM(xc

1, . . . , x
c
i );

←−−−−
LSTM(xc

i , . . . , x
c
n)] (2)

Inspired by the FLAT model of Li et al., we can calculate lexicon-aware char-
acter representations by using an external lexicon and encode the interactions
between matching words and the original text using a self-attentive mechanism.
Set xi, xj to be any two spans in X = {xc

1, . . . , x
c
n, x

w
1 , . . . , x

w
k }. There are three

positional relationships between xi and xj : intersection, inclusion and separa-
tion, and the information about the positional relationships can be preserved by
four kinds of relative distances [13]. dhhij denotes the distance between head of
any two spans xi, xj , and the other three have similar meanings. The formulas
are as follows:

dhhij = head[i] − head[j]
dhtij = head[i] − tail[j]
dthij = tail[i] − head[j]
dttij = tail[i] − tail[j]

(3)

where head[i] and tail[i] denote the head and tail position of span xi. The final
relative position encoding of spans is a non-linear transformation of the four
distances [13]:

Rij = ReLU(Wr[Pdhh
ij

;Pdth
ij

;Pdht
ij

;Pdtt
ij

]) (4)

where Wr is a learnable parameter, and the calculation of Pd is calculated using
the same periodic trigonometric function as Transformer [25].
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In this paper, we use a variant of the self-attentive mechanism that can
encode relative positions to capture the dependencies of matching words with
text. [2], so that the model learns the position relationship between the matching
words and the original text. The difference with Vanilla Transformer lies in the
calculation of the attention weight matrix:

Ai,j = WT
q Xi

TXjWk,X + WT
q XT

i RijWk,R + uTXjWk,X + vTRijWk,R (5)

where Wq,Wk,R,Wk,E , u, v are learnable parameters.
Transformer outputs a representation of each character as well as the match-

ing word. After the self-attentive interaction, the output carry the knowledge of
the matching words, thus we drop the word representations and keep the part
of the character representations denoted as hlex for the subsequent computation
of the biaffine classifier.

3.3 Biaffine Classifier

Two character representations, hlstm and hlex, carrying different information are
concatenated as inputs to the biaffine classifier. The biaffine classifier calculates
a scoring tensor for any span in s. The scoring tensor for a spanij starting at
index i and ending at index j is denoted as rm(ij), which is c-dimensional. The
number of entity categories is noted as c, which includes “non-entity” type. The
biaffine classifier is calculated as follows:

hs(i) = FFNNs([hlstm
i ;hlex

i ])
he(j) = FFNNe([hlstm

j ;hlex
j ])

rm(ij) = hs(i)TUmhe(j) + Wm[hs(i);he(j)] + bm

(6)

where U is a high-dimensional d × ce × d learnable parameter (d denotes the
feature dimension of hs and he), W is a 2d× ce learnable parameter, and bm is a
bias. The category with the highest score given by the classifier is the predicted
classification of the model for spanij :

y′(ij) = argmax rm(ij) (7)

The loss function for training is softmax cross entropy.

4 Experiment

4.1 Data Set

To validate our approach on Chinese nested NER, we take the ACE 2005 Man-
darin Chinese dataset (ACE-2005-Zh) as a benchmark. It is an available Chinese
nested NER dataset with high annotation quality. We split the dataset into 80%,
10%, and 10% for the train, development, and test set respectively. The statistics
of ACE-2005-Zh are presented in Table 1.
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Table 1. The statistics of ACE-2005-Zh.

Attribute Train Dev Test Total

Documents 507 63 63 633

Sentences 6450 755 814 8019

Words 205010 24493 26077 255580

Entity mentions 26965 3370 3268 33603

Nested entity mentions 44.57% 48.64% 43.15% 44.84%

In our experiments, character unigram embeddings and bigram embeddings
are trained by zhang et al. on the Chinese Giga-word using word2vec. The lexicon
embeddings also trained by this team on automatically segmented CTB6.0 [30].
We consider the words encoded by lexicon embeddings as a base external lexicon
Lbase, which contains about 600,000 words. We also filtered the core concept
words and entity words of OpenEntitiy [1] from Lbase to get a streamlined version
lexicon Lsmall with only 75,000 words.

4.2 Evaluation Metrics

We use the classical evaluation metrics in classification tasks, that is Precision
(P ), Recall (R) and F1, to measure the effectiveness of LACNNER. P focuses on
measuring samples predicted to be positive classes, while R puts more emphasis
on the accuracy of true positive samples. F1 is the harmonic average of P and
R. The evaluation metrics are calculated as follows:

P = TP
TP+FP

R = TP
TP+FN

F1 = 2 ∗ P∗R
P+R

(8)

where TP , FP , TN , and FN are used to indicate True Positive, False Positive,
True Negative and True Negative, respectively.

4.3 Hyperparameters

In the training phase, we use BERTAdam as an optimizer, with a learning rate of
5e−4. We set the dropout rate of the unigram and bigram character embedding
layers to 0.15, and the dropout rate of the lexicon character embedding layer
to 0.4. For the encoder, we use a single-layer Transformer with 4 heads and a
two-layer BiLSTM with 288 units in the hidden layer. In the Biaffine Classifier,
the feature dimension is reduced to 150. The model is trained for 60 iterations
with an early stop mechanism to prevent overfitting of the model training. The
above hyperparameters are obtained by the grid search algorithm to achieve the
best combination of parameters on the validation dataset.
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4.4 Results and Analysis

We use Yu’s model (LSTM-Biaffine) [29] as the baseline, since it is one of the
most typical algorithms for solving nested NER, and has outstanding perfor-
mance in the English dataset. LSTM-Biaffine feeds the character embedding
into a BiLSTM and finally to a Biaffine Classifier. We experimented on both
Lbase and Lsmall lexicon, and both obtain higher F1 scores than baseline, which
shows that a model that excels in English datasets also struggles with Chinese
datasets. Models incorporating lexicon-aware character representation are more
suitable for the Chinese text (Table 2).

Table 2. Experimental results on ACE-2005-Zh.

Model P R F1

LSTM-Biaffine 71.62 70.78 71.20

van-Transformer 71.33 69.75 70.53

LACNNER (Lbase) 74.10 71.30 72.68

LACNNER (Lsmall) 77.36 68.61 72.73

LSTM-Biaffine +BERT 76.64 82.30 79.37

van-Transformer +BERT 72.08 77.41 74.65

LACNNER+BERT (Lbase) 79.97 79.90 79.94

LACNNER+BERT (Lsmall) 81.15 79.14 80.13

Meanwhile, we construct the van-Transformer model, whose self-attentive
mechanism uses the Vanilla Transformer that cannot encode relative posi-
tion information. The rest of the structure is consistent with our model. Van-
Transformer is inferior to LSTM-Biaffine indicating that the Vanilla Transformer
not only does not obtain effective information but even brings the noise to the
model.

We found that smaller lexicon does not affect the final results if it is of high
quality. OpenEntity ensures the confidence of Lsmall so that despite the tenfold
difference in size between Lsmall and Lbase, the results are still comparable.

Pre-trained language models can bring more semantic-level information, so
experiments were also done to replace the static word vectors with dynamic word
vectors obtained from BERT (base) [3]. The F1 score improved significantly. The
conclusions remain consistent with the above (Table 3).
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Table 3. Results of ablation experiments.

Settings P R F1

Default 74.10 71.30 72.68

w/o context representation 62.12 48.98 54.78

w/o lexicon-aware character representation 68.85 71.00 69.91

w/o matched words input 73.34 69.12 71.17

Ablation experiments show that fusing word-level information using a self-
attentive mechanism that can encode relative location information can effectively
improve the effectiveness of model nested named entity recognition. Contextual
features encoded using BiLSTM are still the predominant way to encode informa-
tion. The different degrees of F1 decline also indicate that the two representations
capture complementary information.

5 Conclusion

In this paper, we put forward a novel model named LACNNER for recognizing
Chinese nested entities. We both consider the lack of important word-level infor-
mation in the existing character-level models and the problem of word separation
errors in the word-level ones. In LACNNER, we firstly find out the matching
words related to text from lexicon, then obtain the dependency between text
and matching words by self-attention mechanism to get lexicon-aware character
representation, which be treated as a complementary feature to extract nested
entities. Finally, we implement a biaffine classifier to aggregate such representa-
tions. Experiments show that LACNNER outperforms the character-level models
on ACE-2005-Zh dataset. Furthermore, ablation tests also demonstrate the sig-
nificance of lexicon-aware character representation for Chinese Nested NER as
we expected.
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Abstract. Natural language processing is a significant branch of
machine learning, and pre-trained models such as BERT have been
widely used in it. Previous research has shown that sentence embed-
dings from pre-trained language models without fine-tune have difficulty
in capturing their exact semantics. The ambiguous semantics leads to
poor performance on semantic text similarity (STS) tasks. However, fine-
tune tends to skew the model toward high-frequency distributions due
to the heterogeneous nature of word frequency and word sense distribu-
tions. Therefore, fine-tune is not a optimal choice. To address this issue,
we propose an unsupervised flow-based contrastive learning model. The
model maps sentence embedding distributions to smooth and isotropic
Gaussian distributions, thus mitigating the impact caused by irregular
word frequency distributions. To evaluate the performance of our model,
we use an industry-recognized method that outperforms competing base-
lines in different sentence-related tasks.

Keywords: Flow model · Contrastive learning · Deep learning

1 Introduction

Extracting high-quality sentence representations facilitates a wide range of nat-
ural language processing (NLP) tasks. In particular, good sentence representa-
tions facilitate a wide range of downstream tasks. Recently, pre-trained language
models like BERT [1] and its variants [1,2] have been widely used as natural lan-
guage representations. Great success has been achieved in many NLP tasks by
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fine-tuning BERT and its variant. However, the unevenness of word frequency
distribution in the dataset makes it difficult to capture the underlying semantics
of sentence well in the task of STS.

Previous work [3] has demonstrated that due to word frequency, not all words
are isotropic in the latent space but tend to degenerate and be distributed into
a narrow cone, largely limiting word embeddings’ expressive power. Li et al. [4]
further investigates two problems with the BERT sentence embedding space,
namely word frequency shifted embedding space and sparse dispersion of low
frequency words, which leads to difficulties in using BERT sentence embeddings
directly through simple similarity measures such as dot product or cosine simi-
larity.

To alleviate the above problems, we propose a flow model introducing con-
trastive learning, namely ContFlow. Specifically, our model consists of two main
parts, firstly, the mapping process of the traditional flow model. The anisotropic
sentence embedding distribution obtained from the BERT encoder is mapped to
an isotropic Gaussian distribution, and maximum likelihood is used for optimiza-
tion. The second is the contrastive learning module, which constructs positive
and negative sample pairs by sentence meanings and optimizes the sentence vec-
tors using contrastive loss. The two modules work together to obtain the final
sentence representation.

We evaluate the performance of BERT-ContFlow on STS datasets and uti-
lize an general model evaluation method for seven STS tasks. Experimental
results show that our method generally improves model performance and out-
performs competing baselines that do not use fine-tune to construct BERT sen-
tence embeddings in context. Our model metrics are improved by a maximum
of 5.25% on STS dataset, by an average of 2.8% on STS benchmarks and by
an average of 1.05% on various sentence migration tasks. Our contributions are
summarized as follows.

– Analyze the reasons for the poor performance of BERT sentence embedding.
– A flow model using contrastive learning is proposed to alleviate the uneven

word frequency distribution in the dataset.
– Experimental results on seven STS tasks show that our method significantly

improves model performance.

2 Related Work

2.1 Sentence Representation

Several works have been studied to understand sentences representation learning.
Iyyyer et al. [9] introduces deep averaging networks, which provide unweighted
averages of word vectors through multiple hidden layers before classification.
The original BERT and its variants are designed to fine-tune each downstream
task to achieve its best performance. In the process of fine-tune, as being pro-
posed by Devlin et al. [1], the predefined tokens embedded from the last layer
of the encoder (also called [CLS]) are considered as representations of the input
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sequence. This simple and effective approach is feasible because [CLS] serves as
the only communication gate between the pre-trained encoders and the task-
specific layer that captures the overall information during BERT supervised
fine-tuning. However, in cases where the labeled dataset is unavailable or is
small, it is not clear what the best strategy is for deriving sentence embeddings
from BERT. Reimers and Gurevych [2] experimentally demonstrate that in such
cases, an averaging pooling at the last layer of BERT would be superior to [CLS]
embeddings, and use siamese networks to fine-tune the BERT.

2.2 Fine-Tune BERT

Pre-trained sentence embeddings models like BERT have succeeded in the natu-
ral language processing community. Researchers find that sentence embeddings
without fine-tune struggle to accurately capture the semantic information of
sentences. Li et al. [4] argues that BERT sentence embeddings in latent space
have the characteristics of anisotropy. They suggest using flow model to map
the BERT sentence embedding distribution into Gaussian distribution. Su et
al. [5] finds that the whitening operation also enhances the isotropy of the sen-
tence representation. Moreover, the models’ training speed is improved due to
the reduced dimensionality of the sentences. The other works also use supervised
datasets for sentence representation learning. Conneau et al. [12] finds that using
sizeable natural language inference datasets is capable of obtaining higher qual-
ity sentence embeddings. And a general sentence representation with supervised
training using the Stanford natural language inference dataset demonstrates its
superiority.

2.3 Contrastive Representation Learning

Contrastive learning has long been a more scientific modeling approach and
has been widely used in many fields. The aim of contrastive learning is to
learn effective representations by constructing pairs of positive and negative
samples, pulling semantically similar neighbors together and separating non-
neighbors [14]. Kim et al. [6] proposes a contrastive learning approach using
siamese network architecture that allows BERT to utilize its own information
to construct positive and negative sentence pairs to obtain higher quality sen-
tence embeddings without introducing any external resources. Yan et al. [15]
also adopts the same siamese network architecture as SBERT and introduces
the ideology of contrastive learning. The difference is that ConSERT constructs
positive and negative sentence pairs by four different data enhancement meth-
ods (Adversarial Attack, Token Shuffling, Cutoff, Dropout). Gao et al. [7] pro-
poses a supervised training approach and an unsupervised training approach
respectively. The unsupervised SimCSE predicts the input sentences themselves
through applying different dropout masks. The supervised SimCSE uses the NLI
dataset and treats the entailment pairs as positive and the contradiction pairs
and other instances within the batch as negative pairs.
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3 Method

In this section, we present a sentence representation learning method named
BERT-ContFlow. The target is to map the initial sentence vector output from
the BERT encoder onto a Gaussian distribution via flow model.

We first present the overall framework of BERT-ContFlow and then describe
the specific roles of each modules in the model.

Fig. 1. The schematic diagram of the Bert-ContFlow method. Sentence pairs Sentencei
and Sentencej are used as inputs. The initial representation vectors zi, zj are obtained
by pre-training BERT. The flow model is trained to map zi, zj to the desired vector
space and the process is optimized by maximum likelihood and contrastive loss.

3.1 General Framework

Our model uses the structure of siamese networks [2], as shown in Fig. 1. There
are three main components in our framework. Firstly, A BERT encoder that com-
putes each input sentence representation. Secondly, the Flow part, which maps
the sentence representation from BERT into a Gaussian distribution, optimizing
the problem of sentence representation anisotropy. Finally, the flow model has a
contrastive loss layer. The distance of positive sentences reduces while negative
sentences increases over the latent space.

3.2 BERT Layer Combination

The pooling operation [1] is the key step in BERT. Referring to the work of
BERT-FLOW [4], we adopt a first-last averaging pooling strategy, i.e., averaging
the sentence embeddings obtained by the vector representations of layer 1 and
12 of the BERT encoder(denoted by first-last-avg).
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3.3 Flow-Based Model

We convert anisotropic sentence embedding distributions to smooth and isotropic
Gaussian distributions via Flow-based model [4]. Model implements a reversible
transformation from a change in the distribution of the latent space H to the
distribution of the observed space Z. The formula for the model is defined as:

h ∼ π(h), z = f(h). (1)

where h ∼ π(h) denotes the prior distribution, z is the sentence embedding from
BERT, and f symbolizes the invertible mapping. Assuming that π(h) approxi-
mately obeys a uniform distribution on [h′, h′ + Δh] and that p(z) also approx-
imately obeys a uniform distribution on [z′, z′ + Δz], since the sampling proba-
bilities are consistent. When Δz and Δh are tiny, we have:

p(z′) = π(h′)|dh

dz
|. (2)

By the inverse of the Jacobian determinant, we obtain:

p(z′) = π(h′)|det(Jf−1)|. (3)

where Jf−1 denotes the Jacobi determinant of the f−1 operation, f−1 repre-
sents the transformation from representation vectors z to h and det denotes the
determinant value of the matrix. To implement the transformation between the
sentence embedding distribution of BERT to the standard Gaussian distribution,
we solve for f−1 by maximum likelihood as follows:

f−1 = arg max
∑

log p(z). (4)

Note that only flow parameters are optimized during training, while the BERT
parameters remain unchanged. In our model, the losses in the flow model are as
follows:

Lunsp = log π(f−1
φ (z)) + log |det

∂f−1
φ (z)
∂z

|. (5)

where f−1
φ (z) is the sentence vector obtained by passing z through flow model,

and π is the prior probability distribution.

3.4 Contrastive Loss Layer

Our model makes similar instances closer together in the latent space and dif-
ferent samples further apart in the latent space by introducing the idea of con-
trastive learning. In our model, we follow the contrastive framework of Sim-
CSE [7], where contrastive learning is guided by constructing positive and nega-
tive sentence pairs D =

{
(xi, x

+
i , x−

i )
}i=m

i=1
. For n batches of sentence pairs, the

training objective can be formulated as:

L = −log
esim(hi,h

+
i )/τ

∑N
i=1 esim(hi,hj)/τ

. (6)
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where hi, h
+
j denote the embedding vectors of positive sentence pairs xi, x

+
j

generated by the model, sim represents the similarity calculation function, and
τ is the temperature hyperparameter. For a batch of sentence pairs from the
NLI dataset, we consider each premise in the sentence pair as the main sentence,
the hypothesis necessarily related to it as the positive example, and the other
hypotheses in the batch as the negative example. We input the main clause and
its affirmative and negative cases into the BERT encoder, respectively, and pass
the resulting sentence embeddings to flow model. We optimize the parameters of
flow model by computing the supervised contrastive loss of a batch of sentence
pairs from the final sentence embeddings output by flow model as follows:

Lcont = −log
esim(f−1

φ (zi),f
−1
φ (z+

j ))/τ

∑N
i=1(e

sim(f−1
φ (zi),f

−1
φ (z+

j )/τ + esim(f−1
φ (zi),f

−1
φ (z−

j )/τ )
. (7)

where zi is the sentence embedding obtained by passing data xi through the
BERT, and hi is the sentence embedding obtained by passing zi through flow
model. The loss of the whole model consists of flow model loss and contrastive
loss as follows:

L = λLunsp + (1 − λ)Lcont. (8)

where λ is the hyperparameter, Lunsp and Lcont are the losses of the flow and
contrastive models, respectively.

4 Experiments

To verify the effectiveness of the proposed method, we conduct experiments on
various tasks related to semantic STS in a variety of configurations.

4.1 Setups

Dataset. For training the model, we use the NLI dataset, including SNLI
dataset [16] and the MNLI dataset [17]. It labels sentence pairs using implicative,
neutral and contradictory tags. In the NLI dataset, each premise is presented at
least three times and is assumed to be different.

For evaluating the model, we use seven datasets, i.e., the STS benchmark [8],
the Sickness Correlation (SICK-R) dataset [10] and the STS tasks (STS12-
STS16) from 2012–2016 [11]. These datasets are obtained through the SentEval
toolkit [12].

Baselines. We first choose a non-BERT method as a baseline: Avg.Glove [13].
In addition, various BERT sentence embedding models were introduced as base-
lines, including Avg.BERT [2], BERT-CLS [2], BERT-FLA [2], BERT-Flow [4],
BERT-Whitening [5], InferSent-Glove [12], SBERT [2].
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Evaluation. We calculate the cosine similarity between the final embedding
vectors of the sentence pairs. Then we evaluate the model’s performance by
using the Spearman correlation coefficient of cosine similarity and the labels.

Implementation Details. We mainly compare the BERT-Flow [4] and the
BERT-Whitening [5] models with the maximum sequence length set to 128,
and we basically agree with their experimental settings and notations. Flow-
based maximization likelihood and contrastive loss are only used to update the
reversible mapping for the proposed method, while the BERT model parameters
remain unchanged. we use the AdamW optimizer and set the learning rate to
1e-3.

4.2 STS Results

The hyperparameters λ and τ in our model are 0.1 and 0.3. First-Last-Average
is chosen as the pooling method for the experiment.

Results Based on Original BERT. As shown in Table 1, the original BERT
(BERTbase and BERTlarge) do not outperform Glove embedding. Our method
raises 3.41–5.25% and 2.84–5.06% on BERTbase and BERTlarge respectively.

Results Based on Fine-Tuned BERT with NLI. In Table 2, BERTbase

and BERTlarge are fine-tuned on the NLI dataset by the method in [2]. We
can observe that our BERT-ContFlow outperforms BERT-Flow and BERT-
Whitening on STS tasks. These experimental results suggest that our method
can further improve the performance of SBERT even though it is trained on the
NLI dataset that was prepared under the supervision.

4.3 Visualization Results

We visualize some variants of the BERT sentence representations to demonstrate
that our approach is effective. Specifically, We sample 20 positive pairs and 20
negative pairs from the STS-B dataset. Then we compute their vectors and plot
them in 2D with the help of t-SNE algorithm. Figure 2 confirms that BERTbase-
ContFlow encourages the BERTbase sentences embeddings to be more consistent
with their positive pairs while remaining relatively far from their negative pairs.
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Table 1. Results based on original BERT. The results are shown as the spearman
correlation coefficient as ρ × 100 between cosine similarity and original labels.

Model STS-12 STS-13 STS-14 STS-15 STS-16 STS-B SICK-R

Avg.GloVe 55.14 70.66 59.73 68.25 63.66 58.02 53.76

Avg.BERT 38.78 57.98 57.98 63.15 61.06 46.35 58.40

BERT-CLS 20.16 30.01 20.09 36.88 38.03 16.5 42.63

BERTbase-FLA 57.84 61.95 62.48 70.95 69.81 59.04 63.75

BERTlarge-FLA 57.68 61.37 61.02 68.04 70.32 59.56 60.22

BERTbase-Flow 59.54 64.69 64.66 72.92 71.84 58.56 65.44

BERTbase-Whitening 61.69 65.70 66.02 75.11 73.11 68.19 63.60

BERTbase-ContFlow 63.69 68.83 68.66 76.14 74.77 73.44 68.85

BERTlarge-Flow 61.72 66.05 66.34 74.87 74.74 68.09 64.62

BERTlarge-Whitening 62.54 67.31 67.12 75.00 76.29 68.54 62.40

BERTlarge-ContFlow 63.72 68.53 68.80 75.60 77.31 72.91 67.46

Table 2. Results based on fine-tuned BERT with NLI. The results are shown as the
spearman correlation coefficient as ρ×100 between cosine similarity and original labels.

Model STS-12 STS-13 STS-14 STS-15 STS-16 STS-B SICK-R

InferSent - Glove 52.86 66.75 62.15 72.77 66.86 68.03 65.65

SBERTbase-NLI 70.97 76.53 73.19 79.09 74.30 77.03 72.91

SRoBERTabase-NLI 71.54 72.49 70.80 78.74 73.69 77.77 74.46

SBERTlarge-NLI 72.27 78.46 74.90 80.99 76.25 79.23 73.75

SRoBERTalarge-NLI 74.53 77.00 73.18 81.85 76.82 79.10 74.29

BERTbase-NLI-Flow 67.75 76.73 75.53 80.63 77.58 79.10 78.03

BERTbase-NLI-Whitening 69.11 75.79 75.76 82.31 79.61 78.66 76.33

BERTbase-NLI-ContFlow 69.57 77.51 77.94 82.91 79.88 81.50 78.51

BERTlarge-NLI-Flow 69.61 79.45 77.56 82.48 79.36 79.89 77.73

BERTlarge-NLI-Whitening 70.41 76.78 76.88 82.84 81.19 79.55 75.93

BERTlarge-NLI-ContFlow 72.15 80.24 79.20 84.06 81.51 83.11 78.20

Fig. 2. Sentence representation visualization. (Left) Embeddings from the original
BERTbase. (Right) Embeddings from the BERTbase-ContFlow model. Red numbers
correspond to positive sentence pairs and blue to negative pairs. (Color figure online)
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4.4 Ablation Studies

This section performs ablation experiments on two hyperparameters and pooling
methods of our sentence embedding method to better understand their relative
importance.

Table 3. Results of ablation experiments with different λ on the STS task.

λ STS-12 STS-13 STS-14 STS-15 STS-16 STS-B SICK-R Avg.

0.1 63.69 68.83 68.66 76.14 74.77 73.44 68.85 70.62

0.3 62.76 67.24 67.30 76.03 73.68 71.17 66.22 69.20

0.5 62.24 66.63 66.64 75.62 73.55 69.59 65.06 68.47

0.7 62.08 66.29 66.62 75.16 73.27 68.78 64.57 68.11

0.9 62.21 66.56 66.42 75.03 73.26 68.56 64.21 68.04

Table 4. Results of ablation experiments with different τ on the STS task.

τ STS-12 STS-13 STS-14 STS-15 STS-16 STS-B SICK-R Avg.

0.1 63.01 67.74 67.92 76.19 73.84 72.36 67.28 69.76

0.3 63.69 68.83 68.66 76.14 74.77 73.44 68.85 70.62

0.5 62.97 68.43 68.65 76.29 74.62 72.79 68.65 70.34

0.7 63.09 68.21 68.42 76.23 74.62 72.70 68.47 70.25

0.9 63.20 67.96 68.47 76.38 74.22 72.54 68.05 70.12

Effect of Lambda. We explore the effect of λ (the weight of the supervised
contrastive loss term) on the resulting sentence embeddings (Table 3). For the
STS task, the optimal λ value for the model is 0.1. Increasing λ from 0.3 to
0.9 reduces the quality of the generated sentence embeddings, suggesting that
the combination of maximum likelihood and supervised contrastive loss lead to
better sentence embeddings than individual losses.

Effect of Temperature. We explore the effect of temperature (used to calcu-
late the sentence pair similarity magnitude) on the sentence embedding model
(Table 4). The smaller the temperature value, the more the model focuses on the
negative examples with higher similarity. For the STS task, the optimal τ value
for the model is 0.3. Decreasing or increasing the τ value diminishes the quality
of the generated sentence embeddings.
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Table 5. Results of different pooling strategies on the STS task.

Method CLS. Last-avg. Last2avg. First-last-avg.

BERTbase-ContFlow 61.23 66.67 64.88 70.63

BERTlarge-ContFlow 57.38 65.13 63.33 70.62

BERTbase-NLI-ContFlow 77.42 77.24 75.35 78.26

BERTlarge-NLI-ContFlow 78.24 78.57 77.97 79.78

Effect of Pooling Strategies. We explore the effect of pooling strategies
(CLS., Last-avg., Last2avg. and First-last-avg.) on the sentence embedding
model (Table 5). Experiments results show that averaging the first layer and
the last layer of BERT model sentence embeddings (denoted by first-last-avg)
consistently produces better results than the other pooling strategies, so we
choose first-last-avg as the default configuration.

5 Conclusion

This paper presents BERT-ContFlow, a contrastive learning framework for
transferring sentence representations to downstream tasks. Experimental results
on seven semantic similarity benchmark datasets show that our approach can
enjoy the benefits of combining contrastive learning and flow models. The visual-
ization and ablation experiments demonstrate the effectiveness of our proposed
approach. We hope that our work will provide a new perspective for future
research on sentence representation migration.
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Abstract. The paper explores the application of feature selection techniques for
the brain activity classifying patterns task. The study aim is to compare themachine
learning algorithms results depending on the chosen feature selection technique.
As an example for analysis, the task of classifying of open-eyes and closed-eyes
resting states according to EEG data was chosen. For the experiment, EEG records
of the resting states from the data set “EEGMotorMovement/Imagery”were used.
Features in the time and frequency domains for 19 electrodes corresponding to the
10–20 system were extracted from the EEG records presented in the EDF format.
Python was used to form the feature matrix and convert it to ARFF format. The
resulting dataset contains 209 features for classification and a target feature. In the
experimental part of the work, the classification results are compared before and
after feature selection. The experiment examined 10 Weka attribute evaluators.

Keywords: EEG · Feature selection ·Weka · Classification · Feature extraction

1 Introduction

Currently, the classification of mental states according to electroencephalogram (EEG)
data is important for solving problems in such areas as medicine, healthcare, education,
robotics, etc. [1, 2]. The task of classifying mental states according to EEG data is
extremely difficult in view of the large number of features that can be obtained from
EEG data, which can be noisy and also have a large dimension. Feature selection is
a critical step in solving classification problems. Feature selection is a procedure for
selecting a subset of features from the feature space needed to build a model. In the
feature selection process, irrelevant, noisy, and redundant features are removed. This
makes it possible to increase and decrease the computational cost of training classifiers
and improve their accuracy. Experimental results show that the accuracy of classifying
mental states according to EEG data increases when feature selection techniques such as
scatter matrices [3], linear regression [4], combinations of linear regression with genetic
algorithms [5], mutual information metrics [6], the ReliefF algorithm [7], etc.

The data analysis andmachine learning softwareWeka includes a number of attribute
estimators to select the optimal set of features. This toolkit is used, among other things,
in the selection of features extracted from physiological signals. In [8], to select fea-
tures from physiological signals, the CfsSubsetEval attribute estimator from the Weka
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package with the Logistic classifier was used to evaluate a set of attributes. In [9], the
problem of long learning time and complex calculations based on features extracted from
physiological signals was discussed. Feature selection is carried out using the attribute
evaluators CfsSubsetEval, InfoGainAttributeEval, ClassifierSubsetEva from the Weka
package. The best result was obtained by the ClassifierSubsetEva estimator for the SMO
classifier.

One of the urgent tasks among the classification of mental states according to EEG
data is the classification of states of rest with open and closed eyes according to EEG
data. In [10], the attribute estimator CfsSubsetEval was used to search for the optimal
set of features (frequency components of delta waves and alpha waves) for eye state
recognition. The work [11] considers the issues of selecting features for predicting
the state of the eyes using the EEG. To select features, 5 attribute evaluators from the
Weka package were used. After feature selection, 21 classification algorithms were
investigated. The best result was obtained on a set of features obtained using ReliefF.

The purpose of this study is to analyze the possibilities of applying the feature
selection techniques included in the Weka tool to search for a subset of features in the
time and frequency domains from which mental states can be identified. As an example
for analysis, a classification of rest states with open and closed eyes was chosen.

Thework is organized as follows. Section 1 substantiates the relevance of the research
topic. Section 2 contains the theoretical background necessary for understanding the
work. Section 3 describes the materials and research methods. Section 4 presents the
results of the experiment. Section 5 summarizes the work done.

2 Theoretical Background

2.1 EEG

Currently, EEG is a widely used method for monitoring brain activity. EEG, as a method
for studying brain activity, has almost a century and a half history. The first electrophys-
iological measurements date back to the last quarter of the 19th century. At that time,
the English physician R. Cato conducted the first experiments to measure the electrical
activity of the cerebral hemispheres of rabbits and monkeys. During the experiments,
electrical activity was measured on the naked brains of animals. In 1924, the German
neurologist G. Berger proved that weak electrical currents generated in the brain can be
recordedwithout opening the skull, and began to use the electroencephalographymethod
to record the activity of the human cerebral cortex. In the course of his experiments, G.
Berger established that the EEG changes depending on the functional state of the brain
[12]. Since then, EEG recording has been carried out using electrodes placed on the
scalp.

By the middle of the 20st century, the EEG method has been actively used by many
scientists, but not always in the same way, which has led to a number of inconsistencies
in research. Therefore, in 1947, at the first international congress of EEG researchers,
the need to create a standard electrode positioning system was realized [13]. In 1958,
the International Federation of Electroencephalography and Clinical Neurophysiology
adopted a standard that defines the scheme for applying electrodes, called the 10–20
system [12, 13]. The international 10–20 system is the standard system for positioning
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19 scalp electrodes. The spatial resolution of the 10–20 system is the 10–10 system,
which uses more electrodes. Four electrodes have been renamed in the 10–10 system.
On Fig. 1 shows the location of the electrodes according to the 10–20 and 10–10 systems.
Renamed electrodes are highlighted in red.

Fig. 1. Scheme of electrodes placement for ‘10–20’ and ‘10–10’ systems.

Each electrode is identified by a combination of a letter code and a number. The letter
code indicates the region of the brain. Odd numbers are used to designate electrodes
located above the left brain, odd numbers - above the right hemisphere of the brain. The
letter “z” is used instead of the number in the identifier of the electrodes located above
the midline.

EEG enables analyzing the neural activity of the brain during wakefulness and sleep.
In the waking state, the brain can be at rest (with eyes open or closed), in an active state,
or in a cognitive state [14].

2.2 Building a Classifying Model Based on EEG Data

The classifying model predicts the belonging of objects to a particular class of a cate-
gorical variable, depending on a set of features. The process of building a classifying
model based on EEG data can be divided into two stages: forming a data sample for
training a classifier, training a classifying model (see Fig. 2).

EEG data collection is a process that records the electrical activity caused by the
firing of neurons in the brain. The result of this process is a set of electroencephalogram
records stored in one of the standard EEG data storage formats (EDF, BDF, GDF, EEG,
etc.).
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Fig. 2. Stages of building a classifying model based on EEG data.

During pre-processing of EEG data, artifacts are removed. The purpose of removing
artifacts is to separate data that are true neural signals from extraneous noise that arose
during the registration of electrical activity.

As features for EEG data, indicators from areas related to time series analysis can be
used, such as power spectral density from signal processing, entropy from information
theory, and so on [15].

Feature selection is a process in which a subset of features is extracted from the
extracted feature space, sufficient to solve the classification problem. Feature selec-
tion approaches can be divided into filter methods, wrapper methods, and embedded
methods. The methods of the first group measure the degree of significance of each
feature without taking into account the specific algorithms that will be used to train the
classifying model. The methods of this group are based on probability theory and statis-
tical approaches. Filtering methods enables ranking features by relevance, assessing the
correlation degree of each dependent variable with the target variable. Methods of the
second group involve taking into account the classification algorithmwhen assessing the
significance of features. There are three approaches in this category: forward, backward,
and stepwise selection. Methods of the third group do not separate feature selection and
classifier training The main method of the last category is the regularization (for exam-
ple, Lasso or Ridge) [16–18]. The result of the feature extraction process is a dataset for
the feature selection. In the process of feature selection, a subset of features is formed
on which the classifier is trained.

Further, to train classifiers with a data set containing features obtained from EEG
signals, software designed for machine learning can be used. Currently, there are many
platforms that enable quickly performing training and quality assessment of classifying
models. Among them are the analytical platforms KNIME and Weka. To train and test
a classifying model in KNIME, it is necessary to build a separate workflow for each
classifier. In the Weka Program Analyzer, it is possible to explore the operation of
classification algorithms by selecting an algorithm and setting its parameters through
a system of dialog boxes. The latter makes the Weka Analyzer a popular tool among
researchers.
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3 Materials and Methods

3.1 Formation of the Features Matrix from EEG Records

For the experiment, the data set “EEG Motor Movement/Imagery” [19] was used. This
data set is hosted in the PhysioNet data warehouse in the public domain [20]. The data
set includes EEG recordings of 109 subjects in EDF format. EEG was recorded from
64 electrodes placed according to the international 10–10 system. For each subject, the
data set includes EEG recordings at rest with eyes open and closed, and EEG recordings
in which the subjects performed various motor and imaginary tasks.

For EEG at resting states, a matrix of features extracted using the eeglib Python
library for 19 electrodes corresponding to the international 10–20 system was formed
from the EEG Motor Movement/Imagery dataset. The feature matrix has dimensions
of 218 rows × 210 columns. Each subject is represented in it by two instances of data
that correspond to states of rest with open and closed eyes. For each data instance, the
following features of the time and frequency domains are extracted: the Hjort parameters
(activity, mobility, complexity) and the power of four frequency bands (delta, theta,
alpha, beta) calculated using Welch Power Spectral Density (PSD) and Discrete Fourier
Transform (DFT). The sequence numbers of the extracted features are shown in Fig. 3.

Feature Channel name

Fp1 Fp2 F7 F3 Fz F4 F8 T7 C3 Cz C4 T8 P7 P3 Pz P4 P8 O1 O2
Hjorth 
activity 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Hjorth 
mobility 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38

Hjorth 
complexity 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57

delta band 
power (PSD) 58 62 66 70 74 78 82 86 90 94 98 102 106 110 114 118 122 126 130

theta band 
power (PSD) 59 63 67 71 75 79 83 87 91 95 99 103 107 111 115 119 123 127 131

alpha band 
power (PSD) 60 64 68 72 76 80 84 88 92 96 100 104 108 112 116 120 124 128 132

beta band 
power (PSD) 61 65 69 73 77 81 85 89 93 97 101 105 109 113 117 121 125 129 133

delta band 
power (DFT)134 138 142 146 150 154 158 162 166 170 174 178 182 186 190 194 198 202 206

theta band 
power (DFT)135 139 143 147 151 155 159 163 167 171 175 179 183 187 191 195 199 203 207

alpha band 
power (DFT)136 140 144 148 152 156 160 164 168 172 176 180 184 188 192 196 200 204 208

beta band 
power (DFT)137 141 145 149 153 157 161 165 169 173 177 181 185 189 193 197 201 205 209

Fig. 3. Ordinal numbers of extracted features.
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Pythonwas used to form the featurematrix fromEEG records and convert it to ARFF
(Attribute-Relation File Format) format.

3.2 Feature Selection in Weka

Feature selection in Weka uses a combination of attribute evaluator and search method.
The attribute evaluator is a feature quality estimation algorithm. The search method is
a method for finding the optimal feature space. Search methods define how attributes
are looked up. The individual attribute or attribute set selected by the search method is
passed as input to the attribute evaluator. Table 1 shows a list of the attribute evaluators
used in this work, as well as compatible search methods.

Table 1. Weka attribute evaluators [21].

