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Abstract. Aswith the rapid development of air transportation and potential uncer-
tainties caused by abnormal weather and other emergencies, such as Covid-19,
irregular flights may occur. Under this situation, how to reduce the negative impact
on airlines, especially how to rearrange the crew for each aircraft, becomes an
important problem. To solve this problem, firstly, we established the model by
minimizing the cost of crew recovery with time-space constraints. Secondly, in
view of the fact that crew recovery belongs to anNP-hard problem,we proposed an
improved particle swarm optimization (PSO) with mutation and crossover mech-
anisms to avoid prematurity and local optima. Thirdly, we designed an encoding
scheme based on the characteristics of the problem. Finally, to verify the effective-
ness of the improved PSO, the variant and the original PSO are used for compari-
son. And the experimental results show that the performance of the improved PSO
algorithm is significantly better than the comparison algorithms in the irregular
flight recovery problem covered in this paper.

Keywords: Crew recovery · Irregular flight · Particle swarm algorithm ·
Cross-over mechanism · Mutation mechanism

1 Introduction

In post Covid-19 era in China, any inevitable imported cases may lead to regional
quarantine and circuit breaker mechanisms for airlines. Moreover, abnormal weather
may also introduce abnormal situations. It’s vital for airlines to quickly schedule their
irregular flights in face of flight delays or cancellations.

According to the Normal Statistical Method of Civil Aviation Flight released by the
Civil Aviation Administration of China [1], normal flights refer to those depart 10 min
or shorter after scheduled departure time without sliding back, veering or preparing for
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landing, or arriving within 10 min before scheduled arrival time. And irregular flights
refer to those who do not obey the above conditions. When irregular flight occurs, how
to quickly recover the flight plan becomes an urgent problem. The irregular flight recov-
ery problem could be separated into several parts, including the route, flight, aircraft,
crew and passenger recoveries [2]. In this paper, we mainly focus on the crew recov-
ery problem. The crew recovery serves as a connecting link between the preceding and
the following. A good crew recovery plan allows for the perfect implementation of the
recovered route and maximizes the convenience of subsequent passenger recovery [3].
If there are problems with crew assignments, the flight route needs to be re-routed. It
can cause huge losses to the airline, while also reducing passenger satisfaction with
the airline and affecting its reputation. Therefore, airlines need a comprehensive crew
recovery system to deal with the negative impact of irregular flights.

In recent years, several scholars have studied this problem in numerous perspectives.
Doi et al. [4] and Quesnel et al. [5] separately considered fair working time and crews’
preferences. Antunes et al. [6] focused on the robustness of primary schedules. Sun et al.
[7] considered the impact of flying time on the irregular flight. Zhou et al. [8] developed
an ant colony system formultiple objectives taking fairness and satisfaction into account.
However, those papers indeed take many humanized objectives into consideration, and
the measurement of cost and consistency of flights can be further polished. To solve
this problem, in our model, we introduced variable costs to lower the complexity of
calculation and reflect time-space constraints to embody the continuity of the flight task
list.

As the crew recovery problem holds NP-hard characteristics, normal mathematics
methods are difficult to get a satisfying solution, especially for the large-scale case.
However, heuristic algorithms are outstanding for their large searching scales and fast
calculating speed, which exactly fits our requirements. Among the heuristic algorithms,
particle swarmoptimization is remarkable for its easier implementation and fewer adjust-
ment parameters. Xia et al. [9] proposed triple archives particle swarm optimization to
obtain higher solution accuracy and faster convergence speed. Xu et al. [10] and Kiran
[11] separately introduced dimensional learning strategy and distribution-based update
rule to the primary PSO. Ibrahim et al. [12] combined the slap swarm algorithm with
PSO to solve the feature selection problem. Zhang et al. [13] introduced a dynamic
neighborhood-based learning strategy and competition mechanism to improve PSO’s
performance in solvingmulti-objective problems. Overall, the improved PSO algorithms
have superior performance and they have successfully applied to industrial engineering
problems. However, few papers use PSO to solve the crew recovery problem. There is a
large research space to solve the crew recovery problem based on a new PSO algorithm.
Thus, we purpose an improved PSO combining crossover and mutation mechanisms to
solve the crew recovery problem in this paper.

