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Preface

This book and its companion volumes, LNCS vols. 13344 and 13345, constitute
the proceedings of The Thirteenth International International Conference on Swarm
Intelligence (ICSI 2022) held during July 15–19, 2022 in Xi’an, China, both onsite and
online.

The theme of ICSI 2022 was “Serving Life with Swarm Intelligence.” ICSI 2022
provided an excellent opportunity for academics and practitioners to present and discuss
the latest scientific results and methods, innovative ideas, and advantages in theories,
technologies, and applications in swarm intelligence. The technical program covered
a number of aspects of swarm intelligence and its related areas. ICSI 2022 was the
thirteenth international gathering for academics and researchers working on aspects of
swarm intelligence, following successful events in Qingdao (ICSI 2021), Serbia (ICSI
2020) virtually, ChiangMai (ICSI 2019), Shanghai (ICSI 2018), Fukuoka (ICSI 2017),
Bali (ICSI 2016), Beijing (ICSI-CCI 2015), Hefei (ICSI 2014), Harbin (ICSI 2013),
Shenzhen (ICSI 2012),Chongqing (ICSI 2011), andBeijing (ICSI 2010),which provided
a high-level academic forum for participants to disseminate their new research findings
and discuss emerging areas of research. The conference also created a stimulating
environment for participants to interact and exchange information on future challenges
and opportunities in the field of swarm intelligence research.

Due to the continuous global COVID-19 pandemic, ICSI 2022 provided both online
and offline presentations. On one hand, ICSI 2022 was normally held in Xi’an, China.
On the other hand, the ICSI 2022 technical team enabled the authors of accepted papers
who were restricted from traveling overseas to present their work through an interactive
online platform or video replay. The presentations by accepted authors were available
to all registered attendees onsite and online.

The host city of ICSI 2022, Xi’an in China, is the capital of Shaanxi Province. A
sub-provincial city on the Guanzhong Plain in Northwest China, it is one of the oldest
cities in China, the oldest prefecture capital, and one of the Chinese Four Great Ancient
Capitals, having held the position under several of the most important dynasties in
Chinese history, including Western Zhou, Qin, Western Han, Sui, Northern Zhou, and
Tang. The city is the starting point of the Silk Road and home to the UNESCO World
Heritage site of the Terracotta Army of Emperor Qin Shi Huang.

The ICSI 2022 received a total of 171 submissions and invited submissions from
about 368 authors in 15 countries and regions (Brazil, China, the Czech Republic,
Germany, India, Italy, Japan, Mexico, Portugal, Russia, South Africa, Taiwan (China),
Thailand, the UK, and the USA) across five continents (Asia, Europe, North America,
South America, and Africa). Each submission was reviewed by at least 2 reviewers, and
onaverage2.6 reviewers.Basedon rigorous reviewsby theProgramCommitteemembers
and reviewers, 85 high-quality papers were selected for publication in this proceedings
volume with an acceptance rate of 49.7%. The papers are organized into 13 cohesive
sections covering major topics of swarm intelligence research and its development and
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applications along with a competition session entitled “Competition on Single Objective
Bounded Optimization Problems (ICSI-OC 2022).”

On behalf of the Organizing Committee of ICSI 2022, we would like to express
our sincere thanks to the International Association of Swarm and Evolutionary
Intelligence (IASEI), which is the premier international scholarly society devoted to
advancing the theories, algorithms, real-world applications, and developments of swarm
intelligence and evolutionary intelligence (iasei.org). We would also like to thank
Peking University, Xi’an Jiaotong University, Shaanxi Normal University, Xi’dan
University, Xi’an University of Posts & Telecommunications, and the Southern
University of Science and Technology for their co-sponsorships, the Computational
Intelligence Laboratory of Peking University and IEEE Beijing Chapter for their
technical co-sponsorships, and Nanjing Kanbo iHealth Academy for its technical and
financial co-sponsorship, as well as our supporters: the International Neural Network
Society, theWorld Federation on SoftComputing,MDPI’s journal ‘Entropy’, the Beijing
Xinghui Hi-Tech Co., and Springer.

We would also like to thank the members of the Advisory Committee for their
guidance, themembers of the international ProgramCommittee and additional reviewers
for reviewing the papers, and the members of the Publication Committee for checking
the accepted papers in a short period of time. We are particularly grateful to Springer
for publishing the proceedings in the prestigious series of Lecture Notes in Computer
Science.Moreover, wewish to express our heartfelt appreciation to the plenary speakers,
session chairs, and student helpers. In addition, there are many more colleagues,
associates, friends, and supporters who helped us in immeasurable ways; we express
our sincere gratitude to them all. Last but not the least, we would like to thank all the
speakers, authors, and participants for their great contributions that made ICSI 2022
successful and all the hard work worthwhile.

May 2022 Ying Tan
Yuhui Shi
Ben Niu
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Information Utilization Ratio in Heuristic
Optimization Algorithms

Junzhi Li and Ying Tan(B)

Key Laboratory of Machine Perception (MOE), School of Artificial Intelligence,
Peking University, Beijing 100871, China

{ljz,ytan}@pku.edu.cn

Abstract. Heuristic algorithms are able to optimize objective functions
efficiently because they use intelligently the information about the objec-
tive functions. Thus, information utilization is critical to the perfor-
mance of heuristics. However, the concept of information utilization has
remained vague and abstract because there is no reliable metric to reflect
the extent to which the information about the objective function is uti-
lized by heuristic algorithms. In this paper, the metric of information
utilization ratio (IUR) is defined, which is the ratio of the utilized infor-
mation quantity over the acquired information quantity in the search
process. The IUR proves to be well-defined. Several examples of typical
heuristic algorithms are given to demonstrate the procedure of calculat-
ing the IUR. Empirical evidences on the correlation between the IUR
and the performance of a heuristic are also provided. The IUR can be
an index of how sophisticated an algorithm is designed and guide the
invention of new heuristics and the improvement of existing ones.

Keywords: Optimization algorithm · Information utilization · Swarm
intelligence

1 Introduction

In the field of computer science, many heuristic algorithms have been developed
to solve complex non-convex optimization problems. Although optimal solutions
are not guaranteed to be found, heuristics can often find acceptable solutions
at affordable cost. The key to designing a heuristic algorithm is to use heuristic
information about the objective function. Many algorithms [9,33,34] are claimed
to be reasonably designed because they use heuristic information intelligently.
Even more algorithmic improvement works [17,25,38] are claimed to be signif-
icant because they use more heuristic information or use heuristic information
more thoroughly than the original algorithms.

Empirically, heuristic information is used more thoroughly in more advanced
algorithms. Suppose there are two search algorithms A and B for one dimensional
optimization. Algorithm A compares the evaluation values of the solutions x1
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and x2 to decide which direction (left or right) is more promising, while algorithm
B uses their evaluation values to calculate both the direction and the step size for
the next search. If the underlying distribution of objective functions is already
known, then algorithm B is able to search faster than algorithm A if they are
both reasonably designed because more information is utilized by algorithm B.
It has been a common sense in the field of heuristic search that the extent of
information utilization in a heuristic algorithm is crucial to its performance.

However, so far there is no reliable metric to reflect the extent of information
utilization because unlike direct performance analyses [18,21], this issue seems
abstract. Especially, it is very difficult to measure how much information is used
by an optimization algorithm.

In this paper, based on some basic concepts in the information theory, a
formal definition of the information utilization ratio (IUR) is proposed, which
is defined as the ratio of the utilized information quantity over the acquired
information quantity in the search process. It is shown theoretically that IUR is
well-defined. Examples of typical heuristic algorithms are also given to demon-
strate the procedure of calculating IURs.

Theoretically, IUR itself is a useful index of how sophisticated an algorithm
is designed, but we still expect it to be practically serviceable, that is, we need to
study the correlation between IUR and performance. However, the correlation
between IUR and performance of heuristics is not so straightforward as some
may expect. The performance of an optimization algorithm depends not only
on the extent of information utilization but also on the manner of information
utilization. Still, for algorithms that utilize information in similar manners, the
influence of the IUR is often crucial, as is illustrated in the experiments.

After all, the metric of IUR helps researchers construct a clear (but not
deterministic) relationship between the design and the performance of an opti-
mization algorithm, which makes it possible that researchers can to some extent
predict the performance of an algorithm even before running it. Thus, the IUR
can be a useful index for guiding the design and the improvement of heuristic
optimization algorithms.

2 Information Utilization Ratio

Definition 1 (Information Entropy). The information entropy of a discrete
random variable X with possible values xi and probability density p(xi) is defined
as follows.

H(X) = −
∑

i

p(xi) log p(xi). (1)

Definition 2 (Conditional Entropy). The conditional entropy of two dis-
crete random variables X and Y with possible values xi and yj respectively and
joint probability density p(xi, yj) is defined as follows.

H(X|Y ) = −
∑

i,j

p(xi, yj) log
p(xi, yj)

p(yj)
. (2)
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Some elementary properties of information entropy and conditional entropy
are frequently used in this paper, which however cannot be present here due to
the limitation of space. We refer readers who are unfamiliar with the information
theory to the original paper [32] or other tutorials.

The following lemma defines a useful function for calculating the IURs of
various algorithms.

Lemma 1. If η1, η2, . . . , ηg+1 ∈ R are independent identically distributed ran-
dom variables,

H(I(min(η1, η2, . . . , ηg) < ηg+1))

= − g

g + 1
log

g

g + 1
− 1

g + 1
log

1
g + 1

� π(g). (3)

where I(x < y) =
{

1 if x < y
0 otherwise is the indicator function.

π(g) ∈ (0, 1] is a monotonic decreasing function of g.

Definition 3 (Objective Function). The objective function is a mapping f :
X �→ Y, where Y is a totally ordered set.

X is called the search space. The target of an optimization algorithm is to
find a solution x ∈ X with the best evaluation value f(x) ∈ Y.

Definition 4 (Optimization Algorithm). An optimization algorithm A is
defined as follows.

Algorithm 1. Optimization Algorithm A
1: i ← 0.
2: D0 ← ∅.
3: repeat
4: i ← i + 1.
5: Sample Xi ∈ 2X with distribution Ai(Di−1).
6: Evaluate f(Xi) = {f(x)|x ∈ Xi}.
7: Di ← Di−1 ∪ ⋃

x∈Xi
{x, f(x)}.

8: until i = g.

In each iteration, Ai is a mapping from 2X×Y to the set of all distributions
over 2X . A1(D0) is a pre-fixed distribution for sampling solutions in the first
iteration. g is the maximal iteration number.

In each iteration, the input of the algorithm Di−1 is the historical information,
which is a subset of X × Y, and the output Ai(Di−1) is a distribution over 2X ,
with which the solutions to be evaluated next are drawn. Note that the output
Ai(Di−1) is deterministic given Di−1.
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By randomizing the evaluation step (consider y = f(x) as a random vari-
able), we are able to investigate how much acquired information is used in an
optimization algorithm. That is, to what extent the action of the algorithm will
change when the acquired information changes. Review the example in the intro-
duction. It is clear that the algorithm A only uses the information of “which one
is better”, while the information of evaluation values are fully utilized by the
algorithm B. But how to express such an observation? Any change in y1 or y2
would cause the algorithm B to search a different location, while only when
I(y1 > y2) changes would the action of the algorithm A change. So, the quantity
of utilized information can be expressed by the information entropy of an algo-
rithm’s action. The entropy of the action of the algorithm A is one bit, while the
entropy of the action of the algorithm B is equal to the entropy of the evaluation
values. Assume Z is the “action” of the algorithm, X is the positions of the solu-
tions, Y is the evaluation values, (they are all random variables), then we can
roughly think the information utilization ratio is H(Z|X)/H(Y |X). However,
optimization algorithms are iterative processes, so the formal definition is more
complicated.

Definition 5 (Information Utilization Ratio). If A is an optimization
algorithm, the information utilization ratio of A is defined as follows.

IURA (g) =
∑g

i=1 H(Zi|Xi−1, Zi−1)∑g
i=1 H(Yi|Xi, Y i−1)

. (4)

where g is the maximal iteration number, X = {X1,X2, . . . , Xg} is the set of
all sets of evaluated solutions, Y = {f(X1), f(X2), . . . , f(Xg)} is the set of
all sets of evaluation values, Z = {A1(D0),A2(D1), . . . ,Ag(Dg−1)} is the out-
put distributions in all iterations of algorithm A , Xi � {X1, . . . , Xi}, Y i �
{Y1, . . . , Yi}, Zi � {Z1, . . . , Zi}, X0 = Y 0 = Z0 = ∅.

Figure 1 shows the relationship among these random variables. Generally, Xi

is acquired by sampling with the distribution Zi, Yi is acquired by evaluating Xi,
and Zi is determined by the algorithm according to the historical information
Xi−1 and Y i−1.

For deterministic algorithms (i.e., H(Xi|Zi) = 0), the numerator degenerates
to H(Z). If function evaluations are independent, the denominator degenerates
to

∑g
i=1 H(Yi|Xi).

The following theorem guarantees that IUR is well defined.

Theorem 1. If 0 <
∑g

i=1 H(Yi|Xi, Y i−1) < ∞, then 0 ≤ IURA (g) ≤ 1.
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Fig. 1. Graphic model

Proof.

H(X,Z) −
g∑

i=1

H(Xi|Zi) (5)

=
g∑

i=1

H(Xi, Zi|Xi−1, Zi−1) −
g∑

i=1

H(Xi|Xi−1, Zi) (6)

=
g∑

i=1

H(Zi|Xi−1, Zi−1) (7)

=
g∑

i=2

H(Zi|Xi−1) −
g∑

i=2

H(Zi−1|Xi−1) (8)

=
g∑

i=2

H(Zi|Xi−1) −
g∑

i=2

H(Zi|Xi−1, Y i−1) −
g∑

i=2

H(Zi−1|Xi−1)

+
g∑

i=2

H(Zi−1|Xi−1, Y i−2) (9)

=
g∑

i=2

−H(Y i−1|Zi,Xi−1) +
g∑

i=2

H(Y i−1|Xi−1) +
g∑

i=2

H(Y i−2|Zi−1,Xi−1)

−
g∑

i=2

H(Y i−2|Xi−1) (10)

=
g∑

i=2

−H(Y i−1|Zi,Xi−1) +
g∑

i=2

H(Y i−2|Zi−1,Xi−2) +
g∑

i=2

H(Yi−1|Xi−1, Y i−2)

(11)

= −H(Y g−1|Z,Xg−1) +
g∑

i=1

H(Yi|Xi, Y i−1) − H(Yg|Xg, Y g−1) (12)

≤
g∑

i=1

H(Yi|Xi, Y i−1). (13)
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Eq. (8) holds because
H(Z1) = 0. (14)

Eq. (9) holds because

H(Zi|Xi−1, Y i−1) = H(Zi−1|Xi−1, Y i−2) = 0. (15)

Eq. (11) holds because

g∑

i=2

H(Y i−2|Zi−1,Xi−1) =
g∑

i=2

H(Y i−2|Zi−1,Xi−2). (16)

Eq. (12) is by dislocation subtraction.

The denominator in the definition
∑g

i=1 H(Yi|Xi, Y i−1) represents the infor-
mation quantity that is acquired in the search process. If function evaluations
are independent, then H(Yi|Xi, Y i−1) = H(Yi|Xi,Xi−1, Y i−1) = H(Yi|Xi).
While the numerator is more obscure. Actually it represents the quantity of
the information about the objective function which is utilized by the algorithm
(or in other words, the minimal information quantity that is needed to run
the algorithm). Firstly,

∑g
i=1 H(Zi|Xi−1, Zi−1) =

∑g
i=1 H(Zi|Xi−1, Zi−1) −∑g

i=1 H(Zi|Xi−1, Zi−1, Y i−1) is similar to the concept of information gain in
classification problems [30], which indicates the contribution of the informa-
tion of Y to the algorithm. Secondly, the uncertainty of X and Z only lies
in two aspects: the random sampling step and the lack of the information
from Y . Thus H(X,Z) − ∑g

i=1 H(Xi|Zi) can be regarded as the objective
function’s information that is utilized by the algorithm. And in fact, it is
equal to the numerator. Thirdly, the numerator equals the denominator minus
H(Yg|Xg, Y g−1) + H(Y g−1|Z,Xg−1) which can be seen as the wasted informa-
tion of Y , because 1) the evaluation values in the last iteration Yg cannot be
utilized and 2) the information of previous evaluation values Y g−1 is fully uti-
lized only if H(Y g−1|Z,Xg−1) = 0, i.e., Y g−1 can be reconstructed with Z given
Xg−1.

3 IURs of Heuristic Optimization Algorithms

In order to calculate the IURs of algorithms, we further assume f(x) ∈ Y is
identically and independently distributed (i.i.d). In most cases, it is unwise to
calculate the IUR by definition. To calculate the denominator is quite straightfor-
ward under the above assumption, which equals the number of evaluations times
H(f(x)). For example, if there are 100 cities in a travelling salesman problem
[24] and f(x) obey uniform distribution, then |Y| = 100!,H(f(x)) = log 100!.
While on the other hand, to directly calculate the numerator is difficult and
unnecessary. In each iteration, the output Ai(Di−1) is a certain distribution,
which is usually determined by some parameters in the algorithm. In fact we
can certainly find (or construct) the set of intermediate parameters Mi such
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that 1) there is a bijection from Mi to Zi given Xi−1 and 2) Mi is determined
only by Y i−1 (otherwise H(Zi|Xi−1, Y i−1) > 0), then

g∑

i=2

H(Zi|Xi−1, Zi−1) =
g∑

i=2

H(Mi|M i−1) = H(M). (17)

We only have to know the information quantity that is required to determine
these intermediate parameters.

In the following, we investigate the IURs of several heuristics to show the
procedure of calculating the IUR. Although these algorithms are designed for
continuous (domain) optimization, the IURs of any kind of (discrete, combina-
torial, dynamic, multi-objective) optimization algorithms can be calculated in
the same way as long as there are a domain and a codomain. Without loss of
generality, the following algorithms are all minimization algorithms, that is, they
all intend to find the solution with the minimal evaluation value in the search
space.

3.1 Random Search Algorithms

Monte Carlo. The Monte Carlo (MC) method is often considered as a baseline
for optimization algorithms. It is not a heuristic algorithm and usually fails
to find acceptable solutions. If the maximal evaluation number is m, MC just
uniformly randomly sample m solutions from X .

MC does not utilize any information about the objective function because Z
is fixed.

Proposition 1.
IURMC = 0. (18)

Luus-Jaakola. Luus-Jaakola (LJ) [27] is a heuristic algorithm based on MC.
In each iteration, the algorithm generates a new individual y with the uniform
distribution within a hypercube whose center is the position of the current indi-
vidual x. If f(y) < f(x), x is replaced by y; otherwise, the radius of the hypercube
is multiplied by a parameter γ < 1.

The output of LJ in each iteration is the uniform distribution within the
hypercube, which is determined by the position x and the radius. They are both
controlled by the comparison result, i.e., I(f(y) < f(x)). f(y) is i.i.d, but f(x)
is the best in the history. Thus, H(Mi|M i−1) = H(I(f(y) < f(x))|M i−1) =
π(i − 1).

Proposition 2.

IURLJ(g) =
∑g−1

i=1 π(i)
gH(f(x))

. (19)
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3.2 Evolution Strategies

(μ, λ)-Evolution Strategy. (μ, λ)-evolution strategy (ES) [3] is an important
heuristic algorithm in the family of evolution strategies. In each generation, λ
new offspring are generated from μ parents by crossover and mutation with
normal distribution, and then the parents of a new generation are selected from
these λ offspring. As a self-adaptive algorithm, the step size of the mutation is
itself mutated along with the position of an individual.

The distribution for generating new offspring is determined by the μ parents,
namely the indexes of the best μ of the λ individuals. Each set of μ candidates
has the same probability to be the best. H(Mi|M i−1) = H(Mi) = log

(
λ
μ

)
, where

(
λ
μ

)
= λ!

μ!(λ−μ)! .

Proposition 3.

IUR(μ,λ)-ES(g) =
(g − 1) log

(
λ
μ

)

gλH(f(x))
. (20)

Covariance Matrix Adaptation Evolution Strategy. In order to more
adaptively control the mutation parameters in (μ, λ)-ES, a covariance matrix
adaptation evolution strategy (CMA-ES) was proposed [15]. CMA-ES is a very
complicated estimation of distribution algorithm [23], which adopts several dif-
ferent mechanisms to adapt the mean, the covariance matrix and the step size
of the mutation operation. It is very efficient on benchmark functions especially
when restart mechanisms are adopted. CMA-ES cannot be introduced here in
detail. We refer interested readers to an elementary tutorial: [15].

Given Xi−1, the mean, the covariance matrix and the step size of the distri-
bution is determined by the indexes and the rankings of the best μ individuals
in each iteration in history. H(Mi|M i−1) = log λ!

(λ−μ)! .

Proposition 4.

IURCMA-ES(g) =
(g − 1) log λ!

(λ−μ)!

gλH(f(x))
. (21)

Compared with (μ, λ)-ES, it is obvious that IURCMA-ES ≥ IUR(μ,λ)-ES,
because not only the indexes of the μ best individuals, but also their rankings
are used in CMA-ES (to calculate their weights, for example). By utilizing the
information of the solutions more thoroughly, CMA-ES is able to obtain more
accurate knowledge of the objective function and search more efficiently.

The IURs of Particle Swarm algorithms [5,11] and Differential Evolution
algorithms [34,38] are also investigated, shown in the appendix. If readers are
interested in the IURs of other algorithms, we encourage you to conduct an
investigation on your own which can be usually done with limited effort.
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4 IUR Versus Performance

The IUR is an intrinsic property of a heuristic algorithm, but the performance
is not. Besides the algorithm itself, the performance of a heuristic also depends
on the termination criterion, the way to measure the performance, and most
importantly the distribution of the objective functions. A well-known fact about
performance is that no algorithm outperforms another when there is no prior
distribution [37], which is quite counter-experience. The objective functions in
the real world usually subject to a certain underlying distribution. Although it is
usually very difficult to precisely describe this distribution, we know that it has a
much smaller information entropy than the uniform distribution and hence there
is a free lunch [2,14,35]. In this case, the objective function (and resultantly its
optimal point) can be identified with limited information quantity (the entropy
of the distribution).

Reconsider the setting of the no free lunch (NFL) theorem from the per-
spective of information utilization. Assume |X | = m and |Y| = n. Under the
setting of NFL (no prior distribution), the total uncertainty of the objective
function is log nm = m log n. In each evaluation, the information acquired is
log n. Therefore, no algorithm is able to certainly find the optimal point of the
objective function within less than m times of evaluation even if all acquired
information is thoroughly utilized. In this case, enumeration is the best algo-
rithm [13]. On the contrary, if we already know the objective function is a sphere
function, which is determined only by its center, then the required information
quantity is log m, and the least required number of evaluations is (more than)
log m/log n = logn m. Suppose the dimensionality of the search space is d, then
n is O(m

1
d ), logn m is O(d), which is usually acceptable. If information is fully

utilized (IUR ≈ 1), the exact number is d + 1 [2]. While for algorithms with
smaller IURs, more evaluations are needed. For example, if the IUR of another
algorithm is half of the best algorithm (with half of the acquired information
wasted), then at least about 2d + 2 evaluations are needed.

How much information is utilized by the algorithm per each evaluation deter-
mines the lower bound of the required evaluation number to locate the optimal
point. In this sense, IUR determines the upper bound of an algorithm’s
performance. That is, algorithms with larger IURs have greater potential.
However, the actual performance also depends on the manner of information
utilization and how it accords with the underlying distribution of the objective
function. For instance, one can easily design an algorithm with the same IUR as
CMA-ES but does not work.

In the following, we will give empirical evidences on the correlation between
IUR and performance. The preconditions of the experiments include: 1) the
algorithms we investigate here are reasonably designed to optimize the objective
functions from the underlying distribution; 2) the benchmark suite is large and
comprehensive enough to represent the underlying distribution. The following
conclusions may not hold for algorithms that are not reasonably designed or for
a narrow or special range of objective functions. In other words, if the manner
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of information utilization does not accord with the underlying distribution of
objective functions, utilizing more information is not necessarily advantageous.

The theoretical correctness of IUR does not rely on these experimental
results, but these examples may help readers understand how and to what extent
IUR influences performance.

4.1 Different Parameters of the Same Algorithm

Sometimes for a certain optimization algorithm the IUR is influenced by only a
few parameters. For these algorithms, we may adapt these parameters to show
the correlation between the tendency of IUR and the tendency of performance.

(μ, λ)-ES. Intuitively, using μ = λ is not a sensible option for (μ, λ)-ES (com-
monly used μ/λ values are in the range from 1/7 to 1/2 [4]) because it makes
the selection operation invalid. Now we have a clearer explanation: the IUR of
(μ, λ)-ES is zero if μ = λ (see Eq. (20)), i.e., (μ, λ)-ES does not use any heuristic
information if μ = λ.

Using a μ around 1
2λ may be a good choice for (μ, λ)-ES because it leads

to a large IUR. When μ = 1
2λ, the information used by (μ, λ)-ES is the most.

From the perspective of exploration and exploitation, we may come to a similar
conclusion. If μ is too small (elitism), the information of the population is only
used to select the best few solutions, and resultantly the diversity of the pop-
ulation may suffer quickly. If μ is too large (populism), the information of the
population is only used to eliminate the worst few solutions, and resultantly the
convergence speed may be too slow.

Different values of μ/λ are evaluated on the CEC 2013 benchmark suite
containing 28 different test functions (see Table 1) which are considered as black-
box problems [26]. The meta parameter is set to Δσ = 0.5. The algorithm using
each set of parameters is run 20 times independently for each function. The
dimensionality is d = 5, and the maximal number of function evaluations is
10000d for each run. For each fixed λ, the mean errors of 20 independent runs
of each μ/λ are ranked. The rankings are averaged over 28 functions, shown in
Fig. 2. − log

(
λ
μ

)
/λ curves are translated along the vertical axis, also shown in

Fig. 2.
According to the experimental results, μ/λ around 0.5 is a good choice, which

accord with our expectation. Moreover, the tendency of the performance (average
ranking) curve is generally identical to that of the IUR (IUR(μ,λ)−ES ∝ log

(
λ
μ

)
/λ

when g is large). The experimental results indicate a positive correlation between
the performance and the IUR: the parameter value with larger IUR is prone to
perform better. Thus, the IUR can be used to guide the choice of parameters.
After all, tuning the parameters by experiments is much more expensive than
calculating the IURs.
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Table 1. Test functions of CEC 2013 single objective optimization benchmark suite
[26]

No. Name

Unimodal Functions 1 Sphere Function

2 Rotated High Conditioned Elliptic Function

3 Rotated Bent Cigar Function

4 Rotated Discus Function

5 Different Powers Function

Basic Multimodal Functions 6 Rotated Rosenbrock’s Function

7 Rotated Schaffers F7 Function

8 Rotated Ackley’s Function

9 Rotated Weierstrass Function

10 Rotated Griewank’s Function

11 Rastrigin’s Function

12 Rotated Rastrigin’s Function

13 Non-Continuous Rotated Rastrigin’s Function

14 Schwefel’s Function

15 Rotated Schwefel’s Function

16 Rotated Katsuura Function

17 Lunacek Bi Rastrigin Function

18 Rotated Lunacek Bi Rastrigin Function

19 Expanded Griewank’s plus Rosenbrock’s Function

20 Expanded Scaffer’s F6 Function

Composition Functions 21 Composition Function 1 (Rotated)

22 Composition Function 2 (Unrotated)

23 Composition Function 3 (Rotated)

24 Composition Function 4 (Rotated)

25 Composition Function 5 (Rotated)

26 Composition Function 6 (Rotated)

27 Composition Function 7 (Rotated)

28 Composition Function 8 (Rotated)

CMA-ES. Different from (μ, λ)-ES, CMA-ES adopts a rank-based weighted
recombination instead of a selection operation, in which the rank information of
the best μ individuals is utilized.

On the one hand, the rank-based weighted recombination achieves the largest
IUR when μ = λ (see Eq. (21)). The larger μ is, the more information is used
(because the rank information of the rest λ − μ individuals are wasted).

On the other hand, the rank-based weighted recombination also achieves the
best performance when μ = λ [1]. This is also an evidence on the correlation
between IUR and performance. However, the optimal weighted recombination
requires the use of negative weights, which is somehow not adopted in CMA-ES
[15]. The manner of information utilization and other conditions (termination
criterion, performance measure, etc.) should also be taken into consideration
when parameters are chosen. Therefore using μ = λ is probably not the best
choice for CMA-ES even though it leads to a large IUR.
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4.2 Algorithms in the Same Family

Usually different algorithms in the same family utilize information in similar
manners, in which case we may compare their performances to show the correla-
tion between IUR and performance. However, we need to be more cautious here
because IUR is not the only factor as long as different algorithms in the same
family do not utilize information in identical manners.

(a) λ = 10 (b) λ = 20

(c) λ = 30 (d) λ = 40

Fig. 2. The average rankings and the − log
(

λ
μ

)
/λ curves of each value of λ.

As shown in Sect. 3, IURLJ ≥ IURMC and IURCMA-ES ≥ IUR(μ,λ)−ES. LJ
and CMA-ES are more sophisticated designed compared with the previous algo-
rithms since they are able to utilize more information of the objective function.
Naturally we would expect that LJ outperforms MC and CMA-ES outperforms
(μ, λ)-ES.

The four algorithms are evaluated on the CEC 2013 benchmark suite. The
parameter of LJ is set to γ = 0.99. The parameters of (μ, λ)-ES are set to
λ = 30, μ = 15,Δσ = 0.5. The parameters of CMA-ES are set to suggested
values [15] except that σ = 50 because the radius of the search space is 100.
The dimensionality is d = 5, and the maximal number of function evaluation
is 10000d for each run. Each algorithm is run 20 times independently for each
function. Their mean errors are shown in Table 2. The best mean errors are
highlighted. Their mean errors are ranked on each function, and the average
rankings (AR.) over 28 functions are also shown in Table 2.

Pair-wise Wilcoxon rank sum tests are also conducted between MC and LJ
and between (μ, λ)-ES and CMA-ES. The p values are shown in the last two
columns of Table 2. Significant results (with confidence level 95%) are under-
lined. The results of LJ are significantly better than MC on 14 functions, and
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Table 2. Mean errors and average rankings of the four algorithms and p values

F. MC LJ (μ, λ)-ES CMA-ES MC vs. LJ (μ, λ)-ES vs. CMA-ES

1 2.18E+02 0.00E+00 5.91E−12 0.00E+00 8.01E−09 4.01E−02

2 4.25E+05 0.00E+00 3.49E+05 0.00E+00 8.01E−09 8.01E−09

3 8.02E+07 0.00E+00 2.18E+07 0.00E+00 1.13E−08 1.13E−08

4 4.23E+03 0.00E+00 2.20E+04 0.00E+00 1.13E−08 1.13E−08

5 8.00E+01 6.79E+01 1.95E−05 0.00E+00 1.33E−02 1.90E−04

6 9.94E+00 2.51E+01 2.46E+00 7.86E−01 4.17E−05 8.15E−06

7 2.02E+01 7.10E+01 1.66E+01 5.66E+00 1.99E−01 2.56E−03

8 1.83E+01 2.01E+01 2.03E+01 2.10E+01 3.42E−07 1.61E−04

9 2.53E+00 1.67E+00 2.37E+00 1.08E+00 1.48E−03 1.63E−03

10 2.30E+01 1.78E+00 1.30E+01 4.16E−02 6.80E−08 1.23E−07

11 2.22E+01 1.40E+01 6.67E+00 6.57E+00 3.04E−04 8.17E−01

12 2.10E+01 1.33E+01 1.20E+01 7.36E+00 1.12E−03 2.04E−02

13 2.21E+01 1.90E+01 1.87E+01 1.28E+01 1.20E−01 5.98E−01

14 3.78E+02 7.53E+02 1.35E+02 4.61E+02 1.10E−05 7.41E−05

15 3.84E+02 6.85E+02 5.27E+02 4.52E+02 3.99E−06 1.81E−01

16 7.43E−01 5.34E−01 8.27E−01 1.49E+00 1.93E−02 1.11E−01

17 3.25E+01 2.23E+01 9.87E+00 1.07E+01 1.78E−03 3.65E−01

18 3.43E+01 1.82E+01 1.01E+01 1.01E+01 2.60E−05 9.89E−01

19 4.08E+00 7.21E−01 5.45E−01 4.82E−01 9.17E−08 9.46E−01

20 1.23E+00 1.85E+00 2.50E+00 1.92E+00 1.10E−05 6.97E−06

21 3.23E+02 3.05E+02 2.55E+02 2.80E+02 1.94E−02 9.89E−01

22 5.91E+02 7.91E+02 4.01E+02 7.20E+02 2.56E−03 5.63E−04

23 6.04E+02 8.33E+02 7.01E+02 6.08E+02 8.29E−05 3.37E−01

24 1.26E+02 2.04E+02 1.99E+02 1.76E+02 6.80E−08 4.60E−04

25 1.27E+02 1.96E+02 1.98E+02 1.81E+02 1.60E−05 7.71E−03

26 1.01E+02 2.38E+02 1.67E+02 1.98E+02 1.43E−07 7.76E−01

27 3.57E+02 3.52E+02 3.65E+02 3.27E+02 4.25E−01 2.47E−04

28 3.05E+02 3.00E+02 3.25E+02 3.15E+02 8.59E−01 2.03E−01

AR 2.82 2.68 2.43 1.82 14 : 10 14 : 3

significantly worse on only 10 functions. While the results of CMA-ES are signif-
icantly better than (μ, λ)-ES on 14 functions, and significantly worse on only 3
functions. Generally speaking, the performance of LJ is better than MC and the
performance of CMA-ES is better than (μ, λ)-ES. These experimental results
imply that the extent of information utilization may be an important factor in
the performance.

The algorithms in the same family utilize information in similar but different
manners. In this case, the influence of IUR on the performance is crucial, but
sometimes not deterministic. For example, in CMA-ES, there are several different
mechanisms proposed to improve the performance. The improvement in IUR
does not reflect all of them. The improvement related to IUR is the rank-based
weighted recombination. It has significant impact on performance [1,16]. While
other mechanisms such as adapting the covariance matrix and the step size are
not related to IUR but also very important. These mechanisms are introduced
as different information utilization manners, which help the algorithm to better
fit the underlying distribution of objective functions. Similar comparisons can
be made between PSO and SPSO and between DE and JADE (see appendix).
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However, after all, an algorithm cannot perform very well if little information
is used. Hence, just like LJ, CMA-ES, SPSO and JADE, the tendency of elevating
the IUR is quite clear in various families of heuristics. Many mechanisms have
been proposed to better preserve historical information for further utilization
[8,31,38]. Many general methods (adaptive parameter control [12], estimation of
distribution [23], fitness approximation [20], Bayesian approaches [29], Gaussian
process models [6], hyper-heuristic [7]) have been proposed to elevate the IURs
of heuristics. Not to mention these numerous specified mechanisms. In summary,
the IUR provides an important and sensible perspective on the developments in
this field.

4.3 Algorithms in Different Families

The correlation between the IUR and the performance of the algorithms in
different families (such as LJ and (μ, λ)-ES) can be vaguer because the man-
ners of information utilization are different, though the above experimental
results accord with our expectation ((μ, λ)-ES performs better than LJ and
IURLJ ≤ IUR(μ,λ)−ES unless μ = λ). If algorithms utilize information in
extremely different manners, the IUR may not be the deterministic factor. There
are infinite manners to utilize information. It is difficult to judge which manner
is better. Whether a manner is good or not depends on how it fits the under-
lying distribution of the objective functions, which is difficult to describe. A
well designed algorithm with low IUR may outperform a poorly designed algo-
rithm with high IUR because it utilizes information more efficiently and fits the
underlying distribution better. Nonetheless, certainly the extent of information
utilization is still of importance in this case because 1) the algorithms with larger
IURs have greater potential 2) the IUR of the “best” algorithm (if any) must
be very close to one and 3) an algorithm that uses little information cannot be
a good algorithm.

The exact correlation between the IUR and the performance requires much
more theoretical works on investigating the manners of information utilization
and how they fit the underlying distributions, which are very difficult but not
impossible.

5 Upper Bound for Comparison-Based Algorithms

Above examples have covered several approaches of information utilization in
heuristic optimization algorithms. But the IURs of these algorithms are all not
high because they are comparison-based algorithms, in which only the rank
information is utilized.

Theorem 2 (Upper bound for comparison-based algorithms). If the
maximal number of evaluations is m, y = f(x) are i.i.d, and algorithm A is
a comparison-based optimization algorithm,

IURA ≤ log m

H(f(x))
. (22)
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Proof. Suppose in a certain run, the actual evaluation number is m′ ≤ m. In
this case, M is drawn from a set with cardinal number at most m′! (with m′

individuals all sorted), then the maximal information quantity is H(M) ≤ log m′!
for a comparison-based algorithm. Thus IURA ≤ log m′!

m′H(f(x)) . Note that the right

hand side is a monotonically increasing function of m′, and log m!
mH(f(x)) ≤ log m

H(f(x)) .

Suppose |Y| = n and f(x) obey uniform distribution, than log m
H(f(x)) = lognm.

Typically m << n, thus this upper bound is quite low. Most iterative algorithms
do not allow the information in past iterations (because it requires a lot of
memory space to do so), in which case the upper bound becomes log λ

H(f(x)) where
λ is the evaluation number in each generation. The IUR of CMA-ES is able to
approach this bound when μ = λ. That is, CMA-ES has almost the largest IUR
in comparison-based algorithms without historical information.

There exist algorithms which use exact evaluation values in the searching
process, such as genetic algorithm [19], ant colony optimization [10], estimation
of distribution algorithms [23], invasive weed optimization [28], artificial bee
colony [22], fireworks algorithm [36], etc. They can achieve higher IURs, even
close to 1, because the cardinal number of the set from which M is drawn can
be up to nm. These algorithms have greater potential than comparison-based
algorithms and can outperform them if well designed.

6 Conclusion

It is natural and often effective to utilize more heuristic information in optimiza-
tion algorithms, which has been widely realized. However, there was no metric
to reflect the extent of information utilization. In this paper, a metric called the
information utilization ratio (IUR) is defined as the ratio of the utilized infor-
mation quantity over the acquired information quantity. IUR can be an index
to reflect how sophisticated and advanced an algorithm is designed. IUR proves
to be well defined. Several examples are given to demonstrate the procedure of
calculating IURs. Generally speaking, the IUR determines the upper bound of
the performance of an optimization algorithm. To further indicate the impor-
tance of this metric, several experiments are conducted to show the correlation
between the IUR and the performance. The experimental results imply that 1)
for a certain algorithm, the parameter value with larger IUR has advantage; 2)
for algorithms in the same family, the one with larger IUR is prone to be more
efficient; 3) for algorithms in different families, the IUR is also an important
factor. We also give the IUR’s upper bound for comparison-based algorithms.

The IUR can be used to guide the choice of parameters, guide the design of
new algorithms and guide the improvement of existing algorithms. For example,
if you are inventing a new algorithm, or adapting an existing one, it is promising
to include mechanisms that can enhance the information utilization in your
algorithm. If you want to know which one among several algorithms is more
likely efficient before you use them, it would be quite informative to compare
their IURs to show which one is better designed and has greater potential.
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Most works in the field of heuristic search or optimization focus on inventing
new mechanisms or tricks, while few have considered the potential driver behind
these works. We consider this work as a fundamental theory, which is surprisingly
not easy. Hopefully the definition of IUR will lead to a more systematic manner
of research about how mechanisms should be designed and how information
should be utilized.

Extending this metric to other fields in artificial intelligence such as classifi-
cation and time series prediction may be an interesting future work.

Acknowledgments. This work is supported by the National Natural Science Founda-
tion of China (Grant No. 62076010), and partially supported by Science and Technology
Innovation 2030 - “New Generation Artificial Intelligence” Major Project (Grant Nos.:
2018AAA0102301 and 2018AAA0100302).

Appendices

A Particle Swarm Algorithms

A.1 Particle Swarm Optimization

Particle swarm optimization (PSO) [11] is one of the most famous swarm and
heuristic algorithms which is quite simple but surprisingly efficient in numerical
optimization. In PSO, a fixed number (s) of particles moves in the search space
to find the optimal solutions. The position of a particle is updated as follows. In
generation g, for each particle i and each dimension j,

vij(g + 1) ←vij(g) + φ1r1,ij(pbestij(g) − xij(g))
+ φ2r2,ij(gbestj(g) − xij(g)), (23)

xij(g + 1) ← xij(g) + vij(g + 1), (24)

where φ1 and φ2 are constant coefficients, r1 and r2 are random numbers, pbest
is the best position in history found by this particle and gbest is the best position
found by the entire swarm.

The output distribution in each generation is determined by I(f(xi(g)) <
f(pbesti(g − 1))) and arg mini f(pbesti(g)). Although it is difficult to calculate
H(M), we have the lower and upper bounds:

s

g−1∑

i=1

π(i) ≤ H(M) ≤
g∑

i=2

H(Mi) ≤ (g − 1) log s + s

g−1∑

i=1

π(i). (25)

Proposition 5.

s
∑g−1

i=1 π(i)
sgH(f(x))

≤ IURPSO(g) ≤ (g − 1) log s + s
∑g−1

i=1 π(i)
sgH(f(x))

. (26)
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A.2 Standard Particle Swarm Optimization

After years of development, many improvements and variants are proposed for
PSO. In order to construct a common ground for further researches, a standard
particle swarm optimization (SPSO) was defined [5]. Compared with original
PSO, there are two main modifications: the local ring topology and the con-
stricted update rule. The constricted update rule uses a new coefficient derived
from φ1 and φ2 to constrict the velocity to guarantee convergence. In the local
ring topology, the gbest in the velocity update equation is replaced with a lbest,
which is the best position among this individual and its two neighbourhoods on
the ring.

For each group (consisting of three particles), information with quantity at
most log 3 is needed to decide lbest.

Proposition 6.

s
∑g−1

i=1 π(i)
sgH(f(x))

≤ IURSPSO(g) ≤ s(g − 1) log 3 + s
∑g−1

i=1 π(i)
sgH(f(x))

. (27)

Usually IURPSO ≤ IURSPSO though their exact values are difficult to derive.
It turns out that the information utilization ratio of the local model is larger
than the global model because in local topology the particles interact with each
other more frequently.

According to experimental results, SPSO significantly outperform PSO on a
large range of test functions [5].

B Differential Evolution Algorithms

B.1 Differential Evolution

Differential evolution (DE) [34] is a powerful heuristic algorithm for numerical
optimization. The number of individuals in DE is also fixed. The mutation is con-
ducted as below (take DE/rand/1 as an example). For each x in the population,
generate

z = xr1 + F (xr2 − xr3), (28)

where r1, r2 and r3 are random indexes and F is a constant coefficient. Then a
crossover is conducted between z and x to generate a new candidate y, where
there is a parameter CR to control the probability that a dimension of y is
identical to that of z. If f(y) < f(x), x is replaced with y, otherwise, x is kept.

In DE, the distribution of generating new offspring is determined by I(f(y) <
f(x)) of each individual. So the IUR of DE is equal to that of LJ with the same
g. However, they would be different with the same number of evaluation times.

Proposition 7.

IURDE(g) =
s
∑g−1

i=1 π(i)
sgH(f(x))

. (29)

IURs of some other DE variants are given in Table 3.
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B.2 JADE

JADE [38] is an important development of DE. There are three main adaptations
proposed in JADE:

Table 3. IURs of other DE variants

IUR

DE/best/1 = IURPSO

DE/current-to-best/1 = IURPSO

DE/rand/2 = IURDE

DE/best/2 = IURPSO

1. A DE/current-to-pbest/1 mutation strategy. In JADE,

zi = xi + Fi(x
p
best − xi) + Fi(xr1 − xr2). (30)

where xp
best is a randomly chosen individual from the 100p% best individuals.

2. An optional external archive.
3. Adaptive mutation parameters.

External archive is a useful tool to improve information utilization. However,
in JADE these individuals are just randomly chosen and randomly removed from
the archive, where no information of the objective function is used. Compared
to DE, JADE elevates IUR after all because the indexes of the best 100p%
individuals are used. Note that the output distribution is determined only when
all indexes of the best 100p% individuals are given.

Proposition 8.

s
∑g−1

i=1 π(i)
sgH(f(x))

≤ IURJADE(g) ≤
(g − 1) log

(
s
ps

)
+ s

∑g−1
i=1 π(i)

sgH(f(x))
. (31)

According to experimental results, JADE significantly outperform DE on a
large range of test functions [38].

References

1. Arnold, D.V.: Optimal weighted recombination. In: Foundations of Genetic Algo-
rithms, International Workshop, Foga 2005, Aizu-Wakamatsu City, Japan, 5–9
January 2005, Revised Selected Papers, pp. 215–237 (2005)

2. Auger, A., Teytaud, O.: Continuous lunches are free plus the design of optimal
optimization algorithms. Algorithmica 57(1), 121–146 (2010)
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Abstract. Intelligent optimization is a kind of global optimization algo-
rithms based on simulating biological intelligent behaviors such as evolu-
tion and foraging. Currently, there are numerous intelligent optimization
algorithms have been proposed based on a large mount of animals’ or
plants’ behaviors. This phenomenon shows the prosperity of this field,
but bring issues about these algorithms’ analysis and applications. We
believe an extensive development stage has passed in the field of intelli-
gent optimization, and more theoretical analysis and deep understanding
about these algorithms become favorite. In this paper, we try to build
a general framework for all population-based global optimization algo-
rithms. This framework employs the idea of multilevel evolution, and
therefore it can include not only the traditional bio-inspired evolution
algorithms which often only evolute in a single level of search space, but
also those population-based algorithms adopt data-driven strategies or
cultural evolutions. By the help of the proposed framework, we can clas-
sify all population-based global optimization algorithms into three types,
and improve the traditional algorithms. In this paper, this framework is
then applied to the popular particle swarm optimization, and a modified
particle swarm optimization with three-level of evolutions is proposed.
Numerical results show that the modified algorithm improves the original
one significantly.

Keywords: Intelligent optimization algorithms · Population-based
optimization algorithms · General framework · Multilevel evolutions

1 Introduction

Intelligent optimization algorithm is a class of global optimization algorithms
for finding the global optimal solution to optimization problems.

min
x∈Rn

f(x). (1)

Supported by Guangdong Universities’ Special Projects in Key Fields of Natural Sci-
ence under Grant 2019KZDZX1005.
c© Springer Nature Switzerland AG 2022
Y. Tan et al. (Eds.): ICSI 2022, LNCS 13344, pp. 23–35, 2022.
https://doi.org/10.1007/978-3-031-09677-8_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-09677-8_2&domain=pdf
http://orcid.org/0000-0002-6286-941X
https://doi.org/10.1007/978-3-031-09677-8_2


24 C. Wang et al.

These algorithms generally use the population composed of multiple indi-
viduals and rely on randomness to simulate behaviors with certain intelligence
factors such as bio-inspired evolution and foraging. For example, Genetic Algo-
rithm (GA), a well-known algorithm, imitates the mutation and recombination
of genes in the process of bio-inspired evolution [4]. For another example, Par-
ticle Swarm Optimization Algorithm (PSO) simulates the foraging behavior of
birds and fish [7] and Ant Colony Optimization Algorithm (ACO) simulates
the foraging behavior of ants [2]. Of course, the intelligent optimization algo-
rithm mentioned in this paper refers to a kind of algorithms in a broader sense,
including population-based heuristic algorithms inspired by natural and social
phenomena, such as Differential Evolution (DE) [16], and so on. Meanwhile, for
ease of exposition, the term “bio-inspired evolution” is used in this paper to rep-
resent the simulation or inspire of genetic operation, biological behavior and all
kind of phenomena can be beneficial for optimization.

Up to now, hundreds of intelligent optimization algorithms have been pro-
posed, involving the intelligent behavior of a large number of animals and plants.
So these phenomena have been nicknamed “Algorithmic Zoo” and “Algorithmic
Botanical Garden” in academic community. Based on these bio-inspired evolution
or heuristic algorithms, researchers have also considered some strategies such as
data-driven [5], cultural evolution [14] and local search enhancement (Memetic)
[12], resulting in an enormous number of improved algorithms and algorithm
variants. These phenomena indicate that the field of intelligent optimization
may have entered the late stage of booming development. Then, more theoreti-
cal analysis and deep understanding about these algorithms become favorite [9],
so as to provide rigorous mathematical analysis and theoretical support for the
algorithms’ operation and performance.

In this paper, we attempt to develop a general framework for all population-
based global optimization algorithms. This framework adopts the idea of multi-
level evolution, that is, there exist multiple levels evolution, and the evolution at
different levels can search different scales and use different evolution strategies.
We prove that with the help of this idea, the various intelligent optimization
algorithms mentioned above can be incorporated into a general framework, pro-
viding a basis and platform for subsequent improvement, analysis and theoretical
support of algorithms. In addition, this framework is applied to the PSO and
the PSO based on multilevel evolutions is proposed. The proposed method has
been conducted on a lot of numerical tests. The experimental results show that
the multilevel evolutions improve the performance of the original method.

The remainder of this paper is organised as follows. In Sect. 2, we first briefly
introduce the traditional intelligent optimization algorithms and further explain
the imitation or bio-inspired object of the algorithms. Some modern ideas are also
described: data-driven, culture evolution and memetic strategy, etc. In Sect. 3,
we present the proposed general framework based on multilevel evolutions in
detail. This framework incorporates the algorithms mentioned in Sect. 2 and their
improvements. Section 4 develops the PSO based on multilevel evolutions by
applying the proposed framework. Then we provide and analyze the experimental



A General Framework for Intelligent Optimization Algorithms 25

results. Finally, we conclude the work with a summary as well as outlook for
further work in Sect. 5.

2 Intelligent Optimization Algorithms

In this section, we describe briefly traditional heuristic or bio-inspired optimiza-
tion algorithms. Then, some modern ideas of algorithm improvement are also
presented, such as data-driven, culture evolution and memetic strategy, etc.

2.1 Traditional Heuristic or Bio-Inspired Optimization Algorithms

As mentioned in the introduction, a large number of intelligent behaviors such
as evolution and foraging of animals and plants are imitated by traditional
algorithms, resulting in “Algorithmic Zoo” and “Algorithmic Botanical Garden”.
Table 1 presents a portion of these algorithms and gives information on their
corresponding names, objects and behaviors that are imitated or emulated, and
when they were proposed. In addition, which multilevel evolution type (Sect. 3)
these algorithms belong to is listed in the last column of the Table 1.

There were only algorithms of bio-inspired evolution at the beginning. Until
the early 1990s, the algorithms based on cultural evolution have appeared. We
also find that there are few algorithms based on multilevel cultural evolution.

2.2 Modern Ideas of Algorithm Improvement

In this part, we mainly provide a description to data-driven and knowledge-
driven, cultural evolution and memetic strategy.

Data-Driven and Knowledge-Driven. In the context of the rise of big data,
the concept of data-driven was proposed. In the field of optimization, it refers
to the mining and utilization of various possible empirical data, especially the
data generated during the execution of the algorithm. Then, knowledge to guide
optimization is generated and can better guide the further optimization [5]. It
can be found that data-driven and knowledge-driven are closely related. From
data awareness to data-cognition to generating effective decisions, data-driven
can guide the optimization and accelerate the algorithms’ convergence speed or
improve the quality of solutions.

Cultural Evolution. Cultural evolution, derived from the social sciences, is
used to describe the evolution how human culture has evolved. Thanks to lan-
guage and writing, cultural evolution opened up a more efficient path for the
evolution of human civilization, in addition to biological or genetic evolution
[14]. Under the scenario of optimization, cultural evolution mines and uses the
data generated in biological or genetic evolution to obtain a certain culture or
belief. Finally, it can accelerate the optimization process through the belief space.
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Table 1. Some population-based global optimization algorithms. The algorithms based
on bio-inspired evolutions refer to AB, the algorithms based on bio-inspired and cultural
evolutions denote as ABC, and the algorithms based on bio-inspired and multilevel
cultural evolutions denote as ABC2.

Algorithm Bio-inspired objects or behaviors Year Types of
multilevel
evolutions

Simulated Annealing
Algorithm [8]

Natural algorithms that simulate the
high-temperature annealing process of metallic
materials

1953 AB

Genetic Algorithm [4] Simulating Darwin’s genetic selection and natural
elimination of biological evolution

1975 AB

Ant Colony
Optimization
Algorithm [2]

Simulating the behavior of ant colonies such as
foraging and nesting

1991 AB

Memetic Algorithm
[12]

Combining biological-level evolution with
social-level evolution

1992 ABC

DIRECT Algorithm
[6]

Global optimization based on search space partition 1993 AB

Cultural Algorithm
[14]

An algorithm based on the idea of cultural
evolution of human society

1994 ABC

Particle Swarm
Optimization [7]

A swarm intelligence optimization algorithm,
simulating the foraging behavior of birds

1995 AB

Differential Evolution
[16]

A genetic algorithm with special “mutation”,
“crossover” and “selection” formulas, using real
codes

1995 AB

Social Evolutionary
Algorithm [13]

Combining multi-intelligent systems and traditional
genetic mechanisms

2009 ABC

Fireworks Algorithm
[17]

Inspired by observing fireworks explosion 2010 AB

Wind Driven
Optimization [1]

Based on the physical equations that govern
atmospheric motion

2010 AB

Brain Storm
Optimization
Algorithm [15]

Simulation of human creative problem-solving
brainstorming

2011 AB

Multilevel Robust
DIRECT Algorithm
[10]

Recursive invocation of DIRECT algorithm in
different search spaces

2015 ABC2

Bilevel-search particle
swarm optimization
[19]

Adding elite strategies to classical particle swarm
optimization

2021 ABC

Memetic Strategy. The traditional memetic strategy combines intelligent
optimization algorithms with local search in order to improve the optimization
process [12]. It is mainly concerned with the selection of local search methods
and the interaction, integration and balance between global and local search.
This idea was later used for multitask learning (optimization) [20] and transfer
learning (optimization) [18]. In this paper, we emphasize the information sharing
and interaction between two different scales of optimization: global exploration
and local exploitation.
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3 A General Framework for Intelligent Optimization
Algorithms Based on Multilevel Evolutions

3.1 From Bio-Inspired Evolution to Cultural Evolution

As reviewed in Sect. 2, the traditional heuristic or bio-inspired optimization algo-
rithms generally perform population evolution in the original search space. How-
ever, the algorithm improvements, including data-driven, knowledge-driven, cul-
tural evolution and memetic strategy, implicitly involve another optimization
beyond the population evolution of the original search space, and the informa-
tion generated by the latter improves the evolutionary path of the former. For
example, in memetic strategy, the introduced local search method is a new pro-
cess for optimizing. As for data-driven, knowledge-driven and cultural evolution,
they hypothesize that historical data or experience can generate valid knowledge.
This useful knowledge can affect subsequent optimization and improve the orig-
inal evolution of population.

In that case, if information obtained from the optimization process or various
empirical knowledge can be considered as “cultural information”, the general term
“cultural evolution” can be used as the generic term for improvements such as
data-driven, knowledge-driven, cultural evolution and memetic strategy. In this
way, we can find that intelligent optimization algorithms have gradually evolved
from simulating bio-inspired evolution to true bio-inspired evolution and cultural
evolution. In the field of optimization, the success of cultural evolution is based
on the fact that it evolves faster than bio-inspired evolution, which can speed
up the convergence of the algorithm.

3.2 A Framework Based on Multilevel Evolutions

From the previous discussion, it can be found that the original population opti-
mization and various forms of improvement ideas can be unified by a framework
based on multilevel evolutions. At each level, different search strategies can be
evolved and different scales of search spaces can be defined. In general, in the orig-
inal search space, population executes genetic operations or other bio-inspired
operations based on biological behavior. Then, according to the process informa-
tion, the useful knowledge or “cultural information” can be acquired for a more
efficient local search in a new space with a new population or subpopulation.
The search space can also be the original space or a smaller one. Finally, the
information created at this stage is fed back into the original space to acceler-
ate the evolutionary process. This mechanism of “bio-inspired evolution in the
original space and cultural evolution in the new space” can be denoted as a
framework “bio-inspired evolution ⊕ cultural evolution”. Of course, more levels
can also be created to further speed up the optimization process. In this paper,
we define this multilevel evolutionary mechanism as a framework “bio-inspired
evolution ⊕ cultural evolution ⊕ multilevel cultural evolution”. The skeleton of
this framework is shown in Fig. 1.
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Fig. 1. The framework based on multilevel evolutions.

In this part, we will discuss that how all population-based optimization algo-
rithms can be incorporated into this multilevel evolutionary framework. For ease
of distinction, we state the formal definition of bio-inspired evolution, cultural
evolution and multilevel cultural evolution.

First of all, bio-inspired evolution is to introduce the concept of population
in the search space according to the characteristics of the optimization problem.
It simulates the genetic manipulation or the intelligent behavior of organisms
or various beneficial inspired phenomena to find the optimal solution through
iterative evolution.

Secondly, according to the features of optimization problems, cultural evo-
lution is the process of extracting rules and information using all possible prior
knowledge and data produced in bio-inspired evolution. Then, the optimization
process is improved by the algorithm itself or by other local search methods.

At last, based on the characteristics of the optimization problem, multilevel
cultural evolution is the process of using all possible prior knowledge and data
created in cultural evolution to further find rules and information. The optimiza-
tion process is improved by the algorithm itself or other local search methods.

With the above formal definitions, all population-based optimization algo-
rithms can be classified into three categories. The first type refers to the algo-
rithms based on bio-inspired evolutions (AB), which only implement bio-inspired
evolution in the original search space. The second type denotes as the algorithms
based on bio-inspired and cultural evolutions (ABC), In addition to bio-inspired
evolution, there is another space (may similar to the original space) where cul-
tural evolution is implemented. The cultural information is derived from the
prior knowledge of the problem or information in bio-inspired evolution. The
third one is defined as the algorithms based on bio-inspired and multilevel cul-
tural evolutions (ABC2), having both biological and cultural evolution, and fur-
ther extracting more effective subcultures for optimization in the new search
space. This new space is generally a subset of the space in cultural evolution.
In other words, a population-based optimization algorithm belongs to the algo-
rithm based on bio-inspired evolutions if it searches only in the original space
and does not utilize any prior knowledge or information in optimization. If an
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algorithm adopts this prior knowledge or information, it is an algorithm based on
bio-inspired and cultural evolutions. On the basis of the second type, if there are
also local searches in the space, it will become an algorithm based on bio-inspired
and multilevel cultural evolutions.

The type of multilevel evolutions of some optimization algorithms is given in
Table 1. It is clear that most of the algorithms are the AB type algorithms and
cultural evolution has become mainstream in recent years. But the multilevel
cultural evolution is relatively rare.

3.3 The Construction of Culture and Multilevel Culture

It can find that an increasing number of algorithms are moving toward cultural
evolution and multilevel cultural evolution beyond bio-inspired evolution. In this
part, we give some common ways in which cultures are constructed. Because the
multilevel culture is also part of a culture, these constructing ways are applicable
to both cultural and multilevel cultural constructions in principle.

Prior Experience-Based Cultural Construction. In the scenario of opti-
mization problems, if there is some prior experience that can be used to guide
the search for the optimal value, a suitable culture can be constructed directly
based on prior experience. This newly constructed culture can lead to the pro-
cess of cultural evolution. However, intelligent optimization algorithms are often
applied to deal with black-box optimization problems, so the prior experience is
generally difficult to obtain. With this in mind, constructing cultures based on
prior experience generally rarely occurs.

Knowledge-Based Cultural Construction. This construction is derived
from mining and learning from data produced by bio-inspired evolution, mainly
by finding available knowledge to guide cultural evolution. Thus, those data-
driven or knowledge-driven intelligent optimization algorithms adopt this way
to construct cultures. In addition, most of the machine learning techniques can
be used for data mining, which is a current hot research topic [5].

Geography-Based Cultural Construction. This type of constructed way
is usually used for global optimization based on partition [6]. In optimization,
the search space is continuously partitioned according to the individual’s fitness
value, so that the individual has a naturally “territory”. For some “territories”,
different symbols can be assigned to mark the cultures, and multilevel evolution
according to these symbols can be constructed flexibly [10].

Heuristic-Guided Cultural Construction. This way directly applies “suc-
cessful cultures” to cultural evolution. This successful culture refers to the culture
that has been effective in other similar issues. Transfer learning (optimization)
and multitask learning (optimization) can be considered as such heuristic-guided
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cultural construction [18,20]. Additionally, other useful heuristics can be directly
constructed as culture and applied to cultural evolution.

Local-Exploitation-Based Cultural Construction. As for the traditional
memetic strategy, it is combined with the local search method to enhance the
speed of convergence of bio-inspired evolution [12]. This is also a process of cul-
tural construction, denoted as a local-exploitation-based cultural construction.
Generally, local search works among the elite individuals of the population [19].
This is similar to giving elites more resources to make greater contributions to
society, and is a manifestation of elite culture.

3.4 Sharing Information Among the Evolutions at Different Levels

In the framework based on multilevel evolutions, it is very important to share
information between different evolutionary levels. They generally have the fol-
lowing characteristics.

Sharing Information Between the Evolutions at Adjacent Levels. Shar-
ing information usually occurs in the evolution of neighboring levels, as shown
in Fig. 1. In other words, information and feedback can be shared between bio-
inspired evolution and cultural evolution, as well as between cultural evolution
and multilevel cultural evolution. However, there is no direct information and
feedback between bio-inspired evolution and multilevel cultural evolution.

Sharing Information in Different Directions with Different Roles. In
the framework based on multilevel evolution, there are two different directions
for sharing information. The first is bottom-top, which refers to the information
sharing from bio-inspired evolution to cultural evolution to multilevel cultural
evolution. Conversely, the second one is from top to bottom. Sharing information
in these directions plays different roles. Specifically, bottom-up is a process of
addressing or extracting information with the aim of finding usable knowledge
or rules. In this case, this sharing information can give a guidance to the “top”
evolution. The top-bottom is information feedback to send information back to
the below level and accelerate its evolution.

Information in Different Levels Possibly with Different Dimensions.
In the framework based on multilevel evolutions, the evolution of the upper level
is usually intended to accelerate the evolution of the lower level. That is to say
that the bottom level (bio-inspired evolution) is used to solve the optimization
problem. The cultural evolution and multilevel evolution are only for accelerating
bio-inspired evolution, not for solving the optimization problem itself. It indicates
that the search spaces of cultural evolution and multilevel cultural evolution are
usually smaller than the original space. Moreover, their dimension of the control
variables can be decreased, which can better achieve the goal of accelerating
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bio-inspired evolution with low-cost (multilevel) cultural evolution. Therefore,
bottom-top tends to lead to a decrease in the amount of information (reduced-
dimension or smaller information space), while top-bottom leads to an increase
in the amount of information (increased-dimension or larger information space).

4 Particle Swarm Optimization Algorithm Based
on Multilevel Evolutions

In the previous section, we proposed the framework based on multilevel evolu-
tions, which is able to cover all population-based intelligent optimization algo-
rithms. Moreover, this framework also provides a direction for performance
improvement of such algorithms: accelerating the bio-inspired evolution in the
original search space by introducing cultural evolution and multilevel cultural
evolutions. In this section, we are going to apply this framework to Particle
Swarm Optimization Algorithm (PSO), and propose a new algorithm denoted
as PSO based on three-level evolutions (PSO-3Level).

First of all, we use the standard PSO (SPSO2011) proposed by French pro-
fessor Clerc at the level of bio-inspired evolution. This is an important imple-
mentation of classical PSO. Based on the SPSO2011, we introduce two types of
elite culture. The first type is the ordinary elite, which selects the best 30% of
individuals of the population to build the elite sub-population for cultural evo-
lution. The second type is the top elite, which selects the best individual in the
population and gives it the power of local search to carry out multilevel cultural
evolution. In our paper, we adopt the well-known local search method BFGS.
The pseudo-code of PSO based on three-level evolutions is as follows.

Algorithm 1: PSO based on three-level evolutions (PSO-3Level)
Input: Maximum computational cost MaxNF ; population size N = 100;
Output: the found best function value.

1 Initialize the population P ;
2 while Stop condition is not satisfied do
3 Bio-inspired evolution: execute the SPSO2011 and iterate 1 time;
4 Cultural evolution: select 30 best individuals from the P and build the

sub-population, execute the SPSO2011 and iterate 1 time;
5 Multilevel cultural evolution: select the best individual, execute the BFGS

and iterate 10 times;
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The above parameters have not been specifically optimized, but simple set.
In this paper, our main focus is to illustrate the application of the framework
based on multilevel evolutions, not to design the best current variant of PSO.
With the use of two elite cultures in the PSO-3Level, we have reason to believe
that this method can improve the solution accuracy of the SPSO2011 and have
a significant advantage with less computational cost.

To evaluate the performance of the PSO-3Level, we test out the proposed
method on Hedar test suite [3]. Hedar test suite has a total of 68 functions
(containing functions with different dimensions), with a maximum number of
48. By recording the function values during the evolution, a high-dimensional
matrix H(MaxNF, 30, 68, 2) is eventually obtained. This matrix H indicates
that two algorithms are tested (SPSO2011, PSO-3Level), each with 68 functions,
and each function is solved 30 times independently to eliminate randomness as
much as possible. MaxNF is the number of function evaluations in each test.
With the help of matrix H, we can describe the decreasing trend of the function
values in each test. Due to a large number of functions, data profile, proposed
by Moré and Wild in 2009 [11], is used to analyze the experimental data in
order to facilitate the presentation of comparative results. It uses the following
inequalities as convergence condition for the algorithm to solve the problem.

f(x) ≤ fL + τ (f (x0) − fL) . (2)

where x0 is a point of the initial iteration and τ is the precision parameter (τ is
set to 10−7 in this paper). At a specific computational cost, fL is the minimum
found by all tested optimization algorithms, and each function has its own fL.

tp,s is denoted as the lowest computational cost that satisfies the Eq. 2 in
solving the functions p ∈ P by the algorithms s ∈ S. If Eq. 2 is not satisfied,
tp,s is set to infinity. The sets S and P are the set of algorithms to be compared
and the set of test functions, respectively. Based on this, the data profile curve
of algorithm s ∈ S can be defined as:

ds(α) =
1

|P |
∣
∣
∣
∣

{

p ∈ P :
tp,s

np + 1
≤ α

}∣
∣
∣
∣
. (3)

where np is the dimension of function p and tp,s
np+1 roughly represents the relative

computational cost in per dimension on average. Therefore, the data profile curve
describes the proportion of problems that can be solved by algorithm s within
α relative computational cost.
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Fig. 2. Comparison of data profiles of SPSO2011 and PSO-3Level. The computational
cost are 1000, 5000, 10000 and 20000, respectively.

Figure 2 presents the curve of the data profile, and the four subgraphs cor-
respond to 1000, 5000, 10000 and 20000 function evaluations, respectively. It
can be found that the lower the computational cost, the better our proposed
algorithm PSO-3Level will be. When there are only 1000 function evaluations,
the algorithm PSO-3Level solves more than 90% of the problems (according to
Eq. 2). While SPSO2011 only solves less than 10% of problems. The difference
in performance between them is more than 80%. As the computational cost
increase, the difference of their performance begin to decline. When the compu-
tational cost increases to 20000, they perform almost the same. This is manly
because the optimal solutions of most problems have been found, and the effect
of elite culture has gradually become invalid.

5 Conclusion and Future Work

The field of intelligent optimization has proposed a large number of algorithms,
which are jokingly referred to as “Algorithmic Zoo” and “Algorithmic Botanical
Garden”. With this in mind, we propose a general framework based on mul-
tilevel evolutions, which incorporates all population-based optimization algo-
rithms. Our framework indicates that these algorithms are either single-level
algorithms only based on bio-inspired evolution (AB), two-level algorithms based
on bio-inspired and cultural evolutions (ABC), or three-level algorithms based
on bio-inspired and multilevel cultural evolutions (ABC2).

We also describe the way of constructing culture and multilevel cultures:
prior experience-based, knowledge-base, geography-based, heuristic-guided and
local exploitable-based cultural construction. Meanwhile, the analysis of sharing
information among the evolutions at different levels is also presented.
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The proposed framework, not only unifies all population-based optimization
algorithms, but also provides improvement directions and technical guidelines for
these algorithms. For example, with the help of different ways of constructing
cultures, we can design algorithm variants to meet different needs. So this paper
provides an application example. Based on the standard PSO, we propose a
PSO-3Level suitable for obtaining higher accuracy at low cost by introducing
two types of elite culture.

In summary, the proposed framework is highly scalable and its advantages
and features are not yet fully known and understood. Its guiding role for algo-
rithms’ improvement has much work to be done in the future. Finally, the work
in this paper is to better understand and sort out intelligent algorithms, paving
the way for future research. We look forward to more study on theoretical studies
and numerical analysis.

Acknowledgment. This paper is supported by the Guangdong Universities’ Special
Projects in Key Fields of Natural Science under Grant 2019KZDZX1005.

References

1. Bayraktar, Z., Komurcu, M., Werner, D.H.: Wind driven optimization (WDO): a
novel nature-inspired optimization algorithm and its application to electromagnet-
ics. In: 2010 IEEE Antennas and Propagation Society International Symposium,
pp. 1–4. IEEE (2010)

2. Colorni, A., Dorigo, M., Maniezzo, V., et al.: Distributed optimization by ant
colonies. In: Proceedings of the First European Conference on Artificial Life, vol.
142, pp. 134–142 (1991)

3. Hedar, A.R.: Test functions for unconstrained global optimization. http://www-
optima.amp.i.kyoto-u.ac.jp/member/student/hedar/Hedar_files/TestGO_files/
Page364.htm

4. Holland, J.H.: Adaptation in natural and artificial systems : an introductory anal-
ysis with applications to biology (1992)

5. Jin, Y., Wang, H., Chugh, T., Guo, D., Miettinen, K.: Data-driven evolutionary
optimization: an overview and case studies. IEEE Trans. Evol. Comput. 23(3),
442–458 (2018)

6. Jones, D.R., Perttunen, C.D., Stuckman, B.E.: Lipschitzian optimization without
the Lipschitz constant. J. Optim. Theory Appl. 79(1), 157–181 (1993)

7. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of
ICNN’95-International Conference on Neural Networks, vol. 4, pp. 1942–1948.
IEEE (1995)

8. Kirkpatrick, S., Gelatt, C.D., Jr., Vecchi, M.P.: Optimization by simulated anneal-
ing. Science 220(4598), 671–680 (1983)

9. Liu, B., Wang, L., Liu, Y., Wang, S.: A unified framework for population-based
metaheuristics. Ann. Oper. Res. 186(1), 231–262 (2011)

10. Liu, Q., Zeng, J., Yang, G.: MrDIRECT: a multilevel robust direct algorithm for
global optimization problems. J. Global Optim. 62(2), 205–227 (2015)

11. Moré, J.J., Wild, S.M.: Benchmarking derivative - free optimization algorithms.
SIAM J. Optim. 20(1), 172–191 (2009)

http://www-optima.amp.i.kyoto-u.ac.jp/member/student/hedar/Hedar_files/TestGO_files/Page364.htm
http://www-optima.amp.i.kyoto-u.ac.jp/member/student/hedar/Hedar_files/TestGO_files/Page364.htm
http://www-optima.amp.i.kyoto-u.ac.jp/member/student/hedar/Hedar_files/TestGO_files/Page364.htm


A General Framework for Intelligent Optimization Algorithms 35

12. Moscato, P., Norman, M.G.: A memetic approach for the traveling salesman prob-
lem implementation of a computational ecology for combinatorial optimization on
message-passing systems. Parallel Comput. Transput. Appl. 1, 177–186 (1992)

13. Pan, X., Liu, f., Jiao, L.: Multiobjective social evolutionary algorithm based on
multi-agent. J. Softw. 20, 1703–1713 (2009)

14. Reynolds, R.G.: An introduction to cultural algorithms 24, 131–139 (1994)
15. Shi, Y.: Brain storm optimization algorithm. In: Tan, Y., Shi, Y., Chai, Y., Wang,

G. (eds.) ICSI 2011. LNCS, vol. 6728, pp. 303–309. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-21515-5_36

16. Storn, R., Price, K.: Differential evolution - a simple and efficient heuristic for global
optimization over continuous spaces. J. Global Optim. 11(4), 341–359 (1997)

17. Tan, Y., Zhu, Y.: Fireworks algorithm for optimization. In: Tan, Y., Shi, Y., Tan,
K.C. (eds.) ICSI 2010. LNCS, vol. 6145, pp. 355–364. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-13495-1_44

18. Wu, K., Wang, C., Liu, J.: Evolutionary multitasking multilayer network recon-
struction. IEEE Trans. Cybern. (2021, online). https://doi.org/10.1109/TCYB.
2021.3090769

19. Yan, Y., Zhou, Q., Cheng, S., Liu, Q., Li, Y.: Bilevel-search particle swarm opti-
mization for computationally expensive optimization problems. Soft. Comput.
25(22), 14357–14374 (2021). https://doi.org/10.1007/s00500-021-06169-3

20. Zhang, F., Mei, Y., Nguyen, S., Zhang, M., Tan, K.C.: Surrogate-assisted evolu-
tionary multitask genetic programming for dynamic flexible job shop scheduling.
IEEE Trans. Evol. Comput. 25(4), 651–665 (2021)

https://doi.org/10.1007/978-3-642-21515-5_36
https://doi.org/10.1007/978-3-642-13495-1_44
https://doi.org/10.1109/TCYB.2021.3090769
https://doi.org/10.1109/TCYB.2021.3090769
https://doi.org/10.1007/s00500-021-06169-3


Swarm-Based Computing Algorithms
for Optimization



Improved Hamming Diversity Measure
for Set-Based Optimization Algorithms

Kyle Erwin1(B) and Andries Engelbrecht2

1 Computer Science Division, Stellenbosh University, Stellenbosh, South Africa
kyle.erwin24@gmail.com

2 Department of Industrial Engineering, and Computer Science Division, Stellenbosh
University, Stellenbosh, South Africa

engel@sun.ac.za

Abstract. Proper evaluation of the performance of a population-based
algorithm often requires a good understanding of the search behaviour of
the population over time. One approach towards understanding search
behaviour is to measure the diversity of the population, which is an
indicator of how similar the search agents in the population are to one
another. Historically, diversity metrics have focused on populations with
a continuous-valued, fixed-length solution encoding. Two diversity mea-
sures, Jaccard diversity and Hamming diversity, for populations with a
set-based solution encoding were recently proposed. It was shown that
Jaccard diversity accurately represents the diversity of sets over time
while Hamming diversity under represents diversity in the same scenar-
ios. This paper proposes a simple improvement to the Hamming diver-
sity measure, that makes it equivalent to the Jaccard diversity measure,
accurately quantifying set-based population diversity.

Keywords: Set-based meta-heuristics · Set-based diversity · Hamming
distance · Jaccard distance

1 Introduction

Measures of population diversity are useful tools in a researcher’s toolbox for
better understanding algorithm performance. These measures give a researcher
insight into the exploration and exploitation behaviour of population-based opti-
mization algorithms. Diversity is at a maximum when the search agents in a pop-
ulation totally differ from one another. In contrast, diversity is a minimum, i.e.
0.0, when all the agents are the same. Relatively high diversity values are indica-
tive of exploratory behaviour, while lower diversity values indicate exploitation
behavior. By measuring the diversity of a population over time trends can be
obtained for the exploratory and exploitative search behaviour of an algorithm.
Ideally, large diversity values should be observed at the beginning of the search,
and overtime, the diversity values should approach 0.0. If the diversity values
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are close to 0.0 by the end of the search, it can be concluded that the agents
have converged on a solution.

There are a variety of diversity measures for population-based algorithms
with a continuous-valued solution encoding [1,7]. These measures, which typi-
cally use Euclidean distance, are not suitable for set-based populations, because
sets can differ in size and there is no concept of distance between elements in the
sets. In light of this, Erwin and Englebrecht [2] proposed two set-based diver-
sity measures, one based on the Jaccard distance (Jaccard diversity) [5] and the
other based on the Hamming distance (Hamming diversity) [4].

The aforementioned set-based diversity measures have the following proper-
ties: 1) When the contents of sets become more similar, diversity values decrease.
2) Conversely, when the contents of sets become less similar, diversity values
increase. 3) When the contents of sets are identical, the diversity values will be
zero. Then, the Jaccard diversity measure has a fourth property that when sets
are totally different, the Jaccard diversity value will be 1.0. In the same scenario,
Hamming diversity will under represent the diversity of sets.

The purpose of this paper is to address the under representation of diversity
caused by Hamming diversity. This paper proposes a simple modification to the
way sets are converted into bit strings for the Hamming diversity measure. The
result is that Hamming diversity produces diversity values equivalent to those of
Jaccard diversity. Thus, Hamming diversity is now able to accurately represent
diversity especially in cases where diversity is intuitively at a maximum.

This work is useful as it can help to further understand and develop set-
based algorithms for combinatorial optimization problems. For example, algo-
rithms like the set-based adaptation of particle swarm optimization by Langeveld
and Engelbrecht [6] or various set-based genetic algorithms [3,8,9]. The focus
and improvement of the Hamming diversity measure is particularly useful for
problems where a variable-length binary solution encoding is needed, e.g. data
compression problems.

The rest of the paper is organized as follows: Formal definitions for the
Hamming and Jaccard distance measures are given in Sect. 2. Then, in Sect. 3,
Hamming diversity and Jaccard diversity are introduced. Section 4 proposes a
change to the Hamming diversity measure. Numerical examples demonstrating
the difference between the proposed Hamming diversity measure and the original
Hamming diversity measure are given in 5. Section 6 presents an experiment that
mimics set-based agents converging to a solution and discusses the difference in
diversity between the two Hamming diversity measures. Lastly, Sect. 7 concludes
the paper.

2 Discrete-Valued Distance Measures

This section defines the Hamming distance measure in Sect. 2.1 and the Jaccard
distance measure in Sect. 2.2. Both measures calculate a distance value that
indicates how similar two discrete-valued representations are.
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2.1 Hamming Distance

The Hamming distance is an indication of the minimum number of substitutions
required to change one string into another string of equal length, by counting the
number of positions where corresponding symbols differ [4]. This can generally
be applied to vectors of equal length, so long as the vectors are bit vectors. The
Hamming distance between vectors u and v, each of length n, is calculated as

dH(u,v) =
d′
H(u,v)

n
(1)

where

d′
H(u,v) =

n∑

j=1

ι(uj , vj) (2)

and

ι(u, v) =

{
1 if u �= v

0 if u = v
. (3)

The Hamming distance produces a maximum value of 1.0 when all components
between u and v are in disagreement. The Hamming distance is 0.0 when all
the components are in agreement.

2.2 Jaccard Distance

Jaccard distance measures the dissimilarity between two sets as the complement
of the cardinality of their intersection divided by the cardinality of their union
[5]. Formally, the Jaccard distance measure is

J(A,B) = 1 − |A ∩ B|
|A ∪ B| (4)

where A and B are two sets.
The Jaccard distance is equal to 1.0 when A and B are disjoint. Moreover,

when A and B are identical, dJ is equal to 0.0.

3 Diversity Measures for Sets

This section builds upon the previous section and formally introduces the Ham-
ming and the Jaccard diversity measures for set-based population-based opti-
mization algorithms. Hamming diversity is defined in Sect. 3.1 and Jaccard diver-
sity is defined in Sect. 3.2.
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3.1 Hamming Diversity

Hamming diversity is the average Hamming distance between all set pairs in
S. Note that the Hamming distance is defined for vectors of the same length
of discrete valued elements. In order to apply the Hamming distance to sets,
set-based representations have to be converted to vector-based representations.
This is done by applying a mapping function, ω, to the set which is defined as

ω : S ⊆ U → Xn (5)

where X = {0, 1}.
Given S = {u1, u2, . . . , un}, the corresponding bit vector is

ω(S) = (V1, V2, . . . , Vn) (6)

where

Vj =

{
1 if Uj ∈ S

0 otherwise
. (7)

The following illustrates the use of ω to convert the set {1, 2, 5} in the universe
of the first five natural numbers to a bit vector. The length of the bit vector is
the size of the universe. Each index in the bit vector corresponds to an element
in the universe. For each element in the set {1, 2, 5}, the corresponding bit vector
values are set to 1 and all other values are set to 0, since they are not present
in the set. Therefore, the bit vector representation of set {1, 2, 5} is

ω({1, 2, 5}) = (1, 1, 0, 0, 1) .

Diversity using Hamming distance, or simply, Hamming diversity is

d̄H =

∑n−1
i

∑n
j=i+1 dH(ω(Si), ω(Sj))

∑n−1
i

∑n
j=i+1 1

. (8)

It should also be noted that a downside to the Hamming diversity is that
each set has to be converted to a larger |U |-dimensional vector where U is the
set universe.

3.2 Jaccard Diversity

Jaccard diversity is the average Jaccard distance between all set pairs in a given
population, S. Formally, Jaccard diversity is calculated as

d̄J =

∑n−1
i

∑n
j=i+1 dJ(Si, Sj)

∑n−1
i

∑n
j=i+1 1

(9)

where n is the cardinality of S, and Si and Sj are the sets corresponding to
indices i and j, respectively.
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4 Improved Hamming Diversity

The Hamming diversity measure under represents diversity because it takes into
account the entire set universe. The poor performance is not necessarily a result
of the Hamming diversity per se, but rather the mapping function ω used to
convert a set into a bit vector. For example, consider the sets {1, 2, 3} and
{4, 5} in the universe of the first 10 natural numbers, i.e. {1, 2, . . . , 10}. The
sets differ in that the elements they contain are different. However, the sets are
similar in that they exclude common elements. To better illustrate this point,
the bit vectors of the aforementioned sets are

ω({1, 2, 3}) = (1, 1, 1, 0, 0, 0, 0, 0, 0, 0)

and
ω({4, 5}) = (0, 0, 0, 1, 1, 0, 0, 0, 0, 0) .

One can see that even though the sets are totally different from one another,
the bit vectors bare some resemblance. This resemblance results in a Hamming
diversity value of 0.5 when intuitively we would expect a value of 1.0. Further-
more, as the size of the set universe increase, the Hamming diversity values for
totally different sets will decrease.

This paper proposes a simple adjustment to the mapping function ω that
uses the union of the sets to determine the bit vectors. Formally, the proposed
mapping function ω∗ is

ω∗ : S ⊆ (A ∪ B) → Bn (10)

where A an B are sets and X = {0, 1}.
Using ω∗, the bit vectors of {1, 2, 3} and {4, 5} are

ω∗({1, 2, 3}) = (1, 1, 1, 0, 0)

and
ω∗({4, 5}) = (0, 0, 0, 1, 1) .

The bit vectors above are arguably more intuitive as they better represent
what is the same and what is different between the two sets. The Hamming
diversity measure using ω∗, denoted as d̄∗

H , produces a value of 1.0 for {1, 2, 3}
and {4, 5} - equal to the value produced by the Jaccard diversity measure for
the same sets. This makes sense because d̄∗

H , like Jaccard diversity, measures the
elements of sets that differ with respect to the size of union of the sets. Another
benefit of using ω∗ is that each set no longer has to be converted to a larger
|U |-dimensional vector.

Examples accompanied by discussions of results are given in the next section
to showcase the usefulness of this change. It is expected that the change will
retain the three properties described about the Hamming diversity measure in
Sect. 1 while introducing the fourth property ascribed to Jaccard diversity.



44 K. Erwin and A. Engelbrecht

5 Numerical Examples

The purpose of this section is to illustrate the application of the proposed change
to the Hamming diversity measure on special cases. The examples also serve to
highlight the differences in diversity values between d̄H and d̄∗

H . Jaccard diversity,
which has been shown to accurately represent the diversity of sets, is included
as a baseline diversity measure.

The examples show sets that start at maximum diversity progressively mov-
ing to a minimum diversity. Furthermore, the results of the examples are also
discussed. The examples in this section are all based on the scenario in which
three set-based agents attempt to converge to a known optimum of {1, 2} in a
set universe that contains the first 10 natural numbers, i.e. U = {1, 2, . . . , 10}.
The search space consists of all permutations of set elements of all possible car-
dinalities. Each agent is initialized such that the diversity of the population S
is at a maximum by ensuring the elements of each agent is unique. The agents
then move progressively closer towards the optimal set by changing one element
at a time to better resemble the optimal set. The purpose of these examples is
to mimic a scenario wherein diverse agents move over a number of iterations to
collapse on a target set, i.e. {1, 2}.

5.1 Example 1 - Sets at Maximum Diversity

The first example in this scenario uses

S0 = ({1, 3, 10}, {4, 6, 8}, {2, 5, 7, 9})

where St is the collection of sets at time step t. Each set in St corresponds to
an agent. Through inspection, the reader can deduce that the contents of each
set differs from one another. The diversity measures are

d̄J(S0) = 1.0

d̄∗
H(S0) = 1.0

d̄H(S0) = 0.6667 .

The d̄∗
H value, equal to d̄J , accurately represents the diversity of sets when max-

imum diversity is present. Thus, achieving the purpose set out in the beginning
of the paper. By comparison, d̄H under represents diversity for reasons discussed
in Sect. 4.

5.2 Example 2 - Sets that Are Slightly Similar

This example shows the set-based agents from the previous example beginning to
converge to the optimal set. Here, S1 is ({1, 2, 10}, {1, 6}, {2, 5, 7}). The diversity
measures are

d̄J (S1) = 0.85
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d̄∗
H(S0) = 0.85

d̄H(S1) = 0.4 .

The d̄∗
H value has decreased as the sets have become more similar but is also

twice that of d̄H , and reasonably so. There is some similarity between the sets,
but enough to justify a value of 0.4.

5.3 Example 3 - Sets that Are Extremely Similar

Two of the set-based agents are shown to have converged on the optimal set,
with S2 = ({1, 2}, {1, 2}, {1, 2, 7}). The values for the diversity measures are

d̄J(S2) = 0.2221

d̄∗
H(S0) = 0.2221

d̄H(S2) = 0.0667 .

Both d̄J and d̄∗
H indicate that there is some dissimilarity between the sets,

while d̄H suggests that the sets have almost converged. The extremely low d̄H
is a result of more components being in an agreement once the sets have been
converted to 10-dimensional bit vectors.

5.4 Example 4 - Sets at Minimum Diversity

The last example shows that all the set-based agents have converged on the
optimal set. Here, S3 contains ({1, 2}, {1, 2}, {1, 2}). The Jaccard diversity and
the Hamming diversity values are

d̄J(S3) = 0.0

d̄∗
H(S0) = 0.0

d̄H(S3) = 0.0 .

All values are in agreement that S3 has converged, as expected.

6 Computational Results

The previous section showed that Hamming diversity better represents the diver-
sity of sets when using the updated mapping function. This section presents a
computational process to give the reader a sense of how Hamming diversity val-
ues differ over time as a result of which mapping function is used. The computa-
tional process mimics set-based agents moving through a search space to a ran-
domly generated optimal solution and is further explained in Sect. 6.1. Section 6.2
describes the settings for the computational process. Comments about the results
are given in Sect. 6.3.
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6.1 Process

This process simulates set-based agents converging on a randomly chosen opti-
mal set. During the simulation, changes are made to the agents to increase the
similarity between the agents. These changes are chosen at random by selecting
one of two options: The first is to randomly remove an element not within the
optimal set. The second option is to add a randomly chosen element from the
optimal set to the agent if the element is not already present. If one of these
options is not applicable, then the other is used. If neither of the options is appli-
cable, then the agent is equal to the optimal set. Furthermore, the agents are
randomly initialized such that the intersection between all sets is empty. In other
words, the sets are initialized such that the diversity of the population is max-
imized. It is therefore expected that the diversity decreases from the maximum
diversity to the minimum diversity.

6.2 Settings

Each agent was randomly initialised with a random (from a uniform distribution
in [1,10]) number of elements. The sizes for the optimal set, were 1, 5 and 10. The
optimal set size is denoted as On where n is the size. For each scenario, a pop-
ulation of 10 was used, and a universe of 100 elements, i.e. U = {1, 2, . . . , 100}.
The diversity values for each time step are recorded over 30 independent runs
and are graphed.

6.3 Experimental Results

Readers familiar with [2] will notice that the graphs in Fig. 1 look similar to those
comparing Jaccard and Hamming in the aforementioned work. This makes sense
as d̄∗

H and Jaccard diversity produce equal values given the same input. The
graphs in this paper show that d̄∗

H better represents the diversity of sets, which
are initially totally different, progressively move toward a single solution. Given
the results of this synthetic, but realistic, experiment, one can conclude that
d̄∗
H can help researchers better understand the search behaviour of set-based

optimization algorithms.

(a) O1 (b) O5 (c) O10

Fig. 1. Comparison of d̄∗
H (full-line) and d̄H (dashed-line) as set-based agents converge

to variously sized optimal solutions
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7 Conclusion

Diversity measures allow researchers to better understand the exploration and
exploitation of population-based optimization algorithms. This paper focused
on a set-based diversity measure, namely Hamming diversity. The Hamming
diversity measure uses a function, ω, to convert a set to a bit vector so that the
diversity of sets can be calculated using Hamming distance. However, ω takes into
account the entire set-universe when converting sets to bit vectors. This results
in an under representation of diversity. This paper investigated an alternative
set-to-bit vector conversation process that results in Hamming diversity values
that are equal to those of Jaccard diversity values - where Jaccard diversity has
been shown to accurately represent the diversity of sets. This work is useful
as researchers now have two set-based diversity measures to make use of, and
depending on the context of the problem, it may be more suitable to use one
over the other. In general, however, there is a cost to using Hamming diversity
as it requires sets to be converted to bit vectors. Future work can investigate
Hamming diversity for population that use a variable-length bit vector encoding.
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Abstract. Mapping solution search (MSS), which maps current solution to a
mapping solution, increases population diversity and promotes algorithm with-
out the difficulty of premature convergence. This paper presents an MSS based
garden balsam optimization (MGBO). This avoids the premature convergence of
the algorithm, improves the convergence speed of the algorithm, and increases
the possibility that the solution is closer to the global optimum. To evaluate the
performance of MGBO, four complex invariant point problems are chosen from
the literature. Experimental studies show that theMGBO can solve these problems
with great precision compared with some state-of-the-art algorithms.

Keywords: Mapping solution search · Garden balsam optimization · Invariant
point problem · MGBO

1 Introduction

In mathematics, an invariant point (also called as a fixed point) of a function is an
element such that its function value is equal to itself. People have made extensive and
in-depth research for the existence of invariant points for nonlinear system. In the past
years, variety of methods have been proposed, and researchers have published abundant
valuable invariant point problems through literature areas [1–6]. As the complexity of
the problem increases, the traditional method may not find the ideal invariant points. To
reduce the above difficulties, many evolutionary algorithms have been proposed. During
research on evolutionary algorithms, researchers are often inspired by nature [7].

Garden balsam optimization (GBO) [8–10] is a population-based stochastic opti-
mization algorithm inspired by the seed transmission mode of garden balsam. GBO has
shown good performance in solving real problems, but it still suffer from local optima
in strongly multi-modal problems. The drawbacks of GBO are slow convergence and
premature convergence. In the process of swarm intelligence algorithm evolution, many
excellent evolutionary techniques have been applied to improve algorithm performance.
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The main contributions of this paper are as follows:

1. This paper proposed a new evolutionary technique, namely mapping solution search
(MSS).

2. Motivated by the advantages ofGBOandMPS,we propose a new hybridmethod that
combines GBO with MSS (MGBO). MGBO is applied to solving four real invariant
point problems, and the results obtained are comparedwith those usingArtificial Bee
Colony Algorithm(ABC), Particle Swarm Optimization (PSO), Teaching-Learning-
Based Optimization (TLBO), Differential Evolution (DE), and GBO to evaluate the
performance of proposed algorithm.

The rest of the paper is organized as follows: In Sect. 2, we discuss the background
of GBO, MSS technique and invariant point problems. In Sect. 3, the MSS is applied
to GBO. In Sect. 4 gives the experimental results and discussions on MGBO. Finally,
some conclusions are summarized in Sect. 5.

2 Background

2.1 Invariant Point Problem

In this section, we will introduce the invariant point problems.In mathematics, an invari-
ant point (also called as a fixed point) of a function is a point that is mapped to itself by
the function. A nonlinear equation with periodic inputs can, in general, be described by
the following equations:

f : x → f (x) (1)

where x ∈ R is a input value.
We denote the actual input values by x and the nominal values by f (x). The purpose

of steady-state solution is to obtain deviations � = f (x) − x → 0. When the actual
parameter values are known, the dynamical systems can be identified and calibrated as
the nominal values.

Generally, these design specifications define a set in the solution space called the
feasible solution set Rc and can be defined as:

Rc = {x ∈ R|f (x) = x} (2)

For example, let: f(x) be a real function on R and: f(x) = x2 − 2x + 2, then x = 1
and x = 2 are the invariant points of: f(x) because f(1) = 1 and f(2) = 2. It’s worth
noting that not all functions have invariant points. For example, f(x) = x does not have
invariant points, because:f(x) is never equal to x, but some functions may have more
than one invariant points, and the set of all these invariant points is called an invariant
set.

An iterative method for invariant point equation f (x) = x is the recursive relation
xr+1 = f (xr), r = 0, 1, 2, ..., itermax with some initial guessx0, where itermax represents
the maximum number of iterations. The algorithm stops when the stopping criterion is
met. The stopping criterion can be defined as: r > itermaxor|xr+1 − xr| < ε.
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Theorem 1. If f is continuous on [a, b] and f(x) ∈ [a, b] for all x ∈ [a, b], then f has
an invariant point in [a, b].

Proof. (See Sect. 2 of [11]).
Theorem 2. If f (x) and its derivatives are continuous, f(x) = x and f

′
(x) < 1, then

there is an interval I = [x − δ, x + δ], δ ≥ 0, such that the iterative scheme xr+1 =
f (xr) converges to x for every x0 ∈ I. Further, if f

′
(x) �= 0, then the convergence is

linear. Alternatively, if f
′
(x) = f

′ ′
(x) = · · · = f(p−1)(x) = 0 and fp(x) �= 0, then the

convergence is of order p.
Proof. (See theorem 2.4 of [11]).
From Theorems 1 and 2, it follows that the iterative scheme is convergent if there

exists δ > 0, such that
∣
∣
∣f

′
(x)

∣
∣
∣ < 1,∀x ∈ (x − δ, x + δ) (3)

However, finding an interval I = [x − δ, x + δ] is difficult.

Let g (x) = f (x) − x, if x
′
is a root of the function g (x) then f

(

x
′) − x

′ = 0.

Lemma 1:f(x) has an invariant point at x
′
iff g(x) = f(x) − x has a root at x

′
.

According to the lemma1, the invariant point problem is transformed into an
unconstrained optimization problem, and defined as:

Minimize y = (f (x) − x)2, subject to x ∈ R.
And the global minimum value of y is 0.

2.2 Mapping Solution Search

With the development of EAs, many new evolutionary techniques are proposed, such as
oppositional-based learning(OBL) [12], space transformation search (STS) [13], Arti-
ficial Bee Colony algorithm [14] etc. Inspired by STS, Mapping solution search MSS
is proposed to improve the robustness and efficiency of meta-heuristic algorithms. The
idea behind of MSS is mapping current solution to a mapping solution. Then the fitness
values of the two solutions were calculated and compared respectively, and the solutions
with better fitness values were retained. MSS technology increases population diver-
sity and promotes algorithm without the difficulty of premature convergence. If we are
searching for x, and if we agree that searching the mapping solution could be beneficial,
then calculating the mapping solution x∗ is the first step.

Definition 1-Let x be a solution in the current search space, x ∈ [a, b],where as x∗ is
the mapping solution, the relationship is defined as follows

x∗ = � − x (4)

where � = a + b is a computable value, a and b represent the limits. It is obvious that
x and x∗ are on the symmetry of �.

Then, the mapping solution x∗ is closer to the global optimum xo than the current
solution x only if the following conditions are met

∣
∣xo − x∗∣∣ <

∣
∣xo − x

∣
∣ (5)
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Hence,
(

xo − x∗)2 − (

xo − x
)2

< 0 =>
(

� − 2xo
)

(� − 2x) < 0 (6)

It is obvious that the x∗ is closer to the xo than the x, when xo and x are located on
the different sides of �

2 .
Analogously, the mapping solution in a multidimensional case can be defined.
Definition-LetX = (x1, x2, . . . , xD)be a solution in theD-dimensional search space,

xj ∈ [

aj, bj
]

.

The mapping solution X ∗ is defined by its coordinates x1∗, x2∗, . . . , xD∗ where

xj
∗ = �j − xj, j = 1, 2, · · · ,D (7)

where �j = aj + bj, aj and bj represent the limits of j-th direction.
Mapping solution search-LetX = (x1, x2, . . . , xD) andX∗ = (x1∗, x2∗, . . . , xD∗) be

the current solution and its mapping solution by MSS, respectively and (X ) be a fitness
function to measure the quality of a solution. If f (X ) is better thanf (X ∗), is survived for
the next generation, otherwise X is replaced by X ∗.

2.3 Garden Balsam Optimization

TheGBOalgorithm is a new swarm intelligence algorithm, first posed byLi et.al. in 2020
[8]. GBO was inspired by the transmission of garden balsam seeds. After maturation,
the seeds of garden balsam are scattered around the mother by their mechanical force,
and the size of the mechanical cracking force is related to the growth environment of
the plant. As the machinery spreads out, a portion of the seed changes its position again
under the influence of external forces.

It can be seen that in each iteration of the algorithm,mechanical propagation operator,
secondary propagation operator, and selection strategy are executed successively until
the end condition is met. In the process of seed propagation, if seed transboundary
behavior occurs, the mapping rule should be executed.

3 Proposed Hybrid Garden Balsam Optimization

The MGBO algorithm is implemented as follows:

3.1 Initialize a Population

Initially, MGBO generates a uniformly distributed initial population ofNinit seeds where
each seed xi(i = 1, 2, ...,Ninit) is a D-dimensional vector. Here D is the number of
variables in the optimization problem and xi represent the i-th seed in the population.
Each seed corresponds to the potential solution of the problem under consideration. Each
xi is initialized as follows:

xki = xkLB + U (0, 1) ×
(

xkUB − xkLB

)

(8)

where, xkLBandx
k
UB are bounds of xi in k-th direction, k = 1, 2, · · · ,D, and U (0, 1)

represents a random number uniformly distributed in the range [0,1].
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3.2 Mechanical Transmission

The number of seeds produced by the parent xi :

Si = fmax − f (xi)

fmax − fmin
× (Smax − Smin) + Smin (9)

Si represents the number of seeds produced by the i-th parent; f (xi) represents the
fitness value of the i-th parent, fmax and fmin are themaximum andminimum values of the
fitness function of the current population, respectively; Smax and Smin are the maximum
and the minimum number of seeds produced by garden balsam, respectively.

Seed diffusion range is as follows:

Ai = (
itermax − iter

itermax
)
n

× fmax − f (xi)

fmax − fmin
× Ainit (10)

when iter = itermax or f (xi) = fmax. Here iter represents the current number of iterations,
itermax represents the maximum number of iterations.

3.3 Second Transmission

In the real world, individual seeds will be randomly transmitted to other places by the
influence of natural forces such as animals, running water, and wind to increase the
population diversity.

Its manifestation is as follows:

x
′
i1 = xB + F(xi2 − xi3) (11)

where, xi1 is the target individual, xB is the optimal solution, F is the zoom factor,
xi2 and xi3 are the solutions of two dissimilar individuals.

3.4 Mapping Solution by MSS

In this step, the new population is generated using MSS. After all new seeds have found
their positions in the solution space, the new mapping solution is created using formula
(7), and each member is evaluated.

3.5 Competitive Exclusion Rules

There is a maximum limit for population size within a specific region. When the popu-
lation reaches its maximum (Nmax), individuals with poor fitness will be eliminated in
competition within the population.The rule is to rank all individuals in the current pop-
ulation according to the fitness value, retain individuals with good fitness values (elite
solutions), randomly select the remaining individuals, and eliminate excess individuals.
The number of elite solutions (Nbest) is calculated according to formula (12) and rounded
up to an integer.

Nbest = iter

itermax
Nmax (12)



A Mapping Solution Search Garden Balsam Optimization 53

3.6 Termination Condition

The above five steps are repeated until the termination condition is met. In the process
of transmission, seeds may fall outside the scope of feasible areas. Such kind of seeds
is meaningless, and they must be pulled back to the feasible area according to certain
rules. The MGBO handles this situation using random mapping rule. That is, the out-
of-bounds seeds are mapped using formula (13), which guarantees that all individuals
remain in the feasible space.

xk
′

i = xkLB + U (0, 1) ×
(

xkUB − xkLB

)

(13)

where, xkUB, x
k
LB and U (0, 1) are the same as in the Eq. (8).

4 Experimental Results and Discussions

An extensive empirical study has been conducted to verify the behavior and perfor-
mance of MGBO. In the study, four intricate invariant point problems commonly used
in research are chosen. Basic information ranges of variables and regarding definitions
are shown in Table 1.

Table 1. Invariant point problems.

Function Definition Range

G1 f1(x) = x2/4000 − cos(x) + 1 = x [−20, 20]

G2 f2(x) = x2 − 10cos(2πx) + 10 = x [−20, 1]

G3 f3(x) = 20 + e − 20e−0.2
√
x2 − ecos(2πx) = x [1, 22]

G4 f4(x) = 418.9829 − xsin(
√
x) = x [400, 500]

4.1 Parameters Setting

To prove the efficiency of MGBO algorithm, it is compared with GBO algorithm, four
state-of-art algorithms, namely PSO [15], DE [16], ABC [17], and TLBO [18]. The
comparative algorithm selected in the experiment has been previously used by different
people in attempts to solve various constrained optimization problems [19–25]. For the
experiments, same stopping criteria and maximum number of function evaluations are
used for the six algorithms.

The termination conditions are a maximum number of iterations (100) and a number
of fitness evaluations (240000). The remaining parameters of comparison algorithms are
considered to be the same as in the original work mentioned above. The parameters of
GBO and MGBO in the experiment are shown in [9].
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Table 2. The obtained statistical results of considered algorithms for four invariant point
problems.

Fun G1 G2 G3 G4

ABC x∗ 1.3540E−14 1.0000 19.9187 490.0310

Best 0.8334E−15 0.0000 1.3078E−13 7.2134E−13

Mean 1.0995E−14 1.0428E−10 3.2026E−11 4.7434E−12

Std 1.2608E−10 3.3387E−09 1.0447E−06 2.8323E−10

Rank 4 5 3 4

PSO x∗ 1.3540E−07 − 2.1491E−06 20.0982 490.0312

Best 1.8334E−14 4.6227E−12 2.7032E−11 1.1157E−10

Mean 1.0995E−10 1.8584E−09 2.8323E−10 3.4669E−08

Std 1.2147E−10 3.9784E−09 5.0332E−10 7.3857E−08

Rank 5 6 4 5

TLBO x∗ – 5.6791E−06 7.8456E−07 20.8259 490.0312

Best 3.2252E−11 6.1534E−13 1.5609E−07 1.3141E−09

Mean 3.7622E−09 4.1623E−10 1.2475E−06 5.6612E−07

Std 4.1853E−09 5.2538E−10 1.5884E−06 6.6350E−07

Rank 6 4 6 6

DE x∗ 1.9380E−13 0.9950 20.8258 490.0312

Best 3.7560E−26 1.8851E−14 1.8859E−10 3.2312E−25

Mean 7.3610E−21 1.5942E−12 9.0160E−09 7.2716E−24

Std 1.2669E−20 2.0479E−12 1.4106E−08 7.2716E−24

Rank 2 3 5 1

GBO x∗ −1.2549E−10 1.0000 20.0983 490.0312

Best 1.2782E−20 1.1907E−20 5.4308E−19 6.9917E−17

Mean 2.6298E−18 6.0087E−17 7.1187E−18 1.0647E−16

Std 2.7852E−18 2.9006E−16 5.2251E−18 2.5084E−16

Rank 3 2 2 3

MGBO x∗ -7.1856E−23 1.0000 21.7043 490.0312

Best 2.3341E−44 0.0000 0.0000 3.4239E−20

Mean 5.7904E−39 4.7689E−39 6.7905E−29 3.0887E−17

Std 2.5462E−38 2.7681E−38 4.9073E−29 2.7942E−17

Rank 1 1 1 2
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4.2 Numerical Analysis

In this study, the proposed WGBO algorithm was applied to four complex invariant
point problems. The function G1 have invariant point at zero. The function G2 have
invariant point at the vicinity of 490. The function G3 has invariant points at 0 and 1.
The function G4 has more than one invariant point.

Targeting at the four invariant point problems, the results, consisting of an optimal
solution (x), the mean value (‘Mean’), best value (‘Best’) and standard deviation (‘Std’)
for 100 independent runs, are showed in Table 2 and are compared with other algorithms.

From the Table 2, WGBO found the exact invariant points for the problems G2
and G3.No other algorithm found an exact invariant point. For the problems G1 and G4,
WGBO found better approximations of the invariant points than the other algorithms.

Furthermore, to prove the overall efficiency of WGBO, the other algorithms are
ranked with WGBO. The algorithm with the optimal mean value is set to 1, and the next
best performing algorithm is set to 2, and so on. From the Table 3,the best performing
algorithm is WGBO, as it achieves the lowest value for Rank.

To test the convergence speedofWGBO, the convergence characteristics for the given
functions for all algorithms are plotted in Fig. 1. These figures indicate that WGBO is
faster than the other algorithms and is quite stable in approaching fixed points for all
functions.

Fig. 1. Convergence characteristics of G1−G4.

It can be seen from the results in Table 2 that MGBO algorithm outperforms other
competitive algorithms in performance. However, a t − test with a significance level of
0.05 is necessary to prove the significance of the proposed algorithm.The test reports
are given in Table 3,which contains p-values and h. When h = 1, the MGBO performed
better than contrast algorithms; when h= 0, it works the other way around. Furthermore,
if the p-value is less than 0.05, then H0 is rejected so the MGBO performed better than
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contrast algorithms; otherwise, H0 is accepted. From Table 4, it can be seen that the
proposed algorithm performed better than contrast algorithms.

In addition, Holm-Sidak test is necessary to prove the significance of the proposed
algorithm. Holm-Sidak test as a post-hoc test method can be used to determine statistical
differences between algorithms. Table 4 shows the Holm-Sidak test results in which the
‘best’ and ‘mean’ solutions are obtained on G1–G4 function. The p-values obtained
by all the algorithms from Holm-Sidak test show the statistical difference between the
proposed garden balsam optimization algorithm and other algorithms.

Table 3. Comparative results for four invariant point problems using t-test.

Algorithms G1 G2 G3 G4

p-value h p-value h p-value h p-value h

1–2 1.1883E−06 1 6.7992E−03 1 1.3683E−03 1 6.5408E−03 1

1–3 2.0614E−07 1 8.9306E−03 1 2.1547E−03 1 2.7036E−04 1

1–4 1.3664E−07 1 8.5067E−07 1 1.9084E−10 1 5.1453E−08 1

1–5 9.1782E−04 1 1.8437E−05 1 2.0117E−04 1 2.2794E−05 1

1–6 1.3408E−06 1 1.3954E−05 1 1.5906E−05 1 3.5227E−06 1
* a 1-MGBO, 2-PSO, 3-GBO, 4-ABC, 5-DE, 6-TLBO

Table 4. Holm-Sidak test for the ‘Best’ and the ‘Mean’ solutions obtained for G1–G4 functions.

Test for best solution Test for mean solution

Algorithma p-value Algorithma p-value

1–3 0.02407 1–3 0.07105

1–5 0.17038 1–5 0.27082

1–4 0.21793 1–4 0.48108

1–2 0.31077 1–2 0.50871

1–6 0.89071 1–6 0.80653
* a 1-MGBO, 2-PSO, 3-GBO, 4-ABC, 5-DE, 6-TLBO

5 Conclusions

In the paper, we have proposed the new evolutionary techniqueMSS,whichmaps current
solution to a mapping solution. The MSS method has been applied to garden balsam
optimization, andproposed the novel hybrid algorithmMGBOto solve complex invariant
point problems. Experimental studies show that MGBO behaves well on four selected
specific invariant point problems with great precision compared with some classical
intelligence algorithms. The performance of this algorithm in solving other optimization
problems needs to be verified by subsequent experiments.
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Abstract. In order to optimize the search process of lion swarm optimization
algorithm, improve the accuracy of the result and save the time, we propose the
parallel symbiotic lion swarm algorithm based on Latin Hypercube. First, Latin
Hypercube is used to initial population. Secondly, themutualistic symbiosismech-
anism is proposed to increase the communications between agents. Then, reverse
learning strategy of dimensional keyhole imaging is added to increase diversity
of the optimization process. Finally, on the premise of ensuring the quality of
the solution, the parallel computation is combined with the improved lion swarm
optimization algorithm to improve the convergence rate. Several benchmark func-
tions are used to evaluate the performance of the improved lion swarm algorithm,
and the running time of the parallel algorithm is compared. Experimental results
show that the efficiency, stability and convergence rate of the improved lion swarm
algorithm are greatly improved.

Keywords: Lion swarm optimization algorithm · Parallel computing · Latin
hypercube distribution · Mutualism · Dimensional keyhole imaging reverse
learning

1 Introduction

In recent years, with the expansion of engineering field, optimization problems also
increase gradually. Using as few resources as possible to solve various problems in the
best way is a hot topic in engineering fields.

To solve the optimization problem, the researchers invented evolutionary computing.
RechenbergSchwefel proposedEvolutionStrategies (ES) [1].With the continuous devel-
opment of evolutionary computing, swarm intelligence algorithms gradually become
the main branch of evolutionary computing. Kennedy proposed Particle Swarm Opti-
mization Algorithm (PSO) by simulating birds’ behavior [2]. The Whale Optimization
Algorithm (WOA) proposed byMirjalili, uses random individuals or optimal individuals
to simulate the hunting behavior of whales [3]. Artificial Bee Colony Algorithm (ABC)
is an algorithm inspired by bee colony behavior, which was proposed by Karaboga [4].
In addition, the Lion Swarm Optimization Algorithm (LSO) with self-organization and
robustness is one of the better algorithms proposed in recent years.
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In the field of LSO, there have been some research progresses. For example, Wang
B proposed a lion swarm optimization on the idea of the genetic algorithm [5]. LSO
is an emerging swarm intelligence optimization algorithm proposed by Shengjian Liu
in recent years [6]. Improving the theoretical framework of LSO makes it have a good
optimization mechanism and efficiency, reliability, stability and robustness, which is the
current required research work.

As the scale of the heuristic algorithm increases, the running time of the algorithm
gradually increases, so the parallel evolutionary computation begins to appear [7]. In the
process of development, parallel computing is divided into two models: island model
and master-slave model. The research on the island model mainly has two directions.
The first is to gradually extend parallel computing to broader evolutionary algorithms
[8]. The second is to deploy the parallel algorithm to different hardware architectures
and explore the influence of different hardware architectures on the algorithm, including
multi-core CPU, GPU and FPGA.

2 Parallel Computing

2.1 Coarse-Grained Parallel Computing and Fine-Grained Parallel Computing

Coarse-grained parallel computing can use a few of processors to divide a large pop-
ulation into several groups. Each sub-population contains individuals with different
division, and each sub-population is assigned to a processor, which can independently
perform serial computing in parallel. After several iterations, the local optimum in the
population is transferred to all the other neighboring sub-populations. In the exchange
of local optimum, two processes of sending and receiving are carried out in parallel [9].

When the number of processors in the parallel system is large enough, the parallel
system can allocate one processor to each agent. But above situation is ideal. Each
sub-population is assigned one processor, and these subgroups are guaranteed to have a
lot of frequent communications, ensuring that the optimal fitness is transmitted to each
processor [10].

2.2 Master-Slave Parallel Computing and Island Parallel Computing

The master-slave model and island model is shown in Fig. 1. In coarse-grained parallel
model, there is amaster processor that stores the entire population, and assigns population
individuals to multiple slave processors for evaluation. The master-slave parallelization
method is to leave the global operations to the processor that controls the algorithm
process. In this form of parallel intelligent optimization algorithm, there is only one
population.