Attribute evaluator name Algorithm Search method

CfsSubsetEval Feature subset selection
based on correlation

BestFirst, GreedyStepwise

ClassifierAttributeEval Feature subset selection by
using a user-specified
classifier

Ranker

ClassifierSubsetEval Feature subset selection
using the training data or a
separate hold out testing set

BestFirst, GreedyStepwise

CorrelationAttributeEval Feature subset selection
using Pearson’s correlation

Ranker

GainRatioAttributeEval Feature subset selection by
measuring the gain ratio

Ranker

InfoGainAttributeEval Feature subset selection
using information gain

Ranker

OneRAttributeEval Feature subset selection
using the OneR classifier

Ranker

ReliefFAttributeEval Feature subset selection
using the Relief algorithm

Ranker

SymmetricalUncertAttributeEval Feature subset selection
using the symmetrical
uncertainty with respect to
the class

Ranker

WrapperSubsetEval Feature subset selection
using a learning scheme

Ranker
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4 Experimental Results

As part of the experiment, 14 sets of features were generated using the combination of
Attribute evaluator and Search method. When using attribute evaluators that require a
classification algorithm, the Logistic and SMO algorithms were selected from the same
“functions” group. The results of feature selection are presented in Table 2.

Table 2. Feature selection results.

ID Feature selection methodology Feature set

FS1 CfsSubsetEval and
BestFirst (or GreedyStepwise)

24, 58, 59, 62, 63, 82, 124, 128, 134, 138, 204,
205, 208

FS2 CorrelationAttributeEval and
Ranker >0.4

134, 138, 208, 204, 135, 139, 158, 200, 154,
142, 146, 196, 150, 192, 188, 58, 172

FS3 GainRatioAttributeEval and
Ranker >0.2

58, 128, 204, 62, 132, 208, 138, 124, 134, 59,
82, 63, 200, 108

FS4 InfoGainAttributeEval and
Ranker >0.2

62, 134, 138, 58, 204, 63, 128, 132, 135, 208,
139, 154, 124, 59, 78

FS5 OneRAttributeEval and
Ranker >70

62, 134, 139, 204, 128, 138, 58, 132, 63, 208,
124, 120

FS6 ReliefFAttributeEval and
Ranker >0.02

134, 138, 135, 139, 158, 208, 204, 146, 154,
150, 142, 58, 63, 59, 62, 159, 200, 196, 172,
184, 188

FS7 SymmetricalUncertAttributeEval
and Ranker >0.2

62, 58, 138, 134, 204, 128, 132, 208, 63, 124,
59, 139, 154, 200

FS8 ClassifierAttributeEval (Logistic)
and Ranker >0.2

138, 58, 134, 62, 204, 208, 132, 200, 128, 124,
63, 139, 135, 59, 196, 108, 120, 192, 96, 112,
172, 116

FS9 ClassifierAttributeEval (SMO)
and Ranker >0.15

134, 138, 208, 204, 135, 196, 188, 152, 139,
158, 200, 156, 172, 192, 184, 168, 154, 148,
142

FS10 ClassifierSubsetEval (Logistic)
and BestFirst

58, 62, 65, 74, 90, 96, 108, 120, 132

FS11 ClassifierSubsetEval (SMO)
and BestFirst (or GreedyStepwise)

25, 110, 134, 204

FS12 ClassifierAttributeEval (Logistic)
and BestFirst

58,65,66,112,128,134,140,166,189,201

FS13 ClassifierAttributeEval (Logistic)
and GreedyStepwise

58,65,66,112,128,134,140,189

FS14 ClassifierAttributeEval (SMO)
and BestFirst (or GreedyStepwise)

36,117,125,134,159,191,204
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When using the two search methods BestFirst and GreedyStepwise, the same feature
set was obtained in a number of cases. This applies to feature sets FS1, FS11, FS14.

To evaluate the result of feature selection, the following algorithmswere used: Logis-
tic and SMO, as well as the RandomForest algorithm from the “trees” group. Figure 4
compares the accuracy of these classifiers on the full feature set and on 14 subsets of
this feature set.
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Fig. 4. The accuracy of Logistic, SMO and RandomForest classifiers.

When using attribute evaluators that use filtering methods for all classifiers, there
was an improvement in the accuracy estimate compared to the full feature set. Feature
selection is considered successful if the dimension of the feature space is reduced, and
the accuracy of the classifier has become higher or has not changed. The feature selection
methods used to obtain the feature sets FS1, FS3, FS4, FS7, FS10 proved to be successful
for all classification algorithms. At the same time, the best result was obtained on the
FS10 and FS10 set for the Logistic algorithm (the classifier accuracy changed from
72.94% to 88.07%). On average, the classification accuracy for the full feature set was
81.19%. The average classification accuracy increased for all 14 feature sets. For the
FS10 set, the increase in the average classification accuracy was 6.72%.

5 Conclusion

This paper explores the issues of feature selection for solving the problem of classifying
rest states. For the experiment, a set of features extracted from EEG signals in the time



Feature Selection for EEG Data Classification with Weka 287

and frequency domains was used. In the experimental part of the work, 10 attribute
evaluators of the Weka library were studied in combination with search methods to
solve the problem of extracting features extracted from EEG signals. The experiment
shows that when using attribute evaluators using wrapper methods, the accuracy of the
corresponding classifier improves. When using the Logistic algorithm, the classification
accuracy increases by 15.14%. The further direction of work will be directed to the study
of the dependence of the result of the work of attribute evaluators on their settings.

Acknowledgment. The research is supported by Ministry of Science and Higher Education of
Russian Federation (project No. FSUN-2020–0009).
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Abstract. The effectiveness of the correlation-based method (CFS) for feature
selection based on electroencephalogram (EEG) data of the resting state for the
purpose of intelligence assessment is investigated. A modification of the CFS is
proposed, which makes it possible to vary the cardinality of a subset of selected
features using a hyperparameter. A practical example of the analysis of the rela-
tionship between the intelligence quotient (IQ), the age of subjects, the features
extracted from EEG data, and the effects of their interaction is considered. A com-
parison of the genetic algorithm and the forward selection was made to find the
optimal subset of features within the modified CFS. It was found that it is quite
sufficient to use themethod of forward selection. Using the nested cross-validation
procedure, it was shown that the modified approach gives a lower mean absolute
error compared to usual CFS, as well as building a stepwise regression by the
forward selection method based on the Bayesian information criterion (BIC). In
terms of the mean absolute error, the modified CFS is close to the least absolute
shrinkage and selection operator (LASSO) and the improved algorithmBolasso-S.

Keywords: Correlation feature selection · IQ · EEG · Resting state ·
Estimation · Cross-validation

1 Introduction

It is now well known that human cognitive activity is accompanied by electrical oscil-
lations of the brain. In recent decades, various methods have been developed and used
to measure this electrical activity and explore its relationship with brain function. The
most effective measures include fMRI, EEG, fNIR, PET, MEG [1]. Among them, elec-
troencephalogram (EEG) is the oldest and most common technique for measuring brain
activity. The cost of EEG measurements is low enough that university laboratories can
easily afford.

In connection with the development of methods for measuring brain activity, there
is a high interest in studying the relationship between brain activity patterns and human
cognitive abilities when solving specially organized tasks in accordance with the neural
efficiency hypothesis of intelligence [2]. According to this hypothesis, brains of more
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intelligent individualsworkmore efficientlywhen engaged in cognitive task performance
as compared to those of less intelligent ones.

For example, some authors used EEG to study various factors, for example, different
levels of cognitive load during solving various arithmetic problems [3]. The paper [4]
explores the possibilities of assessing intelligence using data from various brainmapping
systems, including EEG data.

Thus, the neural efficiency hypothesis predicts that the level of cognitive abilities
would be correlated to brain activity during cognitive load. However, it is still unclear
whether the brain activity at rest can be a good predictor of individual differences in
intelligence. It has been proposed that the most informative way to investigate resting
state activity is the network neuroscience approach.

However, research on the relationship between the brain resting state activity and
level of intelligence is inconsistent. In some papers the brain resting state characteristics
correlated to intelligence [5] and non-verbal intelligence [6]. However, a recent study [7]
failed to find any significant links between measures of the brain resting state dynamics
and several widely used intelligence measures.

Thus, an urgent task is to find relationships between EEG indicators of the brain
resting state and the results of intelligence tests. One of the important steps in solving
this problem can be finding a set of the most informative EEG indicators (frequency
bands, electrodes) for assessing intelligence.

After feature extraction, a high-dimensional EEG feature space is usually obtained.
The choice of suitable features for the available set of EEG signals is a complex task.
It must be reduced to increase the interpretability of the results and reduce the risk
of overfitting the model. Usually, to solve this problem [4], such methods of feature
extraction are used as Linear Discriminant Analysis (LDA) and Principal Component
Analysis (PCA).

LDA is a supervised algorithm, that is, it uses information about the response, PCA
is based only on the analysis of the correlation matrix of input features, that is, an
unsupervised algorithm. Both approaches build a new feature space based on some
combination of the available features. This is not always convenient either from the
point of view of interpreting the constructed model or from the point of view of design
of subsequent experiments (reducing the number of channels for further EEG studies).
Therefore, this article explores various feature selection methods.

The difficulty of EEGdata analysis is that the extracted features are highly correlated,
so fast and well-scalable one-dimensional methods for feature selection are not suitable
here. They evaluate features individually, so the resulting set includes many redundant,
highly correlated features.

Multidimensional methods take these relationships into account and try to exclude
not only irrelevant (not affecting the response), but also redundant features. Most often,
feature selection is carried out in conjunction with the construction of predictive models
using built-in methods such as LASSO regression [8, 9]. It gives a sparse solution,
including only essential features, which, however, is very sensitive to the regularization
parameter.



Modified Correlation-based Feature Selection for Intelligence Estimation 291

In addition, in the problems of building regressions, stepwise procedures are often
used [10], namely, themethods of forward selection and backward elimination.However,
such greedy search algorithms are not guaranteed to achieve a global optimum.

Finally, another class of feature selection methods is filtering methods. Among mul-
tivariate methods, the approach based on correlations is well known [11]. This approach
is proposed for solving classification problems. Its applicability to feature selection for
IQ estimation fromEEG data has not yet been studied. It is this problem that our article is
devoted to, in which a more flexible modification of the feature selection method based
on correlations is proposed.

2 Theoretical Background

2.1 Modified Correlation Feature Selection

The Correlation-based Feature Selection (CFS) was proposed in [11]. Features are cho-
sen to provide the highest correlation with the response and the weakest relationship
between the features themselves. This solves the following optimization problem:

∑

i∈Sk
Ri

√
k + 2

∑

i, j∈Sk , i �=j
rij

→ max
Sk

, (1)

where Ri is the absolute value of the correlation coefficient between the i-th feature
and the response, rij is the absolute value of the correlation coefficient between the i-th
and j-th feature, Sk is a subset of k features.

Unlike other approaches to the model structure selection, the CFS method does not
allowvarying the complexity of themodel. For example,when using information criteria,
one can choose between the Akaike (AIC), which gives the most complex model, the
Bayesian (BIC), which selects fewer input features, and another combination of residual
sum of squares and number of model parameters. A similar effect is achieved when
using regularization methods by varying the regularization parameter. On the one hand,
this creates additional difficulties, since it is required to choose an appropriate value of
the regularization parameter (to choose between the AIC and BIC criteria). On the other
hand, it gives the approaches additional flexibility.

Probably, not for all practical problems, a fixed ratio between the complexity of the
model (the number of features k) and the correlation with the response (the numerator
of the ratio (1)) will give the best result. In this regard, it is proposed to modify problem
(1) as follows:

∑

i∈Sk
Ri

(

k + 2
∑

i, j∈Sk , i �=j
rij

)c → max
Sk

, (2)

where the constant c allows you to vary the complexity of the model. For c = 1
/
2,

we obtain the well-known problem (1). If c < 1
/
2, then the number of selected features
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will be greater than when c = 1
/
2. For c > 1

/
2, on the contrary, we obtain a smaller

cardinality of the subset of selected features. Further, in the course of experiments on
real data, we will test the performance of the proposed modification.

2.2 Heuristic Search Algorithms

The problem (2) is a non-linear integer programming problem. The search for the global
optimum by enumeration of all combinations leads to an NP-complete problem. In
practice, procedures stepwise variable selection have become widespread, which reduce
the number of calculations, but do not ensure the achievement of the optimal set of input
variables due to “greedy” strategies. Such algorithms are considered heuristic since they
are not guaranteed to be accurate or optimal, but they are sufficient to solve the problem.

Many popular feature selection methods use hill climbing search, a mathematical
optimization technique that belongs to the local search algorithm family. The algorithm
is iterative. It starts with an arbitrary (random) subset of features and then tries to find the
best solution by stepwise changing one of the elements of the (selection or elimination
of one of the features). If at the current step it is possible to improve the solution, then at
the next step the subset of features is again corrected to obtain a new solution. The steps
are repeated until no improvement can be found at some step. Since the initial subset
is chosen randomly, then, generally speaking, the algorithm can give different results
when it is restarted, especially in the case of large data arrays, on which the function
from problem (2) has many local optima.

A special case of hill climbing search algorithms are forward selection and backward
eliminationmethods [12]. In contrast to the general case,where the initial subset is chosen
randomly, these methods assume an exactly specified starting solution. For this reason,
they always give the same result when restarted.

The forward selection procedure starts with a single feature candidate as the desired
subset. This candidate is chosen as a solution to problem (2) for k = 1. This corresponds
to the maximum correlation with the response. Further, in the loop over i, a new subset is
formed by adding another i-th candidate to the already selected (i−1) feature candidates
so that the function from (2) reaches the maximum over all possible candidates added
at the i-th iteration. The following rule is used as a stopping criterion: if at the current
iteration it is not possible to improve the value of the objective function compared to the
previous iteration, then the loop breaks.

Another heuristic approach to solving the optimization problem (2) is genetic algo-
rithms (GA). They are based on procedures analogous to the genetic processes of biologi-
cal organisms. The advantage ofGA is that thesemethods are robust and can successfully
address a wide range of problem areas, including those that are difficult to solve with
other methods. Genetic algorithms are not guaranteed to find a globally optimal solution,
but they are generally good at finding “acceptably good” solutions “acceptably fast”.

Using the genetic algorithm in [13] a selectionmethod based on Pearson’s correlation
coefficients is proposed. During the experiments, it was shown that the proposed method
can be appropriate for improving the efficiency of feature selection.

Authors of [14] used a combination of the CFS method and a genetic algorithm to
select the optimal subset of traits for the recognition of apple leaf diseases. As a result, it
is shown that thismethod of selectionwith support vectormachines (SVM) classification
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has an advantage compared to segmentation based on k-means and classification using
neural networks, as well as the extraction of color features of tomato leaf diseases.
However, the results of the genetic algorithm have not been compared with simpler
procedures, for example, the forward selection.

3 Research

3.1 Data Processing Software

The de facto standard for EEG recording in commercial equipment and in research
projects is now the EDF format [15]. Python libraries such as eeglib [16] was used to
extract features from EEG records. For each instance of data on 19 electrodes, frequency
domains features are extracted, supported by the eeglib: Power of four frequency bands
(delta, theta, alpha, beta) calculated using discrete Fourier transformation (DFT), Power
of four frequency bands (delta, theta, alpha, beta) calculated using the power spectral
density (PSD) estimated through the Welch’s method. So the feature matrix contains
152 columns.

The constructed feature matrix was used in the selection procedures. All calculations
were performed in the R environment using the libraries: MASS for choosing a model in
a stepwise algorithm, GA [17] for applying of genetic algorithm methods. The problem
of subset selection can be naturally treated byGAs using a binary string, with 1 indicating
the presence of a predictor and 0 its absence from a given candidate subset. The fitness
function to be maximized is defined in (2). The maximum number of iterations to run
before the GA search is halted is set to 1000. The population size is set to 50. The
probability of crossover between pairs of chromosomes is set to 0.8. The probability of
mutation in a parent chromosome is set to 0.1. The number of best fitness individuals to
survive at each generation is set to the top 5% individuals.

3.2 Data Description and Preprocessing

The data of EEG records of 107 subjects at rest were analyzed, as well as the values of
their IQ2 component of the intelligence structure according to the Amthauer method,
which shows the ability to abstract. The sample varied by gender (1 - male, 2 - female)
and age. Table 1 shows a contingency table. It can be seen that subjects over 25 years of
age are rare.

As for the distribution of the IQ2 indicator, in group 2 it is more normal than in group
1, which is clearly seen from Fig. 1, a.

For these reasons, it was decided to limit the sample to only individuals with sex
2 and less than 25 years of age. As a result, 79 individuals remained. Individuals were
grouped into age groups: 17 years old, 18 years old, 19 years old and older. It turned out
that the distribution of IQ2 is not the same depending on age. This is shown in Fig. 1, b.

From the EEG data, the band power spectrums calculated using DFT and PSD were
extracted from various channels and frequency ranges. There are 152 features in total.
Since the records had different durations (minimum−2min, maximum−6), the features
were extracted for each minute. Observations for different minutes for one subject were
considered as repeated. As a result, the sample size was 222.
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Table 1. Sample distribution of subjects by gender and age.

Gender Age

17 18 19 20 21 26 31 41

1 3 7 8 6 1 0 0 0

2 15 40 20 3 1 1 1 1

a b

1 2

80
90

10
0

11
0

12
0

Sex

IQ
2

17 18 >=19

90
10

0
11

0
12

0

Age
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2

Fig. 1. Distribution of IQ2 in groups by gender (a) and age (b)

3.3 Estimated Model

During the analysis, it was found that the effect of the interaction of age and EEG features
has a significant effect on IQ2. Therefore, the following model was taken as the basis:

yi = θ0 +
J∑

j=1

θjzij +
k∑

l=1

αlxil +
k∑

l=1

J∑

j=1

γljxilzij + εi, (3)

where yi are the IQ2 values for the i-th observation, zij is the i-th value of the binary
variable reflecting the subject’s belonging to group j by age, J = 2 taking into account
the reduction (the smallest group is excluded −17 years old), xil is the value of the l-th
feature according to EEG data for of the i-th observation, k is the number of features
taken from the EEG data, εi is a random error, θ0, ..., θJ , α1, ..., αL, γ11, ..., γLJ are the
parameters to be estimated.

The model (3) is estimated using regression methods (least squares). The age factor
must be included in the model. When EEG factors are included in the model, the effect
of their interaction with age is also added. The selection of EEG factors is based on the
usual and modified CFS method.

When choosing a correlation measure in relations (1) and (2), it was taken into
account that the input features from the EEG data are quantitative, in addition, the
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response (IQ2), although it takes discrete values (integer numbers), but in a fairly wide
range, so it can also be considered as a quantitative indicator. For these reasons, it is
acceptable to use the usual Pearson correlation coefficient or the Spearman correlation
coefficient (as done below), which provides greater resistance to outliers. When calcu-
lating correlations in relations (1) and (2), other factors included in the model (age and
interaction effects) are also taken into account.

3.4 Results

First, forward selection and the genetic algorithm for the usual CFS method with objec-
tive function (1) were compared on the entire sample. It turned out that forward selection
gives the best solution: the value of the objective function was 0.3269, and for the genetic
algorithm it was equal to 0.3268. Figure 2 shows a plot of best and average values of
the objective function at each step of the GA search. As a result of forward selection,
8 features were selected, and 12 features were selected based on the genetic algorithm.
Thus, the use of a genetic algorithm leads to obvious overfitting.

The forward selection first selects the theta band power for channel T4, the delta
band power for channel O1, the beta band power for channel T4, the beta band power
for channel F4, calculated using DFT. Interestingly, the penultimate feature includes
the beta band power for channel T4, calculated using PSD, which is highly correlated
with the beta band power for channel T4, calculated using DFT (Spearman correlation
coefficient is equal to 0.9914). This indicates that the usual CFS method is prone to
overfitting and needs to be more flexible in order to be able to vary the complexity of
the model.

Fig. 2. Plot of best and average fitness values at each step of the GA search

Next, a comparison was made between the forward selection algorithm and the
genetic algorithm when varying the values of the parameter c in the objective function
(2) from 0.43 to 0.58 with a step of 0.005. In most cases, both algorithms gave the same
results. The Table 2 shows those cases when the optimal values of the objective function
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differed. In general, the differences are not very large. At the same time, the forward
selection algorithm has advantages in terms of execution time, does not require setting
tuning parameters, and gives a deterministic result. Therefore, it was concluded that the
direct selection algorithm is more suitable for solving the optimization problem under
consideration. Further, only this algorithm is used.

Table 2. Comparison of forward selection algorithm and genetic algorithm.

c Objective value from GA Objective value from forward
selection

The difference

0.440 0.575819 0.575818 1.13E–06

0.445 0.544239 0.544238 9.01E–07

0.460 0.462200 0.462199 1.10E–06

0.470 0.417635 0.417636 −2.53E–07

0.490 0.349778 0.349921 −1.42E–04

0.500 0.326816 0.326930 −1.14E–04

0.505 0.317640 0.317648 −7.12E–06

0.535 0.279142 0.279194 −5.22E–05

At the next stage, we checked how the variation of the parameter c in the modified
CFS method affects the number of selected features. The value of parameter c varied
from 0.43 to 0.58 with a step of 0.005. The graph of the obtained values of the number
of selected features k is shown in Fig. 3.

It turned out that with the smallest value c, all features were selected, with the largest
value c, the algorithm returns an empty set. At c = 0.51, the first 4 features listed above
are added. In general, with a reasonable variation of the parameter, it is possible to choose
the structure of the model that satisfies the researcher.

Let’s check how prone to overfitting is the model built by the usual CFS method
compared to the one modified using cross-validation. For this, different cross-validation
procedures were used, as they gave slightly different results. The error in all cases was
calculated as the average module of deviations of the observed response values from the
predicted ones.

The simplest is the leave-one-out cross validation (LOOCV). Here the sample was
drawn from subjects (rather than observations). The advantage of LOOCV is that it is
a deterministic outcome, but only one subject remains per test sample. In addition, a
5-fold cross-validation with 100 repetitions was used. At each repetition, the sample
of subjects was randomly shuffled. Finally, another approach is the Monte Carlo cross
validation (MCCV), which involves random selection of subjects into training and test
samples. The test sample was 20%. 500 repetitions were made. The disadvantage of this
procedure is that the test samples may randomly overlap, and some subjects may not be
included in the test sample at all.
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Fig. 3. Dependence of the number of selected features on the parameter c

Figure 4 shows the mean values of the absolute deviations of the observed response
values from the predicted ones when the values of the parameter c vary from 0.49 to
0.58 with a step of 0.005.

However, in practice there is a problem of choosing the value of the parameter
c. Hyperparameter selection should be separated from the model training procedure.
Therefore, to evaluate the performance of the proposed approach, it is more correct to
use nested cross-validation. To do this, the sample is divided into three parts: training,
validation and test. Here they were divided in the ratio of 60%, 20% and 20%, respec-
tively. On the training sample, features are selected and the parameters of the model (3)
are estimated for various values of the parameter c. The test sample is used to estimate
the prediction error for various values of the parameter c and to choose the optimal
value of the parameter c that provides the smallest average error. Further, this optimal
value is used in the procedure for selecting and estimating a regression model based on
a sample, including training and validation together. Based on the obtained regression
estimates, a prediction is built for the test sample. It is important that here the test sample
is not involved in any way when choosing the parameter c, while in the cross-validation
procedures described above, conclusions about the best or worse value of the parameter
c were made based on the prediction error on the test sample. The procedure is based on
MCCV, that is, the division into three parts was carried out randomly.

The inner cross-validation loop included 100 repetitions. At each iteration, the aver-
age absolute deviations of the predicted response values from the observed values was
calculated for each value of the parameter c. Further, the error was averaged over 100
repetitions. The outer cross-validation loop also included 100 repetitions. It accumulated
prediction errors for all test samples. As a result, the average of the absolute values of
these errors was calculated.

For comparison, the performance of the usual CFS method (at c = 0.5), the forward
selection method based on the BIC criterion, the LASSO and the Bolasso-S [18] were
tested on the same test samples for 100 repetitions. In this case, the training sample
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Fig. 4. Dependence of the error on the c parameter for various cross-validation procedures

included the rest of the observations, that is, the training and validation samples. The
average of the absolute values of the errors are given in the Table 3. The standard
errors of the mean are given in parentheses. In addition, at each iteration of the outer
cross-validation loop, the number of EEG features included in the model was saved.
The median values obtained over 100 repetitions are also shown in the Table 3. In
parentheses are the first and third quartiles of the number of EEG features. It should
be noted that when selecting based on the BIC, LASSO, Bolasso-S, the effects of the
interaction of EEG factors and age did not necessarily correspond to the main effects of
EEG factors. Therefore, when calculating the number of features, the number of main
effects of features was taken from the EEG data in model (3).

Table 3. Comparison of feature selection methods using nested cross-validation.

Method Mean absolute error Number of EEG features

CFS 8.055 (0.173) 8 (7; 9)

modified CFS 6.109 (0.073) 1 (0; 1)

BIC (forward) 8.667 (0.370) 11 (6; 17)

LASSO 6.181 (0.065) 1 (1; 2)

Bolasso-S 6.165 (0.062) 0 (0; 0)

According to the results of nested cross-validation (Table 3), the proposed modifi-
cation of the CFS method with the optimal selection of the parameter c in the objective
function (2) gives the smallest prediction error. In the experiments, in 70% of cases,
one feature was selected from the EEG data. If we use the proposed approach to feature
selection to the entire original data, then this feature is the theta band power calculated
using DFT for channel T4.
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If we limit to choosing only one single feature, that is, with a fixed k = 1 in the
model structure (3), then we can select a feature that gives the least error during the
cross-validation procedure. For this, a 5-block cross-validation with 100 repetitions was
chosen. It turned out that the beta band power calculated using DFT for channel F4
would be the best choice. The mean absolute error was 5.524 compared to 5.986 for the
theta band power calculated using DFT for channel T4. Thus, the CFS method gives
1.08 times the worst result.

Finally, the obtained results are compared with the other regularized procedures:
principal component regression (PCR) andRidge regression. The number of components
and the regularization parameter are chosen using nested cross-validation. The Ridge
regression gives a mean absolute error equal to 5.918, the PCR gives the smallest mean
absolute error 5.745. In all repetitions, one principal component is extracted.

4 Conclusion

The Correlation-based Feature Selection does not guarantee optimal feature selection in
terms of the smallest error of IQ on test samples. However, by the proposedmodification,
it was possible to significantly improve the selection procedure: to make it more flexible.
This made it possible to significantly reduce the error on test samples, thereby reducing
the risk of model overfitting. As result, in terms of the mean absolute error calculated
using nested cross-validation, the modified CFS is close to popular feature selection
methods such as LASSO and Bolasso-S.

From the point of view of the task of estimating IQ using EEG data, the other
regularized techniques, for example the PCR, give a smaller prediction error. This can
be explained by the high correlation of the extracted features from close channels and
frequency ranges. Therefore, in the future, the connectivity patterns of the brain resting
state activity will be used to estimate the intelligence quotient.
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Abstract. In this article, we propose an alternative approach to define
degrees of freedom to improve feature extraction and signal classifica-
tion for EEG-based brain-machine interface systems. The idea is to use
the EEG signal information in the frequency domain and thus weight
the sampled covariance matrices to highlight features. To perform this
step, we use an auxiliary diagonal matrix in which the diagonal entries
are parameterized by two Gaussian membership functions. The param-
eters are determined by the Artificial Bee Colony Algorithm (ABC).
The classification of signals is performed by the Minimum Distance to
the Riemannian Mean (MDRM) algorithm and the experiments use the
dataset IIa of the IV international competition of brain-computer inter-
faces (BCI), in which the proposed approach is compared with the app-
roach of the state of art. The results suggest that the proposed method
can be used to extract significant features and improve the classification
of motor imagery tasks.

Keywords: Brain-machine interface · Artificial Bee Colony · Riemann
geometry · Covariance matrices

1 Introduction

The Brain-computer interfaces (BCI) are robust systems for interpreting brain
electrical activity enabling a communication pathway without any muscle inter-
actions [14]. In BCI systems the user’s thoughts can be interpreted and used to
give action to another device, however, the applications of BCI systems are not
limited to this, we can observe several problem resolutions in the medical area
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for the prevention smoking, alcoholism [1]. Normally, for the acquisition of elec-
trical brain signals, the electroencephalogram (EEG) is the selected biomedical
reading technique as it is robust and mainly non-invasive [12]. A classic use of
BCI systems is for the rehabilitation, commonly, the brain pattern for this task
is that of motor imagery (MI) e.g. motor imagination of the hands, feet and
tongue [13,14].

Unfortunately, the electrical brain activity obtained contains noise [12] that
can reduce system performance, therefore, is necessary to apply robust prepro-
cessing techniques, such as temporal filters, to the raw signal [13]. Currently,
approaches using classifiers based on Riemannian geometry such as the Min-
imum Distance to Riemanian Mean (MDRM) are state-of-the-art for solving
many problems in BCI systems [9]. Flexibility is an important aspect in BCI
systems, as brain electrical activity has a high variance from person to person,
so ideally the system should have high flexibility to maintain acceptable perfor-
mance among a group of individuals [11].

In this paper, we improve feature extraction and classification steps for EEG-
based brain-machine interface systems increasing your flexibility. The approach
proposed by [10] is solved by the Artificial Bee Colony (ABC) plus two Gaussian
membership functions to highlight discriminating features, frequencies, of the
EEG signal. This approach uses the information in the frequency domain of the
filtered EEG signals introducing degrees of freedom to the signal that builds the
covariance matrices by a linear transformation to finally, classify the EEG signal
by the MDRM Algorithm.

In Sect. 2, we discuss the decomposition of the EEG signals using sinusoidal
components and their interpretation for feature weighting and classification using
Riemann distance. In Sect. 3, we describe the ABC. In Sect. 4, the experiment.
Finally, we provide conclusions about the developed method.

2 Brain-Computer Interface Approach

In BCI systems, normally, a chain of procedures is performed following these
steps: preprocessing, feature extraction, feature selection and classification. In
this section we will present our approach to optimizing the classification of EEG
signals.

2.1 Preprocessing by Signal Decomposition Using a Sinusoidal
Basis

In this approach described by [10], there is an alternative to classic temporal fil-
ters. For this, a projection of the EEG signal is performed by a base of orthogonal
signals formed by sinusoids. The methodology is interesting for three reasons:
emulating bandpass filtering, easy access to the spectral content of EEG sig-
nals and reduced computational cost compared to classical approaches. We can
describe it by starting the representation an EEG signal segment as a matrix
Z ∈ R

p×q, where p describes the number of sensors and q the number of samples
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recorded from a sampling rate fs. The signal is projected in the base defined by
2m distinct sinusoidal signals for sine and cosine belonging to the set of frequen-
cies of interest F = {f1, ..., fk, ..., fm}, with k = 1, 2, ...,m. , such that fl ≥ 0;
fu ≤ fs

2 ; fl ≤ fk ≤ fu and finally Δf = |fk − fk+1| = fs

q . Where fl is the mini-
mum frequency; fu is the maximum frequency and Δf is the minimum interval
between frequencies.

A minimization problem is solved to have the new representation of the
signal in the frequency domain filtered in the desired frequency range by the
matrix Γ ∈ R

p×2m where the spectral content is explicit. In each column, i and
i + m, with i = 1, 2, ...,m corresponds to the same frequency in F representing
the filtered Z segment and in the frequency domain. In this work, the spectral
information of the signal by Γ is used in the next steps.

2.2 Feature Extraction by Parameterized Covariance Matrices

Feature extraction is an important step to highlight features to improve the
classification step. In [10], the EEG signal covariance matrices are parameterized
in the frequency domain. This parameterization is given by:

cov{Γ} = ΓWΓT ,W � 0, (1)

where cov{Γ} ∈ R
p×p is the covariance matrix of Γ constructed with an auxiliary

matrix. The matrix W ∈ R
2m×2m has a constraint of being semi-definite positive

symmetric and can be used to weight the frequency information contained in Γ
to highlight discriminant information.

2.3 Defining the W Weight Matrix

An efficient way to define W with a semi-defined positive symmetric matrix is
to use it as a positive diagonal matrix, however, it can still be computationally
expensive and more susceptible to overfitting. A way around this is to adopt two
Gaussian membership functions to define the elements of the diagonal matrix.

The gaussian membership function is popularly presented in fuzzy systems.
In this work, we reduce the computational cost of the process to optimize the
parameters of W adopting two strategies: the classic in Eq. (2) and the modified
by Eq. (3):

y(w, c, σ) = e− 1
2

(w−c)2

σ2 , (2)

where w is the frequency; c is the mean and σ the standard deviation.

k(w, c1, c2, σ1, σ2) = max(e
− 1

2
(w−c1)2

σ2
1 , e

− 1
2

(w−c2)2

σ2
2 ), (3)

where w is the frequency; c1 is mean 1; c2 mean 2; σ1 standard deviation 1 and
σ2 standard deviation 2.

Each element of W is defined by Eq. (2) or Eq. (3), note on the diagonal of
W have 2m parameters, however, the sine and cosine values are associated with
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the same frequency in F so the weights will be equal, for example, using Eq. (2)
we can define the matrix W following this rules: A = concatenation(F, F ), W =
diag(y(a1), y(a2), ..., y(a2m)). The parameters of mean and standard deviation
used to construct those functions are defined by ABC which will be discussed in
the next section.

2.4 Classification by Riemann Distance

Proposed by [2] the MDRM uses covariance matrices as features for classifica-
tion, this technique uses a riemannian distance metric obtained directly from
the geometric space of the covariance matrices. The modeling of the metric for
the minimum distance to the mean is somewhat generic, but using it through
a Riemannian metric is interesting because of the intricate properties of covari-
ance matrices, as they are part of the Riemannian manifold of definite positive
symmetric matrices.

The riemann distance is expressed by the length of the geodesic which is the
smallest possible curve to connect two points in a Riemannian manifold by:

δ2R(P1, P2) =‖ log(P−1
1 P2) ‖2F =

p∑

i=1

log2λi, (4)

where P1 and P2 are any two points (covariance matrices) and ‖‖F the frobenius
norm; λi the eigenvalues of the matrix P−1

1 P2.
MDRM needs classification reference points obtained through the mean

geometry of the covariance matrices by:

M∗
g = argmin

Mg

j∑

i=1

δ2R(Mg, cov{Γi}), (5)

where j is the number of examples, for each class we have a mean matrix, for
example, assuming there are two classes Υ and Ψ the matrices MgΥ and MgΨ are
reference points used to identify a segment of the signal class. To define whether
a segment of the signal Ω belongs to class Υ or Ψ , just calculate the Riemann
distance by Eq. (4), between the means and Ω if it is closer to MgΥ then Ω ∈ Υ
otherwise Ω ∈ Ψ .

It is interesting to highlight that MDRM is a parameter-free algorithm and
the classic approach only needs temporal filters, so the methodology adopted in
this work proposed by [10] is a way to make it more flexible.

3 Artificial Bee Colony

The Artificial Bee Colony (ABC) proposed by [6] is a classic algorithm in swarm
intelligence performing an abstraction of the process for searching and selecting
honey bees forage. For the construction of the algorithm, it is necessary to use
four phases: initialization, employed bees, onlooker bees, scout bees. In the ini-
tialization, the solutions are generated randomly and the others are performed
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iteratively refining the solutions. To control the Algorithm it needs three param-
eters: maximum number of cycles (MCN), number of solutions (SN) and a
threshold for solutions trapped in local traps (LIMIT ) following the descrip-
tions of [5–8] we can describe the algorithm in the next subsections.

3.1 Initialization

The process for building the initial population of solutions is defined uniformly
randomly in the search space, which can be written as:

xij = lj + U(0, 1)(uj − lj), (6)

where j is the j-th variable of decision of i-th solution; 1 ≤ i ≤ SN ; 1 ≤ j ≤ D
and (u, l) are the upper and lower limits of the problem. Then the limit values
for each solution are set to 0.

3.2 Employed Bees Phase

The first group, employed bees, of the algorithm are used to search for food
sources (solutions) in space based on their memory and visual information cre-
ating new solutions vi for each solution xi , i = 1, 2, ..., SN modifying only one
dimension in space of decision variables given by:

vij = xij + φ(xij − xkj), (7)

where k �= i is a randomly chosen index and φ is a uniform distributed random
number between [−1, 1]. Then, for each solution generated, a greedy strategy
is applied between vi and xi, if the solution vi is better then it will replace the
solution xi and the limit for xi will be reset to 0, otherwise it will be discarded
and the limit for xi will increase by 1.

3.3 Onlooker Bees Phase

The second group, onlooker’s bees, use information from food sources to choose
and explore it based on objective function values. For this, a selection based on
the classic roulette wheel method is applied. The probability pi can be defined
as:

pi =
fiti

SN∑
n=1

fitn

, (8)

where fiti is proportional to the value of the objective function of solution xi.
Then, the same process described above for employed bees is applied.



306 D. R. de Souza Alves et al.

3.4 Scout Bees Phase

The third group, scout bees, are applied as a mechanism to escape local traps. In
the optimization process, each solution has a (limit counter) to check if there has
been an improvement. If the solution with the highest limit value has exceeded
or equaled the value of the LIMIT parameter, it will be restarted by Eq. (6).

4 Experiment

4.1 Dataset

Dataset 2a from the IV international competition of brain-computer interface
systems presented by [3] is used with EEG signals from 9 subjects, each per-
formed four distinct cognitive tasks, left hand movement imagination (class 1),
right hand (class 2), feet (class 3) and tongue (class 4). The number of EEG
electrodes placed was equal to 22 described by a sampling rate 250 Hz, in this
dataset there is a division between training (1) and test (2) set, for which each
has 72 tests for each imaginary motor task described above.

In this work, we will only use data from the imagery of the right and left
hands, making use of two scenarios A: training with set 1 and testing with 2 and
B: training with set 2 and testing with 1 for each subject.

4.2 Experiment Settings

Preprocessing of EEG Data. The window extracted starts at 0.5 to 2.5 s
after the cue; totaling 500 samples; fl = 8 Hz and fu = 30 Hz; spacing between
frequencies Δf = 0.5; m = 45 distinct frequencies of the F set of frequencies
{8, 8.5, 9, ..., 29.5, 30} according to guidelines of [10].

Artificial Bee Colony Algorithm Parameters

– Dimensions: the number of dimensions is proportional to the strategy
needed, for example, to construct the Gaussian presented in Eq. (2) we need
two parameters, while for Eq. (3) we need four. The two strategies are repre-
sented, respectively, by ABC2d and ABC4d.

– Search Space: the range defined for each decision variable was stipulated
in a real value for the means of [f1, fm] and standard deviation of [1,10],
however, the mean values are rounded in construction of the Gaussian for the
closest number belonging to the set of frequencies F.

– Runs: 10 independent executions were performed for each subject in scenar-
ios A and B. For the same subject in scenarios A and B, the initial solutions
were the same (same seed)

– SN: number of solutions is equal to 10.
– LIMIT: is equal to SN * dimension.
– MCN: 50 iterations.
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4.3 Objective Function and Wrapper Strategy

As an objective function, we use the stratified 10-Fold cross-validation accuracy
linked to the Wrapper strategy which is an approach to receive feedback from
the learning algorithm. Then, iteratively, the features are weighted. In Fig. 1,
we can see how the Wrapper is happening: iteratively W matrix configurations
are evaluated and selected by applying the proposed ABC2d or ABC4d strategies
after the stopping criterion (MCN) is reached by ABC, we use the best W matrix
found to train (using the full training base) and finally the evaluation for the
test set is performed.

