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Abstract. Deep Knowledge Tracing (DKT), as well as other machine
learning approaches, is biased toward data used during the training step.
Thus, for problems where we have few amounts of data for training, the
generalization power will be low, and the models will tend to work well
on classes containing many samples and poorly on those with few. This
situation is quite common in educational data where some skills are very
difficult to master while others are very easy. As a result, there will be
less data on students who correctly answered questions related to difficult
skills, but also on those who provided incorrect answers to questions
related to easy skills. In those cases, the DKT is unable to correctly
predict the student’s answers to questions associated with these skills.
To improve DKT performance under these conditions, we have developed
a two-fold approach. Firstly, the loss function is modified so that some
skills are masked to force the model’s attention on those that are difficult
to generalize. Secondly, to cope with the limited amount of data on some
skills, we proposed a hybrid architecture that integrates a priori (expert)
knowledge with DKT through an attentional mechanism. The resulting
model accurately tracks student Knowledge in the Logic-Muse Intelligent
Tutoring System (ITS), compared to the traditional Bayesian Knowledge
Tracing (BKT) and the original DKT.

Keywords: Deep Knowledge Tracing · Bayesian Knowledge Tracing ·
Knowledge Tracing

1 Introduction

Modeling students’ knowledge is a fundamental step when building intelligent
tutoring systems (ITS). Knowledge Tracing, a popular approach to modeling
learner knowledge, aims at modeling how students’ knowledge evolves during
learning [7]. There exist many solutions to estimate that probability such as the
Bayesian Knowledge Tracing (BKT) and the Deep Knowledge Tracing (DKT).

BKT [7] is a special case of the Hidden Markov Model where student knowl-
edge is represented as a set of binary variables. Observations are also binary:
a student gets a problem either right or wrong [29]. However, there is a cer-
tain probability (G, the Guess parameter) that the student will give a correct
response. Correspondingly, a student who does know a skill generally will give a
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correct response, but there is a certain probability (S, the Slip parameter) that
the student will give an incorrect response. The standard BKT model is thus
defined by four parameters: initial knowledge, learning rate (learning parame-
ters), slip, and guess (mediating parameters). It has been successfully used in a
variety of systems including computer programming [11], reading skills [4], logical
reasoning [24] etc. Using a Bayesian network sometimes implies manually defin-
ing apriori probabilities and manually labeling student interactions with relevant
concepts. Also, the binary response data used to model knowledge, observations
and transitions impose a limit on the kinds of exercises that can be modeled.
DKT has been proposed as a good alternative to overcome BKT limits.

Deep learning has been successfully applied in many domains including
images recognition [9], Natural Language Processing [2,6] and more recently
in education for modeling student knowledge. DKT [20] uses an LSTM (Long
Short Term Memory) to predict student performance based on the pattern of
their sequential responses. DKT observes knowledge at both the skill level, and
the problem level, observing the correctness of each problem. At any time step,
the input layer of the DKT is the student performance on a single problem of
the skill that the student is currently working on. In other words, the skill and
correctness of each item are used to predict the correctness of the next item,
given that problem’s skill [31]. Rather than constructing a separate model for
each skill as BKT does, DKT models all skills jointly [12,20]. It has been shown
that DKT can robustly predict whether or not a student will solve a particular
problem correctly given the accuracy of historic solutions [26,31]. However many
recent works have pointed out some issues with the DKT such as: the model only
considers the knowledge components of the problems and correctness as input,
neglecting the breadth of other features collected by computer-based learning
platforms [31]. This problem was solved by incorporating more features into the
input of the model and by incorporating an auto-encoder network layer to con-
vert the input into a low dimensional feature vector. Other issues were pointed
out by Chun-Kit et al. [28] which are (1) the model fails to reconstruct the
observed input; As a result, even when a student performs well on a skill compo-
nent, the prediction of that skill mastery level decreases instead, and vice versa;
(2) the predicted performance for skills across time-steps is not consistent. As a
solution, they augmented the loss function with regularization terms that cor-
respond to ‘reconstruction’ and ‘waviness’. This solution is similar to our first
contribution.