In island model, each sub-population is an island that contains multiple individuals.
The process of the algorithm is as follows: each island runs a serial algorithm indepen-
dently of each other, and an agent exchange takes place between the islands at a specific
interval [11]. It is found that the accuracy of the island model is higher than that of the
original evolutionary algorithm in specific application scenarios, so the paper studies the
parallel algorithm of multiple sub-populations. Traditionally, each process is associated
with one CPU core [12].
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Fig. 1. Master-slave model and island model.

3 Research on Lion Swarm Optimization Algorithm

3.1 Lion Swarm Optimization Algorithm

Shengjian Liu proposed LSO bymodeling the hunting behaviors of lion swarm in nature.
Funston, P. J proposed the specific way of lion swarm hunting behavior through a large
number of observations: lion swarm in nature consists of adult male lion, lionesses and
lion cubs [13]. Male lion accounts for a small proportion of the lion swarm, and their
hunting behaviors are less. Lionesses account for a large number of lions and are themain
force of hunting. Due to small size of adult lions, lion cubs usually wander randomly or
hunt with adult lions.

The individual lion is abstracted as the independent variable, and the prey is
abstracted as the fitness of the function. According to the fitness of the lion, LSO divides
the lion population into three types: male lion, lionesses and lion cubs. Among them,
there is only one male lion, which represents the global optimum. The male lion and
lionesses are adult lions, and the proportion of adult lions in the population is η, while
the proportion of lion cubs is 1 − η.

Take solving the minimum value of the function: let the dimension of the function
be D, and there are SN lions in the population, where the position of the i-th lion in the
t-th iteration is xti = (xi1, xi2, . . . , xiD), 1 ≤ i ≤ SN . The specific movements of lions
can be divided into three categories:

The Male Lion Moves Slightly. According to the behavior of the male lion, we set the
male lion to make small movement near the global optimal, as shown in (1):

xt+1
opt = (

1 + γ pti − gt
)
gt (1)

where, γ is a random number generated according to the standard Gaussian distribution
N (0, 1); gt represents the optimal position in the whole population at the t-th iteration;
pti represents the historical best position of the i-th individual in the t-th iteration.

The Lionesses Move in Coordination. In the lion swarm algorithm, a group of indi-
viduals with lower fitness form lioness swarm, and move in pairs, as shown in
(2):

x(t+1)
i =

(
1 + γαf

)(
pti + ptc

)

2
(2)
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In (2), ptc is the historical optimal position of a lioness randomly selected in the
t-th iteration, which is used for pairwise coordinated movement. αf is the disturbance
factor of lioness movement, evolutionary algorithm also needs to balance the process of
exploration and development. At the beginning of the algorithm, exploration should be
carried out in a wide range of movement, while development should be carried out in a
small range at the end. In LSO, the specific value of αf is shown in (3):

αf = step × exp

(−30t

T

)10

(3)

In (3), T is the maximum number of iteration; the specific value of step is step =
0.1(high − low), where high and low respectively represent the mean of the maximum
and minimum of the value range of each dimension.

The Lion Cubs Imitate Movement. In LSO, lion cubs are the individual with large fit-
ness, which are mainly used for global optimization. In order to increase the randomness
of the lion cubs’ behaviors, the movement mode of the lion cubs is randomly selected
among the three movement modes: following the male lion, following the lionesses and
wandering randomly, as shown in (4):

xt+1
i =

⎧
⎪⎪⎨

⎪⎪⎩

(1+γαc)(pti+gt)
2 , q ≤ 1

3
(1+γαc)(pti+ptm)

2 , 1
3 < q ≤ 2

3
(1+γαc)

(
pti+gt

)

2 , 2
3 < q ≤ 1

(4)

In (4), αc is the disturbance factor of lion cubs movement, which is similar
to lionesses, and decreases with the increase of iteration. In the algorithm, αc =
step × (T − t)/T , q is a random number generated by uniformly distributed U (0, 1). If
q ≤ 1

3 , lion cubs move to the current global optimum. If 1
3 < q ≤ 2

3 , lion cubs move
with the lionesses, ptm represents the historical optimal position of the lionesses in the
t-th iteration; and gt = high + low − gt if 2

3 < q ≤ 1. The authors suggest that the
value of η should be between 0.2 and 0.3, and the values of αc and αf are related to the
problem to be optimized [6].

3.2 Latin Hypercube Distribution

The Latin Hypercube (LHC) method is a stratified stochastic process proposed by M.D.
McKay [14]. In the LHC, to generate n points, the spatial distribution of each variable is
divided into n equal intervals, within which the LHC randomly generates a point. These
points can be generated as (5):

xi = 1

nr
+ i − 1

n
(5)

In (5), r is a random number from 0 to 1, xi is the i-th point generated in the i-th
interval. And LHC remembers formation interval of the point that can help to get a
representative set of points, increasing the diversity of the population.
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3.3 Symbiotic Search Algorithm

Symbiotic Organisms Search Algorithm (SOS) is a heuristic search algorithm based on
biological symbiosis, which simulates the interaction between individuals [15]. Com-
mon symbiotic relationships include mutually beneficial symbiotic relationships, partial
benefit symbiotic relationships and parasitic relationships. This paper guides the excel-
lent symbiosis mechanism in SOS, strengthens the information interaction of the agents
in the lion swarm algorithm.

A new individual is obtained through the interaction between two individuals, and
the interaction formulas are shown as (6), (7), (8):

xt+1
i = xti + rand(0, 1) × (

xtbest − RMV ∗ bf 1
)

(6)

xt+1
j = xtj + rand(0, 1) × (

xtbest − RMV ∗ bf 2
)

(7)

RMV =
(
xti + xtj

)
/2 (8)

In (6), (7), RMV represents the interaction relationship between two agents,
rand(0, 1) is a random number between 0 and 1, xtbest is the optimal individual. bf 1
and bf 2 are benefit factors, representing the benefit level obtained by the individual
from the relationship. bf 1 and bf 2 can be set to 1 or 2, indicating partial or full benefits.

An agent is randomly selected to interact with the current agent, so that only the
current agent can benefit, the formula is as follows (9):

xt+1
i = xtj + rand(−1, 1) ×

(
xtbest − xtj

)
(9)

Copy and mutate the current agent. If the fitness of the mutated agent is better than
that of the mutated agent, the formula is as follows (10):

RPV (pick) = rand(1, length(pick)) ∗ (ub(pick) − lb(pick)) + lb(pick) (10)

In (10), pick is the variant, ub is the upper bound of search, lb is the lower bound of
search.

3.4 Dimensional Keyhole Imaging Reverse Learning

In view of the problem that the algorithm falls into local optimum in the process of
optimization, we use reverse learning strategy in the improvement of the intelligent
optimization algorithm, which makes the results more accurate [16]. The formulas cre-
ated by the reverse learning method based on the creation of keyhole imaging are as
follows (11), (12):

xt+1
i =

(
ub + lb

)

2
+

(
ub + lb

)

2k
− xti

k
(11)

k =
(

1 +
(
t

T

) 1
2
)10

(12)

In the (11), (12), xti is the component of the current individual in the i-th dimension,
xti is the current iteration, and xti is the maximum iteration.
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3.5 Ideas and Formulas for Algorithm Improvement

Improvement Way of Thinking and Counter Plan. The stagnation preventionmech-
anism and disturbance mechanism are added to avoid falling into local optimum. Hybrid
algorithms are designed to combine two or multiple algorithms to enhance the overall
performance.

The Latin Hypercube strategy is introduced through (5) to change the initial pop-
ulation value. In the process of location updating, lionesses updating formula (2) is
combined with symbiosis mechanism, so that lionesses updating formula as (13):

xt+1
i =

{
pti + rand(0, 1) ×

(
gt − (pti+ptc)

2

)
, q ≤ 1

2

pti + rand(0, 1) × (
gt − (

pti + ptc
))

, 1
2 < q ≤ 1

(13)

The adjustment factor λ and the reverse learning strategy of keyhole imaging are
introduced, and the improved lion cubs’ formulas are as follows (14), (15):

xt+1
i =

⎧
⎪⎪⎨

⎪⎪⎩

(1+γαc)(pti+gt)
2 , q ≤ λ

2
(1+γαc)(pti+ptm)

2 , λ
2 < q ≤ λ(

high+low
)

2 +
(
high+low

)

2 − xti
k , λ < q ≤ 1

(14)

λ = T

5t + T
(15)

ptig
t, ptm, pti, high, low, k, γ , αc have the same meaning as formulas (1) (2) (3) (4) (12).
In the early of the algorithm, the lion cubs perform more local optimization; more

lion cubs perform the reverse learning strategy in the end. And if the proportion of adult
lions change, there will still be a certain number of lion cubs to carry out the reverse
learning strategy in the end, which improves the robustness of the algorithm and ensures
the stability of the algorithm.

Pseudocode. The steps of the improved lion swarm optimization algorithm (ILSO) are
as follows:

Step1: Initialization, set the maximum number of iterations T and the adult lion pro-
portion η; randomly generate SN lion individuals. Then, the lions are divided into male
lion, lionesses and lion cubs according to the fitness. Finally, the initial historical opti-
mal position of the individual is set as the current position, and the initial global optimal
position is set as the male lion position.
Step2: According to formulas (1), (13) and (14), the movement of male lion, lionesses
and lion cubs is completed respectively.
Step3: Lion swarm update, update the fitness of all individuals; update pti and gt based
on the fitness.
Step4: Algorithm termination, repeat Step2 through Step3 until t = T , the global optimal
individual is obtained and its fitness is calculated.
Step5: Output lion position and optimal fitness.
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3.6 Computational Results and Conclusion

PSO is an uncertain algorithm that reflects natural organisms. It has more opportunities
to solve the global optimum, and also has self-organization and evolution. WOA is a
new type of intelligent optimization algorithm. Its local search uses the shrinkage and
encirclement mechanism, which has good universality and has a good effect on some test
functions. In order to verify the effect of ILSO proposed in this paper, the ILSO, LSO,
PSO and WOA are simulated for some basic test functions. The number of populations
is 60, the number of experimental iterations is 500, the dimension of the test function is
D = 15.

The fitness curve after running the eight benchmark functions with the four algo-
rithms is shown in Fig. 2. The optimal fitness of the simulation is shown in Table 1.
From Fig. 2 and Table 1, it can be seen that PSO converges quickly in the early stage,
but the convergence rate is slow and the results are poor because it cannot jump out of
the local optimum; WOA has slow convergence rate, low precision and it is easy to fall
into local optimum; although LSO can obtain the optimum, the accuracy of the result
also needs to be improved. Compared with other algorithms, ILSO can reach the theo-
retical optimal fitness in multiple test functions, and after adding the symbiosis strategy
and dimension by dimensional keyhole imaging strategy, ILSO can improve the result
accuracy and convergence rate. We can conclude from the simulation experiment that
ILSO is effective and helpful to the optimization process and the final result.

Table 1. Results of algorithm.

Function LSO ILSO WOA PSO

F1 Bent Cigar 1.00E+01 1.00E+01 1.88E+08 4.09E+08

F2 Sum of different power 1.00E+01 1.00E+01 3.80E+23 3.69E+25

F3 Zakharov 3.42E+02 1.00E+01 7.05E+01 4.49E+06

F4 Rosenbrock 1.10E+01 1.00E+01 1.27E+04 9.60E+06

F5 Rastrigin 1.00E+01 1.00E+01 1.54E+02 2.81E+02

F6 Expanded Schaffer 1.00E+01 1.00E+01 1.29E+01 1.51E+01

F7 Levy function 1.19E+01 1.18E+01 4.91E+01 1.18E+02

F8 Ackley 9.16E-38 0.00E+00 1.24E+04 1.31E+04
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Fig. 2. Comparison charts of test function results of optimization algorithms: (a) F1 (b) F2 (c) F3
(d) F4 (e) F5 (f) F6 (g) F7 (h) F8.

4 Parallel Lion Swarm Optimization Algorithm

4.1 Ideas and Pseudocode

The idea of the parallel lion swarmalgorithm is as follows. The size of the total population
is set as SN . The parallel algorithm based on the islandmodel divides the total population
into N sub-populations on average, and the size of each sub-population is denoted as
SNsub. According to the formula (16), we can obtain the value of SNsub:

SNsub = SN

N
(16)

Then each sub-population independently runs LSO. After a specific number of iter-
ations, each sub-population performs male lion exchange until the algorithm terminates.
The optimal fitness in all sub-populations is the final solution of the algorithm. The con-
nection between islands is called the topology, and the topologies include Star topology,
Ring topology, and Fully connected topology [17].
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Another important aspect of island model-based parallel LSO is parallel strategy.
Topology is a coarse-grained parallel computing and information communication, and
the parallel strategy determines the communication between sub-populations. The paral-
lel strategy needs to be determined in three aspects: the interval of iterations between two
migrations, which is called migration cycle R; the number of agents that determines each
migration is called migration ratio; migration rules that determine which agents migrate
out and which are replaced. When the migration cycle is met, the optimal individual in
each sub-population is migrated to the adjacent population, and the worst individual in
the adjacent population is replaced. Using the parallel strategy above, suppose that there
are N sub-populations, and the communication time between each sub-population can
be expressed by formula (17):

comm = N × T

R
(17)

Table 2 shows the pseudocode of ILSO after the addition of parallel computing:

Table 2. Pseudocode for parallel lion swarm optimization algorithm.
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4.2 Experimental Results and Analysis

In this experiment, parallel computing is added to ILSO. The experimental environment
is Window10, 32G RMA and 3.0GHz CPU, the simulation platform is Python 3.8. The
number of agents in the population is 96, and the number of experimental maximum
iterations is 500, the dimension of the test function isD = 1000, the number of iterations
reaches 300, the migration period is R = 10 and other parameters remain unchanged.
Experimental results are shown in Table 3.

From Table 3, we can conclude that after adding parallel computing to the LSO, the
parallel lion swarm optimization algorithm has the same precision as the LSO, but as
the process increases, the optimization ability decreases. This is because the number of
agents in the sub-population decreases. It shows that when the total number of agents in
the population is constant, as the number of sub-populations increases, the accuracy of the
algorithm will decrease. From the above analysis, the parallel lion swarm optimization
algorithm can effectively reduce the running time of the algorithm under the condition of
ensuring the same accuracy as LSO.Moreover, parallel algorithms have good portability
and can be extended to other swarm intelligence optimization algorithms.

Table 3. Results of algorithm.

F Serial computing Parallel two
processes

Parallel three
processes

Parallel four
processes

Mean Time/s Mean Time/s Mean Time/s Mean Time/s

1 1.00E+01 46.7 1.00E+01 23.2 1.22E+01 20.6 1.25E+01 16.5

2 1.00E+01 60.9 1.00E+01 33.5 1.18E+01 18.0 1.26E+01 17.6

3 1.01E+01 54.6 1.00E+01 30.7 1.11E+02 25.4 1.14E+01 17.1

4 1.10E+01 70.2 1.00E+01 37.8 1.31E+01 29.7 1.91E+01 18.1

5 1.00E+01 79.0 1.00E+01 40.4 1.11E+01 19.6 1.16E+01 22.2

5 Conclusion

In order to improve the performance of LSO, this paper introduces the Latin Hypercube
strategy to make the initial population evenly distributed and increase the diversity of
the population. Then the paper introduces the symbiosis mechanism from the Symbiotic
SearchAlgorithm,which increases the collaboration and communication between agents
and accelerates the convergence rate of the algorithm. Inspired by the principle of optics,
the reverse learning strategy of dimensional keyhole imaging is introduced to improve
the ability of the algorithm to jump out of local optimum. Finally, parallel computing
is introduced to speed up the calculation speed of the algorithm. After multiple test
function solving experiments, the stability of the improved algorithm is verified by the
fitness curve, the time spent, and the obtained optimal fitness.
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Abstract. As a famous representative of the NP-Hard problem, the optimization
of cognitive radio spectrum allocation has attracted the attention of many schol-
ars. In this paper, a quantum lion swarm optimization (QLSO) algorithm is pro-
posed to solve the problem of spectrum allocation. Firstly, we introduce the basic
lion swarm optimization algorithm and cognitive radio network model. Secondly,
we introduce quantum coding and order some operators in the QLSO algorithm.
Finally, we select several common swarm intelligence algorithms as a compari-
son and conduct simulation experiments. The experiments on randomly generated
spectrum allocation models with different topologies show that the QLSO algo-
rithmhas higher solution quality and convergence performance than the other algo-
rithms, such as discrete particle swarm optimization (DPSO) algorithm, genetic
algorithm (GA), and binary lion swarm optimization (BLSO) algorithm.

Keywords: Quantum lion swarm optimization (QLSO) algorithm · Cognitive
radio · Spectrum allocation · Particle swarm optimization (DPSO) algorithm ·
Genetic algorithm · Binary lion swarm optimization (BLSO) algorithm

1 Introduction

In recent years, with the vigorous development of wireless communication technology,
the number of wireless terminal devices has also increased sharply, resulting in the prob-
lem of a lack of spectrum resources. To improve the utilization of spectrum resources,
cognitive radio (CR) [1] can be adopted. Cognitive radio can adaptively adjust its internal
parameters, and achieve the best spectrum utilization based on reliable network commu-
nication. Spectrum allocation refers to allocating the available spectrum to one or more
designated users according to the number of users who need to access the spectrum
and their service requirements. Its main purpose is to make rational and effective use of
spectrum resources and at the same time avoid interference caused by sharing spectrum
between cognitive users and authorized users.

At present, scholars like to use intelligent optimization algorithms to solve NP-hard
problems such as spectrum allocation, and have achieved good research results in this
field. In the field of artificial fish swarm algorithm, literature [2] gives a method to solve
the spectrum allocation problem based on the artificial fish swarm algorithm and studies
the influence of its internal mechanism on the algorithm convergence. Literature [3]
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introduces the concrete process of applying an artificial bee colony algorithm to solve
the spectrum allocation problem of cognitive radio, and proves the effectiveness and
stability of the algorithm.

Lion Swarm Optimization (LSO) [4] algorithm is a new swarm intelligence opti-
mization algorithm proposed by Liu et al. in 2018, which has the advantages of fast
convergence, high optimization precision, and good stability [5]. However, the basic
LSO algorithm is mainly used for continuous function optimization. To make the basic
LSO algorithm solve the combinatorial optimization problem, some scholars introduced
binary coding based on the basic lion swarm optimization algorithm and proposed a
BLSO algorithm for solving the 0–1 knapsack problem [6].

However, when the BLSO algorithm is used to solve the spectrum allocation problem
of cognitive radio, the convergence speed is slow. Literature [7] proposed a spectrum
allocation model based on a quantum genetic algorithm, which effectively reduced the
number of iterations and improved the convergence of the algorithm.

Based on the above research, this paper proposes a quantum lion swarm optimization
(QLSO) algorithm to solve the spectrum allocation problem of cognitive radio.

2 Fundamental Knowledge

2.1 LSO Algorithm

Lions swarm optimization algorithm is a swarm intelligence algorithm that simulates
the behavior of lions [5]. Suppose in the D-dimensional search space, N lions from a
group and the position of the jth lion in the D-dimensional search space is denoted as
xj = (xj1, xj2, · · ·, xjD).

The lion king updates the position according to formula (1).

xt+1
j = gt(1 + γ ||ptj − gt ||) (1)

The lionesses work together to update their positions according to formula (2).

xt+1
j = ptj + ptc

2

(
1 + αf γ

)
(2)

The cubs update their positions according to formula (3).

xt+1
j =

⎧
⎪⎪⎨

⎪⎪⎩

gt+ptj
2 (1 + αcγ ), 0 < q ≤ 1

3
ptm+ptj

2 (1 + αcγ ), 1
3 < q ≤ 2

3
gt+ptj
2 (1 + αcγ ), 2

3 < q < 1

(3)

where gt is the optimal position of the tth generation population; γ is a random number
generated according to the normal distributionN(0,1); ptj is the historical optimal position

of the jth lion in the tth generation; ptc is the historical best position of a hunting partner
randomly selected from the tth generation of lioness population; αf is the disturbance
factor of female lion’s moving range; gt = LOW + HIGHT − gt is the jth cub being
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driven away within the hunting range position, LOW and HIGHT are the minimum
mean and maximum mean of each dimension in the lion’s range space respectively; ptm
is the tth historical best position of the cub following the lioness; αc is the disturbance
factor of the juvenile’s moving range; the probability factor q is in accordance with the
uniform distribution Uniform random value generated by U[0,1].

The algorithm flow is as follows [8]:
Step 1. Initialization: Initialize parameters T. Randomly generate N lion swarm

individuals xki . Firstly, sort according to the fitness value of the individual, and then
determine the initial positions of the lion king, lioness, and cubs.

Step 2. Lions move: According to (1), (2), and (3), complete the movement of the
lion king, lioness and lion cubs.

Step 3. Lions update: Update the fitness value; update ptj and gt .
Step 4. Algorithm termination: Repeat steps 2 to 3 until k = T; record the optimal

fitness value and the optimal individual of the population.

2.2 Cognitive Radio Network Model

Figure 1 is the topology of a cognitive radio network, in which ➀–➄ represents five
secondary users, I–IV represents four primary users, and there are three frequency bands
available in the cognitive radio network, which are indicated by A, B, and C respectively.

Fig. 1. Topology of cognitive radio network

Users I to I–IV use frequency bands A, B, C, and C respectively. Secondary users of
cognitive radio should use frequency bands that are not currently used by primary users
to access. If the channel has been assigned to the primary user, nearby secondary users
cannot use the channel to avoid interference with the primary user. The circle in Fig. 1
represents the coverage of each major user. If secondary users happen to fall into this
circle, then secondary users cannot use this channel. For example, if secondary user ➀
falls into the circle of primary user 1, secondary user ➀ can’t use channel A, but can
only use channels B and C.
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2.3 Mathematical Description of Cognitive Radio Graph Theory Model

Assuming that N secondary users are competing for M channels in the cognitive radio
network, the availability matrix, reward matrix, interference matrix, and assignment
matrix can be defined as follows:

L = {
ln,m|ln,m ∈ {0, 1}}N∗M (4)

B = {bn,m}N∗M (5)

C = {
cn,k,m|cn,k.m ∈ {0, 1}}N∗N∗M (6)

A = {
an,m|an,m ∈ {0, 1}}N∗M (7)

where ln,m = 1 indicates that user n can use channel m, and ln,m = 0 means that user n
can’t use channelm. bn,m indicates the benefit obtained by user nwhen using channelm.
cn,k,m = 1 indicates that interference will occur when users n and users k use channelsm
at the same time, and cn,k,m = 0 means no interference. If c = k, then cn,n,m = 1− ln,m.
an,m = 1 indicates that the channel m has been assigned to the user n, and an,m = 0
means that the channelm is not assigned to the user n. The assignment matrix must meet
the interference constraint conditions defined by the interference matrix C according to
formula (8).

an,m + ak,m ≤ 1, cn,k.m = 1, ∀n, k < N ,m < M (8)

According to the assignment matrix A, the total benefit of the whole cognitive radio
network are as follows:

U (R) =
∑N

n=1
βn =

∑N

n=1

∑M

m=1
an,m · bn,m (9)

where βn is the total benefit obtained by user n.
The purpose of spectrum allocation in cognitive radio is to maximize the total ben-

efit of all users in the system according to the formula (10). While fairness among
participating users should be considered an important factor according to formula (11).

f 1 = max(U (R)) = max

(∑N

n=1

∑M

m=1
an,m · bn,m

)
(10)

f 2 = max
(
Ufair

) = max

(∏N

n=1

(
βn + 10−4

)) 1
N

(11)

In order to ensure that the parameter value is not 0, for each βn, plus a tiny positive
number10−4.

The optimization benefit maximization objective function f1 and fairness objective
function f2 are weighted and summed to solve the maximum function f :

f = ω1 ∗ f1 + ω2 ∗ f2, ω1 + ω2 = 1 (12)
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3 Proposed Method

3.1 Coding Mode of Quantum Lion Swarm

In the QLSO algorithm, the coding of lions is realized by using a quantum bit (qubit),
and a qubit can be “0” or “1” or the superposition of both. A qubit can be expressed as
follows:

|ψ〉 = α|0〉 + β|1〉 (13)

where α and β represent the probability amplitudes of state |0〉 and state |1〉. The prob-
ability of a qubit in the “0” state is |α|2, and the probability of a qubit in the “1” state is
|β|2. The normalization conditions can be expressed as |α|2 + |β|2 = 1.

With qubit coding, the QLSO population with the population of N can be expressed
as x(t) = {xt1, xt2, xt3, · · · , xtj , · · · , xt

N
}. Where t is the current iteration number, and xtj

is the j lion in the t generation population, which can be expressed as follows [9]:

xtj =
[

αt
j1

β t
j1

∣∣
∣∣∣
αt
j2

β t
j2

∣∣
∣∣∣
αt
j3

β t
j3

∣∣
∣∣
· · ·
· · ·

∣∣
∣∣
αt
ji

β t
ji

∣∣
∣∣
· · ·
· · ·

∣∣
∣∣
αt
jD

β t
jD

]

,

∣
∣∣αt

ji

∣
∣∣
2 +

∣
∣∣β t

ji

∣
∣∣
2 = 1(i = 1, 2, · · · ,D) (14)

3.2 Quantum Measurement of Population

The measurement will change the state of the qubit, and make it collapse from the
superposition state of state |0〉 and state |1〉 to a specific state. A group of states P(t)
will be obtained by measuring each individual in the population x(t) once. P(t) is a set
of binary solutions. The value of “0” or “1” for each bit is determined according to the

value of
∣∣∣αt

ji

∣∣∣
2
or

∣∣∣β t
ji

∣∣∣
2
in xtj . In a quantum computer, measuring the quantum state will

make the system collapse into a single state. However, when the QLSO algorithm runs in
a classic computer, the collapse will not happen, so we can choose to randomly generate

some [0,1]. If it is greater than
∣∣∣αt

ji

∣∣∣
2
, take “1”; otherwise, take “0”.

3.3 Renewal of Quantum Population

When the population is initialized, both α1
ji and β1

ji in x1j are initialized to 1√
2
, which

means that all states are superimposed with the same probability in the initial search. In
quantum theory, the transition between states is realized by the quantum gate transfor-
mation matrix, so the rotation angle of the quantum revolving door can also represent
the variation of quantum chromosomes, and then the information of the best individual
can be added to the variation to accelerate the convergence of the algorithm. In QLSO,
the revolving door is used as the Q-gate, and the matrix expression is as follows:

U (�θi) =
[
cos(�θi)

sin(�θi)

−sin(�θi)

cos(�θi)

]
(15)
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Table 1. Adjustment strategy of quantum revolving door

S(αi, βi)

xi bi f (xi) ≥ f (bi) �θi αiβi > 0 αiβi > 0 αi = 0 βi = 0

0 0 F 0 - - - -

0 0 T 0 - - - -

0 1 F Delta +1 −1 0 ∓1

0 1 T Delta −1 +1 ∓1 0

1 0 F Delta −1 +1 ∓1 0

1 0 T Delta +1 +1 0 ∓1

1 1 F 0 - - - -

1 1 T 0 - - - -

where �θi(i = 1, 2, · · · ,D) is the angle at which each qubit rotates to “0” or “1”
(Table 1).

Among them, xi is the ith dimension of the current particle, bi is the ith dimension
of the target particle, f (x) is the fitness function, �θi is the size of the rotation angle,
which controls the convergence speed of the algorithm and s(αi, βi) is the direction of
the rotation angle to ensure the convergence of the algorithm.

The operation of the quantum revolving door can be defined as the operator

Θ
(
xtj , b

t
k

)
, where xtj represents the jth lion in the tth generation population, and btk

represents the kth lion selected in the tth generation population.
The quantum NOT gate is a 1-bit quantum gate, and the qubit |1〉 becomes |0〉 after

passing through the NOT gate, and the qubit |0〉 becomes |1〉 after passing through the
Not gate. The matrix is expressed as:

U =
[
0

1

1

0

]
(16)

The quantum Not gate is defined as the operator ϕ(xtj , i), where x
t
j represents the j

th lion

in the tth generation population and i represents the ith dimension of the jth lion. Operator
ϕ means that only xtji t is inverted, and the rest remains unchanged.

3.4 QLSO Algorithm

In the process of optimization, the movement of the lion king, lioness and cubs are
completed according to

xt+1
j = ϕ(gt, pos) (17)

xt+1
j = Θ

(
xtj , p

t
c

)
(18)
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xt+1
j =

⎧
⎪⎨

⎪⎩

Θ(xtj , g
t) 0 < rand(0, 1) ≤ 1

3

Θ(xtj , p
t
m) 1

3 < rand(0, 1) ≤ 2
3

Θ(xtj , g
t) 2

3 < rand(0, 1) ≤ 1

(19)

where the meanings of the symbol gt , ptc, p
t
m are the same as those in formula (1), (2)

and (3). gt = 1 − gt , which is to invert every bit of gt by bit, which is a typical elite
reverse learning thought [10]. ϕ and Θ are the operators defined before.

The pseudo-code of the QLSO algorithm is as follows:

3.5 Spectrum Allocation Algorithm Based on QLSO

When the QLSO algorithm is applied to solve the spectrum allocation problem in the
cognitive radio system, the position of each lion corresponds to a spectrum allocation
solution. For a cognitive radio system with N sub-users and M channels, the location of
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the lion should correspond to an N*M matrix. With the increase of the number of users
N and the number of channels M, the size of the location matrix rapidly increases. To
solve this problem, it is necessary to encode the position variable of the lions.

In the previous mathematical description of the spectrum allocation model, if ln,m =
0, channel M cannot be allocated to user N, so an,m = 0. In this way, only the elements
in the distribution matrix A corresponding to the positions of the elements with a value
of 1 in the availability matrix L need to be taken out to form the position vector of the
lion group, and the remaining elements with a value of 0 are ignored. A specific codec
demonstration diagram [11] is shown in Fig. 2 (N = 5, M = 6), and x is the position
vector of the lion needed in the algorithm.

Fig. 2. Schematic diagram of coding

4 Experiments and Results

4.1 Simulation Experiment Parameter Setting

The simulation is a noiseless and static cognitive radio system. Given an area of 10 ×
10, k primary users and n secondary users are randomly set, and there are m available
channels. Each primary user randomly selects one channel as his authorized channel,
and the power coverage of the primary user is dp. The power coverage of the secondary
user is D, which is set between [dmin, dmax]. The values of above parameter are shown
in Table 2. Parameters of available matrix L, reward matrix B, and interference matrix
C are generated by referring to the pseudo-code in Appendix 1 of reference [12].

The values of algorithms parameter are shown in Table 3. In order to compare
the performance of the algorithms in this paper, the algorithms in this paper take the
total system bandwidth revenue (ω1 = 1, ω2 = 0), the fairness of cognitive users’
access (ω1 = 0, ω2 = 1) and the overall system performance (ω1 = 0.4, ω2 = 0.6)
as evaluation functions, and get different algorithms under three evaluation functions
according to the formula (12).
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Table 2. Parameters setting of simulation

Variable Value Meaning

K 20 Primary user number

N 10 Secondary user number

M 10 Free channel number

dp 2 Primary user’s power coverage

dmin 1 Minimum secondary user’s power coverage

dmax 4 Maximum secondary user’s power coverage

Table 3. Parameters setting of DPSO, GA, BLSO and QLSO

Variable Value Meaning

N 20 Population size

Vmax 4 Maximum speed of DPSO

Vmax −4 Minimum speed of DPSO

c1, c2 2 Learning factor of DPSO

Pc 0.8 Cross probability of GA

Pm 0.01 Variation probability of GA

T 1000 Maximum iteration number

4.2 Experimental Results and Analysis

To verify the performance of spectrum allocation in cognitive radio based on the QLSO
algorithm, the DPSO algorithm, GA, and the BLSO algorithm, and QLSO algorithm
will be applied to solve the spectrum allocation problem in cognitive radio at the same
time, and their experiences will be compared.

Firstly, 10 topological structures are randomly generated based on the cognitive
radio parameters set above. Then, the DPSO algorithm, GA, the BLSO algorithm, and
the QLSO algorithm are used for spectrum allocation respectively, and their convergence
speed is observed.

From Figs. 3, 4, and 5, we can see that the running results of BLSO algorithms and
QLSO algorithms are better than those of DPSO algorithms and GA. In 10 different
topologies, the running result of the QLSO algorithm is slightly better than that of the
BLSO algorithm. FromFigs. 6, 7, and 8, it can be found that the convergence speed of the
DPSO algorithm and QLSO algorithm is faster than that of the BLSO algorithm and GA.
The convergence results of the QLSO algorithm and BLSO algorithm are similar, and
the iterative results of these two algorithms are better than those of the DPSO algorithm
and GA.
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Fig. 3. Comparison chart of system benefit Fig. 4. Comparison chart of system fairness

Fig. 5. Comparison chart of system with both
benefit and fairness

Fig. 6. Iterative process of system benefit

Fig. 7. Iterative process of system fairness Fig. 8. Iterative process of system with both
benefit and fairness



80 K. Jiang and M. Jiang

We define three optimization problems: the total system bandwidth revenue (ω1 =
1, ω2 = 0), the fairness of cognitive users’ access (ω1 = 0, ω2 = 1), and the overall
system performance (ω1 = 0.4, ω2 = 0.6) as opt 1 opt 2, and opt 3. When the certain
topological structure is fixed, ten experiments are carried out and the average value is
taken. The number of iterations is the minimum number of iterations recorded after an
algorithm reaches the convergence value. The experimental data are shown in Table 4.

Table 4. Comparison of the algorithms for different optimization problems

Algorithm Value Iteration

opt1 opt2 opt3 opt1 opt2 opt3

GA 1.15E+04 9.64E+02 4.67E+03 450 647 469

DPSO 1.38E+04 1.15E+03 5.58E+03 262 186 662

BLSO 1.45E+04 1.20E+03 6.04E+03 771 705 675

QLSO 1.50E+04 1.25E+03 6.15E+03 317 436 379

Table 4 shows the specific comparison results of the four optimization algorithms.
We can clearly find that QLSO algorithm is much higher than the other three algorithms
in terms of optimization accuracy, no matter which type of optimization problem it
solves. However, when QLSO algorithm is solved, although some execution efficiency
is sacrificed, the accuracy is greatly improved. Combining Figs. 6, 7 and 8, it can be
found that the proportion of local and global search of QLSO algorithm is balanced, and
it can avoid falling into local extremum to some extent.

5 Conclusion

Firstly, this paper introduces the mathematical descriptions of the standard lion swarm
optimization algorithm, cognitive radio networkmodel, and cognitive radio graph theory
model. Then, the key points of the QLSO algorithm are introduced in detail, including
quantum lion encoding, quantum population measurement, quantum population update,
and basic flow. Finally, the spectrum allocation algorithm based on QLSO is introduced,
and a new spectrum allocation algorithm based on LSO is proposed with total bandwidth
benefit, user access fairness, and overall system performance as evaluation functions,
and its performance is compared with the DPSO algorithm and GA. The simulation
results show that the QLSO spectrum allocation algorithm has a good performance in
convergence speed and optimization ability, and improves the overall performance of
the system.
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Abstract. Inspired by the evolution of natural plant distributions, bean optimiza-
tion algorithm (BOA) is proposed and become an efficient swarm intelligence
algorithm. Aiming at the disadvantage of low efficiency of fine search in BOA, an
algorithm (DBOA) is proposed by integrating the mutation and selection opera-
tors of differential evolution into BOA. The mutation operator enriches the pop-
ulation diversity and improves the local optimization speed of the algorithm. The
selection operator further ensures the evolution direction and enhances the opti-
mization accuracy of DBOA. The proposed DBOA has been tested on a set of
well-known benchmark problems and compared with other typical swarm intelli-
gence algorithms. The experimental results show that DBOA effectively improves
the accuracy and speed of the BOA and has better performance in solving complex
optimization problems.

Keywords: Bean optimization algorithm · Differential evolution · Swarm
intelligence ·Mutation operator · Fine search

1 Introduction

Swarm intelligence refers to the decentralized and self-organization behavior at the
collective level. It is a process in which individuals compete and interact with each other
to form an optimal solution. Swarm intelligence algorithm is an effective method to
solve complex optimization problems without local information and model [1].

Inspired by natural biological clusters, many excellent swarm intelligence optimiza-
tion algorithms have been constructed, including classical particle swarm optimization
particle swarm optimization (PSO) [2], ant colony optimization (ACO) [3], differential
evolution (DE) [4], bean optimization algorithm (BOA) [5], whale optimization algo-
rithm (WOA) [6], etc. Among them, theBOA is inspired by the distribution and evolution
of plant population in nature. It has the advantages of simple structure, easy implemen-
tation, strong global optimization ability and fast convergence speed, but there are still
some deficiencies in the speed of local fine optimization.
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BOA has been improved by many scholars and applied to solve some problems since
it was proposed. For example, in 2008, the bean optimization algorithm [7] was first pro-
posed, an evolutionary model of population distribution based on piecewise function is
proposed. and the simulation experiments of typical optimization problems proved that
the algorithm has good optimization performance. In 2010, Wang [8] applied the bean
optimization algorithm to the multi-to-multi disaster relief material scheduling model,
and obtained a feasible solution with less time and cost. In 2010, Sun [9] applied BOA
algorithm to the optimization model based on fuzzy preference relation, and obtained
the ranking value of the post-disaster reconstruction and restoration system, which con-
formed to the principle of the post-earth reconstruction planning inChina. In 2011, Zhang
[10] constructed an adaptive selection mechanism by using the knowledge action idea
based on inverse reasoning induction. The experimental results show that the optimized
adaptive selection mechanism has better performance than the basic algorithm. In 2012,
Zhang [11] overcome the disadvantage that BOA with continuous distribution function
cannot be used to solve discrete optimization problems by increasing population migra-
tion and information cross-sharing, the algorithm is applied to the TSP problem, and its
feasibility is proved. In 2013, Zhang [12] constructed aMarkovmodel ofBOAalgorithm.
By studying the randomness and convergence of BOA, it is proved that the algorithm
meets the global convergence criterion of random search algorithm. Two mechanisms
of population migration and cross sharing of information were added, which overcome
the disadvantage that BOAwith continuous distribution function cannot be used to solve
discrete optimization problems. In 2015, Feng [13] applied the population distribution
model based on negative binomial distribution to BOA algorithm. In 2017, Zhang [14]
introduced chaos theory into BOA algorithm to improve the population distribution of
offspring and improve the global search performance of BOA. In 2020, Ali [15] aiming
at the lognormal distribution in the population abundance pattern, a lognormal bean opti-
mization algorithm is proposed, which is proved to be globally convergent. In 2021, Liu
[16] improved the spatial exploration ability and bean individual distribution diversity
of BOA by constructing a population distribution model based on Cauchy distribution
in BOA.

At present, the improvement of the algorithm is mostly from the evolution of pop-
ulation distribution. There is no significant improvement in the global optimization
performance and fine search ability of the algorithm. The research combined with other
swarm intelligence optimization algorithms will provide new ideas for the performance
improvement of BOA.DE algorithm has the advantages of simple principle, less parame-
ter control and strong global search ability. Therefore, themutation operator and selection
operator of DE are introduced into BOA to improve the optimization performance and
convergence accuracy of BOA algorithm.

2 Bean Optimization Algorithm with Operators of Differential
Evolution

2.1 Related Algorithm Theory

Bean optimization algorithm is a kind of swarm intelligence optimization algorithm,
which simulates the process of plant propagation and bean propagation in nature. In
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order to simulate the reproduction process of natural plants, the algorithm always divides
the population into two parts, one is the parent part and the other is the bean part.

In order to simulate the reproduction process of natural plants, the algorithm always
divides the population into two parts, the parent part and the children part. In each
evolution, the population will finally select some beans with the best fitness as the parent
species for the next generation of the population to reproduce. The number of parent
species can be set reasonably, and the algorithmwill ensure that the geographic locations
of multiple parent species are sufficiently dispersed by judging the Euclidean distance
between the parent species:

M = m(ub− lb) − n (1)

M < pdist(Xn(t), Xn+1(t)) (2)

Among them, ub, lb represent the upper and lower boundaries of the search space,
respectively, m and n are threshold parameters. M is the distance threshold, pdist() is a
function of Euclidean distance, Xn(t), Xn+1(t) are all individuals of the parent species.
Such threshold selection can make the distance threshold associated with the search
space of the solution, so that BOA can select the distance threshold that fits each opti-
mization function. At the same time, with the increase of the number of evolutions, the
distance threshold will gradually decrease. Eventually, it will be reduced to 0 in a certain
generation at a later stage of evolution. At this time, the iteration has entered the late
stage, and the population has converged enough. At this time, the focus of the search
should be placed on the local accurate search, and the setting of the distance threshold
will affect the convergence of the population in the later stage of evolution.

In order to simulate the propagation mode of natural plant beans, the specific update
method of the algorithm is not unique. The more classic population distribution models
include the piecewise function model, the normal distribution model, and the negative
binomial distributionmodel. Among them, the normal distributionmodel is more classic
and efficient. The BOA population update method under the normal distribution model
is as follows:

X(t + 1) = normrnd (Xn(t), α) (3)

Among them, in formula (3), X(t + 1) is the position of the individual after the
population update normrnd (x,y) is a function that generates a normal distribution, x, y
are the mean and standard deviation, respectively, Xn(t) is the position of n the parent
individual, α is the adaptive decreasing variance. The variance is set to be related to
the number of iterations and the size of search space, and the variance will gradually
decrease as the number of evolutions increases. This ensures that the population in the
early stage of evolution can be distributed more divergently around the parent species,
and the population in the later stage can gather towards the parent species.

In order to give the population a certain ability to jump out of the local optimum,
the individuals of the population have a very small probability to perform mutation
operations by regenerating positions in the search space:

X (t + 1) = lb + (ub− lb)rand(X (t)) (4)
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Among them, X(t + 1) is the position of the individual after mutation, ub and lb
respectively represent the upper and lower boundaries of the search space, and rand
(X(t)) is multiplied by a random number of [0, 1] at the bean position X(t).

Differential Evolution (DE) is an evolutionary algorithm based on population differ-
ences proposed byRainer Storn andKenneth Price. It is widely used due to its advantages
of simple structure, less parameter adjustment and strong robustness. The basic idea of
differential evolution is to first mutate between the parent individuals to form a mutant
individual, and then according to a certain probability, the parent individual and the
mutated individual are crossed to form a new intermediate transition individual, and
then through the fitness value of the parent individual and the fitness value between the
excess individuals are selected for optimal operation, and the better individual is retained
to realize the evolution of the population. The DE algorithm mainly solves the optimal
value through three operation operators: mutation, crossover and selection.

(1) Mutation operation

After selecting an individual, the algorithm completes the mutation by adding the
weighted difference of the two individuals to the individual. In the early stage of the algo-
rithm iteration, the individual differences in the population are large, and such mutation
operation will make the algorithm have a strong global search ability; in the later stage
of the iteration, when it tends to converge, the individual differences in the population
are small, which also makes the algorithm have a strong local search ability.

(2) Cross operation

The basic principle of crossover operation is to exchange some elements between the
individual to be mutated and the new individual generated after the mutation operation
to increase the diversity of the population.

(3) Select operation

The differential evolution algorithm uses a greedymechanism to select individuals enter-
ing the next generation to ensure the evolution direction of the population, that is, when
the newly generated offspring individuals are better than the parent individuals, retain
the offspring individuals, otherwise retain the parent individuals, and then enter the next
generation one cycle.

2.2 The Idea of DBOA

There are many excellent operator in the differential evolution algorithm (DE), and its
unique mutation mechanism makes good use of the differences within the population
[17], which can well promote intraspecific communication in the process of population
evolution. The selection mechanism can well guarantee the direction of population evo-
lution and the convergence speed and accuracy of the population. In order to further
explore and develop a better bean optimization algorithm, it is considered to combine
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these two excellent mechanisms in the bean optimization algorithm and the differential
evolution algorithm. A new composite algorithm with better performance.

The mutation operator can be expressed as:

Vi(t) = Xr1(t) + Fr × (Xr2(t) − Xr3(t)) (5)

The three individuals randomly selected in the mutation operator are sorted from
good to bad, Xb(t), Xm(t), Xw(t) and the corresponding fitness is f b, f m, f w,, and the
adaptive scaling factor Fr is:

Fr = Fl + (Fu − Fl)fm−−f b/fw − fb (6)

where, Fl = 0.1, Fu = 0.9.
The selection operator is expressed as:

Xi(t + 1) = Vi(t) f(Vi(t) < f(Xi(t)))

Xi(t) otherwise (7)

The selection operator in the differential evolution algorithm can well guarantee
the evolution direction of the population, and this operator can ensure that the better
individuals in the population are left. Improving the mutation operator of BOA can only
promote the information exchange within the population, but is not enough to greatly
improve the overall optimization performance of the algorithm. In order to explore a
bean optimization algorithm with better optimization performance, it is considered to
introduce the selection operator into BOA. If the fitness of the current individual is better
than that of the mutant individual, choose to retain the current individual, otherwise
choose to retain the mutant individual.

2.3 Algorithm Flow

The specific steps of beanoptimization algorithmbasedondifferential evolution (DBOA)
are as follows:

Step 1: initialize the population,
Step 2: determine the distance threshold and select the parent specie,
Step 3: update the population according to the normal distribution model,
Step 4: carry out the mutation operation, combine the new bean population with the

mutation operation through formula (4) to update the population position,
Step 5: carry out the selection operation, compare the population fitness updated

according to the normal distribution with the population fitness after mutation operation,
and select the position with better fitness as the position of the bean according to formula
(6),

Step 6: calculate the individual fitness value,
Step 7: determine whether the iteration termination condition is reached, if yes, end

the loop and output the value of the parent species step 1, otherwise return to step 2.
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3 Experiment and Result Analysis

3.1 Experimental Setup and Test Function

In order to verify the optimization performance ofDBOA,DBOA is used in the optimiza-
tion of CEC2013 test function [18] set, f 1 ~ f 5they are a unimodal function, and its main
function is to investigate the optimization accuracy of the algorithm, f 6~ f 20 based on
multimodal functions, these functions have a large number of local extreme points. In the
process of optimization, the algorithm is easy to fall into local optimization, so it can be
mainly used to detect whether the algorithm has the ability to avoid premature and jump
out of local optimization. f 21~ f 28 they are compound functions, which are composed of
multiple basic functions, showing the characteristics of multimodal functions, so these
functions are more complex and comprehensive. And the optimization results are com-
pared with the optimization results of particle swarm optimization (PSO), differential
evolution algorithm (DE) and basic bean optimization algorithm (BOA). Comparative
analysis. Among them, the PSO and DE algorithms are both classic optimization algo-
rithms, and WOA is a relatively novel optimization algorithm proposed in recent years.
The basic BOA can more intuitively see the optimization performance of the improved
algorithm.

The operating environment of all experiments in this paper is Intel(R) Core (TM)
i5-8265U CPU @ 1.60 GHz 1.80 GHz, memory 16.00 GB, Windows 10 system, and
the running software is Matlab R2020a.

In order to ensure the fairness of the test results, in this experiment, it is ensured that
the population size and the maximum number of iterations of DBOA and PSO, DE, and
WOA are consistent with the basic BOA settings. The population size of each algorithm
is uniformly set to 30, and the individual dimension is D. It is set to 30, the maximum
number of iterations is set to 100D, and the parameter settings of each algorithm are
shown in Table 1. These parameters are set to ensure that the optimization effect of the
respective algorithm is the best and can be stably converged to the value obtained.

Table 1. Parameter setting of each algorithm.

Algorithm Parameter setting

PSO The learning factors C1 and C2 are both 2, and the inertia weight W = 0.5 +
RAND / 2

DE The mutation probability is 0.5 and the crossover probability is 0.2

WOA The initial value of convergence factor A is 2 and decreases linearly to 0

BOA The variation probability is 0.2, the number of parent species is 3, the population
number of parent species 1 is 0.5 * n, the population number of parent species 2 is
0.3n, and the population number of parent species 3 is 0.2 * n

DBOA The probability of differential variation is 0.5, the number of parent species is 3,
the population number of parent species 1 is 0.5 * n, the population number of
parent species 2 is 0.3n, and the population number of parent species 3 is 0.2 * n
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3.2 Analysis of Simulation Experiment Results

The mean and standard deviation of 30 optimization calculations performed on the
CEC2013 test function set for 5 algorithms are selected as the evaluation indicators of
the optimization performance of each algorithm. Among them, Table 2, Table 3 and
Table 4 respectively show the results obtained by 30 optimizations on 28 test functions
for 6 algorithms, and mark the optimal mean of the optimization results in black.

Table 2. Optimization results of each algorithm on unimodal function.

Type Fun PSO DE WOA BOA DBOA

Mean Mean Mean Mean Mean

Unimodal
function

f1 −1.31e + 03 −1.40e + 03 −1.37e + 03 −1.40e + 03 −1.40e + 03

f2 1.09e + 06 8.81e + 07 6.42e + 07 2.87e + 06 2.02e + 06

f3 8.38e + 09 2.74e + 08 2.43e + 10 4.70e + 08 3.54e + 08

f4 417.89 6.30e + 04 8.32e + 04 −232.75 −1.03e + 03

f5 −818.44 −1.00e + 03 −735.84 −999.96 −999.96

Table 3. Optimization results of each algorithm on unimodal function.

Type Fun PSO DE WOA BOA DBOA

Std Std Std Std Std

Unimodal function f1 323.45 0 20.05 0.01 5.97e−04

f2 8.56e + 05 1.84e + 07 2.94e + 07 1.04e + 06 4.41e + 05

f3 1.49e + 10 2.01e + 08 1.25e + 10 5.91e + 08 4.92e + 08

f4 1.51e + 03 1.31e + 04 3.13e + 04 659.13 37.27

f5 566.65 0 157.12 0.01 0.01

Table 2, Table 3 shows the optimization results of each algorithm on the unimodal
function f 1, DE, BOA and DBOA can basically converge to the theoretical optimal
value. For function f 2, the average optimization value of DBOA is better than that of
BOA and DE. For function f 3, the optimization effect of WOA is the best. For function
f 4, the optimization mean of DBOA is the best. It can be seen that it is better than
the optimization effect of BOA and DE, which is very close to the understanding of
the optimal value. At the same time, it can be seen from its standard deviation that its
optimization stability is also relatively high. For function f 5,the optimization effects of
BOA and DBOA are basically the same.
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Table 4. Optimization results of each algorithm on multimodal function.

Type Fun PSO DE WOA BOA DBOA

Mean Mean Mean Mean Mean

Multimodal function f6 −827.79 −857.10 −751.77 −851.84 −859.99

f7 −622.61 −729.52 1.25e + 04 −703.93 −691.18

f8 −679.03 −679.01 −679.03 −679.04 −679.02

f9 −563.49 −563.79 −561.50 −573.51 −575.87

f10 −387.29 −462.86 −276.63 −499.68 −499.87

f11 60.34 −399.21 127.57 −228.85 −277.01

f12 140.60 −98.70 302.15 −112.22 −159.50

f13 330.27 6.95 331.50 48.38 21.74

f14 4.17e + 03 422.46 4.94e + 03 3.75e + 03 3.90e + 03

f15 4.44e + 03 7.72e + 03 6.40e + 03 3.99e + 03 4.14e + 03

f16 201.38 202.73 201.98 200.56 200.44

f17 680.07 351.29 923.03 471.06 448.74

f18 835.01 626.03 1.05e + 03 572.53 530.33

f19 591.29 507.17 569.23 509.16 507.13

f20 614.70 614.97 614.87 613.45 614.95

Table 5. Optimization results of each algorithm on multimodal function.

Type Fun PSO DE WOA BOA DBOA

Std Std Std Std Std

Multimodal function f6 33.26 7.32 40.82 30.89 27.91

f7 58.07 13.52 2.88e + 04 23.26 29.34

f8 0.05 0.07 0.06 0.04 0.04

f9 3.51 1.44 3.05 4.22 4.24

f10 108.39 23.88 78.77 0.30 0.02

f11 116.48 2.43 110.62 49.36 38.96

f12 136.65 10.10 142.09 59.37 45.93

f13 84.49 14.35 94.28 46.03 39.44

f14 895.10 149.08 1.14e + 03 586.30 434.05

F15 543.44 184.40 944.99 624.67 469.98

(continued)
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Table 5. (continued)

Type Fun PSO DE WOA BOA DBOA

Std Std Std Std Std

f16 0.29 0.28 0.47 0.3840 0.21

f17 64.12 3.28 80.73 28.64 29.34

f18 86.57 12.14 126.13 40.11 20.21

f19 270.55 0.71 36.72 3.56 1.79

f20 0.25 0.10 0.28 1.87 0.15

Table 6. Optimization results of each algorithm on composite function.

Type Fun PSO DE WOA BOA DBOA

Mean Mean Mean Mean Mean

Composite
function

f21 1.00e + 03 973.93 1.11e + 03 1.00e + 03 1.00e + 03

f22 5.86e + 03 3.12e + 03 7.52e + 03 5.77e + 03 5.37e + 03

f23 6.69e + 03 8.78e + 03 7.94e + 03 5.5746e + 03 5.22e + 03

f24 1.34e + 03 1.28e + 03 1.31e + 03 1.27e + 03 1.26e + 03

f25 1.48e + 03 1.39e + 03 1.42e + 03 1.39e + 03 1.38e + 03

f26 1.54e + 03 1.42e + 03 1.52e + 03 1.53e + 03 1.40e + 03

f27 2.58e + 03 2.50e + 03 2.66e + 03 2.33e + 03 1.53e + 03

f28 5.44e + 03 1.70e + 03 6.37e + 03 1.88e + 03 1.80e + 03

Table 7. Optimization results of each algorithm on composite function.

Type Fun PSO DE WOA BOA DBOA

Std Std Std Std Std

Composite function f21 101.22 44.78 45.60 80.15 68.90

f22 840.19 265.94 1.00e + 03 1.06e + 03 1.19e + 03

f23 1.12e + 03 276.58 906.116 860.97 1.25e + 03

f24 31.41 3.41 9.57 12.33 10.51

f25 31.70 4.83 9.19 8.16 15.76

f26 89.66 46.04 100.33 71.92 26.50

f27 182.55 38.20 57.61 88.70 71.99

f28 428.39 2.57e−13 895.96 496.70 400.45
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Table 4, Table 5, Table 6, Table 7 show the optimization results of each algorithm
on multimodal function and complex composite function, where DE is f 7 , f 11, f 13, f 14,
f 17 , f 21, f 22, f 28 there are 8 best search functions in total DBOA in f 6 , f 9, f 10, f 12, f 16 ,
f 18, f 19, f 23, f 24, f 25, f 26 , f 27 , the optimization effect is the best on 12 test functions.
Among the 28 test functions in Table 4, Table 5, Table 6 and Table 7, 23 optimization
results of DBOA are better than BOA, and 19 optimization results of DBOA are better
than DE. On the whole, the optimization performance of DBOA has been significantly
improved compared with that of BOA. At the same time, DBOA is also superior to DE.
DBOA absorbs the advantages of BOA and DE at the same time. Because DBOA has
two populations: the normal distribution population of BOA and the variant population
of DE, the better final population is finally determined through the selection mechanism,
so this is the reason for the excellent optimization performance of DBOA.

3.3 Wilcoxon Rank-Sum Test

In order to test the performance of the algorithm more comprehensively [19], in this
paper, the Wilcoxon rank-sum test method [20] is introduced to test the significance of
the optimal results of DBOA and PSO, DE, WOA, BOA under 30 independent opera-
tions, test whether there is significant difference and judge the reliability. The original
assumption of H0 is that there is no significant difference between the data of the two
algorithms. The alternative hypothesis for H1 is that the data populations of the two
algorithms differ significantly. Using the test result p to determine the value of h, when
p > 0.05, the corresponding value of h is 0, which indicates the acceptance assumption
of H0, which shows that the two algorithms have the same performance of searching.
When p < 0.05, the corresponding value of h is 1, this paper presents the acceptance
hypothesisH1, which indicates that there is a big difference between the two algorithms.

Table 8. Wilcoxon signed rank-sum test results

Fun DBOA-PSO DBOA-DE DBOA-WOA DBOA-BOA

p h p h p h p h

f 1 1.8267e–04 1 6.3864e–05 1 1.8267e–04 1 0.0091 1

f 2 0.0312 1 1.8267e–04 1 1.8267e–04 1 0.2730 0

f 3 0.0017 1 0.3847 0 1.8267e–04 1 0.0376 1

f 4 1.8267e–04 1 1.8267e–04 1 1.8267e–04 1 1.8267e–04 1

f 5 1.8267e–04 1 8.7450e–05 1 1.8267e–04 1 0.3447 0

f 6 0.0173 1 0.5205 0 1.8267e–04 1 0.8501 0

f 7 0.7337 0 0.6776 0 0.0757 0 0.2413 0

f 8 0.7337 0 0.3075 0 0.2123 0 0.4727 0

f 9 4.3964e–04 1 3.2984e–04 1 3.2984e–04 1 0.9698 0

(continued)
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Table 8. (continued)

Fun DBOA-PSO DBOA-DE DBOA-WOA DBOA-BOA

p h p h p h p h

f 10 1.8267e–04 1 1.8267e–04 1 1.8267e–04 1 0.5205 0

f 11 1.8267e–04 1 1.8267e–04 1 1.8267e–04 1 0.6776 0

f 12 1.8267e–04 1 0.0010 1 1.8267e–04 1 0.2730 1

f 13 1.8267e–04 1 0.2413 0 1.8267e–04 1 0.1405 0

f 14 0.0091 1 1.8267e–04 1 4.3964e–04 1 0.3075 0

f 15 0.5708 0 1.8267e–04 1 1.8267e–04 1 0.9698 0

f 16 1.8267e–04 1 1.8267e–04 1 1.8267e–04 1 1 0

f 17 1.8267e–04 1 1.8267e–04 1 1.8267e–04 1 0.0312 1

f 18 1.8267e–04 1 1.8267e–04 1 1.8267e–04 1 0.0376 1

f 19 1.8267e–04 1 0.3447 0 1.8267e–04 1 0.0312 1

f 20 0.0565 0 0.0017 1 0.0565 0 0.0013 1

f 21 0.3075 0 0.0072 1 0.0257 1 0.1859 0

f 22 0.1620 0 1.8267e–04 1 0.0058 1 0.7913 0

f 23 0.0757 0 1.8267e–04 1 0.0017 1 0.3847 0

f 24 2.4613e–04 1 0.0312 1 1.8267e–04 1 0.1620 0

f 25 1.8267e–04 1 0.0640 0 0.0022 1 0.0640 0

f 26 0.1405, 0 0.3075 0 0.0539 0 0.0022 1

f 27 1.8267e–04 1 0.0028 1 1.8267e–04 1 0.1405 1

f 28 1.8267e–04 1 6.3864e–05 1 1.8267e–04 1 0.5708 0

+/=/− 19/8/1 11/8/9 24/4/0 8/18/2

Table 8 shows the rank-sum test results of DBOA and the four algorithms, showing
that the number of times that DBOA outperforms, equals, and outperforms the com-
parison algorithm on 28 test functions. First, we observe the rank-sum test results of
DBOA andWilcoxon. It is found that the optimal performance of DBOA on 8 functions
is better than BOA, and the optimal performance of only 2 functions is weaker than
BOA, furthermore, the improvement of DBOA is effective. The optimization perfor-
mance of DBOA on 19 functions is better than that of PSO, and on 24 functions is better
than that of WOA. The experimental results in Sect. 3.2 are further verified. Finally, the
optimization performance of DBOA on 8 functions is equivalent to that of DE, and the
optimization performance of DBOA on 11 functions is better than that of DE, combin-
ing the results of mean and standard deviation in Sect. 3.2, it can be concluded that the
optimal performance of DBOA with BOA and De is better than that of DE. Through the
Wilcoxon rank-sum test, the excellent performance of DBOA is further shown.
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4 Summary

This paper proposes a bean optimization algorithm based on differential evolution to
solve the problem that the local fine optimization of the bean optimization algorithm is
slow. The algorithm first uses the basic BOA population distribution model to update the
population position, so that it can be updated in a shorter time. Obtain faster convergence
speed and search performance, and then introduce the core mutation and selection oper-
ators in differential evolution to further improve the optimization performance of the
algorithm for complex optimization problems, realize the complementary advantages of
the two algorithms, and obtain a global search capability. Efficient hybrid optimization
algorithm with local search capability. Later, through experiments on the CEC2013 test
function set, it was found that DBOA has better optimization performance, faster con-
vergence speed and higher universality, and is more suitable for solving various function
optimization problems than DE and basic BOA.
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ber 2020-ZJ-913, Special project of scientific and technological achievements transformation in
Qinghai province number 2021-GX-114, Scientific research project of graduate students in Anhui
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Abstract. The swarm intelligent algorithms (SIs) are effective and
widely used, while the balance between exploitation and exploration
directly affects the accuracy and efficiency of algorithms. To cope with
this issue, a backbone whale optimization algorithm based on cross-stage
evolution (BWOACS) is proposed. BWOACS is mainly composed of
three parts: (1) adopts the density peak clustering (DPC) method to
actively divide the population into several sub-populations, generates
the backbone representatives (BR) during backbone construction stage;
(2) determines the deviation placement (DP ) by constructing the co-
evolution operators (CE), the search space expansion operators (SE)
and the guided transfer operators (GT ) during bionic evolution strategy
stage; (3) realises the bionic optimisation through DP during backbone
representatives guiding co-evolution stage. To verify the accuracy and
performance of BWOACS, we compare BWOACS with other variants
on 9 IEEE CEC 2017 benchmark problems. Experimental results indi-
cate that BWOACS has better accuracy and convergence speed than
other algorithms.

Keywords: Whale optimization algorithm · Density peak clustering ·
Bionic evolution strategy

1 Introduction

In swarm intelligent algorithms (SIs), exploration, a collaboration of exploration
and exploitation (called collaboration in next) and exploitation are independent
and mutually constrained processes. In the exploration phase [14], each individ-
ual searches the solution space randomly to find the global optimal solution;
in the collaboration phase [18], the relevant cooperative strategies are used to
achieve cooperation during the two processes validly. In the exploitation phase
[15], individuals have relative independence, make more use of local optimal
information to discover the local optimal solution as soon as possible.

According to the characteristics of creatures, various SIs and variants have
been proposed to achieve exploitation and exploration capabilities. Whale opti-
mization algorithm (WOA) [8] adopted alternating shrinking encircling, spiral
c© Springer Nature Switzerland AG 2022
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updating, and random search to reach the balance between the three processes.
Particle swarm optimization (PSO) [4] realized the balance through the coor-
dination of direction and velocity. Saeed et al. [16] proposed QWOA, using the
quantum revolving gate operator as the variant operator to achieve three phases.
CWOA [10] combines the characteristics of the standard WOA with chaos map-
ping actively. Chaos theory is used to generate parameter ratios; a dynamic
neighborhood learning (DNL) strategy is proposed in DNLGSA [17], each par-
ticle can learn search information from the historical best experience (gbest) of
the whole population. Direction Learning Strategy and Elite Learning Strategy
are raised in LLABC [1] to form a machine that can complement each other. A
weighting strategy upon Sigmoid function is introduced in AWPSO [6], adap-
tively adjusting the control parameters and the acceleration coefficients for three
stages. There are widely used in practical problems, such as Automatic Control
[7,9], Wireless Communication [5,12], and Task Scheduling [2,11].

Specific SIs described above are only for the best individuals in popula-
tion to learn, which are easy to fall into the local optimal. In this paper, we
present a backbone whale optimization algorithm based on cross-stage evolution
(BWOACS), which effectively solves the problem of striking a balance between
three phases. The contributions of this paper are mainly in the following three
aspects:

1) We propose BWOACS. BWOACS provides a new method which can make
most individuals in WOA obtain more effective information.

2) The concept of backbone representatives (BR) are proposed. BR are indi-
viduals that can reflect the commonality and characteristics of each sub-
population.

3) Bionic evolution strategy is proposed. The strategy designs different opera-
tors during different stages: co-evolution operator (CE), search space expan-
sion operator (SE) and guiding transfer operator (GT ).

2 Related Work

WOA is a new SI algorithm, which has the ability to quickly find the global
optimal solution. It mainly includes three stages: shrinking encircling, spiral
updating, and search for prey. Where shrinking encircling and spiral updating
are carried out at the same time with the probability p (p = 0.5) in bubble-net
attacking.

During the phase of shrinking encircling, the whale position is updated as
Eq. 1.

X (t + 1) = X∗ (t) − A · D1 (1)

where D1 = |K · X∗ (t) − X (t) |. A = 2a · λ − a, K = 2 · λ. X∗ (t) is the position
vector of the best solution obtained so far. a is linearly decreased from 2 to 0
throughout iterations, λ is a random vector in [0, 1].

During the spiral updating stage, position is updated as shown in Eq. 2.
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X (t + 1) = X∗ (t) + D2 · ebl · cos (2πl) (2)

where D2 = |X∗ (t) − X (t) |. b is a constant for defining the shape of the loga-
rithmic spiral, l is a random number in [−1, 1].

During the phase of search for prey,when |A| ≤ 1, the whale updates its
position according to Eq. 1. When |A| > 1, the whale carries out a random
search according to Eq. 3.

X (t + 1) = Xrand (t) − A · D3 (3)

where D3 = |K · Xrand (t) − X (t) |. Xrand (t) is a random position vector (a
random whale) chosen from the current population.

3 A Backbone Whale Optimization Algorithm Based
on Cross-stage Evolution

BWOACS consists of three main components: backbone construction stage,
bionic evolution strategy stage and backbone representatives guiding co-
evolution stage, details in Algorithm 1.

3.1 Backbone Construction Stage

Based on the analysis of the SIs, individuals in relatively close locations have
a strong similarity to each other. To simplify the computational complexity of
mutual learning between individuals, we divide sub-populations by DPC cluster-
ing [13], where the local optimal solution within each sub-population is defined
as the backbone representative(BR). The definition of BRs is in Eq. 4.

xc∗ = argminf(x), x ∈ Xc (4)

where xc∗ is the BR of the sub-population and Xc is the set of individuals of
the sub-population, f(x) is the fitness of individual.

This paper proposes the double power-set operator (DS) to generate the
backbone representatives of each sub-population. With the iteration increasing,
the individuals tend to be more stable. The frequency of clustering gradually
decreases. DS is given in Eq. 5.

t = mx − n (5)

where t is the number of iteration, x is the number of clustering. m and n are
constants, which set by maximum number of iterations.In this paper, m = n = 2.
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Algorithm 1. BWOACS
Require: N : the population size; S: the number of sub-populations; Tmax: the maximum number

of iterations
Ensure: Xf : the final population; Pf : the final optimal result;
1: Randomly initialise Xi, DPi

2: Calculate the fitness of each search agent
3: while t < Tmax do
4: if t = 2x − 2 then
5: Cluster the population by DPC to generate S sub-populations
6: Calculate the number of search agents Nc in each sub-swarm
7: end if
8: for c = 1 → S do
9: Find out the best search agent xc∗ in each sub-population
10: for j = 1 to Nc do
11: Update a, A, K, l, p, cf1 and cf2
12: if p < 0.5 and |A| ≤ 1 then
13: if x = xc∗ then
14: Update the position of the current search agent by (9)(10)
15: else
16: Update the position of the current search agent by (15)(16)
17: end if
18: else if p ≥ 0.5 then
19: if x = xc∗ then
20: Update the position of the current search agent by (11)(12)
21: else
22: Update the position of the current search agent by (17)(18)
23: end if
24: else p < 0.5 and |A| > 1
25: Update the position of the current search agent by (13)(14)
26: end if
27: end for
28: end for
29: Check if any search agent goes beyond the search space and amend it
30: Calculate the fitness of each search agent
31: Update Pf if there is a better solution
32: t = t + 1
33: end while
34: return Xf , Pf

3.2 Bionic Evolution Strategy Stage

Exploration. BR are the individuals most likely to find the global optimum.
BR can learn more search information from the mutual exchange process of
effective information among sub-populations. CE is proposed to guide BR in
updating.as defined in Eq. 6.

CE =
{

A|K · 1
s

∑s
c=1 xt

c∗ − xt
c∗| p < 0.5

ebl · cos (2πl) |1s
∑s

c=1 xt
c∗ − xt

c∗| p ≥ 0.5 (6)

where xt
c∗ is the position of BR in the t-th iteration of c-th sub-population. S is

the number of sub-populations.

Collaboration. To avoid occur premature convergence, let small number of
individuals enter other regions of the solution space to search. We propose the
search space expansion operator SE, whose definition is in Eq. 7.

SE = A|K · xt
crand − xt

ca| (7)



A Backbone Whale Optimization Algorithm Based on Cross-stage Evolution 99

where xt
crand is the position of the randomly selected individual in the c-th sub-

population, xt
ca is the position of individuals who will enter other regions.

Exploitation. BWOACS directs the update of ordinary individuals within this
sub-population through BR, and the ordinary individuals within each sub-swarm
are constrained to refine exploitation in their specific sub-population. We propose
the guided transfer operators (GT ) to update ordinary individuals.

GT =
{

A|K · xt
c∗ − xt

ci| p < 0.5
ebl · cos (2πl) |xt

c∗ − xt
ci| p ≥ 0.5 (8)

where xt
ci is the position of the i-th individual in the t-th iteration and the c-th

sub-population.

3.3 Backbone Representatives Guiding Co-evolution Stage

With an analysis of the current and previous stages, the concept of deviation
placement DP is proposed. DP is determined by CE SE GT during different
stages, respectively.

In exploration, when p < 0.5,DP t+1
c∗ is in Eq. 9, p ≥ 0.5, DP t+1

c∗ is in Eq. 11;

DP t+1
c∗ =

(
w · DP t

c∗ − CE
)
/cf1 =

(
w · DP t

c∗ − A|K · 1
s

s∑
c=1

xt
c∗ − xt

c∗|
)

/cf1

(9)
xt+1
c∗ =

(
xt
c∗ + DP t+1

c∗
)
/cf1 (10)

DP t+1
c∗ = w · DP t

c∗ + CE = w · DP t
c∗ + ebl · cos (2πl) |1

s

s∑
c=1

xt
c∗ − xt

c∗| (11)

xt+1
c∗ =

(
xt
c∗ + DP t+1

c∗
)
/cf2 (12)

where DP t+1
c∗ is the DP of BR in the t-th iteration and c-th sub-population.

w = 1/ (1 + t), cf1 = 2 + 1/ (t + 1), cf2 = 1 + 1/ (t + 1).
In collaboration, DP t+1

ca is in Eq. 13;

DP t+1
ca =

(
w · DP t

ca − SE
)
/cf1 =

(
w · DP t

ca − A|K · xt
crand − xt

ca|
)
/cf1 (13)

xt+1
ca =

(
xt
crand + DP t+1

ca

)
/cf2 (14)

where DP t+1
ca is the DP of individuals who will enter other regions in the t-th

iteration and c-th sub-population.
In exploitation, when p < 0.5, DP t+1

ci is in Eq. 15, p ≥ 0.5, DP t+1
ci is in

Eq. 17.

DP t+1
ci =

(
w · DP t

ci − GT
)
/cf1 =

(
w · DP t

ci − A|K · xt
c∗ − xt

ci|
)
/cf1 (15)

xt+1
ci =

(
xt
c∗ + DP t+1

ci

)
/cf1 (16)
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DP t+1
ci = w · DP t

ci + GT = w · DP t
ci + ebl · cos (2πl) |xt

c∗ − xt
i| (17)

xt+1
ci =

(
xt
c∗ + DP t+1

ci

)
/cf2 (18)

where DP t+1
ci is the DP of the i-th individual in the t-th iteration and c-th

sub-population.

3.4 Computational Complexity

Suppose the population number is N , the maximum iteration number is Tmax,
and the computational complexity of BWOACS is calculated as follows:

The computational complexity for initialising and assessing of population fit-
ness both are O (N); ranking the populations and finding the best individuals
are O

(
N2

)
; in the iterative process, clustering of the population is O

(
N2

)
, clus-

tering number is �log2 Tmax�; the updating of individuals in each sub-population
and calculating of fitness values are O (2N); sorting the fitness of individuals in
each sub-population and finding out BR are O

(∑S
c=1 N2

c

)
; ranking BR to find

the best individuals is O
(
S2

)
. In a word, the time complexity of BWOACS for

Tmax cycles is in Eq. 19:

O(2N)+O(N2)+Tmax(O(2N)+O(
S∑

c=1

N2
c )+O(S2))+�log2 Tmax�·O(N2) (19)

From [3], the time complexity of WOA are in Eq. 20:

O(2N) + O(N2) + Tmax(O(2N) + O(N2)) (20)

We can conclude that the computational complexity of BWOACS and WOA
are in the same order by analysing Eq. 19 and 20.

4 Experiment

4.1 Functions and Parameter Settings

Nine widely used benchmark functions were selected from IEEE CEC 2017,
details in Table 1. To verify the performance of BWOACS, BWOACS was com-
pared with DNLGSA [17], CWOA [10], LLABC [1] and AWPSO [6].

Besides, We set the iteration number and the population size as 500 and 30.
Each function was run with 50 independent replications. The best results were
in boldface. All the proposed algorithms were coded in MATLAB 2016b. The
computation was conducted on a personal computer with an Intel Core i7-3770,
3.40 GHz CPU, 8 GB RAM.
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Table 1. Benchmark functions.

Group Function D Search range Global optimum Name

Unimodal f1 30 (−100, 100) 0 Sphere

f2 30 (−10, 10) 0 Schwefel’s P2.22

f3 30 (−100, 100) 0 Schwefel’s P1.2

Multimodal f4 30 (−500, 500) −418.9829n Schwefel’s P2.26

f5 30 (−5.12, 5.12) 0 Rastrigin

f6 30 (−32, 32) 0 Ackley

Fixed-dimension Multimodal f7 2 (−65.536, 65.536) 0.998 Hartman

f8 4 (−5, 5) 0.0003075 Kowalik

f9 2 lb= [−5, 0]; ub= [10, 15] 0.398 Shekel

4.2 Comparison of Solution Accuracies

Table 2 showed the experimental results compared with 4 algorithms. It can be
seen from the results that BWOACS performed better than others in average
values. For unimodal and multimodal functions, BWOACS derived nice average
values in all. For fixed-dimension multimodal functions, the best average values
in BWOACS were 2, while DNLGSA, CWOA, LLABC, AWPSO were 1, 0, 1 and
2, respectively. BWOACS was robust in terms of the standard deviation. For 9
functions, there were 5 functions whose standard deviation values had been 0.
For most functions, the standard deviation values of BWOACS were much lower
than DNLGSA, CWOA, LLABC, AWPSO. It was proved that BWOACS had
better stability than other algorithms.

Table 2. Results of 5 algorithms on 9 functions

Function DNLGSA CWOA LLABC AWPSO BWOACS

f1 Ave 2.56E+04 5.94E+03 2.22E+03 5.96E+00 5.67E−180

Std 4.01E+07 3.35E+08 6.15E+05 5.24E+00 0

f2 Ave 3.48E+01 1.82E+10 1.86E+01 1.28E+01 1.46E−98

Std 4.15E+02 4.57E+21 1.17E+02 1.10E+01 2.39E−195

f3 Ave 5.35E+04 6.95E+04 2.01E+03 4.02E+02 1.53E−63

Std 1.10E+09 2.05E+09 1.04E+06 2.12E+04 4.57E−125

f4 Ave −4.60E+03 −9.76E+03 −1.16E+04 −2.07E+03 −1.25E+04

Std 2.29E+05 5.56E+06 1.74E+05 2.81E+05 1.41E+04

f5 Ave 1.18E+02 1.07E+02 1.56E+02 1.41E+02 0

Std 5.85E+02 3.63E+04 1.80E+03 6.26E+02 0

f6 Ave 1.83E+01 3.02E+00 1.20E+01 4.63E+00 8.88E−16

Std 9.09E−01 5.46E+01 2.66E+00 3.69E−01 0

f7 Ave −3.86E+00 −3.83E+00 −3.86E+00 −3.86E+00 −3.86E+00

Std 3.92E−30 1.13E−02 3.93E−30 4.29E−09 2.20E−05

f8 Ave 8.26E−04 1.84E−02 8.02E−04 9.05E−04 8.69E−04

Std 1.31E−07 2.14E−03 3.13E−08 7.27E−08 2.73E−07

f9 Ave −5.38E+00 −7.26E+00 −9.29E+00 −9.38E+00 −8.40E+00

Std 7.17E+00 6.30E+00 3.32E+00 5.33E+00 9.87E+00
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4.3 Convergence Speed Analysis

Fig. 1 manifested the convergence curves of 5 algorithms in 9 functions. For f1–f3,
f5 and f6, the rapid decline of the curve indicated that BWOACS had a faster
convergence speed in the early evolution. The search strategy could complete
the fast search effectively. For f4 and f7–f9, the convergence curve of BWOACS
represented a shape with some twists and turns because it needed to deter-
mine the global optimal value through BR. In addition, it was discovered that
BWOACS had a strong ability to jump out of the local optimal value because
the slope of the curves increasing became larger gradually with the iteration
number increasing. In the aspect of the convergence curve, the effectiveness of
BWOACS is proved.

(a) f1 (b) f2 (c) f3

(d) f4 (e) f5 (f) f6

(g) f7 (h) f8 (i) f9

Fig. 1. The convergence of 5 algorithms in 9 function
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5 Conclusion

By analyzing the advantages and characteristics of SIs, BWOACS is proposed.
BWOACS proposes BR and DS to coordinate three stages, and effectively
arrange CE, SE, GT for three stages, ensuring the constrained allocation of
exploration capabilities and exploitation capabilities in each stage. In order
to verify the effectiveness of BWOACS, BWOACS is compared with the most
advanced algorithms DNLGSA, CWOA, LLABC and AWPSO. The results show
that BWOACS is superior to them. In future work, we will achieve a common
framework by this strategy and apply other algorithms.
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Abstract. This paper proposes an improved version of the hunger games search
algorithm (HGS) based on the opposition-based learning (OBL) and evolutionary
population dynamics (EPD) strategies called OEHGS for solving global optimiza-
tion tasks. The proposed OEHGS algorithm consists of three stages: the first stage
generates an initial population and its opposite using OBL strategy; the second
stage uses the EPD to prevent premature convergence and stagnation; and the third
stage uses the OBL as an additional phase to update the HGS population at each
iteration. The opposition-based learning approach is incorporated into HGS with
a selecting rate, which can jump out of the local optimum without increasing the
computational complexity. The performance of our proposed algorithmwas tested
through a set of experimental series. The experiments revealed that the proposed
algorithm is superior to those of state-of-the-art algorithms in this domain for
solving optimization problems.

Keywords: Hunger games search · Opposition-based learning · Evolutionary
population dynamics

1 Introduction

Hunger games search (HGS) [1] is a new and efficient meta-heuristic algorithm inspired
by the behavior of animals in nature when they are hungry. Compared with other algo-
rithms,HGShas highperformance in processing numerical values andother optimization
tasks. However, when solving the optimization problem, it will quickly converge on the
local optimum rather than global optimal solution, and this behavior is called immature
convergence, which is a widely existing problem of the meta-heuristic algorithms [2, 3].
Another problem is the stagnation in local search. In fact, the success of meta-heuristic
methods to solve this problem depends on balance of exploration and exploitation. HGS
fails to achieve a balance between exploration and exploitation, which can significantly
to degrade the quality of the solution.

In order to overcome the limitation of HGS, the opposition-based learning (OBL)
is used in HGS. The concept of OBL was introduced by Tizhoosh in [4]. It has been
widely used to accelerate learning in neural network. The idea has also been used in
heuristic algorithms, for example,OBL is used inDEalgorithm to generate newoffspring
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during the evolution [5], and the elite OBL strategy and simplex method are introduced
into GWO to improve global search ability [6]. In addition, the concept of evolutionary
population dynamics (EPD) [7] is applied for the optimization process to update the poor
solution on the population and reduce the impact on the poor solution to the population
quality.

The performance of our proposed algorithm has been tested through a set of experi-
mental series, including 45 benchmark functions [8, 9]. The experimental results com-
pared with those of other similar algorithms revealed that the OEHGS obtains superior
results in terms of performance and efficacy.

The remainder of this paper is organized as follows: the basic concept of the HGS,
OBL strategy and EPD are introduced in Sect. 2. The improved HGS based on OBL
and EPD is presented in detail in Sect. 3. Then, the OEHGS is validated, and the results
and discussion are given in Sect. 4. Finally, we discuss relevant issues and conclude the
paper in the Sect. 5.

2 Background

2.1 Hungry Games Search (HGS)

The HGS algorithm was proposed by Yang et al. In 2021 [10]. The HGS algorithm
is inspired from the behaviors of animals in the state of starvation. Similar to other
metaheuristic algorithms, N individuals are randomly initialized according to the given
search space in HGS. During the iteration process, each ainimal is assigned to a state,
cooperative or non-cooperative. Cooperative and Non-cooperative phases of HGS are
described below:

2.1.1 Non-cooperative Phase

Non-cooperative:

xG+1
i = xGi × (1 + randn(1)), rand < L (1)

where rand is a random number in the range of [0, 1], randn is the Gaussian distribution,
and L is a parameter to control the behaviors of each individual.

2.1.2 Cooperative Phase

Cooperative: xG+1
i =

{
w1 × xGbest + w2 × R × |xGbest − xGi |, rand > L, rand > E

w1 × xGbest − w2 × R × |xGbest − xGi |, rand > L, rand < E
(2)

where w1 and w2 are hunger weight, R is a ranging controller, and E represents the
variable number that controls the global location. The formulations of w1, w2, R, and E
are described below:

wi
1 =

⎧⎨
⎩ hungryi × N

SHungry
× r3, rand < L

1, rand < L
(3)
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wi
2 = (1 − e−|hungryi−SHungry|) × rand × 2 (4)

hungryi =
{
0, fiti = BF

hungryi + H , fiti �= BF
(5)

H =
{
LH × (1 + rand), TH < LH

TH , TH ≥ LH
(6)

TH = fiti − BF

WF − BF
× rand × 2 × (ubi − lbi) (7)

R = 2 × shrink × rank − shrink shrink = 2 ×
(
1 − t

T

)
(8)

E = 2

efiti−BF + eBF−fiti
(9)

where LH is a limited parameter, fiti is the fitness of ith individual, BF and WF are the
best fitness and worst fitness in the last iteration, respectively, ubi and lbi are the upper
and lower bounds, respectively.

2.2 Opposed-Based Learning

Opposed-based learning [11] is used in MH algorithms for improving their performance
through exploring the global solution to a selected problem, it uses the value of the
fitness function to determine whether the opposite are better than the current solution.
The basic definition of the OBL can be calculated as follows:

x = ui + li − xi (10)

where x ∈ Rk is the opposite vector from the real vector x ∈ Rk , ui and li are the upper
bound and lower bound of the search space, respectively. Through the optimization
process, the two solutions are compared, the best fitness of x and x are stored, and the
worst fitness is replaced. For example, if fit(x) ≤ fit(x), then x is stored; otherwise,x is
saved.

2.3 Evolutionary Population Dynamics

The EPD strategy is basically based on the theory of self-organized criticality (SOC)
[12, 13], which indicates that the local changes in the populationmay influence the entire
population without the intervention of any external [14, 15]. The EPD aims to improve
the quality of the solutions by removing the worst solutions from the current iteration of
the solutions and replacing the worst solutions by generating the new individuals around
the best solution.
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3 The Improved HGS with OBL and EPD Stategies

In this section, the structure of the proposed algorithm is explained. The HGS is modi-
fied by combining its original structure with OBL and EPD strategies to introduce the
ability to deeply explore the search domain and rapidly reach the optimal value. The
proposed algorithm is called OEHGS, and the detailed procedures of OEHGS are shown
in Algorithm 1.

In general, the proposed OEHGS consists of the following stages: 1) the initial stage,
2) Update population with EPD, 3) Apply OBL in the population and 4) termination
criterion.

Initial Stage: In this stage, the OEHGS algorithm begins by determining the initial
parameter values of the HGS; then, the OEHGS randomly creates a population of size N
in dimension Dim. Each individual is updated, and evaluated using the fitness function.
Subsequently, the best solution and fitness value are saved.

Update Population with EPD: In this stage, EPD eliminates the worst solutions in the
population and generates new populations in the neighborhood of the best agent. EPD
is a simple and efficient operator based on the population technique, which is applied it
to the proposed algorithm. Its calculation formula is as follows:

xw = rand × (ubk − lbk) + lbk , w = 1, 2, ...,Nw (11)

where ubk and lbk represent the boundaries of the k-neighborhood of the best agent xbest .
rand is a random value in the interval (0,1). The Nw represents the number of the worst
agents and it is defined as follows:

Nw = round(N × (rand × (c1 − c2))), c1 = 0.1, c2 = 0.9, r ∈ [0, 1] (12)

where rand is a random value in the interval (0,1), round() is a function used to convert
real number to integer [16].

Apply OBL in the Population: In this stage, the OBL technique receives the updated
solutions from the HGS and calculates the opposite population of this part. The OBL
is used to generate opposite population with a select rate Sr . We randomly generate a
number in the range of 0 and 1. If the number is smaller than Sr , we adopt OBL to
generate new solutions based on the current solutions. The result is re-evaluated by the
fitness function; if the fitness value is better than the current value, the OEHGS updates
the population with this value.

Termination Criterion: The second and third stages are repeated until the termination
criterion is met. In this paper, the value of the maximum number of iterations is used
as the stop criterion to evaluate the ability of OEHGS to find the optimal solution in
a specific number of iterations. When OEHGS reaches the stop condition, the global
optimal solution will be returned.
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Let the population size of individuals to be N, the dimension of the problem to beD,
the total iteration to be itermax. The time complexity of the conventional HGS is O(N*(1
+ itermax*N*(2 + logN + 2*D))). The computational complexity of fitness evaluation
and hunger update are both O(N), the computational complexity of sorting requires
O(NlogN), the computational complexity ofOBLandEPD isO(N*D), the computational
complexity ofweight and locationupdate isO(N*D).The total computational complexity
of the entire phase is O(N*(1 + itermax*N*(2 + logN + 4*D))). Therefore, the time
complexity of the proposed version is consistent with the conventional HGS and does
not increase the computational complexity [17].

4 Experiments and Analysis

4.1 Function Description

The proposed algorithm was compared with eight meta-heuristic algorithms, includ-
ing SSA [18], PSO [19], WOA [20], MFO [21], SCA [22], DE [14], BBO [23] and
FA [24]. Forty-five benchmark testing functions were selected from 23 well-known
benchmarks (F5-F15), CEC2014 (F20-F30) and CEC2017 (F1-F20). The benchmark
testing functions include six unimodal functions, twelve multimodal functions, seven-
teen fix-dimension functions and ten combine functions. The numerical results of these
algorithms in terms of the average value (AVG) and standard deviation (STD) of the
function error rates were obtained to assess the potentials of associated techniques, and
the best result of each task is marked in boldface. Furthermore, the non-parametric sta-
tistical test of Wilcoxon rank-sum was performed at a significance level of 5% [25] is
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used to estimate the statistically significant difference between the proposed method and
other competitors, and the algorithms were ranked based on the minimum mean values.

4.2 Parameter Settings

For fair comparisons, the parameters of involved algorithms are all the same as the
original paper. The dimension D of the search space was set to be 30, the swarm size
was set to be 30, Sr is set to be 0.5, and the maximum number of iterations was set
to be 1000. All the algorithms were tested under the same condition and operating
system. The initial parameters were set based on the acclaimed settings in prior papers.
It is noteworthy that each algorithm of the experiments was executed according to the
average results over 30 runs to reduce stochastic error in this paper.

4.3 Comparison with OEHGS and Other Well-Known Algorithms

We compared the OEHGS with the eight well-known algorithms for the 45 benchmark
problems using means, standard deviation and average rank. The boldface shows the
winner. In Table 1, it can be seen that the performance of OEHGS is the best in dealing
with F1-F7, F10-F12, F14, F16, F17, F26, F27, F31, F34 and F38-F43. OEHGS ranks
first in 10 algorithms, DE ranks second in 45 benchmark functions, and the original
HGS ranks 4th in the 45 benchmark functions. The convergence curves of some different
benchmark functions are shown in Fig. 1. It can be seen that OEHGS converges faster
than the other algorithms in the majority of cases. For function F2, F38, F42 and F43,
there is a close competition between OEHGS and HGS, both of them have obtained
the best solutions. It can be seen that the average rank of our algorithm is only 2.22,
which is much smaller than other algorithms. Compared with the fourth-ranked HGS,
the average rank of OEHGS is about half of the HGS. Accordingly, it can be concluded
that the performance of OEHGS is superior to the other counterparts. Table 2 shows the
consequences of theWilcoxon sign-rank test performedbyOEHGSandother algorithms.
Most of the p-values are less than 0.05. Even in SCA, all p-values are less than 0.05.
This fact further indicates that OEHGS has a strong statistical significance compared to
the other methods. In some benchmark functions, some algorithms and OEHGS reach
the optimal values simultaneously, so the difference between the proposed algorithm
and other competitors is not statistically significant.

The results of Fig. 1 shows that the convergence rate of OEHGS is fast. From F1,
F4, F6, F7 and F27, it can be seen that OEHGS converges the fastest among all the
algorithms, other algorithms converge quite slowly, and some of them even fall into
local optimum. the convergence curves of F16, F26, F27 and F34 indicate that OEHGS
has high accuracy in solving problems and can quickly find the global optimum at the
beginning of the iteration. Although some algorithm’s convergence speed is competitive
in some stages, the accuracy of the solution to those methods is not as high as that
of OEHGS, and the solution found by OEHGS has a higher quality. By observing the
performance algorithms on F11, F12, F14, F31 and F41, it can be concluded that OEHGS
has a strong ability for global exploration. As shown in these figures, it can be observed
that the opposed-based learning and evolutionary population dynamics can guarantee a
balance between exploration and exploitation.
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Table 1. Comparison results of OEHGS and other well-known algorithms.

F OEHGS HGS SSA PSO WOA MFO SCA DE BBO FA
F1 AVG/

STD
2.95E-19±
0.00E+00

2.18E-13±
0.00E+00

1.01E-08±
2.17E-09

8.50E-09±
2.63E-08

7.53E+02±
9.16E-02

1.66E+03±
3.72E+03

4.53E+00±
2.74E-01

3.45E-13±
2.57E-13

1.64E+01±
6.67E+00

2.62E-03±
8.71E-04

RANK 1 2 5 4 9 10 7 3 8 6

F2
AVG/
STD

1.11E-04±
0.00E+00

1.31E-04±
0.00E+00

5.38E-02±
2.22E-02

3.90E+00
±4.09E+00

1.47E+01±
1.84E-03

2.77E+00±
5.60E+00

4.11E-02±
4.89E-02

1.95E-02±
5.22E-03

6.20E-01±
2.40E-01

4.65E-01±
1.71E-01

RANK 1 2 5 9 10 8 4 3 7 6

F3
AVG/
STD

-1.26E+04±
2.11E-01

-8.03E+03±
6.36E+02

-7.67E+03±
7.06E+02

-5.74E+03±
1.17E+03

-6.85E+03±
1.77E+03

-8.48E+03±
9.36E+02

-3.85E+03±
3.31E+02

-6.66E+03±
4.91E+02

-1.25E+04±
1.25E+01

-5.52E+03±
3.58E+03

RANK 1 5 6 9 7 4 10 8 3 2
F4 AVG/ 0.00E+00± 5.68E-14± 4.73E+01± 9.14E+01± 2.92E+02± 1.63E+02± 1.23E+01± 1.60E+02± 5.92E+00± 7.88E+01±

STD 0.00E+00 0.00E+00 1.84E+01 2.91E+01 1.42E-14 3.51E+01 2.07E+01 1.13E+01 1.33E+00 2.00E+01
RANK 1 2 5 7 10 9 4 8 3 6

F5
AVG/
STD

4.44E-16±
0.00E+00

4.44E-16±
0.00E+00

1.66E+00±
8.33E-01

9.83E-05±
2.63E-04

1.99E+01±
2.32E-15

1.84E+01±
4.97E+00

1.73E+01±
6.51E+00

2.25E-07±
9.04E-08

2.02E+00±
2.64E-01

1.91E-01±
4.12E-01

RANK 1 1 6 4 10 9 8 3 7 5

F6
AVG/
STD

0.00E+00±0.
00E+00

1.11E-16±
0.00E+00

1.05E-02±
1.37E-02

5.42E-03±
6.56E-03

4.29E+02±
0.00E+00

6.05E+00±
2.26E+01

2.77E-01±
2.11E-01

2.47E-04±
1.33E-03

1.14E+00±
7.79E-02

1.01E-02±
6.83E-03

RANK 1 2 6 4 10 9 7 3 8 5

F7
AVG/
STD

1.31E-18±
0.00E+00

6.54E-04±
0.00E+00

4.40E+00±
3.14E+00

3.46E-03±
1.86E-02

2.94E+01±
4.92E-03

1.71E+07±
6.39E+07

2.84E+00±
5.25E+00

3.46E-03±
1.86E-02

6.48E-02
±5.06E-02

1.04E-02±
3.11E-02

RANK 1 2 8 4 9 10 7 3 6 5

F8
AVG/
STD

6.81E-01±
8.60E-01

2.49E-01±
5.10E-01

8.34E-03±
1.89E-02

3.63E-03±
5.81E-03

7.63E+00±
1.47E-01

1.13E-01±
4.54E-01

3.57E+03±
1.90E+04

5.32E-02±
2.87E-01

6.91E-01±
2.55E-01

2.03E-03±
4.13E-03

RANK 7 6 3 2 9 5 10 4 8 1

F9
AVG/
STD

1.06E+00±
5.20E-01

2.24E+00±
4.05E+00

9.98E-01±
2.61E-16

2.38E+00±
1.60E+00

1.05E+01±
1.85E+00

1.95E+00±
1.52E+00

1.40E+00±
7.92E-01

1.13E+00±
5.56E-01

1.09E+00±
4.31E-01

1.06E+00±
2.48E-01

RANK 2 8 1 9 10 7 6 5 4 3

F10
AVG/
STD

5.21E-04±
0.00E+00

5.53E-04±
0.00E+00

7.96E-04±
2.71E-04

7.48E-03±
9.51E-03

3.65E-03±
3.92E-04

9.63E-04±
3.75E-04

1.05E-03±
3.73E-04

1.20E-03±
3.57E-03

1.34E-02±
1.29E-02

9.40E-04±
1.36E-04

RANK 1 2 3 9 8 5 6 7 10 4

F11
AVG/
STD

-1.03E+00±
0.00E+00

-1.03E+00±
0.00E+00

-1.03E+00±
7.32E-15

-1.03E+00±
6.60E-16

-9.77E-01±
7.22E-11

-1.03E+00±
6.66E-16

-1.03E+00±
2.40E-05

-1.03E+00±
6.66E-16

-1.03E+00±
5.60E-03

-1.03E+00±
2.58E-09

RANK 1 1 1 1 10 1 8 1 9 7

F12
AVG/
STD

3.98E-01±
0.00E+00

3.98E-01±
0.00E+00

3.98E-01±
1.01E-14

4.75E-01±
4.14E-01

3.98E-01±
1.15E-06

3.98E-01±
0.00E+00

3.99E-01±
9.59E-04

3.98E-01±
2.17E-03

4.51E-01±
9.31E-02

3.98E-01±
2.93E-09

RANK 1 1 4 10 6 1 8 7 9 5

F13
AVG/
STD

3.00E+00±
0.00E+00

3.00E+00±
0.00E+00

3.00E+00±
6.13E-14

3.00E+00±
1.11E-15

3.02E+00±
2.26E-05

3.00E+00±
1.56E-15

3.00E+00±
2.20E-05

3.00E+00±
2.32E-15

1.29E+01±
1.38E+01

3.00E+00±
1.23E-08

RANK 2 6 5 2 9 2 8 1 10 7

F14
AVG/
STD

-3.86E+00±
0.00E+00

-3.86E+00±
0.00E+00

-3.86E+00±
1.42E-14

-3.86E+00±
2.36E-03

-3.85E+00±
3.41E-03

-3.86E+00±
2.66E-15

-3.86E+00±
2.23E-03

-3.86E+00±
2.66E-15

-3.86E+00±
5.18E-04

-3.86E+00±
5.70E-10

RANK 1 6 4 8 10 1 9 1 7 5

F15
AVG/
STD

-3.25E+00±
6.00E-02

-3.21E+00±
8.00E-02

-3.22E+00±
4.45E-02

-3.20E+00±
3.06E-01

-2.97E+00±
8.56E-02

-3.21E+00±
4.75E-02

-2.98E+00±
1.80E-01

-3.24E+00±
6.01E-02

-3.26E+00±
5.96E-02

-3.27E+00±
5.91E-02

RANK 3 6 5 8 10 7 9 4 2 1

F16
AVG/
STD

3.84E+03±
4.88E+03

1.31E+04±
2.66E+04

4.23E+03±
5.94E+03

4.59E+08±
2.47E+09

1.40E+10±
7.08E+09

1.40E+11±
7.55E+10

1.83E+11±
3.20E+10

7.23E+03±
6.03E+03

2.65E+08±
1.13E+08

5.63E+04±
2.92E+04

RANK 1 4 2 7 8 9 10 3 6 5

F17
AVG/
STD

1.06E+04±
3.53E+03

2.86E+04±
8.74E+03

1.42E+04±
5.90E+03

1.33E+04±
5.83E+03

2.60E+05±
6.57E+04

1.43E+05±
5.31E+04

6.46E+04±
1.35E+04

1.37E+05±
2.71E+04

1.63E+05±
3.30E+04

1.23E+05±
5.46E+04

RANK 1 4 3 2 10 8 5 7 9 6

F18
AVG/
STD

4.84E+02±
3.69E+01

4.91E+02±
2.94E+01

5.05E+02±
3.04E+01

4.93E+02±
2.16E+01

8.21E+02±
1.33E+02

1.29E+03±
6.56E+02

2.51E+03±
7.92E+02

4.95E+02±
1.12E+01

5.43E+02±
3.50E+01

4.40E+02±
2.54E+01

RANK 2 3 6 4 8 9 10 5 7 1

F19
AVG/
STD

6.69E+02±
3.85E+01

7.15E+02±
4.39E+01

6.46E+02±
3.51E+01

6.83E+02±
2.86E+01

8.44E+02±
6.65E+01

6.92E+02±
5.15E+01

8.21E+02±
2.55E+01

7.04E+02±
1.02E+01

5.89E+0±
21.97E+01

5.76E+02±
2.06E+01

RANK 4 8 3 5 10 6 9 7 2 1

F20
AVG/
STD

6.50E+02±
1.15E+01

6.74E+02±
1.14E+01

6.50E+02±
1.86E+01

6.58E+02±
7.00E+00

6.99E+02±
1.60E+01

6.52E+02±
1.34E+01

6.76E+02±
6.45E+00

6.00E+02±
2.53E-01

6.32E+02±
1.23E+01

6.06E+02±
3.01E+00

RANK 4 8 5 7 10 6 9 1 3 2

(continued)
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Table 1. (continued)

F21
AVG/
STD

1.05E+03±
5.82E+01

1.10E+03±
9.69E+01

8.97E+02±
6.04E+01

8.84E+02±
4.21E+01

1.27E+03±
8.64E+01

1.11E+03±
2.10E+02

1.22E+03±
6.00E+01

9.38E+02±
1.27E+01

8.82E+02±
2.29E+01

8.08E+02±
2.36E+01

RANK 6 7 4 3 10 8 9 5 2 1

F22
AVG/
STD

9.47E+02±
1.93E+01

9.68E+02±
3.50E+01

9.53E+02±
4.31E+01

9.33E+02±
2.73E+01

1.04E+03±
5.65E+01

1.04E+03±
4.73E+01

1.08E+03±
2.65E+01

1.00E+03±
8.86E+00

8.88E+02±
1.91E+01

8.85E+02±
2.52E+01

RANK 4 6 5 3 8 9 10 7 2 1

F23
AVG/
STD

4.34E+03±
9.61E+02

5.49E+03±
1.03E+03

5.00E+03±
1.38E+03

4.39E+03±
1.25E+03

1.05E+04±
3.41E+03

6.52E+03±
2.10E+03

7.52E+03±
1.47E+03

9.00E+02±
1.93E-01

1.74E+03±
5.25E+02

9.64E+02±
2.24E+02

RANK 4 7 6 5 10 8 9 1 3 2

F24
AVG/
STD

5.30E+03±
5.86E+02

5.48E+03±
7.44E+02

5.12E+03±
7.01E+02

4.60E+03±
5.93E+02

6.88E+03±
7.37E+02

5.59E+03±
5.98E+02

8.69E+03±
3.84E+02

8.45E+03±
2.74E+02

4.07E+03±
4.15E+02

4.33E+03±
5.65E+02

RANK 5 6 4 3 8 7 10 9 1 2

F25
AVG/
STD

1.27E+03±
7.63E+01

1.36E+03±
8.02E+01

1.31E+03±
9.07E+01

1.23E+03±
3.53E+01

6.41E+03±
1.95E+03

7.15E+03±
8.36E+03

3.26E+03±
1.01E+03

1.24E+03±
2.15E+01

8.53E+03±
6.08E+03

1.72E+03±
2.92E+02

RANK 3 5 4 1 8 9 7 2 10 6

F26
AVG/
STD

6.13E+05±
5.85E+05

1.07E+07±
9.17E+06

2.17E+08±
1.18E+08

1.21E+06±
3.78E+06

2.31E+09±
1.23E+09

1.18E+09±
2.04E+09

1.42E+10±
4.29E+09

3.18E+06±
5.50E+06

3.58E+07±
2.12E+07

1.75E+08±
1.38E+08

RANK 1 4 7 2 9 8 10 3 5 6

F27
AVG/
STD

2.93E+04±
2.99E+04

1.19E+05±
8.55E+04

1.26E+05±
7.61E+04

2.54E+07±
1.29E+08

2.70E+07±
3.75E+07

1.45E+08±
2.86E+08

8.33E+09±
3.47E+09

4.29E+04±
6.00E+04

1.01E+08±
1.42E+08

1.09E+06±
1.38E+06

RANK 1 3 4 6 7 9 10 2 8 5

F28
AVG/
STD

3.62E+04±
3.12E+04

7.81E+04±
7.86E+04

4.07E+04±
3.50E+04

3.41E+04±
4.33E+04

2.13E+06±
2.33E+06

4.14E+05±
8.51E+05

5.45E+05±
3.52E+05

2.03E+03±
1.24E+03

2.35E+06±
2.39E+06

1.36E+05±
1.34E+05

RANK 3 5 4 2 9 7 8 1 10 6

F29
AVG/
STD

2.47E+04±
3.11E+04

3.07E+04±
2.05E+04

6.74E+04±
5.82E+04

9.22E+03±
9.18E+03

1.70E+07±
2.60E+07

8.33E+04±
9.35E+04

3.72E+08±
2.94E+08

3.20E+03±
1.94E+03

2.86E+07±
2.52E+07

5.76E+05±
6.42E+05

RANK 3 4 5 2 8 6 10 1 9 7

F30
AVG/
STD

2.75E+03±
3.10E+02

2.96E+03±
3.30E+02

2.86E+03±
3.65E+02

2.79E+03±
2.86E+02

4.17E+03±6
.26E+02

3.06E+03±2
.83E+02

4.04E+03±
2.62E+02

3.20E+03±
1.77E+02

2.77E+03±
3.56E+02

2.66E+03±
3.18E+02

RANK 2 6 5 4 10 7 9 8 3 1

F31
AVG/
STD

2.23E+03±
1.96E+02

2.47E+03±
2.29E+02

2.28E+03±
2.07E+02

2.44E+03±
2.47E+02

2.73E+03±
2.26E+02

2.50E+03±
2.90E+02

2.72E+03±
1.93E+02

2.25E+03±
1.44E+02

2.38E+03±
1.58E+02

2.26E+03±
2.29E+02

RANK 1 7 4 6 10 8 9 2 5 3

F32
AVG/
STD

6.64E+05±
6.25E+05

1.19E+06±
1.26E+06

7.69E+05±
5.84E+05

3.01E+05±
2.18E+05

9.42E+06±
9.82E+06

4.20E+06±
9.46E+06

9.41E+06±
4.95E+06

3.73E+05±
2.10E+05

5.08E+06±
5.12E+06

9.90E+05±
6.42E+05

RANK 3 6 4 1 10 7 9 2 8 5

F33
AVG/
STD

2.90E+04±4.
53E+04

2.34E+04±2.
75E+04

1.89E+07±1
.43E+07

6.55E+03±5
.25E+03

5.95E+07±7
.62E+07

1.19E+08±3
.52E+08

5.79E+08±3
.12E+08

6.22E+03±7
.82E+03

1.55E+07±1
.19E+07

1.65E+07±1
.08E+07

RANK 4 3 7 2 8 9 10 1 5 6

F34
AVG/
STD

2.44E+03±
1.41E+02

2.77E+03±
2.01E+02

2.58E+03±
1.45E+02

2.63E+03±1
.99E+02

2.80E+03±2
.03E+02

2.71E+03±2
.45E+02

2.75E+03±1
.67E+02

2.52E+03±2
.03E+02

2.59E+03±2
.32E+02

2.54E+03±1
.98E+02

RANK 1 9 4 6 10 7 8 2 5 3

F35
AVG/
STD

1.03E+04±
5.40E+03

2.24E+04±
1.10E+04

2.79E+04±
1.69E+04

1.75E+04±7
.71E+03

1.18E+05±9
.22E+04

7.71E+04±3
.99E+04

4.39E+04±1
.85E+04

2.93E+03±1
.38E+03

5.87E+04±2
.72E+04

7.61E+04±4
.84E+04

RANK 2 4 5 3 10 9 6 1 7 8

F36
AVG/
STD

3.42E+05±
2.49E+05

4.73E+05±
3.82E+05

2.73E+05±
2.76E+05

2.12E+05±
1.65E+05

8.58E+06±
7.55E+06

1.01E+06±
7.51E+05

4.08E+06±
2.88E+06

3.79E+04±
7.06E+04

2.87E+06±
1.74E+06

5.91E+05±
5.20E+05

RANK 4 5 3 2 10 7 9 1 8 6

F37
AVG/
STD

2.68E+03±
1.51E+02

2.97E+03±
2.30E+02

2.75E+03±
2.00E+02

2.94E+03±
1.81E+02

3.11E+03±
2.53E+02

2.96E+03±
2.43E+02

3.29E+03±
1.68E+02

2.71E+03±
2.01E+02

2.91E+03±
2.65E+02

2.62E+03±
2.03E+02

RANK 2 8 4 6 9 7 10 3 5 1

F38
AVG/
STD

2.50E+03±
0.00E+00

2.50E+03±
0.00E+00

2.63E+03±
7.29E+00

2.62E+03±
1.50E+00

2.69E+03±
4.03E+01

2.67E+03±
3.78E+01

2.71E+03±
2.73E+01

2.62E+03±
0.00E+00

2.62E+03±
2.14E+00

2.64E+03±
1.68E+01

RANK 1 1 6 4 9 8 10 3 5 7

F39
AVG/
STD

2.60E+03±
0.00E+00

2.60E+03±
0.00E+00

2.64E+03±
1.06E+01

2.62E+03±
6.80E+00

2.61E+03±
4.74E+00

2.69E+03±
3.26E+01

2.61E+03±
1.52E+01

2.63E+03±
3.93E+00

2.64E+03±
5.79E+00

2.64E+03±
5.69E+00

RANK 1 1 8 5 3 10 4 6 7 9

F40
AVG/
STD

2.70E+03±
0.00E+00

2.70E+03±
0.00E+00

2.72E+03±
4.27E+00

2.72E+03±
6.50E+00

2.71E+03±
1.68E+01

2.72E+03±
9.79E+00

2.74E+03±
1.18E+01

2.72E+03±
3.27E+00

2.72E+03±
2.78E+00

2.71E+03±
2.33E+00

RANK 1 1 7 8 4 9 10 5 5 3

F41
AVG/
STD

2.70E+03±
1.00E-01

2.73E+03±
4.69E+01

2.70E+03±
1.20E-01

2.78E+03±
4.02E+01

2.71E+03±
3.38E+01

2.70E+03±
1.04E+00

2.70E+03±
3.30E-01

2.71E+03±
3.66E+01

2.72E+03±
4.26E+01

2.72E+03±
5.45E+01

RANK 1 9 2 10 6 3 4 5 8 7

F42
AVG/
STD

2.90E+03±
0.00E+00

2.90E+03±
0.00E+00

3.53E+03±1
.38E+02

3.40E+03±
3.21E+02

3.88E+03±
3.39E+02

3.59E+03±
2.05E+02

3.80E+03±
3.21E+02

3.10E+03±
6.95E+01

3.47E+03±
1.71E+02

3.12E+03±
5.03E+01

RANK 1 1 7 5 10 8 9 3 6 4

F43
AVG/
STD

3.00E+03±
0.00E+00

3.00E+03±
0.00E+00

4.14E+03±
3.23E+02

6.85E+03±
5.07E+02

5.47E+03±
7.27E+02

3.85E+03±
1.12E+02

5.54E+03±
4.23E+02

3.67E+03±
3.79E+01

3.99E+03±
2.73E+02

3.26E+03±
7.29E+01

RANK 1 1 7 10 8 5 9 4 6 3

F44
AVG/
STD

2.56E+05±
3.23E+05

2.85E+05±
1.51E+06

4.63E+06±
7.37E+06

2.25E+06±
5.35E+06

1.34E+07±
1.23E+07

3.12E+06±
3.74E+06

3.33E+07±
1.39E+07

1.65E+06±
3.70E+06

1.04E+04±
3.91E+03

3.12E+03±
1.62E+01

RANK 3 4 8 6 9 7 10 5 2 1

F45
AVG/
STD

7.92E+03±
1.56E+03

1.11E+04±
8.91E+03

3.29E+04±
1.66E+04

7.16E+03±
3.60E+03

2.67E+05±
1.53E+05

4.07E+04±
3.20E+04

4.92E+05±
2.01E+05

6.04E+03±
1.11E+03

2.16E+04±
9.46E+03

4.12E+03±
3.78E+02

RANK 4 5 7 3 9 8 10 2 6 1
Sum of ranks 100 195 217 223 395 316 373 168 269 188
Average rank 2.22 4.33 4.82 4.96 8.78 7.02 8.29 3.73 5.98 4.18
Overall rank 1 4 5 6 10 8 9 2 7 3
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F1 F2 F3 F4

F5 F6 F7 F10

F11 F12 F14 F16

F17 F26 F27 F31

F34 F38 F39 F40

F41 F42 F43

Fig. 1. Convergence trends curves for OEHGS versus other optimize

Table 2. The p−value of theWilcoxon test obtained from comparisonwith traditional algorithms.