Fig. 1. Strategy Wrapper applied to classify EEG signals; In blue the iterative search
process for parameter optimization. (Color figure online)

4.4 Numerical Results

The Tables 1 and 2 show classification rates in scenarios A and B using descrip-
tive statistics of cross-validation results for strategies ABC2d and ABC4d. The
data sets A6, A7, A8, A9, B3, B4, B5, B6, B8 obtained a good estimate of the
results for the test set.

In Tables 4 and 5 we can see the results obtained for the test set. Adopting
four strategies: W = ABC2d, W = ABC4d, W = I (Identity, original spectral
information) and the results of state-of-the-art approach by MDRM of [4]. The
strategies proposed in this work obtained equivalent or superior results for the
data set: A3, A5, A6, A7, A8, A9, B1, B2, B3, B4, B5, B6, B7, B8, B9. It is
worth highlighting the performance of A7, B5, B7 where there were significant
gains in accuracy.
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The two-tailed Wilcoxon Signed Rank test was applied between the two pro-
posals ABC2d and ABC4d adopting a significance level for α = 0.05 look at
Table 3 for data sets A3, A5, A7, A9, B2, B6, B7, B8 the null hypothesis was
rejected, so there is a significant difference between the two approaches. In this
sets W = ABC4d presented the best accuracy performance for five cases A5, A7,
A9, B2 and B7. This might suggest that W = ABC4d is a better strategy to
define degrees of freedom. The results obtained are competitive with the clas-
sical method by Riemannian Geometry (MDRM) showing an overall superior
average performance of 77.57% and 77.86% respectively by W = ABC2d and W
= ABC4d versus 76.43% by [4] and 75.49% by W = I.

The approach used in this work adjusting the position in space of the geo-
metric mean of the covariance matrices of each class and the dispersion of the
samples. In this way, can minimizing the Riemann distance between the samples
and the geometric mean of its corresponding class. Thus, increasing the accuracy
of the system. However, it was not effective for all cases, a hypothesis for certain
subjects is the variance of samples from datasets 1 and 2 for the same subject.
This could justify the effectiveness of the proposal for scenario A and not for
scenario B or vice versa.

Table 1. Accuracy results obtained from the Artificial Bee Colony Algorithm using
W = ABC2d in scenarios A and B for the Stratified 10-fold cross-validation

W = ABC2d A1 A2 A3 A4 A5 A6 A7 A8 A9 B1 B2 B3 B4 B5 B6 B7 B8 B9

Mean 95.07 62.87 99.33 74.53 79.74 74.61 81.24 97.19 93.10 95.76 65.90 97.95 75.23 72.27 68.75 93.10 97.95 90.83

Median 95.14 62.62 99.33 74.76 79.81 74.38 81.24 97.19 93.10 95.76 65.90 97.95 75.19 72.29 68.62 93.05 97.95 90.95

Std 0.23 0.36 0.02 0.30 0.21 0.33 0.00 0.00 0.00 0.02 0.00 0.00 0.17 0.02 0.28 0.22 0.00 0.26

Best 95.14 63.29 99.33 74.76 79.81 75.00 81.24 97.19 93.10 95.76 65.90 97.95 75.71 72.29 69.29 93.71 97.95 91.00

Worst 94.43 62.57 99.29 74.19 79.14 74.33 81.24 97.19 93.10 95.71 65.90 97.95 75.14 72.24 68.62 93.00 97.95 90.33

Table 2. Accuracy results obtained from the Artificial Bee Colony algorithm using W
= ABC4d in scenarios A and B for the Stratified 10-fold cross-validation

W = ABC4d A1 A2 A3 A4 A5 A6 A7 A8 A9 B1 B2 B3 B4 B5 B6 B7 B8 B9

Mean 96.73 63.73 99.36 75.53 79.33 74.59 81.38 97.26 93.65 96.24 66.02 98.02 76.59 73.70 70.19 94.36 98.35 91.13

Median 96.52 63.95 99.29 75.57 79.14 74.43 81.29 97.19 93.76 96.43 65.93 97.95 76.52 73.64 70.05 94.33 98.62 91.00

Std 1.38 0.34 0.40 0.70 0.77 0.33 0.61 0.23 0.63 0.33 1.63 0.21 0.74 0.86 0.72 0.56 0.34 0.28

Best 98.67 63.95 100.00 76.90 80.43 75.10 81.95 97.90 94.48 96.52 68.86 98.62 77.90 75.10 71.43 95.05 98.62 91.67

Worst 95.05 63.24 98.62 74.86 77.76 74.33 79.90 97.19 92.43 95.76 64.00 97.95 75.14 72.48 69.33 93.62 97.95 91.00

Table 3. Wilcoxon Signed-Rank test results for W = ABC2d versus W = ABC4d in
scenarios A and B for test set

A1 A2 A3 A4 A5 A6 A7 A8 A9 B1 B2 B3 B4 B5 B6 B7 B8 B9

p-value 0.13 0.12 0.04 0.09 0.01 0.51 0.04 0.65 0.00 0.40 0.03 0.40 0.08 0.06 0.01 0.00 0.04 0.37



Feature Weighting on EEG by Artificial Bee Colony 309

Table 4. Classification results of the EEG signals in terms of accuracy for the IIa data
of the IV Competition of BCI systems (Scenario A) for four approaches: W = I; W =
ABC2d; W = ABC4d and Reference [4]

A1 A2 A3 A4 A5 A6 A7 A8 A9

W = ABC2d 88.96 ± 0.22 57.57 ± 1.92 93.68 ± 0.22 70.07 ± 1.89 66.67 ± 0.00 73.47 ± 0.64 82.43 ± 0.57 96.60 ± 0.22 90.28 ± 0.00

W = ABC4d 90.00 ± 1.97 59.17 ± 2.22 92.85 ± 1.43 68.82 ± 1.01 67.85 ± 0.93 72.99 ± 1.06 83.33 ± 1.22 96.53 ± 0.57 92.15 ± 0.57

W = I 93.05 62.5 91.66 73.61 57.63 71.52 65.27 96.52 91.66

REF 93.75 63.19 94.44 75.00 63.19 71.53 72.92 96.53 91.67

Table 5. Classification results of the EEG signals in terms of accuracy for the IIa data
of the IV Competition of BCI systems (Scenario B) for four approaches: W = I; W =
ABC2d; W = ABC4d and Reference [4]

B1 B2 B3 B4 B5 B6 B7 B8 B9

W = ABC2d 78.40 ± 0.51 53.06 ± 1.61 93.12 ± 0.69 67.50 ± 0.91 72.15 ± 1.01 65.49 ± 2.12 72.71 ± 2.91 93.40 ± 0.37 80.76 ± 1.31

W = ABC4d 78.33 ± 3.61 55.62 ± 3.82 92.57 ± 1.88 66.32 ± 1.15 70.00 ± 3.38 62.15 ± 1.77 79.65 ± 1.09 92.57 ± 0.93 80.62 ± 0.83

W = I 75.0 50.00 90.27 63.19 65.27 63.88 74.30 93.05 80.55

REF 74.31 50.00 88.89 65.28 63.89 61.81 73.61 94.44 81.25

5 Conclusion

In this paper, we define degrees of freedom to improve feature extraction and clas-
sification steps for EEG-based brain-machine interface systems. These param-
eters are used to weight the spectral information of the EEG signal to try to
extract discriminant features to optimize the classification step. We adopt the
use of the Artificial Bee Colony Algorithm to construct two Gaussian member-
ship functions that determine the diagonal of the auxiliary parameter matrix
W.

The statistical results suggest that both approaches W = ABC2d and W =
ABC4d are competitive with the classical approach of [4] and W = I with
considerable accuracy gains for certain subjects. The proposed method can be
considered as an alternative, especially when the state-of-the-art approach by
MDRM method does not present an accuracy performance above 90%. Thus, it
is interesting to search alternatives to increase the robustness of the BCI system.

Future works consider investigating the performance of the presented method
for multi-class classification and exploring new ways to determine the W param-
eter matrix to optimize the EEG signal classification task.
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Abstract. Currently, tuberculosis (TB) remains one of the major
threats to people’s health. Specifically, the problem of under-
segmentation due to adhesion of pulmonary tuberculosis lesions to the
pleura is a thorny problem in image segmentation. In this paper, An
effective lung parenchyma patching method is proposed, which is com-
posed of an improved convex hull algorithm with non-uniform rational
B-splines. Our method is mainly divided into three parts. First, the tem-
poral image processing method is used to preliminarily segment the lung
parenchyma. Then, the lesion area was discriminated based on the con-
vex hull algorithm and discrete point derivative frequency. Finally, the
NURBS fitting method is introduced to complete the fitting of the defect
contour. According to our experimental results, the completed lesion
contour blends naturally with the original lung contour. Compared with
some existing algorithms, our method performs better.

Keywords: Lung segmentation · Convex hull algorithm · Non-uniform
ratioinal B-splines

1 Introduction

In this paper, we focus on the patching of the edges of pleural adhesions in
TB lesions, followed by the completion of lung segmentation. However, these
lesions are distributed at the edges of the lung and often show almost the same
pixel values as the chest cavity [1], which makes it difficult to find pixel feature
information that we can use.
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In order to solve the problem that similar pixels cannot be segment, it was
proposed to patch the contour before lung segmentation. Ammi [2] proposed
an automatic lung segmentation algorithm based on improved convex hull algo-
rithm and mathematical morphology technique. Shen [3] used the bidirectional
differential chain code combined with the support vector machine. The method
complements the lung parenchyma. Liu [4] proposed a lung image segmenta-
tion algorithm based on random forest method and multi-scale edge detection
technology.

The main motivation of this paper is to adopt three methods of temporal
image processing, improved convex hull algorithm and NURBS fitting. Use these
methods to gradually realize the process from lung parenchyma completion to
segmentation. Thus, we make the following two contributions: 1) It is proposed
to calculate the frequency of slope change based on equal interval sampling, so
as to effectively judge whether the concave area is the area to be completed. 2)
The NURBS fitting method is introduced to make the contour patching accurate
and efficient.

The rest of the paper is organized as follows: Sect. 2 details our distinguish-
ing and completion methods in the tuberculosis region. Section 3 provides our
experimental results, and Sect. 4 summarizes our method about this paper.

2 Methods

As shown in Fig. 1. The overall framework of our work content can be divided into
three parts. First, the CT images are preprocessed and the lung parenchyma is
segmented. The second step is to determine the area that needs to be completed
according to our proposed method and implement the completion. Finally, the
complete lung parenchyma can be segmented by filling the lung mask.

Fig. 1. Overall process block diagram

2.1 Primary Segmentation of Lung Parenchyma

We use the superposition of multiple image processing methods. The main pro-
cessing steps are summarized in Fig. 2. The rough steps are described as: Binarize
the image using the maximum between-class variance method [5]. Elimination
of vascular shadows in lung parenchyma using closure operation [6]. Extract the
largest connected area [7]. Fill the thoracic region according to the flood fill
method to get its mask [8]. Subtract the results of the above two steps. Set the
connected area threshold to 800, this can remove small artifacts such as trachea
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and medical equipment. Perform a bitwise AND operation on the mask and the
original image to obtain a preliminary lung parenchyma segmentation image.

According to the process flow of Fig. 2, we will show the results of each step as
shown in Fig. 3. Follow the direction the arrow points, The methods of treatment
are as follows: Original image input, Gaussian filtering, binarization, morpholog-
ical operations, connected region selection, hole filling, mask acquisition, edge
extraction, and lung parenchyma extraction.

Fig. 2. Lung parenchyma initial segmentation steps

Fig. 3. Effect of the process of primary segmentation of the lung parenchyma

2.2 Lung Segmentation Method Based on Improved Convex Hull
Algorithm and NURBS

This method will be described in the following way. Compute the convex hull
of the lung from the set of lung contour edge points. Identify the mediastinal
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side and other recessed areas. Identify true and false lesions and solve the over-
segmentation problem caused by false lesions. Locate the points on both sides
of the area to be completed (lesions), Then use non-uniform rational B-splines
to approximate the positioning points.

2.2.1 Find the Convex Hull of the Lung Parenchyma
Before calculating the convex hull, we need to use edge detection technology to
find all the points on the lung contour and set them as P . After that, in order to
quickly find the convex hull, Graham’s algorithm is used to calculate the convex
hull.

Graham scanning method to discriminate concave and convex points [9]:
Suppose two points p0, p1 ∈ P , take the third point p2 and determine the
concavity and convexity of p1 according to the following formula.

r = (p2 − p0) × (p1 − p0) (1)

where “×” is the fork multiplication symbol. Referring to Fig. 4, the idea of
calculating the convex hull of the point set P is as follows: (1) All points on
the point set P are placed in a two-dimensional coordinate system, then the point
with the smallest ordinate must be the point on the convex hull, and this point is
specified as the origin of the coordinate, let it be p0. (2) Calculate the arguments
of other points with respect to p0, arrange the points in ascending order. When
the arguments are equal, the ones closest to p0 come first. (3) Take p2 as the
current point, Calculate the result r of the cross product of the vectors −−→p0p1,−−→p0p2. If r < 0 then determine that p1 is a point on the convex hull. Conversely,
it is not a point on the convex hull. If r = 0, the point farther from the origin is
considered to be the point on the convex hull. (4) Checking if each current point
is the last element in the point set. Keep repeating the above operation, we will
find the convex hull Q of the lung contour.

Fig. 4. Graham scan method to find convex hull
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2.2.2 Eliminate Pseudo-lesions Based on Frequency of Slope Change
Combined with the description of Fig. 5. First, the purple line represents the
convex hull contour of the left and right lung parenchyma. In general, the dis-
tance between the convex hull points at both ends of the mediastinum side C
is the largest adjacent distance in Q, so we set the threshold dis according to
prior knowledge to exclude the mediastinal side. However, the lung contour also
contains true lesions A and pseudo lesions B. According to the analysis, the
difference between true lesions and pseudo lesions lies in the complexity of the
edges of the recessed areas. Therefore, we sample the edges of A and B with
an interval of t and calculate the slope between their two adjacent points and
count the frequency of positive and negative slope changes. The frequency of
slope change between sampling points is defined as follows.

ω =

{
ω + 1 sn−1(y)−sn(y)

sn−1(x)−sn(x)
× sn(y)−sn+1(y)

sn(x)−sn+1(x)
< 0

ω sn−1(y)−sn(y)
sn−1(x)−sn(x)

× sn(y)−sn+1(y)
sn(x)−sn+1(x)

> 0

S = {s1, s2...sn, sn+1}
(2)

Among them, ω is the frequency of slope change, ωinitial = 0. If the slope
values of sn−1sn and snsn+1 have opposite signs, then ω = ω + 1. S is the
lung parenchyma outline point set of the area to be determined, and si (i ∈
{1, 2, 3...n − 1, n, n + 1}) is the point on it.

Fig. 5. Lung area description

2.2.3 Completing the Lung Parenchyma Based on NURBS
A NURBS curve of degree k is defined as [10]:

l(u) =

n∑
i=0

Ni,k(u)λidi

n∑
i=0

Ni,k(u)λi

(3)

where di(i = 0, 1, ..., n) is the control point of the curve. Ni,k(u) is called a canon-
ical B-spline basis function of degree k. It is determined by a non-decreasing
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parameter sequence U : u0 ≤ u1 ≤ · · · ≤ un+k+1 called the node vector u.
λi(i = 0, 1, ...n)represents the weight of each control point

The basis functions in NURBS are evaluated using the Cox-de Boor[11] recur-
sion algorithm as described in Eq. (4).⎧⎨

⎩Ni,0(u) =
{

1 ifui ≤ u ≤ ui+1

0 otherwise

Ni,k(u) = u−ui

ui+k−ui
Ni,k−1(u) + ui+k+1−u

ui+k+1−ui+1
Ni+1,k−1(u)

(4)

The formula shows that to obtain the i -th B-spline Ni,k(u) of k -th power, a
total of k + 2 nodes ui, ui+1, ...ui+k+1 are required.

In order to reduce the influence of the control point weight on the curve, it
is not discussed in the present invention, and all of them are set to 1 by default.
So it is simplified to l(u)

l(u) =
n∑

i=0

Ni,k(u)di (5)

As shown in Fig. 6, the red points represent the control points we located,
The lung contour is fitted according to these points. The yellow curve represents
the fitting result.

After the fitting is completed, using flood fill to fill in the hole area, so that
lung mask is obtained. Lung parenchyma was extracted from the original image
according to the mask.

Fig. 6. The effect of NURBS fitting

3 Experimental Results

In this section, we will specifically discuss the implementation process to verify
the effectiveness of our proposed method. The programming language is python
3.6 in the experiment. The experimental data were selected from CT scan images
of lungs containing pleural adhesions of tuberculosis lesions. The images were
512 * 512 pixels. Our experimental parameters are as follows: 10 < dis < 60 is
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the depressed region to be judged, t = 5 is the sampling interval of the depressed
edge points, ω = 8 indicates the frequency of positive and negative slope changes
between the sampling points, and k = 3 indicates a degree of the curve fitted.

The experimental results are shown in Fig. 7. Lines 1 and 2 represent common
and smaller types of lesions. Although the lesions in the third row seem to have
regular features, their edges are also more tortuous at the pixel level. The fourth
row belongs to the rare lesion location. The lesions in the fifth row have a larger
area of damage.

CT Image Ground Truth U-Net Normal convex-hull LevelSet [13] Ours

Fig. 7. Visual comparison of lung segmentation results.

As far as this study is concerned, although U-net is an excellent image seg-
mentation model, it is almost incapable of segmentation in areas with very close
pixel values, resulting in a lot of under-segmentation. The normal convex hull
algorithm often has the problem of over-segmentation, and the completed con-
tours are all straight lines. This reduces the accuracy of the segmentation. The
level set method mainly obtains the image boundary through continuous itera-
tion, which causes the expansion curve to stop expanding in the lesion area. Our
method can better distinguish true and false lesions, and this method makes the
fitted contour more realistic and accurate.

We randomly selected 100 images of pulmonary tuberculosis lesions con-
taining pleural adhesions as experimental data. Four methods were evaluated
according to four evaluation indicators. The statistical object is the entire lung
parenchyma, so the proportion of lesions is relatively small. The evaluation indi-
cators are defined as formula (6). The statistical results are shown in Fig. 8.



318 X. Shi et al.

Fig. 8. Comparison results of different methods

Dice = 2∗(Rseg∩Rgt)
Rseg+Rgt

RV D =
(

Rseg

Rgt
− 1

)
∗ 100%

Precision = TP
TP+FP Recall = TP

TP+FN

(6)

Among them, Rgt represents ground turth, and Rseg represents the actual
segmentation result. Pixel-level statistics, TP indicates that the segmented pixel
is a pixel in the lung parenchyma, which is actually on the lung parenchyma.
FP indicates that the segmented pixel is a pixel in the lung parenchyma, which
in fact is not in the lung parenchyma. FN indicates that the segmented pixel is
not a pixel in the lung parenchyma, which is actually in the lung parenchyma.

4 Conclusion

Accurate lung parenchymal segmentation can provide strong support for tuber-
culosis lesion detection and disease diagnosis. In this paper, an improved convex
hull algorithm combined with non-uniform rational B-sample method is pro-
posed. Compared with other methods, this method reduces the adjustment of
hyperparameters and enhances the ability of contour prediction. Using this
method, the problem of missing lung parenchyma edges caused by pleural
adhesion type TB lesions can be effectively solved. Thus, the complete lung
parenchyma can be extracted. Experimental results show that our method has
better superiority in lung segmentation.
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Abstract. Occluded person re-identification (Re-ID) is a challenging
task in real-world scenarios due to the extensive conditions that per-
sons are occluded by various obstacles. Although state-of-the-art meth-
ods with additional cues such as pose estimation and segmentation have
achieved great success, they did not overcome data bias and the depen-
dency on the accuracy of other detectors. In this paper, we propose a
novel similar feature extraction network (SFE-Net) for occluded person
Re-ID to address these issues. Firstly, we introduce the adaptive con-
volution method to separate the features of occluded and non-occluded
regions, where local and global features are sufficiently used. We then
apply adaptive aggregating parameters to find a better weighting strat-
egy automatically. Finally, the transformer encoder architecture is uti-
lized for generating discriminative features. Extensive experiments show
SFE-Net outperforms state-of-the-art methods on both occluded and
holistic datasets.

Keywords: Occluded person Re-ID · Adaptive convolution ·
Transformer encoder · Adaptive aggregating parameters

1 Introduction

Person Re-identification (Re-ID) aims at associating the same person in non-
overlapping camera views. It is an attractive task in the computer vision field,
which has various applications in video surveillance, pedestrian tracking, public
security and smart city. Re-ID has achieved significant progress with the devel-
opment of deep learning in recent years. However, in contrast to the existing
holistic Re-ID methods [5,6,18], occluded person Re-ID is more practical and
challenging in real-world scenarios due to the extensive conditions that persons
are occluded by various obstacles (e.g., cars, trees and other persons) or not
captured completely in the cameras.

One of the major challenges in the occluded person Re-ID is how to learn
discriminative features from unoccluded regions. Recently, many methods [9,16]
detect non-occluded body parts using person masks, human parsing or pose
estimation models for accurate alignment of visible body parts. However, their
c© Springer Nature Switzerland AG 2022
Y. Tan et al. (Eds.): ICSI 2022, LNCS 13345, pp. 320–330, 2022.
https://doi.org/10.1007/978-3-031-09726-3_29
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accuracy strongly depends on the additional body part detectors and suffers
from the noises of the datasets bias between the occluded Re-ID and them. The
other methods focus on learning the body parts representations [7], which have
a lower computational complexity but facing some difficulties that generating
discriminative features and ensuring all of salient features available.

Stripe 1 Stripe 2 Stripe 3

Stripe 4 Stripe 5 Stripe 6

(b)ResNet50

(a)Image

(c)ASFE

Fig. 1. Comparison of attention maps generated by similar adaptive features extracting
module (ASFE) and ResNet50. (a) Occluded Re-ID suffers from occlusions in pedes-
trian images. (b) ResNet50 is not robust for occluded Re-ID. (c) Stripe 1–6 show the
attention maps generated by the ASFE. The green boxes highlight the matching of
body parts. The images with red box denote the occlusions (stripe5) or background
noise (stripe6). (Color figure online)

In this paper, we propose a more salient and discriminative part-based
framework named similar feature extraction network (SFE-Net). The framework
include a similar adaptive features extracting module (ASFE), adaptive aggre-
gating parameters (AAP), a transformer-based salience feature capture module
(TSFC) leveraging the transformer encoder [15] and a global branch. Firstly, the
ASFE separates the features of occluded and non-occluded regions by precisely
extracting similar global features from the global feature. As shown in Fig. 1, we
average global features into 6 stripes, and use them as convolution kernels to the
convolution of global feature. Then we get 6 similar global features respectively.
Some of these similar global features are the salient features of the person (such
as stripe1, stripe2, stripe3, stripe4), the others are the occlusions (stripe5) or
background noise (stripe6). A PCB-like [12] strategy is used to supervise the
classification of each local convolutional feature for extracting the most discrim-
inative pedestrian features without any additional body detectors. In this way,
the little patches of the body can be represented more comprehensively through
multiple stripes adaptive convolution. It overcomes the defects of the common
CNN which can not distinguish occlusions also lead to omitting some discrimina-
tive details. Moreover, it is considered which of similar global features are more
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important. Therefore, we use the updatable adaptive parameters to optimize the
features extracted by ASFE. Finally, the TSFC efficiently aggregates these sim-
ilar global features for the more robust feature presentation performance thanks
to transformer architecture.

The main contributions of this paper include: 1) We propose a novel Sim-
ilar Feature Extraction Network to extract complete, unobstructed pedestrian
features and utilize the multi-head attention mechanism to capture salient fea-
tures for more robust performance; 2) We apply the adaptive convolution to
the occluded person Re-ID for distinguishing the pedestrian and occlusion fea-
tures. Only local and global features of occlusion are used without any additional
body detectors; 3) Our approach outperforms state-of-the-art methods on both
Occluded-DukeMTMC [9] which is a large-scale occluded Re-ID benchmark and
holistic person Re-ID datasets.

2 Related Work

Occluded person Re-ID is more challenging due to incomplete information and
spatial misalignment compared to holistic person Re-ID. Miao et al. [9] utilized a
pose estimation method to guide the feature alignment. Wang et al. [16] involved
an adaptive direction graph convolutional layer to suppress the meaningless fea-
tures and a cross-graph embedded alignment layer to align two groups of local
features. Different from the above methods which most rely heavily on additional
tools (human parsing models or pose estimators) to bridge the gap between the
occlusion and non-occlusion. We only use their own feature maps to solve this
problem, which make the method simpler and more effective.

Transformer was first proposed in the field of natural language processing
(NLP) by Vaswani et al. [15], and achieved great success with multi-head self-
attention mechanism. Recently, researchers have started using it in various com-
puter vision tasks. Li et al. [7] proposed the first work that exploiting the trans-
former encoder-decoder architecture for occluded person Re-ID. Transformer
has an advantage in capture long-range dependencies. That is the reason we use
transformer encoder in our proposed approach to capture salience feature from
the similar global features, which contain complete, unobstructed pedestrian
information for better feature representation learning.

Adaptive convolution is a novel approach to the matching task of two images,
proposed by Liao et al. [8]. One of the two images is reshaped as a 1 × 1
convolution kernel, and the convolution is adopted on the other image with this
convolution kernel. Since the channels of the two images are normalized by L2,
convolution actually measures the cosine similarity of each location of the two
features. In addition, the convolution kernel is adaptively constructed according
to the image content. This similarity measurement progress can accurately reflect
the local matching results between two input images. In contrast, we use adaptive
convolution to measure the similarity between local features and global feature
in this paper. As shown in Fig. 2(a), we use local features as the kernels, and
adopt the convolution on global feature respectively. Moreover, we construct an
adaptive local convolution network to generate more discriminative features.
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Fig. 2. (a) The process of adaptive convolution. Local features are adopted to the
convolution of global feature as the convolution kernels. (b) The architecture of ASFE
which consists of the ALCN and channel attention mechanism.

3 Proposed Method

The diagram of proposed similar feature extraction network (SFE-Net) is as
shown in Fig. 3. Firstly, global feature is extracted through the CNN and fed
into the ASFE. For separating the features of person and occlusions, adaptive
convolution is adopted to generate similar global features. Then, we apply the
AAP to weight similar global features effectively. Finally, the TSFC is utilized to
make the model pay more attention to salient person features. The global branch
is involved in the baseline to establish the relationship between global feature
and local features. This way can significantly improve the alignment performance
of the model.

Fig. 3. Illustration of our proposed SFE-Net.



324 X. Jiang et al.

3.1 Similar Adaptive Features Extracting Module (ASFE)

In this module, we separate the features of occluded and non-occluded regions by
adaptive convolution method. Then, we construct the adaptive local convolution
network (ALCN) to generate robust similar global features. Finally, we use an
effective channel attention mechanism, as shown in Fig. 3.

Adaptive Local Convolution Network (ALCN). Suppose a person image
x, the feature map generated by CNN backbone is F ∈ R

h×w×c, where h,w, c
denote the height, width and channel dimension of the feature maps respectively.
We equally partitioned the global feature into M horizontal stripes, generating
the local features fi(i = 1, 2, 3, . . . ,M) which have the size of 1 × 1 × c through
max pooling. Then ALCN is adopted to separate occluded and non-occluded
features combined with their respective classification supervision, as shown in
Fig. 2(b). Adaptive convolution is the process of measuring similarities between
local most salient features and global features, so we convolute F with fi. And
after that, all similar global features will be aggregated in their respective local-
ities. Inspired by [10], we construct a relation network to build the relations
between the stripes and the global rather than simply concatenation. Through
the relation network, more discriminative features are generating to over the
interference of the similar local features in different pedestrians. The relation
network finally generate more discriminative features ri(i = 1, 2, 3, . . . ,M) which
contain information of the convoluted features and global feature. Thus the fea-
ture maps through the ALCN can be denoted as:

ri = F + C (R (F ) , R (A (fi, F ))) , (1)

where A denotes an adaptive local convolution process and fi is the convolution
kernel. C is a concatenation, R is a 1 × 1 convolution. The overall structure of
ALCN is designed referencing from a residual block [2].

Channel Attention Mechanism. To further improve the feature representa-
tion capability of the model by focusing on salience features and suppressing
unnecessary ones, we used the Channel attention module proposed by [17]. The
features can be denoted as ratti (i = 1, 2, 3, . . . ,M).

3.2 Adaptive Aggregating Parameters (AAP)

Recently, there have been many methods to improve the identification capacity
of occluded pedestrians from the perspective of the types, positions and sizes of
occluded objects, but in practical applications, these are unpredictable. There-
fore, we use AAP to auto adjust the impact of different occludes on pedestrian
detection in images. After the ALCN, we get similar global features measured
by various stripes, but inevitably there are stripes that are mostly occluded. So,
the similar global features generated by these stripes are likely to contain full of
occlusions, which will greatly impact the reference stage. AAP is used to adjust
the classification score automatically. After that, higher weights are assigned
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to features that are helpful for pedestrian classification and lower weights to
helpless or noisy features. Our method can flexibly distinguish different occludes
without relying on manual labels. The features for classification can be denoted
as:

Qi = λir
att
i , (2)

where λi(i = 1, 2, 3, . . . ,M) is the adaptive aggregating parameters which are
learnable.

Loss Function. Cross entropy loss is adopted for learning supervision, and
label smoothing [13] is also used to prevent the model from overfitting. The
classification loss is defined as:

LALFE =
1
M

M∑

k=1

N∑

j=1

−qj log Qi

{
qj = ε/N y �= j
qj = 1 − N−1

N ε y = j

}
, (3)

where N represents the number of pedestrian identities, qj is the smoothing label
and ε is set to be 0.1, true label of the image is y.

3.3 Transformer-Based Salience Feature Capture Module (TSFC)

To satisfy the input requirements of the transformer encoder, we first concatenate
all M similar global features ratti and reduce the channel dimension to d with
a 1 × 1 convolution, then flatten the spatial dimension to create a 1D feature
map Q̂i ∈ R

hw×d(i = 1, 2, 3, . . . ,M) without embedding spatial position. We set
multi-head to M, so a sequence [Q̂1, Q̂2, Q̂3, ..., Q̂M ] is fed into the transformer
encoder, and each element in the sequence corresponds to the similar global
feature for each stripe. Finally, we get a salient feature

[
Q̂sal

1 , Q̂sal
2 , Q̂sal

3 , . . . , Q̂sal
M

]
.

Training Loss. We use cross entropy loss which can be found in Eq. 1 and
triplet loss [3] as our targets.

LMSF = LCE

(
ˆQsal
M

)
+ Ltri

(
ˆQsal
M

)

= −qilog
(

ˆQsal
M

)
+

∣∣∣α + dQ̂sal
AM ,Q̂sal

PM
− dQ̂sal

AM ,Q̂sal
NM

∣∣∣
+

,
(4)

where α is a margin, dQ̂sal
AM ,Q̂sal

PM
denote the distance between a same identity

pair and dQ̂sal
AM ,Q̂sal

NM
is from different identities.

3.4 Global Branch

A residual module [2] behind the ResNet50 for the extraction of deep features,
trying to extract more detailed and discriminative features from pedestrians.
In addition, the position of pedestrians in the image can be well located to
compensate for the alignment ability of local features. The features generated
by the residual module is defined as F res. The global training loss also combines
cross entropy loss with triplet loss.
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4 Experiments

In this section, we first evaluate the SFE-Net on Occluded-DukeMTMC [9], two
widely generic person Re-ID benchmarks: Market1501 [19] and DukeMTMC [20].
Then we conduct ablation studies to validate the effectiveness of each component.

4.1 Datasets and Evaluation Metric

Market1501 contains 1501 identities from 6 cameras. All 32668 images are split
into two parts, 12936 images of 751 identities for training and 19732 images
for testing. DukeMTMC contains 1812 identities from 8 cameras. It consists of
36411 images which has 16522 images of 702 persons for training, 2228 images
of another 702 persons for query and the remaining 17661 images for gallery.
Occluded-DukeMTMC is selected from DukeMTMC, which consist of 15618
training images, 2210 query images and 17661 gallery images. It is more chal-
lenging due to containing large scale of obstacles and overlapping camera views.
We adopt the widely used evaluation metrics, the cumulative matching charac-
teristic (CMC) curve and the mean average precision (mAP). All experiments
are conducted in a single query setting.

4.2 Implementation Details

All input images are resized to 384 × 128 and augmented with random horizontal
flipping, random cropping and random erasing [21] with a probability of 0.5. We
adopt ResNet50 [2] as our convolutional neural backbone, and set the last spatial
down-sampling operation to 1 for higher spatial resolution. M is set to 6. The
embedded dim for the transformer encoder is set to 768, and the depth is 4.
SFE-Net is trained on 2 GeForce GTX 1080 Ti GPUs with a batch size of 64.
We adopt Adam optimizer with 170 epochs. The initial learning rate is set to
4 × 10−6 and we adopt warm-up strategy to linearly grow the learning rate
to 4 × 10−4 at 10 epochs, decaying every 20 epochs after 40 epochs with the
factor 0.5.

4.3 Comparison with State-of-the-art Methods

Results on Occluded-DukeMTMC. We evaluate the performance of our
model on Occluded-DukeMTMC. As shown in Table 1, two types of occluded
Re-ID methods are compared with our method: holistic Re-ID methods (HA-
CNN [6], Adver Occluded [5], PCB [12]) and occluded ReID methods (PGFA
[9], HOReID [16], PAT [7]. Our proposed SFE-Net achieves 54.6% mAP, 65.1%
Rank-1 accuracy, 79.8% Rank-5 accuracy, 85.0% Rank-10 accuracy, which set a
new SOTA performance. Compared to the holistic method PCB [12], our SFE-
Net surpasses by 20.9% in mAP and 22.5% in Rank-1. Compared with the SOTA
occluded ReID method, our model surpasses them by at least 1% mAP and 0.6%
Rank-1 accuracy without using any external clues such as person masks, human
parsing or pose estimation.
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Table 1. Comparison with state-of-the-arts on Occluded-DukeMTMC.

Method Occluded-DukeMTMC

mAP (%) Rank-1 (%) Rank-5 (%) Rank-10 (%)

HA-CNN [6] (CVPR 18) 26.0 34.4 51.9 59.4

Adver occluded [5] (CVPR 18) 32.3 44.5 – –

PCB [12] (ECCV 18) 33.7 42.6 57.1 62.9

PGFA [9] (ICCV 19) 37.3 51.4 68.6 74.9

HOReID [16] (CVPR 20) 43.8 55.1 – –

PAT [7] (CVPR 21) 53.6 64.5 – –

SFE-Net (Ours) 54.6 65.1 79.8 85.0

Results on Holistic Re-ID Datasets. We also conduct an experiment on two
holistic Re-ID datasets: Market1501 and DukeMTMC, and reported in Table 2.
All the methods are divided into three groups, the first group are the part-
based Re-ID methods (PCB [12], VPM [11]), the second group are the attention
based methods (IANet [4], MHN-6 [1]) and the third group using the external
cues (AANet [14], HOReID [16]). Our proposed SFE-Net achieves 95.6%/88.4%
Rank-1/mAP and 89.7%/78.6% Rank-1/mAP on Market1501 and DukeMTMC
datasets, which saturate competitive performance with the SOTA methods on
both datasets.

Table 2. Comparison with state-of-the-arts on Market1501 and DukeMTMC.

Method Market1501 DukeMTMC

mAP (%) Rank-1 (%) mAP (%) Rank-1 (%)

PCB [12] (ECCV 18) 77.4 92.3 66.1 81.8

VPM [11] (CVPR 19) 80.8 93.0 72.6 83.6

IANet [4] (CVPR 19) 83.1 94.4 73.4 87.1

MHN-6 [1] (ICCV 19) 85.0 95.1 77.2 89.1

AANet [14] (CVPR 19) 82.5 93.9 72.6 86.4

HOReID [16] (CVPR 20) 84.9 94.2 75.6 86.9

SFE-Net(Ours) 88.4 95.6 78.6 89.7

4.4 Ablation Studies

In this section, we evaluate the effectiveness of each component on Occluded-
DukeMTMC, as shown in Table 3. In Index-1, our baseline remove all the
modules and only use ResNet50 to extract M stripes local features fi, (i =
1, 2, 3, . . . ,M) combined with an additional residual global feature F res. It only
achieves 46.2% Rank-1 and 38.6% mAP.
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Table 3. Effectiveness of our proposed SFE-Net on Occluded-Duke.

Index ASFE AAP TSFC mAP (%) Rank-1 (%)

1 × × × 38.6 46.2

2
√ × × 53.0 64.2

3
√ √ × 53.5 64.6

4
√ √ √

54.6 65.1

At first, we add the ASFE to the baseline. As shown in Index-2, the ASFE
can significantly improve the performance by 14.4%/18% in mAP/Rank-1 over
the baseline. It proves that different from [8], our proposed adaptive convolution
of global features with local features can play an important role in the distinction
between pedestrians and occlusions.

Secondly, we evaluate the effectiveness of the AAP based on the incorporation
of baseline, the ASFE and the AAP. In Index-3, the performance can be further
improved by 0.5%/0.4% in mAP/Rank-1. It indicates that optimization of weight
distribution for different similar global features can generate more discriminative
features, which will further improve the performance of adaptive convolution.

Finally, we use all the modules to verify the effectiveness of the TSFC in
Index-4. The mAP and Rank-1 can be improved by 1.1% and 0.5% respectively,
and achieves SOTA performance. In this experiment, we set the number of multi-
head to M for preventing features from interfering with each other. The exper-
iment proves that the features extracted after transformer architecture become
more robust.

5 Conclusion

In conclusion, to solve the problem of data bias and the dependency on the
accuracy of other detectors in occluded person Re-ID, we propose a novel similar
feature exaction network (SFE-Net). The ASFE is designed to distinguish the
pedestrian and occlusion features by adaptive convolution. The AAP is proposed
to weight various local features effectively. The TSFC is utilized to generate
discriminative features. Through the combination of these three components,
salient person features are extracted effectively, and occlusions, background noise
are filtered. Experimental results show our method achieves the state-of-the-art
performance and demonstrates the effectiveness of each module.
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Abstract. Biological classification based on gene codon sequence is critical in
life science research. This paper aims to improve the classification performance
of conventional algorithms by integrating bacterial foraging optimization (BFO)
into the classification process. To enhance the searching capability of conventional
BFO, we leverage adaptive T-distribution variation to optimize the swimming step
size of BFO, which is named TBFO. Different degree of freedom for t-distribution
was used according to the iteration process thus to accelerate converging speed
of BFO. The parameters of Artificial Neural Network and Random Forest are
then optimized through the TBFO thus to enhance the classification accuracy.
Comparative experiment is conducted on six standard data set of DNA codon
usage frequencies. Results show that, TBFO performs better in terms of accuracy
and convergence speed than PSO, WOA, GA, and BFO.