Skills with limited data denotes skills that are very difficult to master (there
are few data on students that have mastered these skills) and skills that are very
easy to master (there are few data on students that have not mastered these
skills). Like other machine learning techniques, the DKT is biased towards the
data seen during the training phase due to its data-driven approach. Therefore,
the generalization performance of the model depends on the training data. For
problems (or skills) that are difficult to master, which means a rare occurrence
of correct answers, the DKT is unable to accurately predict the student per-
formance on questions associated with those skills. In the same vein, for skills
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that are easy to master, which means a rare occurrence of incorrect answers,
the DKT also fails to accurately predict the student performance on questions
associated with those skills. In machine learning domain, this problem is known
as the class imbalance problem [10] where there are fewer occurrences of data
for a certain class which results in sub-optimal performance.

In the educational field, a priori expert knowledge is usually available and
generally used to build systems such as Intelligent Tutoring Systems (ITS).
Expert knowledge can be available through books or previously built models
(such as rules-based models). We believe that this a priori expert knowledge,
sometimes acquired over decades of intense research, cannot be dismissed and
ignored. Sometimes, a priori expert knowledge can be available but is not always
sufficiently accurate. Nevertheless, even inaccurate models can provide useful
information that should not be dismissed [30]. In general, employing a fully
data-driven approach to train deep neural networks requires the acquisition of
a huge amount of data, which might not always be practical or realistic due to
economic reasons or the complexity of the process it entails. We show that com-
bining a priori expert knowledge and data-driven methods using the attentional
mechanism constitutes a suitable approach towards the design of hybrid deep
learning architecture.

In this paper, we put forth an approach that uses attentional mechanism
[27] and capitalizes on the availability of expert knowledge (through a Bayesian
Network built by experts) to overcome the problem of having few data when
training machine deep learning models. We also propose to leverage the problem
of skills with limited data by using a custom loss function for the DKT, where we
mask skills with many samples and give weight to skills with few samples. The
main contributions of this work can be summarized as follows: (1) An extension
that improves the original DKT in the prediction of skills with limited data;
(2) The incorporation of a priori knowledge (when available) using attention
mechanism in a deep learning architecture. We applied the proposed solution to
the prediction of the logical reasoning performance of students.

2 Brief Review of the Deep Knowledge Tracing

DKT takes as input sequences of exercise-performance (et, pt) pairs presented one
trial at a time. The model then predicts the knowledge state, based on the current
hidden state. The hidden layer of the LSTM represents the latent encoding of
knowledge state, based on the current input and previous latent encoding of
knowledge state. It represents the latent knowledge state of a student, resulted
from his past learning trajectory.

To train the model, the exercise-performance needs to be converted into a
sequence of fixed length input vectors xt. xt is a one-hot encoding of (et, pt) that
represents the combination of which exercise (skill involved) was answered and
the real answer given by the student. For student s with a sequence of exercice-
performance of length T, the DKT model maps the inputs (x1, x2, ..., xT ) to the
output yt which is a vector of length equals to the number of skills. Each entry
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of yt represents the predicted probability that the student will correctly answer
exercises from that particular skill. The training objective is the negative log-
likelihood of the observed sequence of student responses under the model. The
loss function is as follows [20]:

L =
∑

t

�(y�
t δ(et+1), pt+1) (1)

δ(et+1) is the one-hot encoding of which exercise is answered at time t + 1. � is
the binary cross entropy.