Function HGS SSA PSO WOA MFO SCA DE BBO FA

F1 7.95E−07 1.73E−06 7.95E−07 1.73E−06 7.95E−07 1.73E−06 1.73E−06 7.95E−07 7.95E−07

F2 4.65E−01 1.73E−06 1.73E−06 1.25E−04 1.73E−06 1.73E−06 1.73E−06 1.73E−06 1.73E−06

F3 1.73E−06 1.73E−06 1.73E−06 1.73E−06 1.73E−06 1.73E−06 1.73E−06 1.73E−06 1.73E−06

F4 4.32E−08 1.73E−06 1.73E−06 1.00E+00 1.73E−06 1.73E−06 1.73E−06 1.73E−06 1.73E−06

F5 1.00E+00 1.73E−06 1.73E−06 7.90E−05 1.73E−06 1.73E−06 1.73E−06 1.73E−06 1.73E−06

(continued)
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Table 2. (continued)

Function HGS SSA PSO WOA MFO SCA DE BBO FA

F6 4.32E−08 1.73E−06 1.73E−06 1.00E+00 1.73E−06 1.73E−06 1.73E−06 1.73E−06 1.73E−06

F7 1.73E−06 1.73E−06 1.73E−06 1.73E−06 1.73E−06 1.73E−06 1.73E−06 1.73E−06 1.73E−06

F8 8.94E−01 1.15E−04 6.89E−05 4.41E−01 1.25E−02 1.73E−06 5.30E−05 6.04E−03 6.32E−05

F9 1.45E−03 3.39E−01 2.64E−03 8.18E−05 1.08E−01 3.88E−04 1.94E−01 2.77E−03 2.58E−03

F10 5.25E−04 1.11E−03 2.59E−06 2.26E−03 1.12E−05 4.07E−05 3.82E−01 1.73E−06 5.75E−06

F11 1.00E+00 1.02E−01 1.00E+00 2.56E−06 1.00E+00 1.73E−06 1.00E+00 1.73E−06 1.73E−06

F12 1.00E+00 1.75E−05 1.00E+00 1.73E−06 1.00E+00 1.73E−06 3.17E−01 1.73E−06 1.73E−06

F13 5.61E−06 1.67E−06 1.00E+00 1.73E−06 1.00E+00 1.73E−06 1.00E+00 1.73E−06 1.73E−06

F14 1.57E−01 3.02E−05 8.33E−02 1.73E−06 1.00E+00 1.73E−06 1.00E+00 1.73E−06 1.73E−06

F15 8.33E−01 6.03E−03 2.96E−01 7.81E−01 1.12E−01 1.73E−06 4.39E−01 2.06E−01 8.13E−01

F16 5.30E−01 3.93E−01 1.47E−01 1.73E−06 1.73E−06 1.73E−06 2.06E−01 1.73E−06 1.73E−06

F17 4.29E−06 6.58E−01 9.26E−01 1.73E−06 1.73E−06 1.73E−06 1.73E−06 1.73E−06 1.73E−06

F18 6.29E−01 1.57E−02 3.60E−01 1.73E−06 1.73E−06 1.73E−06 6.14E−01 5.75E−06 1.89E−04

F19 7.27E−03 1.71E−03 7.66E−01 1.92E−06 4.78E−01 1.73E−06 5.67E−03 1.92E−06 1.92E−06

F20 5.79E−05 5.86E−01 7.86E−02 1.73E−06 9.92E−01 3.52E−06 1.73E−06 4.86E−05 1.73E−06

F21 8.94E−04 2.37E−05 2.35E−06 1.92E−06 6.56E−02 1.92E−06 1.97E−05 1.92E−06 1.73E−06

F22 1.20E−03 2.13E−01 5.72E−01 3.18E−06 4.29E−06 1.73E−06 2.13E−06 2.16E−05 1.13E−05

F23 5.32E−03 5.72E−01 1.59E−01 1.73E−06 8.19E−05 2.41E−03 1.73E−06 1.73E−06 1.73E−06

F24 8.77E−01 1.20E−01 2.22E−04 8.47E−06 6.14E−01 1.73E−06 1.73E−06 1.92E−06 3.52E−06

F25 4.07E−05 3.61E−03 2.18E−02 1.73E−06 1.73E−06 1.73E−06 1.20E−01 1.73E−06 1.92E−06

F26 1.73E−06 1.73E−06 2.06E−01 1.73E−06 7.04E−01 1.73E−06 5.32E−03 1.73E−06 1.73E−06

F27 9.32E−06 1.13E−05 2.13E−01 1.73E−06 8.47E−06 1.73E−06 7.66E−01 1.73E−06 1.73E−06

F28 1.99E−01 1.92E−01 3.16E−02 1.73E−06 4.05E−01 1.73E−06 1.73E−06 1.73E−06 9.27E−03

F29 1.92E−01 1.04E−03 1.25E−02 1.73E−06 2.60E−06 1.73E−06 3.18E−06 1.73E−06 1.73E−06

F30 9.27E−03 8.59E−02 2.21E−01 1.73E−06 5.98E−02 1.73E−06 9.32E−06 4.05E−01 7.34E−01

F31 2.77E−03 4.53E−01 2.11E−03 1.73E−06 1.73E−06 2.35E−06 8.13E−01 2.70E−02 9.92E−01

F32 8.59E−02 1.59E−01 5.32E−03 5.75E−06 1.04E−03 1.73E−06 2.30E−02 3.72E−05 3.00E−02

F33 6.88E−01 1.73E−06 1.40E−02 1.73E−06 1.92E−06 1.73E−06 4.99E−03 1.73E−06 1.73E−06

F34 1.36E−05 3.88E−04 6.16E−04 1.36E−05 1.73E−06 1.13E−05 7.52E−02 4.68E−03 2.18E−02

F35 1.04E−03 1.74E−04 7.16E−04 1.73E−06 1.73E−06 1.73E−06 3.88E−06 2.13E−06 2.60E−06

F36 7.86E−02 2.13E−01 2.18E−02 1.92E−06 1.73E−06 1.73E−06 1.73E−06 1.73E−06 1.96E−02

F37 4.86E−05 8.59E−02 9.71E−05 5.22E−06 7.97E−01 1.73E−06 2.29E−01 2.41E−03 4.17E−01

F38 1.00E+00 1.73E−06 1.73E−06 2.56E−06 1.73E−06 1.73E−06 1.73E−06 1.73E−06 1.73E−06

F39 1.00E+00 1.73E−06 1.73E−06 1.73E−06 1.73E−06 1.73E−06 1.73E−06 1.73E−06 1.73E−06

F40 1.00E+00 1.73E−06 1.73E−06 9.82E−04 1.73E−06 1.73E−06 1.73E−06 1.73E−06 1.73E−06

(continued)
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Table 2. (continued)

Function HGS SSA PSO WOA MFO SCA DE BBO FA

F41 1.60E−04 6.04E−03 2.35E−06 1.85E−01 1.73E−06 1.73E−06 3.39E−01 1.97E−05 2.13E−01

F42 1.00E+00 1.73E−06 1.73E−06 1.73E−06 1.73E−06 1.73E−06 1.73E−06 1.73E−06 1.73E−06

F43 1.00E+00 1.73E−06 1.73E−06 1.73E−06 1.72E−06 1.73E−06 1.73E−06 1.73E−06 1.73E−06

F44 8.64E−01 1.25E−02 1.06E−01 2.60E−06 6.73E−01 1.73E−06 1.57E−02 6.73E−01 6.73E−01

F45 6.88E−01 1.73E−06 6.84E−03 1.73E−06 6.32E−05 1.73E−06 6.89E−05 4.53E−04 2.13E−06

5 Conclusions

In this paper, we propose an improved version of the original HGS algorithm using
OBL and EPD strategies. These strategies focus on increasing the convergence rate of
meta-heuristic algorithms by calculating the opposite solution to the current solution and
reducing the impact on the poor solution to the population quality, to balance the explo-
ration and exploitation in the algorithm. To evaluate the performance of the proposed
algorithm, a set of experiment series was performed. For the unconstrained continuous
optimization problem, 45 benchmark functions were chosen to compare OEHGS with
other state-of-the-art algorithms including SSA, PSO, WOA, MFO, SCA and DE. The
results verify the accuracy and convergence speed of OEHGS. The comparison results
indicate that the performance of OEHGS is better than that of many other methods.

In the future study, the OEHGS can be applied to several fields, such as image seg-
mentation, feature selection, and multi objective optimization algorithms. Moreover, the
proposed algorithm can be applied to the machine learning model such as the parameter
optimization of SVM model, and a prediction method of new energy problems.
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Abstract. This paper proposes an improved hydrologic cycle optimization algo-
rithm (IHCO) for solving real-world constrained engineering optimization prob-
lems. In the improved algorithm, a new flow strategy is carried out by utilizing
the empirical knowledge of the population. Meanwhile, in order to balance explo-
ration and exploitation, evaporation and precipitation operator in basic hydrologic
cycle optimization is redesigned and an adaptive Gaussian mutation method is
introduced. The standard deviation of the Gaussian distribution decreases lin-
early as the algorithm proceeds. Compared with several metaheuristic algorithms,
the superiority of IHCO is validated through thirteen engineering optimization
problems. The experimental results demonstrate that IHCO outperforms the basic
algorithm, and it has a satisfactory capability to enhance performance.

Keywords: Improved hydrologic cycle optimization · Metaheuristic algorithm ·
Engineering optimization problem · Adaptive gaussian mutation

1 Introduction

Optimization is the essence of human decision-making. It attempts to maximize or min-
imize a predefined objective function. In science and engineering field, based on some
design standards and safety rules,most of the optimization problems are highly nonlinear
and have complex constraints. Such problems are called constrained optimization prob-
lems, which can be formulated as a D-dimensional minimization problem. The general
form can be defined as formula (1):

minimize f (x), x = (x1, x2..., xD), xmini ≤ xi ≤ xmaxi

subject to : gj(x) ≤ 0, j = 1, ..., n,

hj(x) = 0, j = n + 1, ...,m. (1)

where x is a feasible solution and each decision variable xi is within the specified range[
xmini , xmaxi

]
. f (·) is the predefined objective function. The feasible region set is defined

by a set of n inequality constraints g(x) and a set of m − n equality constraints h(x).
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To solve constrained engineering problems, various types of optimization methods
are available. Traditional optimization methods mostly proceed based on derivative or
gradient, such as steepest descent method [1] and Newton method [2]. They are proved
to be suitable for solving continuous and smooth problems [3]. However, they are sen-
sitive to the choice of the initial starting point. Besides, in the real world, engineering
optimization problems are often nonlinear, non-differentiable and multi-modal, which
means that it might be impossible to calculate the gradient of many objective functions.
In addition, as the complexity of the problem increases, higher computational cost is
required to obtain the optimal solution.

These drawbacks of traditional optimization methods encourage the birth and devel-
opment of metaheuristic methods. By combining some classic heuristic methods with
rule-based theories such as swarm intelligence and evolution, a large number of meta-
heuristic methods have been proposed. Genetic algorithms (GA) [4], particle swarm
optimization (PSO) [5], differential evolution (DE) [6], grey wolf optimizer (GWO)
[7] are some popular metaheuristic methods and have been used to solve constrained
engineering design problems [8].

It is impossible for any algorithm to solve all optimization problems according to No
FreeLunch (NFL) theorem [9].Numerous researchers strive to develop newoptimization
algorithms based on natural phenomena. Besides, it is also a trend tomodify the operators
of existing methods to enhance their performance.

Recently, a hydrologic cycle optimization (HCO) [10] has been put forward. It intro-
duces flow, infiltration, evaporation and precipitation operators to simulate the hydro-
logical cycle process. It is confirmed that the HCO is a competitive approach for solving
numerical and data clustering optimization problems [10]. In this paper, an improved
hydrologic cycle optimization(IHCO) algorithm is proposed to boost the performance
of the basic HCO. To demonstrate the superiority of IHCO, it is applied to solve engi-
neering optimization problems. Compared to other famousmetaheuristic algorithms, the
experimental results show that our proposed algorithm provides better performance.

The rest of this paper is organized as follows. The basic hydrologic cycle optimization
is described in Sect. 2. Details of the proposed algorithm are in Sect. 3. Parameter settings
and experimental results of the applied algorithms for solving engineering problems are
shown in Sect. 4. Finally, this paper is concluded in Sect. 5.

2 Basic Hydrologic Cycle Optimization Algorithm

In this section, the basic hydrologic cycle optimization algorithm(HCO) in [10] is briefly
introduced.

Inspired by the phenomenon of the hydrological cycle in nature, HCOwas proposed.
The process of the hydrological cycle is briefly described as follows. Under the influ-
ence of solar radiation, gravity and other factors, water molecules circulate and exchange
between the atmosphere, ocean and land through some physical actions, such as evap-
oration, precipitation, surface water runoff, groundwater runoff and infiltration. In this
process, some of the water on the land would pool into rivers and finally flow into the
oceans. The above phenomenon can be abstracted as the process of searching for the
optimal solution of an objective function. By simulating the hydrological cycle process,
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three operators are introduced. They are flow operator, infiltration operator, evapora-
tion and precipitation operator. These three operators of HCO are briefly described in
Subsect. 2.1, Subsect. 2.2 and Subsect. 2.3, respectively.

2.1 Flow Operator

To simulate the flowing downhill phenomenon, a flow operator is conceived. For each
individual Xi, another individual Xj with better fitness is randomly selected to generate
a new candidate solution Xn. If the new location is better, the individual will flow to the
new position and then flow again in the same direction until the maximum number of
flow times is reached. The maximum number of flow times is predetermined to avoid
premature convergence. For the current best individual, another individual is completely
randomly chosen. The process is shown as formula (2), where rand(·) is a uniformly
distributed number in the interval [0, 1] and D is the dimension of the problem.

Xn = Xi + (Xj − Xi). ∗ rand(1,D). (2)

2.2 Infiltration Operator

Infiltration plays a major role in increasing the diversity of the population. For each indi-
vidual Xi, they randomly select another individual Xj to guide their infiltration actions.
Several dimensions of the original individual Xi are randomly selected and eventually
updated by moving closer or further away from the target individual. The number of the
selected dimensions may be different for each individual. All individuals will accept the
updated location, regardless of whether the new location is better. The process is shown
as formula (3), where sd is the sd th dimension of the randomly selected dimensions and
randsd is a random number generated for the sd th dimension.

X sd
i = X sd

i + (X sd
i − X sd

j ). ∗ 2. ∗ (randsd − 0.5). (3)

2.3 Evaporation and Precipitation Operator

To enhance the global search capability, the evaporation and precipitation operator is
introduced. A parameter Pe is set to control the probability of this action. When an
individual is vaporized, there are two equal-probability ways to relocate. The first way
is to randomly generate position in the decision space. The other way is to generate a
new solution near the current optimal solution by applying Gaussian mutation.

3 Improved Hydrologic Cycle Optimization Algorithm

In this section, our improved hydrologic cycle optimization algorithm(IHCO) is
described in detail. We attempt to redesign the flow operator as well as the evaporation
and precipitation operator to enhance the performance of the basic HCO. In Subsect. 3.1,
we propose a new strategy to generate candidate solution for the global optimal indi-
vidual. In Subsect. 3.2, the improvement of the evaporation and precipitation operator
is described and an adaptive Gaussian mutation strategy is introduced here.
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3.1 Improvement of the Flow Operator

In the flow operator of the basic HCO, in addition to the global optimal individual,
other individuals will randomly select another individual with better fitness, and the
greedy selection is then applied. By continuous learning from exemplars, individuals
can greedily flow to better new location. However, the global optimal individual has to
learn from a randomly selected individual, as currently there is not any better solution.
When an individual with extremely poor fitness becomes the exemplar, the current global
optimal individual will gradually move away from the potential area. That is, learning
from a single individual is often difficult to strike a better direction.

Based on the above thinking, we improve the flow strategy for the current best
individual. First of all, a variable number of individuals are randomly selected to form
a group. Then, by calculating the average of the current positions of all individuals in
the group, the center of the group XG is determined. At last, the current best individual
Xbest can make full use of this information to generate its candidate solution Xnew. This
strategy can be executed according to formula (4), where rand1 is a uniformly distributed
random number between 0 and 1. Nk is the number of individuals which are randomly
selected to form a group, and t is the tth individual in the group. For other individuals
that are not the current best solution, formula (2) is still used to generate their candidate
solutions.

Xnew = Xbest + rand1. ∗ (XG − Xbest).

XG =
∑Nk

t Xt

Nk
. (4)

3.2 Improvement of the Evaporation and Precipitation Operator

Two evaporation and precipitation strategies inHCOhave been described in Subsect. 2.3.
It is noteworthy that the two mutation strategies could be selected with the same proba-
bility. The advantage is that these strategies can help individuals to relocate or quickly
approach the global optimum, which helps to enhance both global and neighborhood
searching abilities. However, there are some deficiencies. Each individual randomly
chooses a strategy without utilizing their empirical knowledge. This means that indi-
viduals may be randomly relocated in the decision space, even though it has strong
exploitability in the current region. This will be detrimental to the development of
the entire population. To make matters worse, if individuals frequently generate new
positions randomly, it will prevent the population from convergence and local search.

These drawbacks encourage us towards new strategies. First, the parameter Pe is
reserved to control the evaporation probability. Then, before precipitation, individuals
are ranked according to their fitness values. Finally, if an individual ranks in the bottom
five, it would be randomly relocated in the search space. Otherwise, it would move its
current position to the current best position and then perform adaptiveGaussianmutation
strategy on several selected dimensions to generate a new position. In this paper, adaptive
Gaussian mutation is adjusted by the standard deviation σ of the Gaussian distribution.
σ shows a decreasing trend with the process of iteration. Noted that σ helps high jump
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when it is close to 1 and helps low jump when it is close to 0.1. The adaptive Gaussian
mutation strategy contributes to balance exploration and exploitation. The relocation
strategy is shown as formula (5), while the adaptive Gaussian mutation is given by
formula (6).

X d
i = LBd + (UBd − LBd ). ∗ randd , if rand2 < Pe and rank(i) = 1. (5)

X sd
i = X sd

Best + X sd
Best . ∗ Gaussian(μ, σ 2), if rand2 < Pe and rank(i) = 0.

σ = 1 − 0.9 ∗ Iter

MaxIter
. (6)

randd and rand2 are uniformly distributed numbers between 0 and 1. rank(·) can be
either 0 or 1. When it is equivalent to 1, it means that the individual ranks in the bottom
five. Pe is the parameter to control the probability of evaporation. In formula (5), X d

i is
the dth dimension of the individual Xi. UBd and LBd are the upper and lower bounds
of the dth decision variable, respectively. In formula (6), X sd

i and X sd
Best are the sd th

randomly selected dimension of the individual Xi and the current best individual with
the best position XBest , respectively. Gaussian(·) is the Gaussian distribution with mean
μ and standard deviation σ . Iter and MaxIter represent the current iteration and the
maximum number of iterations, respectively.

4 IHCO for Engineering Problems

In this section, the proposed algorithm is applied to solve thirteen engineering design
problems. Some basic information of these problems is given in Subsect. 4.1. Several
well-known metaheuristic algorithms for comparison and parameter settings are given
in Subsect. 4.2. In Subsect. 4.3, experimental results and analysis are presented here.

4.1 Engineering Design Optimization Problems

Table 1. Basic information of thirteen engineering design optimization problems.

No Name DV NC Optimum results

F1 Speed reducer 7 11 2994.4244658

F2 Tension/compression spring design 3 4 0.012665232788

F3 Pressure vessel design 4 4 6059.714335048436

F4 Three-bar truss design problem 2 3 263.89584338

F5 Design of gear train 4 0 2.70085714e-12

F6 Cantilever beam 5 1 1.3399576

(continued)
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Table 1. (continued)

No Name DV NC Optimum results

F7 Optimal Design of I-Shaped Beam 4 2 0.0130741

F8 Tubular column design 2 6 26.486361473

F9 Piston lever 4 4 8.41269832311

F10 Corrugated bulkhead design 4 6 6.8429580100808

F11 Car side impact design 10 10 22.84296954

F12 Design of welded beam 4 7 1.724852308597366

F13 Reinforced concrete beam design 3 2 359.2080

To verify the performance of the proposed IHCO, thirteen standard engineering
optimization problems are employed, some basic information is shown in Table 1. The
abbreviations “DV” and “NC” represent the number of design variables and constraints,
respectively.

Among the 13 engineering design problems, except F5, the rest are constrained opti-
mization problems. They are highly nonlinear problems with some complex constraints.
When minimizing the objective functions, precise handling of design constraints must
be considered. In this paper, a simple penalty approach is applied as the constraint han-
dling method. More details on these engineering design problems mentioned above can
be obtained in [8, 11].

4.2 Parameter Settings

Some settings are the same in all algorithms to ensure that the comparison is fair. In
the trials, the population size of all algorithms is 50. Besides, the maximum number of
function evaluations (FEs) is used for more equitable comparison to some degree. FEs is
set to 10× 104 in this paper. At the same time, in order to reduce the effect of randomness,
on each engineering design problems, each algorithm runs 30 times independently.

Severalwell-knownmetaheuristic algorithms are implemented for comparison. They
are basic HCO, PSO, DE, GA and water cycle algorithm(WCA). The algorithms and
their parameter settings are shown in Table 2.

There are three main parameters in IHCO. maxNF represents the maximum flow
time in the flow operator. Pe is used to control the evaporation probability. The settings
of these two parameters in IHCO are consistent with the settings in HCO. σ is used
for the adaptive Gaussian mutation strategy. It decreases linearly from 1 to 0.1 as the
algorithm proceeds.
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Table 2. Parameter settings of the algorithms

Algorithm Parameter settings

IHCO (present study) Maximum flow times maxNF increases from 1 to 3,
The control parameter Pe decreases from 0.9 to 0.1,
The standard deviation σ decreases from 1 to 0.1

HCO [10] Maximum flow times maxNF increases from 1 to 3,
The control parameter Pe decreases from 0.9 to 0.1

PSO [12] Inertia weight ω decreases from 0.9 to 0.4,
Learning rate c1 = c2 = 2

DE [6] Step size F_weight = 0.4,
Crossover probability F_CR = 0.1,
DE/rand/1 strategy is used

GA [4] Mutation rate F_mu = 0.1,
Crossover rate F_cr = 0.95

WCA [13] The number of rivers and sea Nsr = 4,
A default value(close to zero) dmax = 1e − 3

4.3 Experimental Results and Analysis

Table 3 presents the experimental results. In the second column, “MN” and is “SD”
are the mean and standard deviation of all the optimal solutions obtained in each run,
respectively. “RK” is the rank of the algorithm among all the applied algorithms.

In Table 3, the best mean, the best standard deviation and the highest ranking are
highlighted in bold. “b/e/w” represents the total number of problems that IHCO per-
formed better than, the same as, or worse than another algorithm, respectively. Besides,
“AR/FR” are average ranking and final ranking for each algorithm.

As it could be clearly seen in Table 3, IHCO performs optimally on eight of the
thirteen problems and it eventually ranks first.

These experimental results demonstrate that IHCO outperforms PSO and GA on
all problems. It implies that the populations of PSO and GA are more likely to trap in
local optimal solutions when solving engineering optimization problems. The results
also show that our proposed algorithm IHCO has a better global searching ability to
obtain more satisfactory solutions.

In addition, compared to the classic HCO, IHCO shows better performance on eleven
problems and the superiority is especially significant on F3 and F9. On F1, F2, F4-
F10, F12 and F13, IHCO obtains better mean values and standard deviations of the
optimization results than HCO, which shows its advantage both in accuracy as well as
stability. It can be concluded that IHCOhas a satisfactory ability to boost the performance
of the basic HCO for solving engineering problems.

Meanwhile, we can see that on F4, F6, F8, F10 and F11, DE obtains better results
than IHCO. The optimal solutions ofDEon F4, F6, F8, F10 and F11 are only 0.000038%,
0.014923%, 0.002265%, 0.027758% and 0.955449% lower than the results of IHCO,
respectively, indicating that the performance gap between IHCO and DE on these five
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problems is small. However, the optimal results of DE on F2, F3, F9 and F12 are
414.1732%, 2.3054%, 335.8095% and 5.7786% higher than the optimal solutions of
IHCO, respectively. These statistical results demonstrate that DE is not stable enough to
solve all engineering optimization problems. They also confirm the robustness of IHCO.

Table 3. Comparison of experimental results between IHCO and other algorithms

ST IHCO HCO PSO DE GA WCA

F1 MN 2994.4378 2994.4928 3025.8539 2994.8280 3053.9152 2996.3237

SD 0.0077 0.0526 89.0968 1.4557 19.2577 4.3012

RK 1 2 5 3 6 4

F2 MN 0.0127 0.0130 0.0815 0.0653 0.0213 0.0136

SD 6.2093E−05 2.5156E−04 0.2653 0.2870 0.0049 0.0014

RK 1 2 5 6 4 3

F3 MN 6130.9076 6240.7704 7786.3519 6272.2504 6791.8197 6523.5465

SD 166.6928 161.9452 878.8256 349.9473 416.4013 531.6386

RK 1 2 6 3 5 4

F4 MN 263.8959 263.8961 263.8962 263.8958 263.9158 263.8959

SD 6.1377E−05 1.3218E−04 3.4397E−04 6.7249E−08 0.0128 1.3878E−04

RK 2 4 5 1 6 2

F5 MN 1.3691E−11 1.7366E−11 1.0230E−08 7.2091E−10 7.5766E−10 3.5968E−09

SD 2.1309E−11 2.9009E−11 8.7495E−09 8.1236E−10 8.0573E−10 4.4485E−09

RK 1 2 6 3 4 5

F6 MN 1.3402 1.3406 1.6629 1.3400 1.4576 1.3407

SD 1.2010E−04 3.3176E−04 0.2258 1.6879E−05 0.0802 1.0631E−03

RK 2 3 6 1 5 4

F7 MN 0.013074 0.013107 0.02049 0.013074 0.013661 0.013074

SD 2.0379E−07 3.6772E−05 0.0406 5.2935E−07 1.9697E−04 9.7390E−07

RK 1 4 5 1 6 1

F8 MN 26.4870 26.4877 26.4953 26.4864 26.6074 26.4864

SD 4.8827E−04 9.2592E−04 5.0604E−03 9.3592E−09 0.0977 2.2749E−09

RK 3 4 5 1 6 1

F9 MN 19.0279 41.2442 282.0075 82.9254 65.7363 67.1484

SD 40.3864 66.4895 152.9064 135.5672 126.3210 78.5440

RK 1 2 6 5 3 4

(continued)
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Table 3. (continued)

ST IHCO HCO PSO DE GA WCA

F10 MN 6.8449 6.8457 6.9676 6.8430 7.0311 6.8439

SD 8.8605E−04 1.2367E−03 0.2107 1.0497E−04 0.0852 4.3395E−03

RK 3 4 5 1 6 2

F11 MN 23.0677 22.9883 23.5978 22.8473 24.2392 23.1481

SD 0.2196 0.1596 0.4302 6.6239E−03 0.3560 0.2677

RK 3 2 5 1 6 4

F12 MN 1.7288 1.7603 2.0343 1.8287 2.2869 1.7631

SD 1.8556E−03 0.0218 0.1875 0.0952 0.4934 0.0581

RK 1 2 5 4 6 3

F13 MN 359.2080 359.2080 360.4507 359.2095 359.2790 359.4130

SD 3.5416E−08 1.5778E−07 1.5505 0.0071 0.0971 0.7803

RK 1 1 6 3 4 5

b/e/w / 11/1/1 13/0/0 7/1/5 13/0/0 9/2/2

AR/FR 1.6154/1 2.6154/3 5.3846/6 2.5384/2 5.1538/5 3.2307/4

The convergence curves of IHCO, HCO, PSO, DE, GA andWCA on F2, F3, F9 and
F12 are given in Fig. 1. It is clear that IHCO shows faster convergence speed and better
accuracy. In science and engineering field, people always highly focus on precision and
accuracy. It is of great significance to improve the accuracy and precision of engineering
optimization problems within a reasonable time. Besides, the stability of algorithms for
solving engineering problems also needs to be paid attention to. According to these
experimental results, IHCO has produced more stable solutions and has obtained the
optimal results on eight problems. It has noticeable capability in solving constrained
engineering optimization problems.
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Fig. 1. The mean convergence results obtained by the six algorithms on F2, F3, F9 and F12

5 Conclusions

In this study, an improved hydrologic cycle optimization algorithm is proposed to
enhance the performance of the basic algorithm.

We introduce a new flow strategy for the current global optimal individual, mak-
ing great use of empirical knowledge generated by some individuals of the population.
Moreover, the evaporation and precipitation operator is also redesigned to balance explo-
ration and exploitation. In details, before precipitation, individuals are ranked according
to their fitness values. Based on the probability of evaporation as well as its ranking,
each individual may relocate in the search space or perform adaptive Gaussian muta-
tion strategy. Finally, thirteen engineering design problems are conducted to evaluate
the optimization ability of IHCO. The experimental results show that it is competitive
for IHCO to solve real-world engineering design problems. Compared to other famous
metaheuristic algorithms, IHCOperformswell in the aspects of accuracy and robustness.
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In the future, IHCO can be further tested in other real-world problems, such as busi-
ness optimization problems and intelligent control problems. In addition, other enhanced
strategies could also be introduced to develop a more robust and well-performed version
of IHCO.
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Abstract. Pulse coupled neural network (PCNN) is used by predecessors to locate
noise points, which overcomes the disadvantage that a large amount of image
details will be lost in the traditional method of filtering the whole image. How-
ever, it is still a problem tofind the optimal parameters of PCNNsystem.Therefore,
the purpose of this paper is to improve the quality of image filtering and the flex-
ibility of PCNN. This paper established a pulse coupled neural network model
(PCNN-QSHA) based on quantum selfish herd algorithm. The PCNN’s optimal
parameters can be obtained by the quantum selfish herd algorithm without man-
ual estimation parameter. The experimental results show that, compared with the
previous methods, the proposed method has excellent performance and efficiency
in image filtering. By comparing the proposed algorithm with GACS, PSO and
SFLA, nine CEC benchmark functions are simulated, and the results show that
QSHA has better convergence performance.

Keywords: Pulse coupled neural network · Image denoising · Optimal
parameters · Quantum selfish herd algorithm

1 Introduction

It is widely known that image denoising is an important research direction of image
processing. In reality, images will be affected by the interference of imaging equipment
and external noise in the transmission process, and the image will be polluted by noise.
The purpose of image denoising is to filter out the noise in the image under the condition
of retaining the image’s key information as much as possible. At present, there are many
classical image denoising methods, such as median filtering, Wiener filtering, etc., but
these methods are all denoising the whole image, so a lot of key details of the image will
be lost.

In [1], Vorhies. JT et al. proposed A novel method is described for adaptive filtering
of light fields to enhance objects at a given depth. In [2], Jialin Tang et al. improved
the adaptive median filtering method. In [3], LINA JIA et al. proposed an effective
image denoising algorithmwith improved dictionaries. All of themmake use of adaptive
method to improve the applicability of this method and can denoise more noisy images.
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But they still denoised thewhole image. In [4], A. Senthil Selvi et al. proposed de-noising
of images from salt and pepper noise using hybrid filter, fuzzy logic noise detector and
genetic algorithm. An experimental result shows the hybrid filter, fuzzy logic noise
detector and genetic optimization algorithm rectifies the drawbacks of exiting filters and
increases the visual quality of the image by increasing the PSNR value.

In recent years, image processing technology based on pulse-coupled neural network
(PCNN) has attracted more and more experts’ attention. PCNN is a neural network
model proposed by Eckhorn in the 1990s. PCNN simulates the synchronous oscillation
phenomenon in the visual cortex neurons of mammals [5]. The gray value of noise points
in the image differs greatly from the gray value of surrounding pixels, while PCNN can
compensate local micro-discontinuous values through the correlation between pixels,
which is an advantage unmatched by traditional image filtering methods. Therefore, this
paper chooses PCNNmodel for image filtering. In [6], Dong et al. proposed a new image
fusion algorithm based on memristor-based PCNN. The algorithm is applied to multi-
focus image fusion with improved multi-channel configuration. In [7], Yin et al. used
the parameter adaptive pulse coupled neural network (PA-PCNN) model to fuse the high
frequency band, in which all PCNN parameters could be estimated adaptively through
the input frequency band. In [8], Yang et al. proposed a new heterogeneous simplified
pulse coupled neural network (HSPCNN) model for image segmentation. HSPCNN is
constructed from several simplified pulse-coupled neural network (SPCNN)modelswith
different parameters corresponding to different neurons. In [9], Cheng et al. proposed
variable step matrix of the simplified PCNN method. This method has achieved good
results in Gaussian noise filtering.

To sum up, the existing literature focuses on the parameter setting of PCNN when
using PCNN for image processing. It indicates that some key parameters of PCNN-based
image processing model need to be set reasonably to obtain the optimal performance.
However, the existing methods are difficult to obtain the optimal parameters of PCNN,
which will reduce its performance. Moreover, the method of manual parameter estima-
tion is not only inefficient but also poor in performance of PCNN. Therefore, in order to
solve the problem of PCNN parameter setting and losing details in the process of image
denoising in existing literatures, this paper established a pulse coupled neural network
model (PCNN-QSHA) based on quantum selfish herd algorithm. The key parameters of
the model are optimized by using the quantummechanism combined with the evolution-
ary principle of selfish herd, and the peak signal-to-noise ratio as the fitness function. In
this way, the denoising effect of the model is enhanced and its practicability is improved.

2 Image Filtering Model

This section introduces the image filtering model [10], which is divided into two parts:
improved simplified PCNN model, and peak signal-to-noise ratio.

2.1 Improved Simplified PCNN Model

Adaptive window is used in the PCNN model, so it is also a pre-processing operation,
and its specific process is as follow: The simplified PCNN is combined with structural
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similarity, and the filter window of a certain size N × N is applied to PCNN. If the
function value of structural similarity after filtering of this window size is the maximum,
the window size is output. The simplified structural similarity is used in this paper, which
is as follow

Ssim(x, y) = (2 · μx · μy) · (2 · σxy + C2)

(μ2
x + μ2

y + C1) · (σ 2
x + σ 2

y + C2)
. (1)

where μx, μy represent the mean values of the original image x and the filtered image y
respectively. σx, σy represent the standard deviation of x and y. σxy is the covariance of
x and y.

In this paper, the PCNNmodel is improved to change the previous fixed size window
into an adaptive size window. The number of iterations is K1. In the model, each pixel
corresponds to a neuron, so the feedback input of pixels in row i and column j of the
n-th generation is

Fij(n) = aij. (2)

where aij represents the pixel value of row i and column j in the image. The linear
connection input of pixels in row i and column j of the n-th generation is

Lij(n − 1) =
i+1∑

ι=i−1

j+1∑

l=j−1

ωij,ιl · Yιl(n − 1). (3)

where ωij,ιl is the connection weight matrix’s element. Yιl(n − 1) is of output matrix’s
element. The internal activity item of the n-th generation is

Uij(n) = Fij(n) · (
1 + βL · Lij(n)

)
. (4)

whereβL is coefficient of connection strength. Then, the dynamic threshold of generating
pulse output is

tij(n) = e−αt · tij(n − 1) + vt · Yij(n). (5)

where vt is amplitude coefficient. αt is attenuation coefficient. The pulse output of PCNN
is

Yij(n) =
{
1,Uij(n) > tij(n − 1)
0,Uij(n) ≤ tij(n − 1)

. (6)

where Yij(n) is the pulse output matrix’s row i and column j element. tij(n − 1) is the
dynamic threshold of Yij(n). The pulse output indicates that when the internal activity
term of the neuron is greater than the corresponding threshold value of the neuron, the
output term is 1. After putting it into the formula (5), the threshold value will increase
(the increase extent depends on the amplitude coefficient), and then it will prevent the
neuron from firing continuously in the next iteration. In addition, when the pulse output
element is 1, if it is not the first iteration, this neuron’s corresponding position in the
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ignition matrix will fire this neuron in the iteration and record its iterations in the ignition
matrix.

The ignition matrix is used to judge noise points. The judgment method is as follow:
when more than half of the surrounding neurons in the filtering window fire before or
after the neuron, the pixel point corresponding to the neuron is the noise point. For the
noise points, the average filter is used to filter the image inside the window. For pixels,
the grayscale value is returned directly. Such filtering for noise points rather than global
filtering requires strict control of the parameters in PCNN. Because the expressions in
these parameters are coupled, changing the value of one parameterwill affect the filtering
effect of the image. Therefore, QSHA with better convergence performance is selected
to optimize parameters.

2.2 Peak Signal-to-Noise Ratio

The peak signal-to-noise ratio is the logarithm of the mean variance between the original
image and the filtered image relative to the square of the maximum gray value. Taking
it as the objective function, the expression is as follows:

f = 10 · log10(
m

M
). (7)

where m denotes the maximum grayscale of image points, M is variance of the mean,
which can be written as:

M = 1

M · N
M∑

i=1

N∑

j=1

(x(i, j) − y(i, j))2. (8)

where M and N represent image dimensions. x(i, j) and y(i, j) respectively represent
gray value of the original image and the filtered image in row i and column j.

3 Image Denoising Based on Quantum Herd Mechanism

The selfish herd algorithm is a global optimization algorithm based on the selfish behav-
ior of group animals published by Fernando Fausto et al. in 2017 [11]. In this paper,
this algorithm is combined with the theory of quantum swarm intelligence to obtain a
quantum selfish herd algorithm. This algorithm is used to obtain the optimal parameters
of PCNN in this paper.

3.1 Principles of Quantum Selfish Herd Algorithms

Firstly, the population size is set asK2, the number of herds isG, the number of predators
is g = K2 − G, and the maximum number of iterations is K3. In the k-th iteration, the
quantum position of the i-th herd quantity is simply defined as qki = [qki,1, qki,2, · · · , qki,s],
qki,s ∈ [0, 1], i = 1, 2, · · · ,G, and the quantum position of predators is simply defined

as pki = [pki,1, pki,2, · · · , pki,s], pki,s ∈ [0, 1], i = 1, 2, · · · , g. The quantum position qki is
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mapped to position qki by the i-th herd individual according to the mapping interval, and
the quantum position pki is mapped to position pki by the i-th predator individual. The
mapping rule is

qki,d = qki,d (ξ
max
d − ξmin

d ) + ξmin
d . (9)

pki,d = pki,d (ξ
max
d − ξmin

d ) + ξmin
d . (10)

where d = 1, 2, · · · , s. ξmax
d is the upper bound of the d -th dimension of the search

space. ξmin
d is the lower bound of the d -th dimension of the search space.

Thefitness value of the i-th herd individual’s position in the k-th iteration is f (qki ), and
predator individual’s fitness is f (pki ). According to the PCNN parameters corresponding
to the position of the i-th herd or predator individual in the k-th iteration, PCNN is
activated for image filtering. In QSHA, a survival value function was introduced to
evaluate the survival of herd individuals. The survival value function is Formula (11),
which is as follow

Hk
i = f (qki ) − f (qkworst)

f (qkbest) − f (qkworst)
. (11)

where f (qkbest) is the optimal fitness of the herd in the k-th iteration. f (qkworst) is the worst
fitness of the herd in the k-th iteration. f (qki ) is the fitness value of the i-th individual in
the k-th iteration.

The predation risk of each individual in a herd is affected by the quantum position
distance between the individual and the predator. And the pursuit probability Pk

i,j mainly
depends on the distance between the individuals and the survival value of the individuals.
The pursuit probability is as follow

Pk
i,j = Wk

i,j

G∑
τ=1

Wk
i,τ

. (12)

where i = 1, 2, · · · , g, j = 1, 2, · · · ,G. Wk
i,j is the attraction of qkj to pki , which is as

follow

Wk
i,j =

(
1 − Hk

j

)
· e−

∥∥∥pki −qkj

∥∥∥
2

. (13)

It can be concluded from the formula (13), the smaller the survival value of indi-
viduals in the herd, the more attractive they are to predators. And the higher the pursuit
probability, the more likely the herd individual is to be preyed upon. Pursuit probabili-
ties are used to calculate cumulative probabilities, and the roulette wheel mechanism is
used to catch prey. The cumulative probability mentioned is the same as the calculation
method of the cumulative probability in the genetic algorithm, so it will not be described
here. The prey that is hunted is put into set O, and its quantum position is emptied. O is
an empty set when the predator doesn’t get the prey, and then the remaining individuals
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are used for crossover operation to re-allocate the quantum position to this individual.
The specific steps of assignment: First, Crossover candidatesO = {qki /∈ O} are selected,
and i = 1, 2, · · · ,G. Second, the mating probability is calculated by

P
k
j = Hk

j

G∑
i=1

Hk
i

. (14)

where ∀i ∈ {i = 1, 2, · · · ,G|qki ∈ O}, Pk
j is the j-th individual’s mating probability.

Then, the cumulative probability is calculatedby thematingprobability. Thequantum
positions are allocated to the new generation of individuals, and the specific steps are
as follows: for each dimension of the quantum position, the roulette wheel mechanism
is adopted to select the corresponding dimension of the surviving individual’s quantum
position. And the quantum position dimension is directly assigned to the individual in the
setO. Then, quantum positions of all newborn individuals aremapped and their positions
are obtained. And the fitness and survival value of new generation of individuals were
calculated.

This paper identifies the herd leader qkbest according to the maximum fitness value.
It represents the individual with greatest fitness value in the k-th iteration. These herd
individuals were divided into herd followers q̃kD and herd deserters q̃kF , which is as follow

q̃kD =
{
qki |Hk

i ≥ Hk
ave

}
. (15)

q̃kF =
{
qki |Hk

i < Hk
ave

}
. (16)

where i = 1, 2, · · · ,G. Hk
ave is the herd’s average survival value in the k-th iteration.

Then, the adjacent individual of each individual in the population is found, which is as
follow

q̃kci =
{
qkj �= qki , q

k
j �= qkbest |Hk

i > Hk
j , rki,j = min

j∈1,2,··· ,G

(∥∥∥qki − qkj

∥∥∥
)}

. (17)

where i = 1, 2, · · · ,G. rki,j is the Euclidean distance between q
k
i and q

k
j . q̃

k
ci refers to the

j-th herd individual as the i-th herd individual’s adjacent individual.
The herd’s center q̃km is calculated by

q̃km =

G∑
i=1

Hk
i · qki

G∑
i=1

Hk
i

. (18)

3.2 Quantum Evolutionary of Quantum Herd Algorithm

Then, this paper uses a quantum revolving door to update the quantum positions of
herd followers, herd deserters, and predators. In the herd members, the quantum rotation
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angle’s updating formula of herd followers and herd deserters is different, so the move-
ment pattern is different. Then, the i-th herd individual’s the d -th dimensional quantum
rotation angle is

ϕk+1
i,d =

⎧
⎨

⎩
σ · Hk

c,i ·
(
q̃kci,d − qki,d

)
+ ζ · Hk

best ·
(
qkbest,d − qki,d

)
, qki ∈ q̃kD

σ · Hk
qm ·

(
q̃kqm,d − qki,d

)
+ ζ ·

(
qkbest,d − qki,d

)
, qki ∈ q̃kF

. (19)

where i = 1, 2, · · · ,G, d = 1, 2, · · · , s. s is the quantum position vector’s maximum
dimension. Hk

best is the survival value of herd leader in the k-th iteration. Hk
i , H

k
c,i and

Hk
qm represent the survival value of the i-th herd individual, the i-th herd individual’s

adjacent individual, and the herd’s center respectively. σ and ζ are random numbers
from 0 to 1. Then, quantum revolving gates are used to update the quantum position of
herd individuals, which is as follow

qk+1
i,d =

∣∣∣∣∣q
k
i,d · cos

(
ϕk+1
i,d

)
+

√
1 −

(
qki,d

)2 · sin
(
ϕk+1
i,d

)∣∣∣∣∣. (20)

where i = 1, 2, · · · ,G, qki,d represents the d -th dimensional variable of the i-th herd

individual’s quantum position. ϕk+1
i,d represents the d -th dimensional variable of the i-th

herd individual’s quantum rotation angle.
The d -th dimensional quantum rotation angle of the i-th predator is

ϕk+1
i,d = σ ·

(
qkj,d − pki,d

)
+ ρ · λd . (21)

where i = 1, 2, · · · , g, ρ is a random number satisfying a gaussian distribution with a
mean of 0 and a variance of 1. λd represents the d -th dimensional variable of a random
unit vector in space. qkj,d is the d -th dimensional variable of the preyed individual. Then,
quantum revolving gates are used to update the quantum position of predator individuals,
which is as follow

pk+1
i,d =

∣∣∣∣∣p
k
i,d · cos

(
ϕk+1
i,d

)
+

√
1 −

(
pki,d

)2 · sin
(
ϕk+1
i,d

)∣∣∣∣∣. (22)

where i = 1, 2, · · · , g, pki,d represents the d -th dimensional variable of the i-th predator’s
quantum position in the k-th iteration.

When the algorithm reaches the maximum number of iterations, the herd leader is
compared with the best individual in the predator population, and the better position is
output as the PCNNmodel’s optimal parameter. It can be seen that the optimal solution is
possible for both the herd and the predator. In conclusion, there are two groups in QSHA:
predator and herd, and the update strategies of the two groups are completely different.
The two update strategies can prevent the optimization algorithm from falling into local
convergence and improve the optimization rate. In Sect. 4, the superior convergence of
QSHA is verified.
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4 The Experimental Simulation

In this paper, three parameters are optimized by using quantum herd mechanism, which
are amplitude coefficient vt , attenuation coefficient αt and connection strength coeffi-
cient βL. The value of the three parameters ranges from 0 to 1000, and the accuracy is
10−2. Even if three parameters are optimized in this paper, the optimization problem is
difficult. Therefore, it is necessary to invent a new optimization algorithm to optimize the
parameters of PCNN image filtering model. In the simulation, when filtering different
noisy images, the optimal parameters corresponding to PCNN are different, so this is
the advantage compared with some PCNN fixed parameter filtering methods. Table 1
gives the PCNN-QSHA’s parameters required for the experiment, which is as follows.

Table 1. Simulation parameters.

Parameter Value

C1 6.502

C2 58.522

K1 8

K2 40

K3 50

G 32

N × N 3 × 3, 5 × 5, 7 × 7, 9 × 9, 11 × 11

ξmax
d 1000

ξmin
d 0

Matlab software 2016 is used for simulation in this paper. In Fig. 1, the optimal
parameters obtained by QSHA are vt = 248.43, αt = 186.76 and βL = 0.0054. Figure
a shows adding the pepper and salt density noise with a density of 0.1. Figure b shows
the filtering effect of the method in this paper. Figure c is the filtering effect of median
filter, and figure d is the filtering effect of Wiener filter.

Fig. 1. The effect comparison diagram of Image denoising.

In Fig. 2, the optimal parameters obtained by QSHA are vt = 839.12, αt = 121.66
and βL = 0.34. Figure a shows adding the pepper and salt density noise with a density
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of 0.3. Figure b shows the filtering effect of the method in this paper. Figure c is the
filtering effect of median filter, and figure d is the filtering effect of Wiener filter.

Fig. 2. The effect comparison diagram of Image denoising.

In Fig. 3, the optimal parameters obtained by QSHA are vt = 282.14, αt = 0.074
and βL = 0.073. Figure a shows adding the Gaussian noise with the mean is 0 and the
variance is 0.005. Figure b shows the filtering effect of the method in this paper. Figure
c is the filtering effect of median filter, and figure d is the filtering effect of Wiener filter.
As can be seen from the above three figures, PCNN-QSHA is superior to other methods
in image denoising without losing image details.

Fig. 3. The effect comparison diagram of Image denoising.

In order to explain the reason of choosing QSHA to optimize PCNN’s parame-
ters, instead of other classical algorithms, this paper selects shuffled frog leaping algo-
rithm (SFLA) [12], Classical genetic algorithm (GA), and Particle swarm optimization
[13] (PSO) algorithm to compare the proposed algorithm. These algorithm parameters
are the same as those in the references. In Fig. 4, In order to test the performance of
QSHO, nine CEC benchmark functions were selected, with dimension s = 100. Among
the test functions: Ackeley function interval is [−30, 30], Sphere function interval is
[−5.12, 5.12], Girewank function interval is [−600, 600], Rastrigin function interval is
[−5.12, 5.12], Zakharov function interval is [−5, 10], Sum squares function interval is
[−100, 100], Rosenbrock function interval is [−30, 30], Schwefel2.21 function interval
is [−100, 100], Levy function interval is [−10, 10]. These algorithms have a population
size of 40, the number of iterations is 500, and 200 independent replicates were per-
formed. The simulation curves in the figure are the mean value of the fitness function
of the corresponding test function. It can be seen that the convergence performance and
efficiency of QSHO are better than other algorithms.
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Fig. 4. Average convergence analysis of these test functions.

5 Conclusion

In this paper, an adaptive window PCNN model image filter is designed, and then
the quantum herd mechanism is used to optimize the key parameters of the PCNN
model. Different noise images correspond to different parameters. Compared with other
methods, an excellent performance has been achieved in image noise filtering. In the
future, quantum selfish herd algorithm will be extended to other fields, such as image
segmentation, image fusion, face recognition, etc.
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Abstract. In this paper, we propose a novel variant of particle swarm optimiza-
tion, called dynamic multi-swarm particle swarm optimization with center learn-
ing strategy (DMPSOC). In DMPSOC, all particles are divided into several sub-
swarms. Then, a center-learning strategy is designed, in which each particle within
the sub-swarms will learn from the historical optimal position of a particle or the
center position in a sub-swarm. Also, an alternative learning factor is given to
determine the particle learning strategy, which can be classified as center-learning
or optimum-learning. Four benchmark functions are used in order to compare
the performance of DMPSOC algorithm with the standard particle swarm opti-
mization (SPSO). Experiments conducted illustrate that the proposed algorithm
outperform SPSO in terms of convergence rate and solution accuracy.

Keywords: Particle swarm optimization · Multi-swarm · Center-learning
strategy

1 Introduction

Particle Swarm Optimization (PSO) developed by Kennedy et al. in 1995 [1] is an
optimization method that modeled on social intelligence of animals such as birds. It
relies on particles that follow their historical optimal position as well as the global
optimal position, which can be easily implemented, has few parameters to adjust and
quick convergence speed compared to other optimization algorithms.

However, the original PSO algorithm has problems of premature convergence and
great loss of diversity. There are various methods of improving the performance of
the PSO algorithm, such as novel topology structure [2–8] and parameters adjustments
[9–13].

Although these improvements enhance the performance of the PSO algorithm, there
are still many disadvantages of them. For instance, improvements on coefficients such
as social learning factor, personal learning factor and constriction factor, cannot improve
the performance of the PSO algorithm fundamentally. Meanwhile, basic enhancements
on topology structure mainly focus on novel communication strategies within a swarm,
and these simple interactions are less frequently observedwithinmore organized animals
compared to multi-swarm communication structure. Additionally, scholars paid more

© Springer Nature Switzerland AG 2022
Y. Tan et al. (Eds.): ICSI 2022, LNCS 13344, pp. 141–147, 2022.
https://doi.org/10.1007/978-3-031-09677-8_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-09677-8_12&domain=pdf
https://doi.org/10.1007/978-3-031-09677-8_12


142 Z. Zhu et al.

attention to interacting with the optimal particles, ignoring the other particles which
are also worth learning from. Therefore, we present an evolutionary PSO algorithm by
combining a dynamic multi-swarm topology structure and a center learning scheme [14]
with an alternative learning strategy. In the proposed algorithm, the central particle of
multi-swarms and the personal best particle are randomly used for the velocity updating
equation.

The rest of this paper is organized as follows. Section 2 conducts a short overview of
the original particle swarm optimization algorithm. Section 3 gives detailed information
of the multi-swarm particle swarm optimization with center communication as well as
alternative learning strategy. Experimental results and comparisons between the SPSO
algorithm are presented in Sect. 4, ands further conclusions are given in Sect. 5.

2 An Overview of the Particle Swarm Optimization

The original PSO algorithm is derived from observations towards swarm intelligence
of animals in the nature, for example, the hunting behaviors of a flock of birds. They
follow a certain pattern of velocity as well as a position updating strategy which inspired
Eberhart et al. to develop the algorithm.

For each particle in the original PSO algorithm, it demonstrates a potential solution
of the problem within a regulated search range, and updates its velocity every iteration
based on three factors: the inertia velocity, the optimum particle position it has found
already, the best particle position in the whole swarm. The velocity as well as position
updating equations of the i th particle can be represented by formulas (1) and (2):

Vi=Vi+c1∗r1∗(PBest − Xi)+c2∗r2∗(GBest − Xi) (1)

Xi=Xi+Vi (2)

where i = 1, 2, …, s, s is the swarm size. c1, c2 are learning parameters of the personal
learning behavior and societal learning behavior respectively. r1, r2 are two random
number generated from 0 to 1, PBest is the historical optimal position , while GBest is
the global optimal position in the current iteration. Vi stands for the velocity of the i th
particle, and Xi is the position of the i th particle.

3 The Dynamic Multi-Swarm Particle Swarm Optimization
with Center Learning Strategy

3.1 Dynamic Multi-Swarm Design

From the observation of diverse behaviors of animals in the nature such as an animal
invading other animals’ territories as well as the protecting its own land, the behaviors
of particles can vary in this program. Thus, we proposed different strategies for velocity
updating of particles. In order to utilize distinctive velocity updating equations to update
the velocity of particles, an alternative learning factor calternativelearning is presented to
alternate between several velocity updating formulas. A random number is generated
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from 0 to 1 and compared with it to decide which velocity updating equation to be used.
In this algorithm, we set calternativelearning as 0.5 to balance the utilization of several
velocity updating equations, since there will be equal possibility for them to be used to
update the velocity of particles, this is good to test the performance of our algorithm
as well. Thus, different behaviors of particles are balanced, the convergence speed and
accuracy of the result will be obtained.

In the nature, animals with higher level of intelligence generally live in groups. For
instance, the Sumpter [15] proposed that animals in a large group will self-organize
into small groups in order to live better, and this phenomenon is not only found in
animal society, but also modern human society: people form small groups to work more
effectively. Therefore, we divide all the particles into several sub-swarms, each particle in
sub-swarms utilizes the same equation to update their velocities aswell as their positions.

3.2 Center Learning Strategy and Optimum Learning Strategy

Collective behaviors within a large group of animals are common. For example, the
study proposed by Landeau et al. [16] indicates that predators are more likely to hunt
animals far away from the center of a swarm. Thus, animals of a swarm are willing to
move to the center based on the behavior of hunters depicted above. This inspiration can
be presented to the PSO algorithm by applying a center learning strategy to particles
of the swarm, which can be represented by Fig. 1 as they work in parallel within one
iteration.

Fig. 1. Communication strategy for particles in the DMPSOC algorithm.

Then the velocity equation is:

Vi = w∗Vi+c2∗r2∗(SkCenter − Xi) (3)
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where SkCenter is the “center” of the k th sub-swarm, which is the mean values in every
dimension for every particle calculated by the formula:

SCenter= 1

ss

ss∑

i=1

Xi (4)

meanwhile,w is the linearly decreasing inertia weight of the equation that is updated
by the following equation:

w = 0.9 − 0.5 ∗ (
iternow

itertotal
) (5)

where iternow is the current iterations and itertotal is the total iterations.
However, predators are more likely to move to other places based on their past

experience. Meanwhile, decisions made by people in the society can be also influenced
by their experiences. They inspire us to apply a strategy that particles move towards the
position where it obtained its optimum fitness value and velocities of them are updated
by:

Vi = w∗Vi+c1∗r1∗(PBest−Xi) (6)

Therefore, the pseudo code of DMPSOC can be presented as follows (see Table 1):

Table 1. The pseudo code of the DMPSOC algorithm

The DMPSOC algorithm
Begin
While (the iteration number or error goal isn’t achieved)

For the k th sub-swarm
Calculate the SCenterk value for the k th sub-swarm
For the i th particle

Generate a random number rand
If rand>calternativelearning

Update the velocity Vi for the i th particle by equa-
tion (3)

Else
Update the velocity Vi for the i th particle by equa-

tion (6)
End if
Update the position Xi of the i th particle by the 

equation of Xi=Xi+Vi
End for

End for

End while
End
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4 Experiment Results and Discussions

In order to compare the performance of DMPSOC algorithm and the SPSO algorithm,
four benchmark functions (Sphere, Rastrigin, Ackley, Griewank, are respectively f 1,
f 2, f 3, f 4) are used to test them. These functions and their search ranges are shown in
Table 2.

Table 2. Results for two algorithms

Functions Algorithms Best Value Worst Value Mean Value Std

f 1 PSO 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00

DMPSOC 5.7030E-41 8.3770E-35 1.2911E-40 1.0374E-37

f 2 PSO 7.4000E-03 7.1300E-02 3.2100E-02 1.4100E-02

DMPSOC 0.0000E+00 4.2070E-01 5.3801E-14 3.8811E-10

f 3 PSO 0.0000E+00 2.2204E-15 1.3323e-15 1.0866E-15

DMPSOC 0.0000E+00 2.6645E-14 2.2204E-16 7.0217E-16

f 4 PSO 1.0300E-02 7.1300E-02 3.8700E-02 2.5300E-02

DMPSOC 0.0000E+00 6.9400E-02 1.3800E-02 2.4000E-03

In our experiment, the variable dimension is 10, the total swarm size of the DMPSOC
algorithm is 80, consists of 4 sub-swarms with 20 particles per sub-swarm, for the SPSO
algorithm, the swarm size is 80. Two algorithms both run 20 times with 15000 iterations
inmaximum. For parameters settings, the inertia weight for both algorithms both linearly
decline from 0.9 to 0.4, and the c1, c2 values are both 2.0.

The results on four 10-dimentional benchmark functions of the SPSO algorithm
as well as the DMPSOC algorithm are illustrated in Table 3 and Fig 2. Best values,
worst values, mean values and standard deviations of two algorithms demonstrating the
performances of algorithms are displayed. Bold numbers in Table 3 are the optimum
values.

As presented in Table 3 and Fig 2, the DMPSOC algorithm consistently obtains min-
imum values for different objective functions. It can generally attain better results on
these objective functions, and the result of the Rastrigin function is especially satisfac-
tory. The reason for the less satisfactory result in the Sphere function of DMPSOC is the
learning strategy is useless in single-modal objective functions. Overall, it outperforms
the standard PSO algorithm.
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(a) Sphere (b) Rastrigin

(c) Ackley (d) Griewank

Fig. 2. Convergence curves of DMPSOC and PSO.

5 Summary and Further Work

A novel dynamic multi-swarm particle swarm optimization algorithm with center learn-
ing strategy is proposed in this paper. Distinctive to the standard particle swarmoptimizer
and other PSO variants, our algorithm innovatively combines the center learning strat-
egy, the dynamic multi-swarm structure and alternative learning strategy to improve the
performance of this algorithm, from the aspects of alleviating falling into local optimum
and more accurate results.

Although it has relatively satisfactory results on several objective functions, it’s still
not the best choice for all optimizing problems. Various complex test functions can be
used to examine the effectiveness of this presented algorithm, and several applications
can be implemented with this proposed algorithm, improvements of the performance
on unimodal objective functions could be made as well, which can be main focuses of
further work.
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Abstract. In the particle swarm optimization (PSO), each particle updates its
velocity depending on its own experience and the best location that the swarm
has approached so far, but this also means that it has a high tendency to fall into
local optimum. To solve this problem, a new algorithm called alternative learn-
ing particle swarm optimization (ALPSO) based on the center-learning mecha-
nism is proposed in this paper, consisting of three alternative learning strategies,
like random learning strategy (ALPSO-RLS), central learning strategy (ALPSO-
CLS), and mixed learning strategy (ALPSO-MLS). In the experimental part, four
benchmark functions are chosen to test the performance of ALPSO, compared
with the standard PSO. Finally, ALPSO is applied to tackle the aircraft mainte-
nance technician scheduling problem. The results show that both ALPSO-RLS
and ALPSO-CLS perform better than PSO in this test scenario.

Keywords: Alternative learning · Particle swarm optimization · Aircraft
maintenance technician scheduling

1 Introduction

Particle swarm optimization (PSO), first developed by Kennedy and Eberhart [1], is
inspired by the social behaviors of animals like birds and fish. The algorithm was based
on apopulationof particles, each following its best andglobal best particle in the swarm to
reach the best solution. However, PSO also faces problems like premature convergence,
loss of diversity and stagnation in local optimum, causing many researchers to focus on
the improvement of this algorithm, such as improvements of topology structure [2–6]
and new learning strategy design [7–11].

However, most researchers tend to use only one method to achieve the best solution,
easily leading to a stuck when searching for the optimal solution. In this paper, the
alternative learning particle swarm optimization (ALPSO) is designed to tackle this
problem, including random learning strategy (ALPSO-RLS), central learning strategy
(ALPSO-CLS), and mixed learning strategy (ALPSO-MLS). In the random learning
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strategy, particles randomly choose to learn from their historical optimal solution or
the swarm central solution. In the central learning strategy, particles update the velocity
referring to both their historical optimal solution and the swarm central solution. In the
mixed learning strategy, particles consult their historical optimal solution, the global
optimal solution, and the swarm central solution to determine the velocity. These three
strategies could effectively avoid the problem of local optimum by taking swarm central
solution into consideration.

In addition, intelligent algorithms are suitable for solving NP-hard problems such
as manpower scheduling and task scheduling. Therefore, to test the practicability of
ALPSO, it is applied to solve a simple aircraft maintenance technician scheduling model
referring to [13].

The rest of the paper is organized as the follows. Section 2 introduces the standard
particle swarm optimization. Section 3 presents the alternative learning particle swarm
optimization in detail and give the experimental results on four benchmark functions.
The solution of aircraft maintenance technician scheduling based on ALPSO is given in
Sect. 4. Section 5 draws the conclusion.

2 An Overview of Particle Swarm Optimization

Particle swarm optimization (PSO) was derived from the swarm intelligence of animals
like flocks of birds or fish. Individuals in PSO are called particles, and the particles as a
whole are called a swarm. Each particle has a current position vector xj(j = 1, 2, . . . ss),
current velocity vector vj, the best position that the particle has encountered pbestj, and
the best position that the swarm has discovered gbestj. ss represents swarm size, and xj
represents the j th particle in the swarm. The velocity is updated by Eq. (1).

vj+1 = w ∗ vj + c1 ∗ r1 ∗
(
pbestj − xj

)
+ c2 ∗ r2 ∗

(
gbestj − xj

)
(1)

wherew represents the inertia weight of the particle, deciding howmuch the past velocity
will affect the new velocity, c1 and c2 are the learning coefficients, and r1 and r2 are
random numbers from 0 to 1. Then, xj is updated by Eq. (2).

xj+1 = xj + vj (2)

From the equations,we can see that the particles in the swarmof PSOonly considered
their historical best position and the location of the best particle. If all particles are stuck
in local optimum, it will be hard for the particles to get out. The ALPSO algorithm
could avoid this by considering all particles’ experiences in a swarm. This will be more
thoroughly explained in the following section.

3 Alternative Learning Particle Swarm Optimization

Collective intelligence is the intelligence that grows out of group, emerging from the
collaboration at an aggregate level. In the swarm, the collective intelligence integrate
the experience of all particles. Considering all experience of each particle is better than
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only considering the experience of one individual since if that individual is stuck, the
rest of the population will be stuck with it. Considering all individual’s experience can
help the population to avoid trapping into local minima to some extent. For example, if
a pack of wolves consider the experience of every wolf, they can avoid many traps.

In PSO, the center of the swarm is like the consideration of the experience of all
particles. However, the center of the swarm is affected by the current location of particles.
If each particle is around its best place it has found, the center of the swarm can be a
better reflection of the experience of all particles, representing the collective intelligence
of the swarm. So, if we let the particle to aim its best location or the center of the swarm,
we can let the particles to only search for the best solution on its own or consider the
swarm’s experience to update its location. In addition, in order to increase the diversity
of searching process, the random learning strategy is also introduced.

Therefore, in ALPSO, three alternative learning strategies are proposed, including
random learning strategy, central learning strategy, and the mixed learning strategy.

3.1 Random Learning Strategy

In the random learning strategy, particles randomly learn from the center of the swarm
or its own experience of the best location to decide their velocity (see Fig. 1).

Fig. 1. Random learning strategy.

The velocity is updated by Eq. (3).
⎧⎨
⎩

vj+1 = w ∗ vj + c1 ∗ r1 ∗
(
pbestj − xj

)
, if k > 0.5

vj+1 = w ∗ vj + c2 ∗ r2 ∗
(
gmeanj − xj

)
, if k ≤ 0.5

(3)

where gmeanj(j = 1, 2, . . . , ss) represents the center of the swarm, c1 and c2 are the
learning parameters, and r1, r2, and k are the random numbers.
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3.2 Central Learning Strategy

The second strategy is the central learning strategy referred in [12], in which the particles
learn from both the center of the swarm and the historical experience of themselves (see
Fig. 2).

Fig. 2. Central learning strategy.

In this strategy, the velocity is updated by Eq. (4).

vj+1 = w ∗ vj + c3 ∗ r3 ∗
(
pbestj − xj

)
+ c4 ∗ r4 ∗ (gmeanj − xj) (4)

where c3 and c4 are the learning coefficients, and r3 and r4 are the randomly generated
numbers.

Because PSO algorithm only learns from the local optimum and the global optimum,
the central learning strategy emphasizes learning from the center of the swarm and the
historical experience of themselves. Setting the parameters (r3 and r4) increases the
randomness of the search in the future.

3.3 Mixed Learning Strategy

In the mixed learning strategy, particles aim to learn from the best particle, the center of
the swarm as well as the experience of the particles themselves (see Fig. 3).

Velocity of this strategy is updated by Eq. (5).

vj+1 = w ∗ vj + c5 ∗ r5 ∗ (
pbestj − vj

) + c6 ∗ r6 ∗ (
gbestj − vj

) + c7 ∗ r7 ∗ (
gmeanj − vj

)
(5)

where c5, c6 and c7 are learning coefficients and r5, r6 and r7 are numbers randomly
generated.
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Fig. 3. Mixed learning strategy.

The mixed center learning strategy considers not only the update method of PSO
algorithm, but also including the central strategy during speed updating.

Finally, the flowchart of ALPSO algorithm is illustrated in Fig. 4 and the pseudocode
of ALPSO algorithm is showed in Table 1.

Fig. 4. Flow chart of ALPSO algorithm.
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In the flow chart, we can see the overall description of the three strategies. First, the
algorithm will initialize all parameters, including population size, dimension, iterations
and so on, then set the iteration criteria, which named the learning strategy, using the
three learning strategies proposed in the paper to process the data, and finally select
the best performing learning strategy according to the end results of these algorithms.
Instead of being three unrelated algorithms, they were tied under the same conditions
and were chosen to reach the final best result, which is unique compared to former
algorithms.

Table 1. Pseudocode of ALPSO.

Pseudocode of ALPSO

1: Alternative Learning Particle Swarm Optimization
2:  for reach particle i
3:    Initialize velocity Vi and position Xi for particle 
4:    Evaluate particle i and set pBesti = Xi

5:  end for
6:  gBest = min{ pBesti }
7:  while not stop
8:    for i =1 to N
9:       Update the velocity and position of particle i
10:      Update the velocity Vi for the i th particle by equation (3) or (4) or (5) 
11:      Evaluate particle i
12:    if fit (Xi ) < fit (pBesti )
13:         pBesti = Xi ;
14:      if fit (pBesti ) < fit (gBest )
15:         gBest= pBesti ;
16:    end for
17:  end while
18:  compare three strategies, choose the best.
19:  print gBest
20: end procedure

3.4 Experiments and Discussions

To evaluate the performance of ALPSO algorithm, we compare ALPSOwith the original
PSO on four functions—Rosenbrock, Griewank, Rastrigin and Alpine shown in Table
3. ALPSO is composed of ALPSO-RLS, ALPSO-CLS and ALPSO-MLS. In both two
algorithms, the inertia weights decrease linearly from 0.9 to 0.4 [9]. We used general
parameters to regulate functions, the variable dimension is 10 and thenumber of iterations
is 5000 except Alpine, whose iteration number is 10000. The learning factors of ALPSO
has different impacts. c1, c3 and c5 are the learning factors ofALPSO-RLS,ALPSO-CLS
and ALPSO-MLS. Their values decide howmuch the new velocity will be influenced by
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the particle’s past experience. c2,c4 and c6 are the learning coefficients of ALPSO-RLS,
ALPSO-CLS and ALPSO-MLS respectively. The impact of the experience of the swarm
on the new velocity of the particle depends on them. c7 is the learning factor of ALPSO-
MLS. It decides how much the best location experience of the swarm will impact its
new velocity. The coefficients are set as shown in Table 2 in different functions. All
experiments were done using Matlab. By comparing many sets of factors, we found out
that under these sets of factors, ALPSO shows better results in functions and outperforms
PSO. Table 4 and Fig. 5 presents the results of the four functions, and the best results
are bolded.

Table 2. Parameters for experiments

No. Algorithms Parameters

1 Rosenbrock Swarmsize = 300, run for 20 times, c1=c3=c5=1.2, c2=c4=c6=1.8, c7=1.5,
inertia weight = 0.9 to 0.4, iteration = 5000–1, dimension = 10

2 Griewank Swarmsize = 300, run for 20 times, c1=c2=c3=c4=c5=c6=c7=1.5, inertia
weight = 0.9 to 0.4, iteration = 5000–1, dimension = 10

3 Rastrigin Swarmsize = 300, run for 20 times, c1=c3=c5=1.0, c2=c4=c6=c7=1.8,
inertia weight = 0.9 to 0.4, iteration = 5000–1, dimension = 10

4 Alpine Swarmsize = 300, run for 20 times, c1=c3=c5=1.9, c2=c4=c6=c7=2.0,
inertia weight = 0.9 to 0.4, iteration = 10000–1, dimension = 10

From Table 4, we can see that most of the time ALPSO-CLS and ALPSO-RLS has
results smaller than PSO. Overall, the result of ALPSO is better than PSO. Also, as we
can see from Fig. 5, ALPSO found results that are smaller in the four functions. In partic-
ular, ALPSO-RLS did well on functions Rosenbrock and Alpine, while ALPSO-C8 LS
achieved better results on Griewank and Rastrigin. ALPSO-MLS only achieved better
results compared to original PSO in Rosenbrock, but its convergence rate is higher than
the other two strategies The strategy could do better than original PSO was due to the
properties of functions. Alpine, Griewank, Rosenbrock and Rastrigin have many local
stigma. The strong ability of ALPSO-CLS and ALPSO-RLS to avoid the problem of
being stuck in local optimum let them to perform better in the four functions. Different

Table 3. Four benchmark functions.

Function Mathematical representation Search range

Rosenbrock (f1) f1(x) = ∑n−1
i=1 ((xi − 1)2+100(xi+1 − xi

2)
2
) [–2.048,2.048]

Griewank (f2) f2(x) = 1 + 1
4000

∑n
i=1 xi

2 − ∏n
i=1cos(

xi√
i
) [–600,600]

Rastrigin (f3) f3(x) = ∑n
i=1(10 − 10cos(2πxi) + xi

2) [–5,12,5.12]

Alpine (f4) f4(x) = ∑d
i=1|xisin(xi) + 0.1xi| [0,10]
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form them, ALPSO-MLS considered the best particle more, resulting in a higher con-
vergence rate. So overall, ALPSO outperforms PSO on its final best solutions and results
on the four functions.

Table 4. Results of ALPSO-RLS, ALPSO-CLS, ALPSO-MLS, and PSO on four functions.

Functions Algorithms Max value Min value Mean value Standard deviation

Rosenbrock ALPSO-RLS 1.3804E – 05 0.00E + 00 8.00E – 07 9.43E-12

ALPSO-CLS 1.94E – 05 1.64E – 07 5.54E – 06 2.50E – 11

ALPSO-MLS 1.72E – 01 0.00E + 00 2.38E – 02 1.40E – 03

PSO 5.91E – 02 7.40E – 03 3.30E – 02 2.00E – 04

Griewank ALPSO-RLS 5.69E – 02 7.80E – 03 2.24E – 02 1.2463E – 04

ALPSO-CLS 1.52E – 02 4.89E – 04 4.80E – 03 1.33E – 05

ALPSO-MLS 6.20E – 01 6.20E – 01 4.19E – 01 1.45E – 02

PSO 6.64E – 02 0.00E + 00 3.91E – 02 3.37E – 04

Rastrigin ALPSO-RLS 1.69E – 01 3.9790E – 13 3.40E – 02 2.00E – 03

ALPSO-CLS 9.30E – 03 0.00E + 00 7.9832E – 04 4.3223E – 06

ALPSO-MLS 6.43E + 01 4.37E + 01 5.52E + 01 3.43E + 01

PSO 9.95E – 01 0.00E + 00 2.32E – 01 1.83E – 01

Alpine ALPSO-RLS 4.70E + 00 2.60E + 00 3.62E + 00 3.82E – 01

ALPSO-CLS 6.70E + 02 5.02E + 02 6.07E + 02 1.98E + 03

ALPSO-MLS 7.01E + 02 3.26E + 02 5.12E + 02 1.08E + 04

PSO 4.19E + 02 1.08E – 02 8.63E + 01 1.78E + 04

4 The Aircraft Maintenance Technician Scheduling Model

Aircraft maintenance technician scheduling (AMTS) is an NP-hard problem with the
consideration of aircraft dimension, maintenance technician dimension, maintenance
task dimension, and maintenance shift dimension.

4.1 Objective

For most aircraft maintenance companies, the aim of AMTS is to minimize the total
cost, which can be divided into manpower cost, delivery delay cost, and overwork cost,
as shown in formula (6),

min

{ ∑
m∈M

∑
t∈T

∑
s∈S

amts · θm + ∑
t∈T

max

{ ∑
m∈M

∑
s∈S

amts · τmts − dt, 0

}

+ ∑
m∈M

om·max

{∑
t∈T

∑
s∈S

amts · τmts − mwm, 0

}} (6)
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(a) Rosenbrock (b) Griewank

(c) Rastrigin (d) Alpine

Fig. 5. Convergence curves of ALPSO-RLS, ALPSO-CLS, ALPSO-MLS, and PSO.

whereM,T, and S represent the total number ofmaintenance technician, the total number
of shifts, and the total number of tasks. The other meanings of variables are listed in
Table 5.

Table 5. Meanings of variables.

Variables Meaning of variables

θm Working cost of technician m

τmts Working time of technician m to finish task s in shift t

dt Delivery time of shift t

mwm Maximum working hours of technician m

(continued)
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Table 5. (continued)

Variables Meaning of variables

Ps Pre-tasks of task s

wsm Working state of technician m

lm License level of technician m, lm ∈ {1, 2, 3}

Rls License level l can meet the requirements of task s

amts If technician m is assigned to task s in shift t

tst If task s in shift t can be performed

om If technician m needs to work overtime

cs If task s is finished

4.2 Constraints

tst ≤ 1

|Ps| ·
∑
s′∈Ps

cs′,∀s ∈ S,∀t ∈ T (7)

∑
t∈T

∑
s∈S

amts · τmts ≤ mwm,∀m ∈ M (8)

∑
m∈M

amts = 1,∀t ∈ T ,∀s ∈ S (9)

amts ≤ lmRls,∀t ∈ T ,∀m ∈ M ,∀s ∈ S (10)

amts ≤ wsm,∀t ∈ T ,∀m ∈ M ,∀s ∈ S (11)

Constraints (7) ensure that aircraft maintenance tasks are completed in sequence.
Constraints (8)-(10) mean that only the free technicians can be scheduled and one task
can only be assigned to one technician with qualified license level. Constraints (11)
ensure that maintenance personnel have enough rest time.

4.3 Experiments and Results

Suppose there is one aircraft parking in the maintenance hanger and waiting for mainte-
nance service. The numbers of technicians with the three license levels are all set to 5,
whose unit costs are 0.5, 1.0, 1.5, respectively. Besides, there are five maintenance shifts
and the numbers of tasks in each shift are set to 3, 4, 3, 2, 2, respectively. The required
license levels of each task are 2, 1, 3, 1, 2, 1, 3, 1, 1, 1, 2, 3, 3, 1. Thereafter, ALPSO
and PSO algorithms are used to solve the AMTS model. The results are shown in Fig. 6
and Table 6.
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Fig. 6. Convergence curves of ALPSO-RLS, ALPSO-CLS, ALPSO-MLS, and PSO on the total
cost of AMTS.

As we can see from Fig. 6, both ALPSO-RLS and ALPSO-CLS can minimize the
total cost better than PSO. Besides, the phenomenon of premature convergence has
been significantly alleviated in ALPSO-RLS and ALPSO-CLS. ALPSO-RLS gets the
smallest total cost in the end and saved down the largest amount of total cost. From Table
6, we can see that ALPSO-RLS gets the best results.

Table 6. Total cost of AMTS based on ALPSO-RLS, ALPSO-CLS, ALPSO-MLS, and PSO.

Algorithms Max Mean Min Standard deviation Cost saved

ALPSO-RLS 4714.882 4235.196 3805.186 221.2569 2914.814

ALPSO-CLS 4735.366 4303.026 3849.577 251.4595 2150.423

ALPSO-MLS 5062.041 4448.487 3904.479 292.2962 2095.521

PSO 5000.688 4366.24 3825.754 271.9244 2174.246

5 Conclusions

This paper introduces the alternative learning particle swarm optimization, which slows
down the trend of premature convergence and effectively alleviate falling into local
optimization. The results of three ALPSO algorithms on four benchmark functions are
better than the standard PSO in most cases. When applying ALPSO to tackle aircraft
maintenance technician scheduling problem, ALPSO-RLS can obtain the optimal total
cost.

In the future, ALPSO algorithm can be expended to deal with multi-objective opti-
mization models. In addition, other improvement methods can be taken into account,
such as multi-swarm strategy and algorithm hybridization.



Alternative Learning Particle Swarm Optimization 159

Acknowledgement. This study is supported by Natural Science Foundation of Guangdong
(2022A1515012077).

References

1. Eberhart, R.C., Kennedy, J.: Particle swarm optimization. In: Proceedings of ICNN 1995-
International Conference onNeural Networks, pp.1942–19448, IEEE, Perth, Australia (1995)

2. Engelbrecht, A.P.: Particle swarm optimization: global best or local best? In: 2013 BRICS
Congress on Computational Intelligence and 11th Brazilian Congress on Computational
Intelligence, pp. 124–135. IEEE, Ipojuca, Brazil (2013)

3. Mendes, R., Kennedy, J., Neves, J.: The fully informed particle swarm: simpler, maybe better.
IEEE Trans. Evol. Comput. 8(3), 204–210 (2004)

4. Lin,A., Sun,W.,Yu,H.,Wu,G., Tang,H.:Global genetic learning particle swarmoptimization
with diversity enhanced by ring topology. Swarm Evol. Comput. 44, 571–583 (2019)

5. Chen, Y., Li, L., Peng, H., Xiao, J., Wu, Q.T.: Dynamic multi-swarm differential learning
particle swarm optimizer. Swarm Evol. Comput. 39, 209–221 (2018)

6. Lim, W.H., Isa, N.A.M.: Particle swarm optimization with increasing topology connectivity.
Eng. Appl. Artif. Intell. 27, 80–102 (2014)

7. Niu, B., Zhu, Y., He, X., et al.: MCPSO: a multi-swarm cooperative particle swarm optimizer.
Appl. Math. Comput. 185(2), 1050–1062 (2007)

8. Liang, J.J., Suganthan, P.N.: Dynamic multi-swarm particle swarm optimizer with local
search. In: The 2005 IEEE Congress on Evolutionary Computation, pp. 522–528, IEEE,
Pasadena, CA, USA(2005)

9. Lin, A., Sun, W., Yu, H., Wu, G., Tang, H.: Adaptive comprehensive learning particle swarm
optimization with cooperative archive. Appl. Soft Comput. 77, 533–546 (2019)

10. Cheng, R., Jin, Y.: A social learning particle swarm optimization algorithm for scalable
optimization. Inf. Sci. 291, 43–60 (2015)

11. Qin, Q., Cheng, S., Zhang, Q., Li, L., Shi, Y.: Particle swarm optimization with interswarm
interactive learning strategy. IEEE Trans. Cybern. 46(10), 2238–2251 (2016)

12. Niu, B., Li, L., Chu,X.:Novelmulti-swarmcooperative particle swarmoptimization. Comput.
Eng. Appl. 45(3), 28–34 (2009)

13. Tan, Y., Shi, Y. (eds.): ICSI 2021. LNCS, vol. 12689. Springer, Cham (2021). https://doi.org/
10.1007/978-3-030-78743-1

https://doi.org/10.1007/978-3-030-78743-1


A Surrogate-Assisted Ensemble Particle Swarm
Optimizer for Feature Selection Problems

Jiang Zhi(B), Zhang Yong, Song Xian-fang, and He Chunlin

China University of Mining and Technology, Xuzhou 221116, China
19826084236@163.com

Abstract. For feature selection problems on high-dimensional data, this paper
proposes a surrogate-assisted ensemble particle swarm feature selection algorithm,
by combining the global search ability of evolutionary algorithm with the fast
search ability of filter method. A space partitionmethod based onK-nearest neigh-
bors is proposed to select represent samples as surrogate. The proposed ensemble
algorithm is applied to several datasets. Experimental results show that the pro-
posed algorithm can obtain feature subsets with higher classification accuracy in
less computing time.

Keywords: Particle swarm optimization · Feature selection · Surrogate model

1 Introduction

The purpose of feature selection is to select a group of key features from all the features
of the data set, so as to optimize specified indicators while reducing the learning cost
[1]. Traditional feature selection algorithms are commonly divided into three categories:
filter, wrapper and embedded methods [2]. The filter method is fast in the calculation
cost, but difficult to eliminate redundant features, the wrapper method can get a high
classification accuracy, but it is computationally expensive relatively.

In recent years,more andmore scholars began to pay attention to evolutionary feature
selection algorithms. In order to solve feature selection problems in large-scale data, Xu
et al. [3] proposed an evolutionary algorithmbased on repeated analysis of decision space
and objective space. Wang et al. [4] proposed a new differential evolution algorithm,
by using a new adaptive mechanism and a weighted model to improve the robustness
of algorithm. Wang et al. [5] proposed a feature selection algorithm based on artificial
bee colony algorithm and representative sample mechanism. Song et al. [6] proposed a
particle swarm optimization algorithm based on feature and class tag. However, since
classifiers are needed to continuously evaluate the classification accuracy of individuals
(i.e. feature subsets), these algorithms have the problem of “expensive computational
cost”.

Instead of a single model, ensemble learning can combine multiple models with dif-
ferent characteristics to solve the same problem. Hence it can get better result in general
[7]. Chen et al. [8] designed two ensemble methods by combining three different types
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Y. Tan et al. (Eds.): ICSI 2022, LNCS 13344, pp. 160–166, 2022.
https://doi.org/10.1007/978-3-031-09677-8_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-09677-8_14&domain=pdf
https://doi.org/10.1007/978-3-031-09677-8_14


A Surrogate-Assisted Ensemble Particle Swarm Optimizer 161

of benchmark feature selection methods. Das et al. [9] proposed a feature selection algo-
rithm based on ensemble parallel processing dual-objective genetic algorithm. However,
in the face of high-dimensional data, ensemble feature selection algorithms tend to fall
into local optimization because of the lack of effective global search strategy.

In view of this, this paper proposed a surrogate-assisted ensemble particle swarm
optimization algorithm. By combining the global search capability of evolutionary algo-
rithm, the fast search capability of filter algorithm and the low cost of surrogate-assisted
strategy, the proposed algorithm can significantly improve the overall performance of
feature selection. Experimental results show that the proposed algorithm can obtain
feature subsets with higher classification accuracy in less computing time.

This paper is organized as follows. Section 2 focuses on the related work. Section 3
details the proposed algorithm. Sections 4 verifies the effectiveness of the proposed
algorithm. Section 5 concludes the paper.

2 Related Work

2.1 Traditional Feature Selection Method

Traditional feature selection algorithms are commonly divided into three categories [8]:
filter, wrapper and embedded methods. The filter method completes feature selection by
scoring and ranking the importance of features [10]. The wrapper method uses learn-
ing algorithm to evaluate the performance of each feature subset in feature selection
process [11]. In terms of the classification accuracy of feature subset, wrapper method
is superior to filter method, but it consumes high computational cost. The embedded
method combines the feature selection process with the classifier learning process [12],
it uses classifiers to deduce the importance of features, but its classification performance
depends heavily on the classifiers.

The feature selection method based on evolutionary algorithm is called evolutionary
feature selection. Because the global search strategy can find the optimal or suboptimal
solution of the problem, the method has gradually become a hot research technology
to solve the problem of feature selection in recent years. Typical algorithms such as
genetic algorithm [13], ant colony algorithm [14] and artificial bee colony algorithm
[15] are applied to feature selection. As a kind of heuristic search technology based on
population, particle swarm optimization (PSO) has the advantages of simple concept,
convenient implementation and fast convergence speed, it has been widely used in FS
problems [16, 17]. However, as mentioned above, with the rapid increase in the number
of feature dimensions and instances, the existing methods still suffer from the problem
of high computational cost.

2.2 Ensemble Feature Selection

Ensemble feature selection uses multiple same or different base selectors to process data
sets simultaneously and ensemble the feature selection results of these base selectors.
Existing ensemble feature selectionmethods can be divided into two categories: homoge-
neous and heterogeneous [18]. In the homogeneous approach, the same feature selection
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method is used, but with different training data subsets. For the heterogeneous approach,
a number of different feature selection methods are applied, but over the same training
data [19]. Tsai et al. [20] analyzed serial and parallel ensemble feature selection meth-
ods. Barbara et al. [21] analyzed the influence of different base feature selectionmethods
on ensemble framework of high dimensional genomic data. Jiang et al. [22] proposed a
hybrid ensemble feature selection algorithm based on particle swarm optimization.

Compared with traditional feature selection algorithms, the ensemble feature selec-
tion algorithm performs better when dealing with high-dimensional datasets containing
a small number of samples [21]. However, as mentioned above, the existing methods
still have the disadvantages of high computational cost when facing large-scale data sets.
A few scholars have started to study the hybrid strategy of different ensemble feature
selection algorithms. Chiew et al. [23] proposed a two-stage hybrid ensemble feature
selection framework for Phishing detection system based on machine learning. Tu et al.
[24] proposed amulti-strategy integrated graywolf optimization algorithm. These papers
still face the disadvantage of local convergence due to the lack of effective global search
mechanism.

3 The Proposed Algorithm

This section introduces the proposed surrogate-assisted ensemble feature selection algo-
rithm based on PSO (MEPSO) in detail. The proposed algorithm includes two stages:
the ensemble feature selection stage, the surrogate-assisted evolutionary optimization
stage.

3.1 The Ensemble Feature Selection Stage

The purpose of the ensemble feature selection stage is to remove irrelevant or weakly
correlated features quickly. In this stage, heterogeneous ensemble based onfiltermethods
is used to obtain a set of better feature subset. Three classical filter methods, namely
Information Gain, Relief and mRMR, are selected to obtain three feature ranking lists.
Then, the median reduction method is used to aggregate these feature ranking results,
and a reduced feature subset is obtained.

3.2 The Surrogate-Assisted Evolutionary Optimization Stage

In this stage, an evolutionary algorithm with good global capability is used to remove
redundant features. Firstly, some representative samples are selected from the original
sample set to construct a surrogate model, and then on the basis of the surrogate model,
PSO is used to remove the redundant features, and finally the feature subset is obtained.

In order to build surrogate model more reasonable, the majority and minority classes
in data are separated. In order to make the selected samples representative, boundary
samples and central samples are selected to construct the representative sample set of
the majority class. A method based on k-nearest neighbor (K-RS) is designed to divide
sample space. Themethod determineswhetherK nearest neighbors of a sample belong to
the same class as the sample by the distance between them. If so, the sample is a center
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sample. Otherwise, the sample is a class boundary sample. Figure 1 shows a simple
example. As shown in the figure, one of the K neighbors of sample point X1 belongs to
other classes, so this point belongs to the class boundary sample. The K neighbors of
sample X2 belong to the same class, so this point is a class center sample.

Fig. 1. The class boundaries region when K = 3. Here the samples in red dotted box belong to
class boundary region of majority class

This paper uses the bare-bones PSO based feature selection algorithm (BBPSO-
FS) in [25] to generate a candidate feature subset. Compared with other PSO-based FS
algorithms, BBPSO-FS does not need to set key parameters including inertia weights
and learning factors.

The binary code is used to represent a particle. If a feature is selected, its corre-
sponding element is “1”; otherwise, it is 0. KNN classifier is used to evaluate the particle
fitness as follows:

Fit(Xi) = #correctly classified samples

# total samples
(1)

Noted that the representative samples selected above are used to construct a surrogate
to replace the whole original sample set when evaluating a particle’s fitness.

Moreover, a local search strategy is also used to modify the optimal feature subset
obtained by PSO. Firstly, the unselected features are ranked using the three filtermethods
in the stage 1, and three new feature ranking results are obtained. Secondly, according
to the feature grade values from low to high, the features are successively put into the
optimal feature subset obtained by PSO until the performance of the subset is no longer
improved.

4 Experiments

In order to test the performance of the proposed algorithm, 5 datasets from UCI are
selected. Table 1 shows the basic information of these datasets. To verify the performance
of the proposed MEPSO, this section compares it with two FS algorithms, i.e., SAPSO-
FS [26] and HPSO-SSM [27]. In all the three algorithms. the maximum iteration times
is set to be100, the swarm size is set to be 45. Classification accuracy is used to evaluate
the performance of the algorithm. Using 10-fold cross-validation method to evaluate
feature subset, in order to ensure the fairness of comparison.
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Table 1. Information of the datasets

Datasets #samples #features #classes # samples of majority
class

#samples of minority
class

LSVT 126 311 2 84 42

Semeion 1593 267 2 1441 152

Sonar 208 61 2 111 97

Ionosphere 351 35 2 225 126

SPECTHeart 267 45 2 212 55

4.1 Analysis of Comparative Results

Table 2 shows the average Ac values and the average feature subset sizes (d*) obtained
by three algorithms. It can be seen that MEPSO achieves the highest classification
accuracy Ac on all the five datasets, and is significantly better than these comparison
algorithms. More intuitively, by calculating the difference of classification accuracy
between MEPSO and the two comparison algorithms in each data set, it can be seen
that the classification accuracy of MEPSO is about 14.3% higher than other algorithms.
For the 3 out of 5 datasets, MEPSO obtains the smallest average feature subset sizes
(d*). Furthermore, Table 3 shows the running time of MEPSO and the two comparison
algorithms.Wecan see that the proposedMEPSOalgorithmachieves the shortest running
time on all datasets.

Table 2. Average Ac and d*values obtained by MEPSO and two comparison algorithms

Datasets Average Ac Average d*

MEPSO HPSO-SSM SAPSO MEPSO HPSO-SSM SAPSO

LSVT 93.1 66.5 75.0 34 70 261

Semeion 96.9 57.7 92.4 160 50 98

Sonar 91.8 68.2 84.8 36 4 49

Ionosphere 100.0 80.3 85.8 6 10 11

SPECTHeart 99.3 70.2 77.2 13 33 35

Table 3. Average running time of MEPSO and the two comparison algorithms (mints)

Datasets MEPSO HPSO-SSM SAPSO

LSVT 0.1 1.1 2.7

Semeion 1.4 1.7 5.4

Sonar 0.1 2.3 2.4

Ionosphere 0.1 1.1 2.7

SPECTHeart 0.2 1.1 2.4
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5 Conclusions

By combining the global search ability of evolutionary algorithm and the fast search
ability of filter ensemble algorithm, this paper proposed an ensemble particle swarm
feature selection algorithm (MEPSO). Comparing with two typical evolutionary fea-
ture selection algorithms (SAPSO and HPSO-SSM), the results show that the proposed
algorithm can significantly improve the classification accuracy without increasing the
running time. Ensemble feature selection under the protection of privacy will be the
focus of future research.
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Abstract. This paper proposesGenerational Exclusion Particle SwarmOptimiza-
tion with Central Aggregation Mechanism (GEPSO-CAM) to improve the global
searching ability of the standard particle swarm optimization (SPSO). First, in
the generational exclusion strategy, particles will not only approach the optimal
particle, but also stay away from the worst particle with a certain probability when
updating positions. Then, in the central aggregation mechanism, particles learn
from both their historical optimal positions and the central positions in the swarm.
Finally, the proposed algorithm is compared with SPSO and bacterial foraging
optimization (BFO) algorithms based on four benchmark functions. The exper-
imental results show that the GEPSO-CAM can effectively alleviate falling into
local optimal solutions and improve the accuracy of optimal solutions.

Keywords: Generational exclusion strategy · Central aggregation · Particle
swarm optimization

1 Introduction

In 1995, the standard particle swarm optimization (SPSO) algorithm was initially pro-
posed by Eberhart et al. [1], as one of the most popular intelligent algorithms, motivated
by the searching and social behavior of the swarm particles in a particular searching
space. The velocity of each particle is updated by comparing the searching experience
of itself and that of the whole swarm.

A large variety of research has been done in the past decades to find new methods to
improve the convergence of SPSO algorithm, such as incorporating new learning strate-
gies [2–4], combining of social learning strategies [5–7] and so on. However, during
the experiments, it was found that the SPSO can hardly avoid falling into local optimal
solution, especially when dealing with complex multimodal functions. Therefore, based
on the previous work [2, 8–10], we present a new algorithm to balance the exploration
search and exploitation search using a central-directed strategy and generational exclu-
sion. When a particle updates its position, it will learn from the central particle and the
best particle of the swarm. In addition, it will stay away from the worst individual in the
entire swarm generationally.
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The rest of this paper is organized as follows. Section 2 gives a brief overview of the
standard particle swarm optimization algorithm. Section 3 introduces the generational
exclusion strategy and central aggregation mechanism in detail. Section 4 offers the
experimental results, and comparison with other algorithms. Section 5 gives the overall
conclusions and future opportunities.

2 Standard Particle Swarm Optimization Algorithm

In SPSOalgorithm, themotion of swarmparticles has twouppermost elements, including
velocity and the particle’s current position. The position equals to the sum of the initial
position with the particle velocity multiplied by the time interval �t, assuming that
each iteration is uniform. All particles aim to find the optimal location in the test area
by attractive operations. The time interval of the algorithm is [1, K], and the particle
swarm optimization algorithm gives the candidate solution in the form of position, and
it is reevaluated in each iteration. The iterative search process of each particle shows
two kinds of behaviors, e.g., cognitive behavior (to record the optimal position of the
particle and the tendency to return to that position) and social behavior (to observe the
rest of the colony and tend to move towards the best position). The update formulas for
velocity and position are as follows.

The formula relies on the upgradation of the position (xi) and velocity (vi) of the i
th particle, shown in the formulas below:

vi = vi + c1 × r1 × (Pbesti − xi) + c2 × r2 × (Gbesti − xi) (1)

xi = xi + vi × �t (2)

where vi and xi represent the position and velocity, c1 and c2 are two acceleration
coefficients, r1 and r2 are random numbers in the range of [0.0, 1.0]. Pbesti is the

Fig. 1. Learning from the Pbest and Gbest particles.
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historical optimal position of particle i and Gbesti is the current global optimal position
(see Fig. 1).

3 Generational Exclusion Particle Swarm Optimization
with Central Aggregation Mechanism

With the increase of dimension size, optimization process becomes increasingly compli-
cated. More searching space is thus needed, which might lead to an inferior convergence
performance and fall into local optimal solutions, especially in multimodal functions. In
addition, the situation that minority of particles may not follow the choices of most par-
ticles should also be taken into consideration. Therefore, the algorithm should be more
realistic and follow the evolution rules of the nature to improve the efficiency for seeking
best solution. The choices of minority particles in a swarm should be included because
these choices sometimes lead to a better result and avoid the whole swarm falling into a
local optimal solution. If this situation can be considered, the convergence performance
might be better. Thus, we propose the generational exclusion particle swarm optimiza-
tion with central aggregation mechanism (GEPSO-CAM) in order to add the choices
from minority groups by adding an exclusion process in a certain time of iterations.

3.1 Generational Exclusion Particle Swarm Optimization (GEPSO)

Naturally, when the relative population of an area is overpopulated or the population
pressure increases to a certain degree, a part of the citizens will leave their current cities
or countries to find a more superior and suitable one, which is called the population

Fig. 2. The generational exclusion particle swarm optimization.
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diffusion. Therefore, following the natural rule, the choices of migrating living areas
are included in the generational exclusion particle swarm optimization with central
aggregation mechanism (GEPSO-CAM) by adding exclusion movement per certain
number of an iteration. This is one part of the factors inGEPSO-CAM that determines the
motion of particles. For every 10 iterations (based on previous experiments 10 iterations
is used in the later experimental study), an exclusion process will occur between particle
(see Fig. 2). Therefore, when it comes to the 11th iteration, it will change the current
trend of motion and move towards a opposite direction as the implement of generational
exclusion strategy.

3.2 Central Aggregation Mechanism (CAM)

Throughout the development of human beings, from the primitive times to the current
era, people aremoving increasingly closer to each other from separated families with 3–4
people living in caves to concentrated community with 300–400 people living in man-
sions. Due to the contribution of economic gravity, people are gradually concentrating
in order to seek a more suitable region for development. Inspired by this phenomenon, it
can be concluded that gathering towards the middle of various individuals might actually
leads to a better consequence. Thus, the central position value (themiddle of individuals)
of the whole swarm group is included in GEPSO-CAM. Therefore, another part of the
factors determines the final velocity in GEPSO-CAM is created by the average solution
of a particle swarm (see Fig. 3). All particles are moving towards the center position of
all swarm particles.

Fig. 3. The central aggregation mechanism.

3.3 Combination of GEPSO and CAM

Hence, in GEPSO-CAM, the velocity of swarm particles is updated as follows:

vi = vi + c1 × r1 × (Pbesti − xi) + c2 × r2 × (
Averagexi − xi

)
(3)
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Fig. 4. A figure for the resultant velocity of GEPSO-CAM.

xi = xi + vi × �t (4)

vi = −0.5 × [vi + c2 × r × (Gworsti − xi)]if Iter mod 10 = 0 (5)

(3) and (4) are due to the Central Aggregation Mechanism, (5) is due to the Gen-
erational Exclusion Particle Swarm Optimization. Average xi is defined as the mean
position of all swarm particles. Gworsti is the global worst particle in each iteration.
Iter means the total number of iterations. The velocity of each particle depends on two
elements: the velocity towards the center of all particles and the velocity towards the
current best particles (see Fig. 4). The pseudocode of GEPSO-CAM algorithm is shown
in Table 1.
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Table 1. Pseudocode of GEPSO-CAM.

Pseudocode of GEPSO
1: Generational Exclusion Particle Swarm Optimization with Central Aggregation Mechanism
2: Begin
3: Initialize the program
4: While (the iteration number or error goal is not achieved)
5:     Calculate the center position for all particles
6:     For the i th particle
7:        Initialize the counter
8:        If counter mod 10 != 0
9:            Update the velocity Vi for the i th particle by equation (3)
10:       Else
11:           Update the velocity Vi for the i th particle by equation (5)
12:       End if
13:       Update the position Xi of the i th particle by the equation of Xi = Xi + Vi
14:    End for
15: End while
16: End

4 Experiment and Result

4.1 Parameter Setting

SPSO and BFO algorithms [10] are chosen to test the performance of the GEPSO-
CAM on five benchmark functions, as shown in the Table 2. The related parameters are
illustrated in Table 3 as well.

Experiments are carried out under the same number of swarm size which is 160, each
benchmark run for 20 times, the inertia weight gradually decreases from 0.9 to 0.4, the
acceleration coefficient of these function is 2.0, iteration is set to 5000, and the variable
dimension is 10.

Table 2. Search range for four benchmark functions.

Functions Mathematical formulas Search ranges

Apline f (x) = ∑d
i=1|xisin(xi) + 0.1xi| [0, 10]

Griewank f4(x) = 1 + 1
4000

n∑

i=1
x2i −

n∏

i=1
cos

(
xi√
i

)
[–600, 600]

Rastrigin f (x) = 10d +
d∑

i=1

[
x2i − 10cos(2πxi)

]
[–5.12, 5.12]

Rosenbrock f3(x) = ∑n−1
i=1

(
(xi − 1)2 + 100

(
xi+1 − X 2

i

)2)
[–2.048, 2.048]
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Table 3. Parameters of three algorithms.

No. Algorithms Parameters

1 GEPSO-CAM SwarmSize = 160, Run for 20 times, c1= c2= 2, inertia weight = 0.9 to
0.4, iteration = 5000–1, Dimension = 10

2 SPSO SwarmSize = 160, Run for 20 times, c1= c2= 2, inertia weight = 0.9 to
0.4, iteration = 5000–1, Dimension = 10

3 BFO SwarmSize = 160, Run for 20 times, c1= c2= 2, inertia weight = 0.9 to
0.4, iteration = 5000–1, Dimension = 10

4.2 Experimental Results and Analysis

Figure 5 and Table 4 present the results of four benchmark function and the convergence
characteristic related to the value of max metric, min metric, mean metric and standard
deviation.

(a) Apline (b) Griewank

(c) Rastrigin (d) Rosenbrock

Fig. 5. Convergence curves of GEPSO-CAM, SPSO, and BFO.

Comparing the four benchmark functions in Fig. 5, including Apline, Griewank,
Rastrigin, and Rosenbrock, we can conclude four features of GEPSO-CAM. Firstly,
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Table 4. Comparison among GEPSO-CAM, SPSO, and BFO on four functions.

Functions Metrics GEPSO-CAM SPSO BFO

Apline Max 6.90E–03 4.53E + 00 5.21E + 00

Min 4.80E–41 9.89E–12 2.93E + 00

Mean 1.70E–03 2.27E–01 4.26E + 00

Std 6.55E–06 1.03E + 00 5.90E–01

Griewank Max 5.10E–03 8.60E–02 2.58E–01

Min 0.00E + 00 7.40E-03 1.50E–01

Mean 1.50E–03 3.31E–02 2.21E–01

Std 2.36E–06 4.46E–04 3.17E–02

Rastrigin Max 3.76E–02 1.99E + 00 2.46E + 01

Min 0.00E + 00 0.00E + 00 1.38E + 01

Mean 5.80E–03 5.47E–01 2.00E + 01

Std 1.20E–04 3.62E–01 3.17E + 00

Rosenbrock Max 6.49E + 00 7.37E + 02 1.13E + 01

Min 5.76E + 00 2.37E–02 6.89E + 00

Mean 6.08E + 00 1.04E + 02 9.52E + 00

Std 2.20E–02 3.26E + 04 1.24E + 00

from the figures of convergence curves, it shows that the convergence rate of GEPSO-
CAM is the greatest in three algorithms in 5,000 iterations. Secondly, it demonstrates that
GEPSO-CAM is superior to the other two algorithms in terms of standard deviation in
four statistics, which proves that GEPSO-CAM has the best stability in three functions.
Thirdly, comparing the mean metric of function, the overall performance is the best in
three algorithms as well. Fourthly, comparing the performance of both max and min
metric, GEPSO-CAM mostly performs better than the other two algorithms.

5 Conclusions and Further Work

This paper introduces a generational exclusion particle swarm optimization with cen-
tral aggregation mechanism (GEPSO-CAM), which combines the central aggregation
mechanism with the generational exclusion strategy to improve the searching ability
and alleviate falling into local optimal solution. Moreover, from empirical experiments
and studies, GEPSO-CAM has a better result in most functions than the original PSO,
together with high convergence speed and accuracy. However, in solving real-world
problems, the stability of GEPSO-CAM may not be steady enough, which requires fur-
ther study in the future. Therefore, in the future GEPSO-CAM will be considered to
solve the real-world problems.
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Abstract. Unit commitment is a traditional mixed-integer non-convex problem
and an optimization task in power system scheduling. The traditional methods of
solving the Unit commitment problem have some problems, such as slow solving
speed, low accuracy and complex calculation. Therefore, intelligent algorithms
have been applied to solve the unit combination problem with continues and dis-
crete feature, such as Particle SwarmOptimization, Genetic Algorithm. In order to
improve the solution quality of Unit commitment, this paper proposes the adaptive
binary Particle Swarm Optimization with V-shaped transfer function to solve the
unit commitment problem, and adopts the policy of the segmented solution. By
comparison with some classical algorithm in the same unit model, the experimen-
tal results show that solving the UC problem by using improved algorithm with
segmented solution has higher stability and lower total energy consumption.

Keywords: Binary Particle Swarm Optimization · Segmented solution · Unit
commitment problem

1 Introduction

The Unit Commitment (UC) Problem is a hot problem in the power systems, which
reasonably arrange the on/off state and the load distribution of the generator unit during
a dispatch period in order to make the total operating cost of the unit system reach
the minimum under some constraints condition [1]. There are many methods to be
proposed to obtain the solution of UC problem. Traditional methods include Lagrangian
Relaxation (LR) [2], Dynamic Programming (DP) [3], Mixed Integer Programming
(MIP) [4] etc. Although the classical methods have the advantage of fast solution for
small-scale systems, it is difficult to obtain high-quality optimal solutions for large-scale
systems.

With the development of intelligent computation, more and more intelligent algo-
rithms are used to solve the UC problem [5–7]. The Genetic Algorithm (GA) is used to
optimize the fuel cost of unit for UC [5], the result shows the saving of fuel cost. Sun
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et al. [6] proposed the intelligent Water Droplet Algorithm modeling mechanism (IWD)
for the UC Problem, the results show that the intelligent Water Droplet Algorithm has
strong global search ability in UC Problem. Kumar et al. [7] provides a computational
methodology based on Monarch Butterfly Optimization (MBO) to solve UC Problem,
and the comparative analysis shows the effectiveness in terms of operating costs and
execution time in relation to other techniques. The Particle Swarm Optimization (PSO),
as a popular swarm intelligent algorithm, has been used to optimize the power system
problem of UC because it’s simply and easy to operate. PSO is extended as the Binary
Particle Swarm Optimization (BPSO) in order to be applied to binary problem. The
on/off state of the generator units of UC Problem is binary problem, so the BPSO is
used to solve the UC Problem. In the recent ten years, more and more researcher used
PSO and BPSO to solve UC Problems. Song et al. [8] proposed an improved Particle
Swarm Culture Algorithm, and by selecting the particle global optimal position through
the individual evolution and parameter adjustment to solve the unit commitment. Zhai,
et al. [9] adopted the dual Particle Swarm Optimization algorithm and propose a dimen-
sionality reduction idea to solve the UC Problem, which converted from optimizing the
entire dispatching cycle to doing each dispatching time respectively and orderly. Ismail
et al. [10] considered BPSO algorithms and Dynamic Programming (DP) to solve the
UC Problem, the results show that BPSO algorithm satisfies all the constraints of the UC
Problem and minimizes the total operation cost. Liu et al. [11] used a new strategy to
generate particles on the basis of discrete Particle Swarm Optimization, and introduced
the concept of optimization window and heuristic rules, the simulation results clearly
show that the proposed method is effective. However, the BPSO algorithm used above
is still based on the original BPSO algorithm and its performance is insufficient. This
is because the traditional BPSO used the S-shaped transfer function, which leads to a
stronger global search ability and a weaker local search ability in the later stage, so that
it is hard to obtain the optimal solution [12].

This paper proposes a V-shaped transfer function meet the requirements of BPSO
(VBPSO) to overcome the strong global search ability and enhance the local search
ability in the later stage of the algorithm.Meanwhile, this paper also proposes an adaptive
Binary Particle Swarm Optimization (ABPSO) to enhance particle diversity and the
global search ability at early stage and local search ability at last stage. Finally, the
combining BPSO are applied to the unit commitment problem, and the experimental
result shows the effectiveness of the proposed method compared with the methods listed
in the reference.

The rest of this paper are organized as follows: Sect. 2 introduces some related work
on BPSO and UC Problem. The proposed VBPSO and ABPSO are presented in Sect. 3.
In Sect. 4, the methods of handling constraints are described. The experimental results
are presented in Sect. 5 and Sect. 6 concludes the paper.

2 Related Work

2.1 Binary Particle Swarm Optimization

Particle SwarmOptimization (PSO) algorithm is a popular intelligent algorithm for solv-
ing optimization problems. The basic PSO is designed to solve continuous optimization
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problems. However, the UC Problem is a discrete problem, it is necessary to transform
the continuous search space to the binary one. A binary version of PSO, Binary PSO,
was first introduced in 1997 [13]. In BPSO, the velocity updating equation is similar to
that of PSO as the Eq. (1).

vid = w ∗ vid + c1 ∗ rand( ) ∗ (pid − xid ) + c2 ∗ rand( ) ∗ (pgd − xid ) (1)

The transfer function is employed to convert velocity to the value in interval [0, 1] in
BPSO, and the transfer function is shown as Eq. (2).

s(vid ) = 1

1 + e−vid
(2)

where vid is the next velocity of the ith particle in the dth dimension, |vid | < vmax. and
vmax is set to a constant. Equation (2) is the sigmoid function which generates a value in
range [0, 1] and the particle’s position at the next generation in the binary search space,
xid , is updated in terms of the Eq. (3).

xid =
{
1
0
if rand( )≤s(vid )

otherwirse (3)

where rand() is a random number in U ~ (0,1).

2.2 Mathematical Model of the UC Problem

Unit commitment (UC) aims to minimize the economic cost under condition of some
physical constraints in the power system [14]. In general, the UC Problem regards the
economic cost of the unit within 1h as an independent time unit without considering the
interaction of each unit time.

The total cost of the UC Problem can be found by summing the operational cost for
each unit over the time with the start-up cost, which is denoted as Eq. (4).

F =
N∑
i=1

T∑
t=1

[
Fi(Pit) + Sit(t)

(
1 − ui,t−1

)]
uit (4)

where F represents the total economic cost, which is composed of fuel cost and start-up
cost. The start-up cost is the cost of the unit when started up.Ft(Pit) represents a function
of the fuel cost of the unit i in operation. Pit represents the generating capacity of unit i
in hour t. Ft(Pit) is calculated by Eq. (5).

Fi(Pit) = aiP
2
it + biPit + ci (5)

where ai, bi, ci represents fuel cost coefficients of the unit i, respectively.
The Sit(t) in Eq. (4) represents the start-up cost of the unit i in the hour t. And uit is

the start-up of the unit i, which is 0 or 1 at the hour t. The start-up cost is an indispensable
part of the economic cost of the unit, which is expressed as Eq. (6).

Sit(t) = S0,i + S1,i(1 − e
− T

off
it
τi ) (6)
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where S0,i, S1,i, τi are the start-up cost parameters of the unit i, Toff
it is the continuous

time that the unit i is in OFF state at the hour t.
UC Problem contains some constraints in real world, so it is solved on the premise

of satisfying the following constraints.
(1) The system power balance constraint, which is shown as Eq. (7).

N∑
i=1

Pituit = Dt (7)

where Dt is the total power demand of the system in the hour t, and the restricted power
in the hour t must be equal to the value of Dt ,that is, the sum of the power of all units
should be equal to the total system power demand Dt .

(2) Spinning reserve constraint, which is shown as Eq. (8).

N∑
i=1

Pi,maxuit ≥ Dt + Rt (8)

where Pi,max indicates the power maximum limit of unit i when it starts, Rt represents
the spinning reserve value in hour t. In practice, in order to cope with the unexpected
extra load, it is necessary to preserve the spinning power, which is important to keep the
power balance.

(3) Minimum continuous on/off times constraints, which is defined as Eq. (9) and
Eq. (10).

Ton
it ≥ Mon

i (9)

Toff
it ≥ Moff

i (10)

where Ton
it and Toff

it is the continuous operating time and continuous shutdown time of

the unit i in hour t. M on
i and Moff

i is the minimum continuous operating and minimum
continuous shutdown time required by the unit i.

(4) Ramp rate constraint, which is shown as Eq. (11),
∣∣Pit − Pi,t−1

∣∣ ≤ pmax v
i (11)

where pmaxv
i is the maximum ramp rate of the unit i, that is, the power of the start-up

unit in adjacent periods should be increased or decreased between the given maximum
and minimum value.

(5) Themaximumandminimumconstraint of unit output,which is shown asEq. (12),

Pi,min ≤ Pit ≤ Pi,max (12)

where Pi,min and Pi,max represents the maximum and minimum limit of the power of the
unit i respectively. The power supplied from the generation unit must be lie in the range
between the maximum and minimum power.
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3 The Improving Binary Particle Swarm Optimization

In the section, two methods are adopted to improve Binary PSO. One policy is to change
the transfer function of BPSO, the other is the change equation of position updating of
BSPO.

(1) the policy of the V-shaped transfer function
The original BPSO has S-shaped transfer function of sigmoid function, which makes
global search ability of BPSO too strong, and hard to converge to the global optimal
particles [15]. The V-shaped transfer function in BPSO is proposed to improve the
BPSO, which function curve is a V-shaped and symmetrical over the Y axis. Here, a new
V-shaped transfer function is put forward as shown in Eq. (13).