Keywords: Bacterial foraging optimization · Artificial neural networks ·
Random forest · Life classification · T-distribution based BFO

1 Introduction

According to genetic central dogma [1], genetic information begins with DNA, and the
genome’s coding DNA describes the proteins that make up an organism in 64 different
codons and a stop signal. These codons map to 21 different amino acids, and then go
through Transcription and translation processes ultimately produce proteins that perform
biological functions. In the process of protein translation, there are different frequencies
of use among synonymous codons, and the phenomenon of preferring to use certain
codons is called codon bias [2], which may point to class of life. Life classification
helps to understand biodiversity and is a basic method for studying organisms [3]. Bio-
logical classification divides organisms into diverse levels such as species and genera,
and scientifically describes the morphological structure and physiological functions of
each level to clarify the affinities and evolutionary relationships between different taxa.
Classifying organisms helps to gain deeper understanding of biological diversity and
to protect biological diversity. Since the newly discovered organisms continues post-
ing challenges for classification and there are currently 9 million unnamed species in
insects and invertebrates alone, and scientists typically spend long hours in the lab
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sorting through collected specimens [4], proposing effective and efficient classification
algorithms can yield important practical significance for researchers.

This paper attempts to classify properties of nucleic acids from the use and fre-
quency of various synonymous codons by comparing the performance of a variety of
machine learning methods including k-Nearest Neighbors [5] (KNN), Random Forest
[6] (RF), NaïveBayesian [7] (NB), Decision Tree [8] (DT), Artificial Neural Network [9]
(ANN), Support Vector Machine [10] (SVM), Logistic Regression [11] (LR). Moreover,
we leverage swarm intelligence optimization algorithms including Bacterial Foraging
Optimization [12] (BFO), Particle Swarm Optimization [13] (PSO), and Whale Opti-
mization Algorithm [14] (WOA) to optimize the classification process thus to enhance
the classification accuracy due to their efficiency and simplicity.

The combination of heuristic algorithms and specific classifiers is typically real-
ized in the feature selection step [15]. Traditional feature selection method generates
feature subsets by traversing the entire data set and evaluates the features through an
evaluation function, thus to sort and select the features. Heuristic algorithms have excel-
lent performance in optimization and can be combined with the evaluation procedure
of feature selection [16]. Among the heuristic optimization algorithms, BFO has the
advantage of simple structure and global optimization capability and has been widely
used in many fields. Wu [17] proposed a power optimization control strategy based on
an improved bacterial foraging optimization (IBFO) algorithm. Xing [18] used Bayesian
network structure learning combined with improved BFO to solve the problem of track
circuit fault diagnosis. Zhang [12] proposed a prediction control model designed with
ANN optimized by the hybrid algorithm with quantum particle swarm optimization and
improved bacterial community foraging. The BFO can be applied to train the classifier
of feature selection. However, on account of the complexity of some datasets, training a
basic BFO often takes long time. Besides, the conventional BFO algorithm adopts fixed
step size, which makes it difficult to balance exploration and utilization capabilities.

This paper proposes a BFO based on the adaptive t-distribution mutation (TBFO).
In the TBFO algorithm, the adaptive t distribution [19] variation is used to optimize the
moving step, so that the individual bacteria have higher chance to leap out of the local
optimum and converge to the global extreme point, which enhances the convergence
speed as well.

The primary contributions of this paper are as follows:

1. Improve BFO by the adaptive t-distribution transmutation to converge the moving
step.

2. Integrate the improved BFO with ANN and Random Forest method to enhance the
accuracy of the organism classification.

Rest of the paper is organized as follows: Sect. 2 describes twomainmachine learning
methods applied in the experiment, Sect. 3 introduces t-distribution variation based BFO
combined with ANN and RF, Sect. 4 deals with the simulation experiment and Sect. 5
discusses the results obtained. Finally, Sect. 6 makes conclusions and looks to the future.
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2 Related Work

2.1 Random Forests

Random forest [6] refers to a predictor that uses multiple trees to train samples and
make regression predictions. Bootstrap is used for random sampling of data sets to
extract N sub-data sets, and M features are selected from all features of the sub-data sets
for segmentation of each node. M is a predefined number. Random forest will find the
optimal segmentation point of each tree, and the rest of the tree is similar to the decision
tree. Then, the predicted value of all branches is averaged to get the final predicted
value. RF has the advantages of fast training speed, excellent prediction effect, strong
generalization ability and strong robustness.

2.2 Artificial Neural Networks

Neural networks [13] originate from the practice of mimicking human intelligence
through computer models. Neural network is composed of many artificial neurons
through certain interconnection. Although the structure of individual neurons is rela-
tively simple, their complex connections (topology) will form powerful networks. A
neuron generally has multiple inputs, which are weighted and summed by combinato-
rial functions, and then output is generated by the activation function of the neuron. The
strength of connections between neurons is represented by weights. Activation functions
commonly used are Sigmoid function, Tanh (hyperbolic tangent function) and so on.

2.3 Random Forests and Artificial Neural Networks with Swarm Intelligence

Due to the fact that optimal or near-optimal values of machine learning ‘s parameters
play an essential role in solving a concrete case, [20] one of the biggest challenges aswell
as problems is to confirm them. However, there are no common rules. Aiming to address
each concrete case, determining a distinct set of parameter’s values is indispensable.
Acquiring optimal or near optimal values of the parameters is an NP-hard task [21],
besides, heuristics algorithms like swarm intelligence methods can be applied to solve
it.

In general,meta-heuristic algorithms, especially swarm intelligence algorithms, have
many successful applications in different fields such as image segmentation, classifica-
tion, clustering [22]. Swarm intelligence is commonly inspired by some social behaviors
conducted by a group of universal and simple individuals, like geese, ants, bees, fire-
flies, moths, bats, dragonflies, etc. In the same group, these sample units coordinated
efficiently through intelligent behaviors. Especially, no specialized center will organize
or command the units of all individuals. This property of swarm is generally applied as
inspiration for swarm intelligence algorithms.

Stochastic or deterministic methods are exploited to train ANN and RF. Gradient-
based training and backpropagation are most commonly used for neural networks opti-
mization. These are deterministic methods, but they often suffer from local optima stag-
nation, disappearing gradients, and slow speed convergence. Two optimization strategies
for random forests [23]: feature selection and parameter optimization, which can lead
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to overfitting problems. Swarm intelligence has strong self-learning, self-adapting, self-
organizing and other intelligent characteristics, the algorithm structure is simple, and the
convergence speed is fast. This feature effectively establishes optimal or near-optimal
parameter values in machine learning algorithms, which can avoid being stuck in local
optimization and speed up convergence.

2.4 Bacterial Foraging Optimization (BFO)

BFO [13] is a swarm intelligence optimization algorithm suggested by Passino Kevin
(2002) [12] based on the behavior of Ecoli Escherichia coli. It has been widely used in
many fields and has become another hot spot of heuristic algorithm. According to the
bacterial foraging theory, bacterial populations have a strong preference for nutrients.
But under the constraints of their own physiology and environment, the goal of their
movement is to move towards the position of maximum energy. The foraging behavior
is primarily comprised of three basic steps: chemotaxis, replication, and migration.
Introduce symbols for the convenience of description: S is the population size, NC is the
number of trending operations, NS is the maximum number of steps that the trending
operation moves in any direction, Nre is the number of breeding behaviors, Ne is the
number of migration behaviors, and Ped is the migration probability.

Chemotaxis: Bacteria swim in any direction. If the fitness increases, they will continue
to swim in that direction until the maximum number of steps Ns is reached, otherwise
they will switch directions and swim until the number of trending times Nc is reached.
The trend operation of bacteria i is expressed as Eq. (1):

θ i(j + 1, k, l) = θ i(j, k, l) + C(i) × �(i)√
�T (i)�(i)

(1)

where the θi(j, k, l) indicates the concentration of nutrients in j chemotaxis,k reproduc-
tion and l elimination-dispersal. C(i) is the chemotaxis step and �(i) is a random vector
limited in [−1,1].

Reproduction: According toEq. (2), the fitness of bacteria after chemotaxis is evaluated
and bacteria are sorted accordingly. The superior half population will replace the other
larger half. By no means, the population of bacteria keeps the same. This algorithm
executes Nre times reproduction programs.

fi,health = ∑Nc
j=1 J (i, j, k, l) (2)

where the fi,health is the health value of bacteria i and J represents fitness value given by
the objective function. The algorithm generally retains and replicates the larger health
value once, and discards half of the smaller health value to ensure that the foraging
ability of the bacteria community is improved concurrently.

Elimination and Dispersal: Bacteria may gradually migrate to other environments in
the living environment to cope with sudden adverse environmental changes (such as
natural disasters). In order to simulate this behavior, the algorithm gives a predetermined
migration probability, and after several replication operations, some bacteria migrate.
For the algorithm, this operation shows massive assistance in jumping out of the local
optimal solution, so as to confirm the global optimal result.
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3 The Proposed Method

3.1 BFO Based on T-distribution Variation (TBFO)

In the conventional BFO algorithm, the most critical step in the BFO algorithm is the
chemotaxis process of bacteria, which ensures the local searching ability of bacteria.
However, the swimming step size C(i) of the original algorithm is a fixed value, which
makes it difficult to determine the step size and cannot reflect the difference between
bacteria with different fitness values. This reduces the accuracy and speed of the search
process. To overcome this problem, an improved method for the walking step C(i)′ is
proposed by using adaptive t-distribution variation to optimize the walking step [24].

The t-distribution is characterized by the parameter of degree of freedom n, and
its curve shape is related to the size of the degree of freedom n. when t(n → ∞) →
N (0, 1), t(n = 1) = C(0, 1), whereN (0, 1) is Gaussian distribution,C(0, 1) is Cauchy
distribution. The standard Gaussian distribution and the Cauchy distribution are two
boundary special distributions of the t distribution, and the function distributions of the
three are as follows (Fig. 1):

Fig. 1. T-distribution mutation (Han Feifei 2018).

We introduce the adaptive t distribution to improve step size of bacteria as shown in
Eq. (3):

C(i)
′ = C(i) + C(i) ∗ t(iter) (3)

where C(i) is the ith walking step; t(iter) is the t distribution that use the BFO iteration
number as the degree of freedom. The random interference term of t distribution type
C(i)·t(iter) is added, so that the individual bacteria can leap out of the local optimum and
converge to the global extreme point. Additionally, this helps to improve the converging
speed [24].

We used the iteration of BFO algorithm as the freedom degree to restraint curve
shape of t distribution. In the early period of the algorithm when the value of the itera-
tion number is small, the mutation of t distribution substantially resembled the Cauchy
distribution with a wide and global exploration ability; the variation of t distribution
is close to the variation of Gaussian distribution, which has a good local development
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capability; in the middle stage, the variation of t distribution is between the variation
of Cauchy distribution and Gaussian variation. It combines the advantages of Gaussian
operator and Cauchy operator, which can simultaneously improve the global explo-
ration and local exploitation capability of algorithm. This interference also enhances the
diversity of the population. The pseudocodes of TBFO are as follows:

Initialize the parameters of the TBFO algorithm: 

Initialize bacterial population
Evaluate the fitness value 

For i in 1:
Initialize t-distribution with the iteration
Update the swim length of the chemotaxis with the equation (3)
Calculate new fitness value 
Let t=0 (initialize a counter)
While t>Ns

t=t+1
If new fitness < original fitness

Replace the original fitness
End

End
End
Do the Reproduction with equation (2) 

End
Do the Elimination as basic BFO
Do the Dispersal as basic BFO

End
End

3.2 TBFO Combined with ANN and RF

The parameters that need to be adjusted in the ANN and RF models can be optimized
by TBFO algorithm. As for ANN, a biggest challenge need to be solved is how to select
the best numbers of nodes of hidden layer and the optimal numbers of hidden layers.
Historical experiment shows that if the number is too small, ANNwould be weak to own
superefficient learning ability as well as the great competence to process information,
like Fig. 2 (left). On the contrary, when it grows big exceedingly, the complexity of
ANN’s structure would increase out of control which continues to be a hard-run model.
Furthermore, falling into a local minimum would become another deadly reason to low
accuracy during the process of running. What’s worse, the lower learning speed should
be taken into considerations, like Fig. 2 (right). Anyway, the right network structure will
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be of severe help. Therefore, we use TBFO to optimize the value of nodes in the hidden
layer and the number to decide the hidden layers.

Fig. 2. Influence of hidden layer in ANN.

As for RF, n_estimators is the number of trees in the forest. The effect of this
parameter to the random forestmodel is substantiallymonotonic. The larger n_estimators
is, the better the model tends to be. Correspondingly, there is a decision boundary in any
training model. After n_estimators reaches a certain value, the training result will never
rise or start to fluctuate. Moreover, when n_estimators grows exceedingly, the amount
of calculation and memory need to be required, and the time of training takes longer.
For this reason, we are eager to strike this parameter into a balance between lower
training difficulty and greater performance. Hence, TBFO was used and the specific
implementation of the code can be seen at https://github.com/unfold333/Random-For
ests-and-Artificial-Neural-Networks-with-TBFO.git.

The iterative steps of model parameter optimization are as follows (Fig. 3):

Fig. 3. TBFO enhanced ANN and RF

https://github.com/unfold333/Random-Forests-and-Artificial-Neural-Networks-with-TBFO.git
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4 Experiment

4.1 Data Description

We used the data set (http://archive.ics.uci.edu/ml/datasets/Codon+usage) from the UCI
machine learning repository, and the data set covers DNA codon usage frequencies of
large sample of diverse biological organisms from different taxa. The data set used in
the experiment contains 13028 instances with 69 attributes. The Kingdom and DNA
type columns are selected as the prediction objects of the model. And to reduce some
complexity, both of two columns are di-vided into several categories. The description of
it is showed in Table 1.

Table 1. Data set description.

Column Introduction

Kingdom Code that classifies the genome, corresponding to ‘xxx’ in the Codon Usage
Tabulated from Genbank (CUTG) database [22];
1-‘arc’(archaea), 2-‘bct‘(bacteria), 3-‘euk’(eukaryotes),
4-‘png’(phage),5-‘vrl’(virus)

DNA type An integer for the genomic composition;
0-genomic, 1-mitochondrial, 2-cyanelle

Species ID The integer that indicates the entries of an organism;

Ncodons The sum of the numbers listed for the different codons in an entry of CUTG;

Species name Descriptive label of the name of the species

Codon The codon frequencies, which are recorded as floats

4.2 Parameter Setting

The parameter setting of ANN and optimization algorithms, namely, PSO, WOA, GA,
and BFO, TBFO are reported in Table 2.

http://archive.ics.uci.edu/ml/datasets/Codon+usage
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Table 2. Parameter setting.

Method Parameters

ANN Solver = ‘adam’ Activation = ‘tanh’ max_iter = 10000 random_state = 1

PSO w (inertia weight) = 0.8 c1 (learning speed) = 6 c1 (learning speed) = 6 Iteration
= 30
r1 (random constant) = 0.8 r2 (random constant) = 0.5
Pn (umber of particles) = 50

WOA Dim(dimension of parameter) = 5 Whale (number of whales) = 20
Iteration = 30

GA Ps (population_size) = 50 Cl (chromosome_length) = 20
Pc (probability threshold) = 0.6
Pm (probability threshold) = 0.01 Generation = 30

BFO TBFO Ned (the migration of algebraic) = 2 Nre (reproduction algebra) = 4
Nc (steps in a chemotactic step) = 50 Ns (the length of the swimming) = 4
C (running length unit) = 50 Ped (eliminate − scatter probability) = 0.25
Iteration = 30

5 Results and Discussion

The experiment results are shown in Table 3. The accuracy of classification ranged from
53.09% to 99.34%. ANN achieved the highest accuracy of 99.34%, followed by RF,
KNN, DT, SVM and LR, with the accuracy of 98.46%, 99.23%, 97.72%,95.80% and
92.75% respectively. Bayes has the lowest accuracy, only 71.54%. In a word, Ann and
RF classifiers performwell, which shows that these twomachine learning algorithms can
effectively predict biological species. Therefore, a variety of optimization algorithms are
used to optimize these two models.

Table 3. Results.

Kingdom DNA type

Train Test Train Test

KNN 0.9724 0.9533 0.9953 0.9923

Bayes 0.5309 0.5356 0.7129 0.7154

Decision tree 0.9425 0.8535 0.9943 0.9772

RF 0.9980 0.9140 0.9991 0.9846

SVM 0.7712 0.7644 0.9572 0.9580

LR 0.6902 0.6907 0.9234 0.9275

ANN 0.9189 0.9190 0.9974 0.9934
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Table 4 provides the average accuracy of five heuristic algorithms. It shows that
TBFO-ANN has the highest classification accuracy of 96.18% and 99.36%. Specifically,
in the two models of Kingdom and DNA type, the accuracy of the optimized ANN and
RFmodels is significantly improved, indicating that TBFO can effectively optimize their
own parameters.

Table 4. The optimized results.

PSO WOA GA BFO TBFO

Kingdom RF 0.9572 0.9518 0.9533 0.9520 0.9580

ANN 0.9580 0.9614 0.9515 0.9492 0.9618

DNA type RF 0.9923 0.9904 0.9911 0.9901 0.9940

ANN 0.9942 0.9942 0.9939 0.9931 0.9936

The optimization iteration diagram of the two machine learning algorithms is shown
in Fig. 4. As the iterative process progresses, the classification accuracy gradually
increases It can be observed that in limited iteration TBFO shows fast convergence
speed. When applied TBFO to RFs, it has higher accuracy in the early stage of iteration
compared to other algorithms. As for ANNs, in the early stage of iteration, it performs
commonly, but increases quickly in short term and gain the best result.

Furthermore, TBFO also performs splendidly in terms of the model stability. It
greatly shows that in the most cases the convergence speed of TBFO is more stable
than the other corresponding algorithms, which is the symbol to declare the smaller
volatility TBFO owns. Except that the accuracy of TBFO is exceedingly better than
BFO as well as other algorithms, TBFO displays a fantastic competence of stability in
the early iterations.

Comprehensively, in limited iterations, the ability of global delivering and sufficient
convergence speed is what TBFO maintains to be the more competitive and fantastic

Fig. 4. The accuracy value in iteration process
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model compared with other models. Additionally, TBFO gains the highest accuracy of
the results which reflects its splendid capability of searching stable precision.

6 Conclusions and Future Work

In this paper, a biodiversity predictionmodel based onTBFOenhancedANNandRFwas
proposed to predict the species according to the frequency of bio-codon use, which has
certain theoretical significance to predict as well as identify the taxonomic and genetic
character of organisms [12]. It demonstrated that BFO has advantages to jump out of
the local optimum and improve the convergence speed. The effectiveness of TBFO in
enhancing the classification performance is demonstrated.

Due to the fact thatTBFOhas shortcomings in the different effect of differentmachine
learningmethods, more study should be further searched.More heuristic algorithmsmay
combine with T-distribution to prove the better characteristic. Concurrently, we will take
the improvement direction into consideration to increase the global and local optimiza-
tion capability during the stagy of replication of TBFO. In the future, more extensive
experiments shall be conducted to further strengthen the TBFO for classification task
parameter optimization.
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Abstract. Many real-world optimisation problems are in dynamic envi-
ronments such that the search space and the optimum usually change
over time. Various algorithms have been proposed in the literature to
deal with such dynamic optimisation problems. In this paper, we focus
on the dynamic aero-engine calibration, which is the process of optimising
a group of parameters to ensure the performance of an aero-engine under
an increasing number of different operation conditions. A real aero-engine
is considered in this work. Three different types of strategies for tackling
dynamic optimisation problems are compared in our empirical studies.
The simplest strategy shows the superior performance which provide an
interesting conclusion: Given a new dynamic optimisation problem, the
algorithm with complex strategies and having excellent performance on
benchmark problems is likely to be applied due to the lack of prior knowl-
edge, however, the simplest restart strategy is sometimes well enough to
solve real-world complex dynamic optimisation problems.
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1 Introduction

Many real-world optimisation problems are usually subject to dynamic environ-
ments, which probably make the search space, objective functions, or problem
constraints change over time. The dynamic changes of a problem’s landscape, as
well as its optimum solution, make such dynamic optimisation problems (DOPs)
much more challenging than stationary optimisation problems [6]. In the past
decades, dynamic optimisation has been investigated in different types of prob-
lems [16], including continuous problems [2], combinatorial problems [13] and
multi-objective problems [5].

To deal with these challenging DOPs, many excellent algorithms have been
proposed in the literature. For example, evolutionary algorithms and swarm
intelligence algorithms have been widely used for solving DOPs, and many
effective strategies have been proposed to help algorithms efficiently track the
changing optimum in dynamic environments [11,15]. They have been successfully
applied to a series of real applications [9,14].

In the existing literature, the essential part of an efficient dynamic optimi-
sation algorithm is the strategy that helps the algorithm quickly locate a new
optimum once the dynamic environment changes, usually called the dynamic
strategy [15]. The dynamic strategies could be categorised into two classes, keep-
ing the diversity of the population and benefiting from the past search history.
The former, such as increasing the population diversity after a change [4], main-
taining diversity during the optimisation [3] and multi-population [1], aims to
keep the diversity of the population so that the algorithm is capable of quickly
locating the position of the moving optimum. On the other hand, dynamic opti-
misation based on the past search history is also possible to speed up the process
of tracking the new optimum in dynamic environments if a change exhibits some
patterns [11]. For example, in the work of [8], the memory schemes saved the
potentially better solutions found in the past environments and added them to
the new environment.

Although many different effective dynamic strategies have been proposed in
the literature to tackle the DOPs, we probably have no knowledge of which one
may be the best for a new, unknown real-world DOP. As in our case, we consider
a dynamic aero-engine calibration problem (detailed in Sect. 2.1), a black-box
optimisation problem without any knowledge about its fitness landscape. Three
different dynamic strategies, including a simple restart strategy, a multi-swarm
strategy, and a hybrid strategy which combines maintaining diversity during the
optimisation and past search history. The experimental studies conclude that
the three strategies have no significant difference in multiple dynamic settings.
An interesting conclusion is further inferred that the simplest strategy, i.e., the
restart strategy which just re-optimises the new problem instance without any
adaptions, is sometimes well enough for a new unknown DOP, according to our
studies.

The remainder of this paper is organised as follows. Section 2 introduces
the dynamic aero-engine calibration problem and an effective corresponding
algorithm, i.e., saPSO. Section 3 introduces the three strategies compared in
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our experiments. Section 4 presents the empirical studies and the experimental
results. The conclusion and the future work are provided in Sect. 5.

2 Background

2.1 Dynamic Aero-Engine Calibration

Engine optimisation is a typical kind of problem in the industry, including a
wide range of applications, such as engine calibration and optimising engine
control systems [17]. In this paper, an aero-engine calibration problem is consid-
ered, which aims at adjusting a set of parameters to ensure the performance of
the given engine model under different operation conditions [7]. The calibration
problem is modelled as a single-objective optimisation problem in this paper
because we have found that the calibration results of modelling it as a multi-
objective optimisation problem are similar with the single-objective modelling
in [7].

In the static calibration process, assuming the d parameters to be adjusted are
x = {x1, x2, ..., xd} and the m measurements of the aero-engine at an operation
point s are y = {y1,s, y2,s, ..., ym,s}, the calibration process is targeted to ensure
that the measurement error, measured with root mean square error (RSME), of
the engine is within a certain threshold. The RMSE is calculated by Eq. (1):

RMSE =

√
√
√
√

1
k ∗ m

k∑

j=1

m∑

i=1

(

yi,j − y∗
i,j

y∗
i,j

)2

, (1)

where y∗
i,j denotes the desired value of measurement i in operation point sj

and k denotes the total number of operation points in the engine calibration.
A demonstration of the engine calibration process considered in this paper is
presented in Fig. 1.

In our dynamic calibration process, the actual measurements, i.e., yi,j in Eq.
(1), are obtained from the aero-engine performance simulation based on vari-
ous operation conditions {s1, s2, . . . , sk}. However, in the real world, the data of
operation conditions is obtained from the real computationally expensive exper-
iments, so that the number of operation conditions will increase progressively
during the calibration process. Therefore, the k in Eq. (1) would be k(t) which is
related to time t. Thus, the objective function of the dynamic engine calibration
problem can be formulated by Eq. (2):

f(x, t) =

√
√
√
√ 1

k(t) ∗ m

k(t)
∑

j=1

m∑

i=1

(

yi,j(x) − y∗
i,j

y∗
i,j

)2

. (2)

2.2 Self-adaptive Particle Swarm Optimisation

For solving the stationary aero-engine calibration problem, a self-adaptive par-
ticle swarm optimisation (saPSO) algorithm was proposed, in which a new
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START

Adjust engine
parameters x, i = 1

k operation
points checked?

i + +

Computational engine model

Measurements y1,si , y2,si , · · · , ym,si

Errors within threshold?

END output x

NO

YES
Input x and operation point si NO

YES

Fig. 1. Image edited from Fig. 1 of [7] with authors’ permission. A demonstration of
engine calibration process. An acceptable parameter setting x should ensure measure-
ment errors within certain threshold at several given operation points {s1, s2, . . . , sk}.

re-sampling strategy was introduced to handle the out-of-range or infeasible
solutions [7], and has shown competitive performance in calibrating the real
aero-engine considered in this work. In a conventional PSO [12], the position x
and velocity v of each particle is updated by following equations:

v = ω ∗ v + C1 ∗ r1 ∗ (xgbest − x) + C2 ∗ r2 ∗ (xpbest − x)
x = x + v,

(3)

where the xgbest is the global best solution and the xpbest is the personal best
solution. C1, C2 are two constants and r1, r2 are two random vectors ∈ (0, 1)d. In
saPSO, the ω is assigned with ω2 in each re-sampling process when the position of
a particle is out-of-range. With decreasing inertia, the feasibility of new sampled
particles is increasing. Then, the personal best positions and global best positions
will be updated after evaluating the new feasible solutions. More details about
saPSO can be found in [7].



Simpler is Sometimes Better: Dynamic Aero-Engine Calibration 347

3 Dynamic Strategies

To calibrate a real aero-engine considered in this paper, we apply three classic
dynamic strategies, including a restart strategy, a multi-swarm strategy, and a
hybrid strategy. This section describes how the considered dynamic strategies
are integrated to saPSO.

3.1 Restart Strategy

The simplest strategy for dynamic optimisation is the restart strategy. Once a
change occurs, the algorithm restarts to optimise the new problem instance with-
out any adaptive operation. For saPSO, we keep the previous particle positions
and re-initialise the personal best solutions and the global best solution when
the new operation conditions are added into the calibration. All parameters in
the algorithm are kept the same.

3.2 Multi-swarm Strategy

The second strategy is a multi-swarm strategy, in which multiple swarms are used
during the optimisation to maintain the search diversity. In saPSO, the whole
population is first divided into K sub-swarms. Each sub-swarm is optimised
independently. If two different sub-swarms are considered to be close enough,
i.e., the Euclidean distance between the global best solutions of two sub-swarms
is smaller than a threshold, ε, the sub-swarm with the better global best solution
will remain, and the other one will be replaced by a swarm initialised with
randomly generated solutions.

3.3 Hybrid Strategy

The third strategy applied in our studies is a hybrid strategy, in which the
population’s diversity is controlled during the optimisation, and the solutions
found for the past operation conditions are also used in the new conditions. Two
strategies used in our hybrid strategies are described as follows.

1. To maintain the diversity of the saPSO, we add a distance criterion to deter-
mine the survival of a personal best solution xpbest. If an updated particle is
better than its personal best solution, the personal best solution is replaced
by the updated particle. On the contrary, if the updated particle is worse
than its personal best solution in terms of objective value, we will accept
the updated particle with a pr probability when the distance between the
global best solution and this particle, dis(xgbest,x), is greater than that of
its personal best solution, dis(xgbest,xpbest).

2. To make use of the solutions from the past environment, we add all personal
best solutions into the new environment. Besides, to increase the diversity
of the new population, a set of uniformly randomly generated solutions for
the new environment is also added. Thus, the initial population for the new
environment includes the previous particles, personal best solutions, and the
newly generated solutions.
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4 Experimental Study

4.1 Experimental Settings

For the aero-engine we calibrate in this paper, the number of calibrated param-
eters, i.e., the dimensionality of our DOP, d, is 28. There are m = 15 mea-
surements for each operation condition. The number of operation conditions
increases during the optimisation process. There are always five initial operation
conditions because they are the most basic conditions. To simulate the different
situations in the real world, we construct six scenarios by adding one new oper-
ation condition in different frequencies, i.e., a new operation condition is added
every Tef function evaluations in our experiment. Thus, the number of operation
conditions is

k(ef) = 5 +
⌊

ef

Tef

⌋

, (4)

where the ef is the number of generations and Tef is set as 200, 400, 600,
800, 1200, 1600 in our experiment. Once the number of operation conditions
changes, an optimisation instance is generated in the corresponding scenario. In
our experiment, the operation conditions will not be added anymore if ef > 4800
because the real-world application usually costs some computational resources
to optimise the final instance to guarantee the convergence.

The parameter settings for the saPSO and three dynamic strategies are pre-
sented in Table 1. The parameter setting of saPSO follows the setting in the
work of [7]. The number of swarms is set as K = 4, and the whole population
size is 40 so that the sub-population size for each swarm is 10. It is worthy to
mention that the parameters related to dynamic strategies in our experiments
are all determined by primary configurations with experimental tests.

Table 1. The parameter settings for algorithms in our experiments.

Restart strategy Multi-swarm strategy Hybrid strategy

Specific parameters – K = 4, ε = 4 pr = 0.2

saPSO parameters pop size = 40, MaxFE = 6000, C1 = C2 = 0.5, ω = 0.9

4.2 Experimental Results

In the experiments, each algorithm is repeated with 20 independent runs in each
dynamic scenario, and the best objective values before each dynamic change are
recorded. Then, a normalised score performance measurement is used to compare
the three algorithms [10] in each dynamic scenario as calculated by Eq. (5):

Snorm(i) =
1
p

p
∑

j=1

| fmax
j − f∗

i,j

fmax
j − fmin

j

|,∀i = 1, ..., 3, (5)
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where p is the number of instances generated in a scenario, and fmax
j , fmin

j

denote the maximum and minimum objective values obtained by all algorithms
for instance j, respectively. f∗

i,j is the best objective value obtained by the algo-
rithm i in solving instance j in a scenario.

Therefore, the averaged normalised scores and the standard deviation of three
algorithms over 20 independent runs are presented in Table 2. The Friedman test
with a 0.05 significant level is applied to each dynamic scenario. The p-value for
each test in every dynamic scenario is presented in the last column of Table 2. All
p-values are significantly smaller than 0.05, indicating that the three algorithms
are not equal in all dynamic scenarios. Therefore, we applied the Nemenyi post-
hoc test to each dynamic scenario. The ranking for each algorithm according to
the test results is presented in the bracket of each cell. Furthermore, the best
algorithm(s) with a ranking of ‘1’ is/are highlighted in Table 2 for each dynamic
scenario.

Table 2. The mean and standard deviation of normalized scores for saPSO with restart,
hybrid, and multi-swarm strategy over 20 independent runs. The last column presents
the p-values of statistical tests for three algorithms using the Friedman test with a
0.05 significant level. The ranking of each algorithm in each scenario according to the
Nemenyi post-hoc test is included in the bracket.

Tef Restart strategy Hybrid strategy Multi-swarm strategy p-values

200 0.182 ± 0.103(1) 0.439 ± 0.171(3) 0.562 ± 0.236(2) 2.16e−07

400 0.189 ± 0.140(1) 0.585 ± 0.150(1) 0.318 ± 0.231(3) 4.33e−06

600 0.142 ± 0.074(1) 0.454 ± 0.192(1) 0.203 ± 0.127(3) 1.06e−05

800 0.132 ± 0.072(1) 0.435 ± 0.197(1) 0.194 ± 0.149(3) 7.16e−07

1200 0.179 ± 0.196(1) 0.464 ± 0.155(1) 0.136 ± 0.069(3) 5.03e−06

1600 0.131 ± 0.092(1) 0.385 ± 0.187(1) 0.099 ± 0.050(3) 8.74e−07

Besides, we also plot the convergence curves of three algorithms in six
dynamic scenarios, which are presented in Fig. 2. It is very clear that the restart
strategy and hybrid strategy outperform the multi-swarm strategy. In particu-
lar, for the scenario with higher frequency of adding new operation conditions,
i.e., Tef with a smaller value, the advantage of the restart strategy is even more
prominent. Especially when Tef = 200, the restart strategy is much better than
other two strategies.

Therefore, it is clear that the restart strategy performs the best in all dynamic
scenarios according to our experimental results. The hybrid strategy has similar
performance to the restart strategy, and the multi-swarm strategy has the worst
performance compared with the other two algorithms. Thus, we can conclude
that the restart strategy is well enough for our dynamic aero-engine calibration
problem. The dynamic strategies added to the static algorithms never improve
the algorithm’s performance, and sometimes even deteriorate the algorithm’s
performance, such as the multi-swarm strategy in our experiments.
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Fig. 2. Averaged RMSE values along the optimisation process obtained by saPSO with
restart, hybrid, and multi-swarm strategy over 20 independent runs in various dynamic
scenarios with different Tef values (200, 400, 600, 800, 1200, and 1600). Tef denotes
the interval function evaluations of adding one new operation condition. x-axis: FEs
(function evaluations), y-axis: RMSE.

4.3 Discussions

From Fig. 2, the algorithm converges to a high-quality solution very quickly. Even
for the scenario with Tef = 200, the algorithm also converges fast after adding
new operation conditions. After the algorithm converges to a high-quality solu-
tion, the quality of the best solution does not change much, even after adding
new operation conditions. It indicates that the saPSO is very efficient for our
dynamic calibration problem, and the diversity control may deteriorate the per-
formance of the original saPSO. As in our restart strategy, we also keep the
particle positions and re-initialise the personal best and global best solutions.
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The convergence curves is not corrupted by any big jump, indicating the global
optimum might not move far from the current particle positions. Therefore, the
simplest strategy is the most suitable one in our dynamic aero-engine calibration
problem. If we would like to obtain further improvements, it would be better to
investigate more in improving the original saPSO.

5 Conclusion

In this paper, we focus on a dynamic aero-engine calibration problem that
requires to find an optimal group of parameters to ensure the performance of
an aero-engine under an increasing number of different operation conditions.
Three different dynamic strategies including a restart strategy, a multi-swarm
strategy and a hybrid strategy are used to assist an algorithm shown to be effec-
tive in static aero-engine calibration, saPSO, to calibrate a real aero-engine in
a dynamic setting. Six different dynamic scenarios with different frequency of
adding new operation conditions are considered in our experiments assuming
that the desired performance of all operation conditions is not always available
at once and are provided periodically. Empirical results indicate that the simple
restart strategy performs the best among the three strategies because saPSO
is efficient enough for our dynamic aero-engine calibration problem even the
number of operation conditions increases during the optimisation process. The
location of the new global optimum after adding new operation conditions does
not change a lot is also an essential reason.

Our study on dynamic aero-engine calibration provide an interesting insight,
thus when facing some new and unknown real-world DOPs, the simple restart-
strategy is worth trying before using more sophisticated strategies and it may
have surprisingly excellent performance. In the future, we would like to investi-
gate more DOPs including benchmark problems and other real applications to
find out in which types of DOPs that the restart strategy can obtain excellent
performance.
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Abstract. This paper studied a method for selecting the optimal management
plan for forests based on AHP. First, the paper used the control variable method
to determine that the scope of application of the forest management plan is North
America, Eurasia (mainly temperate continental climate and subtropical, tropical
monsoon climate) and South America (mainly tropical climate, plain and plateau
terrain). Within this range, we selected the Xing’an larch forest in the northern
part of the Greater Xing’an Mountains as a special sample, and calculated the
importance and weight scores of the ecological benefit plan (PEB), economic
benefit plan (PES) and social benefit plan (PSP) of the forest, and the scheme
with the highest score was the plan preferred by the operator. Combined with
9 indicators representing the comprehensive value of forest, this paper used the
analytic hierarchy process to design a decision-making model, and determined the
optimal forest management plan through calculation, which balances the various
values of the forest.

Keywords: AHP · Control variable method · Decision-making model · Optimal
forest management plan

1 Introduction

Aswe know, climate change has posed a threat to the survival and development of global
life. In addition to reducing greenhouse gas emissions at the source, we can also reduce
emissions from the transmission. Generally, we choose forests as carbon sequestration
sites.

Therefore, we need to protect the forest and reduce forest accidents. Many factors
need to be considered in this process, such as the age and type of trees, the geology and
topography of the forest, and the benefits and longevity of forest products.

Early scholars paid more attention to excessive deforestation and forest crisis in
forest management. The solution is to establish forest dynamic resource detection and
cutting quota management [1, 2]. During this period, many scholars paid attention to the
planned management of forest resources [3–5] and the total value of forests. It is agreed
that forest management should combine ecological valuewith social and economic value
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to maximize the total value of forests [6, 7]. Finally, some scholars are concerned about
natural disturbance factors such as fire on the forest ecosystem [8].

2 Problem Restatement

We comprehensively consider the various values of forest, use the analytic hierarchy
process to design the decision-making model, and use the control variable method to
divide the application scope of the decision-making model management plan. At the
same time, an optimal forest management plan is determined through the model, which
can balance the various values of forests. Finally, we selected the most representative
Xing’an larch forest in the northern part of the Greater Xing’an Mountains to verify the
model and then obtained the availability and adaptability of our forest management plan.

3 Models and Methods

3.1 Decision-Making Model Based on AHP

We established a hierarchical structure; the target layer was to select the optimal plan for
forest management, the criterion layer was the impact indicators of different programs,
and the measure layer was the three programs of the forest management plan, which are
the priority ecological benefit program (PES), the priority economic benefit program
(PEB) and priority social benefit program (PSP).

(1) Hierarchical Division
Wedecided on three schemes on the basis of scheme scores. They are optimal scheme

of ecological benefits (PES), economic benefits (PEB) and social benefits (PSP) (Table
1).