The main contributions of this paper include three aspects. Firstly, crossover and
variation mechanisms are introduced to address the problems of traditional PSO and
improve the performance of the algorithm. Secondly, to further verify the effectiveness
of the new algorithm, the variation mechanism is also led separately for comparison with
the improved PSO that introduces both crossover and variation mechanisms. Thirdly,
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a new coding scheme is established based on the characteristic of the problem and
interfaced with the new algorithm.

The remainder of this paper is listed as follows. Section 2 states the model of the
crew recovery problem. Section 3 describes the improved particle swarm optimiza-
tion. Section 4 explains the encoding scheme. Section 5 presents the simulation results
against comparative algorithms. Section 6 concludes the paper and points out the future
directions (Table 1).

Table 1. Definition of symbols

Symbols Meaning of symbols

F Flight set

C Crew set

T Crew task set

A Airport set

n Flight subscripts

m Crew task subscripts

s Crew superscripts

n1, n2 Subscripts of two continuous flights in crew task

bnm Parameter of crew task m containing flight n

cn The cost of canceling flight n

vsm The variable cost brought by crew s when executing task m

tsm, ts The total time of crew s’s executing task m and the total flight time of crew s

tmn1 , t
m
n2 The prior flight’s arrival time and posterior flight’s departure time included in two

continuous flights of crew task m

amn1 , a
m
n2 The prior flight’s arrival airport and posterior flight’s departure airport included in

two continuous flights of crew task m

xsm Whether crew s executes crew task m

yn Whether flight n is canceled

2 Model of Crew Recovery Problem

This section introduces the model of the crew recovery problem. The objective function
is described below.

min z =
∑

s∈C

∑

m∈T
vsm xsm +

∑

n∈F
cn yn. (1)

This optimization objective function demands the lowest cost of crew recovery,
including (i) the variable cost of two crew tasks; (ii) the cost of canceling one flight.
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Moreover, constraints (2)–(8) are listed below.

s.t.
∑

s∈C

∑

m∈T
bnm xsm + yn = 1, (2)

∑

m∈T
xsm ≤ 1,∀s ∈ C, (3)

tsm < ts,∀s ∈ C,∀m ∈ T , (4)

tmn1 < tmn2 ,∀m ∈ T ,∀n1 ∈ F,∀n2 ∈ F, (5)

amn1 = amn2 ,∀m ∈ T ,∀n1 ∈ F,∀n2 ∈ F, (6)

xsm ∈ {0, 1},∀s ∈ C,∀m ∈ T , (7)

yn ∈ {0, 1},∀n ∈ F . (8)

Constraint (2) ensures each flight can only be executed by one crew or be canceled.
Constraint (3) restricts that each crew can only execute at most one crew task list.
Constraint (4) imposes that the total flight time of a crew executing one crew task list
must be shorter than the crew flight time regulated by airlines. Constraint (5) restricts
that, in the same crew task list, the former flight’s arrival time must be earlier than the
latter one’s departure time. Constraint (6) prescribes, in the same crew task list, that
the former flight’s arrival airport must be the same as the latter one’s departure airport.
Constraints (7)–(8) are the range of decision variables.

3 Improved Particle Swarm Optimization

This section presents the proposed improved particle swarm optimization by introducing
crossover and mutation mechanisms to the primary particle swarm optimization.

3.1 Primary Particle Swarm Optimization

In the primary particle swarm optimization (PSO), we firstly initialize particles’ scale,
dimensions, velocity and location according to the optimization problem. Then calculate
the solution in their present conditions, picking their own best solution as the personal
best and the best solution of the swarm as the global best. After that, update particles’
velocity and location according to certain formulas. And calculate the new solution with
the new velocity and location. Finally, iterate the above processes until the termination
criteria is met and output the best solution and its location.
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3.2 PSO with Crossover and Mutation Mechanisms

Due to the shortcomings of prematurity and local optima, we improve the algorithm by
introducing crossover and mutation to the primary PSO.