S(vid ) = (vid )2

1 + (vid )2
(13)

Comparing with the traditional BPSO, the VBPSO algorithm with the V-shaped
transfer function can enhance the later local search ability of the algorithm and improve
the performance of the original BPSO algorithm.

(2) The policy of adaptive mutation
According to the influence of particlemutation on the algorithm’s search ability, a particle
position updating method with adaptive change of mutation probability is proposed. The
position of the particle is updated with Eq. (14) that is different with the Eq. (3). In
Eq. (14), the binary bit changes when rand() < R, and the R is changed over iteration
in Eq. (15), So the Binary PSO with Eq. (14) and Eq. (15) has the adaptive feature. The
policy can enhance the global search ability at early stage and local search ability at last
stage.

xid = {∼xid
xid

if rand( )≤R
otherwise (14)

R = (1 − t

T
)2 (15)

4 Constraint Handling

In order to prevent the damage of units, the solution of the UC Problem must be meet
some constraints. In addition, for the users’ demand of the power generation, how to
handle these constraints is very important. The methods of handling constraints are
presented in this section.

4.1 Sufficient Condition for a Feasible Solution

First, it must be decided whether the on/off state of the unit is a feasible solution after
the particle of PSO updating by considering the spinning reserve constraint at Eq. (8).
Otherwise, if the number of start-up units were too large so that the power allocation
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of units cannot meet the maximum and minimum limit in Eq. (12) [17], a new deciding
conditions about feasible solution is added to solve the situation, So, the new deciding
conditions can be shown as Eq. (16),

N∑
i=1

uitPi,min ≤ ηDt . (16)

where η is set to random values in the intervals (0, 1), the left of Eq. (16) is the sum
of minimum power of the unit. The total demand power multiplied by the decimal will
become smaller in right formula. Under this condition, only when it be greater than
the minimum power, it can allocate the power. The purpose of adding the judgment
conditions is to keep the power of the operating unit not to be allocated when the
minimum power of the start-up unit at a certain time is lower than the total demand
power of the current hour t. The power allocation for the operating unit can be realized if
the minimum power of the operating unit is lower than the reduced total demand power.

4.2 Power Balance Constraints

The sum of the generating power of units in a dispatch timemust be equal to the electrical
load in the current time which satisfies the constraint Eq. (7). First, for the determined
on/off state unit, it should find out the last unit, and then allocates the load to all units.
Second, subtracting the sum of the last unit’s load from the total demand load. If the
result is greater than the maximum constraint value of the last unit, the power of units
except the last unit should be increased randomly and appropriately. The constraints of
the maximum and minimum limit constraints of unit output Eq. (12) should be met to
make the power reach the balance constraint.

4.3 Ramp Rate Constraint

In the process of power allocation, the total operating coal consumption of the unit
can be calculated, and the total coal consumption value can be used as the evaluation
function to obtain the optimal power allocation of the units by using the continuous PSO
algorithm. The Ramp rate constraint Eq. (11) can be used in solving the problem of unit
power allocation and coal consumption, the penalty function is added in the unit coal
consumption, the objective function is shown in Eq. (17),

minF(Pit ,Uit) =
N∑
i=1

T∑
t=1

[Fi(Pit) + Sit(1 − Ui,t−1)]Uit +
N∑
i=1

T∑
t=1

α[min(0, (pmax v
i − ∣∣Pi,t−1 − Pit

∣∣))]2

(17)

where α is penalty coefficient which takes 1200. The ramp rate constraint is satisfied
when the penalty coefficient is equal to 0.
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4.4 Start-Up Priority of the Unit

To get better unit on/off state and less consumption cost, 20% of the units can be started
up all the time during the dispatching period, because each unit has its characteristics
and the power consumption are different [18]. Based on these characteristics, the unit
starting priority λi can be determined by the unit operating cost when full load operation.
The lower unit operating cost, the greater the start-up priority of the unit, and the top
20% unit with higher priority will be selected to keep running. For the test units used in
this paper, the top 20% with higher start-up priority are units 9 and 10, so units 9 and 10
were selected to keep on during the whole dispatch period.

4.5 Segment Solution

The general method to solve the UC Problem is regard all dispatch periods as a whole
[19]. Especially in handling continuous on/off time constraints, if the on/off state of the
unit in 24 periods is adjusted based on different unit constraints after updating, it has
certain blindness. the size of data processed is large, so it is difficult to find the best
on/off state of the unit. Because the whole dispatch period is composed of 24 scheduling
periods, it can convert the whole dispatch period into 24 scheduling periods (Divide
Time, DT), reduce the solution dimension to obtain a more reasonable unit on/off state
and the total energy consumption of unit operation.

The optimization of the whole scheduling cycle is transformed into the sequential
and separate optimization of each scheduling time, so the optimization process of each
scheduling time is similar. First of all, for the first period, it refers to the determined
optimal unit state at the previous scheduling time to judge whether the unit has met
the minimum continuous start-stop time constraint. If the constraint were met, updating
the on/off states of the unit by using the improved algorithm VBPSO or ABPSO. If it
reaches a certain number of iteration and still does not meet the judgment conditions of
the feasible solution, the maximum iteration must be set larger. If the iteration reaches
the maximum value of the iteration, the units which have met the minimum stop time
constraint and has higher starting priority will be on in turn until the judgment conditions
of the feasible solution are met.

5 Results and Discussion

5.1 Test System and Parameter Settings

This paper uses classical examples to verify the proposed solution of the UC Problem.
The BPSO algorithm with two policies (ABPSO) is used as the binary algorithm and
the continuous particle swarm algorithm uses the standard PSO. The parameters are
set as recommended in the corresponding reference papers, population size is 20, the
maximum iteration is 200, the learning factors are both 2 and the dispatch period is one
day, which is divided into 24 time periods. In test system, the unit parameters, 24-h load
data and other parameters was adopted in [20], as shown in the Table 1 and 2. In order to
verity the performance of the algorithm, this paper conducts tests on these algorithms,
each algorithm was run 30 times on the selected 10-unit benchmark problem.
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Table 1. Unit data

Unit a b c Pimin Pimax S0,i S1,i τ Pimaxv Mi
on Mi

off

1 0.0051 2.2034 15 15 60 0 85 3 0.3 2 2

2 0.00396 1.9101 25 20 80 0 101 3 0.4 2 2

3 0.00393 1.8518 40 30 100 0 114 3 0.5 2 2

4 0.00382 1.6966 32 25 120 0 94 4 0.6 3 3

5 0.00212 1.8015 29 50 150 0 113 4 0.75 3 3

6 0.00261 1.5354 72 75 280 0 176 6 1.4 5 5

7 0.00289 1.2643 49 120 320 0 187 8 1.6 5 5

8 0.00148 1.213 82 125 445 0 227 10 2.225 8 8

9 0.00127 1.1954 105 250 520 0 267 12 2.6 8 8

10 0.00135 1.1285 100 250 550 0 280 12 2.75 8 8

Table 2. Total system load and system spinning reserve capacity in t period

t 1 2 3 4 5 6 7 8 9 10 11 12

Dt 200 198 194 190 184 187 182 170 151 141 132 120

Rt 140 139 136 133 129 131 127 119 106 99 92 88

t 13 14 15 16 17 18 19 20 21 22 23 24

Dt 120 1160 1140 1160 1260 1380 1560 1700 1820 1900 1950 1990

Rt 84 81 80 81 88 97 109 119 127 133 138 139

5.2 Solution Results and Analysis

Firstly, the non-segmentation BPSO (BPSOUT), segmentation PSO (MDPSODT) [20],
segmentation ABPSO and VBPSO were used to compare in solving the energy con-
sumption problem of the unit. As shown in the Table 3, the result of using MDPSODT
based on segment solution is significantly lower than the non-segmentation BPSOUT
algorithm, which can verify the effectiveness of segment solution. In addition, the final
result of the two improved algorithms is lower than that of the MDPSODT, which shows
the effectiveness of the two improved methods.

Table 3. Results of different algorithms

Algorithm BPSOUT MDPSODT VBPSO ABPSO

Total Energy. cons 82499.2 79665.8 79043.1 79030.8
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Table 4 shows the comparison of the variances of the original BPSO algorithm
without segmentation and the two improved methods. It can be seen from Table 4 that
the variances of the two improved methods is smaller which indicated the two methods
have low volatility and stability in solving UC Problems. In order to reflect the above
analysis more intuitively, Fig. 1, 2 and Fig. 3 reveals the results and average values of
30 experiments. From the Fig. 1, 2 and Fig. 3, it can be clearly seen that the result of
the non-segmented BPSOUT algorithm has the largest volatility in the average value,
and the algorithm is unstable. The solutions obtained by the improved methods have the
smallest volatility near the average value and higher stability.

Table 4. Variances of different algorithms

Algorithm BPSOUT VMBPSO ABPSO

Variances 81.836 3.915 3.743

Fig. 1. BPSOUT
experiment results

Fig. 2. ABPSO
experiment results

Fig. 3. VBPSO
experiment results

Table 5 shows the result of Lagrangian Relaxation, Hybrid Particle Swarm Opti-
mization (HPSO) and Genetic Algorithm (GA) which are the classical algorithms from
the UC Problem in reference [20–22]. The parameters are set according to the above
references, the inertia weightw is set to 0.7298, the learning factor c takes value 1.49618
in HPSO. In GA, the population size is 91, the iteration is 60. It can be seen from the
Table 5 that compared with other classical algorithms, the two algorithms proposed in
this paper have the lowest total energy consumption. The result shows that the proposed
algorithms have obvious advantages compared with other algorithms. Figure 4 shows
the difference in the total cost by these algorithms. It is not difficult to see from Fig. 4
that the two proposed algorithms have obvious effects on cost reduction compared with
other classical algorithms.

Table 5. Comparison of solution results of different algorithms

Algorithm LRM HPSO GA VBPSO ABPSO

Cost 81245.5 81118.3 79807.0 79043.054 79030.807
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Fig. 4. Total cost produced by different methods

Table 6. The optimal unit state of the 10-machine system (the result of the BPSO algorithm)

Unit Dispatch period

1–24 h

1 0 0 1 1 0 0 0 1 1 1 1 1 0 0 0 1 1 1 1 1 1 1 1 0

2 1 1 0 0 0 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0 0 0 0 0

3 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1 1 0 0 1 1 0 0 1 1

4 0 0 0 1 1 1 1 1 1 0 0 0 0 1 1 1 0 0 0 1 1 1 1 0

5 0 0 0 1 1 1 0 0 0 0 1 1 1 1 1 0 0 0 0 1 1 1 1 1

6 1 1 1 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1

7 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 1 1 1 1 1 1 1

8 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1

9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Table 7. The optimal unit state of the 10-machine system (the result of the ABPSO algorithm)

Unit Dispatch period

1–24 h

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

4 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1

5 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1

6 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
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Table 8. The optimal unit state of the 10-machine system (the result of the VBPSO algorithm)

Unit Dispatch period

1–24 h

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

4 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1

5 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1

6 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Table 9. The result of BPSO

t Cons t Cons

1 4303.218 13 2636.816

2 4200.061 14 2603.123

3 4158.786 15 2506.633

4 4124.212 16 2531.588

5 3824.805 17 2670.621

6 4013.982 18 3003.720

7 3803.030 19 3395.254

8 3568.024 20 3678.195

9 3175.776 21 3809.123

10 2846.038 22 3981.682

11 2813.601 23 4189.270

12 2455.258 24 4206.377

Finally, Tables 6, 7 and 8 shows the obtained optimal unit states, Table 9, 10 and 11
shows the consumption cost of each period. It can be seen that the two groups of units
using the improved algorithm have little difference on the on/off state. But compared
with the conventional BPSO algorithm, the number of start-up units is less, and the
utilization rate of the units is higher. In totally, the two improved algorithms using the
segment solution have obtained good results in solving the traditional UC Problem.
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Table 10. The result of ABPSO

t Cons t Cons

1 4303.218 13 2636.816

2 4200.061 14 2603.123

3 4158.786 15 2506.633

4 4124.212 16 2531.588

5 3824.805 17 2670.621

6 4013.982 18 3003.720

7 3803.030 19 3395.254

8 3568.024 20 3678.195

9 3175.776 21 3809.123

10 2846.038 22 3981.682

11 2813.601 23 4189.270

12 2455.258 24 4206.377

Table 11. The result of VBPSO

t Cons t Cons

1 4303.218 13 2636.816

2 4200.061 14 2603.123

3 4158.786 15 2506.633

4 4124.212 16 2531.588

5 3824.805 17 2670.621

6 4013.982 18 3003.720

7 3803.030 19 3395.254

8 3568.024 20 3678.195

9 3175.776 21 3809.123

10 2846.038 22 3981.682

11 2813.601 23 4189.270

12 2455.258 24 4206.377

6 Summary

Aiming at the blindness of the whole solution in adjusting the on/off state of the units,
resulting in low solution quality and high total energy consumption for unit operation,
this paper adopts the segmented solution, and applies two improved algorithms to solve
the UC Problem. The final experimental results indicate that two improved methods
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proposed in this paper obtain higher stability, lesser number of start-up units and lower
total energy consumption compared with the conventional BPSO.
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Abstract. Aswith the rapid development of air transportation and potential uncer-
tainties caused by abnormal weather and other emergencies, such as Covid-19,
irregular flights may occur. Under this situation, how to reduce the negative impact
on airlines, especially how to rearrange the crew for each aircraft, becomes an
important problem. To solve this problem, firstly, we established the model by
minimizing the cost of crew recovery with time-space constraints. Secondly, in
view of the fact that crew recovery belongs to anNP-hard problem,we proposed an
improved particle swarm optimization (PSO) with mutation and crossover mech-
anisms to avoid prematurity and local optima. Thirdly, we designed an encoding
scheme based on the characteristics of the problem. Finally, to verify the effective-
ness of the improved PSO, the variant and the original PSO are used for compari-
son. And the experimental results show that the performance of the improved PSO
algorithm is significantly better than the comparison algorithms in the irregular
flight recovery problem covered in this paper.

Keywords: Crew recovery · Irregular flight · Particle swarm algorithm ·
Cross-over mechanism · Mutation mechanism

1 Introduction

In post Covid-19 era in China, any inevitable imported cases may lead to regional
quarantine and circuit breaker mechanisms for airlines. Moreover, abnormal weather
may also introduce abnormal situations. It’s vital for airlines to quickly schedule their
irregular flights in face of flight delays or cancellations.

According to the Normal Statistical Method of Civil Aviation Flight released by the
Civil Aviation Administration of China [1], normal flights refer to those depart 10 min
or shorter after scheduled departure time without sliding back, veering or preparing for
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landing, or arriving within 10 min before scheduled arrival time. And irregular flights
refer to those who do not obey the above conditions. When irregular flight occurs, how
to quickly recover the flight plan becomes an urgent problem. The irregular flight recov-
ery problem could be separated into several parts, including the route, flight, aircraft,
crew and passenger recoveries [2]. In this paper, we mainly focus on the crew recov-
ery problem. The crew recovery serves as a connecting link between the preceding and
the following. A good crew recovery plan allows for the perfect implementation of the
recovered route and maximizes the convenience of subsequent passenger recovery [3].
If there are problems with crew assignments, the flight route needs to be re-routed. It
can cause huge losses to the airline, while also reducing passenger satisfaction with
the airline and affecting its reputation. Therefore, airlines need a comprehensive crew
recovery system to deal with the negative impact of irregular flights.

In recent years, several scholars have studied this problem in numerous perspectives.
Doi et al. [4] and Quesnel et al. [5] separately considered fair working time and crews’
preferences. Antunes et al. [6] focused on the robustness of primary schedules. Sun et al.
[7] considered the impact of flying time on the irregular flight. Zhou et al. [8] developed
an ant colony system formultiple objectives taking fairness and satisfaction into account.
However, those papers indeed take many humanized objectives into consideration, and
the measurement of cost and consistency of flights can be further polished. To solve
this problem, in our model, we introduced variable costs to lower the complexity of
calculation and reflect time-space constraints to embody the continuity of the flight task
list.

As the crew recovery problem holds NP-hard characteristics, normal mathematics
methods are difficult to get a satisfying solution, especially for the large-scale case.
However, heuristic algorithms are outstanding for their large searching scales and fast
calculating speed, which exactly fits our requirements. Among the heuristic algorithms,
particle swarmoptimization is remarkable for its easier implementation and fewer adjust-
ment parameters. Xia et al. [9] proposed triple archives particle swarm optimization to
obtain higher solution accuracy and faster convergence speed. Xu et al. [10] and Kiran
[11] separately introduced dimensional learning strategy and distribution-based update
rule to the primary PSO. Ibrahim et al. [12] combined the slap swarm algorithm with
PSO to solve the feature selection problem. Zhang et al. [13] introduced a dynamic
neighborhood-based learning strategy and competition mechanism to improve PSO’s
performance in solvingmulti-objective problems. Overall, the improved PSO algorithms
have superior performance and they have successfully applied to industrial engineering
problems. However, few papers use PSO to solve the crew recovery problem. There is a
large research space to solve the crew recovery problem based on a new PSO algorithm.
Thus, we purpose an improved PSO combining crossover and mutation mechanisms to
solve the crew recovery problem in this paper.

The main contributions of this paper include three aspects. Firstly, crossover and
variation mechanisms are introduced to address the problems of traditional PSO and
improve the performance of the algorithm. Secondly, to further verify the effectiveness
of the new algorithm, the variation mechanism is also led separately for comparison with
the improved PSO that introduces both crossover and variation mechanisms. Thirdly,
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a new coding scheme is established based on the characteristic of the problem and
interfaced with the new algorithm.

The remainder of this paper is listed as follows. Section 2 states the model of the
crew recovery problem. Section 3 describes the improved particle swarm optimiza-
tion. Section 4 explains the encoding scheme. Section 5 presents the simulation results
against comparative algorithms. Section 6 concludes the paper and points out the future
directions (Table 1).

Table 1. Definition of symbols

Symbols Meaning of symbols

F Flight set

C Crew set

T Crew task set

A Airport set

n Flight subscripts

m Crew task subscripts

s Crew superscripts

n1, n2 Subscripts of two continuous flights in crew task

bnm Parameter of crew task m containing flight n

cn The cost of canceling flight n

vsm The variable cost brought by crew s when executing task m

tsm, ts The total time of crew s’s executing task m and the total flight time of crew s

tmn1 , t
m
n2 The prior flight’s arrival time and posterior flight’s departure time included in two

continuous flights of crew task m

amn1 , a
m
n2 The prior flight’s arrival airport and posterior flight’s departure airport included in

two continuous flights of crew task m

xsm Whether crew s executes crew task m

yn Whether flight n is canceled

2 Model of Crew Recovery Problem

This section introduces the model of the crew recovery problem. The objective function
is described below.

min z =
∑

s∈C

∑

m∈T
vsm xsm +

∑

n∈F
cn yn. (1)

This optimization objective function demands the lowest cost of crew recovery,
including (i) the variable cost of two crew tasks; (ii) the cost of canceling one flight.
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Moreover, constraints (2)–(8) are listed below.

s.t.
∑

s∈C

∑

m∈T
bnm xsm + yn = 1, (2)

∑

m∈T
xsm ≤ 1,∀s ∈ C, (3)

tsm < ts,∀s ∈ C,∀m ∈ T , (4)

tmn1 < tmn2 ,∀m ∈ T ,∀n1 ∈ F,∀n2 ∈ F, (5)

amn1 = amn2 ,∀m ∈ T ,∀n1 ∈ F,∀n2 ∈ F, (6)

xsm ∈ {0, 1},∀s ∈ C,∀m ∈ T , (7)

yn ∈ {0, 1},∀n ∈ F . (8)

Constraint (2) ensures each flight can only be executed by one crew or be canceled.
Constraint (3) restricts that each crew can only execute at most one crew task list.
Constraint (4) imposes that the total flight time of a crew executing one crew task list
must be shorter than the crew flight time regulated by airlines. Constraint (5) restricts
that, in the same crew task list, the former flight’s arrival time must be earlier than the
latter one’s departure time. Constraint (6) prescribes, in the same crew task list, that
the former flight’s arrival airport must be the same as the latter one’s departure airport.
Constraints (7)–(8) are the range of decision variables.

3 Improved Particle Swarm Optimization

This section presents the proposed improved particle swarm optimization by introducing
crossover and mutation mechanisms to the primary particle swarm optimization.

3.1 Primary Particle Swarm Optimization

In the primary particle swarm optimization (PSO), we firstly initialize particles’ scale,
dimensions, velocity and location according to the optimization problem. Then calculate
the solution in their present conditions, picking their own best solution as the personal
best and the best solution of the swarm as the global best. After that, update particles’
velocity and location according to certain formulas. And calculate the new solution with
the new velocity and location. Finally, iterate the above processes until the termination
criteria is met and output the best solution and its location.
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3.2 PSO with Crossover and Mutation Mechanisms

Due to the shortcomings of prematurity and local optima, we improve the algorithm by
introducing crossover and mutation to the primary PSO.

Crossover Mechanism. Crossover is a method that generates a new individual by
recombining certain parts of its parent individuals. The operation is to randomly pick
two individuals from the swarm, select the crossover location and choose whether to
crossover according to the crossover rate pc, which is between 0.25 and 1.

Mutation Mechanism. Mutation is an operation that changes the value in a certain
dimension of the individual with a relatively small probability. The detailed operation is
to generate a random number between 0 and 1. If the number is smaller than themutation
probability, which is between 0.001 and 0.01, in this iteration each dimension of this
particle will randomly mutate within constraint.

We name the improved PSO as Mutation Crossover Particle Swarm Optimization
(MCPSO). Moreover, we will introduce an algorithm with only a mutation mechanism
as a comparing algorithm (Mutation Particle Swarm Optimization, MPSO). Compared
with the primary PSO, MCPSO adds mutation and crossover operations after the update
of velocity and location. And, due to the introduction of the crossover mechanism,
neighboring particles can learn from each other through a crossover in each dimension.
This enhances the region learning ability of the particles and facilitates the algorithm to
escape from the local optimum. Figure 1 shows the process of the improved PSO and
Fig. 2 shows the process of solving the crew recovery problem with MCPSO.

Fig. 1. Flow chart of MCPSO Fig. 2. Flow chart of MCPSO solving crew
recovery problem
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4 Encoding Scheme

According to the time-space network diagram and multi-commodity flow model, the
crew recovery problem can be converted into reallocating crews for each flight. For
each flight, they can only choose one crew, meanwhile satisfying related constraints.
Combining the characteristics of PSO, the solution to the crew recovery problem can be
treated as the sequence number of executable crews selected by each flight. Each particle
in the swarm represents a feasible solution, each dimension of the particle represents the
flight and the value is the crew’s number picked by the flight.

Based on this coding idea, in the swarm, xi = (xi1, xi2, xi3......xin) is the location
of ith particle, among which the dimension n should be equal to the total number of
flights, xin represents the value of nth dimension in ith particle. Corresponding to the
crew recovery problem, xin refers to the crew number selected by nth flight in ith flight
schedule. Figure 3 illustrates the encoding method for the crew recovery problem.

Fig. 3. Encoding method of crew recovery problem

5 Experiments and Results

5.1 Parameter Settings

This paper used data in Table 2 and Table 3 [14] to verify the performance of MCPSO
in solving the crew recovery problem. Table 2 is the primary flight schedule list. Table
3 is the primary crew schedule list, including 6 crews and a backup crew.

Table 2. Primary flight schedule list

Flight Departure airport Arrival airport Departure time Arrival time Flight time

1481 BOS CLE 730 930 158

1519 BOS GSO 1015 1210 155

1687 CLE BOS 740 940 156

789 CLE EWR 1100 1225 119

1867 CLE GSO 1335 1450 113

(continued)
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Table 2. (continued)

Flight Departure airport Arrival airport Departure time Arrival time Flight time

1609 CLE GSO 1650 1805 112

1568 CLE GSO 2150 2305 110

1601 EWR GSO 700 843 117

1779 EWR GSO 830 1015 121

1690 EWR CLE 955 1134 124

1531 EWR GSO 1155 1330 130

1431 EWR GSO 1300 1440 136

1626 GSO EWR 1220 1353 129

1670 GSO CLE 1240 1355 124

1678 GSO CLE 1545 1700 108

1591 GSO CLE 1630 1758 121

1720 GSO CLE 1725 1843 116

1698 GSO EWR 1825 1957 130

Table 3. Primary crew schedule list

Crew Flight
number

Departure
airport

Arrival
airport

Departure
time

Arrival time Flight time

E1 1601 EWR GSO 700 843 117

1626 GSO EWR 1220 1353 129

E2 1779 EWR GSO 830 1015 121

1670 GSO CLE 1240 1355 124

1609 CLE GSO 1650 1805 112

E3 1690 EWR CLE 955 1134 124

1867 CLE GSO 1335 1450 113

1678 GSO CLE 1545 1700 108

E4 1531 EWR GSO 1155 1330 130

1720 GSO CLE 1725 1843 116

1568 CLE GSO 2150 2305 110

V1 1687 CLE BOS 740 940 156

1519 BOS GSO 1015 1210 155

(continued)
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Table 3. (continued)

Crew Flight
number

Departure
airport

Arrival
airport

Departure
time

Arrival time Flight time

1698 GSO EWR 1825 1957 130

V2 1481 BOS CLE 730 930 158

789 CLE EWR 1100 1225 119

1431 EWR GSO 1300 1440 136

1591 GSO CLE 1630 1758 121

Table 4. Parameter list

Symbol Meaning Value Symbol Meaning Value

I Maximum iteration
time

5000 vmax Upper limit of particle’s
velocity

10

D Dimension of particle 17 vmin Lower limit of particle’s
velocity

– 10

N Number of particles 20 c1, c2 Self-learning and social
learning rate

1.5

wmax Upper limit of inertia
weight

0.9 pc(MCPSO) Probability of crossover 0.75

wmin Lower limit of inertia
weight

0.4 pm(MPSO) Probability of mutation 0.05

Table 4 is the parameter settings of the algorithms. Note that, the parameter settings
are based on the PSO original papers. And the canceling cost is 100 thousand yuan per
time, the crew switching cost is 20 thousand yuan per time and the backup crew using
cost is 30 thousand yuan per time. In the experiment, flight 1867 is canceled due to
weather reason. It is preferred that the recovery crew’s schedule holds the lowest cost
and the minimum change compared against the original schedule.

5.2 Experimental Results

We calculated the data 10 times with PSO, MPSO,MCPSO and two variants of MCPSO
respectively, and compared their results. Note that, to validate the sensitivity of MCPSO
to the crossover rate, the crossover rates of the two variants are set to 0.6 and 0.9,
respectively, while the rest of the parameters are the same as MCPSO settings. Table 5
shows the number of times each strategy is used. Figure 4 is the cost of three algorithms.
Figure 6 presents the average convergence of the three algorithms with multiple runs.
Figure 5 and Fig. 7 display the comparison betweenMCPSO and the two variants, where
the crossover rate is 0.6 for MCPSO_1 and 0.9 for MCPSO_2. Based on the results, it
can be seen that the original PSO has a poor optimal-seeking ability, and its final solution
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Table 5. Optimal crew recovery strategy usage table using different algorithms

has the highest crew recovery cost and a large number of exchange crew tasks so such a
recovery scheme is not satisfactory. The performances of the MPSO and MPCSO with
additional variation mechanisms have been significantly improved. As shown in Fig. 6,
MCPSO and MPSO have an approximate average convergence capacity. However, by
comparing the optimal result between the two algorithms in Fig. 4, we can find that
the strategy found by MCPSO is better than MPSO. The reason is that the additional
crossover mechanism inMCPSO can increase the diversity of solutions, thus sometimes
helping the algorithm to find better solutions beyond the local optimum. Furthermore,
as shown in Fig. 5 and Fig. 7, the optimal solution of MCPSO is better than the two
variants. This illustrates that a moderate crossover rate can improves the diversity of
solutions.

300
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PSO MPSO MCPSO
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Fig. 4. Optimal crew recovery cost
comparison among different algorithms
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Fig. 5. Optimal crew recovery cost
comparison among different pc

Fig. 6. Average crew recovery cost
comparison among different algorithms

Fig. 7. Average crew recovery cost
comparison among different pc
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6 Conclusions and Future Directions

In this paper, we studied the irregular flight crew recovery problem, established a crew
recovery model and proposedMCPSO and corresponding coding strategy to solve it. By
analyzing the improved PSOwith comparison algorithms in actual flight instances, it can
be concluded that the improved PSO can effectively solve the irregular flight crew recov-
ery problem and finally output a new crew schedule with the lowest recovery cost. In the
future, we will utilize MCPSO to solve other irregular flight recovery problems, such as
aircraft recovery, passenger recovery, and so on. Moreover, multi-objective optimization
is another direction to further explore the considered problem.
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Abstract. Working overtime is commonly existed in aircraft maintenance, which
may aggravate the fatigue of maintenance technicians and is not conducive to
ensuring the accuracy and efficiency of the maintenance work. To tackle this
problem, this paper improves the basic aircraft maintenance technician schedul-
ing (AMTS)modelwhile controlling themaintenance time and costs, and proposes
an aircraft maintenance technician scheduling model with task splitting strategy
(AMTS-TSS). In the AMTS-TSS model, the task splitting strategy is designed
especially for those complex and time-consuming tasks that require being com-
pleted across maintenance shifts. Then, with the aim of reducing the maintenance
time, the technician assignment approach based on thework efficiency is discussed
when splitting tasks. Finally, particle swarm optimization (PSO) is applied to test
the performance of the two models. The experimental results show that compared
with the AMTS model, the AMTS-TSS model can not only effectively reduce
the total maintenance cost, but also shorten the average maintenance time while
preventing the overtime work.

Keywords: Aircraft maintenance scheduling · Task splitting strategy ·
Technician exchange approach · Particle swarm optimization

1 Introduction

Aircraft maintenance not only provides security for airline operations and ensures the
continuous airworthiness of aircrafts, but also promises available aircrafts on time for
airline flight plans every day [1]. According to the International Air Transport Asso-
ciation (IATA), the maintenance cost can account for 9–10% of the total cost of air-
lines [2]. Therefore, while ensuring the aircraft maintenance quality, many airlines aim
to strengthen the maintenance cost control, reduce the maintenance cost and pursue
economic benefits.
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Aircraftmaintenance is aworkwith high pressure and difficult working environment.
Aircraft maintenance technicians are often faced with the problem of overtime work due
to the complex and time-consuming maintenance tasks [3]. In this situation, it is difficult
for the technicians to completemaintenance taskswith quality and quantity under fatigue
conditions, which brings additional overtime costs for airlines. In the early research on
aircraft maintenance technician scheduling, authors often take the aircraft maintenance
team as a whole to allocate work shifts [4, 5], and take the minimization of maintenance
workforce and total cost as theoptimizationobjectives [6, 7]. In recent years, some studies
gradually began to pay attention to the workload allocation of maintenance technicians,
and refined the aircraft maintenance scheduling to the technician allocation of each
maintenance task in eachmaintenance shift [3, 8]. Chen et al. sequenced themaintenance
task of multiple aircrafts, and then assigned technicians for each task. Following Chen
et al., a more complex aircraft maintenance technician scheduling model was proposed
by Niu et al., which can realize the distributed task-technician assignment. However,
these studies only minimize the penalty cost of overtime work from the perspective of
improving the problem-solving algorithms, and do not effectively solve the problem of
overtime work from the perspective of model improvement.

Therefore, aiming at minimizing the total cost, this paper proposes a task splitting
strategy and a technician exchange approach especially for the maintenance tasks lead-
ing to consecutive working shifts. Also, in order to balance the workload of technicians
holding different license levels, the fairness of workload distribution is also optimized
as a part of the total maintenance cost. Besides, due to the fact that aircraft maintenance
technician scheduling problem corresponds to dimensions of aircraft, shift, maintenance
task, maintenance technician and license level, it is an NP-hard problem, which is suit-
able to be solved by heuristic algorithms. As one of the most representative heuristic
algorithms, particle swarm optimization (PSO) [9] has the advantages of high precision
and fast running speed, and is widely used in maintenance scheduling problems [10,
11]. Hence, this paper uses PSO to verify the effectiveness of task splitting strategy in
aircraft maintenance technician scheduling problem.

The reminder of this paper is organized as follows. Section 2 gives the basic air-
craft maintenance technician scheduling model. Section 3 introduces the task splitting
strategy and the technician assignment approach in detail. The introduction of PSO and
the encoding scheme designed for it are illustrated in Sect. 4. In Sect. 5, experiments
and results are shown to test the effectiveness of the AMTS-TSS model in controlling
maintenance cost and time. Finally, Sect. 6 concludes this paper.

2 Basic Aircraft Maintenance Technician Scheduling Model

The purpose of aircraft maintenance technician scheduling is to assign technicians to
each task of multiple aircrafts to be maintained. In Sect. 2.1, the process of basic aircraft
maintenance technician scheduling is described in detail. Then, the objective function
and constraints of this model are given in Sect. 2.2.
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2.1 Problem Description

Each aircraft to be repaired will be equipped with a group of maintenance technicians
with different license levels. The maintenance tasks on each aircraft are arranged in
order. One maintenance task may require different levels of technicians to complete
together. Technicians holding higher license levels can replace those with lower license
levels to complete their work. When assigning tasks to technicians, the requirements of
maintenance tasks for license levels and the number of technicians at each level should
be met. Additionally, each working day is divided into three maintenance shifts and
each shift lasts for eight hours. In particular, since different combination of technicians
require different time to complete the same task, the maintenance shift of a task cannot
be predetermined. Therefore, the current maintenance task is located through its position
in the task sequence. The related variables and definitions are given in Table 1.

Table 1. Definition of variables.

Variables Meaning of variables

A Number of aircrafts

Mi Number of maintenance technicians of aircraft i

T Number of maintenance shifts

Si Number of maintenance tasks of aircraft i

λim Unit cost of technician m of aircraft i

avgi Average working time of all technicians of aircraft i

NCim Times that technician m works overtime of aircraft i

PSis Previous tasks of task s of aircraft i

wsim Working state of technician m of aircraft i

Aqis Task s of aircraft i can be assigned to technicians with license q

wtism Work time of technician m to participate in task s of aircraft i

rtism Time required for technician m to complete task s of aircraft i

rmis Number of technicians required by task s of aircraft i

nm Normal working hours of technician m

stis Start time of task s of aircraft i

ltist Left time of task s of aircraft i in shift t

H Length of a shift

mtis Maintenance time of task s of aircraft i

mt0is,mt
1
is Maintenance time of task s of aircraft i with no technician exchange approach and

with technician exchange approach, respectively

ATi Arrival time of aircraft i

(continued)
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Table 1. (continued)

Variables Meaning of variables

CT Current time

MTi Maintenance time of aircraft i

qm Whether technician m holding license level q, q ∈ {1, 2, 3}

ini Whether aircraft i has entered the maintenance hangar

outi Whether aircraft i has left the maintenance hangar

kmis Whether technician m participates in task s of aircraft i

tis Whether task s of aircraft i can be implemented

fis Whether task s of aircraft i is complicated

2.2 Objective and Constrains

Objective. In this paper, the optimization objective is to minimize the total maintenance
costs, including workforce cost, overtime cost and workload distribution fairness cost,
as shown in formula (1). The workforce cost is the sum of labor cost of all technicians
of all aircrafts participating in all tasks. wtism represents the working time of technician
m to participate in task s of aircraft i and λim is the unit cost of technician m. Overtime
cost is expressed by the number of times that technicians work overtime, where NCim is
the number of technician m working overtime. The workload distribution fairness cost
is represented by the standard deviation of the workload of all technicians. avgi is the
average working time of technicians of aircraft i. p1, p2, and p3 are the penalty factors.

min
∑

i∈A

⎧
⎪⎨

⎪⎩
p1 ·

∑

s∈Si

∑

m∈Mi

wtism · λim + p2 ·
∑

m∈Mi

NCim + p3 · 1

|Mi|

√√√√√
∑

s∈Si

⎡

⎣
∑

m∈Mi

kmis · (wtism − avgi)

⎤

⎦
2
⎫
⎪⎬

⎪⎭
.

(1)

Constraints. On the one hand, only qualified maintenance tasks can be performed.
Constraints (2) and (3) define the aircrafts parking in themaintenance hangar. Constraints
(4)–(5) indicate that only themaintenance tasks on the aircraft parking in themaintenance
hangar can be performed. Then, constraint (6) means that a maintenance task can be
performed only after its previous tasks have been completed.

ini =
{
0, if ATi > CT
1, else

,∀i ∈ A. (2)

outi =

⎧
⎪⎨

⎪⎩

0, if
∑

s∈Si
fis = Si

1, else

,∀i ∈ A. (3)

tis ≤ ini,∀i ∈ A,∀s ∈ Si. (4)
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tis ≤ outi,∀i ∈ A,∀s ∈ Si. (5)

tis ≤ 1

|PSis| ·
∑

s′∈PSis
fis′,∀i ∈ A,∀s ∈ Si. (6)

On the other hand, the qualifications and the requirements of maintenance tasks
should be considered when assigning maintenance technicians. Technicians in avail-
able state are supposed to be assigned to those tasks that can be performed, as shown
in constraint (7) and (8). Besides, constraints (9) and (10) mean that the assignment
of technicians needs to meet the requirements of maintenance tasks on license level
and number of workforce. Constraint (11) indicates that the total workload of techni-
cians cannot exceed the specified workload limit. Constraints (12) and (13) define the
maintenance time of each aircraft.

kmis ≤ tis,∀i ∈ A,∀s ∈ Si. (7)

kmis ≤ wsim,∀i ∈ A,∀m ∈ Mi,∀s ∈ Si. (8)

kmis ≤ qm · Aqis,∀i ∈ A,∀m ∈ Mi,∀s ∈ Si. (9)

∑

m∈Mi

kmis = rmis,∀i ∈ A,∀s ∈ Si. (10)

∑

s∈Si
kmis · wtism ≤ nm,∀i ∈ A,∀m ∈ Mi. (11)

mtis = rtism,∀i ∈ A,∀m ∈ Mi,∀s ∈ Si. (12)

MTi =
∑

s∈Si
mtis,∀i ∈ A. (13)

3 Aircraft Maintenance Technician Scheduling Model with Task
Splitting Strategy

Since it is uncertain which shift a maintenance task belongs to, it often occurs that the
maintenance task needs to be completed across shifts. At this time, if the maintenance
technicians are not replaced by another group, they will work overtime. Therefore, this
section proposes the task splitting strategy especially for the tasks across shifts on the
basis of theAMTSmodel, and forms theAMTS-TSSmodel. Particularly, comparedwith
the AMTS model, AMTS-TSS model only adds the improvement of operation process.
In addition to the calculation of the maintenance time mtis, the objective function and
other constraints are the same as AMTS model. The variables and definitions in the
AMTS-TSS model is also shown in Table 1.
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In the aircraft maintenance technician scheduling process, the left time for task s in
shift t before assigning technicians to it is ltist , which is calculated by formula (14). Then,
when the required time rtism1 for techniciansm1 to complete task s is longer than ltist , as
shown in formula (15), another group of technicians m2 meeting the same requirements
as m1 will also be selected, and the required time for m2 to complete task s is rtism2 .
Particularly, if rtism2 is less than ltist , then task s will not be split and will be totally
completed by technicians m2. Otherwise, the task splitting strategy will be executed.

ltist = H · t − stis. (14)

rtism1 > ltist,∀i ∈ A,∀m1 ∈ Mi,∀s ∈ Si,∀t ∈ T . (15)

With the task splitting strategy, task s is split into two subtasks s1 and s2. It can be
seen that the work efficiency of technicians m1 and m2 in completing task s is not the
same. Therefore, in order to avoid overtime work as well as shorten the maintenance
time, the following parts discuss how to assign techniciansm1 andm2 to subtasks s1 and
s2.

There are two approaches to assign m1 and m2 to subtasks s1 and s2 after splitting.
The first is assigning technicians m1 to subtask s1 and technicians m2 to subtask s2,
called as no technician exchange approach. The second is assigning technicians m2 to
subtask s1 and technicians m1 to subtask s2, called as technician exchange approach.
The choice of these two approaches depends on the total maintenance time of task s, i.e.,
the sum of the time of the two subtasks.

3.1 No Technician Exchange Approach

In this section, the work time for technicians m1 as well as the maintenance time of
subtask s1 is equal to ltist . Thus, the work progress of subtask s1 is ltist/rtism1 and the left
work progress of subtask s2 is

(
1 − ltist/rtism1

)
. Therefore, the work time for technicians

m2 to complete subtask s2 is
(
1 − ltist/rtism1

) · rtism2 . Then the total maintenance time
mt0is of task s with no technician exchange approach is shown in formula (16).

mt0is = ltist + (
1 − ltist/rtism1

) · rtism2 . (16)

3.2 Technician Exchange Approach

With the technician exchange approach, the work time for technician m2 to complete
subtask s1 is equal to ltist , so the work progress of subtask s1 is ltist/rtism2 . Then the left
work progress for technicianm1 to complete subtask s2 is

(
1 − ltist/rtism2

)
and the work

time lasts for
(
1 − ltist/rtism2

) · rtism1 . Hence, the total maintenance time mt1is of task s
with technician exchange approach is shown in formula (17).

mt1is = ltist + (
1 − ltist/rtism2

) · rtism1 . (17)
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3.3 Technician Assignment for Split Subtasks

By comparing mt0is and mt1is, it can be decided whether using technician exchange app-
roach for the subtasks s1 and s2 with the aim of minimizing the maintenance time of
task s. The calculation results are summarized as follows. The total maintenance time
of task s can be defined in formula (18).

• If 0 < ltist ≤ rtism1 ·rtism2
rtism1+rtism2

, then mt0is ≤ mt
1
is, and the no technician exchange approach

is applied, the total maintenance time of task s is mtis = mt0is.

• If
rtism1 ·rtism2
rtism1+rtism2

< ltist ≤ H , then mt0is > mt
1
is, and the technician exchange approach is

applied, the total maintenance time of task s is mtis = mt1is.

Subtask s2Previous tasks of Task s Subtask s1

End time of shift t
End time of shift (t-1) Estimated finish time of subtask

Subtask s2Previous tasks of Task s Subtask s1

End time of shift t
End time of shift (t-1) Estimated finish time of subtask

Task s

Task s

No Technician Exchange Approach

Technician Exchange Approach

Start time of Task s

Start time of Task s

Fig. 1. Task splitting strategy and technician exchange approaches.

mtis =
⎧
⎨

⎩
ltist + (

1 − ltist/rtism1

) · rtism2 , if 0 < ltist ≤ rtism1 ·rtism2
rtism1+rtism2

ltist + (
1 − ltist/rtism2

) · rtism1 , if
rtism1 ·rtism2
rtism1+rtism2

< ltist ≤ H
. (18)

Finally, Fig. 1 demonstrates the task splitting strategy and two technician exchange
approaches. The solid red line indicates the end time of shift t, i.e., H · t. When the start
time of task s is earlier than H · t and the estimated finish time is later than H · t, task
s needs to be split into subtasks s1 and s2. With the no technician exchange approach,
technicians m1 are assigned to subtask s1 and technicians m2 are assigned to subtask s2.
With the technician exchange approach, technicians m1 are assigned to subtask s2 and
technicians m2 are assigned to subtask s1.
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4 Particle Swarm Optimization and Encoding Scheme

This section briefly introduces the particle swarm optimization (PSO) [9] algorithm, and
designs an encoding scheme that can connect both the aircraft maintenance technician
scheduling model and the solution algorithm.

4.1 Particle Swarm Optimization

PSO algorithm is a biological heuristic algorithm based on the foraging behavior of
birds [9]. Each particle in the algorithm approaches a better position by learning from
its historical optimal position and the global optimal position in the whole swarm. The
velocity and position of each particle are updated as follows.

vi = vi + c1 · r1 · (pbesti − pi) + c2 · r2 · (gbest − pi). (19)

pi = pi + vi. (20)

where vi and pi are the velocity and position of the current particle, c1 and c2 are learning
factors, r1 and r2 are random factors. pbesti represents the historical optimal position
and gbest is the global optimal position.

It can be seen that the core steps of PSO algorithm are very concise, which alsomeans
that PSO algorithm has the characteristics of low computational complexity and fast
running speed, and is suitable for solving the multi-dimensional and nonlinear complex
models constructed in this paper.

4.2 Encoding Scheme Design

In PSO algorithm, the position of each particle corresponds to one objective value.
Therefore, when PSO is applied to solve the aircraft maintenance technician scheduling
models, it is necessary to find the conversion mode between task-technician assignment
scheme and the particle position, i.e., the encoding scheme.

The encoding scheme of aircraft maintenance technician scheduling model is illus-
trated in Table 2. “0” represents the technicians who do not meet the license level
requirements of maintenance tasks. Bold “1” indicates the technicians chosen for each
maintenance task. For instance, technicians M7 and M10 are assigned to Task 4.

Table 2. Encoding scheme of aircraft maintenance technician scheduling models.

Technicians Task 1 Task 2 Task 3 Task 4 Task 5 Task 6 Task 7

M1 0.27 0.63 0.85 0.57 0.26 0.53 1

M2 0.95 0.62 1 0.27 0.60 1 1

M3 1 0.76 1 0.67 0.27 0.35 1

M4 0.77 0.79 1 0.83 0.80 1 0.53

M5 0.88 1 1 0.06 0.91 1 0.48

(continued)
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Table 2. (continued)

Technicians Task 1 Task 2 Task 3 Task 4 Task 5 Task 6 Task 7

M6 1 1 0 0.20 1 0.42 0.10

M7 0.30 1 0 1 0.34 0.02 0.31

M8 0.06 0.88 0 0.50 0.13 0.72 1

M9 0.86 0.18 0 1 1 0.27 1

M10 0.60 0.28 0 1 0 1 1

M11 1 0.95 0 0.15 0 0.13 0.63

5 Experiments and Results Analysis

This section introduces the simulation setup, gives the results of solving the two models
using PSO algorithm, and compares the results of the AMTS-TSS model with the basic
AMTS model.

5.1 Simulation Setup

The data used in the experiments is improved on the basis of the data obtained from
the investigation of an aircraft maintenance enterprise. Suppose that there are seven
aircrafts waiting to be repaired. The arrival time, number of maintenance technicians at
each level, number of tasks and the requirements for each task of each aircraft are listed
in Table 3. For example, aircraft A1 arrives at 4:00 with 13 technicians, the number of
technicians holding license level 1, 2, 3 are 5, 6, 2, respectively. There are 6 maintenance
tasks for A1. The first task of A1 requires one technician with a level of at least 1 and
two technicians with a level of at least 2.

Table 3. Simulation data of aircrafts to be repaired.

A ATi Mi Si rmis

A1 4:00 13 (5, 6, 2) 6 (1 2 0; 2 0 0; 0 2 0; 0 0 1; 1 1 0; 0 2 0)

A2 5:15 14 (3, 5, 6) 9 (1 2 0; 2 0 0; 0 2 0; 0 1 1; 1 1 0; 0 0 2; 1 1 0; 0 2 0; 1 2 0)

A3 8:00 8 (3, 3, 2) 4 (1 1 0; 2 0 0; 0 2 0; 2 0 0)

A4 9:36 9 (4, 3, 2) 4 (1 0 1; 2 0 0; 3 0 0; 1 1 0)

A5 10:00 11 (2, 4, 5) 7 (1 2 0; 2 1 0; 0 0 2; 3 0 0; 0 2 0; 1 0 1; 1 2 0)

A6 12:00 9 (4, 3, 2) 3 (2 0 0; 1 1 0; 1 0 0)

A7 16:00 11 (3, 5, 3) 8 (0 2 0; 1 1 0; 1 2 0; 1 0 1; 3 0 0; 1 1 0; 1 0 1; 1 2 0)

The average unit costs of technicians with the three license levels are 0.5, 1 and 1.5.
The time they require to complete each maintenance task follows a random distribution
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between 0.5 and 6.5 h, and the standard deviation is 1.427 h. The values of the penalty
factors p1, p2 and p3 are 5, 1, and 1, respectively. During a working day, the end time of
each shift is 8:00, 16:00 and 24:00.

Then, PSO algorithm is used to solve the AMTS and AMTS-TSS models. In PSO,
the fitness function evaluations are set to 2000, the learning factors c1 and c2 are 2, and
the inertia weight w = 0.9. The experiment is carried out 10 times.

5.2 Results and Analysis

The final optimal solutions of the maintenance time and cost of each aircraft are given
in Table 4, where the “Gap” represents the improvement of the AMTS-TSS model in
reducing maintenance time and controlling maintenance cost compared with the AMTS
model. It can be seen that with the task splitting strategy, the maintenance time and cost
of most aircrafts are reduced compared with the basic model. Besides, in the AMTS-TSS
model, the average maintenance time and total maintenance cost have been effectively
optimized. The optimization ratios of average maintenance time and total maintenance
cost are similar, which are 13.41% and 4.71% respectively. Particularly, although the
maintenance cost of several aircrafts in the AMTS-TSS model is higher than that in the
AMTS model, it has less impact on the overall optimization utility.

Table 4. Optimal solution of maintenance time and cost.

A Maintenance time Cost per aircraft

AMTS model AMTS-TSS
model

Gap AMTS model AMTS-TSS
model

Gap

A1 17.90 10.75 −39.97% 172.82 115.46 −33.19%

A2 25.67 23.36 −8.99% 366.59 330.39 −9.87%

A3 11.60 10.60 −8.61% 131.92 123.03 −6.74%

A4 9.22 7.94 −13.88% 108.39 90.24 −16.75%

A5 19.62 18.29 −6.78% 326.80 300.06 −8.18%

A6 7.85 7.33 −6.68% 81.02 107.93 33.22%

A7 25.67 23.36 −8.99% 298.28 323.89 8.58%

Average maintenance time Gap Total cost Gap

16.79 14.52 −13.41% 1485.84 1391.00 −4.71%

Then, in order to further discuss the role of the task splitting strategy, taking the
aircraft A7 in Table 4 as an example, this paper makes statistics on the scheduling and
splitting of maintenance tasks on this aircraft in the twomodels. The results are shown in
Table 5 and Table 6, including the start time and status of each task and “(+1)” indicates
the second working day. By comparing Table 5 and Table 6, it can be found that in the
AMTSmodel, Task 3 and Task 5 require the same group of technicians to work overtime,
because the start time of Task 4 and Task 6 are later than the end time of their previous
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shifts. In the AMTS-TSS model, it can be seen that Task 3 and Task 6 that originally
need to be completed overtime are split and assigned to two groups of technicians to
complete, while Task 8 avoids overtime work by being assigned to another group of
maintenance technicians.

Table 5. Optimal scheduling scheme of aircraft A7 in the AMTS model.

Tasks Task start time Task status

Task 1 16:00 Normal work

Task 2 19:30 Normal work

Task 3 23:00 Overtime work

Task 4 (+1) 1:42 Normal work

Task 5 (+1) 6:18 Overtime work

Task 6 (+1) 9:18 Normal work

Task 7 (+1) 11:54 Normal work

Task 8 (+1) 13:36 Normal work

Table 6. Optimal scheduling scheme of aircraft A7 in the AMTS-TSS model.

Tasks Task start time Task status

Task 1 16:00 Normal work

Task 2 18:00 Normal work

Task 3 21:39 Task splitting strategy and no technician exchange approach are
applied. Technicians M5,M7,M10 are assigned to subtask s1 and
technicians M3,M4,M6 are assigned to subtask s2
Normal work

(+1) 0:00

Task 4 (+1) 0:21 Normal work

Task 5 (+1) 3:45 Normal work

Task 6 (+1) 6:57 Task splitting strategy and no technician exchange approach are
applied. Technicians M1 and M4 are assigned to subtask s1 and
technicians M2 andM6 are assigned to subtask s2
Normal work

(+1) 8:00

Task 7 (+1) 9:25 Normal work

Task 8 (+1) 11:07 First, when technicians M1,M6,M10 are chosen to finish Task 8,
it needs to be split. However, when technicians M2, M3,M7 are
chosen, Task 8 can be completed before the end of the current
shift. Finally, Task 8 is assigned to technicians M2, M3,M7
without task splitting strategy
Normal work
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6 Conclusion

In order to solve the problem of aircraft maintenance technicians working overtime, this
paper improves the basic aircraft maintenance technician scheduling model, introduces
the task splitting strategy, and matches the technicians and maintenance tasks according
to the work efficiency of different technicians for the purpose of saving maintenance
time. In order to verify the effectiveness of the task splitting strategy, PSO algorithm
is applied to test the basic model and improved model. The comparative experimental
results show that compared with the basic model, the improved model can effectively
shorten the average maintenance time of all aircraft and reduce the total maintenance
cost while avoiding working overtime.

In the future, more research can be carried out to extend the current study. First,
more discussion about task splitting conditions can be considered, such as adding a
time threshold to flexibly adjust the splitting strategy. In addition, other intelligent opti-
mization methods can be tried to solve the aircraft maintenance technician scheduling
problems, such as bee colony algorithm, bacterial foraging optimization algorithm, and
ant colony algorithm.
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Abstract. Ant colony algorithm is easy to fall into local optimum and its con-
vergent speed is slow when solving mobile robot path planning. Therefore, an
ant colony algorithm based on angle guided is proposed in this paper to solve the
problems. In the choice of nodes, integrate the angle factor into the heuristic infor-
mation of the ant colony algorithm to guide the ants’ search direction and improve
the search efficiency. The pheromone differential updating is carried out for dif-
ferent quality paths and the pheromone chaotic disturbance updating mechanism
is introduced, then the algorithm can make full use of the better path information
and maintain a better global search ability. According to simulations, its global
search is strong and it can range out of local optimum and it is fast convergence
to the global optimum. The improved algorithm is feasible and effective.

Keywords: Ant colony algorithm · Mobile robot · Path planning · Angle
guided · Chaos

1 Introduction

Mobile robot path planning is one of the most basic and critical issues in the field
of mobile robot research [1–3]. Its purpose is to find a path with the shortest distance
between the start point and the end point under the condition of known robot environment
information and the path does not pass through any obstacles [4]. The method of solving
the path planning problemofmobile robots can be divided into two categories: traditional
algorithms and intelligent algorithms. Traditional algorithms include artificial potential
field method, fuzzy logic algorithm, viewable method, free space method, etc. [5, 6].
Since the path planning problem was proposed in the 1970s, these traditional algorithms
have played an important role in the field of robot path planning and have achieved many
research results. However, with the continuous expansion of mobile robot application
fields, such as practical applications in marine science, industrial field and military
operations, these traditional path planning optimizationmethodswill have certain defects
in dealing with these complex environments. For example, the artificial potential field
method is easy to fall into a local minimum, and there is a problem of unreachable goals.
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The visualization method is very inefficient and cannot meet the real-time requirements
of path planning. Fuzzy control algorithm is difficult to establish fuzzy rule base in
complex and changeable environment and lacks intelligent obstacle avoidance strategy
for dynamic obstacles [7]. In recent years, with the rise of artificial intelligence, more
and more intelligent algorithms have been proposed and applied to the path planning
optimization of mobile robots to overcome the limitations of traditional path planning
algorithms. One of the important characteristics of these intelligent algorithms is that
their operation mechanism is very similar to the biological group behavior or ecological
mechanism in nature, and the efficiency of these intelligent algorithms is usually higher
than that of traditional algorithms. The typical ones are genetic algorithm, ant colony
algorithm, particle swarm optimization algorithm, artificial neural network algorithm,
firefly algorithm, artificial bee colony algorithm, invasive weed algorithm and so on.
Khaled Akka et al. [8] proposed an improved ant colony algorithm to solve the robot
path planning problem, using the stimulus probability to help ants select the next node,
and using new pheromone update rules and dynamic adjustment of evaporation rate
to accelerate the convergence speed and expand the search space. Long s et al. [9]
proposed an improved ant colony algorithm, which realized the efficient search ability
of mobile robot in complex map path planning, and established the grid environment
model. Faridi et al. [10] proposed a multi-objective dynamic path planning method for
multi robot based on improved artificial bee colony algorithm. This method improves the
artificial bee colony algorithm and applies it to the neighborhood search path planner and
the algorithm avoids falling into local optimum by adding appropriate parameters into
the objective function. Kang Yuxiang et al. [11] proposed an improved particle swarm
optimization algorithm for robot path planning. According to the principle that variables
in gradient descent method change along the negative gradient direction, an improved
particle velocity update model is proposed. In order to improve the search efficiency and
accuracy of particles, the adaptive particle position update coefficient is added.

Ant colony algorithm (ACO) is a heuristic random search algorithm,which is derived
from the simulation of natural ant colony searching for the shortest path from nest to
food source [12–14]. Ant colony algorithm finds the optimal path through the positive
feedback generated by pheromone accumulation, which has the characteristics of robust-
ness, positive feedback and distributed computing. Moreover, it is easy to program and
implement, does not involve complex mathematical operations, and has no high require-
ments on computer software and hardware. The robot path planning problem can be
simulated as a group behavior of ants looking for the optimal path for food. Therefore,
many scholars apply ant colony algorithm to solve various robot path planning problems
and have achieved some results. However, the basic ant colony algorithm generally has
shortcomings such as too long search time, premature maturity, and stagnation when
solving robot path planning problems. In view of this, this paper proposes an improved
ant colony algorithm, which integrates the angle factor into the heuristic information of
the ant colony algorithm, guides the ants’ search direction. The pheromone is updated
differently, and at the same time, chaotic disturbance is added to the path that may fall
into the local optimum to make the solution jump out of the local extreme value interval.
Simulation experiments show that the algorithm can effectively solve the robot path
planning problem.
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2 Environment Modeling

To solve the robot path planning problem, environment modeling is often needed. Grid
method is a classical method of environment modeling [15], which cuts the working
environment ofmobile robot into grids, and these grids are of the same size and connected
with each other. Each grid corresponds to the corresponding position information, with
black representing obstacle information and white representing barrier free. Then the
raster map is encoded. In this paper, we assume that the working environment of the
robot is a complex static two-dimensional space. In the global path planning, theworking
environment is n × n grid environment. The black grid uses 1 to represent obstacles and
the white grid uses 0 to represent the free feasible area. Obstacles less than one grid are
still treated as a grid. The grid numbers are 1, 2, 3,…, N from top to bottom and from left
to right. Taking the lower left corner of the grid as the coordinate origin, the horizontal
axis from left to right is the positive direction of X axis, and the vertical axis is from
bottom to top as the positive direction of Y axis. The length of each grid is taken as the
unit length, and each grid is marked as a node. The environment model established is
shown in Fig. 1 (n = 20).

Fig. 1. Grid model diagram

3 Basic Ant Colony System

The ant colony optimization algorithm (ACO) is proposed in the early 1990s. In 1996,
ant colony system is proposed by Dorigo and Gmabardella [12–14], the performance of
the ACO is effectively improved and they made three improvements as follows:

(1) A new selection strategy that combination of deterministic selection and random
selection is adapted, which both can utilize the advantage of prior knowledge and
can tendentiously explore. For an ant at node r to move to the next city s, the state
transition rule is given by the following formula.

sk =
{
arg max

u∈allowed {[τ(r, u)]α[η(r, u)]β, q ≤ q0
S q > q0

(1)



220 Y. Li et al.

pkij(t) =
⎧⎨
⎩

[τij(t)]α ·[τij(t)]β∑
sεallowedk

([τij(t)]α ·[τij(t)]β)
. j ∈ allowedk

0 otherwise
(2)

where sk is the next node of ant k, q is the random number draw from [0,1], q0
is a parameter (0 ≤ q0 ≤ 1). S is a random variable selected by the probability
distribution given in Eq. (2). allowedk is a node set that these node can be selected
for ant k in the next time, α is the pheromone heuristic factor, which reflects the
effect of pheromone by ant accumulates when ants move to the other nodes. β is a
heuristic factor, had reflects the degree of the heuristic information is focused when
the ants select path. τi,j(t) is the pheromone of path(i, j) at t time, ηij is the visibility
of path(i, j), which is corresponding with the inverse of the distance from node i to
node j:

ηij = 1/dij (3)

(2) Only the global optimal ant path performs global updating rule. After each iteration,
the pheromone is enhanced only occur on the path walked by the best ant. For other
pathway, the pheromone will be gradually reduced due to volatile mechanism,
which can make the ant colony more inclined to select optimal path. Consequently,
the convergence rate will be increased and the search efficiency will be enhanced.
Global update rule is described as follows:

τ(r, s) ← (1 − ρ) · τ(r, s) + ρ · �τ(r, s) (4)

�τ(r, s) =
{
Q/Lgb if (r, s) ∈ g
0 else

(5)

here ρ is the pheromone volatile coefficient, 0 < ρ < 1, Lgb is the current global
optimal path. Q is a constant that indicate initial pheromone intensity between two
nodes.

(3) Using the local update rule. The pheromone will be local updated when these ants
build a path, which make the pheromone release by ants to reduce when they pass
the path. The local update rule is used to decrease influence on other ants and
make them search other edges. Therefore, the ants can avoid that they prematurely
converge to a same solution.

The local update rule is represented by Eq. (6).

τ(r, s) ← (1 − ρ) · τ(r, s) + ρ · �τ(r, s) (6)

�τ(r, s) = (nLnn)
−1 (7)

where n is the number of nodes. Lnn is a path length generated heuristically by the
recent neighborhood.
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4 Application of Angle Guided Ant Colony Algorithm(AGACO)
in Mobile Robot Path Planning

4.1 Node Selection Strategy with Angle Guidance

In the path planning of mobile robot, the relative position of the starting point and the
end point of the path is known. The starting point and the end point are connected by
a directed line segment (The direction is from the starting point to the end point.), and
the directed line segment is taken as the standard line. It is not difficult to see that the
smaller the angle between the path line and the standard line, the more likely it is to
be a part of the optimal path. Therefore, the spatial geometric relationship of the angle
between the path line and the standard line can be introduced into the algorithm as
heuristic information to guide the search direction of ants. As shown in Fig. 2, let S and
T be the starting point and end point of path planning, P1, P2, P3, P4 are the path points
on the environment map respectively. Assuming that the robot starts from S and passes
through P1, the current node is P1, and the next optional node is P2, P3 and P4. The
included angles between the standard line and the optional line are θ1, θ2 and θ3. It can
be considered that the path segment with smaller angle is more likely to be a part of the
global optimal path, and the probability of ant selecting the path is greater. Therefore, the
angle factor can be incorporated into the heuristic information of ant colony algorithm
to guide the search direction of ants and improve the search efficiency.

Fig. 2. Schematic diagram of included angle

Based on the above idea, angle factor θ can be introduced when ants select the next
node.The calculation formula (3) of heuristic information in node selection formula is
modified as follows:

ηij = 1/

⎛
⎝θij + 1/n

∑
j(i)

θij

⎞
⎠ (8)

in formula (8), J (i) is the set composed of all optional nodes with paths connected to the
current node, n is the number of elements in the set, and θij is the angle formed between
the optional line and the standard line. It is not difficult to see from formula (8) that the
smaller the angle θij is, the greater the value of ηij is, and the greater the probability of
the optional node being selected. Since the value gap of the included angle information
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between each optional line and the standard line may be very large, this will lead to
a large difference in the amount of heuristic information of each path segment, which
makes the ant’s selection probability of each path segment too large. Coupled with
the positive feedback effect of pheromone sowing, the algorithm is likely to quickly
converge to the local extremum. In order to alleviate this problem, 1/n

∑
j(i) θij is added

to formula (8), it reduces the difference of heuristic information of each optional path
segment, and increases the probability of path segment selection with small amount of
heuristic information, so that the global search ability of the algorithm is strengthened
and premature convergence to local extremum is avoided.

4.2 Differential Pheromone Updating Strategy

The improved pheromone updating rules are classified according to the length of the path
searched by ants in a cycle, and the pheromone increment on each path is dynamically
adjusted according to the path information. After all ants complete a complete path
construction, find out the optimal path length lib and the worst path length lworth of this
iteration, and calculate the average path length lave searched by all ants. Appropriate
pheromone enhancement is applied to the better path whose path length is less than lave,
and the pheromone weakening is carried out for the poor path whose path length is larger
than Lave. The pheromone increment calculation formula (5) in the global pheromone
update formula is modified as follows:

�τ r, s =

⎧⎪⎨
⎪⎩

Lave−Lk
Lave−Lib

. 1
Lk

(Lk < Lave and (r, s) ∈ g)

− Lk−Lave
Lave−Lib

. 1
Lworst

(Lk ≥ Lave and (r, s) ∈ g)

0 (r, s) /∈ g

(9)

It is not difficult to see fromEq. (9) that for the better pathwhose length is less than the
average value of the iterative path, the shorter the path length, the larger the pheromone
increment of the path; for the poor path whose length is greater than the average value
of the iterative path, the worse the path quality is, the more the pheromone reduction
of the path is. Compared with the basic ant colony algorithm, the improved algorithm
improves the attractiveness of the better path to the ant and reduces the interference of
the poor path on the ant path selection through the pheromone differential update of the
different quality paths, so that the algorithm can make full use of the information of the
better path and maintain a better global search ability.

4.3 Random Perturbation is Applied to the Path Which May Fall into Local
Optimum

When solving the path planning problem ofmobile robot, ants start from the same source
node to find destination nodes. Thus it is easier to fall into local optimum. If the optimal
solution of the algorithm is not improved within the set C iterations, it is reasonable to
suspect that the algorithm falls into local optimum. In order to solve this problem, we
add the chaos disturbance quantity when adjust global pheromone in this paper, so that
the solution can jump out of local optimum interval.
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Chaos exists widely in the nature [16–19], and it has many features such as “ran-
domness”, “ergodicity” and “regularity” etc. It seems chaotic but has a delicate internal
structure, and is extremely sensitive to the initial condition. It also can repeatedly traverse
all the states in a certain range according to its own rule, so we can use these properties
of chaotic motion to optimize the search. Logistic mapping is a typical chaotic system
[20, 21], and its iterative formula is defined as follows:

zi+1 = μ · zi · (1 − zi), i = 0, 1 · ··,μ ∈ (2, 4] (10)

where μ is the control parameter, and when μ = 4, 0 ≤ z0 ≤ 1, Logistic is completely
in a chaotic state.

If the value of objective function does not change optimal in the given C iteration,
the algorithm may fall into local optimum, and global pheromone update formula (4) of
the algorithm is adjusted as follows:

τij(t + 1) = (1 − ρ)τ ij(t) + �τ ij + ξzij (11)

where, zij is the chaotic perturbation variable in [0, 1], by Eq. (10) and ξ is disturbance
factor.

5 Algorithm Steps Description

The algorithm steps are as follows:

Step 1: According to the known static environment information, the environment
model of robot path planning is established by grid method, and the grid serial number,
starting point and ending point are set.

Step 2: Initialize the pheromone intensity of all the paths in the environment model.
Set various parameters of the algorithm and the number m of the ants, DiedaiNum is
the the maximum number of loop. Initial the number of loop k = 0.

Step 3:Set the current loop number k = k+1 and set the increment of the pheromone
of various paths �τ ij = 0, t = 0,m ants are deployed in the source node. Tabu table are
generated for every ant, and source node is deployed in the tabu table.

Step 4: t = t + 1, for each ant l do not finish searching, according to the Eq. (1),
select the next node j from the current node i(Among them, the calculation formula of
heuristic information is the improved formula (8), if node j does not exist, then note the
ant has finished searching, else ant l is deployed in the tabu table, and if node j is target
node, then note the ant has finished searching,else continue, use the Eq. (4) and (5) to
update the local pheromone.

Step 5: repeat Step 4 until the m ants all have finished searching, record all the
qualified paths and the optimumpaths until the current loop, and record all the pheromone
and fitness function value of all the qualified paths. Find out the optimal path length lib
and the worst path length lworth of this iteration, and calculate the average path length
lave searched by all ants.

Step 6: If in the consecutiveC iterations, the optimal path obtained by the algorithm is
not significantly improved, then updating the pheromone of optimum paths according to
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theEq. (11), otherwise updating the pheromoneof optimumpaths according to theEq. (4)
(Among them, the pheromone increment formula in the global pheromone updating
formula is the improved formula (9)). If k < DiedaiNum, then go to step3, else go to
step 7.

Step 7: output the optimum path Pathbest , end.
The flow chart of the algorithm is shown in Fig. 3.

Fig. 3. AGACO flow chart

6 Simulation

6.1 Comparison Between Angle Guided Ant Colony Algorithm and Basic Ant
Colony Algorithm (ACO) Guidance

The proposed AGACO is implemented in MATLAB, In order to validate the validity
of AGACO, we selected an example to experimentize. Based on the grid method, the
environment map of 20 × 20 as shown in Fig. 1 is established. The starting point of the
robot is the upper left corner of the grid model, and the target point is the lower right
corner. In the figure, black represents obstacle information and white represents obstacle
free. Then the raster map is encoded.
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Given there are service request of routing, the source node is the upper left corner,
the target node is the lower right corner, the parameters is specified as: α = 1, β = 2,
ρ0 = 0.2, ρ = 0.3, Q = 2, μ = 3.8, z0 take the random number between (0,1) and the
chaotic disturbance coefficient ξ = 1.06, assign an initial value is 1 to the pheromone of
each paths, the number of the ants deployed in the source node is m = 80, the number
of iterations is 100.

Table 1 shows the results of 10 times path planning of angle guided ant colony
algorithm and basic ant colony algorithm in the environment of Fig. 1. Among them, l1
is the length of the optimal path found in each iteration of the angle guided ant colony
algorithm, l2 is the length of the optimal path found in each iteration of the basic ant
colony algorithm. It can be seen from Table 1 that the angle guided ant colony algorithm
has found the optimal solution 34.3848 four times, while the optimal solution found
by the basic ant colony algorithm is 36.3848, which is not the optimal solution in this
environment. Figure 4 is the optimal path found byACOandAGACO.Table 1 also shows
the time of 100 iterations of the two algorithms. It can be seen that AGACO converges
faster, AGACO converges in the 36th generation, while ACO algorithm converges in the
47th generation, and does not converge to the optimal value. Considering the quality of
time and solution, the performance of AGACO algorithm is better.

Table 1. Comparison of shortest path length between AGACO and ACO

Serial number l1 Time/s l2 Time/s

1 34.9706 46.7674 36.9706 61.4479

2 34.9706 44.0747 37.5563 56.1768

3 34.3848 45.4479 36.9706 57.2539

4 34.3848 46.6238 36.3848 60.6255

5 35.7990 47.4885 36.3848 58.4885

6 35.5563 44.2356 37.5563 57.3682

7 34.3848 45.0628 36.9706 61.5296

8 35.5563 48.6592 37.2132 55.3863

9 34.3848 47.5611 36.3848 60.2356

10 34.9706 46.2195 37.7990 61.8793

Average value 34.93626 46.2141 37.0191 59.0392
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Fig. 4. Robot motion trajectory diagram of ACO and AGACO

Figure 5 is the convergence graph (the coordinate in the graph representatives the
route length, and the abscissa representatives the number of iterations) of the two algo-
rithms in the environment shown in Fig. 1. It can be seen from the figure that AGACO
converges to the optimal solution of 34.3848 in the 36th generation, while ACO con-
verges to the optimal solution of 36.3848 in the 47th generation. The simulation results
show that the algorithm has strong local search capabilities, can jump out of the local
optimal, and quickly converge to the global optimal solution. The algorithm is feasible
and effective.

Fig. 5. The optimal path convergence curve of two algorithm

6.2 Comparison Between Angle Guided Ant Colony Algorithm and Particle
Swarm Optimization (PSO)

This paper also compares with particle swarm optimization algorithm. Table 2 shows
the results of 10 times path planning of angle guided ant colony algorithm and particle
swarm optimization algorithm in the environment of Fig. 6. Among them, l5 is the length
of the optimal path found by AGACO every iteration, l6 is the length of the optimal path
found by PSO every iteration. It can be seen from Table 2 that AGACO can find the
optimal solution of 28.6274 every time, while PSO finds the optimal solution of 29.2136,
which is not the optimal solution in this environment. Figure 6 is the optimal path found
by PSO andAGACO. Table 2 also shows the time of 100 iterations of the two algorithms.
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It can be seen from Table 2: compared with PSO, agaco has shorter optimization time,
shorter optimal path, and higher success rate, which further shows the effectiveness of
the improved algorithm.

Table 2. Comparison of shortest path length between AGACO and PSO

Serial number l5 Time/s l6 Time/s

1 28.6274 20.5020 30.0416 22.4259

2 28.6274 20.3190 30.0416 22.5928

3 28.6274 20.2850 30.6274 23.8637

4 28.6274 20.1810 29.2132 22.9493

5 28.6274 20.0730 29.2132 22.3000

6 28.6274 20.1080 30.6274 21.9214

7 28.6274 20.4870 31.4558 22.1361

8 28.6274 20.4880 30.0416 21.3667

9 28.6274 20.6890 29.4558 21.2479

10 28.6274 20.3599 30.6274 23.6118

Average value 28.6274 20.3492 30.1345 22.4416

Figure 7 is the convergence graph (the coordinate in the graph representatives the
route length, and the abscissa representatives the number of iterations) of the two algo-
rithms in the environment shown in Fig. 6. It can be seen from the figure that AGACO
converges to the optimal solution of 28.6274 in the 19st generation, while PSO finds
the optimal solution of 29.2132, and converges in the 24th generation. AGACO has less
convergence algebra, more stability and higher search efficiency, the effectiveness of the
algorithm is further verified.

Fig. 6. Robot motion trajectory diagram of PSO and AGACO
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Fig. 7. The optimal path convergence curve of AGACO and PSO

7 Conclusion

In view of the contradiction between premature, stagnation and accelerated convergence
of ant colony algorithm, combined with the characteristics of mobile robot path planning
problem, the ant colony algorithm is improved. The angle relationship is introduced into
the heuristic information of ant colony algorithm, and the node selection strategy of
the algorithm is optimized. The pheromone update strategy is differentiated according
to the degree of the path found, and the chaotic disturbance update mechanism of the
pheromone is introduced, so that the algorithm can jump out of the local extreme value
interval. The simulation results show that the algorithm in this paper is feasible and
effective. How to improve the algorithm, and apply it to the more complex mobile robot
path planning problem. It is worth intensive study in the future.
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Abstract. Swarm intelligence occurs when the collective behavior of
low-level individuals and their local interactions form an overall pattern
of uniform function. Incorporating swarm intelligence allows us to disre-
gard global models when we explore collective cooperation systems that
lack any central control. Blockchain is a key technology in the functioning
of Bitcoin and combines network and cryptographic algorithms. A group
of agents agrees on a particular status and records the protocol with-
out controlling it. Blockchain and other distributed systems, such as ant
colony systems, allow the building of “ants” that are more secure, flex-
ible, and successful. We use the principle of blockchain technology and
carry out ant colony research to solve three urgent problems. We use
new security protocols, system implementations, and business models to
generate ant swarm system scenarios. Finally we combine these two tech-
nologies to solve the problems of limitation and reduced future potential.
Our work opens the door to new business models and approaches that
allow ant colony technologies to be applied to a wide range of market
applications.

Keywords: Blockchain · Ant colony system · Security · Service model

1 Introduction

In 2008, a white paper authored by Satoshi Nakamoto, “Bitcoin: A Peer-to-Peer
Electronic Cash System” introduced Blockchain, which can be viewed as a global
ledger of transactions recorded distributively by a network of agents. Because cre-
ating a block is time consuming, it prevents attackers from altering a blockchain
[1]. It uses SHA256 cryptographic technique to output an unpredictable numeric
value that encapsulates all transactions into a digital fingerprint. Every discrep-
ancy in the input data containing transaction orders, quantities, and receivers
produces different output data and generates different digital fingerprints. Since
c© Springer Nature Switzerland AG 2022
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that introduction in 2008, much research has explored the benefit of blockchain
technology when applied to such fields as intellectual property [2,3] and real
estate [4–6]. Two of the most promising applications of blockchain technology
are Bitcongress and colored coins [7].

New block transactions are valid and it will not affect the validity of previous
transactions. Through double expenditures, a network agent (“miner”) adds a
new block to the end of the blockchain. Blockchain technology uses peer-to-peer
networks and cryptographic algorithms to enable a group of agents to agree,
securely record the action, and verify the agreement without control permissions.
Because of its dispersion, robustness, and fault tolerance, blockchain technology
can be applied to transportation, logistics and warehouse automation systems,
and even the combination system of cloud computing and emergency networking.

Natural systems and bio-inspired models display swarms that are adaptable
to different environments and tasks [8]. Ant swarms [9] are robust to failure and
scalability because their coordination is simple and distributed. Thus their global
behavior is not a given but is generated by local interactions among the ants.
Because of this, research on ant colonies (as shown in Fig. 1) [10] has become
increasingly popular [11].

There are many similarities between ant colonies and blockchain.

(1) Both are decentralized.
(2) The operation of both is distributed.
(3) The search mechanism of an ant colony is similar to the competition mech-

anism of blockchain.
(4) The pheromone mechanism of an ant colony is similar to the storage authen-

tication mechanism of blockchain.

Fig. 1. The ant colony system.

We can thus integrate ant colonies and blockchain. The combination of
blockchain technology and ant colony behavior provides solutions to many net-
working problems [12], and we next examine how blockchain can solve ant clus-
tering problems. We will use transactions encapsulated in blocks to represent
ants, which we treat as nodes in a network.



232 W. Wu et al.

This work could open the door not only to new technical approaches, but
also to new business models that make swarm ants technology suitable for innu-
merable market applications. By applying blockchain technology to ant colony
systems and identifying ants as nodes and their shared information as blocks,
we have the following discoveries.

(1) The study of ant colonies has produced new security models that increase
data confidentiality and validation, and that are applicable to secure real-
world applications.

(2) New ways of implementing and executing distributed decision making for
collaborative tasks is found. Using a transaction ledger, ant agents vote and
reach agreement. This increases ant behavior flexibility without increasing
swarm complexity.

(3) Blockchain technology provides an infrastructure that ensures the ant colony
system to follow its laws and maintain safety protocols during the integration
process. This may have human applications and suggest new business models
for group operation.

Thus using blockchain technology to study ant swarms opens the door to
new technical approaches to real-world problems and suggests many financial
market and business practice applications.

2 Ant Colony Block with Security

A central concern in the operation of an ant colony [13] is security. Previous
research has found that each ant must be able to recognize and trust other ants
in the colony. Although traditional ant colonies lack a central security mecha-
nism, ants can usually safely communicate without it. The system nevertheless
is subject to potential risks, e.g., if an individual ant has a tendency to attack,
this destructive pattern can spread through the colony.

Security is a central concern in swarm systems, e.g., ant colonies [14], and a
core concern in service networks. Information transfer occurs in all networks, but
swarm systems such as ant colonies do not have security information communica-
tion channels. A blockchain configuration can provide a reliable communication
channel for ant colonies and other swarm networks, such as swarm robotic sys-
tems and flocks of birds, and can minimize risks and the possibility of attack
[15].

Figure 2 shows how each ant in a colony has two complementary keys. The
public key provides core information to each ant via a blockchain communication
channel [16] that encrypts the information and functions as a type of username.
The private key validates an individual ant’s identity, which is inaccessible to
other ants, decrypts data, and functions as a type of password. Through these
keys an ant can transmit three types of information, (i) their task, the tasks of
other ants, and communications with other ants. This communication channel
allows both point-to-point interactions and system broadcasts.
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Fig. 2. Ants realize secure communication among each other through their own public
key and private key.

Figure 3A shows the secure transmission of data in an ant colony system [17].
We use the sender’s public key to encrypt the information to ensure that only
the designated receiver has the access to it. Ants share their public keys with
others. And any ant in the colony can send information to the intended receivers
who have the access to their own private keys to decrypt the message. Because
the private key is only known to the receiver, other ants do not have access to
the message, and third-party ants cannot receive messages from that particular
communication channel.

Along the transmitting of information, a sender can also prove its identity
to all ants in colony. Figure 3B shows the framework of public key signature in
which the sender uses its private key to sign a message, and subsequently the
validity of the message as well as the signature are verified by all other ants in
the swarm using the sender’s public key.

As shown in Fig. 4, the content of a message encapsulated in a blockchain
communication channel can only be read by the intended ant receiver, and thus
the cryptographic primitive of signcryption can resist third-party attacks. We
use this ant colony block configuration to build an ant colony service system,
which can also be applied to other systems, such as swarm robotics and flocks
of birds. For example, giving each robot in a system a pair of keys allows them
to communicate with each other more securely.
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Fig. 3. Two different cryptographic systems based on public and private keys. A)
Public key encryption makes it impossible for eavesdropping ants to read real content.
B) Private key signature system not only confirms the integrity of the transmitted
information, but also confirms the identity of the sending ant.

Fig. 4. Public signcryption system not only realizes the confidentiality of the trans-
ferred contents, but also enables the receiver to verify whether the contents come from
the designate ants.
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3 New System Models Based on Blockchain and Ant
Colony

We can use this ant colony system to solve many real-world problems. For exam-
ple, we can improve both individual initiative and colony cooperation [18].

3.1 Collaborative Service Model (CSM)

Because service collaboration is essential in an ant colony [19], we propose a
collaborative service model (CSM). In the life of an ant colony, there are many
service patterns For instance, whenever the queen wants food, she secretes a
pheromone that enables workers to locate her and bring food to her. This pattern
is also found in machine networks, e.g., multiple addresses are needed in a cluster
collaboration. In ant colony systems, we also need to know how ants receive
requests and how a worker ant is chosen to undertake certain tasks.

The CSM helps us simplify the multiple addresses involved in collaborative
swarm missions. The part of the transaction is a request for help that is sent to
the ant colony’s service system. Then a worker ant is designated to respond to
the queen’s invocation of the transaction. This action unlocks such information
as the location of the queen, or the token included in the transaction address to
complete the action. Both collaborative planning and autonomous behavior can
occur in the ant colony service system.

The use of blockchain technology provides additional benefits to the ant
colony using the CSM approach. Because all protocols and all related transac-
tions are stored in the blockchain, the mechanism of automatically synchronizing
of blockchain enables other ants to access to all protocols and information pre-
viously created and stored in the blockchain, and thus the training for newly
entering ants in the colony is saved.

Traditionally, information pheromone plays an important role in the commu-
nication process of ants. Ants realize mutual information exchanging via infor-
mation pheromones exchanging, and thus achieve group intelligence cooperation.
There is a set of glands in the ants. They use different chemicals (pheromones) to
convey more than 20 kinds of meanings, such as: “There is food in front”, “I need
help”, “I am hungry” and so on. This information can only be normally identified
and authenticated by the ants within the same colony. For simple tasks, such as
when the queen is hungry, it will excrete the pheromone expression message “I
am hungry.” Then, other ants will help it to eat after interpreting the informa-
tion. This means a completion of the cooperation. That is, the queen uses her
private key to sign the pheromone, and other ants use the queen’s public key
to identify the pheromone. This kind of process indicates the completion of a
simple cooperation.

In the completion of complex tasks, such as nesting, the self-organization
cooperation of ant colony plays a powerful role. After an ant secretes pheromone
to send out the message “I need help,” other nearby ants in the colony identify
the information, and secrete pheromones to reinforce the information again, fur-
ther expressing the message “I need help”. As the number of ants increases, more
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Fig. 5. Potential capabilities of threshold-signature addresses in swarm collaborative
missions. An ant queen has the necessity to avoid obstacle, hungry, etc. A part of
the signature of the transactions that convey queen’s requests for help, is created and
distributed to the service system of ant colony. Then, some worker ants are signed in
response the invocation of the transaction. And they will unlock related information
such as queen’s location, or even the token that is included in the threshold-signature
address to complete the action. Collaborative planning and more autonomous behavior
can occur in this ant colony. For example, positive feedback mechanism of pheromone
makes ant colonies to complete self-organization cooperation.

pheromones will attract more ants to cooperate. This positive feedback mecha-
nism (see Fig. 5) of pheromones makes ant colony to complete self-organization
cooperation.

Because of the limited scope of the effects of pheromones, the pheromone-
based cooperation model can be considered as a cooperation mode based on local
interaction, just like the alliance chain cooperation mode in terms of blockchain
technology. The introduction of public chain into ant colony intelligence not only
enhances the security of ant colony information transmission, but also introduces
a new information dissemination mode - bulletin board mode - a global informa-
tion dissemination mode for ant colonies. In bulletin board mode, the blockchain
can be regarded as a bulletin board with cryptographic protection, an in-erasable
and growing bulletin board that allows all ants with keys to share existing infor-
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mation on the blockchain, instead of local information only. The bulletin board
propagation mode of information and a large amount of shared information will
further promote new modes of intelligent cooperation of ant colonies, such as
network-wide task division mode and bidding model.

Applying blockchain technology to ant colonies can also allow a more
advanced collaboration model by using threshold-signature ants [20]. Threshold-
signature requires a valid signature towards some message is in fact come from
multiple valid signature slides towards the same message and each slide is
produced by a valid private key. Complex collaboration tasks are specifically
designed for heterogeneous robot colonies that are easily formalized, published,
and performed.

3.2 Decision-as-a-Service (DaaS) Model

The distributed decision-making algorithm is essential in the development of a
swarm intelligence system. For example, it can use ant swarms to connect to a
distributed sensor [21] that enables agents to access information from multiple
viewpoints and improve data quality. Ants in the colony must globally agree on
goals in order to form shapes and avoid obstacles. Thus a distributed decision
making protocol is needed to ensure consistent overall results [22].

Although collective decision making strategies have been used in such ant
applications as election, dynamic task allocation and obstacle avoidance, we still
do not know how to deploy a large number of distributed decision-making agents.
The trade-off between speed and accuracy must be taken into account before the
process of collective decision-making can be deployed. We thus must know how to
make ant decision-making in the distributed system more autonomous, flexible,
and responsive to new challenges. Using blockchain ensures that all participants
in a decentralized network will have the same worldview. For example, blockchain
allows a distributed voting system to be built that enables swarms to reach
agreements.

The Daas model allows blockchain technology to be used to enable ant swarm
decision making. One swarm member perceives an object of interest, creates
two addresses that represent possible options, and registers the options in the
blockchain. The swarm then votes on which option to choose. When a cluster
member needs an agreement, the swarm issues special transactions and creates
the ant colony address associated with each option open for selection. After the
information is written in a block, other cluster members can vote, for example,
to move a token to the address corresponding to the selected option. This kind
of distributed decision making protocols can be quickly and securely acquired
and can be auditable, and where every ant can monitor the voting process (as
shown in Fig. 6A). Obviously, the introduction of the public blockchain into
the ant colony intelligence will have a profound impact on collective decision
making, making it possible to make a wider range of voting decisions, especially
for large-scale inter-colonies decision-making with competition.

In the collective decision making of ant colony, positive feedback caused by
pheromone plays a magnifying effect, such that slight changes in colony pref-
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erences (for example, referendum preferences), changes in behavioral character-
istics (such as chemotaxis), or changes in individual knowledge. All these have
an important impact on collective decision making. This kind of positive feed-
back is very important for recruiting teammates (such as recruiting teammates
to prey and establish the best path). But the intelligent decision is not only
to recruit teammates, but also to adjust the number of recruits based on avail-
able resources. If only the amplification effect is only possible, it can only lead
to recruitment. More and more ants make the decision-making process uncon-
trollable and make it impossible to decide the best number of ants. Negative
feedback, such as depletion of food or overcrowding of food sites or near satura-
tion of the nest storage room, counteracts or “weakens” the amplification effect.

Fig. 6. Two models of decision making in ant swarms. A) Ants directly cast their votes
through blockchains and each ant can vote only once. B) Ant indirectly cast their
votes via excreting pheromones: The more pheromones on the path, the greater the
probability that ants will choose this path, where each ant is allowed to vote multiple
times. Finally, the candidate, represented by the optimal path, is selected and the ant
colony realizes an intelligent decision.



A Novel Intelligent Ant Colony System Based on Blockchain 239

The weakening mechanism of negative feedback provides a stabilizing force and
plays a regulatory role by adjusting the number of foraging eaters based on
factors such as the number and size of the food, the size of the storage room,
and so on. Obviously, the subtle interaction between this positive feedback and
negative feedback will lead to the emergence of the best model and intelligent
collective decision making (as shown in Fig. 6B). It can be expected that the pos-
itive feedback and negative feedback mechanism of the ant colony combined with
the blockchain will have significant effects and will lead to large-scale intelligent
decision making across populations.

3.3 Sensing-as-a-Service (SaaS) Model

In our application of blockchain to topics [23] that reach beyond currency, we
do not forget that the primary application of blockchain technology is economic,
and that what we have discovered in our ant colony study can be applied back
to the economy. Thus the findings when applying blockchain technology to ant
colonies are also applicable to industrial and economic research [24].

One of the applications that the ant colony behavior is adopted to economics
uses the data exchange process that occurs between an ant and a data requester.
Service is a new business metric applied to the Internet of Things. The SaaS
model creates multi-sided markets that produce sensor data, i.e., customers pay
for data provided by sensors [25]. This model is analogous to the control area
of the intelligent sensor network of a city that requires users to develop more
flexible and adaptive control techniques.

We combine swarm ants and blockchain technology and develop two SaaS
models: Customer customization model and sensor recommendation model (as
shown in Fig. 7). By the former, individual ants are registered as a group that
can be found by requester, and the sequesters customized services to sensing ants
according to different tasks. By the latter, individual sequesters are registered as
a group that can be found by sensing ants, and the sensing ants recommend data,
active sensed by themselves, to potential customers. In more complex scenarios,
ant swarms can use the distributed collaboration described in subsection CSM.
The requester obtains the access to this data through ant transactions, and the
perceived services become available to the swarm and individual ants.

Blockchain technology plays an essential role for competitive companies,
which allows an appropriate competitive framework for group interaction by tak-
ing into account transaction sequence and timestamp considerations. For exam-
ple, multiple different tasks and multiple working ants coming from competitive
swarms can be matched via a blockchain-based bidding mechanism.
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Fig. 7. Outlines of the working model in developing effective SaaS platforms via com-
bining swarm ants and blockchain technology. The requester ant asks for the full list
of these ants and their perceived services, multiple tasks and multiple worker ants
are matched via a blockchain-based bidding mechanism. And all the information is
recorded into blockchain via some counting ants whom are selected via certain con-
sensus mechanism, say wins out in solving some difficult problem via ant swarm intel-
ligent algorithms. This model can be further divided into two sub-models: customer
customization model and sensor recommendation model. The former focuses on pas-
sive sensing in the sense that the sensing task is invoked by customers, while the latter
emphasizes active sensing even without sensing requests from customers.
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4 Discussion

Blockchain technology enables a group of agents, via combing a peer-to-peer
communication network and cryptographic algorithms, to reach agreements on
particular problems and securely record these agreements distributively without
a centralized control mechanism. Although the technology is still in its infancy,
it has been able to extend functionality beyond its original application and, in
conjunction with others, create a national model for emerging technologies. The
latest developments in the field have increased the research focus on ant colony
systems. Research on ant colony systems helps us understand agent autonomy,
decentralized control, and the emergence of collectives.

Blockchain technology and swarm intelligence have a lot common when
applied to certain fields. Although swarm intelligence has been applied to opti-
mization field, and blockchain technology is widely used in finance, they still have
shortcomings. In response we suggest two improvements related to, (i) proof of
work, and (ii) system implementation.

4.1 Proof of Work

The process of calculation attempts made by miners to seek acceptable answers
is called proof of work (POW) [26]. For instance, C is a target value set by
the blockchain system, and we use nonce as a POW counter, i.e., the initial
value of nonce is 0, and the value nonce is increased by 1 after each calculation.
When the miner obtains a calculation result that is less than C, the process of
calculation is considered to be done and POW is calculation amounts in order
to get such answer. The secure hash algorithm (SHA) is commonly used to
determine Bitcoin’s proof of work. For example, we add an integer value nonce
to the end of the string “Hello, world!” and use SHA256 until there is “0000” at
the beginning of the string. We increase the nonce value to achieve a new string
by SHA256. Using this rule, we carry out 4251 calculations to find this Hash
value.

SHA256 is a standard Bitcoin method and has many advantages, but it has
few applications to swarm intelligence, including that found in ant colonies. Thus
we propose a new POW such that SHA256 can be applied to environments other
than Bitcoin. We use ant colony optimization (ACO) in a new POW to identify
optimal paths [9]. Its mathematical form is

τij (t + n) = ρ × τij (t) + Δτij , (1)

Δτij =
m∑

k=1

Δτk
ij , (2)

and

pk
ij (t) =

⎧
⎨

⎩

(τij(t))
α(ηij)

β

∑

k∈allowedk

(τik(t))
α(ηik)

β if :j ∈ allowedk

0 else
, (3)
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where τij (t) is the pheromone intensity on path (i, j) at time t, ρ (0 ≤ ρ ≤ 1) is
a constant that represents the redundancy after trace pheromone volatilization,
1−ρ is the pheromone volatilization between time (t,t+1), Δτk

ij is the pheromone
number that ant k leaves under unit path length in time interval (t, t + n),
ηij = 1

dij
is the visibility of path (i, j), α and β are the parameters of controlling

the path and the visibility, and allowedk = {N − tabuk}, where tabuk (s) is
element s in the tabu table that the ants access to city i in a recent trip. The
parameters in the ant colony algorithm have a great impact on the performance
of the algorithm [27]. Specifically, the value of α indicates that the importance
degree of information related to each node. That is to say, the larger the value
of α becomes, the more likely an ant is to choose the route it has passed before.
The value of β indicates that the importance degree of heuristic information.
Namely, the larger the value of β becomes, the more likely an ant is to choose
the route of a nearby city. And the value of ρ reflects the strength of the influence
between individuals in an ant colony, which plays a key role in determining the
convergence rate of the ant colony algorithm.

In the ant colony algorithm, ants are placed in different cities, and each side
has initial pheromone intensity values τij (0). The first element of an tabu table
for each ant is set at the beginning city. The ant then moves from city i to city
j, using the transition probability function between two cities to select the city.
The tabu table is filled after all ants have finished a cycle. We then calculate
the total length Lk that each ant k has traveled and update τij using Eq. (1).
We also save the shortest path found by the ants and empty all tabu tables. We
repeat this process until the cyclic counter reaches a maximum NCmax or all
ants are following the same route.

We thus provide a new POW method based on ACO. In the ant colony
optimization service system, a new block is created every 10 min, and we adjust
the difficulty of the optimization algorithm to ensure the creation time of a block.
A unique block identifier is the optimal path found by ACO, and we use this
optimal path instead of the hash to identify the new block. Each block thus has
an optimal path to the previous block in sequence.

4.2 A Semi-centralized Ant Colony System Based on Blockchain

Combining blockchain technology and swarm control techniques allows us to
solve problems that go beyond security and distributed decision-making [28].
Little research has focused on a combination of different ant colony behaviors,
but blockchain technology could allow multiple blockchains to be hierarchically
connected (“tacks”) to enable ant colony agents to alter group behaviors using
their own blockchain and such parameters as diversity and permission values.

Open source projects such as multi-chain combinations and fixed sidechain
algorithms could provide a way of creating multiple blockchains, which connects
ledgers that run in parallel. We here use a typical blockchain configuration to
examine the distribution diversity of network agents in the ant colony. Here
the control behind the transaction decision is part of the blockchain, and it is
decentralized and distributed.
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Figure 8 shows how a semi-concentrated blockchain ant colony system works
[29]. In addition to providing competitive strategy, we also introduce a mech-
anism by which leaders can direct the fulfilling of tasks. Usually a leader is a
mature ant or the ant queen. Since individual ants have a weak storage and com-
puting power, most blocks are stored in the nest, and complex operations, e.g.,
a query search for blocks, are also carried out in the nest. This greatly improves
the ability of the cluster to function.

Cluster members can also create a parallel fixed chain by moving a portion of
their assets to another chain. The different parameters of this sidechain can be
optimized using parameters in the main chain. Figure 8 shows how a centralized

Fig. 8. By sending a transaction to a special address, several agents of an already
established blockchain might create different branches of the blockchain ledgers. The
mining diversity parameter is changed to produce a single miner configuration. This
configuration emphasizes a centralized approach in which only the miner can take
control of the block creation process, and thus transforming the blockchain into a
leader-follower control scheme. If necessary, these branches can achieve consistent again
via certain consensus mechanism.
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mining scheme can be transformed from a decentralized mining scheme. Thus a
single ant’s control can generate different ant behaviors without increasing the
complexity of the ant controller.

5 Summarization

The characteristic of swarm intelligence is that the collective behavior of low-
level individuals and their environment local interaction which forms the overall
pattern of uniform function. The blockchain is an emerging technology in bit-
coin field. A group of agents can agree on a particular status and record the
protocol without the need to control it. Blockchain and other distributed sys-
tems, such as ant swarm systems, provide the ability to build ants that are more
secure, flexible, and profitable. The problem of limitations and potential future
is the combination of these two technologies. This paper introduces blockchain-
based ant colony systems and we propose three novel blockchain models, i.e.
Collaboration-as-a-Service model (CaaS), Decision-as-a-Service model (DaaS)
and Sensing-as-a-Service model (SaaS), and ant-colony-based proof of work for
blockchains, which could be applied not only in financial transactions, but also
in the fields of wireless sensor networks, internet of things, etc. And such specific
applications could be the research directions in the future.
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Abstract. In present paper we investigate an approach to intelligent support of
the software white box testing process based on evolutionary paradigm. As a part
of this approach, we solve the urgent problem of generating the optimal set of test
data that provides maximum statement coverage of the code when it is used in the
testing process. Earlier approaches that have been explored have shown the need
to adjust the value of k for different programs, since its value has a significant
impact on the quality of the fitted test data. To eliminate this problem, we propose
to use the pheromone model, which is used in Ant Colony Optimizations in order
to shift the focus of data generation to unexplored paths.

Keywords: Genetic algorithm · Test data generation · Fitness function

1 Introduction

The classic software engineering lifecycle includes such stages as reliability require-
ments engineering, design resulting in the software architecture, programming (coding),
testing, debugging and maintenance. Software testing, defined as a process of the test-
ing program evaluation, aimed at verifying actual behavior of the program code and its
expected behavior on a special set of tests (the so-called test cases). Testing is one of
the most expensive and labour-consuming stage and can take up to 40–60% of the total
software development time [1].

Test data generation is a complex and time-consuming process which needs a lot of
effort and budget. Therefore, automation of this process, at least partially, is an urgent
research problem, the solution of which could improve the efficiency of the software
testing. One of the goals of the automatic test data generation is to create such amultitude
of test data that would ensure a sufficient level of quality of the final product by checking
most of the various code paths, i.e. would provide maximum code coverage to satisfy
some criteria (for example, statement or branch coverage).

There are different approaches to solving the problem of automating test data gen-
eration. For example, there are approaches based on a constraint-based algorithm [2],
constraint logic programming and symbolic execution [3] and constraint handling rules
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[4]. To automate the software testing process heuristic approach for the Data-flow dia-
gram could be used. Studies of automation methods using this kind of diagrams were
carried out in papers [5–8]. Some of the researchers suggest using hybrid approaches.
For example, in [9] was proposed to combine RandomStrategy, Dynamic Symbolic Exe-
cution, and Search Based Strategy. The paper [10] proposes a hybrid approach based on
Memetic Algorithm for generating test data. The work [11] compares different methods
for generating test data, including genetic algorithms, random search, and other heuristic
methods.

To improve the process of test data generation, some researchers suggest to use
UML diagrams in collaboration with various methods. Genetic algorithm can be used
to find the critical path in the program [12, 13] or to select test data to many parallel
paths [14]. Also, the code could be displayed in the form of Classification-Tree Method
[15, 16]. The developed ADDICT prototype (AutomateD test Data generation using the
Integrated Classification-Tree methodology) was studied in the paper [17].

As follows from the above, many researchers focus on evolutionary approaches to
solving this problem, in particular, on the genetic algorithm and its hybrid modifications.
However, it should be noted that traditionally genetic algorithm is used to find the most
fitted chromosome,which is a set of test data that ensures passage along themost complex
(long) path in the Control Flow Graph [18, 19]. Many data sets that provide maximum
code coverage can be found by repeating this procedure multiple times with preliminary
zeroing of the code operation weights corresponding to the chromosomes found earlier
[20]. So, the fitness function of the genetic algorithm has a simple form, but the process
of finding all the data sets is quite long and non-optimal. To increase speed of the test data
generation was proposed to include additional term in fitness function [21]. Additional
term is used to increase diversity of the algorithm and the convergence speed. It was
noted, that the relation coefficient between two term is must be foundmanually for every
testing code. To increase the universality, this coefficient should have less impact on the
final result, so we propose to modify the algorithm with the pheromone model adopted
from Ant Colony Optimization. Our research confirmed greater diversity of the test data
in form of better coverage rate for any value of the coefficient.

The paper is organized as follows. Section 1 gives introduction to the problem and
literature review. Section 2 discusses theoretical issues of the research and describe the
method of test data generation. In Sect. 3we present the results of the conducted research.
Section 4 provides the conclusions.

2 Theoretical Background

2.1 Genetic Algorithm for Test Data Generation

Genetic Algorithm (GA) borrows its idea and terminology from the biological world.
In such a way, it uses different representations for potential solutions referred to as
chromosomes, genetic operators such as crossover and mutation used to generate new
child solutions, and also selection and evaluation mechanisms derived from the nature.

In accordance with the terminology of GA, we define a population of individ-
uals consisting of m chromosomes {x1, x2, . . . , xm}, where each chromosome xi =
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[vari1, vari2, . . . , variN ] corresponding to one set of test data consists of N genes (values
of N input variables).

The main GA cycle for generating test data includes the following steps (steps 2–6
are repeated iteratively until the specified coverage value or number of generations is
reached):

• Initialization. The initial population is formed randomly, taking into account the
bounds of the input variables. The population size m is chosen based on the size
of the program under test (rather, the number of possible paths).

• Fitness function calculation. Each chromosome of the population is estimated by a
fitness function.

• Selection. The best 20% of chromosomes are transfer to the next generation
unchanged; the remaining 80% of the next generation will be obtained by crossover.

• Crossover. Half of the chromosomes of the next generation are formed by crossover
20% of the best chromosomes of the previous generation with each other. The remain-
ing chromosomes will be obtained by random crossover between all the chromo-
somes of the previous generation. Crossover occurs by choosing a random constant
βi ∈ [0, 1] for each l = 1,N and sequential blending, where the l-th offspring gene
is a linear combination of the corresponding genes of the parental chromosomes:

varoffspringl = βl ∗ varmotherl + (1 − βl) ∗ varfatherl , l = (1,N ) (1)

• Mutation.With a givenmutation probability, each gene can change its value to random
within the given bounds. The main purpose of mutation is to achieve greater diversity.

• Formation of test data sets in the form of a pool of elite chromosomes. In each genera-
tion, chromosomes of the population are selected into the pool of elite chromosomes.
Only those chromosomes that provide additional code coverage in comparison with
the previous coverage include into the pool.

2.2 Formulation of the Fitness Function for Maximum Statement Coverage

In this section, we will formulate the fitness function of the genetic algorithm in such a
way that to maximize the coverage of code statements by both individual test cases and
the whole test cases population.

The first step of white-box testing is to translate the source code into a Control Flow
Graph (CFG) as oriented graph CFG = (V ,R, v0, vE), where V is set of graph nodes,
R is set of edges, v0 i vE are input and output nodes, respectively, v0 ∈ V , vE ∈ V .The
CFGmakes it easier to specify in detail the control elements that must be covered, so we
can define vj ∈ V as a separate node of CFG, in other words, one or more statements of
the code. Different initial data of the program lead to traversing along different paths of
theCFG, ensuring the execution of only quite specific (not all) statements of the program.
Let us denote g(xi) a vector that is an indicator of the coverage of the graph nodes by a
path initiated by a specific set of the test case xi – g(xi) = (

g1(xi
)
, g2(xi), . . . , gn(xi)),

where

gj(xi) =
{
1, if path initiated by test case xi traverses through the node vj;
0, otherwise
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If we define vector {w1,w2, . . . ,wn} as weights assigned to the test program state-
ments, then the fitness function for the individual chromosome xi can be formulated as
follows

F1(xi) =
∑n

j=1
wjgj(xi). (2)

To ensure a greater diversity of the population, it is necessary to introduce into the
fitness function a term that gives preference to chromosomes that provide the great-
est possible distance from each other all paths that are generated by test cases of the
population’s chromosomes.

The developed fitness function is based on the idea given in paper [22]. We correct
some inconsistencies in the formulas and propose more balanced relation of terms in the
final formula of the fitness function.

In order to calculate the j-th similarity coefficient simj
(
xi1 , xi2

)
of two chromosomes

xi1 and xi2 we compare if the node vj of the CFG is covered or uncovered by both paths
initiated by these two test cases

simj = (
xi1 , xi2

) = gJ
(
xl1

) ⊕ gJ
(
xl2

)
, j = 1, n. (3)

The more matching bits are there between the two paths, the greater is the similarity
value between the chromosomes. The following formula takes into account weights of
corresponding CFG nodes

sim
(
xi1 , xi2

) =
∑n

j=1
wj · simj

(
xi1 , xi2

)
. (4)

The value of similarity between the chromosome xi and the rest of the chromosomes
in the population is calculated as

fsim(xi) = 1

(m − 1)

∑m

s = 1
s �= i

sim(xs, xi) (5)

Nowwe can determine themaximumvalue of path similarity in thewhole population

fsim = max
i= 1,m

fsim (xi) (6)

So, we can formulate the term of fitness function responsible for the diversity of paths
in a population. It is

F2(xi) = fsim − fsim(xi). (7)

Thus, the fitness function for the chromosome xi is calculated by the formula

F(xi) = F1(xi) + k · F2(xi), (8)

where F1(xi) and F2(xi) are defined by formulas (1) and (6). The first term F1(xi)
determines the complexity of the path initialized by the chromosome xi, and the second
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term F2(xi) determines the remoteness of this path from other paths in the population.
The constant k determines relation between the two terms and is chosen dynamically.

The influence of the value of the parameter k on the fitness function is quite significant
[21]. As past studies have shown, at zero k = 0, the coverage is minimal, reaching its
maximum value at k = 10, after which it begins to decline. Obviously, choosing the
right k can significantly affect the final results. However, this value of k obtained in
studies is the best only within the tested SUT. For programs with different code size and
branching, this value may not be the best. Therefore, in order to increase the universality
of the algorithm, it is necessary to reduce the influence of k, so that choice of its value
have less impact on the process of test data generation.

The fitness function is formed from two components – F1(xi) and F2(xi), as shown
in the formula (7). The type of dependence F2(xi), for determining the distance of
paths from each other, has been well studied, and the necessary modifications have been
proposed and studied for it to increase the diversity of the population.

At the same time, the F1(xi) component has a rather simple form and has not yet
been sufficiently developed, so it has the potential for further improvement. Accordingly,
for the subsequent modification of the proposed method for generating test data, we can
concentrate on possible changes inF1(xi), that is, complicate themethod for determining
and calculating the weights of operations.

Of particular interest, in this case, are other evolutionary algorithms, since they
are based on the same paradigm as in GA. For example, PSO is one of the Swarm
Intelligence (SI) algorithms, but not its only representative. Its other representatives are
the Ant Colony Optimization (ACO), the Artificial Bee Colony Algorithm (ABC), the
Cuckoo Search (CS) and many other algorithms based on the collective interaction of
various elements or agents.

The Ant Colony Optimization (ACO) [22] is one of the algorithms that allows to
solve problems of finding a route search on graphs. It is based on the simulation of
the behavior of an ant colony. Ants, passing along certain paths, leave behind a trail of
pheromones. The better solution was found, the more pheromones will be on one way
or another. In the next generation, ants already form their paths based on the number of
pheromones - the more pheromones on a certain path, the more ants will be directed to
this path and continue to explore it. In this way, the colony gradually explores the entire
solution space, gradually cover better and better paths.

Directly using the ant colony algorithm as-is is not possible, since the output to
certain paths is initialized by different data sets, and the only way to change the path
is to manipulate the initial data. However, the idea of using “pheromones” to prioritize
pathfinding may have a positive effect on providing greater population diversity.

To implement this idea, it is proposed to modify the component F1(xi) of the fitness
function. The new function additionally introduces the Phi parameter to dynamically
change the value of the operation weights. We have identified two main approaches that
can be used to simulate the effect of pheromones:

1. Direct approach. All operations initially have a weight factor of 0. Gradually, the
weights of operations increase as they cover certain paths. With each generation, the
weight of covered statements will increase.
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2. Inverted approach. All operations initially have a weight factor of 100, that is, the
maximum weight. With each new generation, the weight of covered statements will
decrease, shifting the direction of generation to uncovered paths.

As a result of the implementation of the modification, the function F1(xi) will have
the following form

F1(xi) =
∑n

j=1
wjgj(xi)Phj, (9)

where Phj – the weight factor of a particular operation.
Since the ultimate goal of introducing this modification is to increase the diversity of

the population, the complete exclusion or inclusion of operations is not the best method
of implementation. If only certain paths are included, then the genetic algorithm with
each new generation will generate data only for these paths, excluding those for which
the data was not generated, even if they are potentially more difficult. At the same time,
if paths are excluded, then for significantly branched test codes, the data may also not
be selected, since the algorithm may not have enough time to reach them.

The solution to this problem is the alternation of inclusion and exclusion upon reach-
ing a certain value Phj. If the covered statement has reached the value Phj = 1, it begins
decreasing. If, on the contrary, the coefficient Phj has decreased to 0, then it will start
increasing. Thus, operations can gradually either increase the value of F1(xi) for certain
test sets, or decrease it, thereby ensuring sufficient population diversity without focusing
only on certain paths.

The only difference between the approaches is the generation of the initial popula-
tion – whether the initial sets will be formed completely randomly at Phj = 0, followed
by a search for complex paths, or sets for more complex paths will be generated initially,
after which their successive exclusion will begin.

3 Research

To investigate the GA work with the proposed fitness function (7) and modification of
the F1(xi) (8), a software-under-test (SUT) was developed containing many conditional
statements defining a sufficient number of different paths of the program code.

To begin with, it is worth considering methods for changing the value of Phj. As
mentioned above, in order to exclude the concentration of test data generation only
on certain paths, it was decided to alternate the inclusion and exclusion of operations
depending on their value Phj Then the main question is to determine the rate of growth
and decrease of this value.

We are proposing twomain groups ofmethods for switching inclusion and exclusion,
on which the rate of change ofPhj depends. The first group of methods involves covering
a certain number of generations, after which a switch occurs. We have identified the
following boundaries:

• Achievement of half generations (Half method). After the statement has been covered
in half of the generations, a switch occurs. That is, at best, switching will occur once
for frequently covered operations. For rarely covered, switching may not occur.
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• Achievement of a quarter of generations (Quarter method). Switching will occur if
the operation was covered by at least a quarter of all generations. The statement can
switch up to 3 times.

• Achievement of the tenth generations (Tenth method). When covering at least 1/10
of all generations, the operation will switch. This method implies a fast change in the
value of Phj, when the operation can switch up to 9 times.

The other group contains only one method, which depends on the number of state-
ment coverages in one generation. The more test sets cover the certain statement, the
greater the change in the value of Phj will be. That is, for example, if the operation was
covered by 90 out of 100 chromosomes in one generation, then for the next generation
the weight of this operation will change to �Phj = 90

100 = 0, 9. Thus, the more datasets
that cover one or another operation, the more often the switching will occur. Figure 1
shows comparison of the different direct approaches, the method without modifications,
and the hybrid method (Count-) based on the inverted approach.

78%

80%

82%

84%

86%

88%

90%

92%

0 2 5 10

Modification Count- Without Modifications Modification Half+

Modification Quarter+ Modification Tenth+ Modification Count+

Fig. 1. Modified methods for different k. Population size is 50, number of generations is 25.
(Color figure online)

Red color shows coverage without modification. Shades of blue are different switch-
ing methods based on the direct approach. In general, these methods show slightly better
coverage. The inverted methods, which are not shown in the figure, show slightly better
coverage than the directmethods, but in general, not somuch higher as to unambiguously
state the effectiveness of the modification.