Table 1. Hierarchy and index of Decision-making model

Target layer Criterion layer Plan layer

Optimal forest management plan
decision system

Carbon Sequestration CSS PES

Biodiversity BDS

Average annual logging AAL

Average annual income from
forest products

AAP PEB

Number of development projects
such as tourism

NDT

Forest protection fee FPF

Employment situation EPS PSP

Monitoring the quality of air and
water resources in human
settlements

MWH

Surrounding population density SPD
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(2) Construct Judgment Matrix
Based on the above process analysis, the index data obtained are normalized. The

judgment matrix is constructed by the pairwise comparison method, and the relative
importance of each index in each level relative to its upper index is expressed in the form
of a matrix (Table 2).

Table 2. Scale of AHP

Scale Importance

1 i and j are equally important

3 i is slightly more important than j

5 i is significantly more important than j

7 i is more important than j

9 i is extremely important than j

Note: 2, 4, 6, and 8 are the intermediate values, and the reciprocal is used for the opposite
importance.

We used aij to represent the ratio of the influence degree of xi and xj on the target Z,
where xi represents the row index and xj represents the column index. When aij > 1, xi
is more important than xj for the target Z, and its numerical value indicates the degree
of importance. When aij = 1, xi and xj are equally important for the target Z; when aij
≤ 1, xi is less important than xj for the target Z, and its numerical value indicates the
magnitude of the importance.
(3) Hierarchical Single Sort

The so-called hierarchical single sorting refers to the evaluation order of all elements
of this layer relative to the previous layer. In short, it is the problem of calculating the
eigenroots and eigenvectors of the judgment matrix.
(4) Consistency Test

To ensure the accuracy of the index, a consistency test is carried out on the judgment
matrix after the index weight is calculated.

CI = λmax − n

n − 1
,CR = CI

RI
(1)

Table 3. Consistency testing standard

n 1 2 3 4 5 6 7 8 9 10 11

RI 0 0 0.58 0.90 1.12 1.24 1.32 1.41 1.45 1.49 1.51

CI is the consistency index, λmax is the largest eigenvalue of the comparison matrix,
and n is the order of the comparison matrix; the smaller the value is of CI, the closer the
judgment matrix is to complete consistency;
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RI is the random consistency index, and CR is the consistency ratio; the smaller the
value of CR is, the higher the consistency ratio is, whichmeans the higher the consistency
accuracy of the judgment matrix.

3.2 Regional Division Based on Control Variable Method

We adopt the idea of controlling variables, that is, keeping other variables constant
during each discussion, and only study the change of one variable to the problem. We
take three factors of the natural belt, topography, and climate as the basis for judging
and classifying, and divide the world into 5 groups (Table 4 and Fig. 1).

Table 4. Division of global forest groups

Fig. 1. Division of global forest groups

Among them, the average altitude of A1 was above 500, and the average altitude of
A2 was about 200; the probability of natural disasters of A3 was low, and the average
annual probability of natural disasters of A4 exceeded 80%.

A2: the main grassland climate, A4: the main monsoon climate, A5: the main desert
climate.

We chose three indicators: carbon sequestration, forest product income, and the
annual rate of change in employment, which corresponded to ecological benefits, eco-
nomic benefits, and social benefits, respectively. We established 4 groups of comparison
objects. For each of the two categories in each group, two of the variables were held
constant and only one of the factors was changed, as described below:

We collected relevant data on three indicators ofmajor forest resources in five regions
in the past ten years. The indicator was X = {X1,X2,X3}, and the indicator value was

X (0) =
{
X (0)
1 ,X (0)

2 ,X (0)
3

}
. Each indicator had 10 sample data, namely

X (0)
i =

{
X (0)
i (1),X (0)

i (2),X (0)
i (3)

}
, i = 1, 2, 3 (2)
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In the number of j area we selected, its indicator value was:X (j) =
{
X (j)
1 ,X (j)

2 ,X (j)
3

}
.

Each indicator has 10 sample data, namely

X (j)
i =

{
X (j)
i (1),X (j)

i (2),X (j)
i (3)

}
, i = 1, 2, 3 (3)

In order to analyze the degree of response of one structure to the shock of another
structure, we defined the structural change synergy coefficient. Its calculation formula
was,

Cjk =
∑p

i=1 X
(0)
i (k) · X (j)

i (k)√∑p
i=1

[
X (0)
i (k)

]2 · ∑p
i=1

[
X (j)
i (k)

]2 , k = 1, 2, · · · , 10, j = 1, 2, · · · , 5 (4)

Cj = 1

10

10∑
k=1

Cjk (5)

In the formula, k referred to the k group of data in the sample, j represened the j
region, andCj was the adaptability coefficient of the j region. The value of the coefficient
was between 0–1, the closer it was to 1, the stronger was the adaptability of the decision-
making model to regional changes. The more sensitive the model was to changes in
regional structure, and the faster it can respond to changes in regional structure.

To better solve the problem, we performed hierarchical quantization on the fitness
coefficient (Table 5):

Table 5. Comparison table of grade division

Fitness coefficient interval Adaptation level

(0, 0.375] Dangerous level

(0.375, 0.575] Early warning level

(0.575, 0.805] Balanced level

(0.805, 1] Excellent level

4 Result Analysis

4.1 Scope of Application

We have included areas with adaptation levels at balance level and above within the
scope of the forest management plan. From this we got the following results:

CA1 = 0.5642,CA2 = 0.6012,CA3 = 0.8932,CA4 = 0.8451,CA5 = 0.4911

According to this analysis, we can conclude that the scope of application of the forest
management plan is North America, Eurasia (mainly temperate continental climate and
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subtropical, tropicalmonsoon climate) andSouthAmerica (mainly tropical climate, plain
and plateau terrain). That is, we believed that our decision-making model are applicable
to all forests in this area.

Based on the above analysis, we decided to choose Xing’an larch forest in the
northern part of the Greater Xing’an Mountains.

4.2 Best Management Plan

According to AHP, we get the final scores of the three schemes, as shown in the table
below,

Table 6. The impact of the 9 indicators

CSS BDS AAL AAP NDT FPF EPS MWH SPD

CSS 1 1/4 5 1/2 1/3 5 2 3 7

BDS 4 1 8 3 2 6 3 5 7

AAL 1/5 1/8 1 1/5 1/7 1/2 1/5 1/3 2

AAP 2 1/3 5 1 1/2 3 2 3 3

NDT 3 1/2 7 2 1 3 3 3 2

FPF 1/5 1/6 2 1/3 1/3 1 1/5 5 2

EPS 1/2 1/3 5 1/2 1/3 5 1 3 2

MWH 1/3 1/5 3 1/3 1/3 1/5 1/3 1 2

SPD 1/7 1/7 1/2 1/3 1/2 1/2 1/2 1/2 1

To compare the impact of the 9 indicators in the table on the target "Optimal Forest
Program", we used pairwise comparisons, as shown in Table 6.

In the first row of the table: the carbon sequestration in the first column is as impor-
tant as the carbon sequestration in the first row, so the row indicator (carbon seques-
tration)/column indicator (carbon sequestration) = 1; the second column, biodiversity
(column index) is more important than carbon sequestration (row index), so row index
(carbon sequestration)/column index (biodiversity) = 1/4 < 1; in the third column, the
average annual logging amount is less important than the carbon sequestration amount,
So row index (carbon sequestration)/column index (average annual logging volume) =
5 > 1; since the first row and the second column are 1/4, the second row and the first
column are 4; the first row and the third column is 5, so the first column of the third row
is 1/5, and so on. Relative scales are used in the importance analysis to minimize the
difficulty of comparing indicators with different properties and improve the accuracy.
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Finally, the judgment matrix A is obtained as follows:

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1
4 5 1

2
1
3 5 2 3 7

4 1 8 3 2 6 3 5 7
1
5

1
8 1 1

5
1
7

1
2

1
5

1
3 2

2 1
3 5 1 1

2 3 2 3 3
3 1

2 7 2 1 3 3 3 2
1
5

1
6 2 1

3
1
3 1 1

5 5 2
1
2

1
3 5 1

2
1
3 5 1 3 2

1
3

1
5 3 1

3
1
3

1
5

1
3 1 2

1
7

1
7

1
2

1
3

1
2

1
2

1
2

1
2 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

On this basis, we carry out hierarchical single sorting. The single-level ranking is to
put all the indicators of this layer in the order of a certain indicator of the previous layer,
and this order is expressed by relative numerical values, as shown in Tables 7, 8, 9, 10,
11, 12, 13, 14 and 15.

Table 7. .

CSS PES PEB PSP

PES 1 5 3

PEB 1/5 1 1/3

PSP 1/3 3 1

Table 8. .

BDS PES PEB PSP

PES 1 4 3

PEB 1/4 1 1/2

PSP 1/3 2 1

Table 9. .

AAL PES PEB PSP

PES 1 3 2

PEB 1/3 1 1/3

PSP 1/2 3 1
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Table 10. .

AAP PES PEB PSP

PES 1 1/7 1/3

PEB 7 1 2

PSP 3 1/2 1

Table 11. .

NDT PES PEB PSP

PES 1 1/2 4

PEB 2 1 6

PSP 1/4 1/6 1

Table 12. .

FPF PES PEB PSP

PES 1 1/2 5

PEB 2 1 7

PSP 1/5 1/7 1

Table 13. .

EPS PES PEB PSP

PES 1 1/3 1/5

PEB 3 1 1/2

PSP 5 2 1

Table 14. .

MWH PES PEB PSP

PES 1 5 1/2

PEB 1/5 1 1/7

PSP 2 7 1
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Table 15. .

SPD PES PEB PSP

PES 1 1/3 1/5

PEB 3 1 1/4

PSP 5 4 1

As shown in Table 7, for the single consideration of carbon sequestration, the first
row and first column are equally important, and the ratio is 1; for the first row and second
column, in order to ensure carbon sequestration, PES is more important than PEB, so
the row Index (PES)/Column Index (PEB) = 5 > 1; For the first row and third column,
in order to ensure carbon sequestration, PES is more important than PSP, so row index
(PES)/column index (PSP) = 3 > 1. All of the following matrices are analyzed in turn:

B1 =
⎡
⎣
1 5 3
1
5 1 1

3
1
3 3 1

⎤
⎦ B2 =

⎡
⎣
1 4 3
1
4 1 1

2
1
3 2 1

⎤
⎦ B3 =

⎡
⎣
1 2 2
1
3 1 1

3
1
2 3 1

⎤
⎦

B4 =
⎡
⎣
1 1

7
1
3

7 1 2
3 1

2 1

⎤
⎦ B5 =

⎡
⎣
1 1

2 4
2 1 6
1
4

1
6 1

⎤
⎦ B6 =

⎡
⎣
1 1

2 5
2 1 7
1
5

1
7 1

⎤
⎦

B7 =
⎡
⎣
1 1

3
1
5

3 1 1
2

5 2 1

⎤
⎦ B8 =

⎡
⎣
1 5 1

2
1
5 1 1

7
2 7 1

⎤
⎦ B9 =

⎡
⎣
1 1

3
1
5

3 1 1
4

5 4 1

⎤
⎦

First, we normalized each column of matrix A, and then summed the rows of the
column-normalized matrix to get the eigenvectors, and then normalized the resulting
eigenvectors to calculate the largest eigenvalue.

The column normalized matrix, the eigenvectors, the eigenvector normalization are:

W (0) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.1295
0.2929
0.0278
0.1322
0.1812
0.0581
0.0993
0.0450
0.0341

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

W (0) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.1295
0.2929
0.0278
0.1322
0.1812
0.0581
0.0993
0.0450
0.0341

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Q = AW (0) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1.3310
2.9025
0.2747
1.3286
1.8506
0.6059
1.0209
0.4475
0.3442

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

The largest eigenroot of matrix A:

λ(0)
max = 1

9

9∑
i=1

(
Qi ÷ W (0)

i

)
= 10.1203
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In the formula, i represents the number of columns of the column matrix, and Qi and
W (0)

i represent the data of the i-th column.
Similarly, the eigenvectors of B1–B9 can be found:
w(1) = (0.6358 0.1052 0.2590)T, w(2) = (0.6472 0.0725 0.2802)T

w(3) = (0.4972 0.1481 0.3547)T, w(4) = (0.0926 0.6152 0.2923)T

w(5) = (0.3235 0.5874 0.0891)T, w(6) = (0.3334 0.5914 0.0752)T

w(7) = (0.1095 0.3090 0.5815)T, w(8) = (0.3334 0.0752 0.5914)T

w(9) = (0.1017 0.2274 0.6709)T

The largest eigenroots of B1–B9 are:
λ

(1)
max = 3.0385, λ

(2)
max = 3.0122, λ

(3)
max = 3.0049, λ

(4)
max = 3.0183, λ

(5)
max = 3.0291,

λ
(6)
max = 3.0084, λ(7)

max = 3.0233, λ(8)
max = 3.0301, λ(9)

max = 3.0217.
We used the consistency indicators CI and CR and the consistency test standard table

to test.
The conformance testing standard table is shown in Table 3:
For the judgment matrix A, n = 9, λ

(0)
max =10.1203, RI = 1.45, CI = 10.1203−9

9−1 =
0.140038, CR = CI

RI = 0.140038
1.45 = 0.0965779.

From this we got the final eigenvector.
CR < 0.1 indicates that the degree of inconsistency of A is within the allowable

range, at this time, the eigenvector of A can be used to replace the weight; similarly, the
judgment matrix B1-B9 has passed the consistency test using the above principles.

Assuming: w1 = (
w(1)w(2)w(3)w(4)w(5)w(6)w(7)w(8)w(9)

)
,

So the final eigenvector: w = wlw(0) = (
0.4173 0.2999 0.2829

)T
.

Finally, we got the importance and weight scores of the three schemes, as shown in
Table 16 and Table 17 below:

Table 16. Index weight value

Metric weight PES PEB PSP

CCS 0.1295 0.7283 0.0817 0.19

BDS 0.2929 0.6472 0.0725 0.2802

AAL 0.0278 0.4972 0.1481 0.3547

AAP 0.1322 0.0926 0.6152 0.2923

NDT 0.1812 0.3235 0.5874 0.0891

FPF 0.0581 0.3334 0.5914 0.0752

EPS 0.0993 0.1095 0.309 0.5815

MWH 0.045 0.3334 0.0752 0.5914

SPD 0.0341 0.1017 0.2274 0.6709

According to the final scheme scores, forest managers should choose the priority
ecological benefit scheme.
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Table 17. Scheme score

PES PEB PSP

Plan score 0.4173 0.2999 0.2829

The result of the priority ecological benefit plan is reasonable. The reason is that in
the three criteria formeasuring ecological benefits, carbon sequestration and biodiversity
have a larger weight than other benefit criteria. The weight of biodiversity reaches is
0.2929, which has the largest weight among all indicators. At the same time, carbon
sequestration and biodiversity are also more important than other indicators, reaching
0.7283 and 0.6472, respectively. The average annual logging volume, another criterion
indicator of ecological benefits, has a relatively small weight, but its relative importance
is also relatively high, reaching 0.4972. Combining above, the priority ecological benefit
plan will have a higher score than the other two plans.

5 Conclusion

Aiming at the characteristics of forest management planning, this paper established a
comprehensive evaluation system for forest management plans. This paper uses AHP
to determine the judgment matrix, the weight of each index, and the final score of each
program, to determine the optimal program for forest management. On this basis, the
range of regions suitable for our management plan was determined according to the
control variable method, and a special sample was selected to analyze the adaptability of
our model. Compared with the previous papers, which only studied one type of forest,
this paper has a breakthrough in the research scope. And adding more indicators helps
to get better results. The model is suitable for forests with different characteristics in
different regions.
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Abstract. The greenhouse gases have exacerbated global warming. We mod-
eled carbon sequestration, annual growth, and expected cutting profits to mitigate
climate change to determine appropriate and sustainable forest management. Ini-
tially, we established a Carbon SequestrationModel based on a hierarchical model
to estimate the carbon storage and its products. The calculation shows that the car-
bon stored in aboveground biomass accounts for considerable weight. So in the
process of forest management, we should increase wood density, forest area, and
biomass per unit area to increase the amount of carbon sequestration. Then, con-
sidering environmental, economic, and social issues, we build a Single Objective
model to realize the balance of maximizing annual growth, the expected cutting
profits, and carbon sequestration.

Keywords: Carbon sequestration · Hierarchical model · Single objective model

1 Introduction

Forests are indispensable to mitigate climate change. Researchers have developed many
methods for estimating forest carbon domestically and overseas in recent years. Zhao
Miaomiao analyzed the main characteristics of the forest carbon measurement methods
based on sample plot inventory, the forest carbon measurement method based on a
model, and the flux observation method based on ecosystem positioning observatory
[1]. S. Etemad used goal programming techniques to estimate the optimum stock level
of different tree species considering economics, environmental and social issues [3]. L.
Demidova andM. Ivkina developed forecasting models based on multidimensional time
series, which are features used in the formation of the datasets, dividing further into the
training and test sets [5].

Nowadays, sustainable forest management involves forestry activities to achieve
sustainability. Furthermore, forest management is an intricate problem, so new tools and
approaches will be needed to reach the multiple goals in forest management. This study
presents a Single Objective model to attain optimization and study optimal stock or
forest harvest with economic, environmental, and social objectives towards sustainable
forest harvesting.
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2 Problem Description

Forest managers and policy-makers are being encouraged to incorporate carbon seques-
tration as a criterion for decision-making. Besides, the ways their forest is valued may
include potential carbon sequestration, conservation, biodiversity aspects, recreational
uses, cultural considerations, etc. The description of the problem can be expressed as
follows:

To increase the carbon storage, we are required to develop a carbon sequestration
model to determine how much carbon dioxide a forest and its products can be expected
to sequester over time. Our model should decide which indicator is the most effective.

The forest management plan that is best for carbon sequestration is not necessarily
the best for society given the other ways that forests are valued. So we need to develop a
model which should determine a forest management plan that balances the various ways
that forests are valued.

3 Calculation and Simplifying the Model

Firstly, we use formulas of forest carbon measurement to determine how much carbon
dioxide a forest and its products can be expected to sequester as time goes by. In addition,
we construct a Hierarchical model to evaluate the most effective impact indicators on
carbon sequestration. Secondly, we develop a single objective model to inform forest
managers of the best forest management. We need to consider the balance of interests
and ecological value.

3.1 Model Assumption

For Carbon Sequestration Model, economic forests are ignored, and only the public
welfare forest is considered. The economic forest is unstable, so its carbon sequestration
is unstable. Furthermore, we miss the interactions between factors affecting carbon
sequestration to simplify the model.

Emergencies such as forest fires are not considered. Special patrols will be carried
out in some areas with frequent wildfires, and fire barriers will be set up in advance in
the high season. Therefore, the frequency of forest fires has dramatically decreased, and
we will not consider it here.

We classify the four age groups of young forest, age near a forest, medium forest,
mature forest into the immature forest, and over-ripe forest into the mature forest in
ecology. The mature forest in the ecological sense means that the forest biomass reaches
a stable stage, and the mature forest’s age often exceeds that of the over-mature forest
in the inventory.

3.2 A Carbon Sequestration Model

We thoroughly considered land cover, precipitation, and carbon pools based on forestry
for carbon sequestration. Carbon pools include carbon stored in aboveground biomass,
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carbon stored in belowground biomass, carbon is stored in the soil and carbon is stored
in dead organic matter.

In terms of the carbon pools, we calculated the carbon storage of forest ecosystems,
and carbon sequestration is calculated from changes in carbon storage over time.

Model Formulation
The estimation of forest carbon storage is generally based on the calculation method of
forest biomass. That is, the biomass of forest vegetation ismeasured directly or indirectly.
We found a series of forest survey data (such as tree species, vertical structure, stand
height and stand density, etc.), which are known to be obtained by forest resources
inventory. Finally, we get the calculation equation of biomass, and then we multiply it
by the percentage of carbon in the biomass. The carbon storage of the forest system is
the sum of the calculated values of the four-carbon pools.

Total carbon storage mainly includes carbon stored in aboveground biomass,
belowground biomass, soil, and dead organic matter [2].

C = Cabove + Cbelow + Csoil + Cdead (1)

where, Cabove is the carbon stored in aboveground biomass, Cbelow is the car-
bon stored in belowground biomass, Csoil is the carbon that is stored in soil, Cdead
is the carbon stored in dead organic matter.

The carbon stored in aboveground biomass is calculated by the biomass expansion
factor method:

Cabove = CF · Wij = CF · Ai · Wij = CF · Ai · Vij · BEFij · SVDij (2)

where, CF is the carbon content, Ai is the area of Forest Type i. Wij is the biomass per
unit area of Forest Type i, Tree species j. Vij is accumulation per hectare of Forest Type i,
Tree species j. BEFij is the biomass expansion coefficient of Forest Type i, Tree species
j. SVDij is the wood density of Forest Type i, Tree species j.

The carbon stored in belowground biomass is determined as below:

Cbelow = CF · Wij · RhizomeRatio (3)

where, RhizomeRatio is the parameters of rhizome ratio selected according to forest age
and forest species.

The biomass is shown in Appendix B. The carbon stored in dead organic matter is
follow as:

Cdead = CF · Nij (4)

where, Nij is the biomass of dead organic matter.
In most research that estimates carbon storage and sequestration rates in a forest,

soil pool measures only include soil organic carbon (SOC) in mineral soils. According
to the observation and measurement, the calculation formula is as follows:

Csoil = Aij · 0.58 · C · D · E · (1−G)
100 (5)
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where, C is the soil organic matter content. D is the soil bulk density. E is the soil
thickness. G is the percentage of volume of gravel with diameter ≥2mm.

Then, we construct a hierarchical model to evaluate the most effective impact indi-
cators on carbon sequestration. The decision-making problem is decomposed into three
levels. The top layer is the target layer M, that is, the selection of key indicators affect-
ing carbon sequestration. The lowest layer is the scheme layer, namely nine influencing
factors Pl, P2, P3, P4, P5, P6, P7, P8, P9. The middle layer is the criterion layer, which
includes four indicators of carbon stored in aboveground biomass, carbon stored in
belowground biomass, carbon stored in soil and carbon stored in dead organic matter
(as shown in Fig. 1).

Fig. 1. Analytic hierarchy process diagram

3.3 Decision Making on Sustainable Forest Management

Model Formulation
We use single objective model to estimate the optimum stock level of different tree
species considering economics, environmental and social issues. We take a forest in
Beijing as an example and select the stocks of different tree species as decision variables.
Furthermore, we consider constraints in the process of decision making to realize the
balance ofmaximizing annual growth, the expected cutting profits, carbon sequestration.

We take the stock of different tree species type as the decision variable. All of the
included goals in the single objective model are handled in a similar way: indicated by
goal restriction. The included objective constraint consists of objective variables that
evaluate the quantity by which the augmentation of all actions to the target in question
have a shortage and a surplus with respect to the goal level [3].

Undesirable deviations should be minimized in an achievement function. Conse-
quently, constraints and objective functions of single objective model are follow as
determined as below:

Min Z =
10∑

j=1

Wj

(
d−
j

)
(6)
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5∑

i=1

Xi + d−
T = gT (7)

Xi + d−
Vi = gVi (8)

5∑

i=1

aiXi + d−
C = gC (9)

5∑
i=1

biXi + d−
G = gG (10)

5∑
i=1

miXi + d−
L = gL (11)

5∑

i=1

niXi + d−
NPV = gNPV (12)

d−
T , d−

Vi , d
−
C , d−

G , d−
L , d−

NPV , d−
j ,Wj ≥ 0 (13)

where, j ranges from 1 to 10, which refer to total stock, beech stock, hornbeam stock,
oak stock, alder stock, other species stock, sequestrated carbon, growth, labor and NPV,
respectively. Besides, i ranges from 1 to 5, which indicates decision variables such as
beech, hornbeam, oak, alder and other species. The key mathematical notations used in
this model formulation are listed in Table 1.

Furthermore, we design the questionnaire based on the Likert scale. Themost impor-
tant goals and weights are determined by questionnaires. The most important goals are
minimum total feasible stock,minimum feasible stock of each species,minimum feasible
carbon sequestration, minimum feasible growth per hectare, minimum feasible person-
nel or labor and minimum suitable Net Present Value (NPV) which are given by experts.
The questionnaires were used for weighting the goals for the aim of multipurpose forest
management.

Eventually, we solve the multi-objective model using the LINGO software from
LINDO systems.
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Table 1. Notations used in this paper

Symbol Description

Wj The weight allocated to each deviation

Xi decision variables, the stocks of different tree species

d− Negative deviation from goal value

gT Minimum total feasible stock

gVi Minimum feasible stock of each species

gC Minimum feasible carbon sequestration

gG Minimum feasible growth per hectare

gL Minimum feasible personnel or labor

gNPV Minimum suitable Net Present Value (NPV)

a Coefficient of sequestrated carbon

b Coefficient of growth

m Coefficient of labor

n Coefficient of NPV

Table 2. The values of coefficients in GP model

Species name a b m n

Beech 269.533 8.371 61 7931.098

Hornbeam 313.889 13.721 61 4012.206

Oak 729.607 8.517 61 5271.125

Alder 238.329 22.786 61 6824.013

Other species 360.011 31.262 61 5577.614

Table 3. The values of goals and weights based on questionnaires

j g w j g w
total 

stock 408 24.51 other spe-
cies stock 20.4 490.20

beech 
stock 256.2 39.03 seques-

trated carbon 128783.16 0.0776

horn-
beam 
stock

61.2 163.4 growth 4509.834 2.2174

oak 
stock 40.8 245.1 labor 25000 0.4

alder 
stock 20.4 490.2 NPV 2816929.37 0.0035
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4 Experimental Results and Analysis

4.1 A Carbon Sequestration Model

Carbon Sequestration Over Time
We applied the carbon sequestration model to a forest in Beijing. The actual data can be
found for all the unknowns in the formula in the model. Table 4 and Table 5 below show
the parameters of this forest in 1992. The reason we only classify immature forest and
over-ripe forest is the convenience of plugging in unknown parameters.

Carbon sequestration refers to the change in carbon storage over a period of time.
We put the collected data into the formula to calculate the carbon storage in different
years, and the carbon storage that can be sealed in the forest over time can be determined
by linear fitting. We find the data from 1992 to 2008. As can be seen from the diagram,
the slope of the carbon storage curve is basically unchanged, so the change of carbon
sequestration is stable (Fig. 2).

In addition, we use the InVEST model [6] to estimate the carbon sequestration of
the forest over a period of time. The model uses maps of land use and land cover types,
as well as wood harvesting, degradation rates of logging products, and carbon storage
of the four carbon pools. The carbon sequestration distribution of this forest from 2013
to 2015 is shown below (Fig. 3).

The Optimal Evaluation Index
To evaluate the most effective indicators on carbon sequestration, we construct the judg-
ment Matrix M-C [7]. Firstly, we compare the four elements in the criterion layer C in
pairs. We can get pairs of comparison matrices, as shown in Table 6.

The weight vector can be obtained by solving the eigenvalues of the matrix M-C.
We define ω as the weight vector, therefore we have:

ω = (
0.4717 0.1644 0.2562 0.1078

)
(14)

We have known:

CI = χmax − n
n− 1 (15)

CR = CI
RI (16)

We can calculate the value of CR, which is 0.0172. The value of CR is less than 1.
So the matrix passed the consistency test. Our model determine that the carbon stored
in aboveground biomass is the most effective factor at sequestering carbon dioxide.

4.2 Decision Making on Sustainable Forest Management

The parameters values of constraints and objective is shown in Tables 2 and 3. We solve
the single objective model using the LINGO software from LINDO systems. The result
shows the negative deviations of beech, hornbeam, alder and other species in the forest
of Beijing are zero. It means that they quite achieved the goal and also their optimal
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Table 5. The actual data can be found for all the unknowns in the formula

Forest types Age group Rhizome ratio Litter biomass

Coniferous forest Young, medium, age near, ripe 0.2 15.24

Overripe 0.22 16.17

Broadleaf forest Young, medium, age near, ripe 0.3 8.87

Overripe 0.28 7.84

Coniferous mixed forest Young, medium, age near, ripe 0.25 6.76

Overripe 0.21 5.86

Coniferous mixed forest Young, medium, age near, ripe 0.16 0.53

Overripe 0.2 0.53

Broadleaf mixed forest Young, medium, age near, ripe 0.2 11.7

Overripe 0.25 11.02

Fig. 2. Increasing trend of carbon storage

stock is 256.2, 61.2, 20.4 and 20.4 m3 ·ha−1, respectively. In conclusion, we accomplish
to determine the optimal stock with a single objective model based on different factors.

Because carbon storage decreases with age after reaching the transition point, as
is shown in Fig. 4. Appropriate harvesting strategies need to be developed in the forest
management. Forests sequester carbon dioxide in living plants and in the products created
from their trees including furniture, lumber, plywood, paper, and other wood products.
These forest products sequester carbon dioxide for their lifespan. Some products have a
short lifespan, while others have a lifespan that may exceed that of the trees from which
they are produced. The carbon sequestered in some forest products combined with the
carbon sequestered because of the regrowth of younger forests has the potential to allow
for more carbon sequestration over time when compared to the carbon sequestration
benefits of not cutting forests at all.
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Fig. 3. The carbon sequestration distribution of this forest from 2013 to 2015

Table 6. Comparison matrix of analytic hierarchy process

M C1 C2 C3 C4

C1 1 3 2 4

C2 1/3 1 1/2 2

C3 1/2 2 1 2

C4 1/4 1/2 1/2 1

Fig. 4. Analytic hierarchy process diagram
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4.3 Sensitivity Analysis

Confronted with complex forest system, we need to adjust the evaluation model of forest
carbon storage and management plan, which includes the modification of constraint
conditions and index system.

Fig. 5. Expansion method of goal programming model

We carry out scalability analysis under different forest systems as is shown in Fig. 5.
Firstly, If we want to migrate to a smaller scale, we need to tighten the constraints and
remove some indexes, which is hard or impossible to measure. On the contrary, if a
model used to evaluate a forest wants to be migrated to a larger scale, we should adopt
more indexes and weaken the constraints to consider the evaluation.

5 Conclusion

In this study, we establish a Carbon Sequestration Model to evaluate the most effective
factor on carbon sequestration. The calculation shows that the carbon stored in above-
ground biomass accounts for the largest weight. So in the process of forest management,
we should increase wood density, forest area and the biomass per unit area to increase
the amount of carbon sequestration.

Furthermore, we accomplish to determine the optimal stock with Single Objective
model based on different factors, which include sequestrated carbon, minimum accept-
able labor, growth, NPV of stand. However, there can be no optimal management suit-
able for all forests because of the various composition, climate, population, interests
and values of forests around the world. Therefore, we conclude that this type of study is
rather data sensitive and needs to be performed on a case-to-case basis. This is the main
contribution by this study.
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Abstract. The level of reservation profit is one of the important factors affecting
the efficiency of supply chain. Consider a two-tier supply chain system consisting
of a manufacturer and a retailer to study the effects of reservation profit levels
of different supply chain members on the feasibility and efficiency of wholesale
price contract and agency selling contract. The results show that if the unit pro-
duction cost is sufficiently low, the agency selling contract is more efficient (less
efficient) than the wholesale price contract when the reservation profit level of the
retailer is below (above) a certain threshold. However, if the unit production cost
is sufficiently high, the wholesale price contract is always superior to the agency
selling contract in efficiency. For the feasibility of the two types of contracts, we
find that when the unit production cost is sufficiently high, the feasibility range of
the wholesale price contract is wider than that of the agency selling contract.

Keywords: Supply chain · Wholesale contract · Agency selling contract ·
Contract efficiency · Reservation profit

1 Introduction

Supply chain, regarded as an integrated network of providing goods or services to the
end customers, consists of multiple members such as suppliers, manufacturers, logistics
service companies, and retailers. Often, these parties in the supply chain are endowed
with their own economic interests, whichwill lead to thewell-known phenomenon called
double marginalization, resulting in the Price of Anarchy. It has been a hot topic in both
industry and academia which considers how to design various supply chain contracts
to boost supply chain system efficiency including quantity discount contracts, two-part
tariff contracts, buyback contracts, quantity flexibility contracts, and revenue sharing
contracts [1–5]. [6] conducts an excellent and comprehensive review regarding supply
chain coordination with contracts.

The existing literature has examined how to align the incentive of supply chain
members through complexmanagement costs in the implementation process. In practice,
it is commonly observed that themembers of a supply chain always trade with each other
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merely using some simple contracts, such as the wholesale price contract, the agency
selling contract and so on. Knowing this, it is of great importance and significance to
explore how these simple contracts affect the efficiency of the supply chain (i.e., the ratio
of decentralized supply chain profit with the contract to the centralized supply chain’s
optimal profit).

There exists a vast of research on this topic, among which [7] coined the concept
of Price of Anarchy (PoA) to quantify the efficiency of the wholesale price contract in
a decentralized supply chain system with different configuration structures. [8] utilized
Price of Anarchy to quantify the efficiency of the quality-dependent wholesale price
contract in competing decentralized reverse supply chain systems. [9] focused on how to
improve contract’s efficiency by increasing contract parameters in a decentralized supply
chain system. Specifically, the author analyzed the contract’s efficiency improvement
of two-part tariff contract, revenue-sharing contract, and effort cost sharing contract
(two parameters contract) compared with the wholesale price contract (one parameter
contract).

Different from the aforementioned studies assuming that the reservation profit level
of supply chain members are zero. Our paper aims to investigate the impact of the
reservation profit level of supply chain members on the supply chain coordination. The
main research questions studied are as follows. (1) To what extent will the wholesale
price contract or the agency selling contract cause a loss regarding the supply chain
system performance, i.e., how efficient are these two types of contracts? And which one
is more efficient? (2) Under what conditions could the supply chain members agree to
establish the wholesale contract or the agency selling contract between them? (3) What
are the preferences of different supply chain members for the two types of contract
forms?

2 Model Description

Consider a two-echelon supply chain system (S) consisting of an upstreammanufacturer
(He) and a retailer (She), where the manufacturer produces a product at a constant unit
cost c and sells it to an independent retailer, who then sells the product to the end
consumer at a retail price p. We assume that consumer demand is a linear function of the
retail price of this product, i.e.,D(p) = a−bp, where a is the market size and parameter
b is the sensitivity coefficient of the retail price. Distinct from the previous literature,
different levels of reservation profit for the manufacturer and the retailer are allowed in
ourmodel, which reflects the capability they can earn from external alternatives. The two
reservation profit levels for the manufacturer and the retailer are represented respectively
by VM and VR, and we assume that VM ≥ 0,VR ≥ 0 to avoid trivial cases.

In this paper, we consider two types of widely used contracts between the man-
ufacturer and the retailer: the wholesale price contract (WPC) and the agency selling
contract (ASC). Under WPC, the manufacturer first announces the unit wholesale price
w, and then the retailer decides whether to accept the offer after observing w. Under
ASC, the manufacturer sells his product to the end consumer through the retailer by
paying a commission fee α, different from WPC, the retailer does not have ownership
of the product throughout the whole sales period.
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To provide a benchmark for comparison, we first consider the centralized supply
chain scenario under which the manufacturer and the retailer can be considered as a
whole to determine the retail price p maximizing the total supply chain profit:

ΠC
S (p) = (p − c)(a − bp) (1)

where the superscript C represents the centralized supply chain. It is easy to find that the

optimal price is pC
∗ = a+bc

2b and the optimal profit is ΠC∗
S = (a−bc)2

4b π . To ensure the

two parties have incentive to participate, the condition 0 ≤ VM + VR ≤ (a−bc)2

4b should
be satisfied. In the following, we introduce the definition of contract’s efficiency.

Definition 1. For a supply chain contract K, its contract efficiency is the ratio of the
equilibrium profit of the decentralized supply chain system to the optimal profit of the

centralized supply chain system, i.e., EK = �K∗
S

�c∗
S
.

3 Feasible Range of Establishing the Wholesale Price Contract
and Efficiency Analysis

In this section, we consider the case where themanufacturer and the retailer are governed
by a wholesale price contract. As such, a Stackelberg game is played between them with
the manufacturer as a leader and the retailer being a follower. Given that a wholesale
pricew is charged by themanufacturer, the retailer needs to decide whether to accept this
offer or not. If she takes it, then she should determine the retail price p of the product.
First, we analyze the pricing problem if the retailer accepts the contract by maximizing
πW
R (p) = (p − w)D(p). It is readily to obtain that the retailer’s optimal retail price is

pW
∗
(w) = a+bw

2b and the corresponding profit is πW ∗
R (w) = (a−bw2)

4b . Therefore, it is

obvious that if the retailer’s reservation profit level VR satisfies VR ≤ (a−bw2)
4b , she will

accept WPC proposed by the manufacturer, otherwise the retailer rejects.
In the first stage of the game, the manufacturer needs to decide whether to propose

a wholesale price contract with wholesale price w to the retailer, which ensures the
retailer’s equilibrium profit is no less than VR. Thus, the model of manufacturer is given
by

max πW
M (w) = (w − c)D

(
pW

∗
(w)

)

s.t.

(
a − bw2

)

4b
≥ VR (2)

Solving the above problem yields the manufacturer’s optimal wholesale price as

w∗ =
{

a+bc
2b , if VR ≤

(
a−bc2

)
16b ,

a−2
√

(bVR)
b , if

(
a−bc2

)
16b ≤ VR ≤

(
a−bc2

)
4b

(3)
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The corresponding equilibrium profit of manufacturer is

πW ∗
M =

⎧
⎪⎨
⎪⎩

(
a−bc2

)
8b , if VR ≤

(
a−bc2

)
16b ,

(a − bc)

√(
VR
b

)
− 2VR, if

(
a−bc2

)
16b ≤ VR ≤

(
a−bc2

)
4b

(4)

Proposition 1. In the decentralized supply chain system described above, WPC can be
established between the manufacturer and the retailer when one of the following two
conditions is satisfied:

(i)VM ≤
(
a − bc2

)

8b
and VR ≤

(
a − bc2

)

16b
;

(ii)VM ≤ (a − bc)

√(
VR

b

)
− 2VR and

(
a − bc2

)

16b
≤ VR ≤

(
a − bc2

)

4b
. (5)

Proposition 1 gives the feasible range of establishing WPC when both the manu-
facturer and retailer have non-zero reservation profits. As shown in Fig. 1, the regions
I, II and III characterize the feasible ranges for all possible supply chain contracts, i.e.,

0 ≤ VM + VR ≤ (a−bc2)
4b ,VM ≥ 0,VR ≥ 0. According to Proposition 1, WPC between

the manufacturer and the retailer can be reached if the combination of their reservation
profits lies in region I ((i) is satisfied) or region II ((ii) is satisfied).

Fig. 1. Feasible range of establishing WPC

Corollary 1.