Crossover Mechanism. Crossover is a method that generates a new individual by
recombining certain parts of its parent individuals. The operation is to randomly pick
two individuals from the swarm, select the crossover location and choose whether to
crossover according to the crossover rate pc, which is between 0.25 and 1.

Mutation Mechanism. Mutation is an operation that changes the value in a certain
dimension of the individual with a relatively small probability. The detailed operation is
to generate a random number between 0 and 1. If the number is smaller than themutation
probability, which is between 0.001 and 0.01, in this iteration each dimension of this
particle will randomly mutate within constraint.

We name the improved PSO as Mutation Crossover Particle Swarm Optimization
(MCPSO). Moreover, we will introduce an algorithm with only a mutation mechanism
as a comparing algorithm (Mutation Particle Swarm Optimization, MPSO). Compared
with the primary PSO, MCPSO adds mutation and crossover operations after the update
of velocity and location. And, due to the introduction of the crossover mechanism,
neighboring particles can learn from each other through a crossover in each dimension.
This enhances the region learning ability of the particles and facilitates the algorithm to
escape from the local optimum. Figure 1 shows the process of the improved PSO and
Fig. 2 shows the process of solving the crew recovery problem with MCPSO.

Fig. 1. Flow chart of MCPSO Fig. 2. Flow chart of MCPSO solving crew
recovery problem
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4 Encoding Scheme

According to the time-space network diagram and multi-commodity flow model, the
crew recovery problem can be converted into reallocating crews for each flight. For
each flight, they can only choose one crew, meanwhile satisfying related constraints.
Combining the characteristics of PSO, the solution to the crew recovery problem can be
treated as the sequence number of executable crews selected by each flight. Each particle
in the swarm represents a feasible solution, each dimension of the particle represents the
flight and the value is the crew’s number picked by the flight.

Based on this coding idea, in the swarm, xi = (xi1, xi2, xi3......xin) is the location
of ith particle, among which the dimension n should be equal to the total number of
flights, xin represents the value of nth dimension in ith particle. Corresponding to the
crew recovery problem, xin refers to the crew number selected by nth flight in ith flight
schedule. Figure 3 illustrates the encoding method for the crew recovery problem.

Fig. 3. Encoding method of crew recovery problem

5 Experiments and Results

5.1 Parameter Settings

This paper used data in Table 2 and Table 3 [14] to verify the performance of MCPSO
in solving the crew recovery problem. Table 2 is the primary flight schedule list. Table
3 is the primary crew schedule list, including 6 crews and a backup crew.

Table 2. Primary flight schedule list

Flight Departure airport Arrival airport Departure time Arrival time Flight time

1481 BOS CLE 730 930 158

1519 BOS GSO 1015 1210 155

1687 CLE BOS 740 940 156

789 CLE EWR 1100 1225 119

1867 CLE GSO 1335 1450 113

(continued)
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Table 2. (continued)

Flight Departure airport Arrival airport Departure time Arrival time Flight time

1609 CLE GSO 1650 1805 112

1568 CLE GSO 2150 2305 110

1601 EWR GSO 700 843 117

1779 EWR GSO 830 1015 121

1690 EWR CLE 955 1134 124

1531 EWR GSO 1155 1330 130

1431 EWR GSO 1300 1440 136

1626 GSO EWR 1220 1353 129

1670 GSO CLE 1240 1355 124

1678 GSO CLE 1545 1700 108

1591 GSO CLE 1630 1758 121

1720 GSO CLE 1725 1843 116

1698 GSO EWR 1825 1957 130

Table 3. Primary crew schedule list

Crew Flight
number

Departure
airport

Arrival
airport

Departure
time

Arrival time Flight time

E1 1601 EWR GSO 700 843 117

1626 GSO EWR 1220 1353 129

E2 1779 EWR GSO 830 1015 121

1670 GSO CLE 1240 1355 124

1609 CLE GSO 1650 1805 112

E3 1690 EWR CLE 955 1134 124

1867 CLE GSO 1335 1450 113

1678 GSO CLE 1545 1700 108

E4 1531 EWR GSO 1155 1330 130

1720 GSO CLE 1725 1843 116

1568 CLE GSO 2150 2305 110

V1 1687 CLE BOS 740 940 156

1519 BOS GSO 1015 1210 155

(continued)
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Table 3. (continued)