Of greatest interest in the figure is the black column, which shows the coverage of the
hybrid method based on inverted approach depending on the coverage (Count-). Instead
of switching inclusion and exclusion, the weight of the operation is reduced depending
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on the number of sets that covered it in one generation. At the same time, if the statement
was not covered at all, the value of Phj for it increased to 1. Thus, the algorithm more
often tries to generate data for those operations that have not yet been covered. At the
same time, often covered operations cease to play a significant role in the generating
data sets. This method showed the greatest efficiency in the formation of test sets, so it
will be used for other studies.

On the Fig. 2 presented the results with and without modification for different k with
various number of generations and population size.

(a) Size of population = 25

(b) Size of population = 50

(c) Size of population = 100
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Fig. 2. Comparison of coverage with different population size and generation number



Implementation of the Test Data Generation Algorithm 255

It is clearly seen in the figures that the modification allows to significantly increase
the coverage even without using the optimal value k = 10 for this SUT. Even with k
= 0, that is, without using the second parameter of the fitness function, the coverage
achieved is on average higher. The use of any value of k with modification makes it
possible to achieve the maximum possible coverage for the given parameters of the
genetic algorithm.

A more accurate visualization is shown in Fig. 3, which presents a coverage with a
population size of 25 chromosomes at 50 generations.
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Without modification With modification

Fig. 3. Code coverage with different k with and without modification. Population size is 25,
number of generations is 50

Obviously, the modification shows better coverage. More importantly, the maximum
coverage for these parameters of the genetic algorithm is achieved using any value of
k, that is, the main goal of introducing the modification is achieved – k ceases to play a
significant role in achieving maximum coverage, which allows the algorithm to be used
without the need to search for the optimal k for the SUT.

Interesting results were also obtained from the study of the standard deviation of
the generated values. Figure 4 shows the difference in k-averaged standard deviation
between algorithms with and without modification.
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Fig. 4. Discrepancy of averaged standard deviation between algorithm with and without modifi-
cation. Positive number shown lesser deviation of the algorithm with modification

The figure shows that the modification, on average, has a smaller deviation, that is,
the values are closer to the average. And since the modification, in general, has a higher
coverage value, it can be confirmed that the algorithm generates test data better.

But what is more interesting is the trend of decreasing deviation with increasing
number of generations for the modified algorithm. In other words, the more generations
the algorithm will conduct, the more efficiently the data will be generated. When exam-
ining the coverage as such, this is not noticeable, since the coverage is generally quite
high, but the study of the deviation made it possible to determine the additional benefits
of the modification.

4 Conclusion

The article presents a study of modifying the previously developed method for gen-
erating test data sets to eliminate the significant influence of the change in the fitness
function parameter k, which is responsible for the relation between the parameters of
path complexity and population diversity. The results showed that the modification with
a hybrid approach to the determination of Phi showed noticeably better coverage val-
ues. But more importantly, the maximum possible coverage with certain parameters of
the genetic algorithm was achieved using absolutely any k, which eliminates the need
to search for it for each tested program or develop additional methods for its dynamic
determination.
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Abstract. The formal modeling and verification of algorithms is a challenging
task, but it is a necessary requirement for the proof of correctness. Evolutionary
computation and theorem proving approach of formal methods are two differ-
ent domains in theoretical computer science. Using Prototype Verification Sys-
tem (PVS), this paper presents a method of formal specification, reasoning and
verification for order crossover operator in Genetic Algorithms (GAs) and their
rudimentary properties. Order crossover operator is first formally specified in
PVS specification language. Some other operators used in the definitions of order
crossover are also specified. PVS theorem prover is then used to prove some
properties of order crossover and operators.

Keywords: Order crossover · Genetic algorithms · PVS · Specification ·
Verification

1 Introduction

There are many complex problems in real life where the goal is to find best solution(s) in
very large search space(s). In such problems, optimization algorithms [1] are commonly
used to find approximate solutions. Genetic algorithms (GAs) [2] are search algorithms
based on the biological evolution and Darwinian theory principles. In theoretical com-
puter science, GA are well-known for solving various types of optimization problems.
Besides optimization problems, GAs are now used in many other fields and systems that
include bioinformatics, control engineering, scheduling applications, artificial intelli-
gence, robotics and safety critical systems. As evolution/optimization-based algorithms
are now widely used in many systems, so their formal analysis and reasoning is an
important and interesting research problem.

In this work, we focus on formal analysis and verification of order crossover operator
in GA using theorem proving approach of formal verification methods. In interactive
theorem proving, the systems that need to be analyzed are first modeled using an appro-
priate mathematical logic. Important system properties are then proved using theorem
provers [3, 4].
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More specifically, we use the Prototype Verification System (PVS) [5], which is an
interactive theorem prover. Specification language of PVS is built on higher-order logic
(HOL) and PVS prover is based on sequent calculus where each proof goal is a sequent
consisting of formulas called antecedents (hypothesis) and consequents (conclusions.
Using a proof system, one of the initial efforts in the formalization of theGAs foundations
can be found in [6]. Single-point crossover (SPC) and multi-point crossover (MPC) are
formally specified and verified in PVS [7]. Taking the work done in [6, 7], the main
activities in this paper involve:

1. Using the PVS specification language for providing a formal knowledge by writing
the specification of order crossover operator in GA, and

2. Using the PVS theorem prover for the reasoning in the modeled knowledge for order
crossover and proving its properties.

The rest of the article is organized as follows: Sect. 2 discusses the related work. In
Sect. 3, formal specification of order crossover operator is carried out in PVS. Section 4
provides the verification details for order crossover. Finally, in Sect. 5 conclusions are
drawn.

2 Related Work

This work on formal analysis of crossover operators in GA is not the first one. Aguado
et al. [8] used the Coq [9] ITP (interactive theorem prover) to formally verify crossover
operator (generalized version) of genetic algorithms. Work done in [8] was divided in
three parts. In first part, they defined multiple crossover operation. Given definition of
multiple crossover operator generalizes the definition given in [6]. Multiple crossover
that was defined in first part does not depend on crossing points order. This was proved
in second part. In third part, an effective definition of crossover operator was presented.
Furthermore, Aguado et al. [10] formally specified and verified position based and
order-based crossover in Coq. They used lists for the representation of chromosomes
(strings).

Nawaz et al. [7] used PVS for the formal specification and verification of two
crossover (SPC and MPC) operators. Zhang et al. [11] used the HOL4 proof assistant
[12] for the formalization of crossover operators. Moreover, [13] provided the formal
semantics for crossover and mutation operators of GA by representing operators by
designs in Unifying Theories of Programming (UTP) [14] semantic framework.

3 Order Crossover Modeling

The crossover operator in GA is used to recombines two selected strings to get new
better strings. The two selected strings are called parent strings and the resulting strings
obtained after the crossover operation are known as off-spring strings. Crossover oper-
ators in GA can lead the population to converge on one of the best solutions. In GA
literature, many crossover operators exist but most adopted are SPC and MPC operators
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[15]. For strings having small length, SPC operator is suitable whereas MPC is more
appropriate for long strings [16].

In SPC operation, single crossing point is randomly selected in both of the parent
strings. Both strings are then split into sub-strings with crossing point and these sub-
strings are combined to form new off-spring strings. Let two parent strings are:

x = x1, x2, . . . . . . , xn

y = y1, y2, . . . . . . , yn

Let position j (1 ≤ j ≤ n) in both parent strings is selected as crossing point. New
off-springs that will replace these two parent strings will be:

x′ = x1, . . . ., xj, yj+1, . . . ., yn

y′ = y1, . . . ., yj, xj+1, . . . ., xn

De Jong [17] in his work generalized the SPC operator and considered the MPC
operator. In the later operator, two crossover points are chosen in the strings and sub-
strings between the points are exchanged to form new strings. Let x and y (already
defined above) be the two parent strings with length n and j, and k be the two crossover
points with k > j, then:

x′ = x1, ...., xj, yj+1, ....., yk , xk+1, ...., xn

y′ = y1, ...., yj, xj+1, ....., xk , yk+1, ...., yn

The formal modeling and verification of SPC and MPC can be found in [7].
The most widely used encoding technique for the representation of chromosomes in

GA is the use of strings x = x1, x2,…., xn of binary values (xi ∈ (0, 1)). However, in some
application such as Graph Coloring Problem, Vertex Coloring Problem and Traveling
Salesman Problem, the use of permutation produces better result than standard binary
encoding [18]. Order crossover operator of GA, invented by Davis [18], was specifically
developed for permutation encoding representation. It is important to remark that for the
representation of chromosomes in order crossover, permutations of (possibly) repeated
elements are considered. For convenience, permutation between two strings say x and y
is denoted by x ≈ y.

Order crossover is explained with a simple example. Assume that population P is a
non-empty finite set and x, y are the two finite sequences (strings) of elements of P. Let
two parent strings x and y are:

x = c b a f e d g h i

y = g h i f a c b d e

Two natural numbers are randomly chosen as crossing points (for example j = 3 and
k = 6). Substring x’ obtained from x contains elements of x between j and k. So x’ = f
e d. In y, elements of x’ are removed, obtaining y’ = g h i a c b. Finally, the substring x‘
is inserted in y’ to get the child string:

Child String = g h i f e d a c b
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Therefore, order crossover operation generates a string which has between j and k
the elements from string x and the elements from the string y in the other positions.
Note that order crossover depends on parent strings x, y and crossing points j, k. Order
crossover can be defined as:

Definition 1. Let x, y be the strings of finite sequences and x, y ∈ P. Let j, k ∈N (natural
number). Order crossover (�) operator is defined as:

(x, y)(j, k) =
{((

y,
(
x�(j,k)

)¬)↑j
)
o
(
x�(j,k)

)
o
((

y,
(
x�(j,k)

)¬)↓k
)}

Here o1 represents the concatenation and ↑, ↓, � and ¬ are four operators called
Head, Tai, Cut and delete_seq, respectively. Before specification of four operators, we
declared in PVS the type of P as a not-empty finite set of sequences, p and q are two
finite sequences of type P and crossover points j, k are of type natural number.

P = Setof[seq]
p, q = VAR Finseq[P]
j, k = VAR NAT

Here, seq is the unspecified type of sequences. Like PVS syntax, we have used
square brackets (brackets []) for type constructors and type parameters. We have used
some already pre-defined types of PVS prelude like below[nat] and finseq. Finseq[P]
is record (type) of two fields, length and seq. Length represents the total length of
the finite sequence and seq represents a finite sequence which is defined as a function
below[length] → P.

TYPE = [# length: nat, seq: 
ARRAY[below[length] → P]#]

Finite sequences in PVS always begin from 0 upto n – 1 where n represents the
length of the sequence. Formal specification of ↑, ↓, � and ¬ in PVS is as follows.

Head (↑) Specification in PVS
We define Head operator in PVS with the help of a total function. This function takes
a number (crossover point) and a sequence of finite length as input and returns a finite
sequence as output with following type definition:

Head:[Nat × Finseq → Finseq],

Head(j, p):Finseq[P] = IF j < length(p) THEN(#length:=
j, seq:= λ(i:below[j]): p`seq(i)#) ELSE IF 
j = 0 THEN empty_seq ELSE p 
ENDIF ENDIF

1 We have used the symbol o for concatenation according to PVS syntax.
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Tail (↓) Specification in PVS
Tail operator is also specified as a total function that takes a natural number and a finite
sequence and returns a sequence of finite length according to given type definition:

Tail:[Nat × Finseq → Finseq],

below[p`length 

Tail(j, p): Finseq[P] = IF j < length(p) THEN 
(#length:= p`length – j, seq:= (λ(i:

– j]): p`seq(j+i))#)
ELSE IF j=0 THEN p ELSE empty_seq
ENDIF ENDIF

Cut (�) Specification in PVS
In PVS, we have specified Cut as a total function that takes two numbers (crossover
points) and a finite sequence as input and returns a finite sequence as output with given
type definition:

Cut:[Nat × Nat × Finseq → Finseq],
Cut(j, k, p): Finseq[P] = IF k,j < length(p) ˄ 

j<k THEN (#length:= k – j, seq:= (λ(i: 
below[k – j]): p`seq(j + i))#)
ELSE IF j > length(p) > k THEN Head(k, p)
ELSE IF k > length(p) > j THEN Head(j, p)
ELSE empty_seq ENDIF ENDIF ENDIF

For the delete_seq (¬), two functions are declared that are named first and remaining.
First function selects the first element from the selected string x, if x is a non-empty
sequence. Remaining function returns a string in which first element from x is excluded.

first(x: (ne_seq?)): P = x`seq(0)

remaining(x:(ne_seq?)):{d:finseq[P]|d`length <  
x`length} = LET len = x`length - 1 IN (#    
length:=  len,  seq := (λ(i:below(len)): 

x`seq(i+1))#)

Whereas, ne_seq? is a Boolean predicate that returns true if the length of the string is
greater than 1. Twomore total functions find and remove are also declared. Find function
returns location of a specific element in a sequence, whereas remove function removes
the element returned by the find function.
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upto(x`length) =
IF m = x`length THEN m 
ELSIF x`seq(m) = a THEN m
ELSE find(a, x, m + 1) ENDIF
MEASURE x`length – m

remove(x, (i: below(x`length))): finseq[P]  =
LET newlen = x`length - 1
IN x WITH [`length := newlen, seq := 

(λ(j:below(newlen)): 
IF j<I THEN x`seq(j) ELSE x`seq(j+1) ENDIF)]

find(a:P, x, (m: upto(x`length))):RECURSIVE 

Recursive function find locates the position of the first occurrence of element a from
a sequence x (if a appears in x) and remove function eliminates this element from the x.

Delete_seq (¬) Specification in PVS
The total Function delete_seq(y, x) (¬y, x) is declared that takes two parent sequences x
and y and delete elements of y from sequence x with following type definition:

delete_seq: [Finseq × Finseq → Finseq],

delete_seq(y, x): RECURSIVE Finseq[P] =
IF ne_seq?(y)
THEN LET a = first(y), i = find(a, x, 0)
IN IF i < x`length THEN

delete_seq(remaining(y), remove(x, i))
ELSE delete_seq(remaining(y), x) ENDIF 
ELSE empty_seq ENDIF MEASURE y`length

Order Crossover Specification
In PVS, order crossover operator is specified as a total function that takes two strings
(finite sequences) and two natural numbers as input and returns a string as output.

ordercrossover(x, y, j, k):finseq[P] = 
LET s = cut(j, k, x), d = delete_seq(s, y)
IN IF ne_seq?(d) THEN head(j,d) o s o 

tail(k,d) ELSE p ENDIF

4 Verification

PVS is based onHOL, but provingHOL properties is not fully automatic due to the unde-
cidability in HOL. Thus, human assistance is required in the process of proof searching
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and optimization [19]. The proof development process in PVS is interactive in nature
and it follows the sequent-style proof representation. A user first provides the property
(in the form of a lemma or theorem) that is called a proof goal. User then applies proof
commands, inference rules and decision procedures to solve the proof goal. The action
resulting from a proof command, inference rule or decision procedure is referred to as
a proof step (PPS) here. A PPS may either prove the goal or generates another sequent
or divides the main goal into sub-goals. The proof development process for a theorem
or lemma is completed when the sequent or all the subgoals are proved.

All theorems in this work are proved with PVS theorem prover by mostly using fol-
lowing commands and decision procedures: skosimp, expand, lift-if, prop, grind, assert,
apply-extensionality: hide t, typepred!, induct id and ground. Induct command is used
to prove the properties involving recursive functions. Next, we proved some properties
for the four operators, followed by the order crossover properties verification.

4.1 Head, Cut, Tail and Delete_seq Operators Properties

Some of the properties of Head, Cut and Tail operators that are proved using PVS are
included in the following lemmas.

Lemma 1. Assume that parent string p = (), then:

(1) p↑j = (),
(2) p↓j = () and.
(3) p�(j, k) = ().

c_e_p: LEMMA Head(j, empty_seq) = empty_seq 
˄

LEMMA Tail(j, empty_seq) = empty_seq
˄

LEMMA Cut(j, k, empty_seq) = empty_seq

In lemma 1, it is proved that if parent string is empty then the Head, Cut and Tail
operators will return empty strings.

Lemma 2. Assume that crossover points j, k = 0, it holds that:

(1) p↑0 = (),
(2) p↓0 = p and.
(3) p�(0, 0) = ().

co_j,k_0: LEMMA length(p) > 0 Head(0, p) = empty_seq
˄

LEMMA length(p) > 0 Tail(0, p) = p
˄

LEMMA length(p) > 0 Cut(0,0,p) = empty_seq
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In other words, if crossover points j, k = 0 then Head and Cut will output empty
strings while Tail operation will generate same parent string p.

Lemma 3. Let p ∈ P and crossover point j ∈ N. It can be proved that (p↑j) o (p↓j) = p.

s_con: LEMMA Head(j, p) o Tail(j, p) = p

Head and Tail operators divide the parent string into two sub-strings. If these two
operators are applied on the same parent string and generated sub-strings are concate-
nated, then they should be equal to the parent string. Hand written proof of this lemma
is described below that mainly follows the proof done by PVS but many specifics are
omitted.

Proof . Let total length of the string p is n. We have three cases for crossover point j.
Case 1 is when j < n. In this case from the specifications of Head and Tail operators,

p↑j = p1, p2,…, pj and p↓j = pj+1, pj+2,…, pn. By concatenating these two, we get p1,
p2,…, pj o pj+1, pj+2,…, pn = p1, p2,…, pn-1, pn = p.

Case 2 is when j = 0. In this case, from specifications of Head and Tail operators,
p↑j = () and p↓j = p. By concatenating these two, we get () o p = p.

Case 3 is where j > n. In this case, p↑j = p and p↓j = (). By concatenating these
two, we get p o () = p.

This completes the proof.
Similarly, a parent string is divided into three sub-strings by Head, Cut and Tail

operators, provided with two crossover points j and k. So, concatenation of these three
operators should result in same parent string.

m_con: LEMMA Head(j, p) o Cut(j, k, p) o Tail(k, p) = p

Some other properties of ↑, � and ↓ that are proved in PVS are included in the
following proposition.

Proposition 1. If p, q ∈ P and j, k ∈ N.

• if p↑j = q, then p = q
• length(p↓j) = length(p) - j
• if length(p) = length(q), then length(p↑j) = length(q↑j)
• if length(p) = length(q), then length(p↓j) = length(q↓j)
• if length(p) = length(q), then length(p�(j, k)) = length(q�(j, k))

Lemma 4. Let P be a Gene-Set and x, y ∈ P. It holds that x ≈ y iff x ⊆ y and y ⊆ x.

Lemma 5. Let P be a Gene-Set, x, y be individuals of P. It is proved that:

length(¬y, x) = length(x) - length(y), if length(x) > length(y).
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Proof. This lemma is proved with the help of induction. After induction, the definition
of delete_seq function is expanded. The proof is completed by applying PVS commands
and inference rules on expanded definition.

The following two lemmas are for the delete_seq properties.

Lemma 6. Let P be a Gene-Set and x, y ∈ P, then:

1) If x ⊆ y and if ¬y, x = (), then x ≈ y and.
2. If x ≈ y, then ¬y, x = ().
Here, () represents an empty sequence. Lemma 6 ensures that if elements in both

strings x, y are same than ¬y, x returns an empty sequence.

Lemma 7. Let x, y ∈ P satisfying x ⊆ y. Then (¬y, x) o y ≈ x.

4.2 Order Crossover Properties

Order crossover properties are included with the following theorems.

Theorem 1. Let x, y are two finite sequences such that x ≈ y and crossing points j, k ∈
N, then:

�(x, y)(j,k) ≈ x.

Proof. This theorem is proved by taking result 2 of Lemma 6 that is if x ≈ y, then ¬y, x

= () and for two crossover points j and k, x↑j o x↓j = x and x↑j o x�(j,k) o x↓k = x.

Theorem 2. Let P be a Gene-Set, x, y be individuals of P and j, k are the crossover
points. If j, k = 0, then:

�(x, y)(0,0) ≈ x.

Proof . ∀(x, y: Finseq[P]): ordercrossover(x, y, 0, 0)= x.
{After skolemizing and flattening}.

ordercrossover(x , y , 0, 0) = x  

{After expanding the definition of ordercrossover, above consequent becomes:}

IF ne_seq?(delete_seq(cut(0, 0, x ), y ))

THEN head(0, delete_seq(cut(0, 0, x ), y )) o 

cut(0, 0, x ) o tail(0, delete_seq(cut(0, 0,  

x ), y )) ELSE x ENDIF = x
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Propositional simplification is applied on the sequent obtained after expanding the
definitions of delete_seq, head, cut and tail functions. Proof of this theorem is completed
by applying repeated skolemization and instantiation.

In theorem 2, it is proved that when both crossover points are 0, then there is no point
for crossing in the strings and the order crossover will return the same parent string x.

The type system of PVS is not algorithmically decidable and theorem proving may
be needed for establishing the type-consistency in PVS specifications [5]. We type
checked the specifications for proof obligations also known as type correctness con-
ditions (TCC’s). Some generated TCCs were discharged automatically by the PVS
prover, while some were interactively proved and some were removed by modifying
the specifications. These TCC’s also helped in finding errors in specifications.

5 Conclusion

Starting fromwork done by [6, 7], we formally specified and verified the definition order
crossover operator of GA in PVS. Similarly, Head, Cut, Tail and delete_seq operators
that are used in order crossover have been specified and their properties are proved.
For order crossover, the permutations of a finite sequence of elements for chromosomes
representations are used which can be applied on a wide range of applications. Theorem
proving in general is a tough job and it requires technical expertise and good knowledge
about theorem provers and the modeling and reasoning process. As shown in this work,
the formal proof of a goal in PVS mainly depends on the specifications along with
different combinations of proof commands, inference rules and decision procedures.
This is also the case for other ITPs. It is important to point out here that all the proofs
in this work can also be done with any other HOL-based theorem prover like Coq [10]
and HOL4 [12] but these provers lack proof trees.

Generally, it will be hard for the readers to understand definitions and theorems
specifications in PVS syntax without good knowledge on PVS. For that purpose, efforts
are made to identify and justify all the specification in notations that is close to both
PVS syntax and general mathematical notation. Moreover, the reasoning process was
explained as simple as possible. For future research, one interesting idea is to use pattern
mining and evolutionary computations techniques for proof learning and searching in
PVS. Some recent works in this regard can be found in [20, 21].
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Abstract. The Multi-Offspring Genetic Algorithm (MOGA) is a GA
variant that was proposed specifically for the Traveling Salesman Prob-
lem (TSP). Like the Base GA (BGA), the first genetic algorithm designed
to solve the TSP, MOGA has a crossover operator which is non trivial
to implement. This paper proposes a copy and paste crossover opera-
tor for the multi-offsprings genetic algorithm which is easy to imple-
ment and also effective in generating a family of diverse offsprings. The
algorithm named Copy and Paste Multi-offspring Genetic Algorithm
(CP-MOGA) from the crossover operator design. Crossover and muta-
tion in CP-MOGA is designed to cater for exploration and exploitation
by carefully choosing a gene insertion section and mutation point such
that two parents produce two predominantly exploratory, two predom-
inantly exploitative and two moderately exploratory and exploitative
offsprings, thereby balancing the exploration exploitation trade-off. Sim-
ulation results on twelve instances of the Traveling Salesman Problem
show that the proposed algorithm outperforms MOGA and BGA in most
cases.

Keywords: Genetic algorithm · Crossover · Traveling Salesman
Problem

1 Introduction

The Traveling Salesman Problem (TSP) is an important test bed for combina-
torial optimization algorithms and a model for many real world applications. It
is an NP-hard problem [1–3,5] with the goal to find the shortest path to visit all
cities [4]. Solving the TSP is of great importance because of its many real world
applications ranging from Scheduling and routing [8,9], vehicle path planning
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[10–12,18], integrated circuit design [13], poly-genetic trees [14], machine learn-
ing [15], green logistics [13], efficient fuel management [16] and a host of others.
In the amazon last mile challenge [17], one of the best performing algorithms for
routing in package delivery was a variant of GA [19].

GA is one of the most successful intelligent meta-heuristics, however, most
GA variants suffer from scalability and exploration in high dimension which
has prompted most of the recent advances in GA to tackle these problems.
MOGA [6] was developed based on the idea of mathematical ecological theory
and biological evolution to tackle the above mentioned shortcomings. In MOGA,
the number of offsprings from a single generation is relatively higher than those
from earlier variants of GA and thus increases competitiveness for survival of
the fittest. MOGA helps tackle the problems of premature convergence, local
search, exploration and faster convergence to high quality solutions faced by GA.
Building from MOGA, a GA called multi-inversion-based-genetic algorithm was
developed for path planning of unmanned surface vehicles [7]. However MOGA’s
crossover operator is fairly complex and a higher ratio of similar offsprings are
generated as a result of the increased number of offsprings.

To mitigate the shortcomings of MOGA, this study proposes a copy and
paste crossover technique for MOGA which is less complex, trivial to implement
and boosts the robustness and convergence speed of MOGA while preserving
the schemata of existing solutions. Solutions are evolved by copying a section
of a chromosome from one parent and pasting in another parent forming a new
offspring and therefore it is named Copy and Paste Multi-offspring Genetic Algo-
rithm (CP-MOGA). We focus on simplicity in our design and the contribution
of this study is as follows:

1. We propose a relatively simple and effective crossover operator for generating
a diverse set offsprings from a pair of parents.

2. Our design technique results in a faster and more stable MOGA that utilizes
it’s larger number of offsprings for exploration and exploitation.

The rest of this paper is organized as follows: Sect. 2 discusses related GAs,
Sect. 3 introduces the proposed algorithm, Sect. 4 shows simulation results and
finally Sect. 5 concludes the study.

2 Related Genetic Algorithms

In this section we discuss BGA [20] and MOGA [6] both of which are similar
in their evolutionary process are the bases of our proposed method. MOGA is
slightly different in that it produces four offsprings as opposed to two by the
BGA. Note that the crossover and mutation operators discussed here are not for
the original GA but for the variant designed for the TSP.

BGA was the first GA variant for the TSP in which solutions to a given prob-
lem undergo evolution by crossover and mutation. The algorithm uses uniform
crossover to generate n offspring from n parents (every two parents give birth
to two children). The evolutionary procedure for solutions is outlined below.
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In the initialization phase, a population of solutions is randomly generated
based on the given problem. Solutions are then evolved by crossover where two
parents A and B are selected by roulette wheel and their genes exchanged by
uniform crossover technique to generate two offsprings. After crossover an off-
spring undergoes mutation by introducing a small change to the offspring with
a given probability. The mutation operator for BGA is same as that discussed
in Sect. 3 where the offsprings selected for mutation are split into three sections,
then the middle section is reversed and rejoined. We don’t go into the details of
BGA but refer the reader to [20].

The multi-offspring genetic algorithm builds from GA with the idea that
parents can have more than two off-springs. In MOGA each parent generates
four off-springs after crossover. Although, 2n offsprings are generated in each
generation for MOGA, only the best n offsprings including elitist members (best
k solutions in a population) survive to the next generation. By preserving elite
parents and having many children with an additional crossover method, MOGA
increases competitiveness among offsprings and thereby outperforms BGA. The
evolutionary process of MOGA is quite similar to that of BGA with the main
difference being in the crossover method used to generate the extra two offspring.

3 Copy and Paste Multi-offspring Genetic Algorithm

Our design aims for simplicity and robustness. The proposed algorithm miti-
gates the shortcomings of MOGA by simplifying it’s crossover operations for
easy implementation and enhancing it’s search exploration ability, speed of con-
vergence and robustness.

Before describing the solution construction and evolutionary procedure for
CP-MOGA, We begin by defining important parameters for GA and formulating
the objective function for the TSP:

Parameters: In every GA we need to define the mutation probability Pm, the
initial population size n and the number of cities m.

Objective function: This is the goal we aim to achieve which is to find the
shortest path to visit all cities with the constraint that we visit every city once.
The distance is our measure and is computed between two cities from route
coordinates if not given directly. The distance between any two cities i and j
can be calculated using Eq. (1). After visiting all cities the total distance is the
solution to the TSP as shown in Eq. (2). We outline formulation of the objective
as follows

Given two cities i and j with coordinates (xi, yi) and (xj , yj), the distance
between them is given by

Di,j =
√

(xi − xj)
2 + (yi − yj)

2 (1)

As an example, to compute the objective function for a 10 city problem with
a solution represented by ABCDEFGHIJ . This Means a traveling salesman
goes from A to B, B to C, ... up to I to J and J back to A (A > B > C >
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D > E > F > G > H > I > J > A) the total distance of the path is given by
DAB + DBC + DCD + DDE + DEF + DFG + DGH + DHI + DIJ + DJA. For m
cities, the distance covered or path length is represented mathematically by the
Eq. 2.

D1−m = Dm,i +
m−1∑
i=1

Di,i+1 (2)

where D1−m is the total cost or distance to travel from city 1 to city m and back
to city 1.

To find the shortest path, we propose CP-MOGA with an evolutionary pro-
cedure outlined in the next section.

3.1 Initialization

For generalization and illustration purposes, a solutions is represented as an
array of non-repeating integers where each integer represents a city. To initialize
solutions, randomly generate a set of n non-repeating integer arrays each of size
m. For instance if we have 8 cities and a population size of 3, we will have three
different solution like ParentA and ParentB in Fig 1.

Fig. 1. Crossover and mutation for offspring generation in CP-MOGA

3.2 Crossover Operation

Crossover involves the exchange of gene sections e.g. [1,4] from ParentA to Par-
entB in Fig. 1 to form the offspring [1–9]. Two parents are needed for crossover
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(in some cases more than two parents are used). A roulette wheel [6] method is
used to select a pair of parents for crossover. A roulette wheel probability based
on the fitness or solution quality is computed and use for selection. In this study,
two methods are used to compute the fitness. The fitness of a member in both
of these methods is proportional to its position in the sorted population (top
position high probability). In the first approach, the probability of each member
is computed by Eq. (3)

F1(X
′
i) = β(1 − β)i−1, i = 1, 2, . . . , n (3)

where X
′
i is the ith individual in the population of n sorted members. β ∈ [0, 1]

is a fitness control parameter often chosen to be between 0.01 and 0.3.
The second fitness function formulation is as shown in Eq. (4)

F2(X
′
i) =

n − i − 1
n

, i = 1, 2, . . . , n (4)

After computing the fitness of individuals, the probability for an individual
to be selected for crossover is also needed and is computed with Eq. (5) using
the fitness values

Pi =
F (X

′
i)∑n

i=1 F (X ′
i)

, i = 1, 2, . . . , n (5)

where Pi and F (X
′
i) are the probability and fitness of member i. With a known

probability for every member, a roulette value is calculated for each individual
using Eq. 6.

PP i =
i∑

j=1

Pi, i = 1, 2, . . . , n (6)

the fitness calculations are such that if F1 is used, there is a high bias for
selecting fit individuals which is a good for faster convergence but might result
in stagnation in a local optima due to lack of diversity in parent selection. On
the other hand F2 gives all individuals in the population a slightly equal chance
for crossover selection which when used results diversity exploration but leads to
slow convergence. To balance the trade-off between convergence speed and diver-
sity, these two fitness methods are both used. From empirical results randomly
picking F2 or F1 in each generation works best.

In the crossover phase, two gene points CP1 and CP2 are randomly selected
while ensuring both points are not same. The minimum distance between the
two points can be set is the difference in positions between two points which is
|CP1−CP2|, in our case we set to 2. Each parent has three gene sections as can
be seen in Fig. 1 which would be used for crossover. For instance ParentA denoted
as [1–9] is clipped at gene points 3 and 5 producing [1,2,4,6,8], and [3,5,7,9]
individual genes to be used for crossover. same is the case with ParentB
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For ease of explanation the section between CP1 and CP2 will be referred
to as the middle section, from ParentA this is [1,4]. The gene after the mid-
dle section we refer to as the last section [3,5,7,9] and that before as the first
section [2,6,8] as shown in Fig. 1. To illustrate the crossover procedure for off-
spring generation proposed in this study, a 9-city problem is used. Let us say
the two individuals selected for crossover are ParentA and ParentB with their
chromosomes or path as shown in Fig. 1.

We start by selecting two points CP1 and CP2 using a uniform distribution
U(1,m−1) where m is the size of the problem or number of cities. After choosing
CP1 and CP2, the crossover procedure involving the two parents is as follows:

a. One gene sections of ParentA is randomly chosen
b. Elements (cities) of the chosen gene section from a are removed from ParentB
c. The chosen gene section from a is placed in the first section of ParentB

(Exploratory offsprings).
d. repeat a and b but this time the chosen gene section is placed in the last

section of ParentB (Exploitative offsprings).
e. repeat a and b, then a random point is chosen between the first and last city

genes of ParentB obtained in b and the chosen gene section from a placed in
it’s place (Exploratory and Exploitative offsprings).

f. The same procedure from step a to e but this time with the chosen section
from ParentB. This procedure generates 6 off-springs from two parents.

The procedure is illustrated in Fig. 1 and we can observe it’s fairly easy to
comprehend and implement in practice.

3.3 Mutation Operation

After crossover, mutation is used to make minor variations to some of the off-
springs generated. Every offspring is mutated with a given mutation probability
Pm. So for a total of 3n offsprings in the population, about Pm ∗ 3n of them
undergo mutation. For a chosen mutatable off-spring, mutation is carried out as
follows:

a. Two mutation points are chosen the same way it’s done for crossover
b. The middle section is flipped or reversed

After mutation, the new population is made up of the offsprings and q eli-
tists’ members. The pseudo code of the newly proposed algorithm is outlined in
Algorithm 1. We the pick a number of offspring U(n, n + 10) plus q elites to the
next generation. The number U(n, n+10) proved to result in faster convergence
in higher dimension from empirically results and this is because more diverse
offspring are included in the offspring pool.
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4 Simulation Experiments

To verify the performance of the proposed algorithm, we run simulations on
twelve instances of TSP taken from the TSPLIB library and compare results
with MOGA and GA. We choose these two algorithms because MOGA built from
BGA and our proposed algorithm advances MOGA. Note that in the presented
results Figures and Tables CP-MOGA is written in short as CPGA in order for
it to fit.

The test problems are grouped into four classes based on their difficulty
(number of cities or tours) as seen in Table 1, 2, 3 and 4. As can be noticed, the
problem dimension is the integer number it’s name.

Table 1. Results for Group 1

Problem burma14 bays29 att48

BGA MOGA CPGA BGA MOGA CPGA BGA MOGA CPGA

Mean 30.885109 30.891714 30.878504 9154.974872 9201.661804 9115.258268 34632.91129 34874.43995 34348.41482

Worse 31.208766 31.208766 30.878504 9541.735863 9586.436729 9396.474986 35516.73784 36955.82849 35336.64984

Best 30.878504 30.878504 30.878504 9074.148048 9074.148048 9074.148048 33600.56146 33523.70851 33523.70851

Percentage
mean error

0.00046237 0.00064718 0 0.100900881 0.11352624 0.066876969 0.47034421 0.634515085 0.412513196

Average
time

0.581897 0.771466 0.521452 1.13729 1.369196 1.197614 3.243276 3.084515 3.212694

Average
number of
iteration

49.54 39.6 18.08 176.94 101.56 92.44 298.58 227.98 243.02

Table 2. Results for Group 2

Problem eil51 berlin52 gr96

BGA MOGA CPGA BGA MOGA CPGA BGA MOGA CPGA

Mean 447.460878 451.449726 441.822101 8033.954236 8046.445949 7898.289124 545.487584 551.7375 537.80619

Worse 469.357385 475.366105 451.738011 8501.189585 8618.048791 8322.099894 582.87376 590.35064 558.917249

Best 433.732389 433.832676 428.981647 7544.365902 7598.442341 7544.365902 527.661487 516.484663 521.794053

Percentage
mean error

0.0708224 0.09125721 0.05122501 0.235724736 0.200797684 0.212895879 0.13415381 0.19275797 0.10192889

Average
time

2.679047 2.364255 2.562738 2.936803 3.666442 4.298606 12.169715 16.790744 15.735424

Average
number of
iteration

363.02 242.58 298.3 334.94 259.44 279.58 824.76 727.84 744.04
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Table 3. Results for Group 3

Problem krob100 u159 ch150

BGA MOGA CPGA BGA MOGA CPGA BGA MOGA CPGA

Mean 23888.48519 23955.85733 23375.74848 54245.43587 51892.42215 49849.72113 7893.345588 7846.609787 7480.838388

Worse 25135.8973 25016.67681 24421.49431 57773.00632 55904.57708 52558.53654 8393.746121 8287.17289 7829.220716

Best 22934.66166 22973.86279 22710.56018 50947.77786 47515.64792 47451.98712 7539.195445 7466.068508 7193.629826

Percentage
mean error

0.523916745 0.457455586 0.431830332 1.673775513 1.933515641 1.08524162 0.214324007 0.191285928 0.145726143

Average
time

10.765955 16.833239 14.43211 18.53412 33.267559 33.932948 17.112645 32.352859 33.106483

Average
number of
iteration

823.56 765.2 723.2 1000 1000 1000 1000 1000 1000

Table 4. Results for Group 4

Problem att532 pr1002 pcb3038

BGA MOGA CPGA BGA MOGA CPGA BGA MOGA CPGA

Mean 319153.683 280486.3579 253281.8309 2.00E+06 1.75E+06 1.58E+06 2.75E+06 2.46E+06 2.34E+06

Worse 330378.2853 297752.2516 262105.8877 2.01E+06 1.79E+06 1.62E+06 2.78E+06 2.49E+06 2.35E+06

Best 307877.2744 272749.4699 245884.0903 1.98E+06 1.71E+06 1.55E+06 2.72E+06 2.42E+06 2.32E+06

Percentage
mean error

7.726524021 9.199652098 5.248380021 9.74190557 27.0083722 24.00189996 25.01461661 24.79822852 11.58194729

Average
time

115.748354 209.312204 200.086791 379.222364 628.966004 627.628679 2769.984054 5097.698321 6337.731706

Average
number of
iteration

1000 1000 1000 1000 1000 1000 1000 1000 1000

From the experiments, we observe CP-MOGA outperforms both BGA and
MOGA on all TSP instances as shown in Tables 1, 2, 3 and 4. It converges faster
than BGA and MOGA on majority of the problems and is more robust with
the lowest error rate on all problems. The running time is comparable to that of
MOGA and BGA on some instances, which is due to the number of offsprings
generated in one generation.

For Group 1 problems, CP-MOGA outperforms its counterparts on all fronts,
consistently finding the best solution with a very small error margin. The number
of iterations needed to find the optimal solution is shorter and thus reducing the
run time. In Group 2 the performance is overall comparable to that of group
1 with a slight increase in error rate. The increase is as a result of an increase
in problem dimension. In this group, the algorithm does not find the optimal
solution but comes very close. Group 3 problems have a significantly higher size
and the optimal solution is ultimately difficult to find but the proposed algorithm
performs best. As the problem size increases above 500 in Group 4 instances,
all algorithms struggle to find an optimal solution. In this case, the algorithms
are not efficient enough. This problem can easily be tackled by including a local
search method in the algorithm.

In summary, the proposed CP-MOGA is efficient in exploration and exploita-
tion and converges faster and to a better solution than compared to BGA and
MOGA on all 12 instances of the TSP. The algorithm is also more robust in its
solutions with reduced error rate and smaller number of generations taken to
find better solutions.
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5 Conclusion

In this study, a CP-MOGA is presented with a novel copy and paste crossover
operator. The proposed crossover operator results in the generation of six off-
springs from two parents. The operator enhances diversity and exploration
thereby increasing competitiveness for survival of the fittest among offsprings
in a generation. The algorithm is tested on twelve instances of TSP showing
better performance in terms of error rate, solution quality, and convergence
speed. The Strategy introduced in this study is highly efficient in problems of
dimensions less than a hundred and like most optimization algorithms requires
further improvement for instanced with high dimension though it still performs
better than MOGA and BGA. In higher Dimensional problems, the algorithm
requires a longer running time and there is a significant increase in error rate
along with premature convergence. In future studies this problems will be han-
dled by introducing a local search method or other efficient repair methods.
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Abstract. Online intelligent tutoring systems have developed rapidly
in recent years. Analyzing educational data to help students personal-
ize learning has become a research hotspot. Knowledge Tracing (KT)
aims to assess students’ changing cognitive states of skills by analyzing
their performance on answers. As a representative KT model, Bayesian
Knowledge Tracing (BKT) has good interpretability due to the use of
the Hidden Markov Model. However, BKT needs to model students’ per-
formance on different skills separately. If BKT simultaneously traces the
cognitive states of students’ multiple skills, its time complexity increases
exponentially with the number of skills. Therefore, we introduce a genetic
algorithm to solve this problem and propose a Multi-skills BKT. This
approach allows the BKT model to handle multiple skills simultane-
ously. Experiments on real datasets show that the model has a significant
improvement in prediction performance over the BKT.

Keywords: Bayesian knowledge tracing · Multiple knowledge skills ·
Genetic algorithm

1 Introduction

Various E-learning systems are emerging today, such as large open online courses
and intelligent tutoring systems [21]. The booming development of online edu-
cation has generated a large amount of educational data. Analyzing educational
data to help personalize learning or teaching has become a research hotspot [1].
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Fig. 1. Schematic diagram of the BKT model. (a) The framework of BKT. (b) The
relationship between hidden states (P (T )) and the relationship between hidden states
and observation states (P (G), P (S)) [4].

Knowledge Tracing (KT) aims to trace the changes of students’ cognitive
states by analyzing the dynamic data generated by students in the process of
answering questions [10,12]. KT can trace students’ cognitive states and predict
students’ performance in future responses, which has important research signif-
icance and application prospects [13,18]. Existing KT models can be roughly
divided into two categories, i.e., probability-graph-model based methods and
deep-learning-based methods [10]. The representative model of the former is
BKT proposed by Corbett et al. [4]. BKT uses Hidden Markov Models (HMM)
[2] to model the KT task. The Deep Knowledge Tracing (DKT) model proposed
by Piech et al. [20] in 2015 applies deep learning methods to KT task. Currently
BKT has better interpretability compared to DKT.

The schematic diagram of the BKT is shown in Fig. 1, which uses HMM to
model students’ behavior [4]. A student’s cognitive state at time t, i.e., P (Lt), is
considered to be only related to its cognitive state at time t − 1. Here, the con-
cept “cognitive state” refers to the degree of mastery of knowledge skills, which
is a hidden variable. Only two cognitive states, i.e., known or unknown, are con-
sidered in BKT. And students’ performance (“right” or “wrong”) in answering
exercises at time t, i.e., at, is a observable variable and is considered to be only
related to their cognitive state [4]. The EM algorithm [23] is used to optimize
the BKT parameters, including P (L0), P (T ), P (S) and P (G). And the com-
plexity of Expectation-Maximization algorithm (EM) increases linearly with the
number of hidden states [9].

However, the number of hidden states is exponentially related to the num-
ber of knowledge skills. Therefore, the existing BKT models optimized by the
EM algorithm can only assume that each exercise only examines one knowl-
edge skill. The reason is that if each exercise involves multiple knowledge skills,
the time complexity will increase exponentially with the number of knowledge
skills, resulting in unacceptable solution times. In fact, in a series of questions
answered by students, the knowledge skills examined by each question may be
different, and even one question may examine several knowledge skills. We call
it “multi-skills knowledge tracing problem”.
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Fig. 2. The motivation of this study.

Although BKT can use the following strategies to solve problems with mul-
tiple knowledge skills, each strategy has its own shortcomings.

– Strategy 1 (Treat multiple knowledge skills as a whole): Regard all knowledge
skills involved in an exercise as a new coarse-grained knowledge skill. We call
this strategy “coarse-grained skill”, which cannot distinguish the differences
between different knowledge skills.

– Strategy 2 (Model skills separately): Use BKT to model each knowledge skill.
The original data needs to be regrouped by knowledge skills. The time interval
after processing is different from the original data.

– Strategy 3 (Increase the number of hidden states): If BKT wants to trace
students’ cognitive states of K knowledge skills at the same time, the number
of hidden states (MBKT ) will be 2K . Then, the BKT’s time complexity is
exponentially correlated with the number of knowledge skills K.

To solve the above problems, we propose multi-skills BKT model. We adjust
the structure of BKT first. Instead of directly saving the state of students’ over-
all cognition, the current cognition is indirectly calculated using the students’
cognition state of each knowledge skill. Then, to address the problem of exponen-
tial explosion when tracing multiple skills simultaneously, the genetic algorithm
(GA) [8] is introduced to optimize the model. The motivation of this study is
summarized in Fig. 2.

Our contributions are as follows:

– We take the advantage of GA to solve the exponential explosion problem in
the optimization process when BKT facing the multi-skills scenarios. There-
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fore, The model broadens the practical application potential of the BKT
model.

– Experiments show that the models have achieved better prediction perfor-
mance in the multi-skills scenarios.

The structure of this paper is distributed as follows. The second section
introduces the related work, mainly including the notations, knowledge tracing
tasks, and the details of the traditional BKT model. In Sect. 3, the multi-skills
BKT model is proposed. In Sect. 4, the experiments are discussed. Finally, the
conclusion is presented in Sect. 5.

2 Related Work

2.1 Notations

For clarity, notations are listed in Table 1.

Table 1. Notations

Notations Descriptions

Qt Question answered at time step t;

at The student’s performance at time step t;

yt The prediction score at time step t;

P (Lt) The cognitive state of student at time step t;

P (T ), P (S), P (G) Transition, slipping and guessing probabilities, respectively;

MBKT The number of hidden states (i.e., unknown, know) in the
BKT, the value is 2;

VBKT The number of observable states (i.e., wrong, right) in the
BKT, the value is 2;

KCj The jth knowledge skill;

K The number of knowledge skills;

Ct
j The student’s cognitive state of the jth knowledge skill at

time step t;

Wj The weight of the jth knowledge skill in the prediction score;

Pe(Lt) The cognitive state at time step t after reassessing based on
student’s performance at time step t;

2.2 Knowledge Tracing

KT aims to obtain the students’ cognitive state by analyzing students’ perfor-
mances. By knowledge tracing, domain experts can predict the performances of
students in future learning behaviors, and provide intelligent recommendations
for teachers and students.

Many models have been designed to solve KT tasks, mainly including
Bayesian-method based models and deep-learning based models [10]. BKT is
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a representative of KT based on the Bayesian method, which will be described
in detail in Sect. 2.3. With the development of online education platforms, the
KT model and its variants have received extensive attention. Pardos et al. [19]
introduced the item difficulty into the KT model, and proposed KT-IDEM. Con-
sidering the hierarchical structure and relationship between different skills, Käser
et al. [11] used DBN to model students. Liu et al. [12] proposed the FBKT and
T2FBKT models, introducing fuzzy theory into the BKT to handle continuous
scoring scenarios. DKT proposed by Piech et al. [20] is a representative of KT
based on the deep learning method. Nagatani et al. [16] improved the DKT
model, considering the forgetting behavior of students to model and proposed
the DKT with forgetting. A series of interpretable methods inspired by cogni-
tive psychometrics are introduced to knowledge tracing, and attentive knowledge
tracing (AKT) is generated [7]. Vie et al. [22] used factorization machines (FMs)
to solve KT tasks. Yang et al. [24] proposed a graph-based KT model named
GIKT to solve the multi-skills problem and data sparsity.

2.3 Bayesian Knowledge Tracing

BKT [4] uses the hidden Markov model (HMM) to model the students’ learning
data. In the BKT, whether a student can answer the question correctly mainly
depends on the student’s cognitive state. For a question, students may not master
the knowledge skill but guess the correct answer (called “guessing”), or they
may master the knowledge skill but get the wrong answer because of careless or
other factors (called “slipping”). In summary, the relationship between hidden
states (P (T )) and the relationship between hidden states and observation states
(P (G), P (S)) are shown in Fig. 1 and described as follows.

At time step t, the formulas for calculating the student’s performance are as
follows [4]:

P (yt = right|Lt) = P (Lt)(1 − P (S)) + (1 − P (Lt))P (G) (1)

P (yt = wrong|Lt) = P (Lt)P (S) + (1 − P (Lt))(1 − P (G)) (2)

KT estimates the students’ current cognitive states based on the known perfor-
mance of the students. When the answer is right or the answer is wrong, the
updated formulas correspond to Eq. (3) or Eq. (4), respectively [4]:

Pe(Lt) =
P (Lt)(1 − P (S))

P (Lt)(1 − P (S)) + (1 − P (Lt))P (G)
(3)

Pe(Lt) =
P (Lt)P (S)

P (Lt)P (S) + (1 − P (Lt))(1 − P (G))
(4)

The assumption of the BKT model is that after students complete the exer-
cises, their cognitive state can change from unknown to known; and that once
a student has mastered a certain knowledge component, they will not forget it
[16]. Therefore, the transfer formula of the student’s cognitive state at the next
moment is Eq. (5) [4]:

P (Lt+1) = Pe(Lt) + (1 − Pe(Lt))P (T ) (5)
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Fig. 3. Multi-skills BKT. The KC nodes in the “problem information” box represents
the knowledge skills involved in the current question Q. The boxes marked with the
same color in the “Predicted Score Module” box represent the students’ mastery of
the corresponding knowledge skills. P (Lt−1) denotes the cognitive state at time step
t − 1, which is inferred from the time step t − 2. And Pe(Lt−1) is the cognitive state
after reassessment based on the student’s performance at time step t− 1. (Color figure
online)

3 Proposed Model

The overall architecture is shown in Fig. 3. To deal with the multi-skills KT tasks,
our model introduces the “cognitive states update module” and “predictive score
module” based on the BKT. To solve the “exponential explosion problem” of the
parameter optimization algorithm caused by multiple skills, the model introduces
a genetic algorithm.

3.1 Cognitive States Update Module

There are two cognitive states for each knowledge skill, named “known” and
“unknown”. At time step t, the overall cognitive state of the student can be
expressed as P (Lt) = P (Ct

1, C
t
2, ..., C

t
K). From time step t to time step t+1, the

process of student’s cognitive state transfer can be described as Eq. (6):

P (Lt+1) = P (Lt) × P (Lt+1|Lt) = P (Lt) × P (Ct+1
1 , ..., Ct+1

K |Ct
1, ..., C

t
K). (6)

Under the assumption that each knowledge component is independent of each
other, the above formula can be reduced to Eq. (7):

P (Lt+1) = P (Lt) ×
K∏

i=1

P (Ct+1
i |Ct

i ). (7)

In the process of answering questions, students’ cognitive states will change over
time. We should evaluate the student’s cognitive state according to his/her per-
formance at each time step. As for the knowledge skills that are not examined
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in the current question, only the students’ forgetting effect on them is consid-
ered. Then, we update the student’s cognitive state for the jth knowledge skill
according to Eq. (8):

P (Ct+1
j ) = Pe(Ct

j) × (1 − Pj(F )) + (1 − Pe(Ct
j)) × Pj(T ). (8)

3.2 Prediction Score Module

For the prediction score task of multiple knowledge skills, we first obtain the set
of knowledge skills KCin involved in the question and use Eq. (1) to separately
obtain the predicted probability of correct answer Preds. A weighted summation
of the predictions for the knowledge skills involved yields a final prediction score.

According to the ideas mentioned above, the prediction score formula for
multiple knowledge skills is as follows:

P (yt = right) =
∑

j∈KCin

Wj

[
P (Ct

j) × (1 − Pj(S)) + (1 − P (Ct
j) × Pj(G)

]
, (9)

where
∑

Wj = 1 and j ∈ KCin.
For the weight of each knowledge skill Wj , we have two strategies:

– Strategy 1 (Average weights): It is considered that each knowledge skill has
the same weight, that is Wj = 1

NUM(KCin)
, j ∈ KCin;

– Strategy 2 (Evolution weights): Wj is generated by genetic algorithm opti-
mization.

3.3 Parameter Optimization

BKT will face the problem of “exponential explosion” when processing the multi-
skills knowledge tracing task (due to the EM algorithm). Therefore, our model
introduces a genetic algorithm to optimize model parameters.

As shown in Fig. 4, the chromosome coding in our model includes P (L0),
P (T ), P (S), P (G), P (F ) and W (Optional) for each knowledge skill. These
parameters are all in the range of [0, 1], so we choose the real number encoding
method. Each individual in the population is represented using a vector of length
5 ∗K or 6 ∗K (with parameter W ), where K is the number of knowledge skills.

To evaluate the quality of individuals in the population, we use the AUC
of the prediction results on the data set as the fitness value of the individual.
For the evolution of the population, we use the “tournament selection” strategy
to obtain the breeding population. According to the characteristics of the task,
we choose the “simulated binary crossover” [5] and the “bounded polynomial
mutation” [6] as the crossover and mutation operators, respectively, and then
obtain the next generation population.
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Fig. 4. The chromosome coding in our model. KC in the figure represents the param-
eters of each knowledge skill, and individual represents the chromosome encoding of
the individuals in the population.

4 Experiments

4.1 Setup

Herein, we introduce the datasets, the parameter settings, the metrics, and the
compared models.

Datasets. We use two real-world datasets in the experiments. The datasets
come from the 2010 KDD Educational Data Mining Challenge. Details are as
follows:

– Algebra I 2005–2006, denoted as Algebra05 1.
– Bridge to Algebra 2006–2007, denoted as Bridge06 2.

We first cleaned the data, removed the data without knowledge skill information,
and removed the data with less than 15 steps in the student’s response time step.
The information of two datasets after preprocessing is shown in Table 2:

Table 2. Dataset statistics.

Dataset #students #skills #problems #interaction

Algebra05 545 112 1083 545969

Bridge06 1111 493 17837 1553671

Parameters. The parameters of the genetic algorithm we use are as follows, and
other parameters are consistent with the original BKT paper. The population
size PopSize is set to 100. The individual crossover and mutation rates change
dynamically with evolutionary generations according to Eq. (10):
1 Stamper, J., Niculescu-Mizil, A., Ritter, S., Gordon, G.J., & Koedinger, K.R. (2010).

Algebra I 2005–2006. Challenge data set from KDD Cup 2010 Educational Data Min-
ing Challenge. Find it at http://pslcdatashop.web.cmu.edu/KDDCup/downloads.
jsp.

2 J. Stamper, A. Niculescu-Mizil, S. Ritter, G. J. Gordon, and K.R.Koedinger,
Bridge to Algebra 2006–2007. Challenge data set from KDD Cup 2010 Educational
Data Mining Challenge. Find it at http://pslcdatashop.web.cmu.edu/KDDCup/
downloads.jsp.

http://pslcdatashop.web.cmu.edu/KDDCup/downloads.jsp
http://pslcdatashop.web.cmu.edu/KDDCup/downloads.jsp
http://pslcdatashop.web.cmu.edu/KDDCup/downloads.jsp
http://pslcdatashop.web.cmu.edu/KDDCup/downloads.jsp
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0.9 − (0.9 − 0.4) ∗ gen

MaxNumGens
, (10)

where gen represents the current evolutionary generation.

Metrics. To show the effectiveness of the model, we use AUC (area under
curve) as the metric of both our model and the compared models. AUC is an
evaluation index to measure the performance of the binary classification model,
which indicates the probability that the positive sample value correctly predicted
by the classifier is greater than the negative sample value.

Compared Models. To demonstrate the feasibility of the proposed model, the
compared models are listed as follows:

– BKT [4]: The traditional Bayesian knowledge tracing using the EM algorithm
to optimize the parameters;

– GA-BKT: Use GA to optimize the parameters of traditional BKT;
– Multi-skills BKT (E-W): Our model with the “Evolution weights” strategy;
– Multi-skills BKT (A-W): Our model with the “Average weights” strategy.

4.2 Comparison Experiments

In this paper, the experiments adopted the method of five-fold cross-experiment
verification to reduce the accidental error of the results.

Table 3. Comparison of prediction performance (AUC)

Model Algebra05 Bridge06

BKT 0.634 0.621

GA-BKT 0.642 0.667

Multi-skills BKT (E-W) 0.680 0.650

Multi-skills BKT (A-W) 0.684 0.656

Table 3 shows that GA-BKT outperforms the traditional BKT. For example,
on the dataset Bridge06, the AUC metric of GA-BKT is 0.667, while the AUC
metric of BKT is 0.621. This shows that optimizing the parameters of BKT with
GA is effective. Moreover, Table 3 and Fig. 5 also show that two variants of the
Multi-skills BKT (E-W, A-W) also outperform BKT in performance. Compared
with the traditional BKT, the Multi-skills BKT improves the AUC by about 0.05
and 0.03 on these two datasets, respectively. It shows that our proposed method
to solve the multi-skill KT task has a certain effect. On the Algebra05 dataset,
multi-skills BKT improves the AUC by about 0.04 compared to GA-BKT. But
it drops by about 0.01 on the Bridge06 dataset. It may be because there are few
exercises involving multiple knowledge skills in this dataset, and these questions
involving multiple knowledge skills have a high similarity.
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Fig. 5. Convergence plots of the AUC metric for the three models on the Algebra05
training set.

5 Conclusion

Personalized learning and teaching based on analyzing educational data has
received extensive attention. As a representative KT model, BKT has good inter-
pretability. Existing BKT models use the EM algorithm to optimize parameters,
and the time complexity of the algorithm increases exponentially with the num-
ber of knowledge skills. Therefore, most existing BKT models assume that each
exercise examines only one knowledge skill. In fact, a single exercise might exam-
ine multiple knowledge skills, a situation that is difficult for traditional BKT to
handle. Therefore, we adjust the structure of the BKT, and introduce GA into
the model to solve the problem that the time complexity of BKT increases expo-
nentially with the number of knowledge skills. Finally, the experiments demon-
strate the proposed multi-skills BKT model achieves good performance and the
genetic algorithm is beneficial for multiple knowledge skills KT scenarios.

In the future, we will explore more possibilities to combine genetic algorithms
with KT to expand the application scenarios of KT. First, we will use more
datasets to demonstrate the effectiveness of our method. Then we will try more
genetic algorithms, such as the species-based particle swarm optimization [14,
15], the memetic algorithm [17], etc. Fourth, Long-term KT (e.g. cross-semesters
KT) can be viewed as a dynamic constrained optimization problem [3] to be
studied.
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Abstract. The real-world optimization task has long been viewed as a
noteworthy challenge owing to its enormous search space. To deal with
this challenge, evolution algorithm, especially differential evolution algo-
rithm, attracts our attention owing to the excellent robustness. However,
for traditional evolution algorithm, how to determine suitable parameters
and strategies is a troublesome problem. To deal with the question the
reinforced event-driven evolutionary algorithm (REDEA) based on dou-
ble deep q-network is proposed which embed the double deep q-learning
network into differential evolution algorithm with an event-driven con-
troller. To verify the feasibility and superiority of our proposed algorithm,
CEC 2013 test suits are utilized and four state-of-arts evolutionary algo-
rithms are involved as the comparisons. The experimental results present
that the proposal algorithm obtains comparable capability in most func-
tions.

Keywords: Evolutionary algorithm · Double deep q-network ·
Event-driven · Differential evolution

1 Introduction

Optimization tasks are of high importance for real life. Evolutionary algorithms
(EA) are efficient approaches for optimization, such as genetic algorithm [1],
particle swarm optimization algorithm [2], ant colony algorithm [3] bacterial
foraging optimization algorithm [4] etc. Some of these methods have been well
applied in the industry. Reinforcement Learning(RL) is a kind of machine learn-
ing method. RL has been applied in many industries such as electricity [5],
wireless communications [6], manufacturing scheduling [7] and other fields. The
aim of RL is to train an agent which can perform the right action under differ-
ent states. Unlike supervised learning or unsupervised learning, the RL directly
c© Springer Nature Switzerland AG 2022
Y. Tan et al. (Eds.): ICSI 2022, LNCS 13344, pp. 294–304, 2022.
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interacts with the problem or environment. It learns from the interactions with
the environment instead of from training data. For optimization, the RL can
compare different solutions and choose one of them based on state and some
work has been applied to real world [8,9]. Deep reinforcement learning (DRL)
is the combination of RL and deep learning. Since the deep q-network (DQN)
was proposed in [10], the DRL has created a lot of buzz around RL. Comparing
with RL, with neural network and based on pre-training, DRL perform better
in the problem with high dimension.

EA performs excellent in some complex NP-hard optimization tasks. In most
circumstances, the parameter setting and strategy selection have significant influ-
ence on the efficiency of EA. Once problem is altered slightly, the EA will have
to be modified. At the same time, RL or DRL can make decision under different
states. Recently, some scholars began to focus on the combination between EA
and RL to improve performances of the algorithm. The combined algorithms
can be splinted into two categories. The first one trains the agent using online
information. [11] used the theory of multi-armed Bandit to learn the selection of
strategies online. [12] merged SCGA based on GA and reinforcement learning,
then tested it on traveling salesman problem. [13] proposed a multi-objective
DE algorithm using reinforcement learning strategies, which uses information
entropy to analyze the objective function and determine the optimal probability
distribution of the algorithms search strategy set. [14] composed the bacterial
foraging optimization algorithm [4] and q-learning [15] to improve the search
efficiency and balancing local and global search. These algorithms belong to
online learning, which means they get the information no more from the itera-
tion itself. And the second one takes the strategies that train the agent offline
first and apply to the question un-trained to validate. [16,17] took the DRL
methods. They both trained the agent on training function set offline first and
then applied to the testing function set. Comparing with the online method,
the offline training methods will make the decision more accurate according to
the training phase. But the online strategies can make use of the information
directly from the process to solve the problem.

The idea of event-driven comes from networked control area [18]. In event-
driven algorithm, the event-driven mechanism will be designed to detect the
occurrence of the interested situation. Then, corresponding services will be pro-
vided to satisfy specific destination. Based on this idea, the parameter controller
is designed to improve the parameter design process. In this paper, in order to
overcome the drawbacks of DE and utilize benefits of DRL the reinforced event-
driven evolutionary algorithm (REDEA) was proposed. Firstly, to enhance the
search ability and decrease the impact of single strategy which means only one
mutation strategy will be used in the iteration process, we associate DE with
DRL to formulate a strategy selector. Secondly, considering the dimension factor
of the problem and the change of fitness value in the iterative process, an event
driven parameter controller is designed.

This paper is organized as follows. In Sect. 2, we introduce differential algo-
rithm and double deep q-network. In Sect. 3, the reinforced event-driven evolu-
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tionary algorithm (REDEA) proposed. Section 4 shows the experimental results
and analysis, and the conclusions and discussion are presented in Sect. 5.

2 Pre Knowledge

2.1 Differential Evolution Algorithm

Differential evolution (DE) algorithm was proposed by [19,20]. It is an evolu-
tionary algorithm with the advantage of fast convergence and little parameters.
The typical DE includes four elemental steps - initialization, mutation, crossover
and selection, and only the last three steps are repeated in DE iteration process.
As a global optimum algorithm, DE begins with a randomly population X.

Mutation. After initialization, DE creates a donor mutant vector V
(t)
i corre-

sponding to each population member X. Usually, the mutation strategy of DE
can be denoted as DE/M/N. M means which individual in the population will be
chosen to manipulate and N is the number of subtract vector used in mutation
process. Below are four most frequently referred mutation strategies:

DE/rand/1: V
(t)
i = X

(t)

Ri
1

+ F (X(t)

Ri
2

− X
(t)

Ri
3
) (1)

DE/rand/2: V
(t)
i = X

(t)

Ri
1

+ F (X(t)

Ri
2

− X
(t)

Ri
3
) + F (X(t)

Ri
4

− X
(t)

Ri
5
) (2)

DE/best/1: V
(t)
i = X

(t)
best + F (X(t)

Ri
1

− X
(t)

Ri
2
) (3)

DE/current to pbest/1: V
(t)
i = X

(t)
pbest + F (X(t)

Ri
1

− X
(t)

Ri
2
) (4)

The X
(t)
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1
, X

(t)

Ri
2
, X

(t)

Ri
3
, X

(t)

Ri
4

and X
(t)

Ri
5

are mutually exclusive integers casually

chosen from scope [1, Np] at tth generation. The X
(t)
best is the individual which

has the best fitness value in the whole population of tth generation. The X
(t)
pbest

is the top individual in the population. The scaling factor F is a positive control
parameter used to scale different vectors.

Crossover. After mutation, crossover operator will be performed. Binomial
crossover is one of the frequently used crossover operators. The scheme can be
expressed as

u
(t+1)
i,j =

{
v
(t)
i,j , if j = K or randi,j [0, 1] ≤ Cr

x
(t)
i,j , otherwise

(5)

where Cr is the crossover rate, K is a randomly chosen number in {1, 2, , d},
v
(t)
i,j and x

(t)
i,j is respectively jth dimension of Vi

(t) and Xi
(t), and randi,j [0, 1] is

a uniform random number in [0, 1].
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Selection. A greedy selection strategy will be used:

x
(t+1)
i =

{
u
(t+1)
i if f(u(t+1)

i ) < f(x(t)
i )

x
(t)
i otherwise

(6)

where f(u(t+1)
i ) and f(x(t)

i ) represent the fitness value of u
(t+1)
i and x

(t)
i corre-

spondingly.

2.2 Double Deep Q-network

The deep q-network (DQN) is one of DRL. It was proposed by [10] in 2016.
It was further extended by double deep q-networks (DDQN) [21] to solve the
problem of overestimating the Q value. The computing method of DQN can be
expressed by:

yj =
{

Rj , is endj is true
Rj + γ maxa′ Q′(φ(S′

j), A
′
j , w

′), else
(7)

where yj and Rj is the target Q value and the reward of jth sample, γ is atten-
uation factor, Q′ is the predicted Q value, φ(S′

j) is eigenvectors of S′
j , A′

j is
jth action set, w′ is parameter of objective q-network, is endj is termination
condition, and a′ is the action selected from A′

j by ε−greedy method.
Although two Q networks are used, the calculation of yj is still obtained by

greedy method. For DDQN, it is no longer directly to find the maximum Q value
in each action through the target Q network. The movement of the maximum Q
value was found first, then this selected action amax(S′

j , w) was used to calculate
the target Q value in the target network.

yj = Rj + γQ′(φ(S′
j), arg max

a′
Q(φ(S′

j), a, w), w′) (8)

3 Reinforced Event-Driven Evolutionary Algorithm

3.1 Framework of the REDEA

The RL has five main components, that is agent, environment, action, reward
and state. The agent chooses action a from actions set A to perform in the
environment. Then it will update the policy based on the reward and new state
S′ that the environment returned from the network.

The aim is to train an agent which can choose a mutation strategy under
different states. Obviously, the action of agent is selecting mutation strategy for
every individual x

(t)
i at each generation. The environment is DE itself. DE will

take the mutation strategy from the agent and implement it for every individual,
then return the state and reward to the agent.

The Reward R is calculated by equation (9) where foptimum means the opti-
mal value of the test problem.

R = max
{

f(xi) − f(ui)
f(ui) − foptimum

, 0
}

(9)



298 T. Zhou et al.

The State S contains the following features:

– Fitness change: f(xi)− fbestsofar, the change of fitness value between the ith
solution of the population and the best value found up to this step in a single
run.

– Stagnation time: numbers of iteration that the f(xi)bestsofar remain the same.
– Iteration stage: iteration

iterationmax
, the ratio of iteration in the iterationmax.

– Distance: xi − xj , the distance of ith solution and a random solution in the
population.

The Algorithm 1 describes the process of REDEA.

Algorithm 1 REDEA

Require: Iterative wheel number T , state feature dimension N , action set A,
step length α, attenuation factor γ, exploration rate ε, current q-network Q,
target q-network parameter update frequency C, the number of training func-
tions U .
Initialize DE(F,Np,Cr)
Initialize value Q corresponding to state S and actions A randomly
Initialize value Q′ corresponding to state S and actions A randomly
for t from 1 to T do

Initialize X0 = [x1, x2, xNp] randomly
repeat

for i from 1 to Np do
if rand(0.1) < ε then

randomly choose action at from actions set A
else

select at = amax(S′
j , w)

end if
Apply at to xt generate vt
Do binomial crossover on vt and xt to generate ut

Evaluate ut and compare with xt

end for
Calculate and return the Reward Rt and State S′ and φ(S′)
if t mod C = 1 then

Update W = W ′

end if
until N < MAXNFE or optimum has been reached

end for
return W

3.2 Event-Driven Parameter Control

The control parameter scale factor F and crossover rate Cr perform huge impact
on the iteration process. Problems have their unique features, thus, the best
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choice of the two parameters for different questions is not the same. One of
the most important features is the dimension of target function. The objective
function with higher dimensions require more exploration in the searching space.
On the contrary, the one with lower dimensions needs more concentration on
exploitation.

To increase the impact of different strategies chosen in the iteration process,
we propose the event-driven parameter control. It will determine the parameter
according to the specific strategy determined by dimension of questions and the
fitness value from iteration process.

Crossover Rate Cr. For Cr, according to the observation of the experiment,
when the dimension of objective function is more than 10. The value for every
individual in the population will change according to the following scheme

Cr
(t+1)
i =

{
Cr

(t)
i , f(x(t+1)

i ) ≤ f(x(t)
i )

randn[0.5, 0.1], otherwise
(10)

Here, randn[0.5, 0.1] is a normal distribution of which the means is 0.5, and
the standard deviation is 0.1. For minimization problems, when the fitness value
of (t + 1)th generation is bigger than the tth generation, the Cr will pick a new
value from randn[0.5, 0.1].

Scale Factor F . For rand mutation operators, F will follow this scheme where
NFE and MAXNFE respectively represent the number of evaluation and max
number of evaluation

F
(t+1)
i =

⎧⎨
⎩

1.2Fp, NFE < 0.2MAXNFE
0.8Fp, NFE < 0.6MAXNFE
0.2Fp, NFE < 0.8MAXNFE

(11)

For best/pbest mutation operators, F will be updated following this scheme

F
(t+1)
i =

⎧⎨
⎩

0.2Fp, NFE < 0.2MAXNFE
0.8Fp, NFE < 0.6MAXNFE
1.2Fp, NFE < 0.8MAXNFE

(12)

Fp is the initial scaling factor. The decrease on rand mutation will increase the
exploitation efficiency at first. With the increment of iteration, the disturbance
is decreased to focus more on exploitation. The strategy for best/pbest mutation
operators will perform the opposite effect.

4 Experiments

4.1 Experimental Details

The proposal REDEA algorithm was tested on the CEC 2013 benchmark con-
strained optimization problems with 10D, 30D, where D represents the dimen-
sion of questions. (f1 −f5) is uni-modal function. (f6 −f20) is basic multi-modal
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function and (f21 − f28) is composition function. 28 testing functions are sepa-
rated into training function sets which are (f1 − f20) and testing function sets
(f21 − f28). We compared REDEA with typical DE [20] and the following state-
of-the-art DE algorithms.

SaDE [22]: The classical adaptive DE method. In SaDE trail vector genera-
tion strategies and their associated control parameter values are self-adapted by
learning from the past.

JADE [23]: The classical adaptive DE method. JADE proposed the DE/
Current-to-pbest/1 mutation strategy firstly.

LSHADE [24]: The TOP3 of the bound constraint competition of CEC 2014
which further extends SHADE [25] with linear population size reduction.

The following parameter are used for REDEA, including population size N =
100, initial scale factor Fp = 0.8, crossover rate Cr = 1.0, discount factor γ =
0.99, learning rate α = 0.005, target q-network parameter update frequency C =
1000. Table 1 presents specific parameter settings and operators in compared
algorithm.

Table 1. Operators Used and Parameter And Hyper-parameter Settings of The Com-
pared Algorithm

Alg. Operators Control parameters Hyper-parameter

Mutation Crossover

DE DE/rand/1 bin N = 5D,

F = 0.5, Cr = 0.9t

NA

SaDE DE/current-to-

pbest/1

bin N = 30, 100

when D = 10, 30

µCr = 0.5, µF = 0.5,

c = 0.1, p = 0.05

JADE DE/current-to-

best/2

DE/rand/1

bin N = 10D µCr = 0.5, µF = 0.5

LSHADE DE/current-to-

pbest/1

bin N=18D memorysize= 6

The mean and standard deviation of the error values used for analogy were
obtained for each function over 30 runs. In the next part, the experimental results
are summarized in Table 2 and 3 in which the mean, standard deviation and the
results of Wilcoxon rank-sum hypothesis test results are held. The results for
MAXNFE are also presented as box plot.
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The Mann Whitney Wilcoxon tests are performed to analyze the equality of
means between REDEA and the compared algorithms. The results are shown
by symbols +, − and ≈ in the tables, which respectively indicate that REDEA
performs significantly worse, better or similar to the compared algorithm at a
significance level 0.05.

4.2 Results Analysis

Table 2 and Table 3 are the summary of the results when the MAXNFE has been
reached. From Table 2, the REDEA performs significantly better than Typical
DE, JADE, SaDE and LSHADE on f1, (f22 −f26) and f28. On f22, the REDEA
performs similar to LSHADE and better than the other three comparison algo-
rithms. From Table 3, when the dimension D raised from 10 to 30, the per-
formance of REDEA lost in some functions, especially for (f1 − f23) and f27.
Figure 1 and Fig. 2 show the results more intuitively.

Table 2. The comparison of proposal algorithm on the CEC 2013 test suite for D = 10
when MAXNFE has been reached

REDEA DE JADE SaDE LAHADE

Mean Std. Dev. Mean Std. Dev. WR Mean Std. Dev. WR Mean Std. Dev. WR Mean Std. Dev. WR

f21 3.95E+02 3.04E+01 4.00E+02 1.16E−13 – 4.00E+02 1.16E−13 – 4.00E+02 1.16E−13 – 4.00E+02 1.16E−13 –

f22 1.74E+03 2.04E+02 2.20E+03 5.87E+02 – 2.69E+03 1.67E+02 – 2.14E+03 6.66E+02 – 9.22E+02 9.96E+02 +

f23 1.79E+03 2.26E+02 1.92E+03 1.83E+02 – 2.09E+03 1.91E+02 – 2.02E+03 8.78E+01 – 2.01E+03 9.16E+01 –

f24 2.10E+02 5.35E+00 2.55E+02 2.25E+01 – 2.97E+02 2.20E+01 – 2.76E+02 2.06E+01 – 2.47E+02 2.82E+01 –

f25 2.11E+02 5.52E+00 2.39E+02 3.72E+01 – 2.78E+02 1.46E+01 – 2.70E+02 2.45E+01 – 2.32E+02 1.83E+01 –

f26 1.77E+02 4.64E+01 3.97E+02 1.67E+01 – 4.00E+02 3.80E−01 – 4.01E+02 3.02E−01 – 2.41E+02 8.09E+01 –

f27 3.92E+02 9.15E+01 4.00E+02 2.79E−14 ≈ 4.00E+02 1.06E−14 ≈ 4.00E+02 3.34E−14 ≈ 4.00E+02 2.79E−14 ≈
f28 8.54E+02 3.28E+02 1.02E+03 6.75E+01 – 1.14E+03 5.38E+01 – 1.07E+03 1.08E+02 – 8.54E+02 3.34E+02 –

+/≈/− 0/1/7 0/1/7 0/1/7 1/1/6

Table 3. The comparison of proposal algorithm on the CEC 2013 test suite for D = 30
when MAXNFE has been reached

REDEA DE JADE SaDE LAHADE

Mean Std. Dev. Mean Std. Dev. WR Mean Std. Dev. WR Mean Std. Dev. WR Mean Std. Dev. WR

f21 9.25E+02 2.41E+02 3.53E+02 7.04E+01 + 3.33E+02 6.18E+01 + 3.22E+02 7.17E+01 + 3.10E+02 3.64E+01 +

f22 7.17E+03 3.93E+02 4.35E+03 3.90E+02 + 3.61E+03 1.16E+03 + 1.82E+03 5.32E+02 + 2.48E+03 2.82E+03 +

f23 8.64E+03 4.21E+02 5.62E+03 1.22E+03 + 6.80E+03 4.51E+02 + 6.77E+03 4.08E+02 + 6.57E+03 1.22E+03 +

f24 3.03E+02 7.87E+00 2.13E+02 1.51E+01 + 5.68E+02 1.97E+02 – 5.97E+02 1.73E+02 − 3.06E+02 1.79E+01 –

f25 3.21E+02 4.11E+00 3.41E+02 9.15E+01 – 4.41E+02 3.96E+00 – 4.40E+02 2.77E+00 – 3.80E+02 6.28E+01 –

f26 2.72E+02 4.62E+01 2.38E+02 5.14E+01 + 3.16E+02 3.24E+01 – 3.09E+02 5.40E+01 – 2.89E+02 6.37E+01 ≈
f27 1.36E+03 4.85E+01 3.44E+02 8.01E+01 + 5.04E+02 1.02E+02 + 6.08E+02 1.36E+02 + 1.34E+03 4.80E+01 ≈
f28 1.52E+03 1.74E+02 2.33E+02 9.59E+01 + 3.61E+03 1.21E+03 – 3.63E+03 1.62E+03 – 3.16E+02 2.48E+02 –

+/≈/− 7/0/1 4/0/4 4/0/4 3/2/3
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Fig. 1. Function error value obtained by 30 runs on the CEC 2013 test suit for D = 10
when MAXNFE has been reached.

Fig. 2. Function error value obtained by 30 runs on the CEC 2013 test suit for D = 30
when MAXNFE has been reached.

5 Conclusion and Discussion

In this work, we proposed the reinforced event-driven evolutionary algorithm
based on double deep q-network, which learns from the optimization process of
a set of training functions offline. To maximum the effect of different mutation
strategies, we also proposed an event-drive parameter control method. Future
research will focus on the combination of multi-objective optimization and the
deep reinforcement learning. Moreover, analyzing the state feature of specific
question to improve the efficiency of training model is still an interesting topic.
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17. Sun, J., Liu, X., Bäck, T., Xu, Z.: Learning adaptive differential evolution algorithm
from optimization experiences by policy gradient. IEEE Trans. Evol. Comput. 25,
666–680 (2021)

18. Zhou, T., Zuo, Z., Wang, Y.: Self-triggered and event-triggered control for linear
systems with quantization. IEEE Trans. Syst. Man Cybern. Syst. 50(9), 3136–3144
(2020)

19. Storn, R.: On the usage of differential evolution for function optimization. In:
Proceedings of North American Fuzzy Information Processing, pp. 519–523. IEEE
(1996)

20. Storn, R., Price, K.: Differential evolution-a simple and efficient heuristic for global
optimization over continuous spaces. J. Global Optim. 11(4), 341–359 (1997)

21. Van Hasselt, H., Guez, A., Silver, D.: Deep reinforcement learning with double
q-learning. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol.
30, no. 1 (2016)

22. Qin, A.K., Huang, V.L., Suganthan, P.N.: Differential evolution algorithm with
strategy adaptation for global numerical optimization. IEEE Trans. Evol. Comput.
13(2), 398–417 (2008)

23. Zhang, J., Sanderson, A.C.: Jade: adaptive differential evolution with optional
external archive. IEEE Trans. Evol. Comput. 13(5), 945–958 (2009)

24. Tanabe, R., Fukunaga, A.S.: Improving the search performance of shade using
linear population size reduction. In: IEEE Congress On Evolutionary Computation
(CEC). IEEE 2014, pp. 1658–1665 (2014)

25. Tanabe, R., Fukunaga, A.: Evaluating the performance of shade on CEC 2013
benchmark problems. In: 2013 IEEE Congress on Evolutionary Computation, pp.
1952–1959. IEEE (2013)

https://doi.org/10.1007/978-3-030-62460-6_29


Offline Data-Driven Evolutionary Optimization
Algorithm Using K-Fold Cross

Mengzhen Wang, Yawen Shan, and Fei Xu(B)

School of Artificial Intelligence and Automation, Huazhong University of Science
and Technology, Wuhan 430074, China

fxu@hust.edu.cn

Abstract. In the field of science and engineering, there are many offline data-
driven optimization problems, which have no mathematical functions, and cannot
use numerical simulations or physical experiments, but can only use the historical
data collected in ordinary times to evaluate the quality of candidate solutions
during the optimization process. In order to solve offline data-driven optimization
problems, offline data-driven evolutionary algorithms use historical data to build
surrogate models to simulate the real objective function.

In this paper, an offline data-driven evolutionary optimization algorithm using
k-fold cross is proposed. The proposed algorithm uses radial basis function net-
works as surrogate models and uses the k-fold cross method to build the ensemble
surrogate in order to reduce the number of surrogate models in the surrogate and
the time cost of the algorithm. To improve the performance of the algorithm, the
number of hidden layer neurons and the kernel function in radial basis function
network are determined by analyzing the effects of the parameters on the per-
formance of the algorithm. Experimental results on benchmark problems show
that the algorithm has good performance and low time cost. Moreover, a similar
algorithm uses the parameters of radial basis function network in the proposed
algorithm, the performance of the algorithm is improved, which indicates that the
parameters have some universality.

Keywords: Offline data-driven optimization · Surrogate model · Evolutionary
algorithm · Radial-basis-function network · K-fold cross-validation

1 Introduction

Many real-world optimization problems do not have real objective functions and eval-
uating the objectives of candidate solutions only based on data, collected from numer-
ical simulations, physical experiments, or usual life. For example, blast furnace opti-
mization problems [1], trauma system design optimization problems [2], and airfoil
design optimization problems [3]. Such optimization problems can be called data-driven
optimization problems [4].

In order to solve data-driven optimization problems, data-driven evolutionary opti-
mization algorithms (DDEAs) use cheap surrogate models to replace the expensive
real fitness functions, which can significantly reduce computational costs [4]. Surrogate
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models are built based on historical data. Some regression techniques can be used as
surrogatemodels, such as Krigingmodels [5], Radial Basis FunctionNetworks (RBFNs)
[3], artificial neural networks [6], and polynomial regression [7] models.

Most of the existing algorithms are online DDEAs, which can obtain new data
through real fitness evaluations (FEs) to update the surrogate models during the opti-
mization process [3]. Only a small number of algorithms are offline DDEAs. Offline
DDEAs cannot update the surrogate models. To improve the quality of the surrogate
models, ensemble learning can be used to build surrogate models [8, 9].

In [10], data perturbations are used to generate diverse surrogatesmodels and a selec-
tive ensemble method is used to form a final ensemble surrogate to assist evolutionary
algorithm (EA). In [3], a large number of surrogate models are built and a small yet
diverse subset of surrogate models are adaptively selected as an ensemble surrogate to
achieve the best local approximate accuracy. In [11], using three RBFNs as surrogate
models, and to overcome the data deficiency, semi-supervised learning is introduced to
the offline DDEA process, where tri-training is used to update the surrogate models.
The algorithms mentioned above build many surrogate models during the optimization
process, which increases the time cost of the algorithms. Moreover, in [3, 10, 11], and
[12], all of the surrogate models choose RBFN, but the numbers of the hidden neurons
and the kernel functions in RBFN are not identical.

In this paper, an offline data-driven evolutionary optimization algorithm using k-
fold cross (DDEA-K) is proposed. DDEA-K chooses RBFN as surrogate models. To
reduce the number of surrogatemodels, refer to k-fold cross-validation [13], an ensemble
surrogate is built using the K-fold cross method. To improve the performance of the
algorithm, the number of hidden neurons and the kernel function inRBFNare determined
by analyzing the influence of the parameters on the performance of the algorithm.

The rest of this paper is organized as follows: Sect. 2 introduces k-fold cross-
validation and RBFN; Sect. 3 describes DDEA-K in detail; Sect. 4 chooses five bench-
mark problems and experimentally verifies the performance of the algorithm; Sect. 5
concludes this paper.

2 Background

2.1 K-Fold Cross-Validation

K-fold cross-validation is a model evaluation technique on a limited data sample, taking
10 folds as an example, the flowchart is shown in Fig. 1. General procedures for k-fold
cross-validation to evaluate a model are as follows:

(1) Randomly disrupt the original data D into k datasets D1, ...,Dk . Suppose D has n
data, the number of data in each dataset is n/k;

(2) Select one dataset as the testing data Dj and the other k − 1 datasets as the training
data D−j = D\Dj;

(3) Use the training data training a model and the accuracy of the model is evaluated
on the testing data;

(4) Repeat step (2) and step (3), until all the datasets are used as training data. The true
accuracy of the model is the average of all k accuracies.



Offline Data-Driven Evolutionary Optimization Algorithm 307

Fig. 1. Flowchart of 10-fold cross-validation.

2.2 Radial Basis Function Network

RBFN is a widely used interpolation method, which has three layers: input layer, hidden
layer, and output layer. The transformations from the input layer to the hidden layer
are nonlinear, while the transformations from the hidden layer to the output layer are
linear. The hidden layer uses the radial basis function (RBF) to map the input to a higher
dimension so that linearly indistinguishable in low-dimensional space can be linearly
distinguishable. In RBFN, each hidden layer neuron is the center of the RBF, and the
hidden layer neuron takes the distance between the input and the center point as the
independent variable of the function. Four kernel functions are widely-used in RBFN
[14]: gaussian function, reflected sigmoid function, inverse multiquadric function, and
multiquadric function, as shown in Eq. (1)–(4).

r(d) = exp

(
− d2

2σ 2

)
. (1)

r(d) = 1

1 + exp
(
d2

σ 2

) . (2)

r(d) = 1√
d2 + σ 2

. (3)

r(d) = 1√
d2 + σ 2

. (4)

where d indicates the distance between the input x and the center point c, σ is the width
parameter of the function, which controls the radial range of function.

3 Proposed Algorithm

The flowchart of DDEA-K is shown in Fig. 2, and the algorithm consists of two parts:
surrogate modeling and evolutionary optimization. To reduce the size of the ensemble,
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Fig. 2. A generic diagram of DDEA-K.

DDEA-K refers to k-fold cross-validation, uses the k-fold cross method to train K surro-
gate models, then uses the K surrogate models to form an ensemble surrogate. DDEA-K
uses RBFNs as surrogate models. The part of evolutionary optimization in DDEA-K is
similar to the traditional genetic algorithm (GA) and the difference between them is that
the objective values in DDEA-K are evaluated by surrogate models.

Before running the optimizer, 11D (D is the problem dimension) offline data are
created using the Latin hypercube sampling (LHS) [15] and their real objective function.
When the optimizer starts running, there is nomore real objective function evaluation and
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the objective function values are predicted using the surrogate models. The pseudo-code
for DDEA-K is shown in Algorithm 1.

Steps 1–7 are the construction of the ensemble surrogate. The k-fold cross method is
used to construct the ensemble surrogate. The ensemble surrogate consists ofK surrogate
models and the output of the ensemble is the plain average of the outputs of K surrogate
models. Steps 8–14 are the evolutionary optimization process. This part is the same
as GA, the only difference between them is that the objective function values of the
individuals are not calculated using the real objective function, but are predicted using
the ensemble surrogate. Step 15 chooses the best individual in the population and step
16 outputs the final optimal solution. The solution is calculated using the real objective
function, since in real life, the goodness of the solution is evaluated in the real situation.

4 Experimental Results

In the experiments, five commonly used benchmark problems [16] are choose to test the
algorithms, as presented in Table 1.

Table 1. Benchmark problems.

Problems D Global Optimum Characteristics

Ellipsoid 10,30,50,100 0.0 Uni-modal

Rosenbrock 10,30,50,100 0.0 Multi-modal

Ackley 10,30,50,100 0.0 Multi-modal

Griewank 10,30,50,100 0.0 Multi-modal

Rastrigin 10,30,50,100 0.0 Multi-modal

In DDEA-K, the GA is real-coded and uses the simulated binary crossover (SBX)
(η = 15), polynomial mutation (η = 15), and tournament selection. The population size
of GA is set to 100, the crossover probability is set to 1.0 and the mutation probability is
set to 1/D (D is the problem dimension). The optimization problems dimensions are 10,
30, 50, and 100, and the corresponding maximum numbers of generations are set to 98,
96, 94, and 88. The offline data is generated using LHS, and the number of data is 11D.
Further, the number of fold crosses is 10 and choosing RBFNs as surrogate models. The
kernel function used in RBFN is the multiquadric function and there are 0.1D neurons
in the hidden layer. Other parameters of RBFN are the same as [3].

All the algorithms are run on each test problem 20 independent times to increase
data credibility. All the experiments are run on PlatEMO v3.4 [17], CPU is AMDRyzen
5 3400G 4-Core 3.7 GHz, System OS is Windows 11, and MATLAB version is R2020b
64-bit.

4.1 Influence of Kernel Function

This part investigates the influence of kernel function in RBFN. DDEA-K variants with
different kernel functions are compared on 20 test problems. DDEA-KI, DDEA-KS,
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Table 2. Optimization results obtained by DDEA-K with different kernel functions

P D DDEA-KS DDEA-KI DDEA-KM DDEA-KG

E 10 9.55e−1(7.61e−1) 7.40e−1(4.86e−1) 5.51e−1(4.08e−1) 4.09e−1(3.44e−1)

Ro 10 2.39e + 1(7.38e +
0)

2.92e + 1(9.84e +
0)

2.52e + 1(6.89e +
0)

3.58e + 1(1.01e +
1)

A 10 5.34e + 0(1.10e +
0)

5.68e + 0(1.30e +
0)

4.67e +
0(7.73e−1)

4.76e + 0(1.12e +
0)

G 10 1.26e +
0(1.37e−1)

1.16e +
0(1.39e−1)

1.06e +
0(8.33e−2)

9.67e−1(9.38e−2)

Ra 10 5.04e + 1(2.59e +
1)

5.09e + 1(1.92e +
1)

3.92e + 1(1.95e +
1)

4.19e + 1(2.51e +
1)

E 30 4.36e + 0(2.45e +
0)

3.22e +
0(9.49e−1)

3.96e + 0(1.65e +
0)

3.15e + 0(1.27e +
0)

Ro 30 4.78e + 1(8.70e +
0)

5.59e + 1(1.01e +
1)

4.33e + 1(7.93e +
0)

5.81e + 1(1.19e +
1)

A 30 4.30e +
0(4.16e−1)

4.41e +
0(7.40e−1)

4.16e +
0(5.79e−1)

4.28e +
0(4.66e−1)

G 30 1.79e +
0(4.38e−1)

1.30e +
0(1.11e−1)

1.56e +
0(2.28e−1)

1.26e +
0(7.65e−2)

Ra 30 8.11e + 1(2.64e +
1)

8.81e + 1(2.14e +
1)

6.66e + 1(1.83e +
1)

7.08e + 1(2.71e +
1)

E 50 2.03e + 1(4.20e +
0)

1.75e + 1(3.97e +
0)

1.68e + 1(3.93e +
0)

1.85e + 1(3.58e +
0)

Ro 50 6.70e + 1(4.67e +
0)

7.95e + 1(9.28e +
0)

6.98e + 1(6.42e +
0)

8.33e + 1(1.22e +
1)

A 50 4.71e +
0(3.22e−1)

4.91e +
0(3.18e−1)

4.77e +
0(2.61e−1)

4.98e +
0(4.20e−1)

G 50 3.64e +
0(9.50e−1)

3.04e +
0(4.24e−1)

3.38e +
0(4.61e−1)

3.11e +
0(5.51e−1)

Ra 50 1.61e + 2(2.91e +
1)

1.56e + 2(2.82e +
1)

1.51e + 2(3.38e +
1)

1.41e + 2(3.32e +
1)

E 100 7.26e + 2(1.43e +
2)

7.71e + 2(1.99e +
2)

7.38e + 2(1.65e +
2)

6.93e + 2(1.75e +
2)

Ro 100 3.56e + 2(6.56e +
1)

3.40e + 2(5.14e +
1)

3.31e + 2(5.62e +
1)

3.46e + 2(3.77e +
1)

A 100 9.34e +
0(7.47e−1)

9.33e +
0(5.46e−1)

9.39e +
0(7.30e−1)

9.22e +
0(4.69e−1)

G 100 4.96e + 1(1.00e +
1)

5.07e + 1(9.50e +
0)

4.68e + 1(9.78e +
0)

5.14e + 1(1.17e +
1)

Ra 100 9.37e + 2(8.16e +
1)

9.10e + 2(4.19e +
1)

9.03e + 2(6.28e +
1)

9.26e + 2(6.75e +
1)

(continued)
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Table 2. (continued)

P D DDEA-KS DDEA-KI DDEA-KM DDEA-KG

Rank 2.95 2.95 1.85 2.25

DDEA-KM, and DDEA-KG are DDEA-K with the kernel functions of inverse multi-
quadric function, sigmoid function, multiquadric function, and gaussian function, the
numbers of hidden neurons in the RBFN are set to

√
1 + D + 3 [12]. The optimiza-

tion results are shown in Table 2. In the table, the number outside the parentheses is
the average of the optimization results obtained from 20 independent runs, the number
inside the parentheses is the standard deviation, and the last row in the table shows the
average ranking values of the optimization results obtained by the current algorithm.
Furthermore, the name of the test problem in the table is replaced by the first letter or
the first two letters.

As we can see from the table, DDEA-KM has the best performance with the 9 best
results out of 20 test problems and an average rank of 1.85. DDEA-KG has the second-
best performance with the 7 best results out of 20 test problems and an average rank of
2.25. DDEA-KS and DDEA-KI obtained 3 and 1 best results respectively with the same
average rank. Therefore, the default kernel function of RBFN in DDEA-K chooses the
multiquadric function.

4.2 Influence of the Number of Neurons in Hidden Layer

This part investigates the influence of the number of hidden neurons nc in RBFN.DDEA-
Kvariantswith different neuron numbers, such as 0.1D, 0.2D, 0.3D, 0.4D, are compared
on 20 test problems. As we can see from Table 3, compared with other nc values,
DDEA-K obtains 15 best results on 20 test problems with the lowest average ranking of
optimization results while nc is set to 0.1D. Therefore, the default value of nc of RBFN
in DDEA-K is set to 0.1D.

Table 3. Optimization results obtained by DDEA-K with different numbers of hidden neurons

P D nc = 0.1D nc = 0.2D nc = 0.3D nc = 0.4D

E 10 6.10e−3(3.21e−3) 7.41e−2(8.73e−2) 1.70e−1(1.92e−1) 2.32e−1(1.52e−1)

Ro 10 8.93e +
0(7.04e−2)

1.13e + 1(3.14e +
0)

1.76e + 1(7.63e +
0)

2.52e + 1(1.08e +
1)

A 10 5.78e−1(2.04e−1) 2.27e +
0(9.27e−1)

3.50e +
0(7.89e−1)

4.11e +
0(7.15e−1)

G 10 8.61e−1(1.24e−1) 9.50e−1(7.54e−2) 9.47e−1(1.35e−1) 9.67e−1(8.47e−2)

Ra 10 2.00e−1(1.26e−1) 7.06e + 0(7.33e +
0)

9.15e + 0(8.61e +
0)

3.27e + 1(2.05e +
1)

(continued)
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Table 3. (continued)

P D nc = 0.1D nc = 0.2D nc = 0.3D nc = 0.4D

E 30 1.35e +
0(3.61e−1)

2.28e +
0(7.45e−1)

3.42e + 0(1.32e +
0)

4.56e + 0(1.83e +
0)

Ro 30 3.50e + 1(3.87e +
0)

4.34e + 1(6.56e +
0)

6.02e + 1(1.11e +
1)

6.95e + 1(9.17e +
0)

A 30 3.19e +
0(3.70e−1)

3.84e +
0(5.19e−1)

4.51e +
0(5.93e−1)

4.88e +
0(5.55e−1)

G 30 1.25e +
0(6.11e−2)

1.23e +
0(7.61e−2)

1.24e +
0(1.02e−1)

1.24e +
0(6.24e−2)

Ra 30 2.09e + 1(7.52e +
0)

4.96e + 1(1.23e +
1)

7.42e + 1(2.53e +
1)

1.05e + 2(3.55e +
1)

E 50 1.63e + 1(3.71e +
0)

1.86e + 1(3.62e +
0)

1.90e + 1(4.93e +
0)

2.33e + 1(4.23e +
0)

Ro 50 7.07e + 1(1.05e +
1)

8.70e + 1(1.23e +
1)

1.09e + 2(1.49e +
1)

1.22e + 2(1.63e +
1)

A 50 4.37e +
0(3.50e−1)

4.84e +
0(3.81e−1)

5.14e +
0(2.69e−1)

5.61e +
0(2.89e−1)

G 50 2.96e +
0(5.65e−1)

2.82e +
0(6.16e−1)

2.84e +
0(4.11e−1)

3.03e +
0(5.02e−1)

Ra 50 1.15e + 2(2.65e +
1)

1.49e + 2(3.14e +
1)

1.87e + 2(4.44e +
1)

2.26e + 2(4.49e +
1)

E 100 6.84e + 2(1.33e +
2)

7.15e + 2(1.75e +
2)

7.46e + 2(1.52e +
2)

7.23e + 2(1.48e +
2)

Ro 100 3.41e + 2(5.10e +
1)

3.74e + 2(4.38e +
1)

3.97e + 2(6.42e +
1)

4.13e + 2(4.73e +
1)

A 100 9.47e +
0(5.80e−1)

9.28e +
0(7.71e−1)

9.43e +
0(4.90e−1)

9.73e +
0(6.11e−1)

G 100 5.16e + 1(1.25e +
1)

4.61e + 1(8.91e +
0)

5.02e + 1(1.18e +
1)

5.13e + 1(9.17e +
0)

Ra 100 9.30e + 2(8.41e +
1)

9.19e + 2(7.04e +
1)

9.12e + 2(6.81e +
1)

9.34e + 2(7.36e +
1)

Rank 1.6 1.85 2.75 3.8

Analyzing the results from the perspective of the dimension, we can see that the
margin of leading in the optimization results obtained when nc is 0.1D is gradually
decreasing as D increases. Taking the Ellipsoid problem as an example, the ratios of the
best results divided by the second-best results are 0.08, 0.59, 0.88 and 0.96. In addition,
on some Griewank, Ackley, and Rastrigin problems, the best results are obtained when
nc is set to 0.2D and 0.3D. Therefore, when solving optimization problems, the value of
nc in DDEA-K needs to be adjusted timely according to the dimensions of the problems.
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4.3 Comparison with Offline Data-Driven EAs

Table 4. Optimization results obtained by DDEA-SE, DDEA-PSE and DDEA-K.

Problem D DDEA-SE DDEA-PSE DDEA-K

Ellipsoid 10 8.75e−1 (5.80e−1) 1.03e + 0 (5.51e−1) 6.10e−3 (3.21e−3)

Rosenbrock 10 2.40e + 1 (6.40e + 0) 2.93e + 1 (7.42e + 0) 8.93e + 0 (7.04e−2)

Ackley 10 5.46e + 0 (7.42e−1) 5.64e + 0 (6.50e−1) 5.78e−1 (2.04e−1)

Griewank 10 1.24e + 0 (1.76e−1) 1.23e + 0 (2.40e−1) 8.61e−1 (1.24e−1)

Rastrigin 10 5.34e + 1 (2.35e + 1) 5.47e + 1 (1.01e + 1) 2.00e + 1 (1.26e−1)

Ellipsoid 30 4.36e + 0 (1.73e + 0) 6.58e + 0 (1.51e + 0) 1.35e + 0 (3.61e−1)

Rosenbrock 30 5.50e + 1 (3.99e + 0) 6.46e + 1 (6.14e + 0) 3.50e + 1 (3.87e + 0)

Ackley 30 4.81e + 0 (4.91e−1) 5.13e + 0 (5.01e−1) 3.19e + 0 (3.70e−1)

Griewank 30 1.43e + 0 (9.53e−2) 1.51e + 0 (1.73e−1) 1.25e + 0 (6.11e−2)

Rastrigin 30 1.06e + 2 (2.00e + 1) 1.43e + 2 (3.03e + 1) 2.09e + 1 (7.52e + 0)

Ellipsoid 50 2.03e + 1 (5.69e + 0) 2.73e + 1 (7.53e + 0) 1.63e + 1 (3.71e + 0)

Rosenbrock 50 8.68e + 1 (6.41e + 0) 1.11e + 2 (7.91e + 0) 7.07e + 1 (1.05e + 1)

Ackley 50 5.09e + 0 (3.31e−1) 5.60e + 0 (3.56e−1) 4.37e + 0 (3.50e−1)

Griewank 50 1.84e + 0 (2.21e−1) 3.18e + 0 (4.32e−1) 2.96e + 0 (5.65e−1)

Rastrigin 50 1.90e + 2 (2.87e + 1) 2.46e + 2 (3.16e + 1) 1.15e + 2 (2.65e + 1)

Ellipsoid 100 7.68e + 2 (5.52e + 1) 8.78e + 2 (1.74e + 2) 6.84e + 2 (1.33e + 2)

Rosenbrock 100 3.83e + 2 (6.21e + 1) 5.78e + 2 (1.21e + 2) 3.41e + 2 (5.10e + 1)

Ackley 100 9.75e + 0 (1.22e + 0) 9.94e + 0 (4.69e−1) 9.47e + 0 (5.80e−1)

Griewank 100 4.74e + 1 (1.45e + 1) 5.16e + 1 (9.74e + 0) 5.16e + 1 (1.25e + 1)

Rastrigin 100 9.30e + 2 (8.57e + 1) 9.49e + 2 (6.00e + 1) 9.30e + 2 (8.41e + 1)

This part compares the proposed algorithmwith two offline data-driven EAs:DDEA-
SE [3] and DDEA-PSE [10]. Both of them use RBFNs as surrogate models, with 2000
and 200RBFNs trained respectively during the optimization process. TheGAparameters

Table 5. Running time on 100 dimensional problems.

Problem DDEA-SE DDEA-PSE DDEA-K

Ellipsoid 5.03e + 2 (4.43e + 1) 2.69e + 2 (6.68e + 0) 6.49e + 0 (4.63e−1)

Rosenbrock 5.07e + 2 (4.36e + 1) 2.72e + 2 (3.85e + 0) 6.41e + 0 (7.01e−1)

Ackley 5.18e + 2 (4.57e + 1) 2.73e + 2 (4.34e + 0) 6.34e + 0 (4.31e−1)

Griewank 5.04e + 2 (6.31e + 0) 2.65e + 2 (3.78e + 0) 6.60e + 0 (4.75e−1)

Rastrigin 5.24e + 2 (8.01e + 0) 2.71e + 2 (4.91e + 0) 6.45e + 0 (5.77e−1)
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are the same as DDEA-K, and the other parameters choose the best configuration from
their original paper. The optimization results obtained by DDEA-SE, DDEA-PSE, and
DDEA-K on the 20 test problems are shown in Table 4.

As we can see fromTable 4, besides 50− and 100−dimensional Griewank problems,
DDEA-K obtains the best results on all the remaining 18 test problems. In addition,
during the optimization process, DDEA-K only needs to train 10 RBFNs, which makes
its running time significantly less than DDEA-SE and DDEA-PSE. For example, the
running times of the three algorithms on 100-dimensional test problems are shown in
Table 5, the unit of time is second. From the table, we can see that DDEA-K takes
a very short time to complete the optimization compared to DDEA-SE and DDEA-
PSE. From the results in Table 4 and Table 5, it is obvious that DDEA-K not only has
better performance but also has significantly lower time complexity than the comparison
algorithms. Therefore, DDEA-K is an effective algorithm.

4.4 Analysis of the Universality of RBFN Parameters

Table 6. Optimization results obtained by DDEA-SE and DDEA-SE-alter

Problem D DDEA-SE DDEA-SE-alter

Ellipsoid 10 8.75e−1 (5.80e−1) 1.60e−2 (8.54e−3)

Rosenbrock 10 2.40e + 1 (6.40e + 0) 8.97e + 0 (6.76e−2)

Ackley 10 5.46e + 0 (7.42e−1) 1.08e + 0 (2.96e−1)

Griewank 10 1.24e + 0 (1.76e−1) 9.36e−1 (1.17e−1)

Rastrigin 10 5.34e + 1 (2.35e + 1) 5.54e−1 (2.69e−1)

Ellipsoid 30 4.36e + 0 (1.73e + 0) 1.21e + 0 (4.28e−1)

Rosenbrock 30 5.50e + 1 (3.99e + 0) 3.18e + 1 (7.71e−1)

Ackley 30 4.81e + 0 (4.91e−1) 3.03e + 0 (2.97e−1)

Griewank 30 1.43e + 0 (9.53e−2) 1.27e + 0 (6.94e−2)

Rastrigin 30 1.06e + 2 (2.00e + 1) 1.89e + 1 (5.75e + 0)

Ellipsoid 50 2.03e + 1 (5.69e + 0) 1.41e + 1 (2.55e + 0)

Rosenbrock 50 8.68e + 1 (6.41e + 0) 6.07e + 1 (1.93e + 0)

Ackley 50 5.09e + 0 (3.31e−1) 4.46e + 0 (2.40e−1)

Griewank 50 1.84e + 0 (2.21e−1) 2.81e + 0 (4.07e−1)

Rastrigin 50 1.90e + 2 (2.87e + 1) 1.01e + 2 (1.87e + 1)

Ellipsoid 100 7.68e + 2 (5.52e + 1) 7.06e + 2 (1.81e + 2

Rosenbrock 100 3.83e + 2 (6.21e + 1) 3.11e + 2 (4.23e + 1)

Ackley 100 9.75e + 0 (1.22e + 0) 9.26e + 0 (5.85e−1)

(continued)
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Table 6. (continued)

Problem D DDEA-SE DDEA-SE-alter

Griewank 100 4.74e + 1 (1.45e + 1) 4.73e + 1 (1.01e + 1)

Rastrigin 100 9.30e + 2 (8.57e + 1) 9.19e + 2 (6.59e + 1)

Theoretically, the RBFN parameters in DDEA-K can be used in algorithms that
also use RBFNs as surrogate models. Therefore, to verify the universality of the RBFN
parameters in DDEA-K, the RBFN parameters in DDEA-SE are changed to those in
DDEA-K, and the changed DDEA-SE is called DDEA-SE-alert. The kernel function
in the original DDEA-SE is the gaussian function, the number of the hidden neurons
is D, and the rest parameters of RBFN are the same as those in DDEA-K. Comparing
DDEA-SE-alert with DDEA-SE on 20 test problems, the optimization results are shown
in Table 6.

As we can see from the table, after using the new parameters, the performance of
DDEA-SE on all the tested problems is improved besides the 50-dimensional griewank
problem, and the margin of improvement decreases with the increase of dimension.
Therefore, we can conclude that the RBFN parameters in DDEA-K have some univer-
sality and can be used in other DDEAswhich use RBFNs as surrogate models to improve
the performance of the algorithms.

5 Conclusion

This paper aims to address offline data-driven optimization problems and proposes an
offline data-driven evolutionary optimization algorithm using k-fold cross (DDEA-K).
DDEA-K uses the k-fold cross method to build the ensemble surrogate, which saves
the running time of the algorithm; uses RBFNs as surrogate models, and the number of
the hidden neurons and the kernel function in RBFN are determined by analyzing the
influence of the parameters on the performance of the algorithm, which improves the
performance of the algorithm. The experimental results on benchmark problems show
that DDEA-K is an algorithm with good performance and low time cost. The RBFN
parameters in DDEA-K have some universality, which can improve the performance of
similar algorithms that also use RBFNs as surrogate models.

Although DDEA-K builds surrogate models with reference to k-fold cross-
validation, it does not use the validation part. In future work, researchers can use the
model accuracy information obtained from the validation part to help select bettermodels
or generate synthetic data to further improve the accuracy of surrogate models.

Acknowledgements. This work is supported by the National Natural Science Foundation of
China (62072201).
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Abstract. The loser-out tournament-based firework algorithm (LoTFWA) is a
new baseline among firework algorithm (FWA) variants due to its outstanding per-
formance in multimodal optimization problems. LoTFWA successfully achieves
information-interaction among populations by introducing a competition mecha-
nism, while information-interaction within each sub-population remains insuffi-
cient. To solve this issue, this paper proposes a micro-population evolution strat-
egy and a hybrid algorithm LoTFWA-microDE. Under the proposed strategy,
sparks generated by one firework make up a micro-population which is taken
into the differential evolution procedure. The proposed algorithm is tested on
the CEC’13 benchmark functions. Experimental results show that the proposed
algorithm attains significantly better performance than LoTFWA and DE in multi-
modal functions, which indicates the superiority of the proposedmicro-population
evolution strategy.

Keywords: Firework algorithm · Evolutionary algorithm · Multimodal
optimization · Micro-population algorithms

1 Introduction

Unimodal optimization problems can be solved easily by mathematical methods or
simple heuristic algorithms, while for multimodal optimization problems researchers
often apply swarm intelligence or evolutionary algorithms, such as evolution strategy
(ES) [1], differential evolution (DE) [2], and particle swarm optimization (PSO) [3].
These algorithms use one or more populations for searching, which allows them to
explore better local areas and exploit the local solutions more efficiently.

FWA [4] is a newly proposed optimization algorithm inspired by the phenomenon of
fireworks explosion. With the core idea of generating sparks around fireworks, FWA has
achieved much progress and been proven useful for real-world applications. Previous
works introduced new mechanisms including dynamic explosion amplitude [5], elitism
selection [6], and guiding spark generation [7], which had significantly enhanced the
search efficiency of FWA. Many studies also show that the search performance of FWA
can be improved by focusing on exploration [8–10] or exploitation [11–13].
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The loser-out tournament-based firework algorithm (LoTFWA) [14] is one of the best
FWA variants and has outperformed several state-of-the-art evolutionary algorithms.
LoTFWA innovatively adopts a competition mechanism that greatly improves the algo-
rithm’s ability of exploration, thus saving valuable computing resources for exploitation.
LoTFWA also suggests that exploration and exploitation can help each other.

Several successful FWA variants are based on LoTFWA. [8] and [9] introduce coop-
eration among fireworks, enhancing both exploration and exploitation. EDFWA [16]
improves the explosion operator with a series of guided explosion in an exponentially
decaying manner. [17] uses covariance matrix adaptation method to improve explosion
operator of LoTFWA. Further enhancement can bemade to the exploitation of LoTFWA.

Similar to many FWA variants, LoTFWA adopts a relatively inefficient local search
method, where sparks are generated independently with random sampling. Without
information-interaction, the sparks search blindly and spend too much computing
resources on finding a better solution. Aiming at solving the issue above, we propose
a micro-population evolution strategy for LoTFWA to further strengthen its ability of
local search.

The rest of this paper is organized as follows. Section 2 introduces the related work
about the framework of LoTFWA and its competition mechanism in detail. Section 3
describes the proposed strategy and hybrid algorithm. Experimental results are shown
in Sect. 4 and the last section concludes this paper.

2 Related Work

2.1 Explosion Operator

FWA can be considered as a (μ + λ) ES. For each generation, the algorithm retains
μ fireworks, and λ sparks are generated around them with explosion operator.

In LoTFWA, the number of explosion sparks for each firework is determined by
power law distribution. That is,

λr = λ̂
r−α

∑μ
r=1 r

−α
(1)

where r is the fitness rank of the firework, α is the parameter of power law distribution,
and λ̂ is the total number of sparks generated in generation g.
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Explosion sparks are generated with random sampling as described in Algorithm 1,
where Xi is the ith firework, Ai is the explosion amplitude of Xi, and U is the uniform
distribution. Besides, LoTFWA adopts a guiding spark mechanism [7], which generates
a guiding spark based on the information of explosion sparks. This mechanism aims to
help the firework escape local optimum and explore beyond the explosion amplitude.

2.2 Dynamic Explosion Amplitude and Selection Operator

In LoTFWA, an independent dynamic explosion amplitude is adopted for each firework
[5]. That is,

Ag
i =

⎧
⎪⎪⎨

⎪⎪⎩

A1, if g = 1

CaA
g−1
i , if f

(
X g
i

)
< f

(
X g−1
i

)

CrA
g−1
i , if f

(
X g
i

) = f
(
X g−1
i

) (2)

whereAg
i is the explosion amplitude of the ith firework in the g generation,Ca andCr are

coefficients to dynamically control explosion amplitude, and A1 is the initial explosion
amplitude, which is usually radius of the search space.

A selection operator is performed on each firework, and the best individual among
itself and all the sparks it generates is selected to be the firework of the next generation.
Such operator aims to ensure that each firework remains optimum in the subpopulation.