(i) Denoted by wi∗ , pi
∗
the equilibriumwholesale price and retail price when (VR,VM )

is located in region i(i ∈ {I , II}), then wI∗ ≥ wII∗ , pI
∗ ≥ pII

∗
;
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(ii) Denoted by π i∗
M , π i∗

R ,the equilibrium wholesale price and retail price when
(VR,VM ) is located in region i(i ∈ {I , II}), then π I∗

M ≥ VM , π I∗
R ≥ VR, π II∗

R ≥ VR;

According to Corollary 1, compared to the reservation profit levels combination
(VR,VM ) in region II , when the reservation profit levels of the manufacturer and the
retailer fall in region I (i.e., the retailer’s reservation profit level is low and the manu-
facturer’s reservation profit level is moderate), the manufacturer will impose a higher
wholesale price and the retailer will set a higher retail price. As a result, both will obtain
equilibrium profits higher than their respective reservation profit levels. In region II , the
retailer’s equilibrium profit is equal to her reservation profit level, and themanufacturer’s
equilibrium profit is no less than his reservation profit level.

Proposition 2. With respect to the efficiency of WPC, the following holds.

(i) In region I , the efficiency of WPC established between the manufacturer and the

retailer satisfies EW
I = 3

4 , and that in region II satisfies EW
II = (a−bc)

√
(bVR)−4bVR

(a−bc2)
;

(ii) EW
II ≥ EW

I , and EW
II is monotonically increasing in the retailer’s level of reservation

profit VR. Furthermore, when VR reaches the upper bound (a−bc2)
4b ,EW ∗

II = 1.

In Proposition 2, we reveal that the efficiency ofWPC in feasible regions I , II , and the
effect of reservation profit level on the contract’s efficiency. We find that the efficiency
of wholesale price contract does not contingent on the manufacturer’s reservation profit
VM (although the feasible establishment range of WPC is related to VM ). The impact
of the retailer’s reservation profit level VR on the efficiency of WPC can be divided into

two subcases. As shown in Fig. 2, when VR ∈ [0, (a−bc2)
16b ], the efficiency of WPC does

not vary with the VR and remains at 3
4 ; when VR ∈ [ (a−bc2)

16b ,
(a−bc2)

4b ], the efficiency of
WPC increases in VR until it reaches 1.

Fig. 2. The impact of the retailer’s reservation profit level VR on the efficiency of WPC
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4 Feasible Range of Establishing the Agency Selling Contract
and Efficiency Analysis

In this section, we consider the case where an agency selling contract is considered
between the manufacturer and the retailer, which is also a two-stage Stackelberg game
between the two parties. In the second stage, the retailer needs to decide: first, whether to
accept ASCprovided by themanufacturer; second, if so, how to determine the retail price
p of the product. If the retailer accepts this contract, say, she agrees on the commission
percentage α, then she needs to determine the retail price p by maximizing πAS

R (p) =
αpD(p). Using the first-order condition, it is easy to obtain that the retailer’s optimal
retail price for a given commission percentage α is pAS

∗
(α) = a

2b , which is independent

of α, and the equilibrium profit is πAS∗
R (α) = α a2

4b . Given the above results, it is safely to

say that if the retailer’s reservation profit level meets VR ≤ α a2
4b (α ≥ 4bVR

a2
), the retailer

will accept ASC provided by themanufacturer, otherwise the retailer rejects the contract.
In the first stage, the manufacturer needs to determine whether to initiate an agency

selling contract and how to pay unit commission fee α to the retailer such that the
retailer’s equilibrium profit at least reaches VR. Thus, the objective of manufacturer can
be expressed as follows:

max πAS
M (α) = (1 − α)pAS

∗
(α)D

(
pAS

∗
(α)

)
− cD

(
pAS

∗
(α)

)

s.t.
a2α

4b
≥ VR (6)

Since the objective function of the manufacturer πAS
M (α) = a

4b (a − 2bc − aα)

is strictly decreasing in α, to induce the retailer accept the contract, the commission
percentage must satisfy α ≥ 4bVR

a2
, hence, the optimal sale commission percentage set

by the manufacturer is αAS∗ = 4bVR
a2

. In this case, the retailer’s equilibrium profit is equal

to her reservation profit, i.e., πAS∗
R = VR and the equilibrium profit of the manufacturer

is πAS∗
M = a

4b (a − 2bc) − VR.

Proposition 3. In the above decentralized supply chain system, ASC can be established
if the level of reservation profit of the manufacturer and the retailer (VM ,VR) satisfies
VM + VR ≤ a

4b (a − 2bc).
Proposition 3 presents conditions for establishing ASC between the manufacturer

and the retailer. As shown in Fig. 3, if the combination of the reservation profits of the
manufacturer and the retailer lies in the shaded area, ASC can be established. As the
production cost c increases, a

4b (a − 2bc) decreases, i.e., the feasible establishment area
for ASC keeps dwindling.

Corollary 2. If the unit production cost satisfies c > a
2b , the manufacturer and the

retailer will never choose ASC between them.
Next, we analyze the efficiency of ASC within the feasible establishment ranges.

Proposition 4. The efficiency of ASC holds for the following statements:
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Fig. 3. Feasible establishment range of ASC

(i) The efficiency of ASC is EAS = a(a−2bc)
(a−bc2)

;

(ii) The efficiency of ASC EAS is irrelevant to each member’s reservation profit level
VM and VM ;

(iii) The efficiency of ASC EAS is strictly decreasing in the unit production cost c.

In Proposition 4, we characterize the efficiency of ASC and analyze the effect of the
manufacturer’s reservation profit level VM , the retailer’s reservation profit level VR, and
the unit production cost c on the contract’s efficiency.

5 Comparative Analysis of Wpc and the Agency Selling Contract

In this section, we compare WPC and ASC in term of the feasible establishment range
of contracts, contract’s efficiency and the equilibrium profits of the manufacturer and
the retailer.

Proposition 5. If the unit production cost c ≥ (
√
2−1)a
b , the feasible establishment range

under WPC is broader than that of ASC.

Fig. 4. Comparison of the feasible range of WPC and ASC
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Figure 4 illustrates the feasible establishment ranges between WPC and ASC. It can

be seen that when the unit production cost satisfies c ≥ (
√
2−1)a
b (

a(a−2bc)
4b ≤ (a−bc)2

8b ),
the feasible establishment region for ASC (grid shaded area in Fig. 4(a)) lies within the
feasible establishment region for WPC (gray shaded area in Fig. 4(a)). It means that
WPC has a broader feasible region than ASC, i.e., given any combination of reservation
profit level set (VM ,VR) in the region, it is always possible to choose WPC if ASC is in
consideration, however, the opposite is not true.

When the unit production cost satisfies c <
(
√
2−1)a
b (

a(a−2bc)
4b >

(a−bc)2

8b ), a part
of the feasible establishment region of ASC (grid shaded area in Fig. 4(b)) is outside
that of WPC (gray shaded area in Fig. 4(b)). As a result, there exists a region, i.e.,

{(VM ,VR)| (a−bc)2

8b < VM ≤ a(a−2bc)
4b ,VM + VR ≤ a(a−2bc)

4b }, in which ASC can be
established, but WPC is out of consideration.

Proposition 6. Under ASC, the retailer’s profit is always equal to her reservation profit

level VR; while under WPC, the retailer’s equilibrium profit is max{VR,
(a−bc)2

16b }.
According to the Proposition 6, when the retailer’s reservation profit level is lower

than (a−bc)2

16b , she will better off if the manufacturer offersWPC. However, if the retailer’s

reservation profit level satisfies VR ≥ (a−bc)2

16b , it makes no difference which kind of
contract form is provided by the manufacturer, because the retailer can only gain an
equilibrium profit equal to her reservation profit level under either contract.

Proposition 7. Comparing the manufacturer’s equilibrium profit between WPC and
ASC, we obtain:

1) If 0 < c ≤ a
3b , then

(i) when VR ∈ [0, (a−2bc)2

4b ], πAS∗
M ≥ πW ∗

M ;

(ii) when VR ∈ [ (a−2bc)2

4b ,
a(a−2bc)

4b ], πW ∗
M ≥ πAS∗

M ;

2) If a
3b < c ≤ (

√
2−1)a
b , then

(i) when VR ∈ [0, a2−2abc−b2c2
8b ], πAS∗

M ≥ πW ∗
M ;

(ii) when VR ∈ [ a2−2abc−b2c2
8b ,

a(a−2bc)
4b ], πW ∗

M ≥ πAS∗
M ;

3) if (
√
2−1)a
b < c ≤ a

2b and VR ∈ [0, a(a−2bc)
4b ], πW ∗

M ≥ πAS∗
M .

Proposition 7 shows that the relationship between the equilibrium profits received by
the manufacturer under WPC and ASC is related to the value of the unit production cost
c. On the one hand, when the product cost c is relatively small, there exists a threshold
for the retailer’s reservation profit level VR. On the other hand, if the unit product cost

c is sufficiently large, i.e., c >
(
√
2−1)a
b , the manufacturer can always gain a higher

equilibrium profit level by adopting WPC compared with ASC.
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Proposition 8. Comparing the efficiency of WPC with that of ASC, we derive:

1) when 0 < c ≤ a
3b , then

(i) if VR ∈ [0, (a−2bc)2

4b ], EAS ≥ EW ;

(ii) when VR ∈ [ (a−2bc)2

4b ,
a(a−2bc)

4b ], EW ≥ EAS;

2) when a
3b < c ≤ a

2b and VR ∈ [0, a(a−2bc)
4b ], EW ≥ EAS.

Proposition 8 reveals the relationship of the efficiency of WPC and ASC. We show
that if the unit production cost c is relatively small, i.e., c ≤ a

3b , ASC is more efficient
than WPC given the retailer reservation profit level VR is relatively low (i.e., VR ≤
(a−2bc)2

4b ). When the retailer is endowed with a high level of reservation profit VR (i.e.,

VR ≥ (a−2bc)2

4b ), WPC is more efficient than ASC. Likewise, the manufacturer will also
choose WPC as claimed by Proposition 6.

When the unit production cost satisfies c ≥ a
3b , the efficiency of WPC is always

higher than that of ASC. It means that WPC can generate higher profit level to the whole
supply chain compared to ASC under the same condition. However, from Proposition

7, when a
3b < c <

(
√
2−1)a
b and VR ∈ [0, a2−2abc−b2c2

8b ], we have πAS∗
M ≥ πW ∗

M , which
means that the manufacturer should choose ASC under this circumstance.

6 Conclusion

This paper examines how the reservation profit levels of themanufacturer and the retailer
affect the feasible establishment range of wholesale price contract and the agency selling
contract as well as the corresponding contract’s efficiency. First, we show that when the
unit production cost is relatively low, the agency selling contract is more efficient if the
retailer’s reservation profit level is low, whereas higher supply chain performance can be
achieved with the wholesale price contract when the retailer’s reservation profit level is
high. Second, we find that the wholesale price contract has a broader feasible establish-
ment range than the agency selling contract when the manufacturer’s unit production
cost is sufficiently high. Third, when the unit production cost is relatively low, if the
retailer’s reservation profit level is below (above) a certain threshold, the manufacturer
prefers the agency selling contract (the wholesale price contract). When the unit pro-
duction cost is relatively high, the manufacturer betters off under the wholesales price
contract which can also benefit the retailer given her reservation profit is low.

Acknowledgement. The work was supported by The Natural Science Foundation of Guangdong
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Abstract. This research presents a new motion generation technique combined
with the latest updated of teaching-learning-based optimization with a diversity
archive (ATLBO-DA), which has been proved the performance in the previous
study. The six-bar prototype in this study is formulated by creating the second loop
attached to the simple four-bar model, which expects to follow the Watt I model.
Two specific motion generation problems are used to test the performance of this
technique. The objective function is created in the form of weighted sum between
the position error and the angle error to make it can perform in a single objective
optimization problem. The performance of the optimizations with different weight
is investigated in this research. The results show that the purposed technique
performs with a good accuracy in the specific motion without prescribed timing
problems.

Keywords: Motion generation · Six-bar linkage · Optimization · Metaheuristic

1 Introduction

The mechanism is a processing device used to transfer the input motion into the desired
output motion, for example, a mechanism operation of a machine that relies on gears
joined together to make the machine work [1]. The four-bar mechanism has been used
regularly in a lot of applicants throughout the world such as plane flap, bicycle paddling,
pump jack, etc. Unfortunately, there are many specific works that require a unique
mechanism, which is beyond the movement limitation of the four-bar linkage motion. In
the past, steering linkage had been performedwith a four-bar linkage, but at present it was
replaced with the six-bar linkage. It has become the reason why many researchers aim
to develop a newmechanism to receive the specific task [2], which expected the task can
be alleviated using a six-bar linkage. The six-bar linkage is separated into two categories
based on their linkage rearrangement such as the Watt chain and Stephenson chain [3,
4]. There are an analysis studies of the metaheuristic optimizer for solving the six bar
linkage [5, 6]. The model in this research is the six-bar watt I mechanism extended from
the traditional four-bar linkages model from the previous work [7, 8]. The method has
an expect to synthesize and demonstrate the behavior of the mechanism can be varied
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depending on the objective task i.e., type synthesis, and dimensional synthesis. The
major synthesis of the last category is motion generation which is based on dimensional
synthesis. The motion generation technique is used to find the optimum form of the
linkages and focuses on the discrepancy of the desired point movement and angle on
the coupler link. Since full motion rotating constraint techniques relied on the Grashof
criterion are included in the dimensional synthesis in many types of research [7–9], this
experiment will adopt the same constraint techniques to simplify the mechanism and
enhance the optimization performance. Evolutionary optimization has been applied in
this analysis for the convenience and the efficiency result. The previous research showed
that the important factors leading to the computational synthesis performance were the
constraint handling technique and the type of the optimizer [10–12]. Yet, some studies
on four-bar synthesis found that the traditional model might not be appropriate for the
complicated or specific task [12] due to the limitation of the mechanism itself, which
triggers the aim of this research to study the six-bar mechanism.

The optimizer used to synthesize in this study is the adjusted version of the TLBO
called teaching-learning-based optimization with a diversity archive which provides a
good result in the path generation of the four-bar linkage [13]. The problem used in this
study is divided into two cases: rectilinear shape [7] and full circular shape [7]. The
objective function in the problem is using the weighted sum technique to find the best
solution [7, 12]. The quantity difference of the inserted weight becomes another factor
that needs to be investigated in this study as it has an influence on the ability of the
optimizer.

The paper starts with a mathematical expression of the position in brief followed
by the detail of constraint handling technique. The various design problems and design
results are given in order. The design result is reported in statistics to compare the
difference of the solution. The overall discussion and conclusion of this study are placed
in the last section.

2 Methodology

2.1 The Position and Angle Analysis of the Six-Bar Model

The six-bar model is extended from the simple four-bar model with the additional loop
attached to the coupler link and the last link of the traditional four-bar. The connected
joint C between the based model and the extended model has been fixed to reduce the
output degree of freedom. This technique makes the model more convenient to study.
This type of model can be categorized as the Watt I model from the ternary link on link
3(BD) and link 4(DC). Link 1 (AD) is designed as a fixed frame. The input link is link
2 (O2B), while the output is link 6 (FG). Link 5 (EF) and link 6 (FG) are attached to
the extended link 4, 2 (CE) and link 3, 2(CG), respectively. The point of interest is held
by link 6 (FG). Normally, the possibility to create another form of the six-bar model is
varied to formed open and cross mode which can happen at link 4, 1 (CD) and link 6
(FG). In study, the major focus of the model will be considered only the formed open
mechanism. The kinematic diagram shown in Fig. 1 is the targeted model in the global
axis which included 7 joints with 6 linkages. The constraint handling technique is used
at the diving link to ensure that the machine can operate properly in one revolution
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without any issue. The position and angle of the point of interest can be evaluated by the
known pertinent parameter r1, r2, r3,1, r3,2, r4,1, r4,2, r5, r6, rpx, rpy and others to define
the motion of the target point. The outcome of the expression is shown as the equation
below

xp = xO2 + r2 cos(θ2 + θ1) + (
r3,1 + r3,2

)
cos(θ3 + θ1) (1)

− rpx cos(θ6 + θ1) + rpysin(θ6 + θ1)

yp = yO2 + r2 sin(θ2 + θ1) + (
r3,1 + r3,2

)
sin(θ3 + θ1)

+ rpx cos(θ6 + θ1) + rpysin(θ6 + θ1)

where xO2 and yO2 are the starting position of the mechanism at revolute joint O2 in the
global coordinate axis. Noticeably, other parameters have to append with θ1 to transform
their presence to be the same coordinate as the origin pin joint.

Fig. 1. Six bar linkage in the global coordinate axis

The values θ3 and γ are defined by the known of the values r1, r2, r3,1, r4,1 which
can be changed respectively with any degree of the crank angles (θ2).

The angle θ3,2 and θ7 is required to achieve the angle of the point of interest (θ6)
which is expressed in the equation below:

θ3,2 = cos−1

[
Z2
2 + r23,2 − r24,2

2z2r3,2

]

(2)

θ7 = cos−1

[
Z2
2 + r26 − r25

2z6r6

]

(3)
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The angle θ6 can determine by the equation expressed as follow:

θ6 = θ3,2 + θ7 − θ3 (4)

2.2 Optimization Constraint Handling Techniques

To analyze the motion generation problem, two factors needed to be concerned are the
error of the distance and the error of the angle. The error from the distance is calculated
by the interval between the desired point (xd , yd ) and the actual point Pd (xp, yp), while
the error of the angle can be measured by the difference in radian from the desired angle
(θ6d ) and the actual angle (θ6p). Both errors will become the objective function for the
optimization problem in terms of the sum square. Two constraints are needed in this
study. The first one is the mechanism according to the Grashof criterion to assure that
the crank-rocker mechanism will move the crank linkage without any issue. Since the
first loop of the model is the driving part of the mechanism, the constraint handling
technique will only be considered at the first half of the mechanism. The second con-
straint is a sequence of the crank which should be rotated in a direction (clockwise
or counterclockwise). The motion generation problem in this study can be performed
with a non-prescribed time synthesis meaning that the driving link angle and other
parameters are un-determined [10]. The weighted-sum technique is one of a classical
multi-objective optimization technique, which sets up weight of each objective function
before performing optimization run. The priority of the objective functions is preferred
as it may affect the performance in searching of the optimizer. The weighting factor has
to be investigated in this study. The constraint equation is expressed below:

min f (x) = w1

N∑

i=1

[(xd ,i − xp,i)
2 + (yd ,i − yp,i)

2] + w2

N∑

i=1

[(θ6d ,i − θ6p,i)
2] (5)

Subject to

w1 = 1 − w2 (6)

min
(
r1, r2, r3,1, r4,1

) = crank(r2) (7)

2min
(
r1, r2, r3,1, r4,1

) + 2max
(
r1, r2, r3,1, r4,1

)
<

(
r1, r2, r3,1, r4,1

)
(8)

θ12 < θ22 . . . < θN2 (9)

xL ≤ x ≤ xU (10)

where x = {
r1, r2, r3,1, r3,2, r4,1, r4,2, r5, r6, rpx, rpy, θ i2

}T
is the optimum design vari-

ables, which can obtain from the optimizer. The series of the link length values will
be combined to create the mechanism except the crank angle value θ i2 which has been
prepared before the optimization process. The crank angle in this research θ i2 is divided
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into 200 intervals equally from 0−360° due to the first constraint. The efficiency of the
result can be diversified according to the number used in the crank angle sequence (9).
The limitation of a design variable (10) is included to scope the working space of the
mechanism, which made the huge role in the optimization performance. The boundary
of the limitation can affect the possibility of the designed mechanism and the precision
of the result. Once the synthesis process is done and mechanism motion is defined, the
sum square error will be calculated by the equation below:

f (x) =
N∑

i=1

min (w1dij
2 + w2θ

2
ij) (11)

where dij2 = (xd ,i − xp,j)2 + (yd ,i − yp,j)2 and θ2ij = (θ6d ,i − θ6p,i)
2 for j = 1, …, N.

The origin of this equation was explained in [10–13].

3 Numerical Experiment

The optimization problem in this study is the traditional problem that used to be solved by
the four-bar mechanism [7, 12]. The purpose of these models is to compare and indicate
the efficiency of this mechanism. Two problems are selected for this experiment. The
design variable limitations are assigned as the previous research to make the comparison
more precise.

Case 1: Rectilinear Shape Problem
Design variables:

{
r1, r2, r3,1, r3,2, r4,1, r4,2, r5, r6, rpx, rpy, x0, y0, θ1, θ

1
2 , θ22 , θ32, θ

4
2 , θ52 , θ62

}T

Desired point:

rid = {(20, 20), (20, 25), (20, 30), (20, 35), (20, 40), (20, 45)}

θ id = {1.9937, 1.9220, 1.8434, 1.7599, 1.6709, 1.5735} rad
Limitation of design variables:

5 ≤ r1, r2, r3,1, r3,2, r4,1, r4,2, r5, r6 ≤ 60

−60 ≤ x0, y0, rpx, rpy ≤ 60

0 ≤ θ1, θ
1
2 , θ22 , θ32, θ

4
2 , θ52 , θ62 ≤ 2π

Case 2: Full Circular Shape Problem
Design variables:
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{
r1, r2, r3,1, r3,2, r4,1, r4,2, r5, r6, rpx, rpy, x0, y0, θ1, θ

1
2 , θ22 , θ32, θ

4
2 , θ52 , θ62 , θ72 , θ82 , θ92 , θ102

}T

Desired point:

rid =
{

(20, 10), (17.66, 15.142), (11.736, 17.878), (5, 16.928), (0.60307, 12.736),
(0.60307, 7.2638), (5, 3.0718), (11.736, 2.1215), (17.66, 4.8577), (20, 10)

}

θ id = {0.4208, 0.5117, 0.7433, 0.9910, 1.1394, 1.1296, 0.9599, 0.7322, 0.5257, 0.4208} rad
Limitation of design variables:

5 ≤ r1, r2, r3,1, r3,2, r4,1, r4,2, r5, r6 ≤ 60

−60 ≤ x0, y0, rpx, rpy ≤ 60

0 ≤ θ1, θ
1
2 , θ22 , θ32, θ

4
2 , θ52 , θ62 , θ72 , θ82, θ

9
2 , θ102 ≤ 2π

These two design problems will be solved by the new optimizer called the teaching-
learning-based optimization with a diversity archive (ATLBO-DA). The algorithm
already proved the dimensional synthesis effectiveness in the previous four-bar mecha-
nism research [14, 15]. The variables of the optimizer are determined as IReset = 20,
IRange= 5, and δ = 1.The population is set up as np = 100 while the maximum iteration
is about 2000 times. Each problem is solved for 30 times to gain an accurate result. A
simple design experimental study for weighted-sum factor value is investigated its effect
to the motion generation design results. Each of the weight factors is made up the trend
of the objective function. The objective with higher weighting factor tends to have the
priority in the objective function than the other one. The weight set varies closed to
0.5, which was consistent with the previous work [12]. The chosen weighted-sum factor
values are:

First case:

w1 = 0.35,w2 = 0.65

Second case:

w1 = 0.5,w2 = 0.5

Third case:

w1 = 0.65,w2 = 0.35
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4 Design Result

The design result is shown inTable 1. There ismean objective function value (mean), best
objective function value (min), standard deviation (std), and the number of successful
runs (Success). To find the best minimum error (min) from those 30 algorithms, there
are different weighting values of each case. From case1, the best minimum error is equal
to 0.0011; the second-best is 0.005; and the worst is 0.00693. Obviously, “0.5 weight”
represents the best result for the problem in case 1. However other weight values (0.35,
0.65) are accounted for moderate result. So, when comparing to the previous work, it
can be seen that the result of mechanism with six-bar linkages is more accurate than the
traditional four bar model.

Table 1. The design result in case 1 with different weight
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In case 2 the results are reported in Table 2. The best minimum error is equal to
0.15074 at 0.5 weighting factor. The second best of 0.65 weight is equal to 0.36586, and
theworst case is 0.36629of 0.35weight. It found that the result gives a better performance
than the previous work. The statistical values also affirmed the improvement of the result
by the decrease in mean (0.099649) and standard deviation (0.106241). As expected,
when focusing on the optimum path error by controlling weight at 0.65, the solution in
path objective is insignificant. On the other hand, the amount of error obtained from the
angle is the highest from all of three cases due to the lack of the weight itself which
made the optimizer more careless in finding the minimum angle error, so the final result
of the weight factor, either 0.65 or 0.35, is still not the optimum solution that we want to
find out. In summary, the best-balanced weight factor (w = 0.5) is the optimum solution
from this problem since it focuses on finding the solution in path and in angle equally,

Table 2. The design result in case 2 in different weighting factor
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while the other weighting factors provide the similar result, which is not the best (Figs. 2
and 3).

Fig. 2. (a) Optimum mechanism for case 1 (b) Optimum path for case 1

Fig. 3. (a) Optimum mechanism for case 2 (b) Optimum path for case 2

5 Conclusion

The research first starts with the new model of six-bar linkage by extending the model
from the traditional four-bar model with an assumption to improve its performance for
a specific task. The task has been studied for a motion generation synthesis with four-
bar mechanism. There is not much research conducted by using six-bar linkage with
Metaheuristic algorithm. That is our first aim. According to the results of the motion
generation six-bar synthesis, the minimum error for case one is 0.0011 and case two is
0.15074 meaning that the new model performs better than the traditional four-bar model
in both situations. The proposed six-bar model and the new optimizer also improve the
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consistency of the solution in motion generation synthesis. Another interesting result
is the effect of the weighting factor. It can be seen that the optimum results in each
case are varied to the weighting factor. Therefore, it can be concluded that the effect of
the weight can be varied depending on the objective of the study. However, the most
effective weighting factor for the overall optimum mechanism is 0.5. This result shows
that the six-bar motion generation synthesis is effectiveness in problems as same as the
path generation did. For future work, this technique will be extended to analyze the high
lift mechanism synthesis.
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Abstract. This research proposes to design a Goland wing structure using a two-
step approach that concerns the last step uncertainty. The first step starts with
performing the design optimization for multi-purposes followed by the design of
wing mass, stress, and buckling factor and the reliability test of all solution set.
Due to the aircraft wing being subjected to aerodynamics loads, both the structure
failure and the material can deviate from the optimum result. A vortex lattice
method is used for aerodynamics analysis, the finite element method is analyzed
by the structural failure. These techniques are expected to reduce the complexity of
Reliability-Based Design Optimization (RBDO). The Latin hypercube sampling
method is used to quantify uncertainties of the aircraft wing structural design so
that the experimental results including the solution sets are more acceptable and
reliable which the proposed approach can be an alternative way for the RBDO
technique.

Keywords: Multi-objective optimization · Reliability test · Latin hypercube
sampling · Goland wing

1 Introduction

Inherently, all process of the aircraft wing design is uncertain and always causes the
effects that can deviate the actual performance of the aircraft [1]. To decrease the
inexact results of the aircraft design process, the Reliability-Based Design Optimiza-
tion (RBDO), the reliable method used to analyze reliability or failure probability in
an optimization problem with uncertainties, has been proposed [2]. For the first time,
reliability index can be performed using probabilistic technique. The alternative and
non-probabilistic techniques have been accomplished a drawback of the probabilistic
group that requires more precise calculation and caused inefficient computation. The
traditional technique is also known as Monte Carlo simulation (MCS) has been used
to quantify the uncertainties in aircraft design though its drawback is time consump-
tion. Later, various alternative forms have been developed to decrease the drawbacks.
The adaptive forms are the first-order and the second moment (FOSM), the first-order
reliability method (FORM) and the second-order reliability methods (SORM) [3]. The
most successful method has been used to consider the uncertainties in a Goland wing
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that it was the polynomial chaos expansion (PCE) [4, 5]. The extension has been used
to design a composite plate wing with uncertainty in ply orientations [6]. However,
RBDO is a combination of a deterministic design process and the uncertainty quantify
technique through an iterative optimization process. The use of various forms of MCS
for RBDO still needs a great number of function evaluations, which leads to inefficient
computation [7]. Later, the Latin hypercube sampling (LHS) has been used to generate
random variable rather than using MCS [8]. The adaptation of LHS was optimum Latin
hypercube sampling (OLHS), which is expected to increase the quality of space filling
[9]. Recently, this technique is combined with a surrogate model to improve the perfor-
mance in solving RBDO [10], but this technique still requires a thousand of calculations
which the reason for new ideas emerging demands. A second group is non-probabilistic
approach that does not need a precise distribution of random variables. The well-known
methods are a convex set [3], an interval method [11] and a fuzzy set theory [12]. The
general reliability-based design optimization problem is a double-looped nested prob-
lem due to the calculation of probability failure and optimization solving. In cases of a
non-probabilistic approach, a triple-looped nested problem is needed due to the possi-
ble safety index (PSI) calculation. For solving the tasks, the Target Performance-Based
Design Approach (TPBDA) [13], the Interval Perturbation Method (IMP) [14], and
the Multi-Objective Reliability-Based Design Optimization (MORBDO) using meta-
heuristics (MHs) [15–17] have been proposed. The first work applied MORBDO using
a worst-case scenario technique for solving a classical aircraft aeroelastic [15]. The
extension of the worst-case scenario has been studied in a steering linkage design [16].
The last technique [16] is an extension of [13] the Multi-Objective Reliability-Based
Topology Optimization (MORBTO) for solving topology optimization problems that
can reduce time consumption. As mentioned previously, RBTO has been used to design
aeronautical structures, which is expected to be weight-saving [4]. The reliability index
significantly affected to final shape layout of the aero-structures [11]. RBTO is necessary
to design of aircraft wing structure with considering aeroelastic phenomena.

However, RBTO of aircraft aeroelasticity is a computational burden problem due
to the complexity of aircraft structures and the triple-loop nested problem for the non-
probabilistic technique. So far, there have been only a few techniques introducing the
non-probabilistic reliability index into the aeroelastic topology design of aircraft wings
[18]. Except for the work by [19], their work used the PSI technique combining withMH
for solving a composite aircraft wing design. The combination is called PSIBDO. The
optimization aims to reduce the mass of aircraft wing to meet aeroelastic and strength
constraints. The RBDO technique gets rather good in the design of the composite air-
craft wing. Unfortunately, the work is still based on the traditional RBDO that operates
the problem in form of a single objective with a probability constraint to fail under a
defined probability of failure. The difference in the probability of failure causes differ-
ent reliability solution. The recent work presents different viewing points by the way
of multi-objective reliability-based design optimization analysis, the reliability solution
set can perform one optimization run [20]. Out of the previous track, to tackle RBDO, a
two-step approach for optimization and reliability is needed to tackle RBDO. Thus, this
method is the solution to solve the problem by performing the first step with a multi-
objective evolutionary optimization together with the reliability analysis. This research
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reveals a relation between the single objective reliability-based design optimization that
can separate into a multi-objective optimization and examine the reliability of solutions
as a technique, while the reliability analysis is in the group of probabilistic [21].

As mentioned above, both research groups have a gap in a study RBDO with two-
step approaches without performing optimization in the second step to find an optimum
reliability solution. The second step can perform only the reliability test of all solution to
check the possibility and reliability of each solution. The rest of this paper is divided into
four sections. Start with briefly details of aerodynamic, the load, and the finite element
analysis. A two-step approach to multi-objective reliability-based design optimization
is presented in Sect. 3. Numerical experiment and results are given in Sect. 4 and 5,
respectively. The conclusions are detailed in the last section.

2 Aircraft Wing Model

A Goland wing model utilizes in this study has a semi-span wing of 6.096 m, a chord of
1.216 m, and a wing thickness is 0.0508 m. The whole aircraft wing structure is made
from aluminum as present in Fig. 1 and the material properties are shown in Table 1. The
Goland wing model is selected to be a test case for studying a new two-step approach in
reliability-based design optimization of the aircraft wing structure. However, the sizing
design thickness of the whole components still be the obstacle in this case, so the aircraft
wing is applied with aerodynamic load due to a free stream velocity of air at a speed of
40 m/s and the angle of attack is 5°.

Fig. 1. Geometry model of a Goland wing.

2.1 Aerodynamics and Finite Element Analysis

In this research, the aircraft wing structure is subject to steady aerodynamic load, which
is essential to static structural analysis for finding stress (σ) in the whole aircraft wing
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Table 1. Material properties of aluminum.

Properties Value Unit

Young’s modulus (E) 70 × 109 Pa

Poisson’s ratio (ν) 0.3 –

Density (ρ) 2700 kg/m3

structure. The static structural analysis accomplishes with finite element analysis (FEA).
A vortex ring method is used for aerodynamic analysis in this study. The aerodynamic
forces can transfer into aircraft wing structure as shown as follows:

[K]u = q[G]T [S]T [AIC][G]T {α}. (1)

where [K] is a structural stiffness matrix, q is dynamic pressure, [S] is the diagonal
matrix of panel areas, [AIC] is the aerodynamic influence coefficient matrix, [G] is the
transformation matrix, {u} is the vector of structural displacements of the wing finite
element model, and {α} is the vector of panel angles of attack.

2.2 Buckling Analysis

Aircraft wing structure composes of many thin plate structures, which applies with
transverse aerodynamics load that causes structure fail with buckling. In this study,
linear buckling analysis is used. When the work done by in-plane stress due to bending
displacement on the wing exceeds its elastic potential energy, the buckling phenomena
occurs. Therefore, the buckling factor can be solved by considering eigenvalue problem
below:

[K]{u} − λ[KG] = {0}. (2)

where λ is a buckling factor, [K] depicts the structural stiffness matrix, and [KG]
illustrates a global geometrical matrix.

3 A Two-Step Multi-objective Reliability-Based Design
Optimization

3.1 Sizing Design and Optimization Problem

The sizing optimization design in this research is carried out by the way that the aircraft
wing structure composes many segments as presented in Fig. 2(a). The design variables
are thickness of thewing segments.Anexample design result of an internalwing structure
with a different shade of thickness displays in Fig. 2(b).

A multi-objective deterministic design of the present work can perform into three
conflicting objectives which are stress, mass minimization, and buckling factor maxi-
mization. The multi-objective optimization design optimization (MODO) problem can
be formulated as:

Min{σ,M ,−λ} (3)
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Fig. 2. Goland wing segments and internal wing structure.

Subject to λ ≥ 1

σ ≤ 0.5σy

0.0001 ≤ t1 ≤ 0.01m.

whereM is the structural mass, σ is the maximum equivalent stress on the whole aircraft
wing structure, σ y is the yield stress, and λ is the buckling factor. The whole thickness
is 92 design variables as present in Fig. 2. The MODO, metaheuristics (MHs), and
FEA commercial software are combined. All procedures except the FEA are coded in
MATLAB. MATLAB language is used to connect between aerodynamic analysis FEA
and optimizer as present in Fig. 3. The optimizer is chosen in searching for the optimum
solution set is a variant of multi-objective opposite-based population based incremental
learning (MOPBIL) [22–24]. The new algorithm is added a self-adaptive learning rate
technique, which is important part to improve the performance ofMOPBIL in searching.

3.2 Two-Step Approach Reliability-Based Design

The present technique has an idea from the relationship between reliability-based design
optimization (RBDO) andmulti-objective design optimization (MODO),which has been
published [22]. The work reveals the relation of MODO solution set (Pareto solution) is
close to the RBDO solution. The work starts with formulating and solving the MODO
problem, then, follows with performing the reliability-based design optimization design
by using the previous solution from the first step. The technique can reduce the time for
finding a reliable solution set by starting searching from the deterministic solution set
rather than starting from a random point. Nevertheless, the technique still needs large
computation time in both steps (MODO and RBDO). The computation time can be
reduced by changing the RBDO testing step to the reliability testing step. The double-
loopnestedproblem inRBDOat the last step can accomplish byperforming the reliability
test of all solutions from the previous step. The testing will check the reliability index
(β), probability of failure (pf ) and reliability value (R). With this concept, the second
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step can open to choosing various techniques to quantify uncertainty in both groups of
probabilistic or non-probabilistic. At the final step, the designer can choose a solution
by using pf value as an additional condition.

A two-step approach:

1. To perform the multi-objective optimization run (3) to find the solution set.
2. To perform the reliability test of each solution in the previous step.

Many techniques in group of probabilistic have been used to quantify uncertainty
inherently embedded in the whole aircraft wing design such as MCS, LHS, OLHS etc.
The LHS has improved the performance in quantifying uncertainty, which needed less
computation time consumption when compared with MCS. In this research, the LHS is
chosen to accomplish the task.

Latin Hypercube Sampling
Latin Hypercube Sampling (LHS) is a technique for sampling random variable values,
which cuts down on the number of runs required to get a reasonably accurate result by
the MCS. The LHS has been proposed for accomplishing a large-scale problem due to
the difficulties of the large number of simulations existing. The LHS sprits the range
of the random variables into n intervals that accords to the probability values. With the
sampling technique can reduce the number of samplings, which is possible to achieve
an accurate result. Consequently, the computational time burden can be accomplished.

Reliability Analysis
The problems can quantify the uncertainties by LHS, which is the best way to get a
reasonably accurate result when compared with the MCS.

The reliability index (β) of the problem (3) is computed by.

βj(x, y) = meangj(x,y)
stdgj(x,y)

. (4)

where meang is the mean,stdg the standard deviation (STD) of values of the constraint
gj(x), x is the design variable vector, and y is the random variable vector.

Then the probability of failure can compute as follow:

pf = 0.5

(
1 + erf

(
β√
2

))
. (5)

where erf is an error function.
The reliability value is

R = 1 − pf (6)

More detail of the reliability analysis can see more in [10].
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Fig. 3. The process of a simulation model.

4 Numerical Experiment

A numerical simulation is a computer-based simulation that uses software to produce a
mathematical model of a physical system. Most non-linear systems require numerical
simulations to analyze their behavior because their exact mathematics is too complex to
give analytical solutions.

In the first step of performing MODO, the new design concept of the aircraft wing
structure is using the combination of MATLAB R2021 and FEA software. The opti-
mization process consists of running the variant MOPBIL algorithm while function
evaluations are achieved using finite element analysis (FEA) for stress, mass, and buck-
ling and buckling factor. Aerodynamic loads are computed using the vortex ringmethod,
which is coded in MATLAB. During the flight, the wing is subject to static aerodynamic
loads at cruise speed,whichmeans the stress and buckling constraints due to such applied
loads are taken into consideration. Aerodynamic force calculated based on the air den-
sity (ρair = 1.2 kg/m3), free stream velocity (v = 40m/s) and the wing angle of attack
(AoA) is 5° are applied over the wing surface.

The second step, the reliability test can accomplish by using LHS to quantify uncer-
tainties from the material properties such as Young’s modulus (E), Poisson’s ratio (ν),
and yield stress (σ y). To test the reliability of all solution sets from the first step, the
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mean value and the variance of the random variable can be assigned as (μE, σE) = (70,
19.799) GPa, (μν, σ ν) = (0.3, 0.023), and (μσy, σ σy) = (100, 24.495) MPa.