Crew Flight
number

Departure
airport

Arrival
airport

Departure
time

Arrival time Flight time

1698 GSO EWR 1825 1957 130

V2 1481 BOS CLE 730 930 158

789 CLE EWR 1100 1225 119

1431 EWR GSO 1300 1440 136

1591 GSO CLE 1630 1758 121

Table 4. Parameter list

Symbol Meaning Value Symbol Meaning Value

I Maximum iteration
time

5000 vmax Upper limit of particle’s
velocity

10

D Dimension of particle 17 vmin Lower limit of particle’s
velocity

– 10

N Number of particles 20 c1, c2 Self-learning and social
learning rate

1.5

wmax Upper limit of inertia
weight

0.9 pc(MCPSO) Probability of crossover 0.75

wmin Lower limit of inertia
weight

0.4 pm(MPSO) Probability of mutation 0.05

Table 4 is the parameter settings of the algorithms. Note that, the parameter settings
are based on the PSO original papers. And the canceling cost is 100 thousand yuan per
time, the crew switching cost is 20 thousand yuan per time and the backup crew using
cost is 30 thousand yuan per time. In the experiment, flight 1867 is canceled due to
weather reason. It is preferred that the recovery crew’s schedule holds the lowest cost
and the minimum change compared against the original schedule.

5.2 Experimental Results

We calculated the data 10 times with PSO, MPSO,MCPSO and two variants of MCPSO
respectively, and compared their results. Note that, to validate the sensitivity of MCPSO
to the crossover rate, the crossover rates of the two variants are set to 0.6 and 0.9,
respectively, while the rest of the parameters are the same as MCPSO settings. Table 5
shows the number of times each strategy is used. Figure 4 is the cost of three algorithms.
Figure 6 presents the average convergence of the three algorithms with multiple runs.
Figure 5 and Fig. 7 display the comparison betweenMCPSO and the two variants, where
the crossover rate is 0.6 for MCPSO_1 and 0.9 for MCPSO_2. Based on the results, it
can be seen that the original PSO has a poor optimal-seeking ability, and its final solution
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Table 5. Optimal crew recovery strategy usage table using different algorithms

has the highest crew recovery cost and a large number of exchange crew tasks so such a
recovery scheme is not satisfactory. The performances of the MPSO and MPCSO with
additional variation mechanisms have been significantly improved. As shown in Fig. 6,
MCPSO and MPSO have an approximate average convergence capacity. However, by
comparing the optimal result between the two algorithms in Fig. 4, we can find that
the strategy found by MCPSO is better than MPSO. The reason is that the additional
crossover mechanism inMCPSO can increase the diversity of solutions, thus sometimes
helping the algorithm to find better solutions beyond the local optimum. Furthermore,
as shown in Fig. 5 and Fig. 7, the optimal solution of MCPSO is better than the two
variants. This illustrates that a moderate crossover rate can improves the diversity of
solutions.
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Fig. 4. Optimal crew recovery cost
comparison among different algorithms
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Fig. 5. Optimal crew recovery cost
comparison among different pc

Fig. 6. Average crew recovery cost
comparison among different algorithms

Fig. 7. Average crew recovery cost
comparison among different pc
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6 Conclusions and Future Directions

In this paper, we studied the irregular flight crew recovery problem, established a crew
recovery model and proposedMCPSO and corresponding coding strategy to solve it. By
analyzing the improved PSOwith comparison algorithms in actual flight instances, it can
be concluded that the improved PSO can effectively solve the irregular flight crew recov-
ery problem and finally output a new crew schedule with the lowest recovery cost. In the
future, we will utilize MCPSO to solve other irregular flight recovery problems, such as
aircraft recovery, passenger recovery, and so on. Moreover, multi-objective optimization
is another direction to further explore the considered problem.
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