3 Penalization of Loss Function

The performance prediction on skills with little data can be compared to unbal-
anced problems in machine learning. There are multiple strategies to deal with
class imbalance such as resampling the data by under-sampling the majority class
or oversampling the minority class [19]. However, over-sampling can easily intro-
duce undesirable noise with overfitting risks; on the other hand, under-sampling
is often preferred but may remove valuable information, which we can’t afford
because of the few amounts of data. Another well-known strategy is cost-sensitive
learning, which assigns higher misclassification costs to the minority class than
to the majority class [23]. Our proposed solution falls into the category of cost-
sensitive learning, where we assigned a higher cost for skills with few samples.
In other words, during the training, we force the model to pay more attention
to floor/ceiling skills.

The main idea is to treat the loss as a weighted average where the weights are
specified by parameters λi with i ∈ [0,n] where n is the number of parts to add
to the original loss. We added a regularization term in the loss function which
corresponds to the application of a mask to the original loss to ignore skills with
many samples. The result of the mask has 2 parts: the very difficult skills and the
very easy skills. Each part of the mask is multiplied by regularization parameters
(or weights) λ1 and λ2 respectively. These factors are the penalties applied to
the model. Penalizing the DKT model imposes an additional cost when making
prediction mistakes on the minority class during training. These penalties bias
the model to pay more attention to the minority class (correct answers on skills
difficult to master and incorrect answers on skills easy to master). Now we will
explain how we compute the new loss.

If we were to evaluate a DKT model for the prediction of a knowledge state
on only one skill k, the loss function would be written as follows:

Lk =
∑

t

�(yk,t, pk,t+1) (2)

where yk,t is a vector of length equals to the number of skills with 0 on all the
entries except for the entry k. It represents the predicted probability at time t
that a student would correctly answer a problem related to that specific skill
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(k) at time t + 1. pk,t+1 denotes the real answer (performance) given at time
t + 1 by a student on a problem related to the skill k. For the model to be able
to make good predictions on skills with few data, we first extracted those skills
using statistics (skills with a very small number of correct answers and skills
with a very high number of correct answers). We could have also used the DKT
itself (by running the DKT and then identifying skills where the precision and
recall are low for each of the correct/incorrect classes). We then apply a mask
(this is easily done with any programming language) on the loss function whose
purpose is to hide skills with many samples to only keep what we want the model
to focus on. We then run the model with a new loss function:

L =
∑

t

�(yT
t δ(et+1), pt+1) + λ1

∑

t

∑

kF

�(ykF,t, pkF,t+1,1)

+λ2

∑

t

∑

kC

�(ykC,t, pkC,t+1,0)
(3)

Parameters λ1 and λ2 >= 0 are weights that we apply to the mask and kF ,
kC denote respectively all skills that are difficult to master (floor skills) and all
skills that are easy to master (ceiling skills). The digit 1 in pkF,t+1,1 denotes
correct answers and digit 0 in pkC,t+1,0 denotes incorrect answers . If λ = 0, the
model becomes the original DKT. The more the value λ is high, the more the
model will be biased towards skills with few samples (floor/ceiling skills). The
choice of the value of λ is thus important. yk,t and pk,t+1 are the vectors yt and
pt+1 respectively, where we only keep values related to the skill k. Thus pkF,t,1

refers to a vector of length equals to the number of skills with 0 on all the entries
except for entries kF and where the real answers given are correct at time t+1.
δ(et+1) is the one-hot encoding of which exercise is answered at time t + 1. The
new loss provides another way to balance the data.

4 Combining a Bayesian Network with the DKT

BN is a graphical model used to model process under uncertainty by representing
relationships between variables in terms of a probability distribution [21]. BN
allows inferring the probability of mastering a skill from a specific response pat-
tern [18]. The structure and the parameter or probability distributions are pro-
vided by experts or learned using algorithms such as Expectation-Maximization.
In this work, we only consider BNs that are built by experts. BNs have been suc-
cessfully used to model knowledge state of learners [15,16,24] or learner affect
[22]. There are many contexts where a lot of data or expert knowledge (e.g.
medicine) are available. How can the DKT benefit from that? We want to take
advantage of expert knowledge when available. We also suppose that the model
accuracy could increase as expert knowledge is not biased towards rare data,
which can be very helpful in the case of few amounts of data.