A personal computer with the following specifications is AMDRyzen 5 4600 Hwith
Radeon Graphics 3.00 GHz, 8.00 GB, and a 64-bit Windows 10 operating system is used
to test the design problem. Initial values setting of the optimizer are set the population
size of 30 and number of iterations is 400 and Pareto archive size is 30 in the first step,
while the reliability test is used 1000 number of samplings.

5 Result and Discussion

Pareto optimal front and optimal values obtained from the first step are present in Fig. 4,
and Table 2 (2nd–4th column), respectively. The figure shows that the Pareto fronts
obtained the range of stress as 128360–843130 Pa, while the range of structure mass
was 128.231–251.193 kg and the range of buckling factor obtained as 41.291–957.55.All
solution meets MODO constraints. The results show the Pareto front No. 1 demonstrates
a minimum of stress, the Pareto front No. 6 demonstrates a maximum of buckling factor,
and the Pareto front No.7 demonstrates a minimum of wing structural mass.

In Table 2 (5th–7th column), the reliability index, probability failure, and reliability
value (RV)of all Pareto solutions are shown.The reliability indexof all Pareto solutions in
the first row is calculated from Eq. (4) and then applied to Eqs. (5) and (6) for calculation
the probability of failure, and the reliability value, which is shown in the second, the
third row, respectively. From the Pareto solutions No. 3, 9, 15, 19, and 30 are obtained
RV lower than other Pareto solutions, implying that their designs are less reliable. If the
designer chooses the solution get lesser pf ≤ 0.0002, the Pareto solution No. 3, 9, 15, 19,
and 30 are unselected. However, even with some smaller RVs, the overall appearance of
the RV is excellent. Some selected aircraft wing structures is presented in Fig. 5(a and
b) (sol. No. 5 and 6) and unselected is presented in Fig. 5(b) (sol. No. 15).

Table 2. Objective value and Reliability test of Pareto solution set from Fig. 4.

Pareto front
no.

Stress (Pa) Mass (kg) Buckling
(−)

Reliability
Index
(β)

Probabilistic
of failure
(pf)

Reliability
value
(R)

1 128360 251.193 527.29 3.5235 2.1295e−04 0.9998

2 135630 234.45 321.17 3.5145 2.2030e−04 0.9998

3 238110 147.817 67.361 3.4747 2.5573e−04 0.9997

4 578160 141.881 749.63 3.5252 2.1155e−04 0.9998

5 169140 218.612 911.93 3.5270 2.1016e−04 0.9998

6 139330 237.211 957.55 3.5252 2.1160e−04 0.9998

7 843130 128.231 307.48 3.5167 2.1847e−04 0.9998

8 395670 141.546 582.45 3.5254 2.1145e−04 0.9998

(continued)
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Table 2. (continued)

Pareto front
no.

Stress (Pa) Mass (kg) Buckling
(−)

Reliability
Index
(β)

Probabilistic
of failure
(pf)

Reliability
value
(R)

9 154430 202.753 66.186 3.4756 2.5482e−04 0.9997

10 216610 168.836 365.87 3.5218 2.1432e−04 0.9998

11 371560 140.216 267.77 3.5183 2.1718e−04 0.9998

12 375950 198.471 940.75 3.5251 2.1166e−04 0.9998

13 376020 133.629 282.21 3.5189 2.1667e−04 0.9998

14 191430 180.301 900.3 3.5251 2.1166e−04 0.9998

15 194340 175.442 41.291 3.4431 2.8750e−04 0.9997

16 196310 168.411 107.08 3.4984 2.3399e−04 0.9998

17 306010 168.958 869.45 3.5271 2.1010e−04 0.9998

18 200770 173.26 606.2 3.5253 2.1152e−04 0.9998

19 173160 215.308 592.62 3.3942 2.4418e−04 0.9997

20 328390 158.058 674.69 3.5246 2.1205e−04 0.9998

21 203870 169.844 278.11 3.5188 2.1675e−04 0.9998

22 318080 148.15 80.328 3.4874 2.4386e−04 0.9998

23 408440 146.29 639.29 3.5242 2.1239e−04 0.9998

24 289500 165.216 690.64 3.5247 2.1201e−04 0.9998

25 320320 163.785 411.12 3.5226 2.1367e−04 0.9998

26 151270 214.424 510.83 3.5227 2.1356e−04 0.9998

27 496170 159.717 695.23 3.5245 2.1211e−04 0.9998

28 317650 156.192 323.91 3.5203 2.1557e−04 0.9998

29 159880 213.981 272.22 3.5179 2.1751e−04 0.9998

30 322260 154.635 134.73 3.3588 3.9137e−04 0.9996
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Fig. 4. Pareto frontier from the first step.

Fig. 5. Some internal aircraft wing structure from Fig. 4. (a) sol. 6 (b) sol. 7 and (c) sol. 15.

6 Conclusions

The purpose of the research is to design an aircraft wing structure using reliability-based
design optimization with a two-step approach that have the conflict objective functions
such as stress minimization, mass minimization, and buckling maximization. The two-
step approach starts with the MODO and follows with reliability test of each solution.
Sizing design optimization of a Goland wing was used as a design demonstration aircraft
wing structure, and aerodynamic forces were applied to the wing surface. Uncertainties
due tomaterial properties can deviate optimum results, which can quantify by LHS. Reli-
ability index, probability failure, and reliability value are accomplished. The experimen-
tal results show that the Pareto front solutions have achieved conflict objectives andmeet
with the design constraints with acceptable reliability. The newly proposed method can
achieve acceptable results that can be a choice for the multi-objective reliability-based
design optimization technique.
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Abstract. Fireworks algorithm is a swarm intelligence optimization
algorithm with superior performance, which can be used to solve var-
ious practical optimization problems. To enhance the performance of
fireworks algorithm, we introduce a powerful local search mechanism
and add multiple cooperative strategies. These strategies improve the
local exploitation capability and global exploration capability of fire-
works algorithm. The experimental results on the ICSI’2022 test set
demonstrate that the performance of the algorithm is satisfactory.

Keywords: Fireworks algorithm · Swarm intelligence · Optimization ·
Collaboration optimization

1 Introduction

Optimization problem has always been one of the hottest topics of research in
various fields because it is widely used in many real-world applications, especially
with the advent of machine learning and deep learning. Due to the complexity of
modern optimization problems, the optimization of some functions is relatively
difficult. The emergence of stochastic search algorithms such as swarm intelli-
gence optimization algorithms and evolutionary algorithms makes it possible to
find the global optimal solutions of some complex functions.

Fireworks algorithm (FWA [7]) is a kind of swarm intelligent optimization
algorithm inspired by the phenomenon of firework explosion. During the process
of fireworks algorithm, fireworks create sparks around themselves by exploding,
which could search the surrounding area. Besides, fireworks could cooperate
with each other to improve the efficiency of search. After multiple iterations, the
algorithm is likely to find the global optimum of the objective function.

The single-objective bounded optimization problem is one of the basic set-
tings of all optimization problems. Many complex optimization problems can
be decomposed into single-objective optimization problems. Therefore, for many
current swarm intelligence optimization algorithms and evolutionary algorithms,
c© Springer Nature Switzerland AG 2022
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https://doi.org/10.1007/978-3-031-09726-3_37

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-09726-3_37&domain=pdf
https://doi.org/10.1007/978-3-031-09726-3_37


414 Y. Liu et al.

how to improve the performance of the algorithm on single-objective optimiza-
tion problems is a key issue to deal with.

In this paper, we introduce a novel fireworks algorithm. It introduce the local
search mechanism in CMA-ES to improve the local search performance of the
fireworks algorithm. In addition, a new search space partition strategy has been
added to the algorithm to improve the collaborative ability of fireworks, which
greatly enhances the global search ability of the fireworks algorithm. The newly
proposed algorithm is called Fireworks Algorithm with Search Space Partition
(FWASSP). The ICSI’2022 test set is a newly proposed single-objective opti-
mization test set for various intelligent optimization algorithms. We carry out
experiment on ICSI’2022 with FWASSP. The experimental results show that the
new algorithm performs well in both global search and local search.

The paper is organized as follows. Section 2 shows the background of our
research, including the problem definition and related works. Section 3 describes
the newly proposed algorithm in detail. The experimental results on the
ICSI’2022 test set and the discussion are shown in Sect. 4.

2 Background

2.1 Problem Definition

Without loss of generality, we consider the general bound-constrained optimiza-
tion problem which targets to find the optimal solution x∗:

x∗ = arg min
x∈S

f(x), (1)

where f : Rd → R is an unknown objective function (also called fitness function).
S =

{
x ∈ R

d : lbi < xi < ubi

}
is the feasible space of f . lbi is the lower bound

of xi and ubi is the upper bound of xi.

2.2 Related Works

Evolution Strategies (ESs) are a sub-class of nature-inspired optimization meth-
ods belonging to the class of Evolutionary Algorithms (EAs). Covariance Matrix
Adaptation Evolution Strategy (CMA-ES) [1] is a well-designed evolutionary
strategy. It uses the quadratic model to fit local shapes to improve search effi-
ciency. Besides, quite a few mechanisms are employed to control the search direc-
tion and the step size. Therefore, CMA-ES has an excellent ability in local search.

Tan and Zhu proposed a firework algorithm by simulating the explosion of
fireworks [7]. After fireworks algorithm was proposed, it received extensive atten-
tion due to its great performance and excellent optimization efficiency. On the
basis of the fireworks algorithm, researchers have proposed many variants of the
fireworks algorithm such as EFWA [9], AFWA [3], dynFWA [8], CoFFWA [10]
and GFWA [4]. In 2017, Li and Tan proposed the Loser-out Tournament-based
Fireworks Algorithm (LoTFWA) [2], which added the loser elimination mecha-
nism to reinitialize the noncompetitive fireworks. This mechanism could restart
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the fireworks which are trapped in the local optimum to accelerate the process
of optimization.

In LoTFWA, each firework optimizes its local area by a uniform explosion
within a dynamic amplitude. A guided mutation spark is generated for each
firework to accelerate its local exploitation. Then, some unpromising fireworks
are detected and restarted to avoid waste of resources. Algorithm 1 outlines
the framework of LoTFWA. A detailed explanation and parameter setting of
LoTFWA can be found in [2].

Algorithm 1. Loser-out Tournament-based Fireworks Algorithm
1: Randomly initialize μ fireworks in the search space.
2: Evaluate the fireworks’ fitness
3: repeat
4: for i = 1 to μ do
5: Calculate dynamic explodes parameters λi and Ai.
6: Generate explosion sparks.
7: Generate guiding sparks.
8: Evaluate all the fitness of the sparks.
9: Select the best individual (including firework, its explosion sparks and guid-

ing sparks) as the next generation of fireworks.

10: Perform the loser-out tournament.
11: until Termination criterion is met.
12: return The position and the fitness of the best solution.

3 Proposed Strategies

LoTFWA is an outstanding global optimization algorithm with extremely simple
mechanisms. However, there are still two major weaknesses in LoTFWA which
need to be improved.

1. The local search efficiency of the explosion operator and mutation operator is
limited by a basic uniform trust region scheme. This results in the searched
solution being less refined.

2. The collaboration method is too weak because the restart mechanism is rarely
triggered and it can only save limited resources rather than guide fireworks
to cooperate.

In response to the above problems, we propose a series of strategies to
improve it.

3.1 Gaussian Explosion with Adaptation

For the first weakness, the local search capability of the fireworks algorithm is
enhanced by introducing the local search strategy in the CMA-ES [1]. CMA-ES



416 Y. Liu et al.

uses Gaussian explosion instead of uniform explosion. The advantage of Gaussian
explosion is that it has more parameters to control the shape of the explosion,
which means that the search efficiency will be higher. By introducing Gaussian
explosion, FWASSP is able to estimate the local fitness landscape and generate
more effective sparks.

In the g-th generation, the k-th explosion spark x(g+1)
k is generated from a

Gaussian distribution:

x(g+1)
k ∼ m(g) + σ(g) × N

(
0, C(g)

)
, (2)

where m and C is the mean and covariance matrix. σ(g) is the overall step size.
In the g-th generation generation, each firework generates the same number of
λ sparks.

After evaluation of all sparks x(g+1), the explosion distribution is adapted
according to the strategies in CMA-ES. The detailed explanation and parameter
setting of CMA-ES can be found in [1]. The complete adaptation process is
provided in [5].

3.2 Restart Mechanism

Since Gaussian explosion and adaptation mechanism accelerate local optimiza-
tion process significantly, the algorithm requires more detection mechanisms to
ensure timely restart of fireworks that are not promising to improve the global
optimal. Four extra restart conditions are proposed in our algorithm. These
condition are determined by the search status of the firework individual and the
relationship between fireworks:

1. Low Value Variance: var
[
f

(
x
(g+1)
1:λ

)]
≤ εv

2. Low Position Variance: σ(g+1) × ∥
∥C(g+1)

∥
∥ ≤ εp

3. Not improving: Not improved for Imax not improve iterations.
4. Covered by Better: More than 85% of the firework’s sparks are covered by a

better firework’s explosion range.

3.3 Collaboration

Since we use Gaussian explosion, the explosion boundary of a firework X with
parameters (m, C, σ) is defined as:

{
x‖‖C− 1

2

(
x − m

σ

)
‖ = E‖N (0, I)‖

}
. (3)

There are two principles in collaboration strategies. First, the explosion scope
tends to form a segmentation within the global optimization area, which can
help fireworks avoid overlapping or omission of search scope. Second, the better
fireworks tend to search independently, and the worse fireworks tend to search
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collaboratively. It guarantees the local optimization of leading fireworks will not
be severely affected by collaboration.

Based on these ideas, the proposed algorithm conducts collaboration by the
following steps:

Compare Fireworks. We need to compare the search progress of the fireworks
for collaboration strategies. A fuzzy comparison between each pair of fireworks
is introduced to estimate their relative optimization progress, which is described
in Algorithm 2.

Algorithm 2. Fuzzy Comparison of Fireworks

Require: Fireworks Xi and Xj with sparks x
(g+1)
i,1:λ and x

(g+1)
j,1:λ (if not restarted)

1: if Both Xi and Xj are just restarted then
2: return Xi and Xj are similar

3: if Xi is restarted then
4: return Xj is ahead of Xi

5: else
6: return Xi is ahead of Xj

7: if minx
(g+1)
i,1:λ > maxx

(g+1)
j,1:λ then

8: return Xj is ahead of Xi

9: else
10: return Xi is ahead of Xj

11: return Xi and Xj are similar

The fuzzy comparison method saves the time of the algorithm. At the same
time, it can provide enough accurate information.

Compute Dividing Points. Different fireworks cooperate to search different
areas, so it is necessary to calculate the dividing points to specify where the
search range of both fireworks are divided. Figure 1 shows 4 possible situations
of the collaboration method. We use the following steps to calculate the dividing
point, which is described in Algorithm 3.

Fit Dividing Points. The boundary of firework X(m, C, σ) is adapted to fit
its dividing points. For each dividing point Pk, a new covariance matrix Ck

is calculated. On the direction of XPk, Pk lies right on the boundary. On the
conjugate directions, the radii of boundary do not changed. The mean of all
adapted covariance matrix 1

K

∑K
k=1 Ck is taken as the overall collaborated result

of X.
The mathematical calculation for fitting a single split point can be found in

[5].
Algorithm 4 outlines the framework of the proposed collaboration strategy:
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Fig. 1. Four cases of collaboration between two fireworks. Ai and Aj are the closer
intersections of line XiXj with their boundaries. The actual dividing point could be
any point on AiAj . The second row shows the collaboration results when taking the
midpoint B of AiAj as dividing point.

Algorithm 3. Compute Dividing Points
Require: Fireworks Xi , Xj and their intersections Ai, Aj

1: Calculate the radius rij = ‖XiAi‖ and rji = ‖XjAj‖ on line XiXj

2: Determine the situation (See Fig. 1) according to rij , rji and dij

3: Calculate the position of Ai and Aj

4: if Xi is ahead of Xj then
5: Ai is the dividing point
6: else if Xj is ahead of Xi then
7: Aj is the dividing point
8: else
9: the midpoint B of AiAj is the dividing point.

10: return Xi and Xj are similar

Algorithm 4. Framework of Fireworks Collaboration
Require: n fireworks Xi and parameters (mi,Ci, σi) in N dimensional feasible space
Ensure: Collaborated parameters of fireworks
1: for each pair of fireworks Xi and Xj do
2: Compare the progress of Xi and Xj

3: Calculate dij = |XiXj |, expected sample distance rij and rji on XiXj

4: Calculate the dividing point Pij (= Pji)

5: for each firework Xi do
6: Gather K = min(N, n − 1) closest dividing points Pi,j1:K

7: Clip the length of XiPijk within [0.5rijk , 2rijk ]
8: for k ← 1 : K do
9: Fit Pijk on the boundary of Xi and obtain Cijk

Ci ← 1
K

∑K
k=1 Cijk

4 Experimental Results

The performance of proposed algorithm is tested on objective functions from
the ICSI 2022 benchmark test set. This test set contains 10 black-box test func-
tions, including 3 unimodal functions, 5 multimodal functions and 3 composition
functions.
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According to the settings of the single-objective optimization competition,
each function is tested for 50 repetitions with 10, 20, 50 dimensions. The termi-
nation condition is a maximum of 10,000, 30,000 or 70,000 evaluations for 10,
20 or 50 dimensions respectively.

To demonstrate the efficiency of our proposed algorithm, the proposed algo-
rithm is compared with three baselines. LoTFWA [2] is the most efficient one
of the main variants of the firework algorithm. CMA-ES [1] is an excellent
evolutionary algorithm with outstanding local optimization ability. APGSK-
IMODE [6] is a variant of differential evolution algorithm. It has achieved excel-
lent results in the CEC 2021 competition. All these algorithms are tested under
the same conditions as the proposed algorithm.

The parameters of all the tested algorithms are set as follows. Its basic set-
tings and parameters are as same as LoTFWA, which includes 5 fireworks and
each firework generates 300 sparks in each iteration. In the restart conditions,
εv and εp are both 1E − 12, and the maximum number of unimproved itera-
tion Imax unimprove is 150. The parameters of local adaption is also set to be
the same as CMA-ES. As we can see, our algorithm does not choose different
parameters according to the specific problem. In order to ensure a fair compari-
son, the parameters of other algorithms are set according to the settings in their
original papers.

The statistical results of the four algorithms are shown in the Table 1, Table 2
and Table 3 for 10 D, 20 D and 50 D respectively. Each table contains the mean
errors and the mean standard deviations of four algorithms on ICSI’2022 test set.
In addition, these algorithms are ranked according to their mean errors on each
function, and the average rankings (ARs) over the 10 functions are presented at
the bottom of the table. Their statistical information is shown in Fig. 2.

It can be seen from the experimental results that the performance of the algo-
rithm are excellent, whether it is on unimodal or multimodal functions. The per-
formance of the algorithm on the composition function is slightly worse, because
the composition function is more complicated. On high-dimensional problems, it
has also achieved very good optimization results compared with other baseline
algorithms. This is because the global collaboration strategy of the algorithm
can make the algorithm avoid trapping in many local optimal values.

On unimodal functions, both CMA-ES and proposed algorithm performs well
because they have strong local exploitation mechanisms. On multimodal func-
tions, our proposed algorithm performs the best. The reason for the excellent per-
formance of our newly proposed algorithm is the algorithm is composed of mul-
tiple populations. The collaboration mechanism of them saves search resources
thus it can find better global optimum in complex multimodal functions. As for
composition functions, due to the complexity of the function, the performance
of the newly proposed algorithm is comparable to CMA-ES.



420 Y. Liu et al.

Table 1. Results for 10 D problems

F. LoTFWA APGSK-IMODE CMA-ES Proposed

Mean Std Mean Std Mean Std Mean Std

1 7.02e+04 7.18e+04 1.24e−01 5.87e−01 1.89e+00 9.99e+00 4.34e−03 7.77e−03

2 9.02e+02 1.50e+03 8.14e−03 2.53e−02 8.87e−14 2.30e−13 3.23e−08 5.94e−08

3 1.45e+00 2.23e+00 6.30e+00 0.00e+00 6.30e+00 1.08e−06 6.30e+00 3.46e−07

4 9.24e+00 2.93e+00 4.38e+00 1.31e+00 8.76e−01 7.87e−01 4.78e−01 5.35e−01

5 3.15e+02 1.20e+02 2.50e+02 1.11e+02 1.96e+01 5.78e+01 1.50e+01 3.57e+01

6 2.23e−01 3.47e−01 2.24e−01 4.49e−01 9.64e−04 2.07e−03 4.58e−09 8.40e−09

7 1.18e−01 4.29e−02 8.40e−02 3.57e−02 1.22e−01 3.91e−02 1.97e−02 5.06e−03

8 2.28e+05 2.04e+05 6.51e+04 1.45e+05 2.99e+05 1.69e+05 2.65e+05 1.90e+05

9 1.59e+03 2.84e+03 2.19e+04 1.67e+04 7.03e−02 1.31e−01 1.01e−03 7.03e−03

10 1.62e+01 9.20e+00 8.38e+00 6.58e+00 2.05e+01 1.23e+01 4.04e−01 2.20e−01

AR. 3.10 2.60 2.80 1.50

Table 2. Results for 20 D problems

F. LoTFWA APGSK-IMODE CMA-ES Proposed

Mean Std Mean Std Mean Std Mean Std

1 3.64e+05 1.82e+05 9.82e+04 7.05e+04 6.95e−11 1.80e−10 5.56e−08 1.06e−07

2 1.14e+02 2.34e+02 1.45e+03 6.87e+02 0.00e+00 0.00e+00 9.50e−13 4.11e−13

3 3.62e+00 4.51e+00 9.77e+00 3.69e−06 9.77e+00 1.00e−07 9.77e+00 1.37e−07

4 2.80e+01 6.14e+00 2.31e+01 3.85e+00 2.19e+00 1.50e+00 8.56e−01 7.71e−01

5 1.26e+03 2.17e+02 1.30e+03 2.47e+02 1.78e+02 1.26e+02 9.21e+01 6.62e+01

6 1.80e+00 1.64e+00 2.68e+01 5.70e+00 1.14e−13 0.00e+00 7.22e−11 2.93e−11

7 2.74e−01 5.98e−02 1.83e−01 2.58e−02 1.33e−01 3.72e−02 2.05e−02 5.52e−03

8 4.29e+05 5.93e+03 4.48e+05 5.91e+03 4.03e+05 4.58e+02 4.03e+05 3.67e+02

9 2.21e+04 4.45e+04 1.30e+07 3.91e+06 1.05e+01 6.17e+01 2.43e+06 9.77e+06

10 4.99e+01 2.76e+01 1.11e+01 4.56e+00 1.92e+01 9.84e+00 6.55e−01 3.05e−01

AR. 2.90 3.00 1.80 1.40

Table 3. Results for 50 D problems

F. LoTFWA APGSK-IMODE CMA-ES Proposed

Mean Std Mean Std Mean Std Mean Std

1 5.60e+06 1.34e+06 1.62e+07 2.86e+06 0.00e+00 0.00e+00 4.23e−12 9.60e−13

2 8.30e+01 1.31e+02 6.69e+01 5.97e+01 0.00e+00 0.00e+00 1.83e−12 1.59e−13

3 2.71e+01 3.16e+01 2.01e+00 1.02e+01 0.00e+00 0.00e+00 1.93e−12 1.30e−13

4 1.21e+02 1.80e+01 1.84e+02 1.78e+01 6.09e+00 2.74e+00 1.75e+00 9.02e−01

5 4.98e+03 4.55e+02 6.32e+03 2.85e+02 1.15e+03 3.89e+02 3.65e+02 9.69e+01

6 9.61e+00 3.92e+00 3.71e+02 3.94e+01 4.41e−13 2.91e−14 2.11e−10 3.55e−11

7 4.81e−01 7.57e−02 3.39e−01 2.57e−02 1.74e−01 3.48e−02 3.75e−02 7.28e−03

8 4.57e+05 8.85e+03 5.73e+05 9.10e+03 4.07e+05 6.99e+02 4.06e+05 2.62e+02

9 9.62e+05 1.19e+06 2.07e+09 3.77e+08 3.04e−03 5.67e−03 1.73e−09 3.74e−10

10 7.61e+02 2.07e+02 3.62e+02 3.57e+01 3.24e+02 4.97e+01 1.62e+02 8.21e+00

AR. 3.00 3.20 1.60 1.00
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D10-F1 D10-F2 D10-F3 D10-F4 D10-F5

D10-F6 D10-F7 D10-F8 D10-F9 D10-F10

D20-F1 D20-F2 D20-F3 D20-F4 D20-F5

D20-F6 D20-F7 D20-F8 D20-F9 D20-F10

D50-F1 D50-F2 D50-F3 D50-F4 D50-F5

D50-F6 D50-F7 D50-F8 D50-F9 D50-F10

Fig. 2. Boxplots of the four algorithms
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In conclusion, the newly proposed algorithm has a significant improvement
over LoTFWA. Compared with other classic heuristic algorithms, FWASSP also
has an extremely good performance. It is worth further investigation.
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Larrañaga, P., Inza, I., Bengoetxea, E. (eds) Towards a New Evolutionary Com-
putation. Studies in Fuzziness and Soft Computing, vol 192, pp. 75–102 . Springer,
Berlin, Heidelberg (2006). https://doi.org/10.1007/3-540-32494-1 4

2. Li, J., Tan, Y.: Loser-out tournament-based fireworks algorithm for multimodal
function optimization. IEEE Trans. Evol. Comput. 22(5), 679–691 (2017)

3. Li, J., Zheng, S., Tan, Y.: Adaptive fireworks algorithm. In: 2014 IEEE Congress
on evolutionary computation (CEC), pp. 3214–3221. IEEE (2014)

4. Li, J., Zheng, S., Tan, Y.: The effect of information utilization: introducing a novel
guiding spark in the fireworks algorithm. IEEE Trans. Evol. Comput. 21(1), 153–
166 (2016)

5. Li, Y., Tan, Y.: Enhancing fireworks algorithm in local adaptation and global
collaboration. In: Tan, Y., Shi, Y. (eds.) ICSI 2021. LNCS, vol. 12689, pp. 451–
465. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-78743-1 41

6. Mohamed, A.W., Hadi, A.A., Agrawal, P., Sallam, K.M., Mohamed, A.K.: Gaining-
sharing knowledge based algorithm with adaptive parameters hybrid with imode
algorithm for solving cec 2021 benchmark problems. In: 2021 IEEE Congress on
Evolutionary Computation (CEC), pp. 841–848. IEEE (2021)

7. Tan, Y., Zhu, Y.: Fireworks algorithm for optimization. In: Tan, Y., Shi, Y., Tan,
K.C. (eds.) ICSI 2010. LNCS, vol. 6145, pp. 355–364. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-13495-1 44

8. Zheng, S., Janecek, A., Li, J., Tan, Y.: Dynamic search in fireworks algorithm. In:
2014 IEEE Congress on Evolutionary Computation (CEC), pp. 3222–3229. IEEE
(2014)

9. Zheng, S., Janecek, A., Tan, Y.: Enhanced fireworks algorithm. In: 2013 IEEE
Congress on Evolutionary Computation (CEC), pp. 2069–2077. IEEE (2013)

10. Zheng, S., Li, J., Janecek, A., Tan, Y.: A cooperative framework for fireworks
algorithm. IEEE/ACM Trans. Comput. Biol. Bioinform. 14(1), 27–41 (2015)

https://doi.org/10.1007/3-540-32494-1_4
https://doi.org/10.1007/978-3-030-78743-1_41
https://doi.org/10.1007/978-3-642-13495-1_44


Differential Evolution with Biased
Parameter Adaptation for ICSI-OC 2022

Competition

Vladimir Stanovov(B) and Shakhnaz Akhmedova

Reshetnev Siberian State University of Science and Technology,
Institute of Informatics and Telecommunication, Krasnoyarsk 660037, Russia

vladimirstanovov@yandex.ru, shahnaz@inbox.ru

Abstract. In this paper the differential evolution based algorithm is
proposed for solving ICSI-OC’2022 benchmark functions. The presented
NL-SHADE-LM algorithm uses several important modifications, such
as biased parameter adaptation with generalized Lehmer mean with
bias towards larger scaling factors, improved archive set update strat-
egy, crossover rate sorting, as well as rank-based selective pressure. The
performed computational experiments show that the proposed algorithm
achieves highly competitive results.

Keywords: Differential evolution · Parameter adaptation · Numerical
optimization

1 Introduction

In the area of computational intelligence among the evolutionary computation
the numerical optimization methods have one of the major roles, as they often
serve as parts of other algorithms where optimization problems occur. Popular
modern evolutionary optimization methods [1] are particle swarm optimization
(PSO), biology inspired and swarm intelligence algorithms (SI) [2], evolutionary
strategies (ES), genetic algorithms (GA) and differential evolution (DE) [3].
The differential evolution has recently achieved very promising results in many
areas, and is currently one of the most widely used algorithmic schemes due to
its simplicity and high efficiency. The success of DE is clearly observed through
different optimization competitions, where it takes leading positions last years.

Among the differential evolution algorithms the L-SHADE family of
approaches is one of the most often applied due to the efficient parameter adapta-
tion schemes [4]. The L-SHADE and its modifications have been often considered
and modified in many studies, and most of the algorithm elements have been
altered in the modifications. Still the main problem often considered in DE is the
parameter adaptation, as the scaling factor and crossover rate have significant
influence on the algorithm performance [5].
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In this paper two modifications to the parameter adaptation are considered.
First, the modified Lehmer mean is applied for updating memory cells in success-
history adaptation, and second the crossover rate sampling is changed by intro-
ducing sorting of the generated Cr values. The computational experiments are
performed on a set of benchmark functions from the ICSI Optimization Com-
petition 2022 (ICSI-OC’2022) [6], and the results of the modified algorithm are
compared to the baseline and other methods.

The rest of the paper is organized as follows: Sect. 2 gives a description of the
modern DE methods, Sect. 3 describes the proposed approach, Sect. 4 contains
the experimental setup and results, and Sect. 5 concludes the paper.

2 Related Work

2.1 Differential Evolution

The development of evolutionary computation methods has led to emergence
of several research directions for different areas. For the numerical optimization
problems the real-coded GAs, PSO and DE are often applied, as well as CMA-
ES methods. The DE has shown to be capable of achieving promising results,
and gained high popularity among researchers. The main idea of differential
evolution, originally proposed in [7], is the usage of difference vectors, which
are calculated using positions of the points in the search space. The three main
parameters of DE are the population size NP , scaling factor F and crossover
rate Cr. The population xi,j , i = 1...NP , j = 1...D, where D is the problem
dimension, is randomly initialized within boundaries [xminj , xmaxj ], j = 1...D.
Next, the main cycle of the algorithm begins with three main operators: muta-
tion, crossover and selection.

The mutation operation in the original DE used three randomly selected
vectors, however, more recent studies usually apply current-to-pbest/1 strategy,
originally described in the JADE [8] algorithm:

vi,j = xi,j + F (xpbest,j − xi,j) + F (xr1,j − xr2,j). (1)

where pbest is one of the pb ∗ 100% top solutions, r1 and r2 random indexes,
are mutually different from each other, pbest and current index i. The resulting
mutant vector v is then transferred to crossover. The r2 index in JADE, SHADE
and L-SHADE algorithms can be selected from either current population or
archive set. There are two well-known crossover schemes in differential evolution:
binomial and exponential, however the binomial crossover is used more often. It
uses the mutant vector v to produce the trial vector u using crossover probability
parameter Cr as follows:

ui,j =

{
vi,j , if rand(0, 1) < Cr or j = jrand

xi,j , otherwise
. (2)

where jrand is a randomly chosen index, which will be taken from the mutant
vector. This is required to make sure that at least one component is taken from
the mutant vector, otherwise the trial vector could be equal to the target vector.
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After trial vector is generated, it should be checked to be within the search
space boundaries. This is performed using the bound constraint handling method
(BCHM), and one of the most efficient approaches is the midpoint-target, which
uses the parent’s position to reset the constraint violating components:

ui,j =

{
xminj+xi,j

2 , if ui,j < xminj
xmaxj+xi,j

2 , if ui,j > xmaxj

. (3)

Finally, the selection procedure in DE compares the newly generated trial
vector u with the target vector xi and performs the replacement if it is better:

xi,j =

{
ui,j , if f(ui) ≤ f(xi)
xi,j , if f(ui) > f(xi)

. (4)

Adjusting the parameters of DE is one of the crucial parts of algorithm
implementation, and most commonly used approaches are described in the next
subsection.

2.2 Parameter Adaptation in DE

One of the first attempts of applying paramters adaptation in differential evo-
lution was performed in [9]. According to several recent studies [10], the JADE
and SHADE based parameter adaptation in DE appears to be one of the most
efficient adaptation schemes. The success-history adaptation (SHA) creates a set
of H memory cells, each containing a pair of parameters F and Cr. The values
in the memory cells (MF,k,MCr,k) are used to sample new parameters for every
mutation and crossover operation using Cauchy and normal distribution:

F = randc(MF,k, 0.1), randn(MCr,k, 0.1). (5)

where randc is a Cauchy distributed random value, and randn is normally dis-
tributed, k is chosen in range [1,D]. The sampling of F is restricted in the
following way: if F < 0, it is generated again, and if F > 1 then it is set to
F = 1. The Cr value is sampled until it falls within the [0, 1] range.

The successful F and Cr values, i.e. the ones that helped improving the
solution, are saved into SF and SCr arrays, as well as the improvement value
Δf = |f(u) − f(xi)|. At the end of each generation the weighted Lehmer mean
is used to calculate new values:

meanwL =

∑|S|
j=1 wjS

2
j∑|S|

j=1 wjSj

. (6)

where wj = Δfj
∑|S|

k=1 Δfk

, and S is either SF or SCr. One of the memory cells with

index h is then updated using previous values:

Mg+1
F,k = 0.5(Mg

F,k + meanwL(SF )), Mg+1
Cr,k = 0.5(Mg

Cr,k + meanwL(SCr)). (7)
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where g is the current generation number. The memory cell index h is incre-
mented every generation and reset once it reaches H.

In the L-SHADE algorithm it was proposed to use the linear population
size reduction (LPSR), however more recent studies, such as AGSK [11] and
NL-SHADE-RSP [12] use non-linear population size reduction:

NPg+1 = round((NPmin − NPmax)NFE1−NFEr
r + NPmax). (8)

where NFEr = NFE/NFEmax is the ratio of current number of fitness evalu-
ations. At the end of every generation NPg+1 is calculated, and if it is less than
NP , then one or several worst solutions are removed from the population.

The NL-SHADE-RSP algorithm also introduces the adaptive archive usage,
where the probability of an individual to be chosen from the archive for r2 index
depends on the success of applying the archive. The archive set in L-SHADE is
updated every time a target vector is replaced by trial vector. In this case the
target vector (parent) is copied to the archive, and if the archive set reaches its
maximum size, then a randomly selected solution from the archive is replaced.
The probability pA of using a solution from the archive is initially set to 0.5 and
updated every generation based on the number of archive usages nA, achieved
improvements with archive ΔfA and without it ΔfP . The probability is updated
as follows:

pA =
ΔfA/nA

ΔfA/nA + Δfp/(1 − nA)
. (9)

The pA value is additionally checked to be within [0.1, 0.9] range. Another feature
of NL-SHADE-RSP is the rank-based selective pressure, applied for the r2 index.
The individuals are ranked according to fitness, and probabilities to be chosen
are calculated proportional to rank values, i.e. pri = Ri∑NP

j=1 Rj
, where ranks Ri =

e−i/NP were set as indexes of individuals in a sorted array.

3 Proposed Approach

The NL-SHADE-LM algorithm presented in this study is based on the NL-
SHADE-RSP algorithm and uses biased parameter adaptation, presented in [13].
The NL-SHADE-LM uses generalized Lehmer mean, presented in [12] for updat-
ing the memory cells MF , and for MCr p was set to 0.5. The second parameter
was set to m = 1.5 for both F and Cr:

meanp,wL(S) =

∑|S|
j=1 wjS

p
j∑|S|

j=1 wjS
p−m
j

. (10)

where the p parameter is responsible for the bias, changing this parameter may
result in harmonic (p = 0), geometric (p = 0.5), arithmetic (p = 1) and contra-
harmonic mean (p = 2). NL-SHADE-LM uses p = 4, i.e. the calculation of mean
is biased towards larger F values.
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Algorithm 1. NL-SHADE-LM
1: Set NPmax = 10D, NP = NPmax D, NFEmax,
2: H = 15, A = ∅, MF,r = 0.5, MCr,r = 0.9, k = 1
3: NA = NP , pA = 0.5, g = 0
4: Initialize population P0 = (x1,j , ..., xNP,j) randomly
5: while NFE < NFEmax do
6: SF = ∅, SCr = ∅, nA = 0
7: Rank population according to fitness f(xi)
8: for i = 1 to NP do
9: Current memory index r = randInt[1, H + 1]

10: Crossover rates Cri = randn(MCr,r, 0.1)
11: Cri = min(1, max(0, Cr))
12: repeat
13: Fi = randc(MF,r, 0.1)
14: until Fi ≥ 0
15: Fi = min(1, Fi)
16: end for
17: Sort Cri according to fitness f(xi)
18: for i = 1 to NP do
19: repeat
20: pbest = randInt(1, NP ∗ p)
21: r1 = randInt(1, NP )
22: if rand[0, 1] < pA then
23: r2 = randInt(1, NP )
24: else
25: r2 = randInt(1, NA)
26: end if
27: until i �= pbest �= r1 �= r2
28: for j=1 to D do
29: vi,j = xi,j + F (xpbest,j − xi,j) + F (xr1,j − xr2,j)
30: end for
31: Update Crb
32: Binomial crossover with Crb
33: Calculate f(ui)
34: if f(ui) < f(xi) then
35: xi → ArandInt[1,NA], xi = ui

36: F → SF , Cr → SCr, Δfi = f(xi) − f(ui)
37: end if
38: end for
39: Get NPg+1 and NAg+1 with NLPSR
40: if |A| > NAg+1 then
41: Remove random individuals from the archive
42: end if
43: if NPg > NPg+1 then
44: Remove worst individuals from the population
45: end if
46: Update MF,k, MCr,k, pA

47: k = mod(k, H) + 1, g = g + 1
48: end while
49: Return best solution xbest
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The NL-SHADE-LM also uses crossover rates sorting. For this purpose the
Cr values are sampled for all individuals at the beginning of the generation, and
sorted by fitness values, so that better individuals receive smaller crossover rates.
NL-SHADE-LM uses only binomial crossover. The pseudocode of NL-SHADE-
LM is shown in Algorithm1.