2.3 Loser-Out Tournament

LoTFWA innovatively introduces a competition mechanism to assess the potential of
each firework by considering the extent of achieved improvement and predicting their
final fitness. The improvement of ith firework Xi in generation g is calculated as:

δ
g
i = f

(
X g−1
i

)
− f

(
X g
i

) ≥ 0 (3)

Then a prediction of the ith firework’s fitness in the final generation gmax is made as:

f
(
X gmax
i

)∧

= f
(
X g
i

) − δ
g
i (gmax − g) (4)

If the prediction is still worse than the current best firework, i.e., f
(
X gmax
i

)∧

>

minj
{
f
(
X g
j

)}
, the ith firework is considered a loser and will be reinitialized. Note that

when δ
g
i = 0 the loser-out tournament is not triggered, which is discussed in LoTFWA.

The loser-out tournament is the key mechanism in LoTFWA and main reason for its
outstanding performance. It identifies bad areas of search space, thus saving computing
resources for fireworks that are more promising.
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3 Proposed Method

3.1 Motivation

Multi-population algorithms are inherently suitable for multi-modal optimization prob-
lems. FWA is amulti-population algorithmbecause each firework and its sparks naturally
make up a population [14]. In swarm intelligence, main mechanisms of interaction are
cooperation and competition. LoTFWA successfully achieves information-interaction
among sub-populations by introducing a competition mechanism, while information-
interaction within each sub-population remains insufficient. On one hand, sparks of one
sub-population are generated all at once, which means that information-interaction only
occurs between firework and each spark, but not among the sparks. On the other, sparks
in LoTFWA are not generated iteratively. Yu etc. [11–13] proved that in iterative genera-
tions, new sparks searchmore effectively with history information. Therefore, the simple
explosion operator adopted in LoTFWA lacks information-interaction among sparks.

In order to solve the issue above, this paper proposes an iterative information-
interaction strategy as described in the next subsection. To achieve the idea, this paper
introduces DE operators as the information-interaction mechanism. Because DE oper-
ators have been proven to be successful as interaction mechanism and DE holds stable
and balanced performance for both exploitation and exploration.
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3.2 Micro-population Evolution Strategy

This paper proposes a micro-population evolution strategy, introducing information-
interaction to the sparks in the form of cooperation. Under the proposed strategy, ϕ

sparks generated by one firework make up an independent population, where ϕ is
a rather small number because a small population can easily converge. The micro-
population is then taken into the differential evolution procedure. Algorithm 2 describes
the strategy in detail, where parameter gmax is the maximum number of generations of
micro-populations, and F,CR are parameters of DE.

The proposed strategy is considered as a new explosion operator. At first, ϕ sparks
are generated by random sampling (line 1). Then the sparks are taken into an evolution
procedure (lines 2–18), where DE operators give them the ability to search iteratively in
cooperation. During the update of every iteration, the search space of sparks is not lim-
ited. When the micro-population reaches its maximum generation gmax, it is considered
converged and the procedure ends.

3.3 LoTFWA-microDE

Applying the micro-population evolution strategy to LoTFWA, this paper proposes a
hybrid algorithm LoTFWA-microDE. Algorithm 3 gives the complete process of the
proposed algorithm.

In its initial phase (lines 1–2), μ fireworks are randomly generated in the search
space. Since micro-populations work better in a small search space, the initial explosion
amplitudes A1 of the μ fireworks are set to 1/2 radius of the search space.

In the first part of its iteration phase (lines 4–6), fireworks first generate their sparks
under micro-population evolution strategy. During evolution, when a spark is out of
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boundaries, it will be bounced back with the following mapping rule:

xi =
{
ubi − mod(xi − ubi, ubi − lbi), if xi > ubi
lbi + mod(lbi − xi, ubi − lbi), if xi < lbi

(5)

In the second part of its iteration phase (lines 7–10), the fireworks of the next
generation are selected and their explosion amplitudes are updated.

In the final part of its iteration phase (line 11), the loser-out tournament is performed
and the loser fireworks are reinitialized.

4 Experiments

In order to test the performance of the proposed algorithm, numerical experiments are
conducted on the CEC 2013 benchmark suite [15] including 5 unimodal functions and
23 multimodal functions. According to the instructions of the benchmark suite, all the
test functions are repeated for 51 times. The number of dimensions of all functions are
set to d = 30, and the maximal number of function evaluations in each run is 10000 d .

4.1 Parameter Settings

Fig. 1. Average ranks of 15 sets of parameters.

Since LoTFWA-microDE is a hybrid algorithm, it holds 2 sets of parameters from
LoTFWA and DE, and a set of parameters of micro-population evolution strategy. There
are two parameters of micro-population evolution strategy, micro-population size ϕ, and
maximum iterations for one explosion gmax. ϕ and gmax have a strong correlation. A
smaller ϕ means the micro-population converges faster and covers less areas, while a
bigger ϕ means a slower convergence with more areas covered. gmax needs to cooperate
with ϕ so that the micro-populations consume enough function evaluations to search
and do not waste computing resources after convergence.
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Fine-tuned ϕ and gmax are given based on 15 sets of experiments on CEC 2013
benchmark suite as illustrated in Fig. 1. Effect of parameters can be analyzed from the
experiment. On one hand, when the number of iterations is not enough, that is, smaller
than 30, the algorithm does not show its advantages. On the other hand, number of
iterations should not exceed a certain number around 40 or 50, which is related to the
value of ϕ. When suitable iterations are consumed, the performance of the algorithm
is more sensitive to ϕ. Form the view of total number of function evaluations, which is
ϕ × gmax, the number changes more obviously when ϕ changes. Under the set of ϕ = 6
and gmax = 30, the proposed algorithm shows stable improvement on LoTFWAwith 17
wins and 3 losses. However, this paper chooses the best set of the experiments, which is
ϕ = 6 and gmax = 50.

For other parameters, this paper follows the suggestions in [14] and set dynamic
amplitude explosion coefficients Ca = 1.2, Cr = 0.9, the number of fireworks μ = 5.
DE parameters F = 0.5, CR = 0.5 are set as recommended in [2].

4.2 Experimental Result

In this section we compare the proposed algorithm with LoTFWA [14] and DE [2],
on which the proposed hybrid algorithm is based. We also compare the proposed algo-
rithm with two other traditional algorithms PSO [3] and CMAES [18]. The mean errors
of experimental results are presented in Table 1 and the Wilcoxon signed-rank tests
with confidence level 95% are conducted between LoTFWA-microDE and each other
algorithm. The P-value of Wilcoxon signed-rank tests between LoTFWA-microDE and
LoTFWA is shown in the last column of Table 1 (the algorithms are significantly differ-
ent when P-value is smaller than 5%). The “−” indicates LoTFWA-microDE performs
significantly better, the “+” indicates its opponent performs significantly better, while
the “≈” indicates that their performances are not significantly different.

According to the results, LoTFWA-microDE outperforms LoTFWAon 17 functions,
and is worse than LoTFWA on 7 functions, indicating that the proposed strategy suc-
cessfully enhances exploitation by introducing information-interaction to sparks. With
efficient exploitation, there are more computing resources for exploration. Therefore,
the overall performance of the algorithm is improved.

Table 1. Comparison among LoTFWA-microDE, LoTFWA and DE.

f LoTFWA-microDE LoTFWA DE PSO CMAES P-value

f1 3.11E−03 0.00E+00+ 0.00E+00+ 2.95E−02− 0.00E+00+ 0

f2 1.26E+06 1.21E+06≈ 1.02E+08− 1.21E+07− 0.00E+00+ 0.63

f3 3.64E+06 2.39E+07− 5.37E+05+ 5.71E+09− 2.33E+02+ 0

f4 9.57E+02 1.93E+03− 5.49E+04− 7.54E+04− 0.00E+00+ 0

f5 3.83E−02 3.58E−03+ 0.00E+00+ 6.32E−01− 0.00E+00+ 0

f6 1.46E+01 1.31E+01≈ 1.62E+01− 7.67E+01− 1.63E+00+ 0.30

(continued)
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Table 1. (continued)

f LoTFWA-microDE LoTFWA DE PSO CMAES P-value

f7 6.51E+00 5.02E+01− 2.29E+01− 1.42E+02− 1.35E+01− 0

f8 2.09E+01 2.09E+01+ 2.09E+01≈ 2.10E+01− 2.14E+01− 0

f9 8.72E+00 1.45E+01− 3.93E+01− 2.88E+01− 4.26E+01− 0

f10 6.65E−01 4.04E−02+ 7.70E+00− 3.94E+01− 1.57E−02+ 0

f11 2.91E+01 6.40E+01− 1.10E+02− 1.47E+02− 9.67E+01− 0

f12 4.90E+01 6.96E +
01−

1.96E+02− 1.91E+02− 1.19E+03− 0

f13 9.03E+01 1.31E+02− 1.93E+02− 3.02E+02− 1.55E+03− 0

f14 1.12E+03 2.42E+03− 4.29E+03− 3.40E+03− 5.18E+03− 0

f15 2.27E+03 2.56E+03− 7.34E+03− 4.36E+03− 5.14E+03− 0

f16 3.88E−02 5.74E−02− 2.41E+00− 1.04E+00− 7.91E−02− 0

f17 6.58E+01 6.31E+01≈ 1.41E+02− 2.65E+02− 4.17E+03− 0.10

f18 8.70E+01 6.33E+01+ 2.23E+02− 2.83E+02− 4.15E+03− 0

f19 2.58E+00 3.17E+00− 1.37E+01− 1.52E+01− 3.49E+00− 0

f20 1.33E+01 1.34E+01≈ 1.28E+01≈ 1.47E+01− 1.26E+01≈ 0.44

f21 2.21E+02 2.00E+02+ 2.94E+02− 3.08E+02− 3.07E+02− 0

f22 1.21E+03 2.84E+03− 5.26E+03− 3.87E+03− 7.04E+03− 0

f23 2.40E+03 3.11E+03− 7.88E+03− 5.26E+03− 6.67E+03− 0

f24 2.04E+02 2.40E+02− 2.16E+02≈ 2.88E+02− 7.10E+02− 0

f25 2.47E+02 2.76E+02− 3.00E+02− 3.01E+02− 3.23E+02≈ 0

f26 1.94E+02 2.00E+02− 2.08E+02− 3.21E+02− 4.62E+02− 0

f27 4.87E+02 6.96E+02− 1.10E+03− 1.11E+03− 5.89E+02− 0

f28 2.92E+02 2.69E+02+ 3.00E+02− 1.19E+03− 1.47E+03− 0

AR 1.79 2.14 3.39 4.21 3.32

+ 7 3 0 7

− 17 22 28 19

≈ 4 3 0 2

5 Conclusion

This paper proposes a micro-population evolution strategy for the loser-out tournament-
based fireworks algorithm to enhance its local search capability. Under the proposed
strategy, the explosion sparks make up a micro-population and are taken into the dif-
ferential evolution procedure. Experimental results on the CEC 2013 benchmark suite
indicates that the proposed strategy can improve the overall performanceof the algorithm.
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Further investigation is worthwhile on two aspects. On the aspect of the proposed
strategy itself.More improvements can be achievedwith adaptiveϕ and gmax considering
the search pattern of micro-populations. Besides, other evolutionary algorithms can be
implemented considering their advantages when facing different type of problems, such
as combinatorial optimizations and noisy optimizations. On the aspect of the algorithm.
Performance of the algorithm can further improve when utilizing the proposed strategy
for exploitation, and other mechanisms that enhance exploration.
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Abstract. Abnormal flights, which deviate from their scheduled plans, incurred
huge costs for airlines and serious inconvenience for passengers. This phenomenon
occurs frequently, especially under the influence of COVID-19 and requires high-
quality solution within short time limits. To mitigate these negative effects, first,
an integrated flight timetable and crew schedule recovery model with the aim of
minimizing total cost is constructed in this paper. Second, an improved fireworks
algorithm is proposed to effectively solve the model. Finally, an unscheduled
temporary aircraft maintenance scenario is obtained to illustrate the superiority of
the proposed algorithm in terms of computing time and solution quality.

Keywords: Integrated flight timetable and crew · Abnormal flight · Recovery ·
fireworks algorithm

1 Introduction

Abnormal flights are flights that deviate from their scheduled plans. They are very
common in the airline industry and influenced by various unforeseen factors, such as poor
weather, congestion, unscheduled maintenance, and so on. According to the Statistical
Communique on theDevelopment of theCivil Aviation Industry, in 2020, 404,164 flights
are suffering from disruptions, accounting for hundreds of billions in economic losses
for airlines [1].

Airlines typically recover from disruptions in stages, which are broadly categorized
as timetable, aircraft, crew, and passenger recovery [2]. References [3–6] are some
recent research for these four sub-stage recovery problems and readers are referred to
Hassan for a more comprehensive review [7]. Since Teodorović pioneering focused on
the abnormal flight recovery problem in 1984, research has announced that timetable
recovery is the basic core step, and crew resource is the largest controllable cost for the
airlines [8]. Thus, this paper focuses on integrated flight timetable and crew schedule
recovery (I-FTCSR) problem, i.e., to determine new flight takeoff time and crew task.
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An integratedmethod can overcome the suboptimality of the recovery solution, how-
ever, solving it is intractable in computational efficiency because of the huge solution
space and complex problem structure. Petersen et al. employed Bender’s decompo-
sition to decompose the integrated recovery model into a master problem and three
sub-problems [9]. Le and Wu designed a heuristic approach to solve the integrated air-
line recovery problem [10]. Zhang et al. proposed an interactive two-stage heuristic,
which runs iteratively until the optimal solution was achieved [11]. Maher presented
a column-and-row generation technique to solve the integrated airline problem [12].
These methods indeed decrease computation times, while are still too long for airlines’
operational implementation, especially given the NP-hard complexity.

To acquire an efficient and accurate solution within a short time limit, swarm evolu-
tionary algorithm may be a good attempt for its easy implementation, excellent perfor-
mance, and high efficiency in solving complex problems. In this paper, one of the popular
swarm evolutionary algorithms, fireworks algorithm (FWA) proposed by Tan and Zhu,
is improved with two mechanisms to apply to the I-FTCSR for its global exploration
and local exploitation abilities [13].

Inspired by the above analysis, this paper aims to acquire an efficient and accu-
rate solution for the I-FTCSR using a tailored swarm evolutionary algorithm. Main
contributions are listed below:

• Construct the model of integrated flight timetable and crew schedule recovery (I-
FTCSR) problem with the objective of minimizing total recovery cost.

• Design an improved fireworks algorithm (I-FWA) for the I-FTCSR and propose a
corresponding coding scheme between the model and algorithm.

• Conduct experiments with unscheduled maintenance scenario and provide its com-
petitive recovery solution.

The remainder of this paper is organized as follows. Section 2 shows the detailed
model description for considered I-FTCSR. Section 3 introduces the coding schema and
the improved I-FWA in detail. Section 4 designs experiments and provides the recovery
scheme. Finally, Sect. 5 concludes the paper and discusses the future work.

2 Problem Formulation and Model Construction

2.1 Problem Description

This paper focuses on I-FTCSR, which suffers temporarily unscheduled maintenance.
Therefore, how to re-schedule all planned flight tasks using some repair methods (e.g.,
flight cancellation, takeoff time rearrangement, and crewduty reallocation) under various
time and space constraints with minimum recovery cost, is our main concern.

For simplicity, this model considers only one aircraft type and assumes the recovery
period is within one day.
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2.2 Model Construction

Model Parameters. Referencing the latest aviation industry-government document
CCAR121-R5 in China, Table 1 presents the sets, parameters, and variables used in
I-FTCSR model [14].

Table 1. Definition of sets, parameters, and variables.

Sets
Set Definition Set Definition
S airport set, F flight set,
E crew set,
Parameters
Name Definition Name Definition
cfd flight unit delay cost cfc flight cancellation cost
ces unit cost of using standby crew tf landing time of flight f
fe crew arrangement for flight f af landing airport of flight f
we total working time of crew e de total duty time of crew e
u1 crew maximum flight time u2 crew maximum duty time
t transit time between flights te most recent landing time of 

crew e
qf departure time of flight f’s subsequent flight 
qe departure time of crew e’s subsequent task
vf departure airport of flight f’s subsequent flight
ve departure airport of crew e’s subsequent task
Variables
Name Definition
xf delay time of flight f compared to its planned departure time
yf whether flight f is canceled or not. If xf larger than 8 hours, it is cancelled
zf whether the crew allocation on flight f is a standby crew or not

Model Formulation. With the parameter definitions presented in Table 1, the specific
objective and constraint formulations of the I-FTCSR are defined below.

min
∑

f ∈F
cfd xf

(
1 − yf

) +
∑

f ∈F
cfcyf +

∑

f ∈F
ceszf (1)

s.t.qf > tf + t. ∀f ∈ F (2)

qe > te + t. ∀f ∈ F (3)

af = vf = ve. ∀f ∈ F (4)



332 X. Gan et al.

we < u1. ∀e ∈ E (5)

de < u2. ∀e ∈ E (6)

∑
e
fe ≤ 1. ∀f ∈ F (7)

xf ≥ 0. ∀f ∈ F (8)

yf ∈ {0, 1}. ∀f ∈ F (9)

zf ∈ {0, 1}. ∀f ∈ F (10)

Formula (1) is the objective function, aiming to minimize the sum of flight delay
cost, flight cancellation cost, and the cost of using standby crew under a temporar-
ily unscheduled maintenance case. Formulas (2) and (3) ensure minimum transit time
between adjacent flights and adjacent crew tasks, respectively. Formula (4) guarantees
space feasibility for both adjacent flights and crew tasks. Formulas (5) and (6) make
each crew’s daily flying and duty times not exceed their prescriptive maximum. Formula
(7) ensures that no crew can execute two tasks at the same time. The remaining three
formulas are the ranges of the variables. The remaining formulas define the range of
variables.

3 Solution Procedure Based on Improved Fireworks Algorithm

3.1 Coding Design for I-FTCSR Model

To illustrate the coding scheme, in Table 2, an example comprising 10 abnormal flights
is presented. Because there are 2 decision variables (yf is an auxiliary variable that can
be calculated by xf ) in our I-FTCSR, the coding dimensions are 20 (flights number × 2
dimensions). Every 10 dimensions represent decision variables xf and zf for each flight,
respectively.

Table 2. I-FTCSR coding design.

First 10 dimensions Last 10 dimensions

Delay time of flight f compared to its planned departure
time

Crew arrangement for each flight
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3.2 Improved Fireworks Algorithm (I-FWA) Steps

The basic fireworks algorithm originated from observing the fireworks explosion process
and is a kind of new evolutionary optimization technique. There are two main operators,
explosion and Gauss mutation operators, which serve for optimization evolutionary and
diversity keeping, respectively.

For reading convenience, we firstly introduce formulations for the main parameters,
i.e., maximum explosion radius Ai and spark number s

∧

i for fireworks i as below.

Ai = A
∧

· f (xi) − ymin + ξ∑n
i=1(f (xi) − ymin) + ξ

. (11)

where A
∧

represents maximum explosion radius (this is generated by our first improved
mechanism as formula (14) shown), f (xi) is the fitness of firework i, n is firework
quantities, ymin is the best solution among n fireworks, and ξ is the smallest constant in
the computer to avoid zero-division-error.

si = m · ymax − f (xi) + ξ∑n
i=1(ymax − f (xi)) + ξ

. (12)

s
∧

i =
⎧
⎨

⎩

round(am) if si < am
round(bm) if si > bm, a < b < 1
round(si). otherwise

(13)

where s
∧

i is the bound for si, a and b are constant parameters, m is a customized spark
generated parameter, ymax is the worst solution, and round(..) represents the rounding
symbol.

In order to obtain a better solution for I-FTCSR model, this paper proposes a novel
I-FWA algorithm. Its detailed steps are presented in Algorithm 1, which comprises the
following two improvements:

(1) Nonlinear Decreasing Maximum Explosion Radius. The maximum explosion
radius in the basic FWA is determined, which is not conducive to the convergence in the
later iteration stage. Therefore, a decreasing non-linearly maximum explosion radius as
formula (14) shown is designed to keep strong global exploration firstly and improve
local exploration capability later.

A
∧

= A
∧

×
(
1 − T

TMax

)
. (14)

where T is the iteration number and TMax is the maximum iteration number.



334 X. Gan et al.

(2) Cauchy Mutation Operator. The basic Gaussian distribution mutation allows only
a small number of sparks to be far away from the current fireworks, which weakens
the algorithm ability to find the global optimal solution. Therefore, a more flat curve,
Cauchy distribution, is utilized instead, to make the algorithm find global optimization
ability effectively, jump out of the local optimal quickly, and enhance the diversity of the
population. Figure 1 shows the two standard probability density functions intuitively.

Fig. 1. Probability density functions of standard Gaussian and Cauchy distribution.

Algorithm 1. Detailed steps of I-FWA
Input: Parameters including population size n, and termination criteria.
Output: Optimal solution.
1: Initial population generated randomly for n fireworks.`
2: While termination criteria=false do
3: for each firework i do
4:   Calculate explosion radius and spark number by formulas (11)-(14).

5: Obtain the location of all sparks by referencing Algorithm 1 in Tan and Zhu
[13]. The solution should be within the feasible region.

6:   Evaluate the fitness of fireworks and sparks, and flag the best one. 
7:   Execute Cauchy mutation operator for the fireworks. 
end for
8:   Select the best location and keep it for the next explosion generation. 
9:   Randomly select n – 1 locations from all current sparks and fireworks.
end while
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4 Experimental Analysis

In this part, an actual unscheduled maintenance case, in which 2 aircraft are breakdown
before takeoff and will be recovered after 120 min, is adopted. Since particle swarm
optimization (PSO) has already demonstrated significant success in many scheduling
problems, it is chosen as a peer algorithm to investigate the performance of our proposed
I-FWA in solving the complex I-FTCSR. Some available information, such as instance
information, I-FTCSRmodel parameters, and algorithmparameters, are listed inTables 3
and 4, respectively.

Table 3. Disrupted flights information.

No flights Crew duty Departure airport Land airport Departure time Land time

1 1 1 Shanghai Chengdu 08:20 11:40

2 Chengdu Shanghai 12:30 15:10

3 Shanghai Sanya 17:05 20:00

4 Sanya Shanghai 21:05 23:50

2 1 2 Shanghai Taipei 09:20 11:00

2 Taipei Shanghai 12:00 13:30

3 Shanghai Harbin 14:25 17:05

4 Harbin Shanghai 18:00 20:40

5 3 Shanghai Jinan 21:30 22:25

6 Jinan Shanghai 23:05 24:00

Since our two proposed strategies in Sect. 3.2 only enhance evolution mechanisms
on the local search and mutation processes, the basic input parameters of algorithms
I-FWA and FWA are consistent. To make a fair comparison, all experiments are run 30
times independently under the same maximum iterations T = 5000, and the best results
are highlighted in boldface.

Table 5 firstly gives the comparison results obtained by different algorithms for solv-
ing the I-FTCSR. It is clear that the I-FWA is the best solver with the shortest computing
time to obtain the optimal solution. What’s more, I-FWA can always find the minimum
cost. It is because the nonlinear decreasing maximum explosion radius mechanism helps
in global detection capability firstly and ensures relatively speed in the middle stage.
The introduction of Cauchy mutation operator enhances the mutation probability of the
population, which reduces the possibility of falling into local optimization.

The average convergence processes of the three compared algorithms are given
intuitively in Fig. 2. Although PSO can find a smaller cost recovery schema at the very
beginning, it falls into local sub-optimal at the same time. FWA and I-FWA have similar
convergence effectiveness, while the I-FWAalgorithm always finds a lower-cost scheme,
which indices the effectiveness of our proposed improved strategies.
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Table 4. Model and algorithm parameters.

Definition Value

Flight unit delay cost (yuan / min) 100 I-FTCSR
modelFlight cancellation cost (yuan) 10000

Unit cost of using standby crew (yuan) 5000

Initial individual number of fireworks 5 I-FWA,
FWASparks generated parameter m 50

Maximum number of sparks 40

Minimum number of sparks 2

Initial population size 50 PSO

Inertia weight 0.5

Self-learning factor 0.5

Group-learning factor 0.5

Table 5. Comparison results obtained by different algorithms on solving the I-FTCSR.

Algorithms Average computing time/s Solution cost

FWA 0.3089700 71276

I-FWA 0.2094590 69450

PSO 5.6175748 138746

Fig. 2. Average convergence processes of I-FWA, basic FWA, and PSO.
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Finally, the best recovery scheme provided by the I-FWA algorithm is presented in
Table 6. All flight takeoff timetables are subject to various degrees of adjustment, for
example, the 1st flight of aircraft 1 will delay 120 min, and the 2nd flight delays 100 min.
The crew arrangements keep the same in this instance, it is because all crews’ industry
requirements can be ensured by these effective timetable adjustments. Table 6 can be
used by the decision-maker directly.

Table 6. Abnormal I-FTCSR recovery solution.

No flights Crew duty Departure airport Land airport Departure time Land time

1 1 1 Shanghai Chengdu 10:20 13:40

2 Chengdu Shanghai 14:10 16:50

3 Shanghai Sanya 17:20 20:15

4 Sanya Shanghai 21:05 23:50

2 1 2 Shanghai Taipei 11:20 13:00

2 Taipei Shanghai 13:30 15:00

3 Shanghai Harbin 15:30 18:10

4 Harbin Shanghai 18:40 21:20

5 3 Shanghai Jinan 21:50 22:45

6 Jinan Shanghai 23:15 00:35

5 Conclusion and Future Research

This research establishes an integrated flight timetable and crew schedule recovery
problem under a temporarily unscheduled maintenance scenario. A tailored improved
fireworks algorithm is proposed to solve this problem efficiently. Experiment results
demonstrate the effectiveness of this proposed algorithm in terms of computing time
and solution quality.

In the future study, we will consider multi-aircraft types to overcome its single
assumption. The passenger recovery problem also deserves consideration in conjunction
with the problem considered in this research.
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Abstract. As an efficient organization form of distributed energy
resources with high permeability, microgrid (MG) is recognized as a
promising technology with the promotion of various clean renewable
sources. Due to uncertainties of renewable sources and load demands,
optimizing the dispatch of controllable units in microgrid to reduce eco-
nomic cost has become a critical issue. In this paper, an economic dis-
patch optimization model for microgrid including distributed generation
and storage is established with the considering of inherent links between
intervals, which aims to minimize the economic and environmental costs.
In order to solve the optimization problem, a novel swarm intelligence
algorithm called fireworks algorithm with momentum (FWAM) is also
proposed. In the algorithm, the momentum mechanism is introduced into
the mutation strategy, and the generation of the guiding spark is modi-
fied with the historical information to improve the searching capability.
Finally, in order to verify the rationality and effectiveness of the proposed
model and algorithm, a microgrid system is simulated with open data.
The simulation results demonstrate FWAM lowers the economic cost of
the microgrid system more effectively compared with other swarm intel-
ligence algorithms such as GFWA and CMA-ES.

Keywords: Fireworks algorithm · Swarm intelligence · Microgrid ·
Smart grid · Economic dispatch

1 Introduction

Facing the increasing environment protection needs, clean energy with remark-
able renewable and environment-friendly characteristics, such as photovoltaic
(PV) power and wind power (WP), is gradually replacing the traditional ther-
mal power which has harmful environmental effects. In the relevant case study,
the global renewable energy consumption has already accounted for 15% of global
energy consumption in 2020 and will further increase to 27% in 2050 [15]. How-
ever, due to the randomness of natural conditions, renewable clean energy usually
shows significant intermittent and irregularity. Directly injecting the renewable
c© Springer Nature Switzerland AG 2022
Y. Tan et al. (Eds.): ICSI 2022, LNCS 13344, pp. 339–353, 2022.
https://doi.org/10.1007/978-3-031-09677-8_29
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power into the utility grid will lead to the power mismatching and seriously
affect the power quality [1]. The technique of energy decentralization like micro-
grid can effectively alleviate the problem by maintaining a stable power demand
and supply ratio.

Microgrid is a system concept including multiple coordinated loads and dis-
tributed energy resources (DER), operating as a controllable structure to the
utility grid with well defined electrical boundaries [14]. In addition, the micro-
grid is also equipped with necessary control device which can manage the power
output of the controllable unit to maintain the power balance and control inter-
action with the utility grid under the grid-tied mode, so as to downscale the
fluctuation and boost the overall economic benefits of grid and users [16]. On
the basis of meeting the above requirements, making a reasonable day ahead
dispatch schedule to minimize the economic cost is of great significance in the
microgrid and smart grid.

Due to the complex form of objective functions of the microgrid economic
dispatch optimization, various swarm intelligence algorithms are introduced to
solve the optimization problem, which have already achieved notable success on
some real-world problems like spam detection [12], multiple targets search [17]
and multi-objective optimization [3,8,18]. Fireworks algorithm (FWA) is a novel
swarm intelligence algorithm proposed by Tan et al. in 2010 [13]. FWA has a
double-layer structure, one layer is the global coordination between the popu-
lations represented by fireworks, and the other one is the independent search
of each firework. This hierarchical structure ensures that FWA can adapt to a
variety of optimization problems with different characteristics. In recent years,
some variants of fireworks algorithms such as guided FWA (GFWA [7]) and
loser-out tournament FWA (LoTFWA [5]) further enhance the search ability of
FWA. The superiority of the those variants on the optimization of multi-modal
test functions prove that FWA has great potential in real-world optimization
problems like multi-objective.

Based on the comprehensive consideration of the power characteristics and
constraints of renewable energy and energy storage, a dynamic economic dispatch
optimization model for the microgrid is built with the goal of minimizing the
overall costs and simulated with the open datasets in this paper. This work also
improves the mutation operator of FWA by introducing momentum mechanism
and the resulting algorithm is called FWA with momentum (FWAM). In GFWA,
the guidance vector (GV) is determined by the difference between the centroids of
two certain groups of sparks in the current population, and a guidance spark (GS)
are generated accordingly as the elite individual. Meanwhile, FWAM additionally
introduces its own historical information when calculating the guiding vector to
reduce the randomness of guidance spark generation. Simulation result shows
that FWAM exhibits more powerful exploration and exploitation ability than
previous FWA variants and other swarm intelligence algorithms like CMA-ES.

The remaining chapters of this paper is organized as follows. Section 2
introduces the essential background information and related works. Section 3
describes our proposed dispatch model in detail. Section 4 explains and analyzes
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FWAM and its improved mutation operator. Then Sect. 5 presents the simula-
tion results to show the performance of FWAM on the dispatch problem. And
Sect. 6 gives the conclusion.

2 Related Works

2.1 Economic Dispatch Optimization for Microgrid

Microgrid economic dispatch can be roughly divided into static dispatch and
dynamic dispatch. The static dispatch strategy obtains the optimal value of the
objective function for each time interval, and adds the results together to obtain
the global optimal. The static strategy ignores the inherent links between inter-
vals, and thus cannot meet the actual requirements. In addition, some studies
also simplify the architecture, constraint and objective function of the micro-
grid system. Peng et al. built an economic dispatch model for microgrid under
the island mode without the state of charge constraints of the energy storage [9].
Ding et al. proposed a similar dispatch model with the goal of minimizing operat-
ing cost of distributed generation system, but ignore the environmental cost [2].
Recently, some studies try to simulate a more realistic microgrid system model,
and put forward more meaningful and useful dispatch strategies on this basis,
which leads to a sharp increase in the complexity of the microgrid dispatch
optimization, and a variety of swarm intelligence algorithms are introduced to
solve the problems. Tan et al. proposed a hybrid non-dominated sorting genetic
algorithm (NSGA) and adopted it on the multi-objective dispatch optimization
for microgrid [11]. Lezama et al. optimized bidding in local energy market with
particle swarm algorithm (PSO) [4].

This paper describes the constraints of each DER and the objective function
of the entire system in detail, and establishes the links between intervals. In order
to solving the optimization problem, a novel FWA is proposed and introduced.

2.2 Guided Fireworks Algorithm

FWA conducts explosion and selection iteratively to search the global optimum.
In the explosion operation, each firework would generate several sparks in a
hypersphere centered on itself, where the radius of hypersphere is called explosion
amplitude. Then, firework of next iteration would be selected from the candidate
pool formed by firework and its sparks. Variants like adaptive FWA (AFWA [6])
and dynamic search FWA (dynFWA [16]) improve the explosion operator by
adjusting the explosion amplitude adaptively in each iteration. LoTFWA and
Fireworks Algorithm based on search space partition (FWASSP [8]) attempted
to design a more efficient collaboration mechanism.

GFWA introduced a landscape information utilization-based elite steat-
egy [6]. In GFWA, the firework and its sparks are sorted according to their
fitness after the explosion operation in each iteration. Then, the guiding vector
(GV) is calculated as the difference between the centroids of the top σλi sparks
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and the bottom σλi sparks, where σ is a super parameter to control the size
of the two subsets. By adding the GV to the firework, a elite individual named
guiding spark (GS) is generated. And GS will be selected together with other
individuals in the candidate pool to select new firework. The experimental result
shows this novel mutation operator can enhance the convergence speed and the
local search ability significantly.

3 Dynamic Economic Dispatch Optimization Model
for Microgrid

A dynamic economic dispatch optimization model for microgrid under the grid-
tied mode is established in this paper. The microgrid system is mainly con-
sist of the distribution energy resources and the load, where the distribution
energy resources include photovoltaic (PV) system, wind turbine (WT), micro
turbine(MT) and energy storage (ES) devices. And there is also a control device
to control the power output of the DER and the interaction with the utility grid.
The power generated by DER gives the priority to meeting the load demand,
and the excess energy will be transmitted to ES and the utility grid according
to the electricity price. Figure 1 illustrates the structure of the entire microgrid
system.

Fig. 1. The structure of the microgrid system.

The dynamic economic dispatch optimization model is usually regarded as a
dynamic system. Taking the state of charge (SoC) of the ES as the system state
variable, the model can be described as the following dynamic equation:

SoCt+1 = SoCt +
N∑

i=1

P
(i)
t + Pg,t, t = 0, 1, ..., T − 1, (1)

where N is the number of DER, and Pg is the power interaction with the utility
grid. The dispatch in this paper is a day-ahead hourly scheduling, thus T is set
as 24.
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3.1 Objective Function of the Dispatch Model

The main objective of the dispatch is maximizing the utilization of renewable
resources to reduce the pollution emissions, while minimizing the economic cost
of the entire system. The objective function is expressed as the following:

min f = feco + fenv, (2)

feco =

T−1∑

t=0

(

NW∑

i=1

CW (P
(i)
W,t)+

NP∑

i=1

CP (P
(i)
P,t)+

NM∑

i=1

CM (P
(i)
M,t)+

NS∑

i=1

CS(P
(i)
S,t)+CG(PG,t)), (3)

fenv =
T−1∑

t=0

(
NM∑

i=1

EM (P (i)
M,t) + EG(PG,t)), (4)

where feco and fenv are functions of the economic cost and environmental cost.
CW , CP , CM and CS are the operation cost of WT, PV, MT and ES. N and P
represent the number and power of the corresponding units. CG is the transaction
cost with utility grid. EM and EG represent the environmental compensation
expense of MT and grid. Detailed definitions of the cost function above are
introduced as follows.

Cost Function of Wind Turbine. Wind power is one of the main clear energy
resources with the well established technology at present, which could lower the
pollution emissions effectively. The maintenance cost of the wind turbines can
be abstracted as a linear relation with the active output:

CW = αW PW , (5)

where αW is the coefficient of the maintenance cost of WT.

Cost Function of Photovoltaic System. Photovoltaic power is also a impor-
tant clean alternative energy, and it has a more extensive application scenarios
compared with the wind power. The maintenance cost of photovoltaic system
can also be expressed as a linear relation:

CP = αP PP , (6)

where αP is the coefficient of the maintenance cost of PV.

Cost Function of Micro Turbine. Due to the stable and controllable power
output, the micro turbine can relieve the short-term power shortage and stabilize
the fluctuation of voltage and frequency caused by the randomness of clean
energy. The operation cost of micro turbine mainly includes the maintenance
cost and the fuel cost, which are defined as the followings:

CM = Cmt + Cf , (7)
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Cmt = αMPM , (8)

Cf = αfP 2
M + βfPM + γf , (9)

where αM , αf , βf and γf are parameters determined by the type of the micro
turbine.

Cost Function of Energy Storage. ES can be charged and discharged accord-
ing to the electricity price and power surplus, so as to effectively mitigate the
negative impact of fluctuation of the load and reduce the operation cost of micro-
grid system. The maintenance cost of ES are usually expressed as a linear relation
with the power of charging and discharging:

CS = αS |PS |, (10)

where αS is the coefficient of the maintenance cost of ES, and PS represents the
charging power of discharging power of ES. For convenience, the charging power
is set to negative, and the discharging power is set to positive.

Cost Function of Energy Transaction. Under the grid-tied mode, the micro-
grid system can establish the energy transaction between the utility grid. If the
power of DER cannot meet the load demand, the microgrid can purchase energy
from the utility grid. If there is a power surplus, the excess energy can be trans-
mitted to ES or sell to the utility grid according to the real-time electricity price.
Thus, the cost of energy transaction can be expressed as the following:

CG =
{

pbPG, PG ≥ 0
psPG, PG<0,

(11)

where pb and ps are the purchase price and the selling price respectively, and
PG is the interactive power. The interactive power PG is set to negative when
the microgrid purchase the electricity form the utility grid, otherwise it is set to
positive.

Environmental Cost. Thermal power generation like micro turbine usually
emits certain polluting gases, among which sulfide and nitride have a relatively
strong negative impact on the environment. This would require certain environ-
mental compensation for the pollution prevention and control. It’s worth noting
that thermal power also account for a significant portion in the utility grid today.
Thus, when purchasing the electricity from the utility grid, the microgrid system
still need paying the environmental compensation. The environmental compen-
sation expense of MT can be abstracted as the following:

EM = αnβM
n PM + αsβ

M
s PM , (12)
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where αn and αs are the compensation expense of nitride and sulfide. βM
n

and βM
s are emission parameters of nitride and sulfide. And the compensation

expense of the utility grid is similar as the MT:

EG =
{

αnβG
n PG + αSβG

s PG, PG>0
0, PG ≤ 0,

(13)

where βG
n and βG

s are emission parameters of nitride and sulfide of the utility
grid.

3.2 Constraints of the Dispatch Model

For the stability and safety of microgrid operation, it is necessary to enforce cer-
tain constraints on each unit in the microgrid. The constraints can be divided into
equality constraint and the inequality constraints in this paper, where the equal-
ity constraint describe the power balance. And the inequality constraints are
mainly the power constraints of the distributed generation and storage. Detailed
constraints are listed as follows.

The Power Balance of the Microgrid System. There must be a balance
between the power supply and demand in each time interval:

PL(t) = PW (t) + PP (t) + PM (t) + PE(t) + PG(t), (14)

where PL represents the power of all loads int the microgrid system.

The Constraints of Distributed Generations.

Pmin
W ≤ PW (t) ≤ Pmax

W , (15)

Pmin
P ≤ PP (t) ≤ Pmax

P , (16)

Pmin
M ≤ PM (t) ≤ Pmax

M , (17)

PM (t) − PM (t − 1) ≤ Rup, (18)

PM (t) − PM (t − 1) ≥ Rdown, (19)

where Pmin
W , Pmin

P , Pmin
M , Pmax

W , Pmax
P and Pmax

M are the minimum and the
maximum of active output power of WT, PV and MT respectively. Rup and
Rdown are limitations of the ramp rate of MT.

The Constraints of Energy Storage. Both the capacity and power of ES
need to be limited, where the capacity is usually described by the state of charge
SoC, that is the ratio of the residual capacity to the rated capacity:

SoC =
Q0 − ∫ t

0
I(t)dt

Qm
, (20)
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where Q0 is the initial capacity of ES, and Qm is the rated capacity of ES. Then,
the main constraints of ES can be given as follows:

⎧
⎨

⎩

SoC(t + 1) = SoC(t) + ηinPS(t)/Qm

P in
min ≤ PS(t) ≤ P in

max

SoCmin ≤ SoC(t) ≤ SoCmax

, PS(t)<0, (21)

⎧
⎨

⎩

SoC(t + 1) = SoC(t) + ηoutPS(t)/Qm

P out
min ≤ PS(t) ≤ P out

max

SoCmin ≤ SoC(t) ≤ SoCmax

, PS(t) ≥ 0. (22)

where ηin and ηout are the charging and discharging efficiency of ES. P in
min, P in

max,
P out

min and P out
max are limitations of charging and discharging power. SoCmin and

SoCmax are limitations of SoC.

4 Fireworks Algorithm with Momentum

4.1 Principle

GFWA improves the local search ability of fireworks algorithm by further utiliz-
ing the information of population and landscape. In GFWA, the guiding vector
(GV) can be seem as an estimator of the gradient of the objective function,
especially when the explosion amplitude is short. Thus, a GV with the accurate
direction and length could generate a guiding spark (GS) on a promising posi-
tion, which is more likely to be selected as the firework of the population in the
next iteration.

For reducing the randomness, GFWA calculate the GV by the centroids of the
top and bottom sparks instead of the best and worst spark. The technique could
extract the common qualities of the top sparks (the bottom sparks), and cancels
out the random noise on the irrelevant directions. However, there are still several
weaknesses in the technique: (1) When the firework locates in a local/global
optimum area, the explosion amplitude is usually shortened dramatically, which
means that the length of GV would also be too short to generate a GS on the
promising position. And the effect of the elite strategy would be weakened. (2)
The stability of the guiding spark mechanism is sensitive to the change of super
parameter σ. If the guiding mutation ratio σ is too large, some moderate sparks
would be selected to calculate the centroid, and this would lead to the vague of
common qualities of the top sparks/bottom sparks. While if σ is too small, the
random noise could not be cancelled out.

To solve the problems above, FWAM introduces a momentum mechanism
to generate GS with the historical information. Specifically, in each iteration,
the calculation of GV is not only determined by the difference in the current
iteration, but also the GV in the previous iteration:

Δi,t =
1

σλi
(

σλi∑

j=1

sij,t −
λi∑

j=λi−σλi+1

sij,t), (23)
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vi,t = γvi,t−1 + ηΔi,t, (24)

where vt is defined as the GV in FWAM, and vt−1 can be seem as a momen-
tum term. γ is a momentum parameter to control the ratio of current difference
Δt and the historical information, and a larger γ means that GV would sotre
more historical information in the current GV. Compared with GFWA, a obvi-
ous advantage is that even if the random noise in the difference between the
top and bottom sparks affects GV’s estimation of gradient, GV could still be
corrected and compensated by the historical information. Thus, when the fire-
work locates near the optimum, this improved GV could also has a promising
direction. Another important advantage is that the momentum mechanism can
lengthen the GV on the relevant direction, which would accelerate the conver-
gence of the firework. Algorithm 1 gives the description of FWAM. The next
subsection will give analysis of this mechanism in detail.

Algorithm 1. Framework of Fireworks Algorithm with Momentum
Input: Firework num μ, spark num λ, mutation ratio σ, momentum params γ, η
Output: Optimal solution

Initialize μ fireworks randomly within the feasible region Ω
while termination condition not satisfied do

for Fireworksi in Fireworks do
Explosion:
Generate λi spark randomly around Fireworksi within amplitude Ai

Mutation:
Sort sparks according to their fitness in ascending order
Calculate guiding vector vi,t = γvi,t−1 + η 1

σλi
(
∑σλi

j=1 sij,t −
∑λi

j=λi−σλi+1 sij,t)
Generate guiding spark Gi,t = vi,t + Fireworki,t

Selection:
Evaluate Fireworki and all sparks’ fitness
Select the best candidate as the Fireworki of the next iteration
Adjust Ai adaptively

end for
end while

4.2 Analysis

Considering the relation between the previous GV (momentum term) vt−1 and
current difference Δt, the effect of momentum mechanism can be analyzed in
the following two possible situations.

If current difference Δt has a direction consistent with vt−1 (see Fig. 2(a)),
the projection of vt−1 on Δt would be relatively large and current GV vt would
be lengthened on the relevant direction. Actually, the momentum mechanism
can be regarded as a weighted average method, and thus the lengthening effect
would be more significant if the direction of Δt always keeps consistent with the
historical GV in recent iterations. Due to the characteristic of adaptive strategy
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in FWA, there is always the same change trend of amplitudes on different dimen-
sions, and this would lead to premature convergence on some key dimensions.
As a result, FWA might underperform when the global optimum locates on the
boundaries of feasible region. While the momentum mechanism can help the GS
keep sufficient distance separation with the firework even when the population
locates near the optimum or boundaries, which ensure the guiding spark can still
make sense in this situation.

If the direction of current difference Δt has a obvious divergence with the
promising direction (see Fig. 2(b)), GV in GFWA tends to have a large oscilla-
tion on the irrelevant direction and the GS is likely not going to seek a better
position, which means that GS would not be selected as the firework. While vt−1

represents the accumulation of historical GV information in FWAM, and thus
there is a higher probability for GV to approach the relevant direction. As the
sum of vt−1 and Δt, components of GV on the irrelevant direction in FWAM
would be shortened and the GS would be closer to the optimum. From another
point of view, Δt also has a significant effect on vt, and such a “compromise”
strategy ensure that the GS in FWAM still can lead the population to get rid of
the local optimum.

In summary, by introducing the momentum mechanism, the variance of GV
in FWAM can be reduced effectively and the GV would be more aggressive when
it approach the promising direction, which could accelerate the convergence of
the algorithm and enhance the tolerance of the selection of parameter σ.

(a) (b)

Fig. 2. Illustration of two possible situations of FWAM in the search process.

5 Case Study

For verifying the rationality and effectiveness of the proposed dispatch model
and the improved algorithm, this paper simulates a dispatch optimization model
under the grid-tied mode as the definition in Sect. 3 , and conducts the FWAM on
the model to get a day-ahead dispatch schedule for each controllable components.
Detailed description are given as the followings.
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5.1 Simulation Settings

The distributed generations in the system consist of 4 micro turbines, 100 wind
turbines, 20 PV arrays (each PV array has 40 PV panels) and 2 energy storage
systems. The detailed parameters of each DER units above are listed in Table 1
and Table 2. Loads is mainly composed of 3 office buildings and 10 personal
residential houses. And the real-world power profiles of WT, PV and loads are
selected form the open datasets available in PES ISS website [10]. Time-of-use
(TOU) price of the electricity transaction with utility grid is shown as Table 3.

In order to fully verify the reliability of the proposed algorithm, the power
profiles from 1 June to 30 June are chosen to conduct the simulation 30 times
repeatedly with a maximum evaluation number of 100000. Some FWA variants,
such as GFWA and FWA based on search space partition (FWASSP), and other
swarm intelligence algorithm like CMA-ES and PSO are selected as the baseline.

Table 1. Parameters of distributed generations in the microgrid system.

DG Minimum

Output (kW)

Maximum

Output (kW)

Minimum

Ramp Rate

(kW/h)

Maximum

Ramp Rate

(kW/h)

Maintenance

Parameters

(CNY/(kW·h))
WT 0 50.0 – – 0.12

PV 0 80.0 – – 0.02

MT1 0 35.0 −15.0 15.0 0.03

MT2 0 35.0 −15.0 15.0 0.02

MT3 0 35.0 −15.0 15.0 0.04

MT4 0 35.0 −15.0 15.0 0.01

Table 2. Parameters of distributed storage systems in the microgrid system.

DS rated
Capacity
(kW·h)

Minimum
SoC (%)

Maximum
SoC (%)

Maximum
Discharing
Power (kW)

Maximum
Charging
Power (kW)

Maintenance
Parameters
(CNY/(kW·h))

ES1 30.0 0.1 0.9 10.0 −5.0 0

ES2 30.0 0.1 0.9 10.0 −5.0 0

Table 3. Time-of-use price of electricity transaction.

Period Time Purchase price (CNY) Sell price (CNY)

Peak 11:00–15:00, 19:00–21:00 0.83 0.65

Peace 8:00–10:00, 16:00–18:00, 22:00–23:00 0.49 0.38

Valley 0:00–7:00 0.17 0.13
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5.2 Encoding of Solutions

The object of the dispatch is reducing the overall cost of the microgrid system by
adjust the active output of the controllable DER and the transaction with the
utility grid. Thus, the solutions in this paper is 144-dimensional, which consists
of the scheduled hourly active output of 4 MT and 2 ES in the next day. And the
transaction with the utility grid can be determined according to the constraint
of power balance.

5.3 Cost Analysis

The simulation results are shown as Table 4. Momentum parameters γ and η
are set as 0.9 and 0.6 by grid search. The results indicate that the average
rank of mean cost of FWAM is 1.57, which is the best compared with other
baseline algorithms. And the standard deviation of FWAM also indicates that
the momentum mechanism improve the stability of the algorithm.

Table 4. Comparing FWAM with baseline algorithms on the simulation datasets.

Day FWAM GFWA FWASSP PSO CMA-ES

mean std mean std mean std mean std mean std

1 3.41e+02 3.46e+00 3.84e+02 1.56e+01 4.29e+02 9.67e+00 4.21e+02 1.48e+01 3.87e+02 1.26e+00

2 1.44e+02 9.01e+00 1.66e+02 1.05e+01 2.14e+02 1.90e+01 1.74e+02 3.76e+00 1.50e+02 7.07e+00

3 −2.16e+02 3.26e+00 −2.08e+02 7.35e+00 −1.75e+02 7.60e+00 −1.68e+02 1.64e+01 −2.12e+02 2.22e+01

4 5.32e+02 1.04e+01 5.46e+02 8.43e+00 5.64e+02 2.81e+01 5.64e+02 1.34e+01 5.28e+02 3.81e+00

5 2.27e+02 6.36e+00 2.53e+02 1.23e+01 3.05e+02 2.49e+01 3.18e+02 9.54e+00 2.52e+02 6.19e+00

6 5.05e+02 8.79e+00 5.14e+02 8.76e+00 5.62e+02 1.69e+01 5.85e+02 5.64e+00 5.07e+02 1.09e+01

7 2.60e+02 6.17e+00 2.61e+02 5.02e+00 3.40e+02 3.25e+01 3.30e+02 1.28e+01 2.56e+02 5.20e+00

8 4.80e+02 3.44e+00 5.01e+02 1.32e+01 5.16e+02 2.02e+01 5.28e+02 2.50e+01 4.88e+02 1.30e+01

9 6.17e+02 8.51e+00 6.23e+02 1.03e+01 6.43e+02 1.61e+01 6.64e+02 1.65e+01 6.16e+02 6.03e+00

10 3.95e+02 7.38e+00 3.93e+02 4.15e+00 4.63e+02 3.56e+01 4.37e+02 1.37e+01 4.03e+02 1.42e+01

11 8.21e+02 1.90e+00 8.24e+02 7.87e+00 8.29e+02 7.31e+00 8.34e+02 1.63e+01 8.08e+02 1.14e+01

12 −4.88e+01 5.32e+00 −4.75e+01 6.38e+00 3.15e+01 3.29e+01 1.01e+00 1.47e+01 −4.45e+01 6.59e+00

13 6.49e+02 6.63e+00 6.58e+02 5.34e+00 6.89e+02 1.46e+01 6.86e+02 7.86e+00 6.37e+02 1.60e+00

14 6.04e+02 9.69e+00 6.15e+02 7.59e+00 6.60e+02 2.64e+01 6.45e+02 1.16e+01 6.15e+02 1.85e+00

15 4.30e+02 7.84e+00 4.35e+02 1.43e+01 4.59e+02 2.39e+01 4.87e+02 1.61e+01 4.26e+02 8.33e+00

16 7.32e+02 4.94e+00 7.49e+02 5.81e+00 7.82e+02 5.53e+00 7.58e+02 1.21e+01 7.26e+02 1.00e+01

17 6.66e+02 8.11e+00 6.81e+02 1.15e+01 7.03e+02 1.36e+01 7.14e+02 1.68e+01 6.68e+02 5.36e+00

18 3.43e+02 3.90e+00 3.67e+02 9.25e+00 4.00e+02 3.20e+01 4.10e+02 2.06e+01 3.61e+02 1.06e+01

19 2.89e+02 3.90e+00 3.15e+02 9.42e+00 3.71e+02 1.59e+01 3.78e+02 2.10e+01 2.91e+02 5.56e+00

20 3.97e+02 5.04e+00 3.98e+02 7.06e+00 4.46e+02 8.13e+00 4.59e+02 4.91e+00 3.85e+02 4.31e+00

21 −6.97e+02 2.06e+00 −6.95e+02 9.17e+00 −6.39e+02 2.95e+01 −6.30e+02 1.35e+01 −7.02e+02 5.31e+00

22 −1.09e+02 9.29e+00 −1.03e+02 1.12e+01 −6.35e+01 1.70e+01 −4.20e+01 1.40e+00 −1.04e+02 7.32e+00

23 −3.72e+02 3.18e+00 −3.76e+02 1.61e+01 −2.60e+02 1.80e+01 −3.13e+02 1.95e+01 −3.69e+02 8.32e+00

24 −6.45e+01 1.59e+00 −6.70e+01 1.34e+01 −7.80e+00 1.47e+01 −9.13e+00 1.42e+01 −5.97e+01 1.48e+01

25 3.99e+02 4.44e+00 3.94e+02 1.08e+01 4.75e+02 9.55e+00 4.68e+02 9.14e+00 3.93e+02 1.43e+01

26 4.33e+02 5.54e+00 4.54e+02 1.59e+01 4.77e+02 2.03e+01 4.92e+02 1.09e+01 4.30e+02 9.49e+00

27 4.37e+02 6.53e+00 4.49e+02 5.98e+00 5.08e+02 1.07e+01 4.82e+02 2.02e+01 4.40e+02 3.83e+00

28 8.51e+02 2.24e+00 8.54e+02 6.15e+00 8.67e+02 3.05e+01 8.71e+02 9.58e+00 8.35e+02 3.06e+00

29 8.18e+02 5.48e+00 8.21e+02 9.71e+00 8.39e+02 1.68e+01 8.44e+02 1.32e+01 8.11e+02 5.27e+00

30 3.04e+02 9.95e+00 3.16e+02 1.14e+01 3.63e+02 1.71e+01 3.50e+02 1.80e+01 3.20e+02 6.14e+00

AR 1.57 1.83 2.67 2.83 4.47 4.33 4.53 3.73 1.77 2.27
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Here, we take the simulation of 1 June as the case to analyze the internal
logic of the dispatch schedule. The scheduled output of each component is shown
as the Fig. 3. During 1:00–8:00, the output of PV and WT is in a relatively low
range and cannot meet the load demand. Owing to that the cost of electricity
transaction is lower than the MT’s in this time, purchasing electricity from the
utility grid accounts for a large proportion in the power supply. As the growth of
load demand and electricity price, the output of MT increases gradually during
9:00–13:00. And If there is power supply surplus, the microgrid system would
sell the extra power to the utility grid. When the clean energy covers the most
power demands in the daytime, the power of MT would decrease accordingly to
reduce the pollution emission. The output schedule during 16:00–24:00 follows
the same logic as the daytime. ES generally tends to store the energy while the
load demand in a low range, and discharges during the peak time to reduce the
power fluctuation of the system. Compared with the dispatch schedule obtained
by GFWA during 13:00–19:00 and 23:00–24:00, FWAM can response to the
changes and adjust the output of the controllable units more timely. Besides,
although there is a differences of parameters between MTs, the cost of each MT
is still maintained at a relatively same level under the dispatch of FWAM, which
means that FWAM could find a better solution to balance the output of different
MTs.

(a) Power curve of FWAM (b) Power curve of GFWA

(c) Cost composition of FWAM (d) Cost composition of GFWA

Fig. 3. Power curve and overall cost of 1 June obtained by FWAM and GFWA.
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6 Conclusion

This paper establishes an economic dispatch optimization model for microgrid
system with the objective of minimizing the economic cost and environment cost,
and proposes an improved GFWA with the momentum mechanism to improve
the search ability and mitigate the instability caused by the randomness of guid-
ing spark generation. The simulation results indicate that FWAM is competitive
against other swarm intelligence algorithms on the grid application. There are
plenty of application scenarios for FWA, and we expect this work could be a
inspiration for more application researches of FWA on the real-world problems.
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Abstract. This paper considers the unmanned aerial vehicle (UAV) global path
planning as an optimization problem with constraints and proposes a hybrid dif-
ferential evolution with firework algorithm (HDEFWA) to generate the optimal
feasible path. The multiple constraints based on the realistic scenarios are taken
into account, including terrain and threat area constraints. The hybrid algorithm
integrates the differential evolution operator into the mechanism of optimizing the
fireworks algorithm (FWA) and uses the ideas of mutation, crossover, and selec-
tion to transform the spark particles generated by the explosion. The source of
the differential mutation operator is the excellent particles in the iterative popula-
tion. This mechanism makes up for the basic firework algorithm’s neglect of the
excellent solution resources in the population, which greatly improves the infor-
mation sharing among the solutions. Experiments show that the proposed hybrid
algorithm is superior to other intelligent algorithms in UAV path planning.

Keywords: Path planning · Unmanned air vehicle (UAV) · Fireworks algorithm
(FWA) · Differential evolution (DE) · Global route planning

1 Introduction

Benefitting from the development of modern aviation technology and radio technology,
unmanned aerial vehicle (UAV) are widely used in military and civil fields with their
low price and flexible operation [1–3]. The UAV path planning is an important part and
the basis for performing complex tasks. Path planning refers to planning a route from
the start point to the endpoint within a specified time. The optimal or sub-optimal flight
path should consider the constraints of UAV performance and environment in traveling
to avoid the threat area that affects the flight safety of the UAV.

The path planning problem of UAV is usually regarded as an optimization problem
with high-dimensional equality and inequality constraints [4]. Some traditional methods
such as the A* algorithm [5], artificial potential field [6], and rapidly-exploring random
tree (RRT) [7] are used to solve this problem. To reduce the complexity, some intelli-
gent population-based algorithms are proposed to solve the path planning problem by
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the researcher, for example: Fu proposed a hybrid differential evolution and quantum-
behaved particle swarm optimization (DEQPSO) to solve the constraint problem of UAV
path planning on the sea [8]; Zhang proposed an improved differential evolution algo-
rithm (DE) to deal with the UAV path planning problem in 3D environment, and used
the method of level comparison to improve the efficiency of processing constraints [9];
Qi uses the firework algorithm (FWA) to solve the path planning problem of amphibi-
ous robots and considers switching energy consumption in amphibious environments
[10]. FWA is a swarm intelligence algorithm proposed by Tan in 2010 [11]. To improve
the performance of the firework algorithm, Zheng et al. proposed an enhanced firework
algorithm (EFWA) [12] in 2013. Li and Tan proposed the bare bones fireworks algo-
rithm (bbFWA) [13] in 2018, which only uses a minimalist basic algorithm framework,
dynamically adjusts the search range, also shows good performance. Mixing other intel-
ligent algorithms has also gained widespread attention, such as the cultural fireworks
algorithm (CFWA) [14] and the hybrid particle swarmwith fireworks algorithm (FWPS)
[15].

In FWA only the optimal spark enters the next iteration in each iteration, and other
fireworks are obtained through a distance-based random mechanism. In the sense of
swarm intelligence, the other excellent solutions are not well-informed by the whole
swarm. Inspired by this observation, we propose a hybrid differential evolution with
fireworks algorithm (HDEFWA). The hybrid algorithm uses themutation, crossover, and
selection mechanism of differential evolution operators to transform explosion sparks.
The source of the differential mutation material is the excellent fireworks or sparks of
the previous generation. These operators are applied to guide the generation of new
solutions, which improve the diversity of the population and avoid falling into local
optimum in the early stage. Experiments show that our proposed algorithm performs
better than other existing algorithms in obtaining high-quality solutions.

The rest of this paper is organized as follows. Section 2 conducts mathematical
modeling for UAV path planning. Section 3 describes the hybrid differential evolution
algorithm in detail and gives the detailed implementation process of UAV path planning.
Section 4 designs experiments to verify the feasibility of the algorithm, and verifies the
superiority of the proposed HDEFWA by comparing it with other existing constraint
algorithms. Section 5 briefly summarizes this paper.

2 Mathematical Model of UAV Path Planning

2.1 Path Representation

For the UAVpath planning problem described in this paper, we propose two assumptions
as follows. The locations of threat areas in thewhole flight environment are known.UAVs
are represented by a point mass that maintains constant flight altitude and speed during
the flight [16]. According to the above assumptions, the problem can be simplified to the
path planning problem of UAVs in two-dimensional space. The UAV path is described
in order of the flight starting point S (xs, ys), N waypoints, and target point T (xt , yt) as
path = {S, P1, P2,…, PD, T}, as is shown in Fig. 1.
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The rotated coordinate frame X ′O′Y ′ shown in Fig. 1 is established using ST as the
new X-axis. The coordinate transformation between two reference systems by Eq. (1)

[
x′
y′

]
=

[
cos θ sin θ

− sin θ cos θ

][
x − xs

y − ys

]
, (1)

where θ is the angle between the line ST and the X-axis. Divide ST into (D + 1) equal
parts with the length of �l by D vertical lines, denoted as l1, l2, . . . lD. The vertical
coordinate of the discrete point at the vertical line Lk is limited in [Smin, Smax]. Smax and
Smin are the maximum value +Δd and the minimum value −Δd of all threats in the
transformed coordinate system.

Fig. 1. Schematic diagram of UAV path

2.2 Threat Constraint

The safety of flight is a primary requirement for UAV path planning. It is usually nec-
essary to use various methods to analyze and process the obtained flight geographic
information and threat information and then establish a suitable mathematical model to
enable theUAV to avoid various threats while flying. During the flight, theUAV ismainly
threatened by terrain, radar, missiles, and anti-aircraft guns. The threat probability to any
point on the flight path is calculated by Eq. (2) [17].

PR,k = R4
Rmax

d4+R4
Rmax

, d ≤ RRmax

Pp,k =
{ 1

d , 2 + Rpmax ≤ d ≤ 10 + Rpmax

1, d < 2 + Rp

PM ,k = R4
Mmax

d4 + R4
Mmax

, d ≤ RM max

PG,k = R4
Gmax

d4 + R4
Gmax

, d ≤ RG max,

, (2)
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where PR,k, PP,k, PM,k, PG,k represent the threat values of radar, terrain, missiles, and
anti-aircraft guns, respectively. Rmax represents the scope of threats. d represents the
distance of the UAV relative to its center.

The threat cost JT is used to punish the path that allows the UAV to enter the danger
areas. To simplify the calculation, the threat probabilities at five points on each path
segment between two waypoints are usually selected to calculate the threat cost of the
entire path segment, and the threat cost is the weighted sum of all threat probabilities by
Eq. (3):

JT =
nT∑
j=1

D∑
k=0

(P0.1,j.k + P0.3,j.k + P0.5,j.k + P0.7,j.k + P0.9,j.k), (3)

where nT is the number of threats; P0.1,j,k is the threat probability from the j-th threat at
the 1/10 point on the path segment pk pk+1.

2.3 Constrained Objective Function

The performance indicators of the UAV path planning mainly include the length cost
and the threat cost. The length cost JL of the path can be calculated as follows. The
path planning of UAV is regarded as a constrained optimization problem, and a penalty
function method is adopted to deal with the constraints. Therefore, the optimization
model is established as follows:

min JL =
r∑

n=1

D∑
k=0

√
(xk+1 − xk)

2 + (yk+1 − yk)
2

s.t. JT = 0 .

(4)

3 Global Path Planning Constraints Based on HDEFWA

3.1 Standard Firework Algorithm

As one swarm intelligence algorithm, the fireworks algorithm is inspired by the phe-
nomenon of fireworks explosion in the night sky. The general framework of Standard
FWA is described in Algorithm 1. For a detailed introduction to the standard fireworks
algorithm, please refer to [11].
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where NF is the number of fireworks per generation; M is a parameter that controls
the total number of sparks generated by the fireworks; A

∧

is a parameter that controls the
maximum explosion amplitude; fmin = min(f (Xi)) stands for the best fitness value of
all the fireworks. ε is defined as the smallest positive constant to avoid the zero-division
error. Gaussian (0,1) is a function that generates Gaussian random numbers.

3.2 Hybrid Differential Evolution with Fireworks Algorithm

Differential evolution is a simple and powerful stochastic evolution algorithm. Here
we introduce the DE operators to the FWA to improve the diversification strategy. The
detailed steps of the HDEFWA are as follows.

Generate Explosion Sparks. In this paper, the minimum explosion radius detection
mechanism is set regarding the EFWA, and the minimum radius changes linearly with
the number of iterations to utilize the search resources of the optimal fireworks.

Ai = ∧
A× f (Xi) − fmin + ε∑NF

i=1 (f (Xi) − fmin) + ε
.

with

Ai =
{

Amin, ifAi < Amin

Ai, ifAi ≥ Amin
.

(5)
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Amin = Amin start − (Amin start − Amin final) ∗ NC

NCmax
, (6)

where Aminstart and Aminfinal are the maximum and minimum values of the Amin.

Generation of Gaussian Sparks. The new Gaussian spark is obtained by Eq. (7)

Xq = Xi + Gaussion(0, 1) · (Xbest − Xi). (7)

Generation of the Optimal Table (OT). Combined with the structural characteristics
of the differential evolution algorithm, an OT with a capacity of 2*NF (Xg ∈ OT ) is
built to store the excellent sparks of the current iteration population.

Generation of DE-explosion Sparks. Differential evolution operation is introduced to
transform explosive sparks to generate DE-explosion sparks, in the first half of the
iterations. Thevariation term is derived from theOT of the parent. Themutationoperation
is as shown in Eq. (8)

V NC
i = X NC

p,i + F · (xNC−1
r2 − xNC−1

r3 )

F = Fmax − Fmax · NC

(Fmax − Fmin) · NCmax
,

(8)

where r2, r3 are the different random numbers, F > 0 is called the scaling factor.
The experimental vector Ui = [Ui,1, Ui,2, . . . Ui,D] is obtained by mixing the basis

vector and the differential mutation vector by Eq. (9)

Ui,j =
{

Vi,j, if rand(0, 1) ≤ Cr ∨ j = rn

Xi,j, otherwise
, (9)

where Cr is the crossover rate between 0 and 1, rn is a randomly selected index from
{1, 2, …, D}, which ensures that at least one component is taken from the donor vector.

After the differential mutation operation, if the mutation spark is better than the
original spark, it will be retained and replaced by the original spark to become a member
of the population, otherwise, the original explosion spark particles will be retained. The
greedy selection operator can be described:

Xp,i =
{

Ui, if f (Ui) < f (Xp,i)

Xp,i, otherwise
. (10)

Population Update Operation. The update operation consists of two parts: one is to
sort all fireworks and spark particles according to the fitness values in the current pop-
ulation, and update the OT to prepare for the next differential operation; the other is to
select the next generation of fireworks, here we use elite random operator to avoid more
computational cost, except for optimal particles the remaining NF-1 fireworks will be
randomly selected.
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3.3 Path Planning for UAV

The pseudo-code of UAV path planning based on HDEFWA is shown as follows.

4 Experiment Evaluation and Comparison

To evaluate the performance of HDEFWA in solving theUAVpath planning problem, we
design two experiments to compare the performance of HDEFWAwith other algorithms,
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including FWA, PSO, and DE. The algorithm is implemented by Matlab-R2021a, and
no commercial algorithm tools are used. Each algorithm runs 30 times independently.
The information for test cases is listed in Table 1.

The main parameters of HDEFWA are set as follows: NCmax = 500, NF = 10,
Amin start = 20, Amin final = 5, M = 50, Fmax = 0.2, Fmin = 0.9. The other algorithm
parameters are set as follows: for FWA, N = 10, M = 50, for PSO, N = 50, wmax = 0.9,
wmin = 0.1, c1 = c2 = 0.9; for DE, F is set as a random value in [0.2, 0.9], N = 50, Cr

= 0.9.
In test Case I, the start and end points are set to [50, 50] and [950, 450]. Figure 2

shows the optimal path generated in Case I. In Case II the start and end points are [50,
200] and [950, 450]. Figure 4 shows the optimal path in Case II.

The statistical results of HDEFWA, FWA, DE, and PSO during 30 runs on Case I are
listed in Table 2, and Case II are listed in Table 3, where the best, median, mean, worst
and standard deviation of the optimal path length are recorded. These statistics listed in
columns 2–5 only count successful runs with JT = 0.

Table 1. Parameters of the threats.

Case I Case II

Threat Center Radius Level Center Radius Level

Terrain [400, 450] 95 8 [700, 200] 90 6

Radar [700, 180]
[650, 450]

142
100

5
5

[480, 230]
[650, 450]

105
100

5
5

Missile [200, 240] 85 9 [200, 210] 85 9

Anti-aircraft gun [420, 220]
[850, 430]

75
70

6
6

[300, 450]
[850, 370]

120
70

8
10

It is observed fromTable 2 andFig. 3 that theHDEFWAis better thanother algorithms
in the globally optimal path planning in case I. It is better than other algorithms in the
average andmedian path length of the optimal path. Although the algorithm ranks second
in the standard deviation andworst length of the planned path length, it still maintains the
advanced level with a small gap with the first. From the evolution curve of the average
optimal path length, it can be seen that HDEFWA can always remain optimal at the end,
although it may be overtaken by PSO in the early iterations. In general, HDEFWA is
superior to the other three algorithms in global UAV path planning.

In the Case II we modified the environmental parameters and the start point of the
UAV. As can be seen in Fig. 4, each algorithm can be found or close to the global optimal
solution in 30 independent operations. In the second column in Table 3, it can be seen
that the length of the global best path is not much different, but the HDEFWAmaintains
optimal parameters of the average and median parameters of the length of the planning
path in 30 independent operations (Fig. 5).
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Table 2. Performance comparison of various algorithms on Case I

Algorithm Best Mean Median Std Worst

HDEFWA 1021.214 1047.136 1028.554 27.44116 1120.183

FWA 1060.957 1105.376 1100.792 31.2495 1158.744

PSO 1029.041 1068.274 1071.196 24.81158 1115.781

DE 1022.867 1149.094 1149.091 123.4526 1390.799

Fig. 2. The best UAV path of Case I

Fig. 3. Average path length evolution curve in Case I

Table 3. Performance comparison of various algorithms on Case II

Algorithm Best Mean Median Std Worst

HDEFWA 959.4938 974.6509 962.0771 26.48598 1032.565

FWA 961.9972 980.9554 965.0887 31.12052 1044.86

PSO 960.1708 1001.065 963.9262 72.26618 1204.19

DE 958.9633 1002.261 1027.144 33.98229 1035.973
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Fig. 4. The best UAV path of Case II

Fig. 5. Average path length evolution curve in Case II

5 Conclusion

Aiming at the inefficiency of the FWA in solving the UAV path planning, the optimal
fitness table in each iteration is screened, and the explosive particles generated in the
population are mutated by the differential evolution operator. Combining the search
advantages of the differential evolution algorithm and fireworks algorithm, it can better
fulfill the task requirements for UAV path planning.

The HDEFWA is tested in UAV path planning scenarios. At the same time, compare
with other existing algorithms. The path planned by the algorithm allows the UAVs
to reach their target faster. Safer without violating any performance constraints, which
proves its effectiveness and efficiency. Experiments show that the algorithm has better
performance in solving the UAVs’ path planning problem. In the future, we will further
improve the proposed algorithm in some aspects, including the initialization of the
population, the adjustment of parameters in the algorithm, and so on. In addition, path
planning for large-scale UAV swarms is also our next research direction.

References

1. Zhao, Y., Zheng, Z., Liu, Y.: Survey on computational-intelligence-based UAV path planning.
Knowl.-Based Syst. 158, 54–64 (2018)

2. Mac, T.T., Copot, C., Tran, D.T., Keyser, R.D.: Heuristic approaches in robot path planning:
a survey. Robot. Auton. Syst. 86, 13–28 (2016)



364 X. Zhang and X. Zhang

3. Yu, H., Meier, K., Argyle, M., Beard, R.W.: Cooperative path planning for target tracking in
urban environments using unmanned air and ground vehicles. IEEE/ASMETrans.Mechatron.
20(2), 541–552 (2015)

4. Zhang,Y., Li, S.:Distributedbiasedmin-consensuswith applications to shortest path planning.
IEEE Trans. Autom. Control 62(10), 5429–5436 (2017)

5. Bayilia, S., Polatb, F.: Limited-Damage A*: a path search algorithm that considers damage
as a feasibility criterion. Knowl.-Based Syst. 24(4), 501–512 (2011)

6. Olfati-Saber, R.: Flocking for multi-agent dynamic systems: algorithms and theory. IEEE
Trans. Autom. Control 51(3), 401–420 (2006)

7. Li, M., Sun, Q., Zhu, M.: UAV 3-dimensionflight path planning based on improved rapidly-
exploring random tree. In: 31st Chinese Control and Decision Conference, Nanchang, China,
pp. 921–925. IEEE (2019)

8. Fu, Y.G., Ding, M.Y., Zhou, C.P., Hu, H.P.: Route planning for unmanned aerial vehicle
(UAV) on the sea using hybrid differential evolution and quantum-behaved particle swarm
optimization. IEEE Trans. Syst. Man Cybern.-Syst. 43(6), 1451–1465 (2013)

9. Zhang, X.Y., Duan, H.B.: An improved constrained differential evolution algorithm for
unmanned aerial vehicle global route planning. Appl. Soft Comput. 26, 270–284 (2015)

10. Qi, Y., Liu, J., Yu, J.: A fireworks algorithm based path planningmethod for amphibious robot.
In: 2021 IEEE International Conference on Real-time Computing and Robotics (RCAR),
Xining, China, pp. 33–38. IEEE (2021)

11. Tan, Y., Zhu, Y.: Fireworks algorithm for optimization. In: Tan, Y., Shi, Y., Tan, K.C. (eds.)
ICSI 2010. LNCS, vol. 6145, pp. 355–364. Springer, Heidelberg (2010). https://doi.org/10.
1007/978-3-642-13495-1_44

12. Zheng, S., Janecek, A., Tan, Y.: Enhanced fireworks algorithm. In: 2013 IEEE Congress on
Evolutionary Computation, Cancun, Mexico, pp. 2069–2077. IEEE (2013)

13. Li, J., Tan, Y.: The bare bones fireworks algorithm: a minimalist global optimizer. Appl. Soft
Comput. 62, 454–462 (2018)

14. Gao, H., Diao, M.: Cultural firework algorithm and its application for digital filters design.
Int. J. Modell. Ident. Control 14(4), 324–331 (2011)

15. Zhang, X.Y., Xia, S.: Hybrid FWPS cooperation algorithm based unmanned aerial vehicle
constrained path planning. Aerosp. Sci. Technol. 118(1), 107004 (2021)

16. Xu, C.F., Duan, H.B., Liu, F.: Chaotic artificial bee colony approach to uninhabited combat
air vehicle (UCAV) path planning. Aerosp. Sci. Technol. 14(8), 535–541 (2010)

17. Besada-Portas, E., et al.: On the performance comparison of multi-objective evolutionary
UAV path planners. Inf. Sci. 238, 111–125 (2013)

https://doi.org/10.1007/978-3-642-13495-1_44


Brain Storm Optimization Algorithm



Comparing the Brain Storm Optimization
Algorithm on the Ambiguous Benchmark

Set

Jakub Kudela(B) , Tomas Nevoral, and Tomas Holoubek

Institute of Automation and Computer Science, Brno University of Technology, Brno,
Czech Republic

Jakub.Kudela@vutbr.cz

Abstract. In the field of evolutionary computation, benchmarking has
a pivotal place in both the development of novel algorithms, and in per-
forming comparisons between existing techniques. In this paper, the com-
putational comparison of the Brain Storm Optimization (BSO) algorithm
(a swarm intelligence paradigm inspired by the behaviors of the human
process of brainstorming) was performed. A selected representative of
the BSO algorithms (namely, BSO20) was compared with other selected
methods, which were a mix of canonical methods (both swarm intelli-
gence and evolutionary algorithms) and state-of-the-art techniques. As
a test bed, the ambiguous benchmark set was employed. The results
showed that even though BSO is not among the best algorithms on this
test bed, it is still a well performing method comparable to some state-
of-the-art algorithms.

Keywords: Brain Storm Optimization · Ambiguous benchmark set ·
Benchmarking · Numerical optimization · Single objective problems

1 Introduction

Swarm intelligence (SI) and evolutionary algorithms (EAs) are effective meta-
heuristics used for global optimization. EAs are inspired by the processes of
biological evolution, such as reproduction, recombination, mutation, and nat-
ural selection. SI methods are also biology-based, as they aim to mimic the
intelligent behavior of various social animals in the ecosystem. The most widely
known examples of these techniques are genetic algorithms, differential evolution,
and evolutionary strategy (for the EAs), and ant colony optimization, particle
swarm optimization, and artificial bee colony optimization (for the SI methods).
These methods were successfully used in the optimization of various complex
problems such as the hyperparameter optimization in deep learning [25], stabi-
lization of chaos [14], difficult assignment problems [15], or design of quantum
operators [27].
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In the SI methods, different learning strategies were proposed for the
exchange of information between individuals in the population in the attempt to
simulate the behaviour of cooperative intelligence. One of the promising SI tech-
niques is the Brain Storm Optimization (BSO) algorithm [20] that is inspired by
human thinking and behavior. Various studies has shown that BSO is a robust
and fast converging, with a solid global search capabilities.

As most metaheuristic methods are quite difficult (or impossible) to compare
on a theoretical level, benchmarking became a central method in the develop-
ment of new methods [4] as well as in the comparison and assessment of the
already used ones [8]. In this paper, we compare the abilities of a represen-
tative BSO variant with other biology-based metaheuristics on a newly pro-
posed set of benchmark functions, called the ambiguous benchmark set [12].
These benchmark functions were designed with the help of various state-of-the-
art (SOTA) techniques in order to select functions, on which there was a clear
ranking between the algorithms, but for the entire set the ranking remained
ambiguous.

The rest of the paper is structured as follows: Sect. 2 introduces the BSO
algorithm and the chosen representative, Sect. 3 describes the benchmark func-
tions used in the ambiguous benchmark set, Sect. 4 shows the comparison of
BSO with other selected methods, in Sect. 5 conclusions are drawn and future
research is outlined.

2 Brain Storm Optimization

BSO was first introduced in [20], as a method inspired by human being’s brain-
storming process. Since then, various modifications of the BSO have been pro-
posed [5,6,24] improving its performance. The fundamental operations of one
iteration of BSO are made up of the following parts:

– Clustering of solutions: A certain clustering strategy is utilized for partition-
ing the population – NP individuals in the population are grouped to k
clusters. Modern metaheuristics incorporate various adaptive approaches for
address the issue of premature convergence [18]. In BSO, the possibility of
the method converging prematurely is avoided by using a replacing operator,
which controls the initialization of a center of a given cluster with probability
pinit.

– Generation of new solutions: In the original BSO, a new solution xnew is
formed by using equation (1), where y is a base individual, D is the dimension,
ND(0, 1) is a random number from the standard normal distribution, and ξ(t)
is the step size which depends on the iteration t (2).

xnew = y + ξ(t) · ND(0, 1). (1)

ξ(t) = logsig
(

0.5T − t

20

)
· rand. (2)
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where T is the maximum number of iterations, rand is a uniformly distributed
random number between 0 and 1, and the function logsig(·) has the following
form:

logsig(a) =
1

1 + exp(−a)
. (3)

In BSO, two mutation strategies are incorporated: the inter-cluster mutation
and the intra-cluster mutation. The probability of the intra-cluster mutation,
which is denoted by pone cluster, leaving the probability of the inter-cluster
mutation on the value (1 − pone cluster) The intra-cluster mutation selects
with the probability pone best an individual from a random cluster as the base
individual y, where y is the center of the selected cluster. The inter-cluster
mutation generates the base individual y by the following equation:

y = r · xi1 + (1 − r) · xi2. (4)

where r is a random number from the interval (0, 1), xi1 and xi2 are two
different individuals which are chosen from two randomly selected clusters.
Moreover, xi1 and xi2 are selected as the centers of the respective clusters
with the probability ptwo best.

– Selection of the new population: The newly obtained solutions from the muta-
tion operations are compared with the old solutions with the same index, and
the better ones are kept in the new population.

As there are many possibilities for the clustering and mutation strategies,
a high-performing representative of the family of the BSO algorithms had to
be chosen for the computational comparison. For this purpose, the BSO20 algo-
rithm [24] was selected. BSO20 utilizes a combination of two clustering strategies,
namely the random grouping and nearest-better clustering. It also uses a modi-
fied mutation strategy for enhancing its exploration capabilities by sharing infor-
mation within a cluster or among multiple clusters. A analysis comparing BSO20
with different other BSO variants on the 2017 CEC competition benchmark set
[2] showed it is competitive and appropriate to serve as the representative of the
BSO methods.

3 Ambiguous Benchmark Set

The ambiguous benchmark set is a newly proposed set of functions for com-
paring algorithms for single-objective bound-constraint optimization [12]. It was
designed by selecting a subset of certain functions such the resulting problems
introduce a statistically significant ranking among selected algorithms (a mix of
SOTA algorithms and canonical techniques), but the ranking for the entire set
is still ambiguous with no clear dominating relationship between the algorithms.
The benchmark functions in this set are based upon a zigzag function [11], which
has the following form:

z(x, k, m, λ) =

{
1 − m + m

λ
(|x|/k − �|x|/k�), if |x|/k − �|x|/k� ≤ λ

1 − m + m
1−λ

(1 − |x|/k + �|x|/k�), otherwise
. (5)
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where x ∈ R is the point at which it should be evaluated, k > 0 controls the
period of the zigzag, m ∈ [0, 1] controls the amplitude, and λ ∈ (0, 1) controls
the location of local minima. The construction of the benchmark functions starts
with four 1-D functions φ1, . . . , φ4, which are formulated in (6) and utilize the
zigzag function:

φ1(x, k, m, λ) = 3·10−9|(x − 40)(x − 185)x(x + 50)(x + 180)|z(x, k, m, λ)

+ 10| sin(0.1x)|.
φ2(x, k, m, λ) = φ1(φ1(x, k, m, λ), k, m, λ).

φ3(x, k, m, λ) = 3| ln(1000|x| + 1)|z(x, k, m, λ) + 30 − 30| cos(
x

10π
)|.

φ4(x, k, m, λ) = φ3(φ3(x, k, m, λ), k, m, λ).

(6)

To obtain the benchmark functions for a dimension D, a simple sum of the
functions φ for the individual components is used, while the inputs are modified
by a shift vector s ∈ [−100, 100]D and a rotation/scaling matrix M:

fj(x, k,m, λ) =
D∑
i=1

φj(xi, k,m, λ) j = 1, . . . , 4. (7)

Fj(x, k,m, λ) = fj(Mj(x − sj), k,m, λ) j = 1, . . . , 4. (8)

The optimization of these function should be carried out over the search space
[−100, 100]D, where also lie the global optima of these functions (each identically
equal to 0). The ambiguous benchmark set is comprised of 32 functions whose
parametrization is shown in Table 1. The particular values for the shift vectors
and rotation/scaling matrices can be found in [12].

Table 1. Parametrizations used in the ambiguous benchmark set.

ID Function D k m λ ID Function D k m λ

1 F1 5 16 1 0.01 17 F3 5 16 0.9 0.01

2 F1 10 16 1 0.01 18 F3 10 16 0.9 0.01

3 F1 15 16 1 0.01 19 F3 15 16 0.9 0.01

4 F1 20 16 1 0.01 20 F3 20 16 0.9 0.01

5 F1 5 8 0.5 0.01 21 F3 5 8 0.9 0.9

6 F1 10 8 0.5 0.01 22 F3 10 8 0.9 0.9

7 F1 15 8 0.5 0.01 23 F3 15 8 0.9 0.9

8 F1 20 8 0.5 0.01 24 F3 20 8 0.9 0.9

9 F2 5 2 0.5 0.99 25 F4 5 16 0.1 0.1

10 F2 10 2 0.5 0.99 26 F4 10 16 0.1 0.1

11 F2 15 2 0.5 0.99 27 F4 15 16 0.1 0.1

12 F2 20 2 0.5 0.99 28 F4 20 16 0.1 0.1

13 F2 5 1 1 0.1 29 F4 5 4 0.9 0.01

14 F2 10 1 1 0.1 30 F4 10 4 0.9 0.01

15 F2 15 1 1 0.1 31 F4 15 4 0.9 0.01

16 F2 20 1 1 0.1 32 F4 20 4 0.9 0.01
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4 Comparison with Selected Methods

In this section, the behaviour of the BSO on the ambiguous benchmark set is
compared with other selected methods. Two main methods were chosen for this
comparison: generally known and used EAs, and the best performing methods
from the CEC Competitions [16]. The selected algorithms were the following:

– Adaptive Gaining-Sharing Knowledge (AGSK) [17] – one of the best perform-
ing algorithms in the CEC’20 competition.

– Covariance Matrix Adaptation Evolution Strategy (CMAES) – a canonical
algorithm that adapts the covariance matrix of a mutation distribution [1].

– Differential Evolution (DE) – a canonical algorithm, one of the most utilized
ones for continuous optimization [21].

– Hybrid Sampling Evolution Strategy (HSES) [26] – winner of the CEC’18
Competition.

– Improved Multi-operator Differential Evolution (IMODE) [19] – winner of the
CEC’20 Competition.

– Linear Population Size Reduction SHADE (LSHADE) [22]– one of the most
popular versions of adaptive DE, successfully utilized as a basis for many of
the best-performing methods in the CEC Competitions in past several years.

– Multiple Adaptation DE Strategy (MadDE) [3] – one of the best performing
methods from the CEC’21 competition.

– Particle Swarm Optimization (PSO) [10] – a canonical method that simulates
swarm behavior of social animals such as the fish schooling or bird flocking.

The selected algorithms were compared on the ambiguous benchmark set with
D = {5, 10, 15, 20} dimensions, and a search space of [−100, 100]D. The maxi-
mum number of function evaluations were set to 50,000, 200,000, 500,000, and
1,000,000 fitness function evaluations for problems with D = {5, 10, 15, 20},
respectively. All algorithms were run 30 times to obtain representative results.
In each run, if the objective function value of the obtained solution was ≤ 1E-8,
it was considered as a zero. For all algorithms the same parameter setting used
was the one reported in the corresponding publication [9] and all started from
the same random seed [13]. The computations were done in a MATLAB R2020b,
on a PC with 3.2 GHz Core I5 processor, 16 GB RAM, and Windows 10.

The detailed results of the computations are summarized in Table 2 and
Table 3. The first thing to notice is that BSO is, indeed, a well performing meta-
heuristic, as it achieves results similar to the SOTA and canonical methods.
First, when comparing the “min” values, one can see that on some of the prob-
lems from the ambiguous benchmark set BSO was able to find (out of the 30
independent runs) the global optimum (ID = [5,9,21,25]), the best solution out of
all considered methods (ID = 19), or one of the best solutions (ID = [20, 29, 30]).
On the other hand, there were numerous instances where it performed among
the 3 worst in this metric (ID = [1, 2, 3, 4, 6, 7, 8, 10, 11, 12, 13, 14, 15, 22, 23]).
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Table 2. Detailed statistics of the 30 runs of the selected algorithms on the ambiguous
benchmark set. Function IDs 1–16.

ID AGSK CMAES DE HSES IMODE LSHADE MadDE PSO BSO

1 Min 0.079 0 4.7E−05 0.148 0 0 0 0.148 0.148

Median 0.382 0.079 1.810 0.148 0.192 0.016 0.098 0.690 0.380

Mean 0.389 1.120 1.700 0.182 0.165 0.045 0.139 0.783 0.472

Max 0.629 6.674 2.978 0.533 0.375 0.227 0.377 1.822 1.056

Std 0.123 1.748 0.877 0.075 0.109 0.056 0.100 0.505 0.254

2 Min 1.257 0 0 0.306 0.237 0.002 0.080 0.306 0.690

Median 2.407 6.692 0.341 0.464 0.805 0.139 0.475 0.751 1.228

Mean 2.389 9.639 1.250 0.507 0.889 0.132 0.485 0.993 1.377

Max 3.332 26.041 19.712 0.918 1.753 0.268 0.997 2.598 3.448

Std 0.486 9.996 3.616 0.119 0.407 0.087 0.163 0.606 0.594

3 Min 2.534 0 0.158 0.079 0.621 0.254 0.158 1.066 0.384

Median 3.643 39.538 0.582 0.237 1.228 0.482 0.380 2.587 0.612

Mean 3.584 30.451 0.777 0.244 1.270 0.450 0.353 2.770 0.677

Max 4.641 49.380 2.816 0.464 2.680 0.649 0.533 6.899 1.638

Std 0.548 19.186 0.620 0.092 0.465 0.088 0.094 1.282 0.304

4 Min 6.394 0 0.227 0.909 1.835 0.200 1.136 0.988 1.214

Median 7.750 0.237 1.105 1.210 3.430 0.526 1.882 2.292 2.611

Mean 8.132 0.284 1.110 1.221 3.512 0.527 1.871 2.679 2.946

Max 10.757 0.858 2.062 1.660 5.721 0.745 2.437 6.379 12.419

Std 1.144 0.187 0.482 0.156 1.049 0.122 0.277 1.340 1.902

5 Min 0 0 0 0 0 0 0 0 0

Median 0 0 0 2.159 0 0 0 1.148 3.307

Mean 0.006 0.077 0.077 1.228 0.077 0 0.603 1.838 4.230

Max 0.189 1.148 1.148 3.308 1.148 0 2.296 7.452 9.785

Std 0.035 0.291 0.291 1.202 0.291 0 0.763 1.850 2.351

6 min 0 0 0 4.456 2.159 0 1.148 2.319 7.588

Median 4.202 0 0 5.604 3.950 0 2.296 5.380 11.208

Mean 3.818 1.779 0.790 5.796 3.870 2.4E−07 2.675 5.777 12.000

Max 6.568 13.668 4.456 7.901 5.798 6.1E−06 4.593 10.896 22.776

Std 1.645 3.678 1.252 0.803 1.212 1.1E−06 0.995 2.437 3.221

7 Min 3.445 0 0 1.148 5.0E−06 0.003 0 3.444 3.444

Median 11.628 1.148 1.148 2.296 2.296 1.164 1.148 13.075 7.763

Mean 11.302 3.697 1.412 2.717 2.586 1.487 1.526 12.509 7.567

Max 14.614 35.888 5.741 5.741 4.456 3.455 3.445 20.485 13.192

Std 2.284 8.487 1.515 0.976 1.054 0.942 0.747 3.695 2.378

8 Min 15.209 0 0 10.934 8.912 0.002 2.296 8.912 20.682

Median 22.856 1.148 2.296 14.379 13.231 2.306 10.497 15.633 27.800

Mean 23.114 1.297 2.797 14.180 13.583 1.877 9.913 15.192 28.690

Max 29.106 4.456 8.912 17.550 19.534 4.466 12.744 23.990 44.931

Std 3.309 1.258 2.218 1.731 2.636 1.186 2.273 4.007 6.241

(continued)
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Table 2. (continued)

ID AGSK CMAES DE HSES IMODE LSHADE MadDE PSO BSO

9 Min 0.351 0 0 0 0 0 0 0 0

Median 2.876 1.886 6.1E−05 2.173 0 0.003 0.807 3.365 4.767

Mean 2.908 2.396 0.865 1.695 0.254 0.497 0.925 3.274 4.608

Max 5.554 9.906 8.781 2.881 1.961 1.995 1.886 9.186 8.538

Std 1.355 2.719 2.037 0.882 0.659 0.832 0.942 2.023 2.186

10 Min 7.886 0 0 5.664 1.886 0.002 1.605 1.605 9.619

Median 12.487 21.548 3.966 9.116 6.085 3.715 5.757 9.497 15.935

Mean 12.865 16.344 10.284 9.108 5.989 3.283 5.745 9.717 16.157

Max 17.286 37.279 28.568 14.860 9.641 6.727 9.033 17.369 23.290

Std 2.040 13.365 10.621 2.360 2.127 1.710 1.909 3.814 3.616

11 Min 19.195 0 1.886 6.519 8.714 4.348 5.185 12.838 9.159

Median 25.994 2.173 5.953 10.248 12.758 9.845 8.918 20.023 18.873

Mean 25.629 2.807 8.006 10.219 12.961 9.169 8.968 22.022 18.573

Max 32.357 8.416 34.796 14.028 17.685 13.648 12.851 43.048 28.811

Std 3.492 2.678 6.217 1.690 2.222 2.560 1.848 7.163 4.566

12 Min 30.890 0 3.210 15.752 19.499 6.852 10.187 15.232 27.978

Median 41.565 3.327 8.426 23.186 26.333 12.499 18.971 25.418 37.370

Mean 41.338 4.129 9.680 23.674 26.167 12.471 18.161 26.322 38.153

Max 50.257 10.308 21.103 30.395 36.428 18.686 24.438 43.032 51.271

Std 4.713 3.007 4.534 3.463 4.169 2.740 3.826 7.099 5.040

13 Min 0 0 5.6E−08 0 0 0 0 0.199 0.199

Median 1.842 0.637 1.917 0.637 0 0.014 0.469 1.620 1.106

Mean 1.867 1.950 2.042 0.573 0.141 0.195 0.322 1.969 1.284

Max 3.528 8.261 6.146 1.274 0.470 0.695 0.640 6.072 3.185

Std 1.029 2.449 2.140 0.257 0.219 0.268 0.255 1.371 0.569

14 Min 5.961 0 4.0E−04 1.474 1.274 0.485 0 0.199 2.551

Median 10.284 26.534 22.105 2.549 4.134 1.661 2.551 9.113 5.294

Mean 10.248 20.786 19.752 2.534 4.004 1.722 2.797 10.249 5.828

Max 14.187 30.922 30.011 3.385 7.986 3.130 9.179 26.090 13.299

Std 2.151 11.369 8.803 0.519 1.881 0.723 1.762 6.107 2.745

15 Min 17.448 0 0.637 2.274 3.728 2.806 1.408 3.382 3.680

Median 25.269 1.274 12.385 3.186 9.151 5.617 3.156 17.325 6.287

Mean 25.000 1.396 23.789 3.311 10.639 6.248 3.687 18.817 7.056

Max 32.461 3.018 53.380 4.460 20.560 13.618 8.005 57.909 18.895

Std 3.840 0.807 22.321 0.605 4.464 3.025 1.503 12.130 3.127

16 Min 37.808 0.199 5.2E−07 4.993 14.945 4.194 1.878 16.267 8.031

Median 47.335 1.374 20.635 6.416 35.142 16.225 5.674 24.982 14.182

Mean 47.233 1.626 35.135 6.549 33.864 16.808 7.541 28.150 15.937

Max 55.853 3.186 81.701 9.323 51.526 33.009 23.803 78.122 37.514

Std 4.450 0.889 33.104 1.095 9.050 7.673 4.969 12.278 5.914
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Table 3. Detailed statistics of the 30 runs of the selected algorithms on the ambiguous
benchmark set. Function IDs 17–32.

ID AGSK CMAES DE HSES IMODE LSHADE MadDE PSO BSO

17 Min 24.497 20.920 29.237 27.239 13.817 21.721 18.211 20.209 20.120

Median 28.568 30.398 35.520 30.398 20.559 25.862 22.916 28.718 30.397

Mean 28.468 32.684 35.650 30.532 21.078 25.313 23.226 28.147 31.353

Max 31.597 51.998 41.569 33.557 27.393 27.175 27.811 34.698 37.223

Std 1.978 8.097 3.210 1.310 3.177 1.664 2.499 3.940 3.283

18 Min 55.092 54.477 60.309 57.636 50.114 51.925 46.091 52.587 54.591

Median 64.854 126.734 94.517 62.089 56.761 57.102 54.738 57.903 60.906

Mean 64.553 107.265 90.495 62.136 56.653 57.323 54.832 59.166 61.351

Max 72.476 156.234 116.656 63.955 63.579 61.972 61.251 67.202 68.391

Std 3.653 38.127 15.928 1.761 3.729 2.392 2.863 4.328 3.696

19 Min 104.287 81.724 77.044 81.716 84.433 87.715 76.012 85.912 68.454

Median 120.277 95.646 92.118 84.875 95.491 94.035 88.989 105.300 86.544

Mean 120.845 153.290 91.115 85.651 94.512 94.278 88.154 104.025 87.486

Max 137.601 264.754 111.408 90.047 102.123 102.945 93.989 127.015 109.494

Std 8.426 75.605 7.885 2.583 4.458 3.957 4.213 10.525 7.675

20 Min 148.185 102.866 111.148 105.221 116.583 121.006 112.764 115.995 105.646

Median 168.455 320.296 119.584 113.839 140.981 130.682 123.086 148.106 115.396

Mean 166.773 261.881 119.236 113.669 139.884 131.311 123.438 148.521 116.597

Max 185.485 377.771 132.276 122.457 154.659 139.613 135.300 183.048 135.890

Std 10.307 105.028 4.649 4.272 10.055 5.071 5.052 15.519 7.651

21 Min 0 0 0 0 0 0 0 0 0

Median 6.490 4.090 0 3.552 0 0 0 5.213 8.880

Mean 6.351 11.857 7.5E−07 3.078 0.893 0.001 1.130 6.553 8.865

Max 12.826 55.099 2.2E−05 3.552 5.138 0.037 3.762 15.020 15.993

Std 3.770 14.631 4.1E−06 1.228 1.668 0.007 1.669 4.667 3.994

22 Min 33.289 0 0 3.552 8.699 3.387 3.552 7.649 11.050

Median 42.885 14.208 0 3.552 21.159 11.961 13.212 25.586 20.848

Mean 42.386 48.884 0.474 4.930 20.624 11.510 13.691 25.355 21.321

Max 50.719 128.454 3.552 8.690 33.462 17.541 23.428 45.074 34.277

Std 4.791 47.193 1.228 1.818 5.749 3.612 4.751 11.528 4.946

23 Min 65.592 0 3.552 17.760 27.757 20.753 12.042 26.357 27.951

Median 94.560 14.378 8.067 18.100 52.652 29.963 33.199 59.561 42.100

Mean 93.180 51.745 9.269 19.290 51.787 30.153 32.884 58.324 44.450

Max 105.063 231.198 14.990 23.238 72.605 40.446 42.918 88.369 70.521

Std 8.714 75.848 4.243 1.974 10.185 4.553 7.000 16.076 10.150

24 Min 90.555 0 0 22.898 70.394 43.377 31.612 57.931 45.442

Median 135.687 20.019 14.548 26.450 91.950 59.616 50.779 90.813 63.857

Mean 133.143 116.119 13.820 27.504 94.698 58.368 51.204 92.303 62.812

Max 152.926 361.609 22.216 37.065 122.852 68.916 65.893 137.916 84.502

Std 13.447 142.139 4.671 3.412 12.196 7.376 8.207 24.918 9.683

25 Min 60.686 0 0.183 0.120 53.576 0 26.523 29.946 0

Median 104.889 0 37.116 0.279 86.615 62.168 76.352 84.601 64.246

Mean 104.439 13.471 36.067 0.335 86.386 57.876 73.217 85.128 61.167

Max 125.811 161.451 78.464 0.849 99.178 72.786 91.105 126.704 135.040

Std 14.153 41.309 20.464 0.208 10.621 17.322 13.625 18.336 33.687

(continued)
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Table 3. (continued)

ID AGSK CMAES DE HSES IMODE LSHADE MadDE PSO BSO

26 Min 163.671 0 135.256 154.755 233.503 130.362 208.422 207.208 150.245

Median 314.126 41.748 194.938 195.832 267.512 164.385 242.386 270.424 259.735

Mean 295.113 74.707 187.533 195.388 265.412 161.362 239.153 268.315 257.513

Max 331.847 329.923 222.756 237.361 300.395 187.579 261.766 330.771 326.756

Std 40.180 106.332 27.320 18.559 19.013 12.448 13.686 31.063 51.762

27 Min 348.402 0 193.006 317.022 374.203 221.197 304.657 341.376 228.304

Median 509.195 41.849 311.162 386.469 446.116 249.563 368.799 436.817 313.239

Mean 488.725 54.362 301.460 382.444 441.602 247.384 362.159 436.950 338.338

Max 528.011 494.286 354.265 413.896 467.535 271.327 391.294 529.460 507.306

Std 50.179 89.360 43.729 18.832 24.525 13.193 25.341 38.330 81.328

28 Min 548.602 0 0 506.788 576.439 273.658 473.872 530.989 346.787

Median 711.098 41.795 279.976 525.713 635.228 334.567 521.129 606.926 564.714

Mean 692.511 65.597 276.620 528.635 632.042 329.717 518.021 614.407 544.894

Max 727.464 580.101 527.866 554.467 672.459 364.781 563.720 715.581 636.883

Std 48.104 108.293 201.979 13.152 21.947 24.451 24.890 43.689 71.110

29 Min 23.854 17.386 28.283 18.695 16.092 16.002 16.246 23.265 16.453

Median 34.351 21.897 37.156 39.615 20.530 20.433 19.454 32.242 22.341

Mean 33.905 25.213 36.893 36.677 20.750 20.953 19.828 32.490 22.968

Max 42.422 49.843 43.193 51.209 26.747 26.529 22.987 44.599 31.926

Std 4.011 9.400 3.599 9.305 2.768 2.137 1.618 5.791 3.975

30 Min 78.816 39.269 104.742 37.788 54.182 52.321 55.594 78.915 50.107

Median 91.075 98.698 118.756 49.973 68.264 58.426 63.994 98.324 75.262

Mean 90.372 87.538 115.562 51.413 68.231 58.990 63.439 97.430 75.640

Max 102.035 123.785 122.909 77.245 83.318 65.581 73.942 114.089 100.108

Std 6.501 29.765 6.035 8.978 7.479 3.394 3.731 9.774 13.272

31 Min 144.170 62.598 174.725 68.015 98.105 82.713 90.469 125.414 97.696

Median 155.725 174.524 200.374 85.331 127.193 99.219 103.677 173.904 142.922

Mean 156.636 145.368 200.810 84.046 128.558 99.454 104.418 174.087 139.695

Max 181.204 199.811 219.169 104.426 149.310 111.173 117.778 202.850 168.708

Std 9.036 51.971 10.301 10.350 12.461 5.827 7.043 17.711 20.268

32 Min 204.304 80.782 256.491 94.565 171.158 135.534 131.067 214.665 155.390

Median 242.529 112.234 286.675 114.071 198.139 153.238 161.119 274.342 187.750

Mean 242.741 170.763 285.455 117.005 197.970 152.829 158.040 268.152 192.019

Max 275.858 271.524 306.145 138.448 223.666 164.808 177.022 309.456 239.120

Std 15.207 82.614 11.193 12.941 14.681 6.469 10.930 24.682 19.291

In the “mean” metric, it ended up twice among the best three methods, 18
times in the middle (between fourth and sixth), and 12 times in the worst three
(of which it was four times the worst). In the “max” metric, the results were
similar to the “mean” one, with the main difference being that the BSO did
not make it in the top 3 methods (21 times in the middle, 11 bottom three, 5
times the worst). The performance of BSO (when compared with the other meth-
ods) was a bit worse especially for the first 12 problems in the benchmark set.
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On the other hand, its performance was very solid for the remaining 20 prob-
lems. The relatively worse performance of the studied BSO variant in the “max”
metric might be caused by the other methods better ability for diversification.

To give a more balanced analysis of the result, and to give an understanding
of the approximate ranking of the BSO method, a comparison of all the selected
algorithms on the different benchmark functions together was performed. For
this comparison, the IOHprofiler [7], which is a web-based benchmarking and
profiling tool for (meta)heuristics used in optimization, was used. Within the
IOHprofiler, the comparison based on a fixed-budget was selected (this compar-
ison is defined by the maximum number of objective function evaluations) and
compared the algorithms on each function from the ambiguous benchmark set.
For this purpose, a so-called Glicko-2 rating system was utilized, as it was found
to be appropriate for ranking evolutionary algorithms [23]. Glicko-2 is an Elo-
base system that uses games between the methods (based on randomly selected
runs). For the comparison, each pair of methods “played” 25 games for each of
the 32 benchmark functions, resulting in 6400 games played (as each algorithm
competed with the other eight). The results of this comparison are summarized
in Fig. 1 and Table 4. Although it can be seen that BSO is not among the best
methods in this ranking, it is still a method that has a solid performance (as
more than a third of its games were wins). In this ranking, it is comparable
to PSO (the other widely used SI method), IMODE (winner of the CEC’20
competition), and quite clearly outperforms AGSK (runner up in the CEC’20
competition).

Table 4. Glicko-2 ranking results.

Algorithm Rating Deviation Volatility Win Draw Loss

LSHADE 1675 12.9 0.043 4532 242 1626

MadDE 1607 12.6 0.044 4069 215 2116

HSES 1599 12.0 0.039 3913 176 2311

CMAES 1575 11.8 0.038 3774 236 2390

DE 1548 11.8 0.038 3474 232 2694

IMODE 1490 11.6 0.037 2919 223 3258

BSO 1413 12.2 0.040 2338 47 4015

PSO 1351 13.9 0.051 1863 76 4461

AGSK 1265 14.3 0.046 1124 141 5135
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Fig. 1. Graphical representation of the resulting Glicko-2 rating.

5 Conclusions

This paper conducted a comparison of the selected representative of the BSO
algorithms with other EA and SI techniques on the ambiguous benchmark set.
The selected techniques were a mix of canonical methods as well as some of the
SOTA algorithms. The results of the extensive computational comparison showed
that BSO is a solid technique, as it ranked similarly to other well performing
methods, such as PSO or IMODE. On the other hand, the computations also
showed that there is still enough room for its improvements, as it lacked behind
some of the recent DE and ES techniques.

As the behaviour of only one representative variant of the BSO was investi-
gated, futures research will focus on comparing more variants of the BSO on the
ambiguous benchmark set. Hyperparameter optimization of the BSO variants on
the studied benchmark set could provide insight about the possible improvements
of its performance. Additionally, more comparisons with similarly structured SI
methods could provide valuable analysis of their strengths and weaknesses.
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Abstract. This paper introduces the double grouping into the brain
storm optimization algorithm, namely BSO-DG. The BSO-DG algorithm
is used to optimize the weights and thresholds in the BP neural network.
Then, the BP neural network is used to realize the mine ventilation
prediction. Simulation and comparison experiments are carried out on
the prediction model. The experimental results show that the BSO-DG
algorithm can effectively improve the prediction accuracy of BP neural
network.

Keywords: Brain Storm Optimization · Double grouping · BP neural
network · Mine ventilation prediction

1 Introduction

The swarm intelligence optimization algorithm solves complex problems by sim-
ulating biological phenomena and has outstanding performance in solving com-
plex optimization problems. Among the new swarm intelligence optimization
algorithms, the Brain Storm Optimization (BSO) algorithm is a classic algo-
rithm whose ideas come from human brainstorming meetings and are algorithms
inspired by human social behavior. The algorithm searches for the individual
optimal solution by gathering and dispersing the local optimum through the clus-
tering operation and increasing the diversity of the population through divergent
mutation based on the local optimum. The algorithm contains many parameters
in the implementation process, and the convergence speed is not very fast.

In order to improve the performance of the BSO algorithm, various improve-
ments have been made to the BSO algorithm. Cao et al. [1] designed a random
grouping strategy BSO assisted by fitness value in the clustering process, reduc-
ing the load of parameter setting and balancing the detection and development
at different search times. After that, they introduced the dynamic clustering
method and proposed an improved BSO algorithm based on the dynamic clus-
tering strategy [2], which reduced the time complexity. Zhu and Shi [3] proposed
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a variant of k-means clustering, k-medians clustering, which uses the median of
individuals in the current class as the cluster center instead of the mean. Zhan
et al. [4] introduced the Simple Grouping Method (SGM) based on the location
information of individuals in the BSO algorithm, which makes the computa-
tional burden of the algorithm smaller. Guo et al. [5] used the maximum fitness
clustering method to divide individuals into different subgroups instead of the
primary k-means clustering to find different optimal solutions. Then, they estab-
lished a simple clustering method [6] to improve the search speed and proposed
an adaptive multi-objective BSO algorithm. Chen et al. [7] introduced Affinity
Propagation (AP) clustering into the BSO algorithm, thus avoiding the fixed
initial number of clusters in the k-means algorithm on the clustering results. In
addition, they adopted the method of hierarchical clustering and formed cluster-
ing strategies with different precisions [8]. Xie and Wu [9] used the Density-Based
Spatial Clustering of Applications with Noise (DBSCAN) in the BSO algorithm.
Qiu and Duan proposed a new clustering method [10], classified by fitness value
and applied to solve the optimization problem of unmanned aerial vehicle for-
mation flight based on nonlinear rear horizon control mode. El-Abd designed a
grouping method based on fitness value [11], which sorts and groups individuals
according to fitness value. The probability of good and flawed individuals in dif-
ferent groups is the same. Zhou et al. [12] first modified the step size according
to the dynamic range of individuals in each dimension. New individuals were
generated in batch mode, and good individuals were selected for the next gener-
ation. Starting from the mechanism of quantum theory, Duan et al. [13] proposed
a new quantum behavioral BSO algorithm to solve the optimization model of
the Looney solenoid problem. Yang et al. [14] proposed an advanced discussion
mechanism-based BSO algorithm, introducing intra-group and inter-group dis-
cussion mechanisms to control global and local search capabilities. Yang Z et al.
[15] introduced chaotic technology in the basic BSO algorithm. They proposed
an improved BSO algorithm, which uses chaotic technology to effectively solve
the premature problem of the BSO algorithm and avoid falling into local opti-
mum. Wang et al. [16] introduced the idea of graph theory. New individuals are
generated when the BSO algorithm is in a poor state to replace some old ones.

This paper uses the modified BSO algorithm to optimize the weights and
thresholds in the BP neural network in the prediction model of mine ventilation.

The remainder of this paper is organized as follows. In Sect. 2, the mine
ventilation system is modeled. In Sect. 3, the BSO is modified based on Dou-
ble Grouping (BSO-DG), and the BSO-DG algorithm is used to optimize the
weights and thresholds in the BP neural network. Simulation experiments and
comparisons are provided in Sect. 4. Finally, several conclusive remarks are given
in Sect. 5.
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2 Model Design of Mine Ventilation System

2.1 The Mine Ventilation System

A coal mine ventilation system usually needs to prevent safety emergencies such
as carbon monoxide, coal dust, gas, and fire, so it is crucial to control the venti-
lation volume effectively. On the working face of the mine, its various parameters
will change in real-time. The system needs to adjust the wind speed (or mine
ventilation volume) according to the actual situation. Too high or too low wind
speed will lead to unsafe conditions. Generally speaking, the draught fan of the
current system uses constant power, and air volume is generally fixed and will
not change. The operator can regulate the wind speed of the working face by
controlling the fan and damper of the roadway or working face. Therefore, a
problem worthy of study is reaching the optimal wind speed to control gas and
coal dust on the working face in a reasonable range [17].

This paper proposes a BP neural network prediction model based on BSO-DG
optimization. A forward neural network is used to establish a mine ventilation
forecasting model. The global optimization ability of BSO-DG proposed above is
employed to overcome the randomness of the initial weights and thresholds of the
network. In this way, weights and thresholds of the network can be optimized,
the approximation effect is the best, and the corresponding absolute error is the
smallest.

Gas quantity, coal dust quantity, temperature, and humidity are selected as
the indicators to measure the wind speed index. These four attributes are used
as the input data of the network, and the wind speed is selected as the output
data of it. Some data sheets are shown in Table 1 (only part data are shown
here), and the data are normalized [18].

Table 1. Data points on a working station

Point of time Wind speed (m/s) Gas (%) Coal dust (g/m3) Temperature (g/m3) Humidity (g/m3)

1 2.4 0.71 8 17 15

2 2.56 0.62 8.4 15 13

3 2.24 0.66 7.61 16 14

4 2.27 0.62 7.69 15.5 13.2

5 2.41 0.63 7.99 15 14.1

6 2.4 0.66 7.87 14.6 13.5

7 2.27 0.78 7.75 14.3 15.3

8 2.22 0.71 7.71 13.9 14.3

2.2 The BP Neural Network for the Mine Ventilation

There are four input parameters and one output parameter in coal mine ven-
tilation, so four input neurons and one output neuron are in the BP neural
network. Since the determination of the hidden layer needs to be set artificially,
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an estimated value is regarded as the number of hidden layers according to the
empirical formula. Then, the error value is compared in the experiment, and the
parameter that makes the error minimum is selected by slowly increasing the
number of hidden layers. Finally, the number of hidden layers is determined to
be 7, so the BP neural network structure can be determined as 4-7-1. Therefore,
there are 4∗7+7∗1 = 35 weights and 7+1 = 8 thresholds. The specific structure
of the BP neural network is shown in Fig. 1.