The inner architecture of a neural network makes it difficult to incorporate
domain knowledge into the learning process [13]. Our solution is to force the
model to pay attention to what the expert knowledge says about the current
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input x. The goal is not to incorporate how the expert knowledge is processed,
but rather its final prediction about the input. Since attention [27] is a memory-
access mechanism, it fits well in this context where we want the model to have
access to the expert knowledge during learning [1], as a memory. Thus, the
model will pay attention to what the expert knowledge says before taking any
decision. Attention-based recurrent networks have been successfully applied to
a wide variety of tasks, such as machine translation [3], handwriting synthesis
[8], speech recognition [5], etc. By integrating the expert knowledge (here a BN)
in the DKT using the attention mechanism, the model iteratively processes the
apriori knowledge by selecting relevant content at every step. In the attention
mechanism presented by Luong et al. [14] (specifically the global attentional
model), the attentional vector is computed from the target hidden state ht and
the input hidden state. Instead of the input hidden state, we will have the data
coming from expert knowledge which will be used to compute the context vector
Ct (that we will call expert-side context vector) (see Fig 2 in [14]). Thus, given
the hidden state yt (the prediction) of the DKT, and the expert-side context
vector cet , we employ a concatenation layer to combine the information from
both vectors to produce the attentional hidden state at as follows:

at = tanh(Wc[cet ; yt]) (4)

The attentional vector at along with the expert prediction e and the yt are then
fed through a Dense layer to produce the predictive knowledge state y′

t. Now,
the expert-side context is computed as follows:

score(ek, yt) = ek · yt · Wa + b

αt,k =
expscore(ek,yt)

∑s
j=1 expscore(ej ,yt)

cet =
∑

k

αt,k · e

(5)

where 1 <= k <= s, e is the current knowledge state predicted by the expert,
yt is the current knowledge state predicted by the DKT and s is the number
of skills. The parameter e represents a vector of length equals to the number of
skills where each entry represents the predicted probability that the student will
answer correctly to exercises from that particular skill, given by the BN. ek is of
size 1 and Wa, Wc, Ws, yt, e and at are of size s the number of skills. Figure 1
shows in detail this global process.

5 Experiments

Our goal is to create an accurate learner model in an ITS called Logic-Muse.
The current learner model implemented in Logic-Muse uses a BN [hidden] built
from expert knowledge.
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Fig. 1. Global attentional hybrid model—at each time step t, the model infers
an alignment weight vector αt,k based on the current predicted knowledge yt and all
entries of the expert knowledge vector. cet is then computed as the weighted average,
according to αt,k, over each of the entries of the expert knowledge vector.

5.1 Logic Muse

Logic-Muse is a web-based Intelligent Tutoring System that helps learners
improve logical reasoning skills. Logic-Muse includes a learning environment that
uses various meta-structures to provide reasoning activities on various contents
[hidden]. The expert model implements logical reasoning skills and knowledge as
well as related reasoning mechanisms (syntactic and semantic rules of the given
logical system). The model of (valid and invalid) inference rules are encoded as
production rules, and the semantic memory of the target logic is encoded in a
formal OWL ontology and connected to the inference rules. The first version of
Logic-Muse focuses on propositional logic. Logic-Muse learner model goal is to
represent, update and predict the learner’s state of knowledge based on her/his
interaction with the system. It has multiple aspects including the cognitive part
that essentially represents the learner’s knowledge state (mastery of the reason-
ing skills in each of the six reasoning situations that have been identified thanks
to the experts). The cognitive state is generated from the learner’s behavior
during his interactions with the system, that is, it is inferred by the system
from the information available. It is supported by a Bayesian network [hidden]
based on domain knowledge, where influence relationships between nodes (rea-
soning skills) as well as prior probabilities are provided by the experts. Some
nodes are directly connected to the reasoning activities such as exercises. The
skills involved in the BN are those put forward by the mental models’ theory to
reason in conformity to the logical rules. There are 16 skills directly observable
(linked to the exercises) and 12 latent skills. There is a total of 48 exercises.
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5.2 Dataset