The pb value controlling the greediness of the current-to-pbest strategy is
linearly increased, pb = 0.2 + 0.1 · NFE/NFEmax. The archive handling in NL-
SHADE-LM is changed according to [14]. If the archive is full, to add a new
solution first two random solutions are chosen, and the one having worst fitness
is replaced by the new solution. This scheme is similar to tournament selection.

4 Experimental Setup and Results

The experiments in this study were performed on a set of test problems from the
ICSI-OC’2022 competition on numerical optimization, which consists of 10 test
functions defined for D = 10, 20 and 50. The computational resource is set to
10000, 30000 and 70000 respectively. The experiments were performed for three
cases: without modified Lehmer mean and without crossover rate sorting (NL-
SHADE-LMnlm,ncr), with modified Lehmer mean and without Cr sorting (NL-
SHADE-LMncr), and with both modifications. Table 1 shows the Mann-Whitney
statistical tests comparing these variants and an one of the best algorithm from
CEC 2021 competition [13]. The values in the table are the number of wins (+),
ties (=) and losses (−). The numbers indicate the number of functions, on which
improvements, ties, or losses were observed.

Table 1. NL-SHADE-LM vs other modifications

Algorithms 10D 20D 50D

NL-SHADE-LM vs NL-SHADE-LMnlm,ncr 2+/6=/2− 3+/5=/2− 4+/3=/3−
NL-SHADE-LM vs NL-SHADE-LMnlm 1+/7=/2− 3+/5=/2− 4+/3=/3−
NL-SHADE-LM vs NL-SHADE-LMncr 4+/6=/0− 4+/5=/1− 4+/5=/1−
NL-SHADE-LM vs NL-SHADE-RSP [13] 7+/2=/1− 8+/2=/0− 9+/1=/0−

Table 1 shows that adding generalized Lehmer mean and sorting crossover
rate significantly improves algorithm performance, especially in high-dimensional
functions. Tables 2, 3 and 4 contain the results of NL-SHADE-LM for 10D, 20D
and 50D, these values are provided for comparison with alternative approaches.
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Table 2. NL-SHADE-LM results, 10D

No. Best Worst Median Mean Std

F1 6.446513e−03 1.084766e+04 1.282133e+02 1.067174e+03 2.684172e+03

F2 3.374623e−04 1.354462e+04 1.921406e+03 2.668539e+03 2.829530e+03

F3 6.300706e+00 6.300706e+00 6.300706e+00 6.300706e+00 6.322624e−11

F4 2.513869e+00 2.094280e+01 7.684952e+00 8.313127e+00 3.754021e+00

F5 2.370496e+02 1.416116e+03 8.617830e+02 8.351595e+02 2.534449e+02

F6 6.310307e−05 1.606420e+00 4.525171e−03 1.084759e−01 3.492718e−01

F7 8.001120e−02 2.448226e−01 1.637408e−01 1.657474e−01 3.537959e−02

F8 6.353788e+04 4.617354e+05 4.502627e+05 4.350200e+05 7.426634e+04

F9 2.914080e+05 3.312098e+06 1.387940e+06 1.358431e+06 6.108474e+05

F10 8.761310e+00 7.691985e+01 2.896645e+01 3.158693e+01 1.602981e+01

Table 3. NL-SHADE-LM results, 20D

No. Best Worst Median Mean Std

F1 9.105971e+01 1.445305e+05 2.733760e+04 3.705226e+04 3.336954e+04

F2 2.607176e+00 6.645190e+03 1.481382e+03 2.070434e+03 1.805933e+03

F3 9.774071e+00 9.780471e+00 9.774072e+00 9.774209e+00 9.048427e-04

F4 8.043015e+00 2.232736e+01 1.451965e+01 1.475832e+01 3.774855e+00

F5 1.392954e+03 3.527395e+03 2.091063e+03 2.151690e+03 4.934307e+02

F6 2.369144e−05 6.880743e−02 2.500354e−03 4.980412e−03 1.029763e−02

F7 1.332610e−01 2.946701e−01 2.062218e−01 2.047659e−01 4.330983e−02

F8 4.665928e+05 4.930627e+05 4.806035e+05 4.805060e+05 5.923694e+03

F9 1.714862e+07 9.137096e+07 5.371399e+07 5.345002e+07 1.522453e+07

F10 2.718386e+01 1.454984e+02 8.601746e+01 8.625255e+01 2.704173e+01

Table 4. NL-SHADE-LM results, 50D

No. Best Worst Median Mean Std

F1 3.960196e+05 2.035145e+06 1.008827e+06 1.080563e+06 3.724943e+05

F2 2.515004e−02 2.000336e+03 1.912894e+02 4.444295e+02 5.249607e+02

F3 4.889025e−01 1.448713e+02 1.167319e+02 1.071055e+02 3.439101e+01

F4 3.255878e+01 1.059859e+02 7.320905e+01 7.240839e+01 1.450227e+01

F5 6.865254e+03 9.174554e+03 7.869923e+03 7.881189e+03 5.262223e+02

F6 1.743882e−01 2.958089e+01 1.530902e+00 4.221346e+00 6.351358e+00

F7 2.413929e−01 4.305074e−01 3.345613e−01 3.363674e−01 4.766772e−02

F8 5.268653e+05 5.676130e+05 5.476659e+05 5.476841e+05 8.483495e+03

F9 5.434750e+08 1.885761e+09 8.411820e+08 9.487407e+08 3.557633e+08

F10 3.610184e+02 6.618797e+02 4.954846e+02 5.071518e+02 7.545588e+01
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5 Conclusion

In this study the NL-SHADE-LM algorithm with biased parameter adaptation,
crossover rate sorting and improved archive update strategy was proposed. The
experiments performed on the ICSI-OC’2022 competition functions have shown
that the proposed modifications are capable improving the algorithm perfor-
mance, especially for high-dimensional cases. The experiments demonstrated
that the crossover rate sorting has more effect then modified Lehmer mean.
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support program for leading scientific schools (grant of the President of the Russian
Federation NSh-421.2022.4).
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Abstract. In this paper, a composite method for bound constrained
optimization called Composite Evolutionary Strategy and Differential
Evolution (CESDE) is described. This method combines two well-
performing methods from the Congress on Evolutionary Computation
Competitions. Through numerical investigation on the ICSI’2022 bench-
mark set, the favourite scheme for combining the two methods was deter-
mined, and it was found that CESDE outperforms both of its “parental”
methods on all studied instances.

Keywords: ICSI’2022 competition · Evolutionary strategy ·
Differential evolution · Numerical optimization · Composite method

1 Introduction

Evolutionary algorithms (EAs) are a highly performing class of metaheuristics
used for global optimization. EAs are inspired by various processes of biological
evolution: reproduction, mutation, recombination, and natural selection. Among
the most widely utilized variants of EAs are genetic algorithms, evolutionary
strategy (ES), and differential evolution (DE) [2]. These methods are extensively
used in the optimization of complicated problems such as the design of quantum
operators [17], stabilization of chaos [9], difficult assignment problems [10], or
the hyperparameter optimization in deep learning [15].

In this paper, a composite method utilizing high-performing variants of ES
and DE is proposed and is evaluated on the ICSI’2022 benchmark set. Composite
methods are popular methods in structural dynamics (and similar areas) which
combine different methods at different time steps for the purpose of getting the
respective benefits of the different methods [3,4,6,12]. The proposed method
is called Composite Evolutionary Strategy and Differential Evolution (CESDE)
and its two components are the Hybrid Sampling Evolution Strategy (HSES)
[16] and the Linear Population Size Reduction SHADE (LSHADE) [13], two
very well-performing methods from the Congress on Evolutionary Computation
(CEC) Competitions on bound constrained single objective optimization [11]. It
takes advantage of the properties found by investigating the convergence profiles
of the two methods [7].
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2 Benchmark Problems

A brief summary of the functions used for the ICSI’2022 competitions is shown
in Table 1. A more detailed analysis is provided in [14]. Each of the functions is
used in a minimization problem on a range between [−100, 100]D, with dimen-
sions D = [10, 20, 50]. The maximum allowed number of function evaluations
(MaxFET ) was set to MaxFET = 10000 for D = 10, MaxFET = 30000 for
D = 20, and MaxFET = 70000 for D = 50.

Table 1. Summary of the functions used in the ICSI’2022 competition.

No. Function F ∗

F01 Rotated Shifted High Conditioned Elliptic Function 1000

F02 Rotated and Shifted Bent Cigar Function 1000

F03 Rotated and Shifted Rosenbrock’s Function 200

F04 Rotated and Shifted Rastrigin’s Function 200

F05 Rotated and Shifted Modified Schwefel’s Function 300

F06 Rotated and Shifted Alpine Function 300

F07 Shifted HappyCat Function 500

F08 Composition Function 1 0

F09 Composition Function 2 0

F10 Composition Function 3 0

3 Method Description

HSES. The HSES is a modified evolution strategy that utilizes a well known
covariance matrix adaptation strategy (CMA-ES) and a method based on multi-
variate sampling, which was previously successfully used for separable problems.
It takes advantage of both of these methods to improve upon its performance.
In the proposed composite method, the version of HSES used was the one devel-
oped by [16] for the purpose of the CEC’18 Competition on single objective
optimization.

LSHADE. The LSHADE is one of the best-performing variants of DE which
was as the basis of several of the best performing algorithm in the recent
CEC Competitions on single objective optimization. It is based upon SHADE,
a DE method that incorporates success-history based parameter adaptation,
and extends it by adding a linear population size reduction, that progressively
decreases the size of the population. In the proposed composite method, the
version of LSHADE used was the one developed by [1] for the purpose of the
CEC’21 Competition on single objective optimization.
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Proposed Composite Method. The proposed composite method is based
on the evaluation of the behaviour of HSES and LSHADE on the ambiguous
benchmark set [7]. It was found that both of these methods performed very well,
but had a quite different convergence profile. While HSES was able to “good”
solutions very quickly, in some cases it failed to improve upon these solutions
and was overtaken by other methods as the number of function evaluations
progressed. On the other hand, LSHADE was found to behave in the opposite
manner - it showed relatively slower convergence at the start, but once it found a
region with a good local optimum it converged quickly. The proposed composite
method switches between the evaluation of HSES and LSHADE, based on a
predetermined scheme. Various possibilities for the scheme are analyzed in the
upcomming section.

Parameter Settings. The parameter settings used by the composite method
are the same as the ones that were used in the respective papers [16] and [1].
As the composite scheme is concerned, eight possibilities have been tested to
find the one most suitable for the benchmark functions in the competition. The
studied schemes are summarized in Table 2 - for instance the C1 scheme uses
the fist half of the available iterations to run HSES and the other half to run the
LSHADE.

Table 2. Studied composite schemes.

Composite scheme Progression of iterations

C1 1/2 HSES, 1/2 LSHADE

C2 1/4 HSES, 3/4 LSHADE

C3 1/8 HSES, 7/8 LSHADE

C4 1/4 HSES, 1/4 LSHADE, 1/4 HSES, 1/4 LSHADE

C5 3/4 HSES, 1/4 LSHADE

C6 7/8 HSES, 1/8 LSHADE

C7 3/8 HSES, 1/8 LSHADE, 3/8 HSES, 1/8 LSHADE

C8 7/16 HSES, 1/16 LSHADE, 7/16 HSES, 1/16 LSHADE

4 Results and Discussion

First, the performance of the eight studied composite schemes is compared for
the selection of the most promising one. All of the schemes were evaluated for
the dimension D = 10. The results of this comparison are summarized in Table 3
(showing only the “mean”) values, which is color coded for easier comparison -
green cells signify better performance, while red values mean worse performance.
What is also apparent is that for the particular number of possible function eval-
uations, having more HSES iterations was preferable. The other thing to notice
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is that switching between HSES and LSHADE multiple times (as in C4, C7, and
C8) did not bring any improvements. For the sake of saving computational time,
only the most promising schemes C1, C5, and C6 were subsequently evaluated on
problems with D = 20. The results of this comparison are shown in Table 4. As
a result, only the best performing scheme C6 was selected as the representative
of the CESDE method for the comparison with other methods.

Table 3. Comparing mean results of different composite schemes for D = 10.

No. C1 C2 C3 C4 C5 C6 C7 C8

F01 4.46E+06 7.38E+06 1.72E+07 7.38E+06 3.46E+06 4.22E+06 6.76E+06 3.95E+06

F02 8.21E+08 1.12E+09 1.39E+09 1.12E+09 8.87E+08 8.13E+08 8.55E+08 9.30E+08

F03 1.50E+02 1.98E+02 2.13E+02 1.98E+02 1.15E+02 1.04E+02 1.55E+02 1.56E+02

F04 6.20E+01 6.43E+01 6.51E+01 6.43E+01 6.28E+01 6.16E+01 6.21E+01 6.39E+01

F05 1.27E+03 1.35E+03 1.47E+03 1.35E+03 1.35E+03 1.30E+03 1.30E+03 1.28E+03

F06 5.88E-01 1.28E+01 5.54E+01 1.28E+01 1.04E-02 1.23E-03 3.27E+00 1.15E+00

F07 1.02E+00 1.29E+00 1.58E+00 1.29E+00 1.02E+00 9.24E-01 1.18E+00 1.19E+00

F08 2.78E+05 2.78E+05 2.78E+05 2.78E+05 2.78E+05 2.78E+05 2.78E+05 2.78E+05

F09 8.14E+03 1.75E+06 2.93E+06 1.75E+06 1.46E+04 1.16E+01 5.15E+05 2.18E+05

F10 2.04E+01 9.97E+01 3.56E+02 9.97E+01 7.50E+00 7.28E+00 3.87E+01 3.03E+01

Table 4. Comparing mean results of selected composite schemes for D = 20.

No. C1 C5 C6

F01 5.05E+07 5.88E+07 4.39E+07

F02 7.31E+09 7.20E+09 6.91E+09

F03 5.08E+02 4.33E+02 3.97E+02

F04 1.53E+02 1.49E+02 1.45E+02

F05 2.32E+03 2.56E+03 2.57E+03

F06 8.82E+00 3.93E-01 6.55E+00

F07 1.97E+00 1.88E+00 1.66E+00

F08 4.00E+05 4.00E+05 4.00E+05

F09 1.96E+03 2.00E+02 2.13E+02

F10 5.93E+03 4.85E+03 5.39E+03

In Table 5 is reported the comparison between the CESDE method (using
the composite scheme C6) and its two “parent” methods HSES and LSHADE.
For the LSHADE and HSES methods the same parameter setting used was the
one reported in the corresponding publication [5] and all algorithms were started
from the same random seed [8]. For the evaluation, each of the algorithms was
run independently 50 times to obtain statistically relevant results. The chosen
testing platform was MATLAB R2021b, and the computations were conducted
on a computer with 3.2 GHz i5-4460 CPU and 16 GB RAM, using WIN 10 OS.
In Table 5, the Mean distance from the global optimum (which can be found in
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Table 1) is reported. This distance is computed as Fres − F ∗, where Fres is the
objective value of the best individual and F ∗ is the optimal value. It can be seen
that CESDE outperformed both of its “parent” methods on all studied instances.
While on some instance it made only slight improvement (when compared to its
parent methods) it performed significantly better on F06, F07, and F09 (by more
than two orders of magnitude).

Table 5. Comparing CESDE with HSES and LSHADE, mean values of (Fres − F ∗).

No D = 10 D = 20 D = 50

HSES LSHADE CESDE HSES LSHADE CESDE HSES LSHADE CESDE

F01 2.32E+08 2.93E+07 4.22E+06 1.13E+09 1.55E+08 4.39E+07 1.10E+09 1.49E+09 9.75E+08

F02 8.64E+09 3.21E+09 8.13E+08 3.31E+10 1.81E+10 6.91E+09 9.20E+08 9.56E+08 4.25E+08

F03 2.41E+03 3.59E+02 1.04E+02 5.78E+03 1.84E+03 3.97E+02 7.42E+03 1.54E+04 6.51E+03

F04 1.12E+02 7.28E+01 6.16E+01 2.48E+02 2.04E+02 1.45E+02 7.30E+02 6.81E+02 3.54E+02

F05 2.15E+03 1.71E+03 1.30E+03 5.97E+03 4.50E+03 2.57E+03 1.91E+04 1.40E+04 4.81E+03

F06 1.08E+02 7.63E+01 1.23E−03 3.31E+02 2.42E+02 6.55E+00 1.63E+03 9.25E+02 1.44E+01

F07 4.19E+00 2.24E+00 9.24E−01 5.65E+00 3.89E+00 1.66E+00 9.57E+00 6.36E+00 4.25E+00

F08 3.96E+05 4.66E+05 2.78E+05 4.50E+05 4.35E+05 4.00E+05 4.49E+05 4.50E+05 4.00E+05

F09 1.97E+07 2.50E+07 1.16E+01 4.89E+07 4.73E+07 2.13E+02 8.11E+08 8.40E+08 1.64E+05

F10 2.51E+03 2.73E+03 7.28E+00 1.41E+04 1.26E+04 5.39E+03 3.27E+04 4.10E+04 1.91E+04

For the purpose of the ICSI’2022 competition, the detailed statistics from
the 50 runs (reporting the best value, the worst value, the median value, the
mean value, and the standard deviation) can be found in Tables 6, 7, and 8, for
the different dimensions.

Table 6. Results (Fres − F ∗) for D = 10 problems.

No. Best Worst Median Mean Std

F01 8.41E−01 1.45E+07 2.71E+01 4.22E+06 5.78E+06

F02 2.69E+01 1.73E+09 8.53E+08 8.13E+08 7.36E+08

F03 6.30E+00 1.53E+02 1.08E+02 1.04E+02 2.92E+01

F04 2.98E+01 8.62E+01 6.11E+01 6.16E+01 1.46E+01

F05 8.01E+02 1.58E+03 1.37E+03 1.30E+03 2.18E+02

F06 2.50E−04 5.98E−03 8.81E−04 1.23E−03 1.28E−03

F07 7.93E−02 1.30E+00 9.58E−01 9.24E−01 3.21E−01

F08 1.74E+05 3.44E+05 2.92E+05 2.78E+05 4.20E+04

F09 2.25E−03 2.17E+02 2.03E−02 1.16E+01 4.84E+01

F10 2.08E+00 1.98E+01 5.77E+00 7.28E+00 4.50E+00
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Table 7. Results (Fres − F ∗) for D = 20 problems.

No. Best Worst Median Mean Std

F01 9.04E−03 1.28E+08 2.76E+07 4.39E+07 4.75E+07

F02 4.95E+09 1.00E+10 6.67E+09 6.91E+09 1.37E+09

F03 2.73E+02 5.80E+02 3.97E+02 3.97E+02 7.90E+01

F04 1.06E+02 1.96E+02 1.46E+02 1.45E+02 2.02E+01

F05 8.74E+02 4.29E+03 2.54E+03 2.57E+03 8.52E+02

F06 1.02E−07 1.30E+02 4.22E−03 6.55E+00 2.91E+01

F07 7.89E−01 2.08E+00 1.71E+00 1.66E+00 2.97E−01

F08 3.97E+05 4.00E+05 4.00E+05 4.00E+05 6.16E+02

F09 2.51E−08 4.25E+03 2.69E−03 2.13E+02 9.50E+02

F10 2.20E+03 7.19E+03 5.88E+03 5.39E+03 1.38E+03

Table 8. Results (Fres − F ∗) for D = 50 problems.

No. Best Worst Median Mean Std

F01 9.25E+05 1.40E+09 1.02E+09 9.75E+08 3.78E+08

F02 2.96E+08 4.89E+08 4.36E+08 4.25E+08 4.28E+07

F03 4.51E+03 9.48E+03 6.44E+03 6.51E+03 1.33E+03

F04 2.59E+01 5.13E+02 3.97E+02 3.54E+02 1.28E+02

F05 2.79E+03 8.07E+03 4.63E+03 4.81E+03 1.54E+03

F06 1.98E+00 3.79E+01 1.23E+01 1.44E+01 9.50E+00

F07 3.99E+00 4.63E+00 4.21E+00 4.25E+00 1.91E−01

F08 4.00E+05 4.00E+05 4.00E+05 4.00E+05 4.45E+01

F09 1.18E+04 9.73E+05 7.98E+04 1.64E+05 2.23E+05

F10 1.51E+04 2.26E+04 1.88E+04 1.91E+04 1.89E+03

5 Conclusions

In this paper, a composite method that combined HSES and LSHADE was pro-
posed. The numerical investigation on the ICSI’2022 benchmark set confirmed
that combining the two above mentioned method in a particular way brought
advantages of both, and the composite method was able to outperform both of
its “parental” methods.

As only two methods and a single benchmark dataset was investigates, there
is plenty of room for additional research – different version of EA methods can
be combined on various benchmark sets to see the impact of their composition,
as well as the impact hyperparameter optimization can have on the performance
of these methods.
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Abstract. In this paper, a method called Lipschitz-surrogate Assisted
Differential Evolution (LSADE) is described. The method uses two dif-
ferent surrogates: a standard radial basis function one and a specialized
one based on a Lipschitz condition. It also uses two optimization meth-
ods: differential evolution and sequential quadratic programming. The
LSADE method is investigated on the benchmark set of the ICSI’2022
competition and is compared with two other high-performing methods
for bound constrained optimization, outperforming them both on the
studied benchmark set.

Keywords: ICSI’2022 competition · Surrogate-assisted optimization ·
Differential evolution · Numerical optimization

1 Introduction

Evolutionary algorithms (EAs) are one of the most efficient metaheuristics used
for global optimization. EAs are inspired by the processes of biological evolution,
such as reproduction, recombination, mutation, and natural selection. The most
widely used variants of these techniques are genetic algorithms, evolutionary
strategy, and differential evolution (DE) [2]. These methods are routinely utilized
in the optimization of complicated problems such as the design of quantum
operators [22], difficult assignment problems [13], stabilization of chaos [12], or
the hyperparameter optimization in deep learning [20].

Real-world optimization problems frequently require expensive computations
or executions of physical experiments. In such situations the evaluation of objec-
tive functions can take a prohibitively long time for conventional optimization
methods [4]. To alleviate the computational costs, surrogate models have been
widely used in combination with EAs under the name of surrogate-assisted EAs
(SAEAs) [5].

SAEAs compute only a reduced number of real objective function evaluations
and utilize them for training of surrogate models as approximations for the real
functions. The other use of SAEAs is in situations, where the maximum number
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of function evaluations is somehow limited. As the problem set in the ICSI’2022
competition heavily restricts the number of possible function evaluations, the
utilization of an SAEA for this purpose is well justified.

In this paper, the lipschitz-surrogate assisted differential evolution (LSADE)
method is evaluated on the ICSI’2022 test set. The LSADE method uses two
different surrogates, the DE algorithm, and a local search method. Its perfor-
mance on the test set is compared with two other high-performing evolutionary
algorithms.

The rest of the paper is structured as follows: Sect. 2 describes the bench-
mark test set and the competition conditions, in Sect. 3 details of the proposed
method are described, in Sect. 4 the results of the computations are reported
and discussed, and conclusions are drawn in Sect. 5.

2 Benchmark Problems

The summary of the benchmark functions used for the ICSI’2022 competitions is
presented in Table 1 and more details about the functions can be found in [19].
Every one of the 10 functions presents a minimization problem on the range
[−100, 100]D, where the considered dimensions are D = [10, 20, 50]. The maxi-
mum number of function evaluations (MaxFET ) was capped at MaxFET =
10000 for D = 10, MaxFET = 30000 for D = 20, and MaxFET = 70000 for
D = 50.

Table 1. Summary of the functions used in the ICSI’2022 competition.

No. Function F ∗

F01 Rotated Shifted High Conditioned Elliptic Function 1000

F02 Rotated and Shifted Bent Cigar Function 1000

F03 Rotated and Shifted Rosenbrock’s Function 200

F04 Rotated and Shifted Rastrigin’s Function 200

F05 Rotated and Shifted Modified Schwefel’s Function 300

F06 Rotated and Shifted Alpine Function 300

F07 Shifted HappyCat Function 500

F08 Composition Function 1 0

F09 Composition Function 2 0

F10 Composition Function 3 0

3 Method Description

3.1 Surrogate Models

Among the different surrogate models, radial basis function (RBF) based ones
are on of the most widely applied methods [3]. Representative RBFs include
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Gaussian function, linear splines, thin-plate splines, cubic splines, and multi-
quadrics splines. Given n different sample points x(1), . . . , x(n), the RBF surro-
gate can be written as

f̂(x) =
n∑

i=1

wiψ(||x − x(i)||2), (1)

where wi denotes the weight which is computed using the method of least-
squares, and ψ is the chosen basis function.

The use of a Lipschitz constant in optimization has a long history within
global optimization and is an active area of research to this day [9]. It is assumed
that there is an unknown (or expensive to compute) function f with a finite
Lipschitz constant k, i.e.

∃k ≥ 0 s.t. |f(x) − f(x′)| ≤ k||x − x′||2 ∀(x, x′) ∈ X 2. (2)

Based on a sample of n evaluations of the function f at points x(1), . . . , x(n), the
global underestimator fL of f is constructed by using the following expression

fL(x) = max
i=1,...,t

f(x(i)) − k||x − x(i)||2. (3)

This surrogate displays two important properties – it assigns low values to
points that are far from the ones that were previously evaluated, and it combines
it with the information (in the form of the objective value and the value of the
“global” Lipschitz constant) from the closest evaluated point. This means that
it can serve as an “uncertainty measure” of prospective points for evaluation.

However, as the objective function f itself is not known, one cannot expect
to know the value of the Lipschitz constant k. This is approached by estimating
k from the previously evaluated points. To this end, the approach described in
[9] was utilized: a nondecreasing sequence of Lipschitz constants ki∈Z defines a
meshgrid on R+, and the estimate k̂t of the Lipschitz constant was computed
by

k̂t = inf
{

ki∈Z : max
l �=j

|f(x(j)) − f(x(l))|
||x(j) − x(l)||2 ≤ ki

}
. (4)

Several possible sequences of different shapes could be used. The one
employed was a sequence ki = (1 + α)i that uses a parameter α > 0. For this
sequence, the computation (4) of the estimate is simplifies into k̂t = (1 + α)it ,
where

it =
⌈
ln(max

l �=j

|f(x(j)) − f(x(l))|
||x(j) − x(l)||2 )/ ln(1 + α)

⌉
. (5)

3.2 Differential Evolution

In this paper, DE is used as the optimization method due to its relatively
straightforward structure, and its proven optimization abilities. Several variants
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of DE were introduced in order to improve its performance [2]. Generally, there
are four steps of DE: initialization, mutation, crossover, and selection. In the
proposed method, the DE/best/1 strategy was utilized for the mutation process
of DE which, can be expressed as

vi = xb + F · (xi1 − xi2), (6)

where xb is the current best solution and xi1 and xi2 are different randomly
selected individuals from the population, and F is a scalar. The crossover step
of DE is performed after mutation and has the following form:

uj
i =

{
vj
i , if (Uj(0, 1) ≤ Cr | j = jrand)

xj
i , otherwise

(7)

where uj
i the jth component of ith offspring, xi

j and vi
j are the jth component

of ith parent individual and the mutated individual, respectively. The crossover
constant Cr is between 0 and 1, Uj(0, 1) indicates a uniformly distributed random
number, and jrand ∈ [1, . . . , D] is a randomly chosen index which guarantees ui

has at least one component of vi.

3.3 Proposed LSADE Method

The LSADE method [7] has four parts: DE-based generation of prospective
points, RBF evaluation of the prospective points, Lipschitz surrogate evalua-
tion of the prospective points, and the local optimization within a close range of
the best solution found so far. The execution of last three parts of the algorithm
can be controlled based on chosen conditions.

At the start, the Latin hypercube sampling [16] is utilized to generate the
initial population of t individuals, with their objective function is computed
exactly. The best individual is found, a parent population of size p is randomly
selected from the evaluated points, and a new population is created based on the
DE steps described by (6) and (7). If the RBF evaluation condition is true, the
new population is evaluated based on the RBF surrogate and the best individual
based on this model has its objective function evaluated, and is added to the
whole population. This part can be thought of as a global search strategy.

If the Lipschitz evaluation condition is satisfied, the Lipschitz constant k is
estimated by (5) and the new population is evaluated on the Lipschitz surrogate
(3). The best individual based from the Lipschitz model has its objective function
evaluated, and enters the whole population.

If the Local optimization condition is satisfied, a local RBF surrogate model
is constructed using the best c solutions found thus far, which are denote as
x̂1, . . . , x̂c. The bounds used for the local optimization procedure within those c
points are:
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Algorithm 1. Pseudocode of the LSADE.
1: Construct the initial population of t points x1, . . . , xt, evaluate their objective

function values, find the best solution xb.
2: Set iter = 0, NFE = t (number of true function evaluations).
3: Estimate k by (5) and construct the RBF surrogate model.
4: Sample p points from the population as parents for DE.
5: Generate children based on the DE rules (6) and (7), .
6: Increase iter by 1.
7: if RBF condition then
8: Evaluate the children on the RBF surrogate.
9: Find the child with the minimum RFB surrogate value, evaluate its objective

function value, and add it to the whole population. Increase NFE by 1.

10: if Lipschitz condition then
11: Evaluate the children on the Lipschitz surrogate (3).
12: Find the child with the minimum Lipschitz surrogate value, evaluate its objec-

tive function value, and add it to the whole population. Increase NFE by 1.

13: if Local Optimization condition then
14: Construct the local RBF surrogate model with the best c solutions found.
15: Find the bounds for the local optimization (8).
16: Minimize the local RBF surrogate model within the bounds. Denote the mini-

mum as x̂m and, if it is not already in the population, evaluate its objective function
value, add it to the population. Increase NFE by 1.

17: Find the best solution so far and denote it as xb.
18: if NFE < NFEmax then
19: goto 3.
20: else
21: terminate.

lb(i) = min
j=1,...,c

x̂j(i), i = 1, . . . , D

ub(i) = max
j=1,...,c

x̂j(i), i = 1, . . . , D
(8)

and a local optimization of this RBF model is performed within [lb, ub]. For this
local optimization a sequential quadratic programming strategy was adapted,
as it was found to be an excellent strategy by the winner of the 2020 CEC
Single Objective Bound Constrained Competition [15]. After the local optimum
is found it is checked, if it is not already in the population, before evaluating it
and adding it to the whole population.

The evaluation of points by the Lipschitz-based surrogate can be seen as
the exploration step in the method, while the evaluation of points by the local
optimization method can be seen as the exploitation step of the method. The
pseudocode for the proposed LSADE method is described in Algorithm 1.

3.4 Parameter Settings

For constructing both the local and the global RBF surrogate models, the SUR-
ROGATES toolbox [18] was used with the default settings (multiquadric RBF).
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The coefficients of the DE were chosen as F = 0.5 and Cr = 0.5. The number
of initial points were set to 100 for D = [30, 50] and 200 for D = [100, 200]. The
number of children was set to D. The local optimization used the best c = 3 · D
points found so far (or less if there were not enough points evaluated so far),
and used the sequential quadratic programming algorithm implemented in the
FMINCON function [10] with default parameters. The Lipschitz parameter was
chosen as α = 0.01.

It is customary to want greater exploration capabilities in the early stages
of the algorithm and exploitation capabilities in the later iterations [1,14]. The
conditions for the construction of the Lipschitz surrogate and for the local opti-
mization procedure reflect this by being based on the iteration number in the
following way:

Lipschitz condition for D = [10, 20, 50]: mod

(
iter,

⌈
8 · iter
1000

⌉)
= 0,

Local optimization condition for D = [10, 20]: mod

(
iter,

⌈
8000 − 15 · iter

1000

⌉)
= 0,

Local optimization condition for D = 50: mod

(
iter,

⌈
8000 − 10 · iter

1000

⌉)
= 0,

while the condition for the RBF evaluation was set as true for every iteration.
As the evaluation of the LSADE method takes a nontrivial amount of time

(both the construction of the surrogates and the local optimization are relatively
complex procedures), the method was not used for the whole MaxFET available
evaluations. Instead, it was used only for NFEmax = 500 evaluations in D = 10,
NFEmax = 1000 evaluations in D = 20, and NFEmax = 1500 evaluation in
D = 50. The rest of the available evaluations (MaxFET − NFEmax) was used
by running the DE algorithm (with the same parameters as reported above).

4 Results and Discussion

In order to demonstrate the effectivity of the LSADE method, its performance
was compared with two of the best-performing algorithms in [8]. These algo-
rithms were the Linear Population Size Reduction SHADE (LSHADE) [17] and
Hybrid Sampling Evolution Strategy (HSES) [21]. For the LSHADE and HSES
methods the same parameter setting used was the one reported in the corre-
sponding publication [6] and all algorithms were started from the same random
seed [11]. For the evaluation, each of the algorithms was run independently 50
times to obtain statistically relevant results. The chosen testing platform was
MATLAB R2021b, and the computations were conducted on a computer with
3.2 GHz i5-4460 CPU and 16 GB RAM, using WIN 10 OS. The results of this
comparison are shown in Table 2, where the Mean distance from the global opti-
mum (which can be found in Table 1) of the 50 runs of the methods is reported.
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This distance is computed as Fres − F ∗, where Fres is the objective value of
the best individual and F ∗ is the optimal value. It can be seen that LSADE is
highly competitive as it outperformed both HSES and LSHADE on all studied
instances.

Table 2. Comparison between HSES, LSHADE, and LSADE, mean values of (Fres −
F ∗).

No D = 10 D = 20 D = 50

HSES LSHADE LSADE HSES LSHADE LSADE HSES LSHADE LSADE

F01 2.32E+08 2.93E+07 8.94E+06 1.13E+09 1.55E+08 2.07E+07 1.10E+09 1.49E+09 8.75E+07

F02 8.64E+09 3.21E+09 9.95E+03 3.31E+10 1.81E+10 7.01E+06 9.20E+08 9.56E+08 2.74E+06

F03 2.41E+03 3.59E+02 1.85E+01 5.78E+03 1.84E+03 5.03E+01 7.42E+03 1.54E+04 2.38E+02

F04 1.12E+02 7.28E+01 3.04E+01 2.48E+02 2.04E+02 7.10E+01 7.30E+02 6.81E+02 1.39E+02

F05 2.15E+03 1.71E+03 1.18E+03 5.97E+03 4.50E+03 2.77E+03 1.91E+04 1.40E+04 8.31E+03

F06 1.08E+02 7.63E+01 2.91E+01 3.31E+02 2.42E+02 6.10E+01 1.63E+03 9.25E+02 1.55E+02

F07 4.19E+00 2.24E+00 3.71E−01 5.65E+00 3.89E+00 5.61E−01 9.57E+00 6.36E+00 5.01E−01

F08 3.96E+05 4.66E+05 3.95E+05 4.50E+05 4.35E+05 4.02E+05 4.49E+05 4.50E+05 4.06E+05

F09 1.97E+07 2.50E+07 6.02E+06 4.89E+07 4.73E+07 2.49E+06 8.11E+08 8.40E+08 2.67E+07

F10 2.51E+03 2.73E+03 3.45E+02 1.41E+04 1.26E+04 1.88E+02 3.27E+04 4.10E+04 2.62E+02

For the purpose of the competition, the detailed statistics from the 50 runs
(best value, worst value, median value, mean value, and standard deviation) are
shown in Tables 3, 4, and 5, for the different dimensions.

Table 3. Results (Fres − F ∗) for D = 10 problems.

No. Best Worst Median Mean Std

F01 8.92E+05 3.70E+07 5.88E+06 8.94E+06 7.09E+06

F02 1.23E+02 2.62E+04 9.47E+03 9.95E+03 6.03E+03

F03 7.62E+00 1.05E+02 1.25E+01 1.85E+01 1.96E+01

F04 4.98E+00 8.20E+01 2.44E+01 3.04E+01 1.71E+01

F05 5.34E+02 1.86E+03 1.19E+03 1.18E+03 3.10E+02

F06 4.64E+00 7.81E+01 2.24E+01 2.91E+01 1.79E+01

F07 1.35E−01 8.25E−01 3.48E−01 3.71E−01 1.36E−01

F08 2.60E+05 4.66E+05 4.10E+05 3.95E+05 5.01E+04

F09 2.44E+05 2.35E+07 5.26E+06 6.02E+06 4.80E+06

F10 1.65E+01 1.49E+03 1.68E+02 3.45E+02 3.61E+02
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Table 4. Results (Fres − F ∗) for D = 20 problems.

No. Best Worst Median Mean Std

F01 3.46E+06 6.42E+07 1.79E+07 2.07E+07 1.30E+07

F02 1.17E+01 2.72E+08 6.10E+03 7.01E+06 3.89E+07

F03 1.28E+01 8.56E+01 5.49E+01 5.03E+01 2.12E+01

F04 3.28E+01 1.53E+02 6.54E+01 7.10E+01 2.82E+01

F05 1.45E+03 3.68E+03 2.80E+03 2.77E+03 5.28E+02

F06 1.25E+01 1.74E+02 4.71E+01 6.10E+01 3.72E+01

F07 2.19E−01 1.37E+00 5.37E−01 5.61E−01 2.18E−01

F08 4.00E+05 4.08E+05 4.00E+05 4.02E+05 3.13E+03

F09 3.98E+04 1.22E+07 1.89E+06 2.49E+06 2.44E+06

F10 3.46E+01 5.74E+02 1.47E+02 1.88E+02 1.23E+02

Table 5. Results (Fres − F ∗) for D = 50 problems.

No. Best Worst Median Mean Std

F01 3.53E+07 1.89E+08 7.11E+07 8.75E+07 3.84E+07

F02 8.36E−01 1.75E+07 1.57E+03 2.74E+06 5.25E+06

F03 1.66E+02 3.31E+02 2.16E+02 2.38E+02 4.99E+01

F04 7.96E+01 2.44E+02 1.28E+02 1.39E+02 4.14E+01

F05 6.41E+03 1.05E+04 8.31E+03 8.31E+03 1.12E+03

F06 7.51E+01 2.79E+02 1.41E+02 1.55E+02 5.31E+01

F07 3.08E−01 6.69E−01 4.88E−01 5.01E−01 8.31E−02

F08 4.00E+05 4.50E+05 4.01E+05 4.06E+05 1.17E+04

F09 6.56E+06 1.63E+08 1.66E+07 2.67E+07 3.14E+07

F10 1.33E+02 4.13E+02 2.65E+02 2.62E+02 8.85E+01

5 Conclusions

In this paper the LSADE method was described and investigated on the bench-
mark set for the ISCI’2022 competition. Through numerical investigation it was
found that the LSADE method outperformed two other well-known methods,
namely HSES and LSHADE, on the studied benchmark set. Further investiga-
tions of the LSADE method will encompass the evaluation of different schemes
for the Lipschitz, RBF, and Local optimization conditions. Also interesting would
be the possibility of choosing a different optimizer instead of the currently used
DE.
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