Fig. 1. Structure of BP neural network

3 BP Neural Network Based on Improved BSO
Algorithm

3.1 BSO with Double Grouping (BSO-DG)

The BSO algorithm employs clustering, creating and selecting operators, which
are all connected and have great impacts on the optimization performance.
The original BSO and most of its variants employ k-means clustering. With
the increase of dimension, there is some correlation information between each
dimension of each individual. In this paper, we propose a double grouping, i.e.,
the differential grouping strategy [19] will be added to the k-means clustering
strategy. The whole double grouping is as Algorithm 1.
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Algorithm 1. Pseudocode of double grouping
Initialize parameters: a set of solutions i �= j, where each solution is a m-dimensional
real vector; clustering number k = 2; separable group seps = {}; all the subconpo-
nents allgroups = {}; dimension vector dims = {1, 2, 3, · · · , m}
//differential grouping
for i = 1 to m do

set vector group = {i};
for j = 1 to m and i �= j do

�p1 = lbound ∗ ones(1, n), �p2 = �p1, �p2 = ubound
Δ1 = func(�p1) − func(�p2)
�p1(j) = 0, �p2(j) = 0
Δ2 = func(�p1) − func(�p2)
if |Δ1 − Δ2| > ε then

group = group
⋃

j
end if

end for
dims = dims − group
if length(group) = 1 then

seps = seps
⋃

group
else

allgroups = allgroups
⋃{group}

end if
end for
allgroups = allgroups

⋃{seps}
// k-means Clustering
Partition n individuals into k clusters, then every cluster are divided as allgroups

3.2 Optimizing BP Neural Network Parameters Based on BSO-DG

In applying BP neural network to optimize mine ventilation, the threshold and
weight are initialized to any random value between [−0.5, 0.5]. However, different
weights and thresholds have a significant influence on the predictions. BSO can
search the solution for the optimal global one as a global optimization algorithm.
Therefore, BSO is employed to optimize the weight of the input and hidden
layers, threshold of the hidden layer, weight of the hidden layer and output layer,
and threshold of the output layer in this paper. Then the optimal weights and
thresholds are assigned to the neural network, and the BP algorithm is used to
achieve local optimization. Original data samples include training data and test
ones. We consider the sum of the absolute value of output error as an individual
fitness function. The smaller the fitness value of an individual is, the better the
individual is. The specific steps of the algorithm are shown in Algorithm 2. The
flow chart of the BP neural network based on BSO-DG algorithm is shown in
Fig. 2.
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Algorithm 2. BP neural network based on BSO-DG
Step 1. Initialize data, import data points, and normalize them.
Step 2. Initialize the algorithm’s parameters, set the population size, variable range,
Etc.
Step 3. Calculate individual fitness value, use BSO-DG to optimize weight and
threshold, take the sum of absolute error as the fitness function, and get the optimal
weight and threshold through continuous iteration.
Step 4. Use the optimized weight and threshold to train the training data and get
the corresponding results.
Step 5. Employ the trained network to predict the data to be detected.
Step 6. Output the experimental data and draw the diagrams.

Fig. 2. BP neural network based on BSO-DG

It can be seen from Fig. 2 that the algorithm needs first to determine the BP
neural network’s structure. This paper’s structure is 4-7-1, as shown in Fig. 1.
Then, BSO-DG is applied to optimize the weights and thresholds. The system
error is calculated after reaching the number of iterations optimized by BSO-DG.
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Then the weights and thresholds are updated by the optimal solution obtained.
Finally, the network is predicted, and the ultimate predictions are output.

4 Experimental Simulation and Result Analysis

In this paper, 43 groups of data of one mine working face are selected for experi-
mental simulation, and the indexes include gas, coal dust, temperature, humidity,
and wind speed. All the tests are carried out on a PC with Intel Core i7 4510u
CPU, 2.6 GHz, and 8 GB memory. The wind speed prediction model based on
BSO-DG and BP algorithm is established in MATLAB. In this experiment, the
parameters are set as follows: the maximum number of iterations of BP neural
network training is 1000, the learning rate is 0.1, the training goal is 0.0001, the
population number of BSO-DG is 50, and the maximum number of iterations is
20. We use the test data to verify the trained network. The predicted output is
compared with the original signal, and the approximation effect of the predicted
result is observed. The rendering is shown in Fig. 3. The solid red line is the
original signal, which is our desired output. The solid blue line is the optimized
network output of BSO-DG. That is to say, the predicted output of the model
is the forecasted ventilation volume (unit: M/s).
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Fig. 3. Comparison of expected and predicted wind speed (BSO-DG)

In order to verify that BP neural network optimized by BSO-DG has a better
prediction effect, comparative experiments are designed. We compare it with BP
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neural network prediction and BP neural network prediction based on Genetic
Algorithm (GA). The prediction effect of BP is shown in Fig. 4. In addition,
the comparison results between Mean Square Error (MSE) and Mean Absolute
Error (MAE) of the three methods are shown in Table 2.
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Fig. 4. Comparison of expected output wind speed and predicted output wind speed
(BP)

Table 2. Comparison of prediction errors of three algorithms

Algorithm name MSE MAE

BP 0.0072 0.0613

GA-BP 0.0022 0.0279

BSO-DG-BP 9.5404e−04 0.0236

Compared with the predictions between BP and GA-BP, it is better to
employ BSO-DG. The predictions estimated by BSO-DG are smooth, and MSE
and mean error are much smaller than those predicted by BP and GA-BP. All
predicted ventilation values are obtained through the global search of the system
and taking the data of gas, coal dust, temperature, and humidity in their respec-
tive variable range. Finally, the minimum group of ventilation and the sum of
gas and coal dust is selected as the optimal value. The results show that when
gas is 0.5000, coal dust is 6.5000, the temperature is 13, humidity is 19, and the
optimal wind speed is 2.1295, the condition is optimal.
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Finally, we draw the surface diagram of the optimal ventilation volume, gas,
coal dust, temperature, and humidity predicted by the BP neural network opti-
mized by BSO-DG. The diagram is shown in Fig. 5.

When the amount of coal dust remains unchanged, the ventilation rate
changes in an S-shaped curve with the gas increase in Fig. 5(a). It can be seen
from Fig. 5(b) that when the gas is constant, with the increase of temperature,
the ventilation rate first increases and then decreases, but the effect is relatively

(a) (b)

(c) (d)

(e) (f)

Fig. 5. Optimal ventilation rate estimation surface of working station under gas, coal
dust, temperature and humidity
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slow. In Fig. 5(c), when the gas is constant, the ventilation rate decreases slightly
with the increase of humidity. From Fig. 5(d) and (e), we can see that when the
temperature and humidity are constant, the ventilation rate also increases with
the rise of coal dust. Figure 5(f) shows that the temperature and humidity change
have a relatively slow ventilation rate. Therefore, we can conclude that coal dust
and gas content is the main factor affecting ventilation.

5 Conclusions

Based on the advantages of BSO-DG in global optimization, the prediction model
of mine ventilation based on the BP neural network optimized by BSO-DG is
established. The model overcomes the defects of random initialization of weights
and thresholds in the prediction process of the general BP neural network. Fur-
thermore, it can improve the accuracy of network prediction. The optimal wind
speed prediction model is established through gas, coal dust, temperature, and
humidity, and the simulation research is carried out. The experimental results
show that the BP neural network optimized by BSO-DG (BSO-DG-BP model)
has higher accuracy than the BP model, and the GA-BP model, and is effective
prediction model.
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Abstract. The fuzzy classifier has such important advantages as an intuitive oper-
ation logic and high interpretability of the fuzzy rules base. The development of a
fuzzy classifier includes three consecutive building steps: generating a fuzzy rules
base, feature selection, and optimizing the parameters of membership functions.
To create a rule base, clustering methods are most often used. Wrapper methods
are used for feature selection, and parameter optimization is performed either by
traditional optimization methods or by metaheuristic methods. In this paper, we
use a metaheuristic called Brain Storm Optimization to construct a fuzzy classi-
fier. The use of algorithms based on this metaheuristic made it possible to obtain
comparable accuracy values comparable to counterparts such as D-MOFARC and
FARC-HD, with a much smaller number of rules and features.

Keywords: Brain storm optimization · Fuzzy rule-based classifier · Membership
function · Machine learning

1 Introduction

Classification is a major area of machine learning related to supervised learning. Among
other classification methods, fuzzy rule-based classifiers occupy a special place. The
fuzzy classifier has such important advantages as an intuitive operation logic and high
interpretability of the fuzzy rule base [1]. Constructing a fuzzy classifier includes three
stages: designing a fuzzy rules base, feature selection, and optimizing the parameters of
membership functions. To create a rule base, clustering methods are most often used [2],
wrapper methods are used for feature selection [3], and parameter tuning is performed
either by traditional optimization methods or by metaheuristic methods [4].

Classification is an optimization problem, inwhich superior algorithms play a crucial
role [5]. An increasing number of metaheuristic algorithms are being developed to find
optimal solutions to optimization problems. Population-based metaheuristic algorithms
can be divided into three categories based on what underlies their search engine; the first
category consists of algorithms inspired by biological evolution, the second category
consists of algorithms inspired by social behavior, and the third category consists of
algorithms inspired by physics [6]. The concept of no universal optimization algorithm,
formalized as “No Free Lunch Theorems” [7], states that there is no need to evaluate
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the effectiveness of optimization algorithms on average for all problems. The theorem
encourages specialists to conduct new research inmetaheuristic optimization algorithms.

In this paper, we use a metaheuristic called Brain Storm Optimization (BSO) to
construct a fuzzy classifier. BSO [8, 9] is a population-based metaheuristic algorithm,
inspired by the human brainstorming process. In BSO, each person in the population is
represented as an idea or a potential solution to a problem, and all ideas are grouped
into several clusters at each iteration. Ideas are then updated based on one or two ideas
in clusters by neighborhood search and combination. BSO is a kind of search space
reduction algorithm; all solutions eventually fall into several clusters. These clusters
indicate the local optimaof the problem. Information about a domain containing solutions
with good fitness values propagates from one cluster to another [10]. BSO has the best
optimization capabilities in solving various types of complex optimization problems that
are difficult to solve with classical optimization algorithms [5].

The BSO algorithm is described in Algorithm 1.

Algorithm 1: The Brain Storm Optimization algorithm
Input: Population size PN, number of cluster M, current of iteration t; maximum of 

iteration T;
Output: The best individual;
1: Randomly generate PN potential individuals and evaluate the PN individuals;
2: while t<T do
3: Divide the PN individuals into M clusters;
4: Evaluate the population;
4: Select the best individual in each cluster as the center;
5: Generate new individuals using one of the strategies randomly;
6: Record the best individual;
7: t = t + 1;

8: end while

BSO simulates the brainstorming process by a divergent operator and a convergent
operator. Thefirst divides the population into several clusters using the clusteringmethod,
and the second generates new solutionswith a certain probability. These operators greatly
affect the performance of the BSO, so numerous improvements to the BSO have been
proposed by changing the clustering algorithm or/and modifying the mutation strategy
[6, 11].

Clustering inBSO is performed by variousmethods such as simple groupingmethod,
random grouping method, k-means, affinity propagation clustering method, elitist selec-
tionmechanism.New individuals are generated based on four types of individuals: center
of one cluster, the random individual of one cluster, the combination of two centerswhich
belong to two clusters, and the combination of two random individuals which belong to
two clusters [6].

BSO has been successfully applied in many real academic and engineering appli-
cations [12]. It is used to solve nonlinear optimization problems in seismic exploration
[13] and dynamic economic dispatch problems [14]. Binary versions of the BSO have
been developed for feature selection [15, 16] and fault diagnosis [17]. Chandrasekar and
Khare [18, 19] applied BSO to solve classification problems.
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The main contribution of the paper is as follows:

1. A new algorithm based on the BSO for generating a fuzzy rules base is proposed.
2. A new algorithm based on the BSO to optimize membership functions parameters

is proposed.

2 Algorithms for Constructing a Fuzzy Classifier

2.1 Creating a Fuzzy Classifier Structure by BSO-Based Clustering

The basis for building a fuzzy classifier with the possibility of selecting informative
features is IF-THEN fuzzy rule:

Rij : IF s1 ∧ x1 = A1i AND s2 ∧ x2 = A2i AND . . . ANDsn ∧ xn = Ani THEN class = cj
(1)

where xi is the ith feature of the classified object, i ∈ [1, n], n is the number of features; si
indicates the presence (si = 1) or absence (si = 0) of a feature in the classifier, S = (s1,
s2, …, sn); Aij is the fuzzy term describing the membership function of the ith attribute
to the jth rule, j ∈ [1, R], R is the number of rules, ck is the kth class label, k ∈ [1,M],M
is the number of classes.

To determine the output variable for some object x, the degree of confidence in the
belonging of this object to each of the classes is calculated:

βk
(
xp

) =
∑

rjk

n∏

i=1

μAij (xi) (2)

where rjk are rules with the k class output label, μAij (xi) is the value of the membership
function of the term Aij for the ith attribute of object x. The output of the classifier is the
class that has received the highest degree of confidence:

class = ck∗, k∗ = arg max
1≤k≤M

βk(x) (3)

The objective function or measure of classification accuracy can be expressed as
follows:

E(θ,S) =

N∑

p=1

{
1, if cp = c(xp, θ)

0, otherwise
, p = 1, 2...,N

N
(4)

where N is a sample size, θ is a vector of fuzzy classifier parameters.
The problem of constructing a fuzzy classifier essentially comes down to finding

the maximum of the specified function in S and θ. We propose to use continuous BSO
for fuzzy system structure generation and parameter tuning, and binary BSO for feature
selection.
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To generate the structure of a fuzzy classifier, the BSO-based clustering method is
used. The solution is presented as a real vector that has the coordinates of the cluster
centersC= {C1, C2,…,Ch}. At each iteration, the distances between the cluster centers
and the experimental data are calculated; then the data are distributed to clusters with
the closest centers. Further, the coordinates of the cluster centers are changed:

Cv =
{

Xv
1 + ξ · N (0, 1), if U (0, 1) < p_one

U (0, 1) · Xv
1 + (1 − U (0, 1)) · Xv

2 + ξ · N (0, 1), otherwise
(5)

where Cv is the center of the vth cluster, v ∈ [1, h], Xv
1 and Xv

2 are randomly selected
objects from the vth cluster. N(0, 1) denotes the standard normal distribution, U(0,1)
denotes the uniform distribution from 0 to 1. ξ is the function used for adjusting the step
size, as shown in Eq. (6).

ξ(t) = log sig

(
0.5 · T − t

c

)
· U (0, 1), (6)

where t is the current iteration, and T is the maximum number of iterations.
Next, the Davis-Baldwin index is computed:

DB = 1

h

h∑

i=1

max
i �=j

(
δi + δj

d(Ci,Cj)

)
(7)

where d(Ci, Cj) is the distance between the ith and jth cluster centers, δq is the average
distance between all objects of the qth cluster and the center of this cluster. If the Davis-
Baldwin index decreases, the new centers overwrite the old ones.

When the iteration counter reaches its maximum value, clustering accuracy is eval-
uated. For its calculation, each data object is assigned a class, which has the largest
representation in the cluster to which this object belongs. If the assigned class coincides
with the real one, accuracy is increased by 1.0. After checking all objects, the accuracy
is normalized.

Next, one additional cluster is randomly generated, the iteration counter is reset, and
the entire process is repeated until the number of clusters reaches a certain specified
number. In this paper, the algorithm stopped when the doubled number of classes was
reached. The output of the algorithm is set C, which achieved maximum clustering
accuracy. After the completion of the algorithm, one fuzzy rule with Gaussian-type
terms is formed on the basis of each cluster: the center of the peak for the term coincides
with the coordinate of the cluster center, and the width of the term is determined along
the boundaries of the cluster. The class dominating in the corresponding cluster is written
to the rule’s consequent.

2.2 Feature Selection with Binary BSO

The choice of informative features allows for reducing the complexity of the resulting
classifier, decreasing the likelihood of retraining, and in some cases even improving accu-
racy. One of the methods for feature selection is the application of a binary metaheuristic
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algorithm in the wrapper mode. For the initially continuous metaheuristic algorithm to
be able to search in binary search space, it is enough to use the transformation function
[20]. The input idea, in this case, is represented as a vector S = (s1, s2, …, sn), where
si = 0 indicates that the ith attribute is not used by the classifier, and si = 1 means the
inclusion of the ith feature in the classifier. In general, the binary BSO is practically the
same as the continuous one, except for using the S-shaped transformation function to
transfer a vector from the continuous space to the binary space:

si(t + 1) =
{
1, if U (0, 1) < 1

1+e−si(t+1)

0, otherwise
(8)

where t is the current iteration of the binary algorithm.

2.3 Tuning the Parameters of a Fuzzy Classifier Using BSO with the Elements
of the Differential Evolution Algorithm

The parameter tuning stage is designed to search for such parameters of terms that would
give maximum accuracy. In this work, we use BSO with the operator from Differential
Evolution as the basis for the algorithm for tuning terms [21]. The algorithm has vector
θ0 as an input, which is a list of terms parameters obtained after fuzzy classifier struc-
ture generation. Since BSO is a population metaheuristic, by superimposing a random
deviation on θ0, the rest of the ideas (or individuals, as they were referred to earlier) that
together make up a population of ideas � = {θ0, θ1, …, θQ-1} are generated (Q is the
population size). The following parameters are also part of an input:M is the number of
groups of ideas, T is the number of iterations of the term tuning algorithm, p_one is the
coefficient for selecting the number of groups, p_operation is the coefficient for select-
ing an idea update operator, MSF is mutation scaling factor. Each solution’s accuracy
of the classification (fitness function value) is evaluated and recorded. The best solution
is stored in the variable BestIdea.

First, the solutions are sorted by the value of the fitness function (from best to worst)
and sequentially allocated to clusters.

The second step is to select the number of clusters to work with. If p_one > U(0,1),
then the work is done with one cluster, otherwise with two.

When working with a single cluster, the cluster to updateG is defined. Then a choice
is made as to which of the two operators will be used in this group. If p_operation >

U(0,1), then the original BSO operator is executed, otherwise it is borrowed from the
Differential Evolution algorithm.

Next, the solutions are updated. When making a choice in favor of the original
operator, an intermediate vector θselect is formed as follows:

θselect = θp + ξ · N (0, 1) (9)

where θp is the current solution, p ∈ [0, MG -1],MG is the number of solutions in G.
In the case of choosing an operator from Differential Evolution, an intermediate

vector is generated using θcenter, the best solution in group G:

θselect = θcenter + MSF · (θp1 − θp2) (10)
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where θp1 and θp2 are randomly selected vectors from group G, not matching with θp.
If the solution of θselect turns out to be worse than that of θp, then θp is written in θselect.

Then, regardless of the chosen operator, a new solution θnew is created based on the
obtained intermediate vector:

θnew = θselect + ξ · N (0, 1). (11)

If θnew is better than θp, then θnew replaces θp. The actions listed apply to all idea
vectors from group G.

If the choice is made in favor of working with two groups of ideas, then it is nec-
essary to randomly select two clusters G1 and G2. Next, using p_operation, the update
operator is defined in the same way as earlier. When the original operator is selected, an
intermediate vector is generated using the following expression:

θselect = U (0, 1) · θG1
p + (1 − U (0; 1)) · θG2

p + ξ · N (0, 1). (12)

If the Differential Evolution operator is used, the generation is performed as follows:

θselect = BestIdea + MSF ·
(
θG1
p1 − θG2

p2

)
(13)

where θG1
p1 and θG2

p2 are solutions selected from clusters G1 and G2 that do not coincide

with θG1
p and θG2

p .
The creation of a new solution is performed according to the formula:

θnew = θselect + ξ · N (0, 1). (14)

The vector θnew replaces the original solutions θG1
p1 and θG2

p2 , if θnew turns out to be
the best compared to the original solutions. The listed actions apply to all pairs of idea
vectors from clusters G1 and G2.

Next, the population is combined and sorted from the best value to the worst. If
solution θ0 exceeds BestIdea, then BestIdea is written θ0.

In the end, the maximum value of the iteration counter is checked. If the stopping
criterion is not reached, then the algorithm returns to the beginning. Otherwise,BestIdea
is output.

3 Experimental Study

The effectiveness of BSO adaptation to the construction of fuzzy classifiers was evalu-
ated in two experiments. The purpose of the first experiment was to compare the quality
of models obtained using BSO with the results of similar advanced algorithms for con-
structing fuzzy classifiers. Data sets from the KEEL repository were used for testing
[22]. The data represent real classification tasks from a variety of subject areas. The
description of the sets is given in Table 1. Variables #F, #C, and #Ex denote the number
of features, classes, and data instances, respectively.

The first experiment was conducted according to a 10-fold cross-validation scheme
and was organized as follows for each sample: In the first stage, a clustering algorithm
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Table 1. Description of the data sets used in the first experiment

Data set Reduction #F #C #Ex Description

appendicitis app 7 2 106 Diagnosis of appendicitis

balance bln 4 3 625 Modeling the results of psychological experiments

cleveland clv 13 5 297 Diagnosis of diseases of the cardiovascular system

haberman hbr 3 2 306 Prediction of survival rate after breast surgery

heart hrt 13 2 270 Diagnosis of diseases of the cardiovascular system

hepatitis hpt 19 2 80 Predicting survival in patients with hepatitis

magic mgc 10 2 19020 Image recognition

newthyroid nthr 5 3 215 Diagnosis of hyperthyroidism or hypothyroidism

phoneme phn 5 2 5404 Sound recognition

satimage stm 36 7 6435 Classification of pixels

vehicle vhc 18 4 846 Classification of vehicles

wine wn 13 3 178 Classification of wine

based on BSO was used to create the classifier structure. The second stage used a binary
BSOwith the S-shaped transformation function for feature selection. In the third stage, a
continuousBrain Storm algorithm adjusted the parameters of the terms using the selected
set of features.

The results of constructing classifiers were averaged over all samples. The following
parameters were used for the algorithms: 100 iterations, 5 groups of 5 ideas, p_one =
0.5, p_operation = 0.5, MSF = 0.8. The coefficients of group selection and operator
selection (p_one and p_operation) are set to 0.5 to ensure equal priority between local
and global searches. TheMSF value in [21] is recommended to be between 0 and 2; the
value of 0.8 was chosen empirically as the most appropriate for all the datasets used.

The results of the step-by-step creation of fuzzy classifiers by the BSO algorithm are
presented in Table 2. The first values of accuracy and number of rules are recorded after
the construction of the structure by clustering with BSO (column "Clusters"). Then, on
the same classifiers, the selection of features by the binary version ofBSOwas carried out
and the accuracy and number of selected features were taken (column "Features"). Since
different samples could result in varying amounts of rules and features, the numbers
in the table are real. Finally, the final accuracy value was obtained after optimizing the
parameters of the classifier terms on the reduced feature sets (column "Total").

For comparison, the results of similar methods of constructing fuzzy classifiers D-
MOFARC and FARC-HD, provided by the creators of the repository KEEL [23], are
given. Thesemethods do not include a feature selection step but applyweighting and rule
selection. Here #R is the number of fuzzy rules obtained by the algorithm for creating
a fuzzy classifier structure, #F’ is the number of features after the selection, Atst is the
percentage of correct classification on test samples.
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A comparison of the results shows that in just 100 iterations of the BSO algorithm,
results comparable in classification accuracy to their counterparts were achieved. Fur-
thermore, fuzzy classifiers constructed with BSO showed an advantage in the number
of rules and features. Consequently, the investigated algorithms are relevant when it is
necessary to obtain interpretable and computationally fast models.

Table 2. Results of fuzzy classifiers construction

Data Brain storm optimization algorithm D-MOFARC FARC-HD

Clusters Features Total

#R Atst #F’ Atst Atst #R Atst #R Atst

app 3.1 80.4 2.3 81.6 86.9 – – 6.8 84.2

bln 4.6 47.3 2.0 61.4 81.5 20.1 85.6 18.8 91.2

clv 8.4 34.6 4.1 49.2 56.9 45.6 52.9 61.3 55.2

hbr 3.4 67.3 1.4 73.1 75.2 9.2 69.4 5.7 73.5

hrt 3.2 49.4 5.7 58.4 73.0 18.7 84.4 27.8 83.7

hpt 2.3 81.2 8.8 87.7 88.3 11.4 90.0 10.4 88.7

mgc 3.9 60.0 3.9 68.8 85.3 32.2 85.4 43.8 84.8

nthr 4.1 74.2 4.1 83.5 91.2 9.5 95.5 9.6 94.4

phn 3.4 68.1 4.0 74.1 80.6 9.3 83.5 17.2 82.4

stm 10.2 64.4 11.7 71.6 84.2 56.0 87.5 76.1 87.3

vhc 6.7 35.2 6.0 51.9 64.9 22.4 70.6 31.6 68.0

wn 4.4 61.7 6.6 72.0 83.3 8.6 95.8 8.3 95.5

Mean 4.8 60.3 5.1 69.5 79.3 22.1 81.9 26.5 82.4

Analysis of the results was conducted by pairwise comparison using the Wilcoxon
criterion (Table 3). The null hypothesis is that there are no statistically significant
differences between the two analyzed samples. The significance level is 0.05.

Table 3. Comparison of results by Wilcoxon criterion

Algorithm Metric p-value Null hypothesis

D-MOFARC, FARC-HD #F i #F’ 0.002 Rejected

D-MOFARC #R 0.003 Rejected

D-MOFARC Atst 0.091 Accepted

FARC-HD #R 0.002 Rejected

FARC-HD Atst 0.060 Accepted
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The second experiment was to study the effectiveness of BSO in constructing fuzzy
classifiers for authenticating users by handwritten signatures. A set of SVC2004 signals
was used as the initial data [24]. The set has the signatures of 40 users. The signature of
each user is made in 40 samples – 20 genuine and 20 qualified forgeries. The classifier
is supposed to effectively separate genuine signatures from forgeries. Data preparation
consisted in extracting spatio-temporal features using the Fourier transform from the
signals provided in SVC2004 [20]. For each user, an observation table of 100 features
and 40 data instances was generated. The instances were labeled with a class “1” or
“2”, where “1” corresponds to a genuine signature and “2” to a qualified forgery. Two
pairs of training and test samples were created as part of the cross-validation. A separate
classifier was constructed for each user.

The effectiveness of BSO in the handwritten signature user authentication task was
evaluated against similar metaheuristics. The process of constructing a fuzzy classi-
fier using BSO was the same as described in the previous experiment. The remaining
fuzzy classifiers designed to compare the results were created based on the algorithm of
extreme values of classes, generating one rule for each class [3]. Therefore, 2 rules were
generated for these models. In them, the stages of feature selection by binary versions
of metaheuristics based on the S-shaped transformation function and the tuning of the
term parameters by a continuous algorithm were carried out in a similar way. The fol-
lowing metaheuristics were used: Shuffled frog leaping algorithm (SFLA), Grey wolf
(GW), Gravitational search algorithm (GSA), and Particle swarm optimization (PSO).
All algorithmswere run for 250 iterations to select features and for 1000 iterations to tune
parameters (for SFLA – 10 global and 25 local iterations in binary version, 40 global and
25 local iterations in continuous). The population size was set to 25 vectors (in BSO and
SFLA vectors were divided into 5 groups of 5 vectors). The values of the metaheuristic
parameters are shown in Table 4; GW has no specific parameters. The resulting accuracy
of the created fuzzy classifiers and the dimensionality of the data after the selection of
features are shown in Table 5. The results of a pairwise comparison by the Wilcoxon
criterion showed that there was no significant statistical difference in accuracy (p-value
was 0.502 for SFLA, 0.514 for GW, 0.464 for GSA, and 0.245 for PSO). However, BSO
had an advantage in the number of selected features, as the p-value was less than 0.001
as compared to the others.

Table 4. Parameter values for metaheuristic algorithms

Algorithms and their parameters Algorithms and their parameters

BSO p_one = 0.5, p_operation = 0.5, F = 0.8 SFLA c = 1,2

GSA G0 = 100, α = 10, ξ = 0.001, kbest = 15 PSO w = 0.5, c1 = 1, c2 = 1



400 M. Bardamova et al.

Table 5. Accuracy of fuzzy classifiers for each user in the data set SVC2004

User BSO SFLA GW GSA PSO

Acc F’ Acc F’ Acc F’ Acc F’ Acc F’

1 91.5 13.8 92.9 45.4 91.8 75.2 93.9 75.9 93.3 76.2

2 93.0 13.4 81.8 46.7 78.5 53.7 79.6 50.5 80.9 46.5

3 96.0 15.3 95.4 48.6 98.4 75.9 98.3 75.2 98.3 74.5

4 79.5 13.2 89.7 50.8 92.3 53.5 92.5 49.1 93.2 49.4

5 75.0 17.2 88.9 49.0 80.2 55.3 80.9 49.8 84.2 48.2

6 81.0 18.2 86.7 48.3 94.3 50.5 93.6 49.5 93.5 49.8

7 83.5 17.6 94.3 44.8 98.2 75.0 98.6 75.0 98.2 75.4

8 91.5 20.2 94.8 48.0 93.3 51.1 93.5 49.3 92.4 49.6

9 83.0 14.0 70.8 47.1 63.4 52.0 63.9 48.2 62.0 46.9

10 88.0 14.4 83.1 48.1 79.3 53.7 79.1 47.8 80.6 47.2

11 71.0 13.2 64.4 44.4 84.5 57.1 83.8 49.8 84.6 48.3

12 74.4 17.2 76.8 46.4 80.5 54.3 80.3 49.4 82.2 45.8

13 63.5 16.3 83.0 48.7 77.0 52.6 75.3 49.6 76.5 47.6

14 73.5 18.8 89.3 47.6 89.3 56.3 87.9 49.4 89.0 47.1

15 95.0 13.2 80.1 47.5 75.8 55.2 75.8 49.2 75.8 48.3

16 81.5 15.2 95.5 49.1 95.0 100 95.0 100 95.0 100

17 90.5 16.2 87.7 44.8 81.8 52.9 82.6 49.2 83.3 48.0

18 80.0 16.7 82.1 43.2 80.2 51.3 80.8 48.1 81.1 46.9

19 90.0 16.2 89.6 51.3 92.5 52.8 92.6 49.7 93.5 49.3

20 82.0 17.8 90.3 45.5 89.1 58.6 89.5 61.9 90.8 55.0

21 94.0 16.0 81.5 48.1 90.1 51.2 89.6 51.1 90.3 51.0

22 89.0 16.0 86.8 47.0 85.0 53.0 84.3 48.8 86.1 48.4

23 96.0 16.4 89.5 49.7 92.3 52.1 92.1 49.0 90.5 49.6

24 84.0 15.3 87.3 49.2 91.6 50.8 91.3 50.7 91.5 49.7

25 91.5 14.4 91.9 44.9 90.6 75.3 91.3 74.3 92.0 73.2

26 91.0 16.5 81.2 46.8 81.9 55.8 84.8 48.0 86.1 48.2

27 79.5 18.0 73.5 44.0 83.9 53.6 83.8 52.6 85.0 49.1

28 93.0 17.5 90.2 49.9 89.1 75.2 89.8 73.6 90.5 72.7

29 85.0 16.5 81.1 48.0 97.1 48.9 97.8 50.0 97.4 50.2

30 94.5 17.1 82.1 46.4 92.3 50.5 92.9 49.7 92.8 49.9

31 99.0 18.0 88.2 49.8 100 100 100 100 100 100

(continued)
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Table 5. (continued)

User BSO SFLA GW GSA PSO

Acc F’ Acc F’ Acc F’ Acc F’ Acc F’

32 82.0 14.0 90.8 46.3 91.7 50.0 93.4 48.3 93.4 47.8

33 78.0 14.5 81.8 45.0 92.7 52.0 92.8 48.3 92.6 46.8

34 93.5 14.0 80.4 46.7 86.4 52.0 87.6 49.5 88.4 47.7

35 88.0 15.9 83.8 59.2 77.2 54.1 78.2 48.5 77.3 46.9

36 74.0 17.0 81.0 43.6 91.6 52.3 91.6 50.9 91.6 49.5

37 97.5 17.5 83.4 44.5 81.8 51.0 81.4 47.4 84.2 45.6

38 90.5 15.2 88.6 46.5 86.3 53.1 85.2 48.5 85.8 48.6

39 92.0 16.1 65.0 47.2 70.5 53.7 69.9 48.8 72.3 48.1

40 70.5 19.4 76.6 46.3 74.3 53.0 74.8 48.1 75.5 48.1

Mean 85.6 16.1 84.5 47.3 86.5 58.1 86.7 55.3 87.3 54.3

4 Conclusion

This paper proposes to use Brain Storm Optimization for three consecutive construct-
ing steps of fuzzy classifiers - creating fuzzy system structure, feature extraction, and
parameter tuning. BSO is used to optimize the position of cluster centers when creating
a fuzzy system structure. The binary version of BSO, based on the S-shaped transforma-
tion function, searches for an optimal subset of features following the wrapper scheme.
Continuous BSO using the operator from Differential Evolution refines the position of
fuzzy terms to achieve a better description of the subject domain. The results of the
experiments showed that BSO contributes to obtaining compact classifiers because it
effectively reduces the dimensionality of the data. BSO allowed obtaining comparable
accuracy to the well-known counterparts on a smaller number of rules. The compactness
of the resulting models will reduce the time to compute the output, as well as achieve
better interpretability.
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Abstract. The simple brain storm optimization (SimBSO) algorithm is
an adjusted algorithm to simplify the process of clustering in brain storm
optimization algorithm (BSO). However, SimBSO has not significantly
improved the optimization performance of BSO except for its simple
algorithm structure. In this paper, a new algorithm named quantum-
behaved simple brain storm optimization with simplex search (QSimplex-
SimBSO) is proposed to improve the performance of SimBSO. In
QSimplex-SimBSO, the quantum behavior is added into SimBSO to
strengthen global searching capability and then the Nelder-Mead Sim-
plex (NMS) method is used to enhance local searching capability. After
large number of experiments on the Hedar set, the results show that
QSimplex-SimBSO gets a better balance of global exploration and local
exploitation by the visualizing confidence interval method. Meanwhile,
QSimplex-BSO is shown to be able to eliminate the degenerated L-curve
phenomenon on unimodal functions.

Keywords: Simple brain storm optimization · Nelder-Mead Simplex
method · Global exploration · Local exploitation · Quantum behavior

1 Introduction

Brain storm optimization (BSO) algorithm [1], as a new swarm intelligence opti-
mization method, has become an important method for solving global optimiza-
tion problems in science and engineering. It has attracted many practical appli-
cations [2–4]. Meanwhile, BSO has also attracted more and more theoretical
analysis such as [5–7] and so on.
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With the discovery of BSO, an important progress of BSO is to transform
operations in the solution space to the objective space [8]. The new version of
BSO is easier in implementation and lower in computational resources on the
clustering strategy at each iteration. In this paper, we refer BSO to BSO in
objective space [8], unless otherwise stated.

Besides BSO, the simple brain storm optimization (SimBSO) algorithm [9]
is an adjusted algorithm to simplify the process of clustering in brain storm
optimization algorithm (BSO). In SimBSO, the strategy of clustering is not
important and SimBSO proposed a new method to generate individuals. SimBSO
has simplified the BSO and makes it easier to implement. However, SimBSO has
not significantly improved the optimization performance of BSO except for its
simple algorithm structure.

Inspired by the quantum mechanism [10], we know that the quantum state
has the properties of superposition, entanglement and uncertainty. So, integrat-
ing the idea of quantum state into the intelligent algorithm can enrich the diver-
sity of population, thus can improve the precocity of intelligent algorithm and
make the global searching ability of the algorithm better [11–16]. On the other
hand, the Nelder-Mead Simplex (NMS) algorithm [17] is an effective method to
improve local search ability such as [18–21]. Therefore, in this paper, we consider
introducing quantum behavior and NMS into SimBSO to enhance the perfor-
mance of SimBSO.

The remainder of this paper is organized as follows. There is an introduction
about the related works in Sect. 2. Then the quantum-behaved simple brain
storm optimization with simplex search (QSimplex-SimBSO) is developed and
analyzed in Sect. 3. In Sect. 4, large number of experimental results are shown.
Finally, conclusions are shown in Sect. 5.

2 Related Works

2.1 SimBSO: Simple BSO

In order to simplify the process of BSO, the simple brain storm optimization
(SimBSO) algorithm [9] was proposed in 2017. A new choosing strategy is pro-
posed in SimBSO, which choose three different individuals from population ran-
domly. Then SimBSO linearly combine the three individuals to generate a new
individual as Eq. (1).

In+1 =
a

a + b + c
An +

b

a + b + c
Bn +

c

a + b + c
Cn, (1)

where An, Bn and Cn are randomly choosen in the population; a, b, c are the ran-
dom numbers in (0, 1). Finally, the authors add white noise to every individual,
then compare the fitness of new individuals and old individuals to produce a new
generation of population. The process of SimBSO can be shown in Algorithm1
and more details can be found in [9].

The SimBSO has proposed a new way to simplify the process of BSO and its
optimization performance is better than BSO. But, in limited cost of calculation,
the solved problems rate of SimBSO is not significantly higher than BSO.



406 X. Wang et al.

Algorithm 1: Simple BSO (SimBSO).
1 Initialization: generate the orient population randomly and calculate their

fitness values; while stopping conditions do not hold do
2 Select: select three different individuals from the orient population;
3 New individual generation: generate a child by combining them linearly;
4 Disruption: create a new individual by adding white noise to the child.

Record the new individual if it is better than the current individual;
5 Update: update the whole population.

6 end

2.2 NMS: Simplex Search Method

Nelder-Mead Simplex search method (NMS) was proposed by J.A. Nelder and R.
Mead (1965) [17]. The NMS is a local search method designed for unconstrained
optimization problems without using gradient information. The NMS try to
produce a local optimal individual by a base individual and three operations
(reflection, contraction and expansion). The NMS could save much cost in local
exploitation and was widely used in different swarm algorithms like CTSS [22],
NM-PSO [23] and so on. The more details of NMS can be found in [18,19]. In
this paper, we will introduce the NMS to SimBSO to enhance the local search
ability.

2.3 Quantum Behavior

In quantum theory, quantum is the smallest and indivisible basic unit in physics.
Because of the superposition, entanglement and uncertainty of quantum states,
quantum information processing is more effective than classical information pro-
cessing methods. Therefore, the introduction of quantum behavior into intel-
ligent algorithm can increase the diversity of population and prevent the pre-
mature phenomenon of intelligent algorithm, so that the search ability of the
algorithm can become better.

In QBSO [11] and QPSO [13], a new method is proposed to get better global
exploration. The method tries to simulate the quantum behavior in quantum
theory and adds the solution of Schrödinger equation to individuals. The quan-
tum behavior had improved the global exploration in NQAFSA [14], QIA [15],
QACO [16] and so on.

In 1920s, an Austrian physicist Schrödinger proposed an equation of wave
function to describe the change law of microscopic particle state. After the trans-
formation in [13], the solution of Schrödinger equation is shown as Eq. (2).

x = p ± L

2
ln(

1
u

), (2)

where u is random number in the range of (0,1), L is the characteristic length
of Delta potential well, x is the measured position, p is the relative position to
position x. We will consider to introduce the quantum behavior into SimBSO
by the Eq. (2) to improve the global search ability.
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3 Quantum-Behaved Simple Brain Storm Optimization
with Simplex Search

In this part, the process of QSimplex-SimBSO is shown. We show the generation
of intermediate individuals in the first part, and then show the generation of new
individuals in the second part. In the third part, the process of quantum-behaved
simple brain storm optimization with simplex search is shown.

3.1 Generation of Intermediate Individuals

In SimBSO, the new individuals are generated by the linearly combine of three
different individuals. To get better global exploration, the method of linearly
combine is improved in QSimplex-SimBSO. The new method of linearly combine
in QSimplex-SimBSO is shown as Eq. (3).

Iij = p1k × Aij
k + p2k × Bij

k + (1 − p1k − p2k) × Cij
k , (3)

where Aij
k , Bij

k and Cij
k are random individuals from k-th population, Iij is a new

intermediate individual obtained from the fusion of three random individuals, i
represents the i-th individual, j represents the j-th dimension of the individual,
p1k and p2k are random numbers and p1k, p

2
k ∈ (0, 1).

3.2 Generation of New Individuals

After quantum behavior is added to the intermediate individual, the new indi-
vidual is generated. The generation of every individual can be shown as Eqs. (4)
and (5).

xij
new =

{
Iij + b × |A

ij
k +Bij

k +Cij
k

3 − Aij
k | × ln( 1

u ), (r < 0.5)

Iij − b × |A
ij
k +Bij

k +Cij
k

3 − Aij
k | × ln( 1

u ), (r ≥ 0.5),
(4)

b = 0.5 × (1 − 0.5 × current iteration number

max iteration
), (5)

where current iteration number is the number of current iteration,
max iteration is the number of max iterations, u is a random number in (0, 1),
r is a random number in [0, 1]. Iij , Aij

k , Bij
k and Cij

k are the individuals in Eq. (3).

3.3 Quantum-Behaved Simple Brain Storm Optimization
with Simplex Search

The principle of the QSimplex-SimBSO is shown as follows:
Firstly, we initialize and generate a random population with n individuals.

Then, for every original individual, three individuals are randomly selected from
the population and combine them linearly by the new method. Secondly, we add
quantum behavior to every intermediate individual to generate a new population.
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If the new individual in new population don’t jump out of the search field and the
fitness of the new individual is better than the orient individual, we replace the
original individual by the new individual. After that, the best individual in the
new population is chosen to generate a better individual by the NMS algorithm.
Finally, we get a new generation of individuals.

The difference between Eqs. (3) and (1) is that the new intermediate individu-
als may jump out from the search field when p1k + p2k > 1. And in many results of
different experiments, the quantum behavior may cause the new individuals jump-
ing out of the search field. Those phenomena show that the method of QSimplex-
SimBSO can get better global exploration. If a new individual has jumped out from
the search field, give up it.

The process of QSimplex-SimBSO is shown in the Algorithm2.

Algorithm 2: Quantum-Behaved Simple Brain Storm Optimization with
Simplex Search (QSimplex-SimBSO).
1 Initialization: generate the initial population randomly;
2 while stopping conditions do not hold do
3 Combine: choose three individuals and combine them linearly to generate

an intermediate individual ;
4 Disruption: add the quantum behavior to every dimension of the

intermediate individual, if the new individual jump out of the search field,
give up it;

5 New population generation: for every individual, record the new child if
it is better than the original individual, then update the whole population
and identify the best individual x0;

6 The NMS algorithm: exploit the search area around x0 through executing

the NMS algorithm. Replace x0 by the found best point x
′
0 in new population;

7 Update: update the whole population.

8 end

4 Main Experimental Results

The following algorithms were all implemented with MATLAB R2014a. And the
program executed on a PC with an Intel Core (TM), CPU i5-3470 and 8 GB RAM.
Each of those was independently executed 50 times on each of 68 Hedar benchmark
functions. The maximum calculation cost was set to 20000.

All the tests in this paper are based on the Hedar set, so there is a simple
introduction of the Hedar set in the first part. In the second part, our algorithm
QSimplex-SimBSO is compared numerically with the Simplex-BSO, SimBSO and
BSO. After many tests, an additional parameter, 40n, is introduced in QSimplex-
SimBSO to get better balance between global exploration and local exploitation.
The parameters of those algorithms are shown as Table 1.

In the third part, the L-curves of four different functions are shown, which
tested by QSimplex-SimBSO, SimBSO, Simplex-BSO and BSO. In the fourth
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Table 1. Parameter settings of the four algorithms used in this paper.

Algorithms Parameters

BSO slope = 25

SimBSO slope = 25

Simplex-BSO slope = 25, NMS cost=40n(n is the dimension of problem)

QSimplex-SimBSO NMS cost=40n (n is the dimension of problem)

part, the QSimplex-SimBSO is compared numerically with the other comparative
algorithms to show the global searching ability of quantum behavior in QSimplex-
SimBSO.

4.1 Hedar Set

In order to test the performance of global optimization methods, Dr. Abdel-
Rahman Hedar presented the Hedar set to test the global optimization of different
algorithms. The Hedar set is based on the Jones set, but the Hedar set extend the
dimensions in some different functions. The details can be shown as Table 2.

4.2 Process Comparison Between QSimplex-SimBSO and Others
on the Hedar Set

To compare the results of QSimplex-SimBSO and other algorithms, the visual-
izing confidence intervals (VCI) method in [24] is used. In [24], the VCI method
is shown to be convenient for benchmarking stochastic global optimization algo-
rithms, especiallywhen the set of benchmark functions or the number of algorithms
is large. In the VCI method, the Hupper means the confidence upper bound matrix
and the Hlower means the confidence lower bound matrix, and then Hupper and
Hlower are analyzed statistically with the data profile technique. In this paper,
we refer the “QSimplex-SimBSO-Upper” to the Hupper of QSimplex-SimBSO
and refer “Simplex-BSO-lower” to the Hlower of Simplex-BSO. “BSO-lower” and
“SimBSO-lower” have the similar meanings. In the figure of data profile, the verti-
cal axis shows the proportion of solved problems and the horizontal axis represents
the relative computational cost. We can see more details about the VCI method
in [19,24].
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Table 2. Information about the Hedar test set.

Function Dimension n Characteristic Search region Minimal function value

Beale 2 Unimodal [−4.5, 4.5]2 0

Matyas 2 Unimodal [−8, 12.5]2 0

Sphere 2,5,10,20 Unimodal [−4.1, 6.4]n 0

Sum squares 2,5,10,20 Unimodal [−8, 12.5]n 0

Trid 6 Unimodal [−36, 36]6 -50

Trid 10 Unimodal [−100, 100]10 -200

Zakharov 2,5,10,20 Unimodal [−5, 10]n 0

Ackley 2,5,10,20 Multimodal [−15, 30]n 0

Bohachevsky 1 2 Multimodal [−80, 125]2 0

Bohachevsky 2 2 Multimodal [−80, 125]2 0

Bohachevsky 3 2 Multimodal [−80, 125]2 0

Booth 2 Multimodal [−100, 100]2 0

Branin 2 Multimodal [−5, 10] ∗ [0, 15] 0.397887357729739

Colville 4 Multimodal [−10, 10]4 0

Dixson Price 2,5,10,20 Multimodal [−10, 10]n 0

Easom 2 Multimodal [−100, 100]2 -1

Goldstein and Price 2 Multimodal [−2, 2]2 3

Griewank 2,5,10,20 Multimodal [−480, 750]n 0

Hartman 3 3 Multimodal [0, 1]3 -3.86278214782076

Hartman 6 6 Multimodal [0, 1]6 -3.32236801141551

Hump 2 Multimodal [−5, 5]2 0

Levy 2,5,10,20 Multimodal [−10, 10]n 0

Michalewics 2 Multimodal [0, π]2 -1.80130341008983

Michalewics 5 Multimodal [0, π]5 -4.687658179

Michalewics 10 Multimodal [0, π]10 -9.66015

Perm 4 Multimodal [−4, 4]4 0

Powell 4,12,24,48 Multimodal [−4, 5]n 0

Power sum 4 Multimodal [0, 4]4 0

Rastrigin 2,5,10,20 Multimodal [−4.1, 6.4]n 0

Rosenbrock 2,5,10,20 Multimodal [−5, 10]n 0

Schwefel 2,5,10,20 Multimodal [−500, 500]n 0

Shekel 5 4 Multimodal [0, 10]4 -10.1531996790582

Shekel 7 4 Multimodal [0, 10]4 -10.4029405668187

Schkel 10 4 Multimodal [0, 10]4 -10.5364098166920

Shubert 2 Multimodal [−10, 10]2 -186.730908831024

Firstly, we compare the average behaviors of QSimplex-SimBSO, Simplex-
BSO, SimBSO and BSO to determine a winner algorithm. Secondly, the winner’s
Hupper is compared with the other’s Hlower to confirm whether the winner still
performs the best at the worst case. If so, then the conclusion is significant statis-
tically that the winner performs better than the other algorithms. Otherwise, the
conclusion is that the winner performs averagely better than the other algorithms.
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Fig. 1. Data profile average results when comparing QSimplex-SimBSO, Simplex-BSO,
SimBSO and BSO on 68 functions in the Hedar set.
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Fig. 2. Data profiles resulted from comparing SimBSO’s confidence lower bounds,
BSO’s confidence lower bounds, Simplex-BSO’s confidence lower bounds and QSimplex-
SimBSO’s confidence upper bounds.

Figure 1 shows QSimplex-SimBSO can solve more functions by less cost. We see
that QSimplex-SimBSO solves 57 (=68 * 84%) functions, Simplex-BSO solves 39
(=68 * 59%) functions, SimBSO solves 30 (=68 * 42%) functions andBSO solves 30
(=68 * 42%) functions. Hence our algorithm QSimplex-SimBSO gets an averagely
better performance than Simplex-BSO, SimBSO and BSO.

From the Fig. 2, the Hupper of QSimplex-SimBSO is then compared with
Hlower of Simplex-BSO, Hlower of BSO and Hlower of SimBSO. The result con-
firms that the winner QSimplex-SimBSO performs better than SimBSO and BSO
at the worst case. According to the VCI method, the conclusion is that QSimplex-
SimBSO performs better than BSO and SimBSO. But the result also shows
QSimplex-SimBSO only gets a better performance than Simplex-BSO on average.

Through adopting quantum behavior and NMS to SimBSO, our proposed algo-
rithm QSimplex-SimBSO gets a better performance.
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Fig. 3. L-curves comparison on the Ackley function (2D), Sphere function (5D), the
Dixon Price function (20D) and the Branin function in the Hedar set.

4.3 The Average Results Comparison on L-curves

In the Fig. 3, the L-curves of four different functions are shown.
For Ackley function(2D), QSimplex-SimBSO and Simplex-BSO get a solution

with accuracy of e−15 at a cost of less than 1000 function evolutions, BSO and
SimBSO get the solution with accuracy of e−7 when all evolutions are consumed.
At the end of function evolutions, the QSimplex-SimBSO gets the solution with
accuracy of e−35. We can see that QSimplex-SimBSO and Simplex-BSO have the
faster convergence rate than BSO and SimBSO. Meanwhile the global optimiza-
tion capability is enhanced significantly.

For Sphere function(5D), the QSimplex-SimBSO and Simplex-BSO get the
solution with accuracy of e−20 at a cost of less than 1000 function evolutions, BSO
and SimBSO get the solution with accuracy of e−10 when all evolutions are con-
sumed. And at the end of function evolutions, the QSimplex-SimBSO gets the solu-
tion with accuracy of e−22. The L-curves of 28 functions in Hedar set are similar
as Ackley function(2D) or Sphere function(5D).

For Dixon Price function(20D), QSimplex-SimBSO gets the solution with
accuracy of e0 at a cost of less than 3000 function evolutions, Simplex-BSO gets
the solution with accuracy of e0 at a cost of less than 12000 function evolutions,
SimBSO and BSO get the solution with accuracy of e0 when all evolutions are
consumed. The L-curves of 19 functions in Hedar set are similar as Dixon Price
function(20D).
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For Branin function, the L-curves of QSimplex-SimBSO, BSO, SimBSO and
Simplex-BSO are similar. QSimplex-SimBSO, Simplex-BSO, SimBSO and BSO
both find a solution with accuracy of e−1 at a cost of less than 1000 function evo-
lutions. The L-curves of 11 functions in Hedar set are similar as Branin function.

Among all 68 benchmark functions, there are 58 functions whose curves are
similar as those in the subfigures of Fig. 3.However, there still 10 functions inHedar
set on which QSimplex-SimBSO is outperformed by the others. Therefore, we can
only conclude that QSimplex-SimBSO is more efficiency to solve the most prob-
lems in Hedar set.

4.4 A Comparison Strategy to Identify the Global Exploration
of Quantum Behavior in QSimplex-SimBSO

In SimBSO, the white noise is a method to get a better global exploration and
is added to the intermediate individual after the linear combination of individu-
als. The quantum behavior in QSimplex-SimBSO is a new method to get a better
global exploration and is added after the new intermediate individual generated.
So, the ability of white noise is overlapped with the ability of quantum behavior.
To identify the ability of global exploration between quantum behavior and white
noise in QSimplex-SimBSO, three comparative algorithms based on QSimplex-
SimBSO are designed.

– Comparative algorithm 1: don’t add any disruption after every intermediate
individual generated in QSimplex-SimBSO and then search locally by the NMS.

– Comparative algorithm 2: every new individual is generated by adding white
noise in the intermediate individual of QSimplex-SimBSO and then search
locally by the NMS.

– Comparative algorithm 3: every new individual is generated by adding white
noise and quantum behavior in the intermediate individual of QSimplex-
SimBSO and then search locally by the NMS.

The comparison between QSimplex-SimBSO and the other comparative algo-
rithms could identify how the different methods of disruption affect the perfor-
mance of QSimplex-SimBSO. The data profile result is shown in Fig. 4.

In the Fig. 4, our algorithm QSimplex-SimBSO gets a better performance than
the other algorithms and solves 60(=68 * 88%) functions in limited cost. Other-
wise, Comparative algorithm 2 and Comparative algorithm 3 get a better perfor-
mance than Comparative algorithm 1. So, both quantum behavior and white noise
could get a better global exploration. Meanwhile, the quantum behavior could get
a better performance in QSimplex-SimBSO than the other methods.
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Fig. 4. Data profile average results when comparing the other comparative algorithms
and QSimplex-SimBSO on 68 functions in the Hedar set.

5 Conclusions

In this paper, to get a better balance between global exploration and local exploita-
tion of SimBSO, the quantum behavior is adopted into SimBSO and then try to
search the best individual by NMS. Meanwhile, the QSimplex-SimBSO is also
shown to be a simple algorithm without clustering cost, and can get a better effi-
ciency. From the comparison of the QSimplex-SimBSO and other comparative
algorithms, we find that the quantum behavior could get a better global explo-
ration. These conclusions reveal that the global optimization ability of quantum
behavior is better than that of white noise.
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Abstract. This paper proposes a new nature-inspired metaheuristic
optimization method for community detection. This method is improved
from the Swarm Intelligence Based method proposed in Phoa (2017) in
which the particle size varies during the optimization procedure. Addi-
tional changes on the particle generation is applied for the community
detection problem. Simulation studies show that the proposed method
outperforms all common metaheuristic methods in detecting commu-
nities, and its performance is comparable to several traditional start-of-
the-art methods under some conditions. This method is applied to detect
communities in six real networks.

Keywords: Community detection · Swarm intelligence ·
Nature-inspired metaheuristic optimisation

1 Introduction

Networks have been everywhere in our daily lives given its ability to represent
relationship ties and interactions among actors. In biology, networks are used
to analyze food webs within ecosystems [17], to reveal modular structures in
protein-to-protein and genetic interactions [5,6]. In a society, networks are used
to describe interactions between individuals, such as scientific collaborations [25]
and connections on social media [14].

Communities, which are densely connected clusters that reveal important
structural information of a graph, are usually of great interest. In general, mem-
bers within the same community play similar roles in the network or have com-
mon properties [8]. Communities in the neuron interaction network allow us
to understand functional architecture of the brain [7], whereas communities in

This work is partially supported by the Academia Sinica grant number AS-TP-109-M07
and the Ministry of Science and Technology (Taiwan) grant numbers 107-2118-M-001-
011-MY3.

c© Springer Nature Switzerland AG 2022
Y. Tan et al. (Eds.): ICSI 2022, LNCS 13344, pp. 419–431, 2022.
https://doi.org/10.1007/978-3-031-09677-8_35

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-09677-8_35&domain=pdf
http://orcid.org/0000-0002-7417-8982
https://doi.org/10.1007/978-3-031-09677-8_35


420 W.-H. Sun and F. K. H. Phoa

social networks allow us to better understand and analyze human behavior in
social science [10].

Many techniques have been developed to detect communities. Label prop-
agation algorithm (LPA) propagates initializes every node with unique labels
and let the labels propagate through the network until the termination criterion
is reached [32]. [9] summarizes the extensions of LPA to directed or weighted
networks and its hybrid. The Louvain algorithm iteratively moves nodes and
merges community to attain maximum modularity [4], such process thus unfolds
the hierarchical structure and gives access to different resolution limits. However,
Louvain algorithm do not ensure graph connectivity, thus the Leiden algorithm
[36] added a refinement process before aggregation of nodes to resolve the issue.
Some methods adopt a more probabilistic approach, like the stochastic block
model, which is a generative model with inherent community structure. Com-
munities are discovered mainly through the assignment of community labels that
yield the maximum probability [1]. Some approaches are based on information
theory. A widely-adopted algorithm called the Infomap [33] detects communities
by the estimation of the theoretical lower bound of the code length of a random
walker given a partition, which a shorter code length implies a better partition.
Other information theoretic methods can be found in [23].

2 Recent Development of Metaheuristic Methods
for Community Detection

Nature-inspired metaheuristic optimization recently receives great attention due
to the technology advances in parallel computing. Although the optimized solu-
tion is approximate, its efficiency still leads to great favors among practical
users. Many metaheuristic approaches are ready to be implemented for commu-
nity detection problems. Some classical algorithms include the Particle Swarm
optimization, Genetic Algorithm, Simulated Annealing, Ant Colony Optimiza-
tion, and Tabu Search.

Particle swarm optimization (PSO) was initially proposed as a continuous
optimization approach [16]. [40] extended the particle swarm to discrete opti-
mization to suit the community detection task and developed strategies to repair
isolated nodes. [22] proposed a community detection algorithm that reduces the
search space and increases search efficiency of multi-objective PSO. Some exten-
sions to find overlapping communities are referred to [18].

[30] utilized the genetic algorithm and proposed the “community-score”,
which is a metric based on density of the community, as the fitness function
to detect community. A multiobjective extension on the inter-community con-
nections was proposed in [31]. Some other works in applying genetic algorithm
to community detection are found in [3,11,20,34] and many others.

[12] applied simulated annealing (SA) to find partition with largest modular-
ity. [21] extended SA by moving the current solution via the k-means iterative
procedure. Some combine the SA with other methods, like [24,35] and [15] added
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SA as a local search procedure to stabilize the genetic algorithm, memetic algo-
rithm and ant-colony optimization respectively.

There are many other metaheuristic optimization being used in community
detection, like the ant colony optimization [13], lion optimization [2], symbolic
organism search [39], whale optimization [42], Parliamentary algorithm [26],
social spider optimization [19], fire propagation algorithm [27], and many others.

Most existing metaheuristic methods aim at maximizing modularity, which is
known to suffer resolution limits. Also, many disregard node connectivity, which
communities that are internally disconnected. Here, we propose a detection algo-
rithm based on the swarm intelligence based (SIB) optimization, which ensures
the statistical significance of the detected clusters, and the connectivity of the
members.

3 The Swarm Intelligence Based (SIB) Method

3.1 Preliminaries and Objectives

We first define some notations of a network. Let G = (V,E) be a graph, where
V is the set of all nodes in the graph, and E is the set of all links in the graph. In
this paper, we focus on non-overlapping community detection in undirected and
unweighted networks for simplicity. For a graph, we recall some basic properties
of the Exponential Random Graph Model (ERGM). An ERGM is a statistical
model for the ties in a network G. In general, It has the form

lClP (G) =
eH(G)

Z
, (1)

where Z =
∑

G=GeH(G) is a normalized constant and H(·) is a graph Hamiltonian
given by

lClH(G) =
r∑

i=1

θiXi(G), (2)

where {Xi(G)} are the values of the observables xi for G and θ = {θ, . . . , θr} are
the respective parameters. Since the ERGM follows an exponential-family distri-
bution, the statistics {Xi(G)} are complete and sufficient for θ. The expectation
and variance of Xj are respectively, E(Xj) = ∂ lnZ

∂θj
, and V (Xj) = ∂2 lnZ

∂θ2
j

There are two major concerns in identifying the most influential community
in a network: (1) how to define the most influential community, and (2) how to
find the elements of the most influential community. To address the first con-
cern, we determine the importance via the ERGM with communities. Consider
a network G that is divided into k disjointed and independent parts, i.e. G =
G0, G1, . . . , Gk, where G0 is the part that does not belong to any other parts.
The full likelihood of the partitioned ERGM is

lClL(θ|{G0, G1, . . . , Gk}) =
k∏

i=0

psi
i (1 − pi)Ni−si , (3)
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where pi = exp(θi)
1+exp(θi)

. When the partitions are given, the maximum likelihood
is obtained by replacing the pi’s with their maximum likelihood estimators
(MLEs),

lClL(θ̂|{G0, G1, . . . , Gk}) =
k∏

i=0

p̂i
si(1 − p̂i)Ni−si , (4)

where p̂i = Si

Ni
. This measure is exactly the same as the measure provided in

[26]. When we consider the model with only one community, the likelihood is
reduced to

lClL(p|s,z) = psc
c (1 − pc)Nc−scpsu

u (1 − pu)Nu−supsb

b (1 − pb)Nb−sb , (5)

where z is an n × 1 group membership vector with elements taking on binary
values such that zi = 1 when the node i is selected and zi = 0 otherwise. s|z =
[sc, su, sb] is the observed numbers of edges among the selected and unselected
nodes (these edges were commonly called “betweenness”), and N = [Nc, Nu, Nb]
are all possible numbers of edges with the similar definition as s. The target
function is then recast as

lClf = p̂c
sc(1 − p̂c)Nc−sc p̂u

su(1 − p̂u)Nu−su p̂b
sb(1 − p̂b)Nb−sb (6)

We have formally defined the objective function for the detection task. In
the following subsections, we first introduce the standard form of the proposed
SIB algorithm, then elaborate on its improvements and details how it finds the
optimal solution to the detection problem.

3.2 The Standard Framework of the SIB Method

The Swarm Intelligence Based (SIB) method was first proposed in [28]. Contrary
to many nature-inspired metaheuristics algorithms like PSO, it intends to solve
discrete optimization problems that are common in mathematics and statistics
[29].

Prior to the initialization step, users are required to enter several parameters
and information including (1) at least one set of stopping criteria, (2) N : the
swarm size, (3) qLB : the number of exchanges with the local best (LB) particle
and (4) qGB : the number of exchanges with the global best (GB) particle. Then
N initial particles are first generated from a random pool of particle units and an
objective function value of each particle is calculated. The LB and GB particles
are defined accordingly.

The MIX operation is a unit exchange procedure. For each particle during an
iteration, some of its units are exchanged with those of its LB particle and the
GB particle respectively, resulting in two mixture candidates. More explicitly,
assume that there are k units in a particle. These k units are ranked according
to their contributions to the objective function value and q units with the least
contributions are removed from the current particle. In return, k units with the
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most contributions are added from the best particle, assuring the invariant of
the particle size. The order of unit addition and unit deletion is exchangeable.

The MOVE operation is a decision making procedure. After the MIX oper-
ation is complete, three candidates, including the original particle, the mixture
with the LB particle and the mixture with the GB particle, are compared based
on their objective function values. If one of the mixtures is the best among three,
the particle is updated to the best mixture. If the original particle is still the
best, q units of the original particle is substituted by q units randomly selected
from the random pool of particle units. This procedure helps to avoid the particle
being trapped in a local attractor.

After the MOVE operation, all particles are updated to their best candidates,
so the new LB and the GB particles need to be refreshed. The iteration repeats
if the set of stopping criteria is not fulfilled, or the whole method is completed
otherwise.

3.3 An Improvement to Allow Particle Size Change

The standard framework of the SIB method fixes the size of the particles dur-
ing the optimization process, but many problems require the particle size to be
flexible in order to achieve optimum. Thus, we propose an improvement on this
manner by introducing a new operation called VARY. It consists of two proce-
dures: Unit Extension and Unit Shortening. Let X be a particle with m units, qe

and qs be the number of units being added to and deleted from X respectively.
In the unit extension, qe units are added to X. These added units may come

from another particle or a random unit from the pool of particle units. Let Y be
a better particle (either LB or GB) than X with k units, and yi is the ith unit
from Y , i = 1, . . . , k. Then k extension particles [X; yi] are constructed, and the
objective function values of those particles are calculated. Let yd be the best
unit among all possible choices, i.e. [X; yd] possesses the best objective function
value. If this value is better than that of X, then we update X to [X; yd]. If the
objective function value of [X; yd] fails to improve from that of X, then random
units from the random unit pool are added to X instead. The unit extension
procedure continues until qe units are added to the particle X and the size of
the particle becomes m + qe. An opposite procedure to reduce units are done
similarly in the unit shortening, resulting in a new particle with size m − qs.

We summarize the steps of the improved SIB method below.

Algorithm: An Improved SIB Method
1: Randomly generate a set of initial particles
2: Evaluate objective function value of each particle
3: Initialize the local best (LB) for each particle
4: Initialize the global best (GB) among all LBs
5: FOR EACH particle DO:
6: Perform the MIX and MOVE operations
7: IF the original particle is the best in MOVE THEN:
8: Perform the VARY and MOVE operations
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9: IF the original particle is the best in MOVE THEN:
10: Perform the random jump
11: Evaluate the objective function value
12: Update the LB
13: Update the GB
14: Repeat the iteration (5–12) until converged.

Note that the VARY operation is performed under a condition that the MIX
operation fails to improve the particle’s objective function value. The logic of
this hierarchical setup is to optimize a particle within a given size first, followed
by improving the particle via changing the size. The standard SIB method has
similar pseudo-code without Lines 8–9.

3.4 SIB for Community Detection

Under the context of community detection, a particle is a subgraph of a network.
To generate a particle in the initialization step, we randomly select a node vi as
the center and a length of the shortest path r as the radius. This represents a
subset of nodes that are within shortest-path distance r from the center vi. Such
generator had been verified as a good selection of possible community [37,38].

In the MIX and VARY operations, instead of allowing all nodes within the
particle to be altered, we first identify the nodes on the boundary of the subgraph
and they are the only nodes being altered. Note that these boundary nodes
are distance r from vi only in the first iteration, and the distances of these
boundary nodes vary after some improvements are performed. Thus, an efficient
identification on these boundary nodes is essential when a particle is given. When
the algorithm is completed, the GB particle indicates all nodes being detected
as a member of community from the network.

4 Simulation

We present the results of different community detection methods performed on
different benchmarks and datasets. Here the methods are abbreviated as fol-
lows, Ant Colony Optimization as ACO, Particle Swarm Optimization as PSO,
Genetic Algorithm as GA, Tabu Search as TABU, Simulated Annealing as SA,
InfoMap as IM, semi-synchronous Label Propagation Algorithm as LPAsemi,
asynchronous Label Propagation Algorithm as LPAasy, Greedy Modularity as
GreedyMod, Leiden Algorithm as Leiden, Leading Eigen Vector as LeadingEV,
Louvain Algorithm as Multilevel, Walktrap Algorithm as Walktrap, Standard
Stochastic Block Model as SSBM, Degree Corrected Stochastic Block Model as
DCSBM.
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The ordered pairs in the first column of the tables are the parameters used
for graph generation of that particular instance. Due to page limits, we only
show the simulation results on two communities with Poisson assumption. The
first column of the table indicates the sizes of two clusters and the entries are
the intra-connection probability. Additional results on (1) one community with
Poisson assumption; and (2) two LFR benchmark experiments are per request
if needed, and will be shown in extended version or future works of this paper.

4.1 Comparison Metrics

Since multiple ground-truth communities exist, the accuracy of the partition
are measured using the Cross Common Fraction (CCF) and the Jaccard index
[38]. The Cross Common Fraction compares each pair of community that
came from the detected partition C∗ = {C∗

1 , . . . , C∗
s }, and the real partition

C = {C1, . . . , Ct}, where s is the number of total communities detected by the
community detection methods, t is the true number of communities. CCF =
1/2

∑s
i maxj |C∗

i ∩Cj |+1/2
∑t

j maxi |C∗
i ∩Cj |. We slightly altered the definition

of Jaccard index by considering all possible pairs of nodes, rather than the ele-
ments of each community only, to check if they were assigned to the same commu-
nity. Let C∗

pair = {(vi, vj) : δ(vi, vj) = 1}, and Cpair = {(vi, vj) : ξ(vi, vj) = 1}
be the sets of pairs that were assigned to the same communities with respect to
the detected communities and the real ones. δ and ξ were the indicator functions
that were 1 if vi and vj had the same label. Thus, the Jaccard index was defined

as J(C∗, C) = |C∗
pair∩Cpair|

|C∗
pair∪Cpair| .

4.2 Results

Here we use the mean of Jaccard index and the mean of Common Cross Fraction
over 10 runs to show the accuracy of the detection methods. Our proposed
method performs better than other methods in both the Jaccard index and the
Common Cross Fraction when the cluster size is more unbalanced, and when
the community connection probability is smaller. It can be especially seen in the
(25–475, 0.25) instance, where the SIB only misidentified one node while other
methods lack the accuracy. Here the result of LPAasy, LPAsemi and IM tend to
cluster the more unbalanced community with lower intraconnection probability
into one large cluster, although the situation has improved compared to previous
simulation. The results are shown in Table 1.
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4.3 Real Networks

We compared the triad participation ratio of the community detection methods
that have yielded relatively competitive results. The triad participation ratio is
used to determine the quality of a single cluster. The metric is known to be a
good indicator for finding functional communities [41]. Here we formally define
the triad participation ratio. Let G(V,E) with an undirected graph with n = |V |
nodes and m = E edges. Let S be a set of nodes, where ns = |S|; mS the number
of edges in S, mS = |{(u, v) ∈ E : u ∈ S, v ∈ S}|; cs, the number of edges on
the boundary of S, cs = |{(u, v) ∈ E : u ∈ S, v /∈ S}|; and d(u) is the degree of
node u. Then the triad participation ratio (TPR) is defined as

TPR(S) =
|{u : u ∈ S, {(v, w) : v, w ∈ S, (u, v) ∈ E, (u,w) ∈ E, (v, w) ∈ E} �= ∅}|

nS

Here we use a total of six real-life dataset. The total number of nodes ranges
from 34 to 36692. For larger networks with total number of nodes larger than
1000, our proposed method outperforms other methods in terms of triad partic-
ipation ratio, and is also competitive in terms of smaller datasets, as shown in
Table 2.

Table 2. Triad participation ratio for two communities with power law assumption

SIB IM LPAsemi LPAasy GreedyMod Leiden LEV Louvain Walktrap

Karateclub 0.9701 1.0000 0.9333 0.9671 1.0000 - 0.9167 0.9524 1.0000

Dolphins 0.7143 0.7500 0.8333 0.8021 0.7391 - 0.7059 0.7389 0.8000

Polbooks 0.9783 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Protein 0.2348 0.1931 - 0.1942 0.2231 - 0.2180 0.1869 0.2214

Powergrid 0.6628 0.3818 - - 0.0985 - 0.1335 0.1018 0.4552

Enron 0.9702 0.7324 0.6656 0.6678 0.7167 - 0.6762 0.7844 0.7662

Figure 1 shows the detection result of two datasets with ground truth commu-
nities using SIB, the polbooks dataset and the karate club dataset. The results
are quite promising with the F1 score between the detected community and the
officer’s true community in the karate club being 0.9714 and the F1 score between
the detected community and the conservative cluster in the polbooks network
being 0.8842. We observe that most misidentified community nodes have similar
percentage of intra-community edges and inter-community edges, while misiden-
tified noncommunity nodes often have a higher proportion of links connected to
the community it does not belong to.
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)b()a(

)d()c(

Fig. 1. Detection results of SIB in real the karate club and the polbooks datasets.
(a) and (b) are respectively the ground-truth communities of the karate club network
and its detection result of SIB. The two colors in (a) represent the ground-truth mem-
berships of each node, while the colored nodes in (b) represent the detection result
with highest occurrence over 10 runs using the SIB method. In particular, in (b),
the orange nodes stand for correctly-detected nodes, and green nodes represent non-
community nodes being incorrectly detected as community members. As shown in (b),
only one node on the boundary is misidentified. Likewise, (c) and (d) are respectively
the ground-truth communities of the polbooks network and its detection result of SIB.
In (b), orange nodes represent nodes that are correctly detected, while red nodes are
community members that SIB fails to identify as community members, and the ones
in green are noncommunity nodes being incorrectly detected as community members.
(Color figure online)



Swarm Intelligence to Community Detection 429

5 Conclusion

The main contribution of this paper is that we propose a nature-inspired meta-
heuristic optimization method improved from the Swarm Intelligence Based
(SIB) method for community detection. With the flexibility to change particle
size during the optimization, the improved SIB method outperforms all common
metaheuristic methods in the simulation studies, and the performance is com-
parable to several traditional state-of-the-art methods. The applications to real
networks ensure that our proposed method is ready for practical uses.

In specific, our method performs well for networks with more than 1000
nodes. One may argue that the largest network (Enron email network) consists
of only 36692 nodes, which is still small when compared to large-scale networks of
million nodes, but a clustering of large-scale networks itself is a difficult problem
and it is out of the scope of this paper. At least, none of the listed methods can
easily handle this task without significant modifications.

The missing LFR benchmark experiment will be shown in extended version
in the near future. Nevertheless, the results show that our SIB method is the
favorite in certain network conditions (cluster size is more unbalanced and com-
munity connection probability is small), and the performance is still stable and
good when compared to other methods. Another potential extension from this
paper is the consideration of additional complications in real networks, includ-
ing the direct and weighted edges, specific network structure, and many others.
As the computational burden further increases in these complications, parallel
computing should be employed for computational feasibility.
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Abstract. When optimised, supply chains can bring tremendous ben-
efits to all its participants. Supply chains therefore can be framed as a
networked optimization problem to which swarm intelligence techniques
can be applied. Given recent trends of globalization and e-commerce, we
propose a supply chain that uses an open e-commerce business model,
where all participants have equal access to the market and are free to
trade with each other based on mutually agreed prices and quantities.
Based on this model, we improve upon the Particle Swarm Optimization
algorithm with constriction coefficient (CPSO), and we demonstrate the
use of a new random jump algorithm for consistent and efficient han-
dling of constraint violations. We also develop a new metric called the
‘improvement multiplier’ for comparing the performance of an algorithm
when applied to a problem with different configurations.

Keywords: Swarm intelligence · Supply chain · Particle Swarm
Optimization · E-commerce · Networked optimization problem

1 Introduction

In traditional supply chain models, suppliers typically sell their products to deal-
ers or wholesalers who then supply these products to customers. Globalization
and e-commerce are enabling traditional businesses to access new markets and
customers via open information that was not possible previously.

Leveraging internet technologies and open access trading networks, busi-
nesses can form more robust supply chains with suppliers and traders compet-
ing in open markets. This has the potential to revolutionise and disrupt current
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business practices. Such a model enables optimized utilisation of resources while
achieving the best efficiency of supply chains.

In this paper, we propose a business model based on such an open access
market to form suitable supply chains. In addition, we use swarm intelligence to
enable companies in this business model to optimize the supply chain for profit
maximisation.

In our previous work, we successfully optimized a traditional Taiwanese sup-
ply chain where sellers and buyers go through a middleman for trading purposes,
using three different swarm intelligence algorithms [1]. In this paper, we propose a
model of a decentralized supply chain; where suppliers supply products directly
to customers (the direct sales model) in a many-to-many and fully connected
supply chain network.

We optimize this supply chain network using the Particle Swarm Optimiza-
tion algorithm with constriction coefficients (CPSO) and then improve upon its
performance using our newly devised algorithms (CPSO rj). The goal is to seek
the optimized combination for the entire supply chain. In other words, we will
seek the highest profit for the whole supply chain based on the different combi-
nations of suppliers/buyers/trading products/purchase quantities and transport
used. We also experiment with many different supply chain configurations to
avoid bias towards any one particular configuration.

This decentralized and open supply chain should be more resilient than the
traditional supply chains with fixed suppliers and buyers. The algorithms will
find the most profitable combination of products that can be traded between
suppliers and customers even when facing disruptions such as production short-
ages or unexpected decrease/increase in demand.

1.1 Supply Chain Representation

Digraph: Given the interconnected nature of a supply chain, we propose a
directed graph or digraph that forms a digital representation of a supply chain.
A digraph can be represented as G(V,E), where G is the graph, V is the set of
nodes, and E is the set of edges between nodes. Each node represents a company
or entity, and the edges represent the directional flow of goods. Quantities, prices,
and other edge attributes are represented as edge weights, while variables such
as supplier location, customer size and customer location are represented as
node attributes. Two classes of nodes are represented: V = (Si|i = 1, 2...n)
represents n number of suppliers, and V = (Ci|i = 1, 2...m) represents m number
of customers. We denote an edge as Eij = (Si, Cj), and it represents a connection
between supplier i and customer j with node Cj being node Si’s successor.
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1.2 Supply Chain Variables

We consider in this work the minimal and relatively arbitrary setups as described
below for demonstration purpose. Our method is capable of handling problems
with larger setups, and one can easily extend the setup to meet their needs.

Costs: The total cost associated with delivering products from the suppliers to
the customers is the sum product of the quantity supplied and the cost associated
procuring and processing the products, plus the sum product of the cost of trans-
porting the products from suppliers to customers. This can be mathematically
represented as: Cost =

∑
(transport cost∗qty)+

∑
(procurement cost∗qty). We

have taken 2 different location: North & South to represent the different zones,
and we assume that the transport cost is greater if the supplier and the customer
are in different geographical locations. We also categorize suppliers into Small,
Medium & Large to differentiate their production capacities, and we assume that
smaller suppliers charge more than large suppliers to simulate economies of scale
in production and procurement.

Sales: Total sales is calculated by the sum product of quantity of products
supplied and the price per product negotiated with the customer: Sales =∑

(price ∗ qty). We have categorised customers into Small, Medium & Large
categories, with larger customers paying less than smaller customers as their
demand for products is greater and to simulate the bargaining power of volume
based negotiated discounts.

Profit/Loss: The profit of the supply chain is therefore the difference between
the total sales and the total costs, which is used as the objective function during
optimization: Profit = Sales − Cost. A negative profit is commonly known as
the loss.

Constraints: There are two constraints that every supply chain must adhere to:
(1) the supply side constraint, i.e. customers cannot buy more products than that
are produced, and (2) the demand side constraints, i.e. suppliers cannot supply
more products than a customer’s demand. For the demonstration purpose of
this paper, we consider three products (A, B, D) and each product has a total
packed capacity 6, 10, and 12, respectively. Therefore, the supply side constraint
for supplier i is (ai × 6) + (bi × 10) + (di × 12) where ai, bi, di are the quantities
for products A, B, D supplied by supplier i. Similarly, the demand constraint is
an integer value representing the total quantity of each product a customer is
willing to purchase.

We assume that customers are willing to purchase the same product in dif-
ferent quantities from multiple suppliers. We also assume that the supply is less
than the demand. The objective is to find the combination of products from
suppliers to customers that maximizes the profit for the entire supply chain.
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For the optimization process to be valid, it needs to meet both supply and
demand constraints and should consider the cost difference paid by different
categories of customers. It should also consider the difference in costs of trans-
porting products between suppliers and customers in different geographic zones.

2 Swarm Intelligence Optimization

Given the number of different variables in a supply chain, it is infeasible to cal-
culate and compare every possible combination. As the variables in the supply
chain increases, so does the solution domain of finding the most profitable com-
bination. Thus, a heuristic can be applied to yield an adequately good solution
but not necessarily the best solution within a feasible computational time.

There are some algorithms that mimic the behavior of natural organisms
and how these organisms achieve complex tasks by following simple rules [2].
The Particle Swarm Optimization (PSO) algorithm was developed to simulate
social behaviors in the animal world and was later modified for optimization
of continuous nonlinear functions [3]. Each particle is encoded such that its
position represents a possible solution with the same dimensions as the problem.
The particle is allowed to explore the solution domain for better solutions by
adding its velocity vector with the same dimensions as its position. Later, a
‘social-network’ or a neighborhood of informants was added to delay the spread
of information among the particles, in order to avoid local optima and for better
exploration of the search space [4]. One such neighborhood is called the Ring
neighborhood topology where every particle is connected to two other particles
[4]. At every iteration, the particle attempts to improve its personal best position.
This is done via the velocity vector that contains information from the best of its
informants which is called the local best. Further, a certain degree of randomness
is also added to the velocity vector to aid in exploration of the search space. As
all particles are connected indirectly via the Ring topology, the information
contained in the best possible position seen by the entire swarm of particles or
the global best position, finds its way through the entire swarm. This results in
the swarm gradually converging to the global best position while exploring the
search space.

The PSO algorithm has been used to optimize a multi-echelon automotive
supply chain with the objective of minimizing operating costs [5]. It has also been
used in the biomass supply chain where the objective function was an optimal
amount of biomass to be harvested [6]. A modified version of the PSO algorithm
was also used to optimize a petroleum supply chain with cost reduction as the
objective function [7].

2.1 PSO with Constriction Coefficient (CPSO)

CPSO is a version of the PSO algorithm with a constriction coefficient which
was introduced to control the velocity of the particles in high dimensional search
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spaces [8]. The CPSO algorithm is represented using the following equation [9]:

vt+1
i ← χ[vt

i + c1 ∗ rand(x pb, t
i − xt

i) + c2 ∗ rand(x gb, t
i − xt

i)] (1)

where vt+1
i is the updated velocity, vt

i is the current velocity, rand is a random
number between 0 & 1, x pb, t

i is particle i ’s personal best or best position visited
by particle i, xt

i is particle i ’s current position, x pb, t
i is the local best or the

best position visited by any of particle i ’s informants, c1 and c2 = 2.05 and
the constriction coefficient χ was set at 0.7298 as per [9]. After every iteration,
the new velocity vector is added to the particle’s position using the following
equation:

xt+1
i ← vt+1

i + xt
i (2)

where xt+1
i is the updated position for particle i. This process continues until

the maximum number of iterations is reached.

2.2 Constraint Handling Strategy

When the velocity is added to the position, the returned value sometimes breaks
either supply or demand constraints. To avoid these constraint violations, an
extra step needs to be added to the position update process to adjust the move-
ment of particles when they are going to break constraints.

In this section, we introduced two different constraint handling strategies:
random back strategy and random back confinement strategy [10]. In addition,
we introduced an explorative technique called ‘random jump’, which will be
implemented based on the random back strategy. We will also discuss each of
their advantages and disadvantages through examples.

Random Back Strategy. In this strategy, if an entry is going to break the
constraints, it will be replaced with a random value that meets both demand
and supply constraints. The downside of this method is that for those entries
of violations, we may lose the value or information gained through the previous
iterations. Moreover, under this strategy, a particle is likely to be stuck in the
neighborhood of the current position. Here is an illustrative example.

Consider a three-dimensional particle whose original position is [3, 9, 9] and
velocity is [5, 0, 1], where the demand constraint is [10, 10, 10] and the supply
constraint is 23, i.e., the sum of three entries should not surpass 23. Assume the
optimal solution is [10, 3, 10].

In the update process, the first entry [3+5, 9, 9] breaks the supply constraint,
so we execute a random back strategy. Since the demand for the first entry is 10
and the remaining supply is 23−9−9 = 5, we choose the random value from 0 to
5, and we pick 4, then the updated position becomes [4, 9, 9]. The remaining two
entries stay within the constraints, so they are updated by the original velocity.
As the result, we get [4, 9, 10] as the new position for the particle. In this case,
considering the supply constraint, we have little chance to increase the first entry
in the following iterations unless some other entries decrease first. Therefore, the
particle gets stuck in the neighborhood of the current position.
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Random Back Confinement Strategy [10]. Random back confinement strat-
egy is used to make the violating position move along the opposite direction of
its velocity. The velocity value in the violating dimension is multiplied by a
negative random value between 0 and 1. The advantage of this method is that
new value will be closer to original value, thus retaining most of the information
from previous iterations. However, the neighborhood trap issue still exists in this
method.

Consider the same example in the previous paragraph. For the first entry,
since the supply constraint will be violated, we execute a modified random back
procedure on it. Assume the negative random number we pick is −0.2, then the
updated velocity becomes 5 ∗ −0.2 = −1, and the updated position is [2, 9, 9].
After updating the other two entries, we get [2, 9, 10] as the new position. In this
case, it is still hard for the particle to jump out from the neighborhood trap.

Random Jump. While the two methods mentioned above ensure constraints
are met, they fail to address the neighborhood trap issue, which requires a value
reduction in one dimension in order to allow a value increase in another dimen-
sion while meeting constraints. To address this, we propose a new method called
‘random jump’. We preset a probability threshold value as a parameter of the
method, and we generate random values from 0 to 1 for each dimension when we
execute the random jump. If the random value for any dimension is below the
threshold value, we replace the position’s value in that dimension with a random
value that meets demand and supply constraints. For the remaining dimensions,
we use the random back strategy. The downside of this strategy is that we need
some expertise on the setting of the probability threshold, although the effects
may not differ much among any small values. Here we suggest to set it as 0.1.

Consider the same example. We set the probability for random jump as 0.1.
When the random jump is executed, we generate three random numbers between
0 to 1 from a random number generator, and we have (0.6429, 0.0711, 0.4542).
This result implies a random jump on the second entry. For updating the position,
we also take the entries into consideration in order. After updating the first entry,
according to the random back strategy, we will get [4, 9, 9]. For the second entry,
we choose a random valid value as its new position. According to the demand
10, and the remaining supply 23 − 4 − 9 = 13, we can pick an integer from 0
to 10. Assume 4 is chosen; then the position becomes [4, 4, 9]. As a result, the
particle moves to [4, 4, 10] in this iteration. In this case, we can see that some
supply quota is released by the random jump procedure, which makes it more
possible for the first entry to be increased in the following iterations. Certainly,
there are many other operations that are possible to execute, and our pick is
relatively simple but one may choose others for specific needs.

3 Setup and Metric for Method Comparison

In this section, we compare CPSO with three different constraint strategies intro-
duced above. In order to identify which CPSO algorithm returns the combination
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with the highest profit values, we set up an experiment with 50 separate supply
chain configurations. All 50 configurations contain 15 customers, 15 suppliers
and 3 products. Each configuration contains different demand and supply con-
straints and different geographical location for customers and suppliers as well as
different combinations of customer and supplier categories. For each configura-
tion, we randomly initialise 20 sets of particles. The Ring neighborhood topology
is used to select informants. We test the three CPSO algorithms on every par-
ticle set, for 500 iterations without stopping early. As a result, we have 1000
optimized solutions, i.e., the global best positions at the last iteration, given by
each algorithm.

In order to compare solutions from different configurations, we define an
improvement multiplier to measure the progress of each algorithm from the start
with random initial values to the end of the iterations. The improvement multi-
plier can be calculated using the following equation:

I = 1 +
(profitf − profit0)

profit0
(3)

where profitf and profit0 are the global best profit values after the optimiza-
tion process completes and at the initial stage respectively. Since the particles
are chosen randomly in the initial stage, profit0 stands for the profit of a random
selling strategy among providers and customers. Then the improvement multi-
plier can be interpreted as the profit multiplying ratio that the profit of the
resulting selling strategy obtained from the optimization is elevated from that of
a random selling strategy. Then, we are able to fairly compare the optimization
results for different configurations using this multiplier.

4 Results and Analysis

In this section, we compare the performance of CPSO using three different con-
straint handling strategies. The improvement multiplier is the metric for our
evaluation. In all tables and figures, ‘CPSO’ stands for the standard CPSO with
random back strategy, ‘CPSO rb’ stands for CPSO with random back confine-
ment strategy, and ‘CPSO rj’ stands for CPSO with random jump strategy.

Table 1. Optimization result (improvement multiplier)

Algorithms Mean Median Max Min StdDev.

CPSO 1.779397 1.745195 2.362166 1.467401 0.201227

CPSO rb 1.772740 1.748541 2.346964 1.455882 0.200838

CPSO rj 1.795481 1.764483 2.383918 1.482471 0.203157
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Fig. 1. Improvement multiplier. Take the red point for example, which indicates one
optimization result given by CPSO algorithm. The profit given by the indicated optimal
result is 413468.42, and the profit given by the initial global best particle is 235192.44.
We can obtain the value 1.758 by 1+(413468.42−235192.44)/235192.44. (Color figure
online)

Table 2. The number of iterations to convergence

Algorithms Mean Median Max Min StdDev.

CPSO 220.947 204 499 17 144.759606

CPSO rb 283.691 284.5 499 34 125.165306

CPSO rj 248.221 247 499 6 144.835885

Results. As seen in Table 1, the mean, median, maximum and minimum of
improvement multiplier of CPSO rj are higher values than those of both the
CPSO & CPSO rb. This suggests that CPSO rj is able to find better combi-
nations for higher profits than CPSO & CPSO rb even though all algorithms
started from the same randomly initialised set. Figure 1 is the graphical repre-
sentation of the results. The initial random value is at 1.0 and three boxplots of
improvement multipliers show the capability of efficient improvement of profit
values resulting from the supply chain combinations returned by the three algo-
rithms after the optimization process.

Table 2 compares the number of iterations to convergence of three algorithms.
Iterations to convergence refers to the iteration number at which the algorithm
is able to find the highest profit value of the run. On average, CPSO converges
faster than the other two algorithms, while on average CPSO rb takes the highest
number of iterations to converge, though the average difference is not great
between the three algorithms.

In both Tables 1 and 2, CPSO rb had the lowest standard deviations, which
would suggest that its results are relatively consistent both in terms of improve-
ment multipliers and iterations to convergence.
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5 Conclusion

The ever increasingly use of e-commerce globally, brought about by the massive
adoption of digital technologies, is forcing traditional supply chains to operate in
an environment where information is open and business partnerships can form
easily and sometimes automatically. Based on these trends, we create a decen-
tralized open supply chain that is modeled on a many-to-many fully connected
network and optimized for profit maximisation using swarm intelligence.

In doing so, we take the canonical PSO algorithm and improve it, result-
ing in a new algorithm called the CPSO rj. This new algorithm guarantees a
result that meets the stringent constraints of a complex supply chain. Further,
we test this new algorithm against two CPSO with different random back strate-
gies (CPSO and CPSO rb) via a newly developed performance metric called the
‘improvement multiplier’. This allows us to test these algorithms on a number
of different supply chain configurations. The CPSO rj yields the best improve-
ment ratios out of the three algorithms and is ideally suited to optimize the
decentralized supply chains of the future.

Notice that the variable setups, parameter setups, and initial datasets are
all simplified for demonstration purposes only. CPSO rj is ready to adopt sim-
ilar settings and datasets of one’s specific needs. For examples, one may take
real-world locations and calculate the real transport costs according to the true
geographic locations. One may also consider real-world customer categories and
product categories associated to company’s needs. Even broader, users are actu-
ally free to edit the objective by adding necessary terms to the profit.

There are a number of extensions and modifications that can be considered
in the future works. First, it is of great interest to see how the increase of
the problem dimension affects the performance of our proposed method. It is
obvious that the numbers of customers, suppliers and products are much larger
in real supply chain, so a further analysis of computational complexity will be
a major work to investigate. Second, there are many state-of-the-art methods
in both metaheuristics and supply chain. Among all metaheuristics algorithms,
the Swarm Intelligence Based (SIB) method [11–13] is designed for optimization
problems with discrete domain like the supply chain problems. A comparison
between the results of SIB and CPSO rj under different problem dimensions
is another major work in the extended paper. The comparison to the results of
state-of-the-art methods [14,15] in supply chain is also important. Third, PSO is
known as a random algorithm, so there is a need to quantify the result variability
using a formal statistical detection method in addition to the simple boxplot
of improvement multiplier. Such method is certainly an important addition to
CPSO rj and any PSO-type algorithm in general. Last, the supply-chain problem
has a rigorous mathematical formulation in economics, so it is of great interest
to derive some underlying theoretical results prior to the optimization to help
improving the optima and stabilize the variability.
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Abstract. Recommendation system facilitates users promptly obtaining the infor-
mation they need in this age of data explosion. Research on recommendationmod-
els have recognized the importance of integrating user historical behavior sequence
into the model to alleviate the matrix sparsity. Although deep learning algorithm
with attentive mechanism exhibits competitive performance in sequential rec-
ommendation, the searching for optimal attentive factors still lack effectiveness.
In this work, we redesign the sequential recommendation model by employing
swarm intelligence for optimization in the attentive mechanism thus to improve
the algorithm accuracy. We conduct extensive comparative experiments to eval-
uate performance of four swarm intelligence algorithms and traditional recom-
mendation methods. Our work is the first attempt to integrate swarm intelligence
into sequential recommendation algorithm. Experimental results confirmed the
superior performance on AUC score of the proposed approach.

Keywords: Sequential recommendation · Swarm intelligence · Attentive
mechanism

1 Introduction

Recommendation system (RS) is playing an important role in this era of in-formation
explosion by assisting users to obtainmost relevant content or service. Traditional recom-
mendation techniques, such as collaborative filtering, utilizes the user-item interaction
to recognize most similar items that user may have interest in [1]. However, conven-
tional methods often suffer from data sparsity and cold start problem. Recent research
attempted to leverage user sequential behavior for their profile learning, for instance,
sum pooling of user sequential behaviors to represent user preference [2, 3]. Despite the
improved performance of sequential recommendation, treating historical items equally
may constrain the learning process and require higher computational cost. To tackle
this difficulty, attention weight is proposed for each historical item to differentiate their
importance in user profile, which is named attentive mechanism [4, 5]. While attentive
mechanism achieves effectively to learn user representation, the attention calculation is
time-consuming and sometimes only obtains sub-optimal attentive factors.
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Swarm intelligence (SI) is a collection of naturally inspired methods that show over-
whelming superiority in solving optimization problems. SI-based algorithms have the
advantage of increased flexibility, simplicity, easiness of implementation and robustness.
Prior research has demonstrated the effectiveness of SI in enhancing multi-criteria rec-
ommendation techniques and achieves good balance between multiple recommendation
objectives [6]. SI has also been used for assigning optimal weights of different features in
similarity computation [8]. In ensemble and hybrid RS, SI helps to identify the optimal
combination of sub-algorithms [9].

Considering the searching capability for optimal solutions of SI, this research lever-
ages SI algorithms for learning the optimal attentive factor in sequential recommenda-
tion assuming that users have different preferences for historical items. We first leverage
DeepWalk [15] and Skipgram [16] to generate item embedding, and then integrate SI in
the user profile learning. Instead of validating one SI algorithm for the factor learning, we
also compare the capability of different swarm algorithms, namely, Particle SwarmOpti-
mization (PSO), Artificial Bee Colony (ABC), Bacterial Foraging Optimization (BFO),
and Firefly Algorithm (FA) in this optimization task. Experiment results demonstrate
the promising performance of SI in optimizing attentive factors compared with average
pooling and stochastic gradient descent method. To brief, the main contributions of this
work are as follows.

1. Wepropose anSI basedmethod for learning optimal attentive factors for user’s histor-
ical item in user preference learning, named Swarm Enhanced Attentive Mechanism
(SEAM). To the best of our knowledge, this is the first attempt to optimize attentive
factors with swarm intelligence algorithms in sequential recommendation.

2. We conduct extensive experiments based on a real-world dataset to demonstrate the
effectiveness of proposed method. The result shows that SEAM has outperformed
selected state-of-the-art recommendation algorithms and optimization methods.

2 Related Work

2.1 Sequential Recommendation

User sequential behavior involves dynamic user interest information, which is valu-
able for modeling user preferences. Sequential recommendation is to learn user pro-
file through the historical interactions with candidate items. Sum pooling as a popular
sequential recommendation method learns the item-item similarity by the product of two
low-dimensionmatrices, and then pool the latent factors of historical items to obtain user
representation [2]. These models overcome the limitation of sparse matrix, but fail to
address the timing of sequence information.

To more effectively capture user preference, CNN [10], RNN [11] and self-attention
mechanism [12] have also been proposed. These methods can transfer user sequential
behavior into fixed dimensional vectors. However, they lack the ability to extract user’s
dynamic interests since they treat historical items equally. In that light, some recent
researchers [4, 5] leverage attentionmechanism tomodel user behavior by differentiating
the importance of historical itemswith attentive functions.Whereas the typical constraint
is that calculating the similarity by attention mechanism is computationally expensive
with low efficiency. Thus, there is still need for more effective optimization methods.
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2.2 Swarm Intelligence Based Recommendation

SI algorithms simulate the cooperative behavior of natural phenomena, such as the forag-
ing of insects, the flight of birds or the crowding of fish. The main idea of SI is to use the
intelligence of the population for collaborative search, so as to find the optimal solution
in the solution space. SI has the advantages of flexibility, robustness and parallelism.
It is highly compatible with different mathematical form of the target problem, either
simple or complex, and stands out in solving complicated optimization problems. In the
recent years, SI has been applied to improve the accuracy of recommendation systems.

SI techniques were used to assign optimal weights to features in order to find better
neighborhoods for users, such as bacterial foraging optimization [6], gravitational search
algorithm [7] and bat algorithm [8]. To be noted, clustering-based models are able
to reduce the time complexity caused by larger datasets, especially in memory-based
recommendation. In extant research, SI techniques are commonly used to improve the
performance of clustering algorithms. For instance, ABC-KM [13] utilized artificial bee
colony to regulate the optimal center points of K-Means algorithm, and then aggregated
users into different clusters. HMRS [14] proposed to generate a ranked list by graph-
based approach and re-ranked the list using PSO to obtain highly optimized results.

3 Swarm Enhanced Attentive Mechanism Model

3.1 Problem Definition

As shown in Fig. 1, we assign attentive factors αuj for each user-item pair, which can
differentiate the attached importance of user historical items and figure out the most
interested historical items of users. Our objective is to obtain the optimal attentive factors
for each user to minimize the loss function of recommendation.

Fig. 1. Problem definition of proposed model.
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3.2 General Framework

The general framework is presented in Fig. 2. At the first step, we construct item graph
and utilize DeepWalk [15] to generate item embedding, which can represent the features
of each item. Subsequently, we apply SI algorithms to obtain the attentive factors of user
sequential behavior. Details are explained as follows.

Fig. 2. The general framework of our proposed model.

3.3 Item Embedding

We use DeepWalk to generate item embedding, which enables representing the latent
information and relationship between items. Given the users’ historical sequence that
have been sorted by time, we generate item graph, denoted as G = (V ,E), where V is
the set of nodes and E is the set of edges. Then, random walk is performed on the item
graph G, which selects the starting points randomly and walk the specific number of
steps. Finally, we get new item sequences.

We employ Skipgram [16] to learn the latent representation of items. The goal of the
Skipgram model is to maximize the probability of items that appear in the same item
sequence. This yields the optimization problem:

minimize
φ

− logPr({vi−t, . . . , vi−1, vi+1, . . . , vi+t}|φ(vi)) (1)

where t is the window size, φ is a mapping function that maps vi to weights matrixW ∈
R|V |×D, and W represents the embedding of items that can be obtained by optimizing
the objective function in the training process.
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In order to improve the training efficiency of Skipgram, we adopt negative sampling
[17] that computes the loss function for a few random negative samples, not all negative
samples. Equation (1) can be transformed:

minimize
φ

− logσ

(
φ
(
vi

′)T
φ(vi)

)
−

∑
j∈N (vi)

logσ(−φ(vj)
Tφ(vi)) (2)

where item vi
′
is a positive sample of item vi, N (vi) is a set of random negative samples

of item vi, and σ is the sigmoid function.

3.4 Recommendation Task

User Profile. We sort historical items of each user according to the time of interaction
to construct the user sequential behavior. The importance of user historical items is
distinguished by assigning a factor to each user item (u, j) pair:

Pu =
∑

j∈Ru+ αujpj (3)

where Ru
+ denotes the set of items that user u has interacted with, αuj is the attentive

factor in contributing the degree of user u’s interest in the item j, and pj is the feature of
item j which is obtained by DeepWalk.

Prediction. We use dot product of the target item and user profile to estimate the sim-
ilarity between them. In order to assess the probability of recommendation, we need to
map the output to the range of 0 to 1 by Sigmoid function. Thus, the predictive model is
as follows:

y
∧

ui = sigmoid(Pu � qi) (4)

where qi is the feature of target item i, y
∧

ui is the prediction of probabilities recommending
target item i to user u.

Loss Function. We denote a user-item interaction matrix as Y ∈ YM×N . for users’
implicit feedback, where M and N denote the number of users and items respectively.
Formally, the user-item interaction matrix Y is as follow:

yui =
{
1, if user u has interacted with item i.
0, if user u has not interacted with item i.

(5)

The objective function is the negative log-likelihood function as follows:

LOSS = − 1

N
(
∑

(u,i)∈T yuiln
(
y
∧

ui

) + (1 − yui)ln
(
1 − y

∧

ui

)
) (6)

where T is training set, N is the number of instances in T .
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3.5 Attentive Factors Optimization

In this section, we use four SI algorithms to optimize the attentive factors αuj in user
sequential behavior in Eq. (3) by minimizing the loss function in Eq. (6).

Particle Swarm Optimization (PSO). PSO [18] is a SI-based algorithm by simulating
the migration behavior of birds. The movement of particle i depends on its inertia ω,
its local best location pbesti and the global best position gbest. Its velocity update and
location update are as follow:

vi = ωvi + c1 × rand() × (
pbesti − xi

) + c2 × rand() × (gbest − xi) (7)

xi = xi + vi (8)

where vi and xi are the velocity and position of particle i respectively, c1 and c2 are
cognitive coefficient and social coefficient respectively and rand() is a random number
between 0 and 1.

Artificial Bee Colony (ABC). ABC [19] is an optimization algorithm based on the
behavior of three kinds of bees looking for the best food source. To be specific, employed
bees memorize information about their food sources and seek the better food source in
their neighbors. Onlooker bees search food sources with probability on the basis of the
fitness given by employed bees. Scout bees randomly search for new food sources as
long as the fitness of employed bees stop increasing.

Bacterial Foraging Optimization (BFO). BFO [20] mimics the chemotaxis, repro-
duction and dispersion behavior of bacterial population. After each step of chemotaxis,
bacteria i updates its position as follow:

θ i(j + 1, k, l) = θ i(j, k, l) + c(i)φ(i) (9)

where θ i(j, k, l) represents the position of bacteria i after the j-th chemotaxis, the k-th
reproduction and the l-th dispersion, c(i) is the step size, φ(i) is the randomly selected
unit directional vector.

Firefly Algorithm (FA). FA [21] is a SI algorithm based on the mutual attraction
between fireflies. Attraction depends on the brightness perceived by the firefly, which
decreases with distance. When firefly i find a brighter firefly j, firefly i moves towards
firefly j as follow:

xi = xi + β0

1 + γ · rij2
(
xj − xi

) + αr (10)

where xi and xj are the position of firefly i and j respectively, rij is the distance between
firefly i and j, β0 and γ are the mutual attraction and light absorption coefficient
respectively.
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4 Experiments

4.1 Experimental Settings

Datasets. We evaluated our proposed model based on MovieLens, a popular rating
dataset. We chose the latest small version of MovieLens, containing 100836 ratings and
each user has evaluated at least 20 movies. The length of user sequential behavior varies
greatly, so we limit the maximum to 100. More details are shown in Table 1.

Table 1. Information of the latest small MovieLens

Dataset Interaction# Item# User# Sparsity

MovieLens 100,836 9,724 610 98.30%

Evaluation Protocols. We sorted user interactions by time. We took the early 80%
interactions as training sets and use the latest 20% for testing. For each training and
testing instance, we randomly sampled 4 items that have not been interacted by the user.
In the training session, we used the early 80% interactions to construct user historical
sequence and optimize its attention factors through SI algorithms. Then, we can learn
user features from these early 80% interactions. In the testing session, we estimated the
similarity between users and target items by dot product. We applied AUC to measure
the accuracy of recommendation.

Comparison Algorithms. We named our proposed model Swarm Enhanced Atten-
tive Mechanism (SEAM) and in this study, we carry out experiments for four SI algo-
rithms, namely, AF-ABC, AF-BFO, AF-PSO and AF-FA respectively.We also designed
AF-AVG and AF-SGD as comparison methods to obtain the attentive factors by aver-
age pooling and stochastic gradient descent, rather than SI-based methods. The rest
con-figurations of AF-AVG and AF-SGD are as the same as those of the proposed
model.Additionally, four conventional recommendationmethods are selected as baseline
methods:

– User-CF [22]: It calculates the user-user similarity using Pearson correlation.
– ItemKNN [1]: It is a well-known item-based recommendation. We utilized adjusted

cosine similarity and considered all item neighborhoods.
– MF [23]: It is a latent factor model that factorizes user-item matrix into low
dimensional user vectors and item vectors. The dimension of latent factor is set to 16.

– SLIM [24]: It directly learns item-item similarity matrix from the data.

Parameter Settings. The dimension of candidate solution depends on the length of user
historical interactions. In order to reduce the complexity of optimization algorithms, we
set the maximum length of user historical sequence by [100, 80, 60, 40, 20]. Before
the optimization, we randomly initialized the candidate solutions between 0 and 1. The
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lower and upper boundaries of the candidate solutions were set to−2 and 2 respectively,
so that the attentive factors of historical items are relatively balanced after Softmax.
The population size of four SI-based algorithms is set to 50. We searched from extant
literature and found the most employed and recommended values to set parameters of
four SI algorithms. The settings of parameters are shown in Table 2.

Table 2. Parameter settings of four SI algorithms

Swarm Intelligence Algorithms Parameters Value

Particle Swarm Optimization Inertia weight 0.49

Cognitive coefficient 0.72

Social coefficient 0.72

Artificial Bee Colony Abandonment criteria 10

Number of employed bees 50

Number of onlooker bees 50

Bacterial Foraging Optimization Step size (c) 0.1

Swimming length (Ns) 4

Chemotactic steps (Nc) 100

Reproduction steps (Nre) 5

Elimination-dispersal events (Ned ) 2

Elimination-dispersal probability (ped ) 0.25

Firefly Algorithm Mutual attraction 1

light absorption coefficient 1

Initial/final randomization parameter alpha 1/0.1

First/second Gaussian parameter 0/0.1

4.2 Experimental Results

Comparison Between Four SI-Based Algorithms. Figure 3 displays the training loss
of four SI-based methods along with iteration process. AF-PSO is featured by the fast
convergence while it obtains the highest training loss, which may be caused by trapping
into local optimum since all particles move towards the best position and diversity is
undermined. The training loss of AF-ABC, AF-BFO and AF-FA converge to lower
fitness values. As shown in Fig. 4, AF-FA, AF-ABC and AF-BFO also obtain better
testing performance than AF-PSO. Furthermore, the convergence speed of AF-FA is
faster than AF-ABC and AF-BFO. It needs to note that Fig. 3 only provides the fitness
optimization of the first four users, and the training loss for most users shows the similar
trend.
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Fig. 3. Training loss of four SI-based methods at embedding size 16, maximum length 100.

Recommendation Accuracy Performance Comparison. Figure 4 shows the overall
performance of ten algorithms. As we found, firstly, AF-SGD and the four proposed
SI-based methods achieve higher AUC scores than AF-AVG. It confirms the effective-
ness of attentive factors for learning user preferences. Moreover, three SI-based methods
(AF-FA,AF-ABC andAF-BFO) perform better than the conventional optimization algo-
rithm (AF-SGD), evident from the positive effect of swarm intelligence to optimize the
complicated recommendation problem. Furthermore, model-basedmethods (MF, SLIM,
AF-SGD and SEAM) outperform heuristic-based methods (User-CF and ItemKNN).
It reveals that model-based methods are more capable in extracting larger volume of
information from given datasets, so as to alleviate the problem of sparse matrix.

Hyper-parameter Study. When the embedding size is too small, item embedding may
not represent latent information effectively due to the information loss. Further, it would
lead to over fitting with high embedding size. As shown in Table 3, the AUC scores of
all methods rise significantly as the embedding size increases to 16, and then their test
performance has a slight change when embedding size is higher than 16.
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Fig. 4. Testing performance (AUC) of comparison algorithms at embedding size 16, maximum
length 100.

Moreover, longer historical sequence obtains more user interest information, which
complicates the optimization problem at the same time. As shown in Table 4, four SI-
based methods achieve the similar AUC score at any maximum length. It reveals that
four SI-basedmethods are less affected by the length of user historical sequence. Among
four SI based methods, AF-FA achieves the best performance in most cases, except for
the maximum length 40.

Table 3. Testing performance (AUC) with different embedding size at maximum length 100.

Embedding size 4 8 16 32 64

AF-AVG 0.6895 0.7219 0.7266 0.7231 0.6951

AF-SGD 0.7436 0.7800 0.8104 0.8078 0.8115

AF-ABC 0.7551 0.7856 0.8190 0.8193 0.8257

AF-BFO 0.7520 0.7878 0.8175 0.8160 0.8169

AF-PSO 0.7354 0.7731 0.7975 0.7924 0.7781

AF-FA 0.7547 0.7886 0.8209 0.8207 0.8236
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Table 4. Testing performance (AUC)with different maximum historical length at embedding size
16.

Maximum length 20 40 60 80 100

AF-AVG 0.7223 0.7114 0.7179 0.7220 0.7266

AF-SGD 0.7997 0.7995 0.8059 0.8096 0.8104

AF-ABC 0.8109 0.8153 0.8207 0.8194 0.8190

AF-BFO 0.8120 0.8175 0.8213 0.8190 0.8175

AF-PSO 0.8025 0.7982 0.8018 0.7990 0.7975

AF-FA 0.8127 0.8171 0.8215 0.8206 0.8209

5 Conclusion

In this work, we proposed to integrate swarm intelligence into attentive mechanism in
learning more effective user profile for sequential recommendation. The experimental
results show that four swarm intelligence algorithms (PSO, BFO, AF, ABC) outper-
form average pooling and SGD in searching for optimal attentive factors. Moreover,
optimization-based methods outperform traditional heuristic recommendation methods
(User-CF, ItemKNN,MF, SLIM). Among the four swarm intelligence algorithms, firefly
algorithm has relatively faster convergence speed and better global search ability to opti-
mize the recommendation problem. This study provides theoretical insights in swarm
intelligence based sequential recommendation.
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Abstract. Multi-objective optimization is one of the most impor-
tant problem in the mathematical optimization. Some researchers have
already proposed several multi-objective fireworks algorithms, of which
S-metric based multi-objective fireworks algorithm (S-MOFWA) is the
most representative work. S-MOFWA takes the hypervolume as the eval-
uation criterion of external archive updating, which is easy to implement
but ignores the landscape information of the population. In this paper, a
novel multi-objective fireworks algorithm named non-dominated sorting
based fireworks algorithm (NSFWA) is proposed. The proposed algo-
rithm updates the external archive with the selection operator based on
the fast non-dominated sorting approach, which is specially designed for
the spark generation characteristic of FWA to improve the diversity. A
multi-objective guided mutation operator is also designed to enhance the
efficiency of population information utilization and improve the search
capability of the algorithm. Experimental results on the benchmarks
demonstrate that NSFWA outperforms other multi-objective swarm
intelligence algorithms of S-MOFWA, NSGA-II and SPEA2.

Keywords: Fireworks algorithm · Multi-objective optimization ·
Swarm intelligence · Non-dominated sorting based fireworks algorithm

1 Introduction

Fireworks algorithm (FWA) proposed by Tan et al. in 2010 is a novel swarm intel-
ligence algorithm [14]. FWA has a double-layer structure, in which the higher
layer is the global coordination between the firework populations and the lower
one is the local search of a certain population. This hierarchical structure ensures
that FWA can solve kinds of optimization problems with different landscape and
shows a significant performance on the single-objective optimization problem. In
recent years, guided fireworks algorithm (GFWA) [9], loser-out tournament fire-
works algorithm (LoTFWA) [7] and other new variants [2,8,10,11,17,18] further
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enhance the performance of FWA from the aspects of global coordination and
local exploitation.

Multi-objective optimization problem (MOP) is a kind of mathematical opti-
mization problem with multiple conflicting objective functions to be optimized
at the same time. Multi-objective optimization algorithm is aimed to find an
optimal solution set composed of Pareto optimal solutions, which covering the
whole Pareto front as completely as possible. Naturally, convergence and diver-
sity are two main measures for MOP. Convergence mainly indicates the distance
between the Pareto front and solutions obtained by the algorithm. And diversity
can be roughly regarded as a ratio of the section covered by the solution set to
the entire Pareto front.