294 participants participated in this study. They all completed the 48 logical
reasoning exercises. In our dataset, each line of data represents each participant
(a total of 294 data and a sequence length of 48). The amount of data is very few
to train a deep learning model. However, combined with expert knowledge, we
will see a substantial difference in the results. The exercises were encoded using
skills that are directly observable, which means that the questions related to the
same skill are encoded with the same Id (1∼16). The skills with few data are
determined by a comparison of the average of correct answers obtained for each
skill. In Table 1, we averaged all the answers on each skill. The skills difficult
to master (floor) are those with the lowest average value and the skills easy to
master (ceiling) are those with the highest average. The second and the last
part of our new loss function involve those skills. Since the LSTM only accept a
fixed length of vectors as the input, we used one-hot encoding to convert student
performance into a fixed length of vectors whose all elements are 0 except for a
single 1. The single 1 in the vector indicates two things: which skill was answered
and if the skill was answered correctly.

Table 1. Distribution of responses over skills—Skills difficult to master (Average
< 0.4) and skills easy to master (Average > 0.9) are in bold.

Skills N Average Standard dev

MppFd 294 0,9456 0,16078

MppMd 294 0,898 0,23726

MppCcf 294 0,907 0,2394

MppA 294 0,9615 0,16066

MttFd 294 0,8435 0,26646

MttMd 294 0,7925 0,29985

MttCcf 294 0,7494 0,33326

MttA 294 0,8401 0,28974

AcMa 294 0,424 0,38072

AcFa 294 0,3039 0,3652

AcCcf 294 0,3345 0,40801

AcA 294 0,2823 0,41038

DaMa 294 0,407 0,37389

DaFa 294 0,3027 0,35081

DaCcf 294 0,381 0,40662

DaA 294 0,305 0,42077
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5.3 Results

To assess our proposed solutions, we ran 3 models: the DKT, the DKT where
we applied a mask to the loss function (DKTm), and the DKTm with apriori
knowledge (DKTm+BN). We used 20% of the data for testing and 15% for vali-
dation. The BN alone gave 65% of global accuracy. The result is evaluated using
the F1score metric on each skill (treated as 2 classes - correct and incorrect
answers) being predicted and the overall accuracy. The models were evaluated
in 20 different experiments and the final results were averaged. In all our exper-
iments, we set λ1 and λ2 = 0.10. Our implementation of the DKTm+BN model
in Tensorflow using Keras backend was inspired by the implementation1 done by
Khajah et al. [12]. Our code is also available on GitHub2 for further research.

The results (for skills that are difficult to master) are shown in Figs. 2 and 3.
As expected, the new DKTm (Accuracy = 0.8 outperforms the original DKT
(Accuracy = 0.74) on all the skills being predicted. Furthermore, the DKTm
enhanced with BN (Accuracy = 0.82 outperforms all other models on predicting
skills with little data (good answers on skills difficult to master). For skills that
are easy to master (e.g. MPP), all the models always predict that students will
give correct answers (F1score of incorrect answers is 0 for DKT and almost 0 for
the other models) even after applying the weighted loss. This is because, on the
294 data, we have for example only 6 incorrect answers for the MPP FFD skill.
We tested the models with high values for λ2 and we got values of f1score equal
to around 0.6 for correct answers and around 0.7 for incorrect answers. This
result can be satisfying in other contexts but in the context of logical reasoning
where it is established that the MPP is a skill that is always well mastered, 0.6
as an f1score for correctly predicting a correct answer is not acceptable. That is
why we kept λ2 = 0.10. However, the solution stays valid for data where the ratio
r = number of correct answers/ number of questions answered or r = number of
incorrect answers/ number of questions answered on a skill is not too small (as
in this case) and is less than 0.5. For skills that are difficult to master (Figs. 2
and 3), there is a huge difference between the DKT and the other models. The
DKT is unable to track correct answers on skills difficult to master (see Fig. 3).
This behavior cannot be accepted since the knowledge tracing of students who
perform well on those skills will fail. Thus it is important to make sure that the
final model is accurate for all the skills. For the prediction of wrong answers
on skills difficult to master (see Fig. 3), we can notice that the DKTm and the
DKTm+BN still behave better than DKT which means that the penalty added
to the loss function does not affect the predictive capacity of the original DKT.

We noticed that predictions are not sometimes consistent with the reality
as other works have also highlighted [28]. The model fails to reconstruct the
observed input. As a result, even when a student performs well on a skill, the
prediction of that skill’s mastery level decreases instead, and vice versa. Also, the
predicted performance across time steps is not consistent. When a student gives
1 https://github.com/mmkhajah/dkt.
2 https://github.com/angetato/Deep-Knowledge-Tracing-On-Skills-With-Limited-

Data.

https://github.com/mmkhajah/dkt
https://github.com/angetato/Deep-Knowledge-Tracing-On-Skills-With-Limited-Data
https://github.com/angetato/Deep-Knowledge-Tracing-On-Skills-With-Limited-Data
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Fig. 2. The DKT, the DKTm and the DKTm+BN on skills that are difficult to
master—We repeated the experiments 20 times. For each skill, we computed the value
of the f1score for the prediction of incorrect answers (enough data).

correct answers to a skill k, the DKT does not sometimes update the current
state of knowledge on that skill (the skill stays low or is updated very slowly).
The problem can be addressed by adding regularization terms to the loss function
of the original DKT as suggested by [28]. It can also be partially solved when
adding the a priori knowledge as we noticed during our experiments. However,
we stay confident in the fact that if the a priori knowledge is more accurate
(which is not our case as the accuracy of the BN is 0.65) we will get better
results.

Fig. 3. Prediction score of correct answers on skills that are difficult to master (limited
data) for the three models: DKT, DKTm and DKTm+BN.

The idea of using the attention mechanism to incorporate expert knowledge
into NN is novel and can be used in other domains such as text classification
or in medicine where there is a lot of expert knowledge available. For example,
we could think of a classifier using a neural network combined with a rule-based
system playing the role of expert knowledge.
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6 Conclusion

In this paper, we proposed two simple, effective, and intuitive techniques to
improve the DKT on the prediction of floor and ceiling skills which are skills
that are very difficult and easy to master respectively. The first technique consists
of applying a penalty to the loss function, for making incorrect predictions on
skills with few samples. The second solution aims at incorporating a BN (expert
knowledge) in the DKT using the attention mechanism. At the same time, we
introduced a new way of using the attention mechanism, to allow neural networks
to take into account expert knowledge (when available) in their training and
decision process. We tested the solution on a dataset that is unbalanced. The
results showed that the DKT is unable to accurately track skills with limited
data, compare to the DKTm and the DKTm+BN.

During the experiments, we noticed that, for skills that are very easy to
master, all the 3 models were unable to track incorrect answers, since the ratio
r = incorrect answers/total of questions answered was very low. Even with a
penalty, we were not able to significantly improve the DKT model on the skills
involved. However, with the combination of the BN, the results were noticeable.
In this paper, we have set the regularization parameters λ1 and λ2 with a fixed
value but for future work, we will do a grid search to find the best values.

We are aware that the lack of data might be a bias to our results since
deep learning architectures perform better on larger datasets. However, the
floor/ceiling skills problem can still occur even with a large dataset. Thus, we
believe that the solutions we have proposed can work perfectly on larger datasets.
We will do further experiments on the integration of expert knowledge into neu-
ral network architectures. We also plan to test our techniques on larger and or
public datasets such as ASSISTments dataset.
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