According to the method of solution set updating, multi-objective opti-
mization algorithms could be classified as two mainstream categories. Pareto
dominance based methods such as non-dominated sorting genetic algorithm-
II (NSGA-II) [4] and the improved strength Pareto evolutionary algorithm
(SPEA2) [20] calculate the Pareto dominance between individuals in each iter-
ation and update the solution set accordingly. Hypervolume indicator based
methods like SMS-EMOA [1] use the volume covered by individuals instead of
the Pareto dominance as the criterion to update the solution set.

Some researchers also proposed multi-objective FWA, and one of the most
representative work is S-MOFWA proposed by Liu and Tan [12]. S-MOFWA
adopted the hypervolume based framework and designed a novel external archive
updating methods. The framework reduces the difficulty of multi-objective opti-
mization significantly and makes it possible to inherit mechanisms of single-
objective FWA. However, due to the limitation of the framework, S-MOFWA
also ignores the information of dominated solutions and has a relatively low
information utilization efficiency.

In this paper, a novel multi-objective FWA named non-dominated sorting
based fireworks algorithm is proposed. NSFWA adopts a non-dominated sort-
ing based external archive updating methods as the selection operator, and
extends the idea of GFWA to MOP. In order to accelerate the convergence of
MOFWA without affecting diversity, the multi-objective guided mutation opera-
tor is designed to generate guiding sparks with two different methods according
to certain characteristic of fireworks. The adaptive amplitude mechanism and
mapping rule are also revised.

The remaining parts is organized as follows. Some related works are intro-
duced in Sect. 2. Our proposed algorithm is described in detail and the improved
mutation operator is analyzed in Sect. 3. Then Sect. 4 presents the experimental
results to present the good performance of NSFWA. Section 5 gives the conclu-
sion.

2 Related Works

NSGA-II is one of the most influential multi-objective swarm intelligence algo-
rithm. Swarm intelligence algorithms usually have a large number of populations
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and individuals, and thus it is necessary to calculate the dominance between
individuals efficiently in MOP. Deb et al. proposed a fast non-dominated sort-
ing algorithm in NSGA-II. The algorithm divides the population into several
disjoint fronts {F1, F2, ..., Fm} with the acceptable time complexity, and these
fronts satisfies the dominance relation F1 � F2 � ... � Fm. Then the external
archive or solution set could be updated accordingly. In order to keep the diver-
sity of solutions, NSGA-II also introduced a density indicator named crowding
distance as the other updating criterion. The fast non-dominated sorting algo-
rithm provides efficient evaluation and updating framework for many algorithms.
However, directly applying them on FWA would obtain a solution set with lower
diversity.

Liu et al. adopted another mainstream framework in S-MOFWA. S-MOFWA
update the external archive according to the S-metric which is a kind of hyper-
volumes indicator. Intuitively, S-metric could be regarded as the space that
only dominated by a certain solution in the entire solution set, and the solution
with better S-metric usually locates in the area with lower density and closer
to the Pareto front. Thus, S-metric could unify convergence measure and diver-
sity measure into one indicator, and simplify the framework of multi-objective
swarm intelligence algorithm. Whereas, the calculation method of S-metric in S-
MOFWA is only applicable for the non-dominated solutions, and the S-metrics
of dominated solutions are assigned as 0. This characteristic leads to the lost of
population information and reduce the information utilization efficiency.

Based on the previous works, this paper redesigns the operators in FWA,
and proposes a Non-dominated Sorting Based Fireworks Algorithm with higher
information utilization ratio.

3 Non-dominated Sorting Based Fireworks Algorithm

3.1 Framework

NSFWA is mainly composed of explosion operator, non-dominated sorting based
selection operator, multi-objective guided mutation operator, mapping rule and
adaptive explosion amplitude mechanism, and its principle to improve the con-
vergence and diversity of the algorithm with the population information.

Initialization. The initialization of NSFWA is same as the single-objective
FWA. NSFWA generates N fireworks randomly in the decision space D:

xi = (xi1, xi2, ..., xin), i = 1, 2, ..., N, (1)

where n is the dimension of decision space.

Explosion Operator. The explosion operator of NSFWA also follows the
single-objective FWA and randomly generates a certain number of explosion
sparks in the hyperspace with firework xi as the center and explosion amplitude
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Ai as the radius. If the generated explosion spark is out of the bound, it would
be remapped into the feasible region according to a certain rule. The mapping
rule used in NSFWA is the midpoint mapping, and it would be introduced in
the following section.

Mapping Rule. Traditional mapping rule is random mapping, that is, if some
dimensions of the spark is out of the bound, the values of the corresponding
dimensions would be randomly generated again until the spark is completely
within the feasible region. The explosion amplitude is usually decreased during
the search process, thus, FWA is tend to have a poor performance on the problem
that the global optimum locates near the bound. And the random mapping
would exacerbate the problem sometimes. Shown as the Algorithm 1, midpoint
mapping rule would reset the dimension that out of the bound as the midpoint
of the bound and firework.

Algorithm 1. Midpoint Mapping Rule
Input: Firework xij , explosion spark sij , upper bound ub, lower bound lb
Output: Explosion spark sij

1: for k = 1 to n do
2: if s

(k)
ij > ub then

3: s
(k)
ij ← 1

2
(x

(k)
ij + ub)

4: end if
5: if s

(k)
ij < lb then

6: s
(k)
ij ← 1

2
(x

(k)
ij + lb)

7: end if
8: end for
9: return explosion spark sij

Compared with other mapping rules, midpoint mapping could help the pop-
ulation find the optimum near the bound of feasible region, and ensure that
population also has the ability to escape from the bound.

Selection Operator. Non-dominated sorting based selection operator is used
to update the external archive and select new fireworks. In NSFWA, fireworks,
explosion sparks and the individuals in the external archive compose the can-
didate pool, and the selection operator would select NR individuals from the
candidate pool in to the external archive of the next generation, where the top
N individuals would be identified as the new fireworks. Concretely, the operator
divides the candidate pool C into several disjoint fronts {F1, F2, ..., Fm} accord-
ing to the fast non-dominated sorting algorithm proposed by Deb, and these
fronts satisfied the definition and dominance listed as the following:

Fk = {x|nx = k,x ∈ C}, (2)
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F1 � F2 � ... � Fm, (3)

where nx is the number of individuals that dominate x. Then, the candidate
solutions would be put into the external archive from front F1 successively, until a
certain front Fk cannot be entirely put in. In order to determine which candidate
solutions in Fk are supposed to be put into archive, NSGA-II introduces the
crowding distance as the indicator. For solution xm in front Fk, its crowding
distance can be defined as the following:

D(xm) =
r∑

i=1

|fi(xm+1) − fi(xm−1)|, (4)

where xm−1 and xm+1 are the neighbors of xm, and r is the number of objective
function. Fig. 1 shows the calculation of the crowding distance.

Fig. 1. The calculation of crowding distance.

The solutions with larger crowding distance tend to locate in a low density
area, and would be selected into the archive. As mentioned above, explosion
sparks are generated in a specific hyperspace centered on fireworks, which means
that the diversity of the entire solution group is highly related to the density
of fireworks’ location. Therefore, NSFWA not only sorts the front Pk but also
the first front P1 to ensure diversity of fireworks. The entire process of selection
operator is shown as the Algorithm 2.

Adaptive Amplitude Mechanism. Explosion amplitude is one the decisive
factors of the global exploration and local exploitation. In NSFWA, amplitude
is adjusted adaptively according to the dominance relation between the current
fireworks and the previous fireworks in each generation. The parameter setting
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Algorithm 2. Selection Operator
Input: Fireworks Xt = {x1,x2, ...xN}, sparks St = {S1,t, S2,t, ..., SN,t}, external

archive Rt, size of archive NR

Output: external archive Rt+1, fireworks Xt+1, sorted candidate pool Csorted,t

1: Calculate the fitness values of Xt and St

2: Generate Ct = {Xt ∪ St ∪ Rt}
3: Sort the candidate pool P = FastNonDominatedSorting(Ct), P = {P1, P2, ..., Pm}
4: Declare the external archive Rt+1 = ∅ and the counter i = 1
5: while |Rt+1| + |Pi| ≤ NR do
6: if i=1 then
7: Calculate the crowding distance Di of individuals in front Pi

8: Sort the individuals in Pi by the descending order of crowding distance
9: end if

10: Rt+1 = Rt+1 ∪ Pi

11: i = i + 1
12: end while
13: Calculate the crowding distance Di of individuals in front Pi

14: Sort the individuals in Pi by the descending order of crowding distance
15: Rt+1 = Rt+1 ∪ Pi[1 : NR − |Rt+1|]
16: Xt+1 = Rt+1[1 : N ]
17: Csorted,t = P1 ∪ P2 ∪ ... ∪ Pm

18: return Rt+1, Xt+1, Csorted,t

of the mechanism refers to the one-fifth success rule proposed by Schumer and
Steiglitz [13], and adopt a simple implementation of it [6]:

Ai,t+1 = Ai,t ·
{

α if xi,t+1 � xi,t and Ai,t · α ≤ ub − lb

α− 1
4 if xi,t+1 � xi,t and Ai,t · α ≥ β · (ub − lb),

(5)

where α is a hyper parameter controlling the change rate of amplitude, and
β is a hyper parameter used to set the minimum of amplitude. In the early
phase of search, there is a relatively high probability for population to find
a better solution, and the amplitude tends to increase. On the contrary, it is
more difficult for the population to make progress, and the amplitude tends to
decrease. Therefore, the amplitude usually changes from large to small, which
means that the population is encouraged to explore globally in the early phase
and exploit a certain local area in the later.

Mutation Operator. In order to further enhance the local search capability
of the algorithm by using the population information, NSFWA designs a novel
operator named multi-objective guided mutation operator. Different from the
single-objective FWA, the guided mutation operator in MOP must be executed
after the selection operator obtaining the fitness information of populations.
The main idea of the mutation operator is to calculate the difference between
solutions and the solutions dominated by them, and add the difference on the
location of fireworks to generate the mutation sparks. These mutation sparks
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usually has a better fitness compared with the fireworks. The entire process is
shown as the Algorithm 3.

Algorithm 3. Multi-objective Guided Mutation Operator
Input: Firework xi,t+1, sorted candidate pool Csorted,t = {c1, c2, ..., c|C|}, group ratio

σ, group size μ
Output: Guided mutation spark gi,t+1

1: if Firework xi,t+1 is not from the external archive then
2: Extract the population of xi from Csorted,t and keep the relative order
3: Calculate the guiding vector Δi = 1

σλi
(
∑σλi

j=1 sij − ∑λi
j=λi−σλi+1 sij)

4: end if
5: if Firework xi is from the external archive then
6: Δi = 1

μ
(
∑μ

j=1 crand(0,σ|C|) − ∑μ
j=1 crand(σ|C|−μ+1,σ|C|))

7: end if
8: Generate the explosion spark gi = xi + Δi

9: return gi

To accelerate the convergence, the mutation operator directly use new fire-
work selected by the selection operator to calculate the guiding spark (GS).
However, the firework might come from the external archive and have already
lost its population, thus the mutation calculate the guiding vector (GV) with
two different methods:

1. If the firework xi,t+1 is not from the external archive: the firework have its
own population in the candidate pool, and the population is already sorted
after the selection operator. The guiding vector would be calculated as the
difference between the centroid of the top σλi sparks and the bottom σλi

sparks in the population.
2. If the firework xi,t+1 is from external archive: the operator calculate the

difference between two groups that formed by μ solutions in the top σ|C|
solutions and μ solutions in the bottom σ|C| solutions respectively to generate
the guiding vector. Here, the μ solutions in two groups are selected randomly,
so as to avoid that fireworks share a same guiding vector and affect the
diversity of the final solution set.

Guiding sparks would be put into the external archive and participate the
selection in the next generation, but not replace fireworks directly.

The framework of the Non-dominated Sorting Based Fireworks Algorithm is
shown as the Algorithm 4.

3.2 Principle and Analysis

Analysis of Multi-objective Guided Mutation Operator. The main pur-
pose of multi-objective guided muation opeartor is to improve the search capa-
bility of NSFWA without affecting the diversity of the solution set.
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Algorithm 4. Non-dominated Sorting Based Fireworks Algorithm
Input: upper bound ub, lower bound lb, number of fireworkN , number of spark λ,

external archive size NR, group ratio σ, group size μ, explosion amplitude A, change
rate α, minimum parameter β

Output: Optimal solution set
1: Initialize N fireworks in the decision space D bounded by lb and ub
2: Declare the external archive R = {X1} and generation counter t = 1
3: while termination condition not met do
4: Generate explosion sparks St = ExplosionOperator(Xt, At, λt)
5: Update external archive, candidate pool and fireworks Rt+1, Csorted,t, Xt+1 =

SelectionOperator(Xt, St, Rt)
6: Adjust explosion amplitude At+1 = AdaptiveAmplitude(Xt, Xt+1, At, α, β)
7: Generate mutation sparks Gt = MultiObjectiveMutationOperator(Xt, Csorted,t,

σ, μ)
8: Update external archive Rt+1 = Rt+1 ∪ Gt

9: t = t + 1
10: end while
11: return {Rt\Gt−1}

Different with the single-objective optimization, the multi-objective opti-
mization algorithm searches for a entire Pareto front composed of several Pareto
optimums rather than a certain global optimum. Therefore, all directions that
make the new individual generated on the direction better than the original fire-
works are acceptable related directions. The following visualization will explain
why the guiding spark could guide the population to search along the relevant
direction.

Suppose the optimization problem is ZDT1 test function, which includes two
convex objective functions. Set the dimension of decision vector as 30, and the
Pareto optimal solutions of ZDT1 is 0 on all dimensions except x1. The objective
functions could be visualized on the first two dimensions as the Fig. 2a, where
the pink segment is the projection of Pareto front on the objective function. And
the guiding vector could be approximately decomposed as the weighted sum of
negative gradients of two objective functions (See Fig. 2b–Fig. 2d):

Δ = w1∇1 + w2∇2, w1 ≤ 0 and w2 ≤ 0, (6)

where ∇1 and ∇2 are gradients.
Thus, guiding spark is likely to obtain a better fitness value on at least

one objective function compared with the firework, which means these non-
dominated elite individuals might be selected as the firework in the next gen-
eration. Guided by the elite individuals, populations could approach the Pareto
front stably and the search ability of NSFWA are also enhanced.

Selection of Parameters. Now, suppose there are two fireworks that selected
from the external archive and locate in a same region. If they share a same
guiding vector, then their population is tend to move towards a same region
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(a) Visualization of ZDT1 (b) Contour of func1

(c) Contour of func2 (d) Decomposition of GV

Fig. 2. Principle of multi-objective guided mutation function.

of the Pareto front, and this would be harmful for the diversity. The random
mechanism is introduced to alleviate the problem. Generally speaking, the larger
group ratio σ and smaller group size μ means stronger randomness, and the
diversity of the solution set could be better. On the contrary, the convergence
could be accelerated but the diversity might be weakened. The analysis above
could be a basis for selection of parameters.

4 Experiments

To illustrate the performance of NSFWA, experiments on several test functions
were conducted, and S-MOFWA, NSGA-II, SPEA2 and RVEA [3] are selected
as baselines. Besides, the ablation experiments were also conducted to verify the
effectiveness of operators and mechanisms in NSFWA.
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4.1 Experimental Setup

The test functions in this paper include Schaffer’s problem (SCH) [16], Kursawe’s
problem(KUR) [16] and ZDT test functions [19].

For NSFWA, the number of firework N = 10, the total number of explosion
spark λ = 100, the size of external archive NR = 100, amplitude change rate
α = 1.2, minimum parameter β = 0.2. The group ratio σ and group size μ are
set as 0.3 and 10 respectively for all benchmarks except ZDT2. σ and μ are
set as 0.5 and 5 for ZDT2. For S-MOFWA, parameters are set as [12]. And
other baseline algorithms refer to platform Geatpy [5]. The platform is Ubuntu
18.04 with Intel(R) Xeon(R) CPU E5-2675 v3. Each test function runs 20 times
repeatedly with the maximal evaluation number of 200000.

4.2 Experimental Criterion

Generational distance (GD) [15] and hypervolume (HV) are adopted as the cri-
teria to evaluate the diversity and convergence respectively in this paper.

Generational Distance. Generational distance can be regarded as the average
of the minimal distance between solutions obtained and the theoretical Pareto
front in objective space:

GD =

√∑n
i=1 d2i
n

, (7)

where di is the minimal distance between individual i and the theoretical front,
and n is the size of solution set. 500 solutions are generated uniformly on the
theoretical front of each test function as the reference for calculating GD except
KUR problem. (100 solutions selected for KUR.)

Hypervolume. Hypervolume is one of the most applied criterion of MOP. HV is
the volume of the objective space that covered by optimal solution set obtained:

S(M) = Λ(∪n
i=1{x|xi � x � xref}), (8)

where Λ represents Lebesgue measure, and xref is a reference point that domi-
nated by all solutions. Actually, HV can not only evaluate the diversity but also
the convergence. The reference point selected for SCH, KUR and ZDT1-6 are
(4, 4), (−14, 1), and (1, 1) respectively.

4.3 Experimental Results

Ablation Experiments. To verify the effectiveness of the selection operator,
mutation operator and mapping rule proposed in this paper, ablation experi-
ments take the following algorithm as comparison: (i) NSFWA - CD: NSFWA
without crowding distance sorting of firework in selection operator, (ii) NSFWA -
GS: NSFWA without multi-objective guided mutation operator and (iii) NSFWA
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Table 1. Generational distance of ablation experiments.

NSFWA NSFWA - CD NSFWA - GS NSFWA + RM

Func. Mean Std Mean Std Mean Std Mean Std

SCH 3.27E−03 3.45E−04 3.17E−03 1.74E−04 3.16E−03 2.88E−04 3.29E−03 1.10E−04

KUR 5.10E−02 2.91E−03 5.04E−02 1.39E−03 5.46E−02 2.45E−03 5.02E−02 1.84E−03

ZDT1 1.10E−03 3.69E−05 1.21E−03 1.15E−04 8.22E−02 3.49E−03 8.10E−01 2.88E−02

ZDT2 8.03E−04 3.42E−05 7.84E−04 5.88E−05 1.41E−01 4.27E−03 1.44E−01 2.24E−03

ZDT3 1.07E−03 8.82E−05 1.19E−03 5.21E−05 4.72E−02 6.99E−04 8.25E−01 3.15E−02

ZDT6 5.92E−04 2.32E−05 7.43E−03 7.41E−04 1.24E+00 3.54E−01 1.48E+00 1.61E−01

Table 2. Hypervolume of ablation experiments.

NSFWA NSFWA - CD NSFWA - GS NSFWA + RM

Func Mean Std Mean Std Mean Std Mean Std

SCH 1.33E+01 3.79E−05 1.45E+01 3.30E−03 1.32E+01 2.98E−03 1.32E+01 1.44E−03

KUR 3.68E+01 4.03E−02 3.66E+01 5.47E−02 3.65E+01 4.31E−02 3.68E+01 7.69E−02

ZDT1 6.61E−01 3.24E−05 6.59E−01 1.83E−04 5.48E−01 4.51E−03 1.23E−01 2.78E−02

ZDT2 3.28E−01 1.18E−04 3.26E−01 9.61E−05 1.68E−01 2.81E−03 1.67E−01 2.67E−03

ZDT3 1.04E+00 9.71E−06 1.04E+00 6.22E−05 8.91E−01 8.67E−03 3.51E−01 3.80E−02

ZDT6 3.21E−01 7.93E−04 3.18E−01 3.30E−03 2.20E−01 9.79E−02 1.81E−01 9.97E−02

+ RM: NSFWA using random mapping rule. The experimental results are shown
as Table 1 and Table 2.

Complete NSFWA wins a better HV than NSFWA without crowding distance
sorting, and it could be seen that sorting fireworks in selection operator could
improve the diversity. The better GD indicates that guided mutation operator
improves the search capability of NSFWA significantly. And the HV curve (See
Fig. 3) also proves that the mutation operator could accelerate the convergence
of NSFWA. NSFWA using midpoint mapping outperforms NSFWA using ran-
dom mapping obviously on ZDT test functions. It is worthy noting that most
of optimal solutions of ZDT locate near the lower bound, which means that
midpoint mapping improve the performance of FWA on the kind of problem.

Comparison with Other Algorithms. Table 3 and Table 4 gives the results
of NSFWA and other algorithms. The average rank of GD of NSFWA is 1.83
and the average rank of HV is 1.50, which is the best compared with other
algorithms. The difference between the average rank of GD and HV indicates
that NSFWA performs better on the diversity and could obtain a solution set
covering larger target space.

Among the benchmarks, SCH and ZDT1 have convex Pareto fronts. The
means and standard deviations on these two problems show that NSFWA has a
stable and good performance on problem with a convex front. KUR and ZDT2
has non-convex Pareto fronts. The performance of NSFWA is slightly worse than
S-MOFWA and NSGA-II on KUR, but better on ZDT2. As mentioned above,
the setting of group ratio σ and group size μ for ZDT2 is different with other
problems. It is inferred that populations is easily to be trapped in a certain part
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(a) SCH (b) KUR (c) ZDT1

(d) ZDT2 (e) ZDT3 (f) ZDT6

Fig. 3. Hypervolume curve of ablation experiments.

of global optimum in the test of ZDT2, and thus there is a need of stronger
randomness to help populations get rid of the area. The Pareto front of ZDT3
is composed of several non-contiguous convex parts, which also requires better
diversity of population, and NSFWA outperforms other algorithms on both GD
and HV. The decision space and Pareto front of ZDT6 is non-uniform. The
density of individuals is gradually lower when they locate closer to the Pareto
front. NSFWA ranked second on both GD and HV with a small gap from the
best. Generally speaking, the results indicate that NSFWA performs well on
kinds of functions with different characteristics of Pareto front. The solution set
obtained by NSFWA is visualized as Fig. 4.

Table 3. Generational distance of NSFWA and other algorithms.

NSFWA S-MOFWA NSGA-II SPEA2 RVEA

Func. Mean Std Mean Std Mean Std Mean Std Mean Std

SCH 3.27E−03 3.45E−04 3.32E−03 9.62E−05 3.33E−03 7.82E−05 4.16E−03 4.27E−04 3.03E−03 1.83E−04

KUR 5.10E−02 2.91E−03 3.57E−02 1.83E−03 3.77E−02 3.06E−03 6.84E−01 1.12E−03 4.05E−02 8.25E−03

ZDT1 1.10E−03 3.69E−05 1.47E−03 4.37E−05 1.41E−03 8.55E−05 1.69E−03 1.90E−04 1.76E−03 3.48E−04

ZDT2 8.03E−04 3.42E−05 1.17E−03 6.22E−05 1.06E−03 1.54E−04 1.04E−03 1.14E−05 1.21E−03 2.06E−04

ZDT3 1.07E−03 8.82E−05 4.01E−03 1.88E−03 1.09E−03 6.96E−05 1.96E−01 1.95E−01 1.64E−03 1.15E−04

ZDT6 5.92E−04 2.32E−05 5.66E−04 1.83E−05 6.30E−04 9.65E−05 1.09E−01 6.87E−02 6.44E−04 1.86E−05

AR 1.83 2.50 2.67 2.33 2.67 2.83 4.33 3.50 3.50 3.83
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Table 4. Hypervolume of NSFWA and other algorithms.

NSFWA S-MOFWA NSGA-II SPEA2 RVEA

Func. Mean Std Mean Std Mean Std Mean Std Mean Std

SCH 1.33E+01 3.79E−05 1.32E+ 01 7.62E−03 1.33E + 01 1.21E−03 1.30E+ 01 7.52E−02 1.32E + 01 3.09E−03

KUR 3.68E+ 01 4.03E−02 3.71E+01 9.02E−02 3.70E + 01 1.20E−02 2.84E+ 01 2.92E−02 3.66E + 01 1.31E−01

ZDT1 6.61E−01 3.24E−05 6.54E−01 1.03E−04 6.60E−01 2.77E−04 6.52E−01 2.23E−03 6.60E−01 4.84E−04

ZDT2 3.28E−01 1.18E−04 3.27E−01 4.00E−04 3.27E−01 2.24E−04 3.20E−01 2.62E−03 3.27E−01 4.09E−04

ZDT3 1.04E+00 9.71E−06 1.04E+ 00 3.20E−04 1.04E + 00 1.44E−04 6.74E−01 3.58E−01 1.04E + 00 3.76E−04

ZDT6 3.21E−01 7.93E−04 3.20E−01 5.32E−04 3.21E−01 3.26E−04 3.13E−01 3.43E−03 3.22E−01 5.26E−05

AR 1.50 1.83 2.50 3.16 2.67 2.00 5.00 4.50 3.33 3.50

(a) SCH (b) KUR (c) ZDT1

(d) ZDT2 (e) ZDT3 (f) ZDT6

Fig. 4. Solution set obtained by NSFWA.

5 Conclusion

In this paper, a novel multi-objective FWA named non-dominated sorting based
fireworks algorithm is proposed. Non-dominated sorting based selection operator
updates the external archive and selects fireworks according to the dominance
relation and density to improve the diversity of solution set. Then, a multi-
objective guided mutation operator is used to generate elite individuals for each
populations to accelerate the convergence and enhance the stability. In order to
further boost the performance of NSFWA on the problem that optimums locate
near the bound, a novel mapping rule named midpoint mapping was proposed.
Experiments on several test functions with different properties indicate that
NSFWA has good performance on kinds of multi-optimization problems.
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Abstract. Most of the existing multi-objective optimization algorithms
try to evenly distribute all solutions in the objective space. But for the
irregular Pareto front(PF ), it is difficult to find the real PF . Aiming
at the multi-objective optimization problem with complex PF , a multi-
objective evolutionary algorithm for adaptive fitting dominant hyper-
plane (MOEA DH) is developed. Before each iteration, non-dominated
sorting is applied on all candidate solutions. Solutions in the first front
are used to fit a hyperplane in the objective space, which is called the
current dominant hyperplane(DH). DH reflects the evolution trend of
the current generation of non-dominanted solutions and guides the rapid
convergence of dominanted solutions. A new partial ordering relation
determined by front number and crowding distance on DH is set. When
solving CF benchmark problems from multi-objective optimization in
IEEE Congress on Evolutionary Computation 2019, the experiments val-
idate our advantages to get the PF with better convergence and diversity.

Keywords: Multi-objective optimization · Evolutionary algorithm ·
Dominant hyperplane · Crowding distance

1 Introduction

The problems that the number of optimization objectives is greater than or equal
to 2 and the objectives conflict with each other is called multi-objective opti-
mization problems (MOPs) [10]. Mops widely appear in practical problems of
industry and engineering, such as wireless sensor network [8,9],data mining [1,2]
and resource allocation [6,11]. The balance between diversity and convergence
[7] of MOPs is a problem that many scholars are committed to solving. More
and more multi-objective evolutionary algorithms (MOEA) have been proposed
to solve MOPs. These algorithms can be roughly divided into the Pareto domi-
nance based MOEA, the decomposition based MOEA and the indicator based
MOEA.

The Pareto dominance based MOEA has the advantages of simple prin-
ciple and few parameters. Pareto dominance based mechanisms are used to
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select candidate solutions. A fast non-dominated sorting algorithm is proposed in
NSGA−II [5] to ensure the diversity of population with crowding distance. The
non dominanted sorting genetic algorithm III (NSGA − III) [4] introduces the
reference points to retain the population individuals which are non-dominated
and close to the reference points. However, it generates uniform reference points
in the objective space. It is hard to get a complex PF .

The decomposition based MOEA divides the traditional mop into several sin-
gle objective optimization subproblems, which are solved by using the informa-
tion between subproblems. For example: Multiobjective EA based on decomposi-
tion (MOEA/D) [14], but this kind of method can not guarantee to completely
generate a set of uniformly distributed solution sets. RV EA [3] is an algorithm
with a reference vector to guide the population evolutionary. The reference vec-
tor can not only be used to decompose the original multi-objective optimization
problem into multiple single objective subproblems, but also clarify user prefer-
ences, aiming at the preferred subset of the whole PF . A scalarization method
called angle penalty distance is used to balance the convergence and diversity
of solutions. And the distribution of reference vector is dynamically adjusted
according to the scale of objective function.

The indicator based MOEA is mainly used to test the performance of
solutions based on indicators and select high-quality solutions,such as indi-
cator based EA (IBEA) [15]. Also a grid based multi-objective optimization
algorithm(GrEA) [12] is proposed, which needs to complex parameters. A novel
preference based dominion relation for evolutionary multiobjective (ARMOEA)
[13] proposes a method based on an enhanced inverted general distance indica-
tor, in which an adaptation method is proposed to adjust a group of reference
points according to the index contribution of candidate solutions in external
files. However, in some situations, such methods need to spend a lot of time to
calculate the value of performance indicators.

Although the above algorithms show good results in MOPs, different kinds
of algorithms have certain defects. Through the comparative analysis of the three
types of algorithms and taking their advantages, we propose a multi-objective
evolutionary algorithm for adaptive fitting the dominant hyperplane. The con-
tributions are as follows:

1) Before each iteration, the solution of the first layer of non dominated ranking
is fitted into the dominant hyperplane in the objective space, which can well
reflect the shape of the real PF .

2) The crowding distance between the points projected to the dominant hyper-
plane is proposed as a new index to screen the last front. Since the solution
before the last front is also projected onto the dominant hyperplane, all pro-
jected points are covered when calculating the congestion distance, and the
truly evenly distributed last front can be selected into the next generation.

3) This paper constructs a new partial order relation. Firstly the front numbers
of individuals are judged, the one with the smallest front number is the best
solution. When the front numbers are the same, the crowding distance of the
projected points on the dominant hyperplane is considered. The one with
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largest crowding distance is the best solution. The order relation speeds up
the convergence speed of the algorithm under the condition of ensuring the
diversity of the population.

2 Related Work

2.1 Multi Objective Optimization Problems (MOPs)

Usually two or more conflicting objectives are optimized at the same time. The
mathematical definition of MOPs is as Eq. 1:

min
x

F (x) = (f1 (x) , ..., fm (x)) , s.t. x ∈ X, (1)

where X = (x1, x2, ..., xn) is the decision vector. X is the decision space. M
is the number of objective problems, and F is the objective vector. Generally
speaking, no optimal solution can optimize all objectives at the same time. In
order to balance multiple objectives, a set of optimal solutions can be obtained,
which is called Pareto optimal solution. In most cases, Pareto optimal solution
is also called Pareto set (PS) in decision space, and its corresponding objective
vector is called Pareto front (PF ).

2.2 The Coordinate of an Arbitrary Point Projected
to a Hyperplane

An n-dimensional hyperplane H can be represented by Eq. 2:

λ0 + λ1 · x1 + λ2 · x2 + ... + λn · xn = 0. (2)

A point xa = (xa1, ..., xan) in n-dimensional space is projected onto H, and its
projected coordinate is xp = (xp1, ...xpn), because the line xaxp is perpendic-
ular to H,the following relationship can be obtained according to the vertical
constraints:

(xp1 − xa1)
λ1

=
(xp2 − xa2)

λ2
= ... =

(xpn − xan)
λn

. (3)

By solving the Eq. 2 and Eq. 3, we can get Eq. 4

xpi =((λ0 + λ2
1 + ... + λ2

i−1 + λ2
i+1 + ... + λ2

n) · xai − λi(λ0 + λ1xa1 + ...

+ λi−1xa−1 + λixa + 1 + ... + λnxan))/
(
λ2

1 + ... + λ2
n

)
.

(4)

3 Multi-objective Evolutionary Algorithm with Adaptive
Fitting Dominant Hyperplane

3.1 Algorithm Flow

The overall process is shown in Algorithm 1. Mating selection generates mating
pool. Genetic algorithm(GA) generates the offspring. Environment selection is
to get the population into the next generation.
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Algorithm 1. MOEA DH
Require: N : the population size; M : the number of objectives; Tmax: the maximum number of

iterations
Ensure: the final population;
1: Initialize the population
2: while t < Tmax do
3: MatingPool = MatingSelection(FrontNo,crowding distance)
4: Offspring = GA(Population(MatingPool))
5: [FrontNo,dist,Population]=EnvironmentSelection([Population,Offspring])
6: t = t + 1
7: end while
8: return Population

MatingSelection is shown in Algorithm 2. We randomly selects K solutions
after non-dominated sorting, setting front number as the first index. If there
are more than two solutions with the smallest front number, CD is token as
the second index. And the solution with the largest CD enters the mating pool.
Similar to the tournament selection algorithm of NSGAII, the difference is
that our algorithm takes the distance between the points projected onto the
DH as CD. Since all solutions are projected onto the same DH, individuals
with different front numbers will squeeze each other, which further ensures the
diversity of the population.

Algorithm 2. MatingSelection
Require: k:number of randomly selected points;FrontNo:the numbers of non-dominated sorting

FrontNo,CD:crowding distance
Ensure: MatingPool
1: MatingPool = Empty
2: Pop k = Select k individuals randomly
3: while size(MatingPool)¡N do
4: Best index = min(FrontNo of Pop k)
5: if there are more than 2 Best indexes then
6: Best index = max(crowding dist of Pop k)
7: end if
8: MatingPool = MatingPool ∪ Best index
9: end while
10: return MatingPool

Environment Selection is shown in Algorithm 3. First, all individuals includ-
ing parents and offspring are non-dominated sorted to find the last front F (C).
Then individuals of the first front are picked, and fit it as DH. All solutions
are projected to DH. We calculate the distance between the projected points.
Finally, the points with the smallest CD are removed until the number of remain-
ing individuals equals to N .

For the calculation of CD in Algorithm 4, all individuals are projected to the
DH. Except for the edge points, the sum of the distances of each point to the
nearest two points is the crowding distance. The crowding distance of the edge
points is ∞, so as to ensure that the edge points can enter the next generation.
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Algorithm 3. EnvironmentSelection
Require: Population;Offspring;M
Ensure: FrontNo;CD;Population
1: Pop temp = Population ∪ Offspring
2: Normalize the Pop temp
3: FrontNo=NDsort(Pop temp)
4: i = 1
5: Pop F(i)=Pop temp(FrontNo=i)
6: while size of Pop F(i) ¡ M do
7: i = i+1
8: end while
9: Dominant Hyperplane(DH) = Linear fit a hyperplane with Pop F(i)
10: Find the critical layer F(C),m satisfies length(F(1)+F(2)+...+F(C-1))¡ N and

length(F(1)+F(2)+...+F(C)) ¡ N
11: Pop temp = Pop temp(F(1),F(1),F(2),...,F(C))
12: CD=Calculate the crowding distance on DH
13: while length(F (1) + F (2) + ... + F (C)) > N do
14: Remove the individual with min(CD) from Pop temp(F (C))
15: end while
16: return Pop temp
17: MatingPool =
18: Popk = Select k individuals randomly
19: while size(MatingPool)¡N do
20: Best index = min(FrontNo of Popk)
21: if there are two Best indexes then
22: Best index = max(crowding distitance of Pop k)
23: end if
24: MatingPool = MatingPool ∪ Bestindex
25: end while
26: return MatingPool

Algorithm 4. Calculate the crowding distance on DH
Require: Pop temp
Ensure: CD
1: Pop temp = Population ∪ offspring
2: Pop Projection = Project Pop temp onto DH
3: Calculate the distance between each other
4: for i = 1 → N do
5: CD(j) = min(distance(j) + secondmin(distance(j))
6: end for
7: for j = 1 → M do
8: sorted num=sort(Pop Projection(i))
9: CD(Sorted num = 1) = CD(Sorted num = N) = ∞
10: end for
11: return CD

3.2 Computational Complexity

To select N parent solutions for offspring generation, the MatingSelection of
Algorithm requires a time complexity of O(Nlogk). k is the number of randomly
selected solutions each time and N is the population size. The non-dominated
sorting requires a time complexity O(NlogN). The time complexity of fitting
hyperplane is related to the number of samples S, and S is usually small. There-
fore, the least square method is used to fit hyperplane. The time complexity is O
(SM2). M is the number of objectives. And the time complexity of projecting to
DH is 0(N). The calculation of CD in Algorithm 2 requires a time complexity
of O(N2 + MNlogN). GA operation for the population requires a time com-



Multi-objective Evolutionary Algorithm with Adaptive Fitting Dominant 477

plexity of O(MN). Because SM2 << N2, the time complexity of MOEA DH
is O(TN2), where T is the maximum number of generations.

4 Experiment

4.1 Experimental Settings

The test problems were CF1 − 7 benchmark problems of IEEE CEC 2019.
The experimental platform adopts MATLAB 2016b PlatEMO. The comparison
algorithms are ARMOEA,GrEA,MOEAD,RV EA,NSGAIII. All algorithms
adopt the population size N = 100, the maximum number of generations Tmax

= 10000. α and fr of RV EA were set as 2 and 0.1. The computation was con-
ducted on a personal computer with an Intel Core i7-3770, 3.40 GHz CPU, 8 GB
RAM.

4.2 Comparison with 5 Algorithms on IGD

Inverted Generational Distance (IGD) is a comprehensive performance evalu-
ation index. The performance of the algorithm is evaluated by calculating the
minimum distance between the individual and the real set. The smaller the value,
the better the comprehensive performance of the algorithm, including conver-
gence and distribution performance.

IGD (P,Q) =
ΣvεP d (v,Q)

|P | , (5)

where P is the point set evenly distributed on the real PF, and —P— is the
number of individuals in the point set distributed on the real PF. Q is the
Pareto optimal solution set obtained by the algorithm. D(v,Q) is the minimum
Euclidean distance from individual v to population Q in P . Therefore, IGD
evaluates the comprehensive performance of the algorithm by calculating the
average value of the minimum distance from the point set on the real PF to the
obtained population. From the above formula, it can be seen that when the con-
vergence performance of the algorithm is relatively good, D(v,Q) is relatively
small, so the convergence performance of the algorithm can be evaluated. How-
ever, when the distribution performance of the algorithm is very poor and most
individuals in the population are concentrated in a narrow area, it can be seen
from the formula that theD(v,Q) of many individuals will be very large, so we
can evaluate the distribution performance of the algorithm. Table 1 shows the
minimum value of IGD obtained by each algorithm running 20 times indepen-
dently. CF2 − 7 on MOEA DH are the best, which shows that MOEA DH
has good convergency and diversity.
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Table 1. .

Problem MOEA DH ARMOEA GrEA MOEAD RVEA NSGAIII

CF1 8.84E−02 7.56E−02 4.43E−01 2.61E−01 1.61E−01 8.64E−02

CF2 4.73E−02 5.46E−02 5.57E−02 4.67E−01 8.01E−02 7.15E−02

CF3 3.60E−01 3.75E−01 3.71E−01 5.53E−01 4.85E−01 4.51E−01

CF4 1.01E−01 1.76E−01 1.06E−01 6.38E−01 1.59E−01 1.45E−01

CF5 2.40E−01 4.63E−01 4.24E−01 6.20E−01 4.52E−01 2.45E−01

CF6 1.16E−01 2.79E−01 1.33E−01 3.38E−01 1.17E−01 1.43E−01

CF7 2.49E−01 3.00E−01 3.65E−01 4.06E−01 2.84E−01 2.62E−01

4.3 PF Analysis

Figure 1 and Fig. 2 show PF pf MOEA DH and other 5 algorithms on CF1 and
CF2. The last picture is the real PF . As can be seen from Fig. 1, the real PF of
CF1 is regular and evenly distributed in the objective space. Other algorithms

(a) MOEA DH (b) ARMOEA (c) GrEA

(d) MOEAD (e) RVEA (f) NSGAIII

(g) TruePF

Fig. 1. PF of 6 algorithms and real PF on CF1
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can also find a better PF. While the shape of the real PF in CF2 is irregular
and unevenly distributed in the objective space, so it is difficult for the other 5
algorithms to find the real PF . Only MOEA DH is close to real PF.

(a) MOEA DH (b) ARMOEA (c) GrEA

(d) MOEAD (e) RVEA (f) NSGAIII

(g) TruePF

Fig. 2. PF of 6 algorithms and real PF on CF2

5 Conclusion

For MOPs with complex PF, MOEA DH is proposed. It suggests that the solu-
tion with the smallest front number in each generation be fitted as a dominant
hyperplane. Then all candidate solutions are projected onto the hyperplane, and
the distance between projection points is calculated. The distance from each
point to its nearest point is the crowding distance of the dominant hyperplane of
the point. The crowding distance is used to screen the points in the last front, and
the dominant solution participates in the screening of non dominant solutions.
Then all candidate solutions are projected onto the hyperplane, and the distance
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between projection points is calculated. The results show that MOEA DH has
better IGD on complex PF. There is also more work to do. The time of fitting
Pareto dominant hyperplane is large. We want to judge the change degree of
non-dominated solutions of each generation, including the change of the number
and positions of non-dominated solutions. If the change is small, it may not be
necessary to fit the Pareto dominant hyperplane in each generation, but the basis
for judging the change of non-dominated solutions needs to be further explored.
It is a problem worth studying in the future.
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Abstract. With the high penetration of new energy and electric vehicle (EV)
charging and battery change stations connected to the distribution network, the
negative impact on the power quality such as voltage deviation and voltage fluctu-
ation of distribution network is also enhanced. Therefore, it is necessary to tap the
potential of reactive power regulation of new energy and EVs, reduce the pressure
of reactive power optimization of distribution network and improve its voltage
quality. Firstly, the reactive power regulation model of new energy and charging
and battery change stations will be established, so that the dynamic evaluation
method of reactive power adjustable capacity can be proposed. Then, the three
objectives included distribution network voltage deviation, line loss and static
voltage stability margin will be focused. Finally, a variety of multi-objective algo-
rithms are used to optimize themodel above, and a series of examples are extended
in this paper.

Keywords: Renewable energies · Electric vehicles (EVs) · Reactive power
optimization · Pareto front (PF) · Multi-objective optimization

1 Introduction

With the rapid development of science and technology, people have correctly realized that
new energies have the characteristics of recyclability, cleanliness and infinity. High pen-
etration of new energies connected to the distribution network may have a great impact
on the voltage quality of network nodes and transmission loss [1]. Factors closely related
to voltage in distribution network can be identified as reactive power. Then, how to make
rational use of the reactive power regulation capacity of new energy connected to the
distribution network is the key to alleviate such problems [2]. However, a new problem
that there will be a great uncertainty with new energies due to the natural environment
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impact, such as the hurricane, cloud cover, dust diffusion and so on. Coincidentally, elec-
tric vehicles (EVs) that now are popular in large scale of cities may promote the reactive
power regulation ability of new energies to the distribution network. The phenomenon
of bi-directional transmission of electric energies between EVs and distribution network
is produced after the huge power system and transportation system cross. Specifically,
this is due to the recent introduction of an emerging technology called Vehicle to Grid
(V2G) for EVs. V2G allows EVs to participate in regulating the output curve of the
power grid and trading clean energy power, to realize the benign interaction between
EVs and the power grid [3]. Therefore, to accelerate the transformation of energy struc-
ture and improve the overall reactive power regulation ability of distribution network, the
innovation that applying EVs is proposed to optimize the reactive power of distribution
network.

In sum, the remaining of this paper is given as follows. In Sect. 2, EV is presented
to the distribution network model. Section 3 introduce different algorithms which are
applied on the model and the flow chart of the reactive power optimization. In Sect. 4,
the model mentioned above would be employed to the various nodes systems. Finally,
the work will be concluded in Sect. 5.

2 Reactive Power Optimization Model of PV and EVs Connected
to Distribution Network

2.1 Reactive Power Regulation Model of Wind Power Generator

The presented model of wind turbine in this paper is modified from [4]. The input
mechanical power, Pm, and the injection of active power into the distribution network,
Pg, are related to the wind speed via the Betz equation. The calculation of wind turbine
converting wind speed into mechanical power, Pm, is as follows:

Pm = 1

2
CpρπR2V 3 (1)

where ρ means the air density; R is the radius of the wind turbine; V is the current wind
speed through the wind generators; CP is related to blade tip speed ratio, λ, and pitch
angle, β.

The power injected into the distribution network has some connections to the current
wind speed. Thus, Pg will be presented as the following formula (2):

Pg =

⎧
⎪⎨

⎪⎩

0, vw < vinw or vw > voutw

Pbase
w

vw−vinw
vbasew −vinw

, vinw ≤ vw < vbasew

Pbase
w , vbasew ≤ vw ≤ voutw

(2)

where Pbase
w represents the rated wind generators output; vbasew denotes the rated wind

speed; voutw and vinw mean the maximum and minimumwind speed to start grid connected
power generation, respectively.
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The reactive power output regulation range of wind turbine is directly related to the
reactive power regulation capability of stator side and grid side converters, as shown in
the following formula (3):

{
Qg,max = Qs,max + Qc,max

Qg,min = Qs,min + Qc,min
(3)

where Qg,min and Qg,max mean the lower and upper limits of reactive power regulation
range, respectively;Qs,min and Qs,max are the lower and upper limits of the reactive
power regulation range of the stator side, respectively; Qc,min and Qc,max are the lower
and upper limits of reactive power regulation range of grid side converter, respectively.

2.2 Reactive Power Regulation Model of PV System

The power generation principle of PV connected to the distribution network is relevant
the current solar irradiation and temperature. Therefore, the active power output Ppv will
be shown as follows [5]:

Ppv = Pbase
pv

[
1 + αpv · (T − Tref)

] · spv
1000

(4)

where Pbase
pv means the total rated power; αpv is a temperature conversion coefficient; T

denotes the current temperature; Tref is reference temperature; spv is the current solar
irradiation.

PV usually generates direct current (DC). Thus, DC will be converted to sinusoidal
alternating current (AC)with the same frequency as the grid.When analysing the reactive
power regulation range of PV, the inverter capacity and active power output need to be
considered as the following formula (5):

⎧
⎨

⎩

Qpv,max =
√

(Spv)2 − (Ppv)
2

Qpv,min = −
√

(Spv)2 − (Ppv)
2

(5)

where Qpv,min and Qpv,max represent the lower and upper limits of reactive power
regulation range, respectively; Spv means the inverter capacity.

2.3 Reactive Power Regulation Model of EVs

EVs with new technology may promote the reactive power optimization of the distribu-
tion network. They can act as generators if the remaining energies exceeds a threshold.
Otherwise, EVs will absorb energies from distribution network [6]. The active power of
EVs can be presented as follows (6):

Pcar = VsVcsin(δ)

ωLc
(6)

where Pcar means the EVs input or output active power; Vs is the grid voltage; Vc refers
charging piles voltage; δ is the phase difference between Vc and Vs; ω denotes to the
angular frequency; Lc refers the simplified inductance.
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Similar to PV, the adjustable range of EVs reactive power output mainly depends
on the current active power input or output and the capacity of inverter, as shown in the
following formula (7):

{
Qcar,max =

√
(Scar)2 − (Pcar)

2

Qcar,min = −
√

(Scar)2 − (Pcar)
2 (7)

where Qcar,min and Qcar,max are the lower and upper limits of reactive power regulation
range, respectively; Scar means the charging piles inverter capacity.

2.4 Objective Function

In this work, line loss, voltage deviation and static voltage stability margin are three
objectives [7]. Especially, the maximized static voltage stability margin needs to be
replaced by solving the reciprocal of the minimum singular value of the minimum
convergent power flow Jacobian matrix. Therefore, the objective functions are shown as
formula (8):

⎧
⎪⎨

⎪⎩

min f1 = ∑
i,j∈NL

gij(V 2
i + V 2

j − 2ViVjcosθij)

min f2 = ∑
j∈Ni

(Vj − V ∗
j )2

min f3 = 1/δmin

(8)

where f1, f2 and f3 are the line loss, voltage deviation and singular value reciprocal of
Jacobian matrix of system, respectively; Vi and Vj mean the ith and jth nodes voltage
amplitude, respectively; θij refers the phase angle difference between the ith and jth
nodes; gij represents the admittance between the ith and jth nodes; Ni is the total node
set; NL is the all branch set; V ∗

j denotes the jth node rated voltage; δmin refers the system
Jacobian matrix minimum singular value.

2.5 Constraint Condition

Power Flow Equality Constraints
{
PGi − PDi − Vi

∑
j∈Ni

Vj(gij cos θij + bij sin θij) = 0, i ∈ N0

QGi − QDi − Vi
∑

j∈Ni
Vj(gij sin θij − bij cos θij) = 0, i ∈ NPQ

(9)

where PGi refers the active power of the ith node; QGi is the reactive power of the ith
node; PDi means the active power demand of the ith node; QDi is the reactive power
demand of the ith node; bij is the susceptance between the ith and jth nodes; N0 means
the node set except the balance node; NPQ is the PQ node set.

Generator Constraints

{
Qmin
Gi ≤ QGi ≤ Qmax

Gi , i ∈ NG

Vmin
Gi ≤ VGi ≤ Vmax

Gi , i ∈ NG
(10)
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where Qmax
Gi and Qmin

Gi are the upper and lower limits of reactive power range of the ith
generator, respectively;QGi is the reactive power input into the grid by the ith generator;
Vmin
Gi andVmax

Gi represent the lower and upper limits of output voltage of the ith generator,
respectively; VGi is the output voltage of the ith generator; NG is the generator set.

Reactive Power Compensation Device and Transformer Tap Constraints

{
Qmin
Ci ≤ QCi ≤ Qmax

Ci , i ∈ Nc

Tmin
h ≤ Th ≤ Tmax

h , h ∈ NT
(11)

where Qmax
Ci and Qmin

Ci refer the upper and lower capacity of the ith reactive power
compensation device, respectively; Tmin

h and Tmax
h mean the lower and upper limit of

the hth transformer tap, respectively; Nc denotes the set of reactive power compensation
devices; NT is the set of transformer taps.

3 Process of Reactive Power Regulation Model

3.1 Overview of c-DPEA, SPEA2 and NSGAII-ARSBX

C-DPEA [8]whichwas proposed in recent years can be employed to solve the constraints
multi-objective problems for reactive power optimization. This algorithm presents two
populations to deal with the infeasible solutions. Population 1 proposes an idea that
the solutions with better objective function value but low constraint violation can be
preserved. However, feasible solution in population 2 can get more advantages than
infeasible solutions. Thus, the two different populations provide complementary capa-
bilities each other. Population 1 reaches better points more quickly in infeasible regions,
while population 2 approaches the PF faster. Finally, a win-win result will be shown,
then the offspring of two populations can cooperate by exchanging information.

SPEA2 [9] stores the nondominated solutions in another continuously updated popu-
lation. It computes the fitness according to the number of nondominated solutions that an
individual independently dominates. A cluster analysis process is added for the sake of
reducing the nondominated solution set without destroying its characteristics. Besides,
Pareto dominance is used to preserve population diversity. Path planning simulation can
be addressed by the traditional hybrid target method and the improved SPEA2 based on
local search.
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NSGAII-ARSBX [10]was presented as an improved version based onNSGAII. Elite
strategy is introduced and the sampling space is expanded in NSGA-II. Such approaches
are conducive to maintaining the better individuals in the parent generation. Thus, the
accuracy of optimization results will be highly improved. The best individuals will not be
lost and the population level can be rapidly improved by storing all individuals in layers.
Finally, researchers proposed the rotation-based simulated binary crossover (RSBX) to
improve the performance of MOEAs on rotated problems.

3.2 Application of Different Algorithms in Reactive Power Optimization
of Distribution Network

Both continuous variables and discrete variables will exist in the process of reactive
power optimization. Continuous variables will be normally iterated, while discrete vari-
ables would be rounded by continuous spatial values. The fitness function needs to meet
the above constraints by adding a penalty mechanism, as follow (12):

ffit,t(x
i) = ft(x

i) + ηq, t ∈ T (12)

where T and t represent the set of objective functions and the tth value in T, respectively;
ft(xi) means the objective function value; ffit,t(xi) refers the fitness function value; η

represents penalty coefficient which is usually regarded as a large constant; qmeans the
number of objectives without catering the constrain.

4 Example Analysis

4.1 Data Setting

In this work, 33-bus system is mainly applied as an example. The total installed capacity
of wind turbines and PV is set as 20 KW and 300 KW, respectively. The optimization
variables include 7 new energies output, 3 eV charging stations, 2 reactive power com-
pensation devices and 5 different tap gears of transformer. There are 3 charging areas in
this work. Then the number of EVs in each charging area is 10 and the remaining power
of a single EV is 0–10 KW. The population size and iteration steps will be set to 50 and
50 by considering the line loss and voltage deviation. However, they population size and
iteration steps increase to 200 and 50 respectively in three-objective optimization.

4.2 Analysis of Optimization Results

Figure 1 shows the PF obtained by different algorithms in 33-bus system. It can be
found that the three algorithms can find excellent PF in two-objective. SPEA2 has the
smaller PF than NSGAII-ARSBX and c-DPEA. Most of results are distributed in small
voltage deviation with a trend of priority of single objective optimization. Besides, the
optimization degree is not high enough forNSGAII-ARSBXbecause of some dominated
solutions. By contrast, the prominent distributed PF can be seen in c-DPEA. In three-
objective optimization, the optimized surface ofSPEA2seems concentrated in themiddle
small area while NSGAII-ARSBX has the advantage of smooth solutions. However, the
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characteristic of c-DPEA presents rapid speed, uniform surface and deep degree in
optimization from Table 1. In this regard, the equilibrium and stability will be well
expressed incisively and vividly in c-DPEA.

The results of whether reactive power compensation devices exist are shown in
Fig. 2(a) and (b). Population and iteration are set as 5000 and 50 in two different situ-
ations. The former is the solutions without reactive power compensation devices. The
points form an even and smooth surface. The latter presents the solutions by adding
reactive power compensation device. Evidently, the result has the feature of narrow and
long. Thus, c-DPEA can be used in distribution network in different situations.

Table 1. Statistical results of PF obtained in the 33-bus system

Objective Standard c-DPEA SPEA2 NSGAII-ARSBX

Line loss/MW Minimum 0.0599 0.0614 0.0596

Maximum 0.0658 0.0672 0.0658

Average 0.0624 0.0639 0.0619

Voltage deviation/pu Minimum 0.0064 0.0066 0.0062

Maximum 0.0101 0.0102 0.0100

Average 0.0079 0.0082 0.0080

Static voltage stability margin/pu Minimum 0.2725 0.2728 0.2726

Maximum 0.2734 0.2733 0.2731

Average 0.2727 0.2730 0.2728

Fig. 1. PF comparison of different algorithms for bi-objective and three-objective
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Fig. 2. (a) Reactive power compensation device not connected to distribution network, (b)
Reactive power compensation device connected to distribution network

5 Conclusion

(1) The model of distribution network with new energies and EVs is proposed under
the circumstance of explosive spread of V2G. The reactive power regulation potential
of new energies and EVs can be fully seen in this work.

(2) The proposed model is simulated in 33-bus systems. Then c-DPEA can obtain
better optimization solutions and smooth PF compared with other algorithms in different
number of objectives situations.

Acknowledgement. This work was jointly supported by the Key Lab of Digital Signal and Image
Processing of Guangdong Province; the Science and Technology Planning Project of Guang-
dong Province of China (180917144960530); the State Key Lab of Digital Manufacturing Equip-
ment & Technology (DMETKF2019020); the Scientific Research Staring Foundation of Shantou
University (NTF19028, NTF20009); the Natural Science Foundation of Guangdong Province of
China (2021A1515011709); the Fundamental Research Funds for the Central Universities, JLU,
(93K172021K13).

References

1. Zheng, W.Y., Wu, W.C.: Distributed multi-area load flow for multi-microgrid systems. IET
Gener. Transm. Dis. 13(3), 327–336 (2019)

2. Molina-Garcia, A., Mastromauro, R.A., Garcia-Sanchez, T., Pugliese, S., Liserre, M., Stasi,
S.: Reactive power flow control for PV inverters voltage support in LV distribution networks.
IEEE Trans. Smart Grid 8(1), 447–456 (2017)

3. Lassila, J., Haakana, J., Tikka, V., Partanen, J.: Methodology to analyze the economic effects
of electric cars as energy storages. IEEE T. Smart Grid 3(1), 506–516 (2012)

4. Jiang, T.X., Putrus, G., Gao, Z.W., Donald, S.M., Wu, H.: Analysis of the combined impact
of small-scale wind generators and electric vehicles on future power networks. In: 2012 47th
International Universities Power Engineering Conference, pp. 1–5 (2012)

5. Brini, S., Abdallah, H.H., Ouali, A.: Economic dispatch for power system included wind and
solar thermal energy. Leonardo J. Sci. 8(14), 204–220 (2009)

6. Ma,Y.J., Liu, C., Zhou,X.S.,Gao, Z.Q.: Reactive power compensationmethod for distribution
network from electric vehicles. In: 2018 37th Chinese Control Conference, pp. 8826–8830
(2018)



490 B. Xu et al.

7. Bu, C.Y., Luo, W.J., Zhu, T., Yi, R.K., Yang, B.: A species and memory enhanced differential
evolution for optimal power flowunder double-sided uncertainties. IEEETrans. Sust. Comput.
5(3), 403–415 (2020)

8. Ming, M.J., Trivedi, A., Wang, R., Srinivasan, D., Zhang, T.: A dual-population based evolu-
tionary algorithm for constrained multi-objective optimization. IEEE Trans. Evol. Comput.
25(4), 739–753 (2021)

9. Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: improving the strength pareto evolution-
ary algorithm. In: Proceedings of the EUROGEN 2001. Evolutionary Methods for Design,
Optimization and Control with Applications to Industrial Problems (2001)

10. Pan, L.Q., Xu, W.T., Li, L.H., He, C., Cheng, R.: Adaptive simulated binary crossover for
rotated multi-objective optimization. Swarm Evol. Comput. 60, 100759 (2021)



Multi-objective Evolutionary Ensemble
Learning for Disease Classification

Nan Li, Lianbo Ma(B), Tian Zhang, and Meirui He

College of Software, Northeastern University, Shenyang, China
malb@swc.neu.edu.cn

Abstract. Ensemble learning (EL) is a paradigm, involving several base learners
working together to solve complex problems. The performance of the EL highly
relies on the number and accuracy of weak learners, which are often hand-crafted
by domain knowledge. Unfortunately, such knowledge is not always available to
interested end-user. This paper proposes a novel approach to automatically select
optimal type and number of base learners for disease classification, called Multi-
Objective Evolutionary Ensemble Learning (MOE-EL). In the proposed MOE-
EL algorithm, a variable-length gene encoding strategy of the multi-objective
algorithm is first designed to search for the weak learner optimal configurations.
Moreover, a dynamic population strategy is proposed to speed up the evolutionary
search and balance the diversity and convergence of populations. The proposed
algorithm is examined and compared with 5 existing algorithms on disease clas-
sification tasks, including the state-of-the-art methods. The experimental results
show the significant superiority of the proposed approach over the state-of-the-art
designs in terms of classification accuracy rate and base learner diversity.

Keywords: Ensemble learning · Evolutionary multi-objective optimization ·
Variable-length encoding · Disease classification

1 Introduction

Ensemble learning (EL) has demonstrated its exceptional superiority in prediction tasks
[1]. It is a paradigm of building a strong classifier from several weak classifiers (e.g.,
Support Vector Machine (SVM) [2], Naïve Bayes (NB) [3], and Multilayer Perceptron
(MLP) [4]), where predicted results of the weak classifier are combined via voting [5]
or averaging [6] method. The key of EL is that by combining various models, the loss
of the single weak learner will likely be compensated by other weak learners and as a
result [1, 5, 6]. Thus, the overall prediction accuracy of the EL’s model is better than
that of a single weak learner.

Although EL has demonstrated promising performance in many applications, con-
structing EL’s model is not an easy task. It heavily depends on the accuracy and the
number of weak learners and demands considerable domain knowledge [7]. It would
be a complex multi-objective optimization problem, where the two objectives are to
maximize prediction performance and minimize the number of learners. In addition, the
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weak classifiers may differ in the hyperparameters, which are required to ensure the
learner’s performance through continuous trial and error. it will lead to a multi-level
multi-objective optimization problem.

Multi-Objective Evolutionary Algorithms (MOEA) [8–10], which can obtain a set
of Pareto optimal solutions, do not require abundant domain expertise. A few work use
MOEA to solve the EL construction problem [11–13]. [14] tried to search for an optimal
trade-off between diversity and accuracy; [12] proposed an ensemble deep learning
algorithm for remaining useful life prediction through combining accuracy and diversity.
However, the above work that 1) does not consider the optimization of weak classifier
hyperparameters, 2) solutions are limited in terms of diversity due to fixed-length gene
encoding strategy. For this drawback, we propose a new approach to solve the multi-
level multi-objective optimization problem and enhance the diversity of Pareto optimal
solutions.

The main contributions of the proposed method are as follow:

1) Develop a multi-level multi-objective optimization framework for EL. The dynamic
population strategy can effectively reduce the computational overhead

2) Design a new variable-length gene encoding strategy that can represent optimal
components of the EL with arbitrary weak classifier types.

3) Show the superiority of the proposed method compared with the peer competitors
via undertaking the sufficient experiments.

The rest of this paper is organized as follows. Section 2 presents some related work.
Section 3 describes the framework of MOE-EL. In Sect. 4, experimental results are
shown to validate the superiority of the MOE-EL. Finally, the conclusion is written in
Sect. 5.

2 Related Work

2.1 Multi-objective Evolutionary Algorithms

MOEA, which aims to simultaneously optimize more than two often conflicting objec-
tive functions [15], is widely applied to various real applications, such as industrial
scheduling, robotics, and aircraft formation. It can bemathematically defined as follows:

min F(x) = (f1(x), f2(x), ..., f (x)m)
s.t. x ∈ X

, (1)

where m is the number of objective functions, x is the decision vector, and X is decision
space.MOEAcanbe roughly divided into threemain classes: 1) Pareto-dominance-based
approaches (e.g., NAGA-II [16]); 2) Decomposition-based approaches (e.g., MOEA/D
[17]); 3) Indicator-based approaches (e.g., IBEA [18]).

Toward a better construction of the machine learning (ML) model, many works [19,
20] have proven that combining MOEA and ML is an effective approach. For example,
[21] presented multi-objective-oriented algorithm called MoreMNAS (Multi-Objective
Reinforced Evolution inMobile Neural Architecture Search) via leveraging good virtues
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from EA and RL. In this way, model accuracy and complexity (e.g., the number of
model parameters and multiply-adds operators) are well traded off [22], which proposed
a nonlinear ensemble method, obtained a set of high accuracy and strong diversity weak
learners.

2.2 Ensemble Learning

Inspired by the thought that two minds are better than one, multiple weak learners
are strategically combined for solving prediction problems (e.g., classification) [1, 23].
In general, EL can be categorized into homogeneous ensembles and heterogeneous
ensembles according to the type of weak learner. For homogeneous ensembles, weak
learners are the same type. Heterogeneous ensembles are built using learners of different
types [2].

Themost famous EL includes the followingmethods: 1) Stacking includes classifiers
ofmultiple layers, where the primary learners are trained using k-fold cross-validation on
the same dataset, and the secondary learners utilize the outputs of the primary learner to
make predictions [1]; 2) Bagging (e.g., random forest) obtains the prediction result using
uniform averaging or voting. In this method, weak learners are trained by special training
dataset that is built by put-back sampling from an existing sample set [2]; 3) Boosting is
different from Stacking and Bagging. It is a sequential ensemble method, which exploit
the dependence between the weak learners via weighing previously mislabeled instances
with higher weight [1, 2].

It is well-known that EL performance depends on both type and number of weak
learner. However, in practice, it poses huge challenges to search for the most suitable
EL’s configuration in terms of weak learner to best solve a given problem because
it corresponds to address a highly complex optimization problem of non-convex and
black-box nature. Thus, many researchers [25, 26] have turned their attention to how
to design efficient EL models without human intervention. For example, Zhang et al.
[26] developed an automatic ensemble learning strategy to ensure the robustness of
algorithms.

3 The Proposed Method

3.1 Problem Formulation

In EL construction, the first step is to address the number and type ofweak learners. Then,
the hyperparameters of the weak learners can be selected automatically from hyperpara-
metric collections. Finally, each built strong learner should be recorded accuracy and
the number of weak learners as two conflicting objectives. The above process can be
modeled as a multi-level multi-objective optimization problem as follows:

ELconstruction =

⎧
⎪⎪⎨

⎪⎪⎩

Hp = (Learners1(h1),Learners2(h2), ...,Learnersm(hm))
s.t. h ∈ HyperparametricCollections m ∈ [1, |Learners|]
{
Learners = (learner1(S1, n1), learner2(S2, n2), ..., learnert(St, nt))
s.t. S ∈ [0, 1] n ∈ [0,Nmax] t ∈ [1,T ]

(2)
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where Learners indicate the set of selected weak learners; St is the selection marker, if
equal to “1” means the learner of that type is selected and vice versa, it is not selected;
nt indicates the number of learners; T is the number of learner types; HP indicates
the configuration of the learner hyperparameters; hm represents the hyperparameter
configuration of the m-th learner.

3.2 Framework of MOE-EL

The framework of MOE-EL is presented in Algorithm 1, which involves the following
procedures:

1) Population Initialization: This process plays an important role in maintaining the
population diversity and improving the search convergence for MOEA algorithms.
An initial population P0 with variable-length is generated using Latin hypercube
sampling. The encoding method is described in Sect. 3.3.

2) Offspring Generation: The crossover and mutation are common genetic operators,
where crossover performs the local search and mutation exercises the global search.
We design the genetic operators tomatch the encodingmethod, as shown in Sect. 3.4.

3) Dynamic Strategy: The diversity and convergence of solutions are the main indica-
tors of the performance of multi-objective algorithms. In order to improve the effi-
ciency of the algorithm while reducing the damage of reducing population diversity,
we propose a dynamic population strategy, as shown in Sect. 3.5.

The MOE-EL’s fitness evaluation, non-dominated sorting and others follow the
original NSGA-II algorithm.

Algorithm 1: Framework of MOE-EL
Input: N: population size; T: number of iterations;

Output: Pt: a set of promising EL’s configurations;

1: P0 ← Initialize a population of size N according to variable-length encoding strategy;

2: t = 0;

3: while t < T do
4: F ← Evaluate Pt on validation set;

5:  S ← Select parent solutions with non-dominated sorting;

6:  Qt ← Generate offspring with the genetic operators from S;

7:   Pt+1 ← Environmental selection from Pt Qt;

8:  Pt+1 ← Modify the population size according to the dynamic population strategy;

9:  t = t + 1;

10:   end
11: Return Pt;

3.3 Encoding Strategy

The critical step of usingMOEA/D is to represent the potential solutions of the optimiza-
tion problem to be addressed by chromosomes via the appropriate encoding strategy. In
the proposed method, each chromosome represents a potential EL’s configuration.
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In order to more demonstrate how to indicate the EL’s configuration, we divided
the entire EL into various weak learner units, as shown in Fig. 1 (Top), where each
unit include type, marker, number, hyperparameter set (i.e., H1, H2, H3). For population
initialization, we first generate the number of weak learner units, then randomly initialize
the each weak learner according to the configuration table (see Sect. 4.1). In order to
give a better explanation of the designed variable-length gene encoding strategy. Figure 1
(Bottom) describe three chromosomes with different lengths.

Marker = 1 Number = 10Type = 3

H1 H2 H3

Learner 

Learner1 Learner2 Learner3 Learner4 Learner5

Learner1 Learner2 Learner3

Learner1 Learner2 Learner3 Learner4 Learner5 Learner6

Length = 5

Length = 3

Length = 6

Fig. 1. An example of three chromosomes with different lengths (i.e., 3, 5, 6) in the proposed
MOE-EL algorithm.

3.4 Genetic Operators

Learner2

Learner5

Type = 3

Learner2Learner1

Learner3

Type = 1

Learner1 Learner4

Type = 4

Learner3

Learner1 Learner2 Learner3Learner1 Learner2 Learner3 Learner4 Learner5

Learner1

Learner3

Learner2

Learner5

Learner4

Type = 1 Type = 3 Type = 4 Type = 1 Type = 3 Type = 4

Learner1 Learner2 Learner3

Learner1 Learner2 Learner3 Learner3 Learner5 Learner1 Learner2 Learner4

Fig. 2. An example to show the entire crossover operation.

Genetic operators (i.e., crossover and mutation) collectively give rise to the promi-
nent performance of genetic algorithms. In the MOE-EL, we use the following genetic
operator in order to match the proposed coding.

Crossover: weuseUnitAlignment (UA) [27] for reconstructing two chromosomeswith
different lengths. In the crossover process, different types of weak learners are firstly
collected into different lists based on their orders in the corresponding chromosome,
where these different lists are aligned at the top, and learner units on the same positions
are conducted the crossover. Figure 2 shows crossover operation.
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Mutation: It can be performed at different positions, where a learner unit can be added
or deleted, and the internal configuration of a learner can be modified, each of which is
with the same probability.

3.5 Dynamic Population Strategy

In order to ensure diversity and convergence of population, we design a dynamic popu-
lation strategy, which includes two parts i.e., total population size and intra-population
adjustment.

For total population size adjustment, we use a staircase function to reduce the
population size as the number of iterations increases. It can be expressed as follows:

|Pt | = N − 2 × t t ∈ [1, 25] , (3)

For intra-population adjustment, we count the number of weak learners in each type,
and when the number of a type exceeds 25% of the total number, we randomly remove
the z individuals containing that learner and then randomly initialize the z individuals
that do not contain that learner. This strategy can improve convergence (i.e., adjustment
of the total number of populations) and diversity (i.e., adjustment of the number of
learners).

4 Experiments and Results

In order to quantify the performance of the proposed MOE-EL, a series of experiments
are designed and performed on the chosen diabetes dataset, which are further compared
to some chosen peer competitors.

4.1 Parameter Settings and Dataset

All the parameter settings are chosen based on the conventions (see Table 1) following
most researcher configurations for genetic algorithm. The settings of hyperparametric
collections associated with weak learners (i.e., Multi-layer Perception (MLP), Deci-
sion Tree (DT), Support Vector Machine (SVM), Radial Basis Function (RBF)) can be
viewed in Table 2. Noting that these configurations are mainly based on our available
computational resources (including the selection of data sets).

Table 1. The parameter settings

Parameter Setting

Population size (N) 100

Crossover probability 0.9

Mutation probability 0.1

(continued)
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Table 1. (continued)

Parameter Setting

Number of iterations 100

Maximum number of single learners 20

Here, diabetes dataset, which has 768 instances and 8 classes, is used to test all EL’s
models. The attributes of this dataset include the following information of a pregnant
man, e.g., Age, Body Mass Index (BMI), Blood Pressure, and Insulin. The training set
include 70% of the total dataset; the validation and test set contain 15% each.

Table 2. The hyperparametric collections

Type Name Value

MLP Learning rate [0.01, 0.05, 0.07]

Activation function [Sigmoid, Tanh, ReLu]

Optimizer [BGD, SGD, Adam]

DT Criterion [Entropy, Gini]

Splitter [Best, Random]

Max_depth [5, 9, 10, None]

SVM Kernel [Sigmoid, Linear]

Gamma [Poly, RBF, Sigmoid]

Degree [2, 4, 6]

RBF Kernel [Polynomial, Laplacian, Gaussian]

Number of hidden layer neurons [3, 5, 7]

4.2 Result and Discussion

Table 3 reports the comparison betweenMOE-EL and the peer competitors (i.e., Random
Forest, AdaBoost, XGBoost, GBDT, LightGBM) on the diabetes dataset. In this table,
training, validation, test accuracy obtained by allmethods are listed. Themodels obtained
by the algorithm achieved an advantage in all three types of accuracy. Training accuracy
is 2% higher than the best competitor (i.e., LightGBM); Verification accuracy and test
accuracy higher than LightGBM 1.7%, 1.6% respectively.
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Table 3. Comparison with other EL’s baselines on diabetes dataset

Method Accuracy

Training set
(%)

Validation
set (%)

Test set (%)

Random
Forest

94.3 94.2 93.9

AdaBoost 95.6 95.4 95.2

XGBoost 92.1 91.3 92.3

GBDT 95.9 95.4 95.2

LightGBM 96.8 96.7 97.0

MOE-EL-A 97.3 97.1 97.0

MOE-EL-B 98.1 98.2 98.1

MOE-EL-C 98.8 98.4 98.6

Fig. 3. The number of learners vs. Accuracy trade-off curves comparing MOE-EL existing
approaches on diabetes dataset.

Figure 3 shows the number of learners and accuracy trade-off for diabetes dataset.
MOE-EL-{A, B, C} outperform other models (e.g., Random Forest, Stacking, Bagging)
in both objectives. In particular, MOE-EL-C achieves a state-of-the-art accuracy of
98.8% under 103 learners. MOE-EL-A improves Bagging-1 accuracy by 4.5% with
similar number of learners.

5 Conclusion

In this work, a novelty MOE-EL is proposed. A new variable-length encoding method is
used to denote the weak classifier and the corresponding hyperparameters. In MOE-EL,
the dynamic population strategy is developed by current population information, i.e.,
population size adaptive. The operation can enhance the diversity and convergence of
the population.

Experiments have been run on the disease dataset where MOE-EL is compared with
several EL algorithms. Experimental results show that the MOE-EL generally performs
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better than other EL algorithms regarding the accuracy and number of weak classifiers.
Meanwhile, the hyperparameters of each weak classifier are optimized.

In the future, theMOE-ELwill use state-of-the-art algorithms [29] to improve further
performance [29] on complex high-dimensional datasets. In addition, applying theMOE-
EL algorithm to solve practical issues is also the next research direction [30].
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Abstract. Multi-objective optimization (MOP) has been widely applied in vari-
ous applications such as engineering and economics.MOP is an important practical
optimization problem, and finding approaches to better solve it is of both practical
and theoretical significance. The core of solving an MOP is to find the global
optimal solution set efficiently and accurately. The current MOP algorithm has
premature convergence or poor population diversity, and the solution set obtained
falls easily into the local optimal or clustering phenomenon. In this study, anMOP
algorithm based on the non-dominated sorting genetic algorithm based on rein-
forcement learning (RL-NSGA-II) is proposed; the algorithm is adopted based
on the prediction, forecasting, Monte Carlo method, which is based on the action
of population genetic information, and environment interaction information and
Markov decision process in mathematical modeling. This is because using a non-
dominated solution contains valuable information, which can be used to guide the
evolution direction of the population and search the optimal solution setmore accu-
rately. The proposedRL-NSGA-II algorithmwas evaluated on the ZDT andDTLZ
test sets, and the experimental results verified the effectiveness of the proposed
algorithm in solving MOPs.

Keywords: Reinforcement learning · NSGA-II · Monte Carlo method ·
Multi-objective optimization problem

1 Introduction

In real life, the vast majority of real-world problems, such as recommendation sys-
tems, scheduling problems, and practical problems of combinatorial optimization, can
be transformed into multi-objective optimization (MOP) problems involving multiple
objective functions and mutual constraints. As there are often multiple contradictory
objective functions in the abovementioned problems, solving MOPs presents a signifi-
cant challenge. Owing to the mutual restriction of multiple objects, the goal of the MOP
solution is to find a compromised solution set for each target value in the global space.
The searchability of improved algorithms in the global space is one of the key problems
in the field of MOP.

© Springer Nature Switzerland AG 2022
Y. Tan et al. (Eds.): ICSI 2022, LNCS 13344, pp. 501–513, 2022.
https://doi.org/10.1007/978-3-031-09677-8_42

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-09677-8_42&domain=pdf
http://orcid.org/0000-0003-0435-0238
http://orcid.org/0000-0003-4638-898X
https://doi.org/10.1007/978-3-031-09677-8_42


502 J. Liu et al.

In recent years, many researchers have realized that various multi-objective evolu-
tionary algorithms (MOEA) can effectively solve MOPs. At present, there are a series
of evolutionary algorithms, including the genetic algorithm (GA), particle swarm opti-
mization (PSO), and ant colony optimization (ACO). Specific algorithms include the
fast non-dominated sorting algorithm with elite strategy (NSGA-II) [1], decomposition
based NSGA-II [2], chaos-based “micro-variation” adaptive genetic algorithm [3], local
search strategy based onGaussian variation improvedNSGA-II [4], and a dynamicMOP
reinforcement learning (RL)method [5]. NSGA-II is a multi-objective genetic algorithm
based on non-dominated sorting proposed by Deb et al. The algorithm is based on a fast
non-dominated sorting method and a selection operator, that is, the parent population
and offspring population merge to select the best population as the next generation.
Elarbi et al. proposed a factory-based NSGA-II [2], which addresses MOP problems
and new diversity factors of penalization-based boundary intersection methods based
on a new factor-based dominance relation. GA can solve complex combinatorial opti-
mization problems, but it has two shortcomings; first, its search efficiency is lower than
those of other optimization algorithms. Second, it easily converges prematurely and falls
into a local optimum. Therefore, Xu et al. [3] proposed an adaptive GA based on chaos
“variation”, and applied it to the radio fuze interference cluster analysis. The algorithm
used the characteristics of the randomness of the chaotic optimization algorithm to solve
the premature convergence. Furthermore, chaos perturbation was added to the algo-
rithm selection operator, crossover operator, and mutation operator adaptive adjustment,
which improved the performance of the GA. Zhang et al. [4] proposed an improved
non-dominated sorting GANSGA-II-GLS, which introduced a Gaussian mutation oper-
ator in the genetic operation to make individuals focus on using their own nearby space.
Furthermore, the improved algorithm employed the jitter local search strategy to jump
out of the non-global Pareto front. Hussein et al. [6] used the RL-based meme particle
swarm optimization (RLMPSO) in the entire search process. Researchers believe that
RL can promote the evolution of populations by utilizing prior information and Markov
decision process (MDP).

Machine learning technology combined with evolutionary algorithms is a recent
interest of research, which shows good performance in multi-objective evolution. Their
purpose is to establish a prediction model based on the history and existing population
information in the process of population evolution and guide the population to approach
the Pareto optimal front (POF) or Pareto optimal sets (POS) continuously.

In this study, we propose a combination of RL and an MOP algorithm, resulting
in a fast and elitist multi-objective GA based on RL (RL-NSGA-II). The algorithm
is adopted based on prediction, forecasting, and the Monte Carlo method, which is
based on the action of population genetic information and the environment interaction
information, and the MDP in mathematical modeling, which better uses information
about non-dominant solutions. The main contributions of this study are as follows:

1. In this study, a fast non-dominated sorting algorithm based on RL (RL-NSGA-
II) is designed, which will guide the evolution process of the population through
the optimal strategy model of RL and improve the convergence efficiency of the
population;
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2. The genetic information of the population, interaction information between the pop-
ulation and the environment, and Markov decision process were modeled by the
environment prediction, action prediction, and Monte Carlo method;

3. Given the optimization task, the state transition probability of theMDP Pr
[
s′, r|s, a]

and reward function r(s, a) are unknown. Thus, by the Monte Carlo method in
environmental samples, according to the sample solution of the MDP, the optimal
strategy.

2 A Fast and Elitist Multi-objective Genetic Algorithm Based
on Reinforcement Learning (RL-NSGA-II)

In this study, the idea of RL is introduced into the crossover operator of the algorithm,
and the information between the dominant solutions is reasonably used to provide the
evolution direction of the crossover operator.

2.1 Markov Decision Model

When the population genetics change, the agent and the environment will change, the
agent changes the current overall population, and the environment changes the individual
genes in a population. In the process of iteration generation population, the individual
index in the population is denoted as {Si |i = 1, 2, . . . ,m}, where m represents the
number of populations, and the following events will occur successively:

1. The environment where the agent analyzes is St ∈ Ṡ; the observed Ot ∈ Ȯ is the
collection of observed values. S is the population gene space, the collection of all
individual genes.

2. According to the analysis in Step 1, the agent renders At ∈ Ȧ; Ȧ represents the set
of all individuals performing crossover actions at different crossover sites.

3. The environment renders rewards Rt+1 ∈ Ṙ according to the action A in Step 2.
Simultaneously, the environment state changes St → St+1 ∈ S, where R is the
reward space, representing the set of reward values.

4. After the completion of Step 3, the environment changes, and the agent needs to
re-analyze the information of the environment, repeat step 1 until ST−1 → ST .

Finally, the trajectory form of the task can be described as:

S1,O1,A1,R2, S2,O2,A2,R3, . . . , Sm = st (1)

If the environmental state is completely observable and the observed environmental
state of the agent is the same as the actual environmental state, then Oi = Si, (i =
1, 2, . . . ). All individuals need to not only performcross actions, but alsomake individual
gene (S), action (A) and reward (R) corner marks uniform, the interaction trajectory
should be changed to:

S1,A1,R1, S2,A2,R2, . . . , Sm,Am,Rm = Rt (2)

The above interaction trajectory is represented as an individual S1 who makes the
cross A1 and gets the reward R1, traverses all the individuals until the individual Sm
completes the cross Am and gets the reward Rm, thus obtaining an MDP trajectory.
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2.2 Agent and Policy

On the basis of the above, strategies are introduced. In fact, in the process of optimizing
GA, the strategy π need not only provide evolution direction for the population (agent),
but also to improve the population (agent) search efficiency. To enhance the search
ability and search scope, this studywill introduce the ε-greedy policy. The corresponding
ε-greedy policy can be expressed as Eq. (3).

π(a|s)
{
1 − ε + ε

|A(s)| , a = a∗
ε

|A(s)| , a �= a∗ s ∈ S, a ∈ A(s) (3)

The ε-greedy strategy distributes the ε probability equally among all actions and
assigns the remaining (1 − ε) probability to the best action a∗.

2.3 Reward System

In the optimization task of the GA, after adopting the ε-greedy policy, the parent Si(i =
1, 2, 3, . . . ,m) randomly select parent Sr(r = randperm(m)) for crossover and select
a different crossover site (action) Aj(j = 1, 2, 3, . . . , n), which will produce different
offspring Xj(j = 1, 2, 3, . . . , n), where N is the number of individual gene segments, as
shown in Fig. 1.

Fig. 1. Population crossing.

Calculate the rank(Xj) of child Xj in population Xmerge, (Xmerge = Xj ∪ Xrank=1,
where Xrank=1 represents the non-dominant solution in the population) to determine the
reward Rj for the cross Aj. The optimization process of GA is a process in which feasible
solutions approach the theoretical Pareto front (PFtrue) gradually, so it only needs tomake
the feasible solution set evolve continuously towards the theoretical Pareto frontier. The
crossover action gets the offspring with higher ranking, and the reward Rj should be
larger, as shown in Fig. 2.
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Fig. 2. Reward mechanism.

Therefore, 1/rank(Xj) is used as the reward of cross Aj, which can be expressed as
Eq. (4).

{
rank

(
Xj

) = g
(
Xj,Xmerge

)

Rj = 1
rank(Xj)

(4)

where g(·) represents the function that executes the non-dominant algorithm.

2.4 Return

In the optimization task, when the agent performs t actions with the environment within
a period of time T , it will get t rewards. Subsequently, in the Markov decision-making
process mentioned above, the agent’s return Gt can be defined as the sum of rewards
obtained, which can be calculated from Eq. (5):

Gt = R1 + R2 + . . . + Rt (5)

2.5 Action Value Function

The action value function qπ (s, a) represents the expected return of adopting strategy π

after action a is taken in state s, which can be calculated by Eq. (6) as follows

qπ (s, a) = Eπ [Gt |St = s,At = a] (6)

In the GA, the action value qπ (s, a) is expressed as the probability of action a being
selected after individual s takes cross action a, which is determined according to the
rank of the offspring. It can be calculated by Eq. (7).

π(a|s) =
{
1 − ε + ε

|A(s)| , a = arg max
a

rank
(
Xj, a

)

ε
|A(s)| , a �= arg max

a
rank

(
Xj, a

) (7)
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2.6 Monte Carlo Method

The Monte Carlo method is a random simulation and calculation method based on
probability and statistical theory. Optimization of GA in the task, the state transi-
tion probability of MDP Pr[s′, r|s, a] and reward function r(s, a) is unknown. In this
case, the agent and the environment need to conduct interactive sampling and collect
some samples, and then solve the optimal strategy of the MDP according to these
samples. In this study, the Monte Carlo method is used to explore the environment
randomly based on strategy π , and multiple Markov decision trajectories are gener-
ated. For different trajectories τ(1), τ (2), . . . , τ (N ), the agent will get different returns
G(τ (1)),G(τ (2)), · · · ,G(τ (N )) according to the Eq. (8) to determine the population
selection trajectory τ(i), the probability of PG(τ (i)), and finally through the selected track
τ(i), guidelines to cross species reproducing offspring.

⎧
⎪⎨

⎪⎩

PG(τ (i)) = G(τ (i)) −Gmin
Gmax −Gmin

Gmax = max{G(τ (1)), G(τ (2)), · · · , G(τ (N ))}
Gmin = min{G(τ (1)), G(τ (2)), · · · , G(τ (N ))}

(8)

2.7 Rl-NSGA-II

For every parent population randomly assigned female parent to cross, traverse all cross
action, and produce offspring group, crossover operator, and the current population of
solutions for efficient non dominated sorting based on their offspring sorting level to
generate the corresponding offspring cross action reward and the action of the selected
probability (according to Eqs. (4) and (7) can be calculated separately as rewards and
probability). After all the parents have completed the above operations, a matrix space b
(containing the parent index and the parent index) and an action value space q (containing
the probability of different cross actions being selected) are obtained. First, sample N
trajectories τ(1), τ (2), . . . , τ (N ), and then according to Eq. (5) calculate the return
G(τ (1)),G(τ (2)), · · · ,G(τ (N )), and then according toEq. (8) determine the population
selection trajectory τ(i) the probability of PG(τ (i)), and finally through the selected
track τ(i), guidelines to cross species reproducing offspring. The specific steps of the
RL-NSGA-II are as follows:

• Step 1: Initial population. Random generation of initial population Rt ; the population
size of Rt is 2N , where t = 0 represents iterations.

• Step 2: The RL method outputs all trajectories and the probability that the trajectories
are selected.

• Step 3: Start the iteration.
• Step 4: The choice of locus τ(i) guides the selection of the crossover action and the
generation of offspring Qt .

• Step 5: A new population Q′
t is generated by using the mutation operator (real

mutation) for progeny Qt .
• Step6: Fast non-dominated sort.According to the target vector of each individual inQ′

t ,
the population is quick sorted according to the dominant situation among individuals.
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After the sorting is completed, the individuals are assigned to a different non-dominant
plane Fi (i is non-dominant order).

• Step 7: Define crowded degree calculation. An empty set Pt+1 is calculated according
to the order of the values i of childhood Fi within individual crowding distance, into
a collection Pt+1, until |Pt+1| + |Fi| > N (|P| element in the set P number).

• Step 8: Select suitable individuals to form a new population. Sort the crowded Fi

individuals according to the distance from big to small before finally takingN−|Pt+1|
individuals, incorporated into a collection of Pt+1.

• Step 9: Determine whether the number of iterations t+1 is greater than the maximum
number of iterations; otherwise, return Step 4; otherwise, end the iteration and output
the non-dominated solution set of the current population.

The RL method only learns the strategy of the initial population, and when the
population iterates, the strategy is not updated, but still guides the subsequent popu-
lation evolution by relying on previous experience. Therefore, the algorithm needs to
be improved, and the strategy can be further studied in the direction of updating the
evolution of the population.

2.8 Theoretical Analysis of RL-NSGA-II

There are many theoretical paradigms in RL. RL-NSGA-II adopts the ε greedy strategy
[11], which distributes the ε probability evenly among different crossovers, and allocates
the remaining (1 − ε) probability to the best crossovers a∗. Therefore, the RL-NSGA-II
strategy can effectively guide the population to approach the target solution space all the
time. The proof is as follows:

For a certain ε greedy strategy, use

π(a|s) =
⎧
⎨

⎩

1 − ε + ε
|A(s)| , a = arg max

a′ qπ

(
s, a′)

ε
|A(s)| , a �= arg max

a′ qπ

(
s, a′) (9)

If the improved strategy is π ′, then

qπ

(
s, a′) = ∑

a
π ′(a|s)qπ (s, a) = ε

|A(s)|
∑

a
qπ (s, a) + (1 − ε) max

a
qπ (s, a) (10)

Note that (1 − ε) > 0, and

1 − ε = ∑

a

(
π(a|s) − ε

|A(s)|
)

(11)

So,

(1 − ε)max
a

qπ (s, a) = ∑

a

(
π(a|s) − ε

|A(s)|
)
max
a

qπ (s, a)

≥ ∑

a

(
π(a|s) − ε

|A(s)|
)
qπ (s, a)

= ∑

a
π(a|s)qπ (s, a) − ε

|A(s)|
∑

a
qπ (s, a)

(12)
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and then

qπ ′(s, a) = ε
|A(s)|

∑

a
qπ (s, a) + (1 − ε)max

a
qπ (s, a)

≥ ε
|A(s)|

∑

a
qπ (s, a) + ∑

a
π(a|s)qπ (s, a) − ε

|A(s)|
∑

a
qπ (s, a)

= ∑

a
π(a|s)qπ (s, a)

(13)

The above procedure verifies the conditions of the policy improvement theorem. To
ensure that the updated policy is still the ε soft policy, the algorithmneeds to be initialized
as ε soft policy. In the subsequent iterations, the strategy π is the ε soft strategy, so it
can cover all reachable target solution space or cross-action pairs theoretically. In this
way, the global optimal strategy can be obtained, which provides a theoretical basis for
the algorithm to converge to the target solution space.

3 Experimental Results

To verify the performance of RL-NSGA-II, the test functions selected in this study
are the ZDT [7] test functions: ZDT1–ZDT4, ZDT6, and DTLZ1–5 [8]. The three
classical algorithms RL-NSGA-II and NSGA-II [1], MOEA/D [9] and SPEA2 [10]
were compared in simulation experiments. The simulation experiment was carried in an
AMD-RYZEN7-5800HCPU-@3.2 GHz environment.

3.1 Parameter Settings

To verify the effectiveness of RL method, this study did not tune the algorithm for the
selected test functions.

Furthermore, to ensure the fairness of the comparative experiment, the common
parameter settings (see Table 1) and test function settings (see Table 2) of all algorithms
are as follows:

Population size: Set all test functions to 500. Crossover operator: the variation prob-
ability Pm = 1/n, where n is the number of decision variables of the test function;
crossover probability Pc = 1, and the distribution indices of the crossover operation
and variation operation are ηc = 20 and ηm = 20, respectively. Termination condition:
The maximum number of iterations of all test functions is set to 500 generations. The
settings of unique parameters of each algorithm are consistent with literature [1, 9, 10].

3.2 Performance Evaluation

This study adopts two indicators to measure algorithm performance, as follows:
Inverted Generational Distance (IGD): measures the performance of the algorithm

approaching the theoretical Pareto front according to the average distance between
each point in theoretical Pareto front and the nearest solution in actual Pareto front.
To avoid contingency, the mean value of IGD of 10 repeated experiments is calculated
and recorded as IGDmean as one of the performance evaluation indexes.
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Table 1. Parameter settings of the algorithm.

Name of parameter Parameter meaning Parameter values

Popsize Population size 500

Varnumber Variable dimension n

Iteration Iterations 500

Pc Crossover probability 1

Pm Mutation probability 1/n

ηc Cross distribution index 20

ηm Variation distribution index 20

Table 2. The function setting of the algorithm.

Function name Dimensions of decision
variables

Number of objective
functions

ZDT1–ZDT3 n = 30 m = 2

ZDT4, ZDT6 n = 10 m = 2

DTLZ1 n = m + 4 m = 3

DTLZ2–DTLZ5 n = m + 9 m = 3

Hypervolume (HV): measures the volume enclosed between the optimization result
and the reference point andmeasures the approximation degree between the optimization
solution and the theoretical solution. To avoid contingency, the mean value of HV of 10
repeated experiments is calculated and denoted as HVmean as one of the performance
evaluation indexes.

3.3 Experimental Results of Competing Algorithms on the ZDT Functions

The four algorithms are compared on ZDT1–4 and ZDT 6 reference functions, and the
performances of the algorithm are evaluated by the two index values of IGDmean and
HVmean. Best results are displayed in bold font.

It can be seen from Table 3 that the IGDmean values of the algorithms on ZDT1–4
function are both less than 10–1, but the IGDmean values of them on ZDT6 function are
too large. This is because the parameter settings of all functions are the same. For ZDT6,
the maximum number of iterations currently set is too small and does not converge to
the optimal solution. By comparing the IGDmean values of RL-NSGA-II and NSGA-II,
the IGDmean values of RL-NSGA-II in ZDT1–4 and 6 functions are all lower than those
of NSGA-II, indicating that the optimization performance of RL-NSGA-II in ZDT1–4
and 6 functions is better than that of NSGA-II. According to the data in Table 4, the
HVmean of RL-NSGA-II and NSGA-II on ZDT6 function is negative for two reasons: 1)
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In the maximum number of iterations set, the algorithm cannot converge to the optimal
solution. 2) The reference point is not set properly.

Table 3. IGDmean comparison of algorithms on ZDT functions.

Function RL-NSGA-II NSGA-II MODA-D SPEA2

ZDT1 1.398E−2 2.397E−2 1.736E−1 5.502E−2

ZDT2 2.291E−2 4.631E−2 1.483E−0 8.121E−2

ZDT3 9.840E−3 1.769E−2 3.010E−1 8.484E−2

ZDT4 4.568E−3 2.485E−2 1.904E−0 1.365E−0

ZDT6 1.909E−0 2.306E−0 4.455E−0 3.323E−3

Table 4. HVmean comparison of algorithms on ZDT functions.

Function RL-NSGA-II NSGA-II MODA-D SPEA2

ZDT1 6.452E−1 6.299E−1 4.191E−1 5.842E−1

ZDT2 2.976E−1 2.631E−1 −1.312E−0 2.134E−1

ZDT3 1.024E−0 1.006E−0 3.982E−1 8.705E−1

ZDT4 6.592E−1 6.288E−1 −1.661E−0 −1.177E−0

ZDT6 −9.061E−1 −1.171E−0 −1.571E−0 3.216E−1

Since RL-NSGA-II is an improvement on NSGA-II, RL-NSGA-II and NSGA-II
are compared separately to verify the effectiveness of RL. In Fig. 3, The black point is
RL-NSGA-II, and the red point is NSGA-II. As can be seen from Fig. 3, RL-NSGA-II is
closer to the theoretical Pareto frontier on functions ZDT1–4 and 6, althoughRL-NSGA-
II is closer to theoretical Pareto frontier on ZDT6 function with poor performance.

3.4 Experimental Results of Competing Algorithms on DTLZ Functions

To verify the performance of RL-NSGA-II in high-dimensional problems, DTLZ1–5
functions are used as the problem to be optimized, and IGDmean and HVmean are also
used as indicators to test the performance of the algorithm.

Table 5 and Table 6, respectively, record IGDmean and HVmean values of the algo-
rithms optimized for different DTLZ functions. It is worth noting that the algorithms
have some difficulties in the DTLZ1 and DTLZ3 functions.

It can be seen from the data in Table 5 and Table 6 that RL-NSGA-II does not perform
well in high-dimensional problems, and only performs better than NSGA-II in DTLZ1
and 3 functions. The reason lies in the deviation in the judgment of the return mechanism
of the RL method.

In Fig. 4, The bule point is NSGA-II, and the red point is RL-NSGA-II. for the
DTLZ1 function, the solution set of NSGA-II is not evenly distributed, and there is
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Fig. 3. Pareto frontier comparison graph of algorithms on ZDT function. (Color figure online)

Table 5. IGDmean comparison of algorithms on DTLZ functions.

Function RL-NSGA-II NSGA-II MODA-D SPEA2

DTLZ1 2.137E−2 1.354E−1 26.52E−0 4.195E−0

DTLZ2 1.344E−3 1.313E−3 1.231E−1 8.366E−2

DTLZ3 3.304E−1 1.124E−0 1.562E+2 1.697E+2

DTLZ4 8.126E−3 8.094E−3 1.135E−1 7.618E−2

DTLZ5 8.126E−3 1.390E−3 3.137E−2 6.715E−3

Table 6. HVmean comparison of algorithms on DTLZ functions.

Function RL-NSGA-II NSGA-II MODA-D SPEA2

DTLZ1 9.238E−1 7.952E−1 −5.145E+2 −8.686E+1

DTLZ2 6.049E−1 6.058E−1 5.535E−1 4.268E−1

DTLZ3 3.069E−2 −2.946E−0 −1.142E+4 −2.17E+4

DTLZ4 6.049E−1 6.0526E−1 5.845E−1 3.325E−1

DTLZ5 4.429E−1 4.432E−1 5.447E−1 5.477E−1

a certain distance from the theoretical Pareto front. In the current maximum iteration
number, the solution set of RL-NSGA-II is more evenly distributed and closer to the
theoretical Pareto front in the same iteration number.
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Fig. 4. Pareto frontier comparison graph of algorithms on DTLZ function.(Color figure online)

4 Conclusions

In this study, an RL-NSGA-II algorithm was designed to solve the multi-objective opti-
mization problem. Different from other algorithms, this algorithm adopts RL technology
to improve the search efficiency of the algorithm, accelerate the convergence speed, and
maintain the diversity of the population. This design is based on environment predic-
tion, action-based prediction, and the Monte Carlo method for mathematical modeling
of population genetic information, interaction information with the environment, and
MDP, and better employs non-dominant information. Owing to the fact that the global
non-dominant solution contains valuable information, it can be used to guide the evo-
lution direction of the population, and accurately reflect the information of the optimal
solution set. The algorithm can sense the state of the current environment and select
the appropriate strategy to guide the evolution according to the information and expe-
rience obtained by the strategy. Finally, the algorithm NSGA-II is used for comparison
experiments, and the experimental results verify the effectiveness of RL-NSGA-II on
ZDT and DTLZ benchmark problems. Experimental results show that RL-NSGA-II can
effectively find the POF on most test problems.

Since RL-NSGA-II is still in the early stage of research, the subsequent optimization
of RL-NSGA-II can be started from the perspective of RL method and combined with
more advanced theoretical paradigm of reinforcement learning, which will be one of the
optimization directions for further research.
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Abstract. To improve convergence performance of the algorithm and prevent the
algorithm from falling into local optimal location,weproposes a novel fuzzymulti-
objective particle swarm optimization based on linear differential decline (LDDF-
MOPSO). In LDDFMOPSO, the fuzzy control strategy is applied to the inertia
weight, so that the search ability of the global and local can be flexibly adjusted,
thereby improving convergence performance of the algorithm. At the same time,
in order to prevent the algorithm from falling into local optimal location, the
strategy of linear differential decline is used to adjust the position change of parti-
cles. The experimental results illustrate that LDDFMOPSO has good performance
compared to four state-of-the-art multi-objective particle swarm optimizations.

Keywords: Particle swarm optimization · Multi-objective optimization
problems · Fuzzy control · Linear differential decline

1 Introduction

Many of the problems faced in engineering practice and scientific research are multi-
objective optimization problems (MOPs) [14]. Compared with the existing multi-
objective optimization, particle swarm optimization (PSO) [4] converges quickly and
easy to implement, so it has been widely studied and applied in MOPs [6]. In 2002,
Coello et al. proposed the multi-objective particle swarm optimization (MOPSO) [2]. At
the same time, the search process of the PSO is non-linear and very complicated, so it
is easy to fall into local optimal location. In recent years, many scholars have proposed
some ways to solve these problems. For example, in [11], a novel dynamic weighting
method based on chaotic sequence was proposed to select global optimal particle, so
as to improve the diversity of solutions. In [9], a scheduled competition learning based
MOPSO was proposed, which combined MOPSO and competition learning mechanism
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[12]. The competition learning mechanism was used in every certain iterations to main-
tain the diversity of the population. In MOPSO/GMR [5], Li et al. proposed Global
Marginal Ranking strategy (GMR) to rank particles in the swarm, which combined
the population distribution information and the individuals’ information, and GMR can
make the solution distribution obtained by the algorithm better when compared to tra-
ditional Pareto dominance. Most of the main tasks in the above algorithms are enhance
diversity of particles. In order to improve convergence performance of the algorithm
and prevent the algorithm from falling into local optimal location, we proposes a novel
fuzzy MOPSO based on linear differential decline (LDDFMOPSO), which uses a linear
differential decline strategy to adjust the positional change of particles and use fuzzy
control for inertia weights.

2 Related Work

2.1 Multi-objective Optimization Problems

A minimization MOPs can be formulated as follows:

min y = F(x) = (f1(x), f2(x), · · · , fm(x)) (1)

s.t.

{
gj(x) ≥ 0 i = 1, 2, · · · , p
hk(x) = 0 k = 1, 2, · · · , q.

where x is a vector with n decision variables; m is the number of objective functions; gj
is constraint of p inequality constraints; and hk is constraint of q equality constraints.

2.2 Multi-objective Particle Swarm Optimization

Assuming there are N particles in the D-dimensional objective space that make up a
swarm. The position and velocity of particle i− th are denoted as xi and vi respectively.
The velocity and position of each particle in swarm updates according to the following
equations:

vi(t + 1) = w · vi(t) + c1r1(pbesti(t) − xi(t)) + c2r2(gbesti(t) − xi(t)) (2)

xi(t + 1) = xi(t) + vi(t + 1). (3)

where t is the iteration number; w is the inertial weight; c1 and c2 are the learning
factors; r1 and r2 are random numbers generated uniformly in (0, 1),which c1 = c2 = 2
is usually taken; pbest represents optimal position of the individual; and gbest represents
global optimal position.
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3 The Details of LDDFMOPSO

3.1 Strategy of Fuzzy Control

In [13], the generalized bell-shaped membership function μ was used to fuzzy control
the inertia weight, so that the search space of the population changes from small to large.
After the search reaches a certain number of iterations, the search space is from large
to small, thus flexible adjustment of global and local search capabilities. Therefore, in
order to flexibly adjust the global and local search ability, the fuzzy control strategy of
inertia weight is used in MOPSO, and the velocity update formula of the particles is
adjusted to the formula (5) by using formula (4).

w′ = μ · w, μ =
(
1 +

∣∣∣∣ t − b

a

∣∣∣∣
4
)−1

(4)

vi(t + 1) = w′ · vi(t) + c1r1(pbesti(t) − xi(t)) + c2r2(gbesti(t) − xi(t)). (5)

where t is the current iteration; a and b are parameters, for details, please refer to [13].

Fig. 1. Illustration for detecting the iterations state by strategy of linear differential decline

Figure 1 shows LDDFMOPSO used strategy of linear differential decline to detect
the iterations state. We use it to compared with four late-of-the-art MOPSOs on
ZDT1–ZDT4, and ZDT6. The experimental results indicate that it has a the promis-
ing convergence performance of the proposed LDDFMOPSO in comparison with four
late-of-the-art MOPSOs on ZDT1–ZDT4, and ZDT6.
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Table 1. The influence of α value on IGD.

Functions IGD 0.2 0.3 0.4 0.5 0.6 0.7 0.8

ZDT1 Mean 4.12e−01 1.86e−01 6.02e−03 4.36e−03 4.49e−03 4.42e−03 4.62e−03

ZDT2 Mean 3.80e−01 1.47e−01 6.89e−03 4.52e−03 4.10e−03 4.39e−03 4.89e−03

ZDT3 Mean 4.36e−01 3.03e−01 2.25e−01 1.97e−01 1.99e−01 2.00e−01 2.01e−01

ZDT4 Mean 3.94e+00 5.81e−01 3.24e−02 4.59e−03 4.50e−03 4.38e−03 4.56e−03

ZDT6 Mean 2.21e+00 2.16e−02 4.57e−03 2.04e−03 2.08e−03 2.09e−03 2.10e−03

3.2 Strategy of Linear Differential Decline

In the early stage of algorithmevolution, the particle has a large rangeof position changes,
and has a strong global search ability, which is beneficial to the particle to seek global
optimal position. As the number of iterations increases, the closer the particle is to the
optimal solution, the easier it is to fall into the local optimum. To prevent the algorithm
from falling into local optimal location, a position update strategy of linear differential
decline is proposed in LDDFMOPSO. t is the current iteration, when the number of
iterations is low, the range of particle position change is large. α is a constants, and the
value of α is determined by the sensitivity analysis experiment in Table 1 and Table 2.
With the increase of iterations, the range of particle position change is reduced rapidly to
prevent particles from approaching the global optimal position too fast. Such a position
update strategy can effectively avoid the particle falling into local optimal location. In
LDDFMOPSO, the update formula for the particles’ position is as follows:

dσ

dt
= 2(1 − α)

t2max
· t (6)

σ(t) = 1 − 1 − α

t2max
· t2 (7)

xi(t + 1) = xi(t) + σ(t) · vi(t + 1). (8)

In this paper, we set the values of α to 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, and 0.8, and run
independently 30 times on the five test functions, then analyzing the sensitivity of the
different α values to the algorithm. From the experimental results, when α = 0.5, the
performance of LDDFMOPSO is best. It can be seen that when α = 0.4, the mean
values of HV obtained by algorithm is best on ZDT3; when α = 0.5, the mean values
of IGD obtained by algorithm is best on ZDT1, ZDT3 and ZDT6, the mean values of
HV obtained by algorithm is best on ZDT1, ZDT2, ZDT4, and ZDT6; when α = 0.6,
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Table 2. The influence of α value on HV.

Functions HV 0.2 0.3 0.4 0.5 0.6 0.7 0.8

ZDT1 Mean 3.94e−01 5.98e−01 7.16e−01 7.19e−01 7.18e−01 7.18e−01 7.18e−01

ZDT2 Mean 1.37e−01 3.03e−01 4.41e−01 4.44e−01 4.44e−01 4.44e−01 4.43e−01

ZDT3 Mean 4.76e−01 7.25e−01 7.37e−01 6.58e−01 6.57e−01 6.57e−01 6.56e−01

ZDT4 Mean – 3.29e−01 6.94e−01 7.19e−01 7.19e−01 7.19e−01 7.19e−01

ZDT6 Mean 2.53e−01 3.07e−01 3.82e−01 3.89e−01 3.89e−01 3.87e−01 3.86e−01

Table 3. IGD of different algorithms on five test functions.

Functions MOPSO
[2]

dMOPSO
[8]

MPSO/D
[3]

NMPSO
[7]

LDDFMOPSO

ZDT1 Mean 7.1799e−1 5.7847e−2 9.3183e−2 3.5090e−2 4.3554e−3

Std 1.94e−1 1.68e−2 4.15e−2 2.49e−2 4.86e−4

Wilcoxon – – – –

ZDT2 Mean 1.3758e+0 4.2019e−2 1.1169e−1 3.2642e−2 4.5162e−3

Std 2.83e−1 1.58e−2 7.92e−2 4.92e−2 8.07e−4

Wilcoxon – – – –

ZDT3 Mean 7.9358e−1 3.6270e−2 2.0157e−1 9.3162e−2 1.9730e−1

Std 1.85e−1 8.60e−3 3.69e−2 2.65e−2 4.17e−3

Wilcoxon – + = +

ZDT4 Mean 1.4572e+1 5.9152e+0 3.6456e+1 1.5571e+1 4.5921e−3

Std 5.18e+0 6.25e+0 7.26e+0 6.76e+0 5.64e−4

Wilcoxon – – – –

ZDT6 Mean 4.7995e−2 4.1046e−3 1.7750e−2 2.2710e−3 2.0431e−3

Std 1.25e−1 3.44e−3 8.84e−3 1.83e−4 3.72e−4

Wilcoxon – – – –

±/= 0/5/0 1/5/0 0/5/1 1/5/0

Best/all 0/5 1/5 0/5 0/5 4/5

The mean values of IGD obtained by algorithm is best on ZDT2; when α = 0.7, the
mean values of IGD obtained by algorithm is best on ZDT4; when α = 0.2, α = 0.3, and
α = 0.8, the performance of the algorithm is the worst. From the experimental results,
when α = 0.5, the performance of LDDFMOPSO is best. Therefore, the value of α is
set as 0.5.
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Table 4. HV of different algorithms on ZDT1–ZDT4, and ZDT6.

Functions MOPSO
[2]

dMOPSO
[8]

MPSO/D
[3]

NMPSO
[7]

LDDFMOPSO

ZDT1 Mean 8.8943e−2 6.5184e−1 5.8657e−1 6.9153e−1 7.1922e−1

Std 9.72e−2 1.89e−2 5.63e−2 1.39e−2 8.94e−4

Wilcoxon – – – –

ZDT2 Mean 0.0000e+0 3.8229e−1 3.0932e−1 4.2110e−1 4.4486e−1

Std 0.00e+0 2.43e−2 8.08e−2 4.81e−2 1.42e−3

Wilcoxon – – – –

ZDT3 Mean 9.1199e−2 6.0600e−1 4.6355e−1 5.7286e−1 6.5828e−1

Std 8.31e−2 1.52e−2 4.50e−2 9.87e−3 1.39e−3

Wilcoxon – – – –

ZDT4 Mean 0.0000e+0 4.4632e−2 0.0000e+0 0.0000e+0 7.1874e−1

Std 0.00e+0 7.82e−2 0.00e+0 0.00e+0 1.04e−3

Wilcoxon – – – –

ZDT6 Mean 3.5835e−1 3.8789e−1 3.7455e−1 3.8982e−1 3.8876e−1

Std 7.58e−2 3.45e−3 7.78e−3 1.25e−4 3.14e−4

Wilcoxon – = – =

±/= 0/5/0 0/5/1 0/5/0 0/5/1

Best/all 0/5 0/5 0/5 1/5 4/5

3.3 Procedure of LDDFMOPSO

Step 1 Initialize the population, and set acceleration constants c1 and c2 other parameters;
Step 2 Determine whether the terminal conditions are met. If met, output the results and
terminate the algorithm. Otherwise, continue to the next step;
Step 3 An external archive is established;
Step 4 The global optimal position (gbest) and individual optimal position (pbest) are
selected;
Step 5 The velocity and position of particles are updated according to formula (5) and
(8);
Step 6 The gbest and pbest are update;
Step 7 They enter the next iteration, then move to step 3.

4 Experimental Results

4.1 Test Functions and Experiment Parameters

To demonstrate the performance of LDDFMOPSO, we have chosen ZDT series test
functions [16]. The population size N in this paper is set to 200; The number of objective
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is 2; The dimension of the decision space of ZDT1–ZDT3 is 30, and the dimension of the
decision space of ZDT4 and ZDT6 is 10; The maximum number of iterations is 2000.
For fair comparison, all relevant parameters of other algorithms are set according to the
suggestions in the original literature.

Fig. 2. The simulation diagram of LDDFMOPSO and comparative algorithms on ZDT1–ZDT4,
and ZDT6.

The goal of MOPs is to find a uniformly distributed set that is as close to the true
Pareto fronts as possible. To evaluate the performance between different algorithms,
we adopt Inverse Generation Distance (IGD) [1] and Hyper-Volume Metric (HV) [15]
in this paper. They are believed that this performance index can not only explain the
convergence effects of the algorithm, but also explain the distribution of the final solution.
The true Pareto front for were downloaded from http://jmetal.sourceforge.net/problems.
html. In order to draw statistical conclusions, the number of independent runs of each
test experiment is set to 30.

In addition, in order to determine the statistical significance, a Wilcoxon rank sum
test was further carried out to test the statistical significance of the difference between
the results obtained by LDDFMOPSO and the results obtained by other algorithms at
α = 0.05. All experimental results are obtained on PC with 2.3 GHz CPU and 8 GB
memory. All source codes of these competing algorithms are provided in the PlatEMO
[10].

4.2 Experiments Results and Analysis

In order to visually compare the performance of MOPSO [2], dMOPSO [8], MPSO/D
[3], NMPSO [7], and LDDFMOPSO, the convergence characteristics of non-dominant
solutions obtained by the five algorithms are shown in Fig. 2. It can be seen that MOPSO
cannot obtain a good convergence to the true Pareto front on ZDT1–ZDT4, and the
search results of MOPSO only can convergence to the Pareto front region on ZDT3. The

http://jmetal.sourceforge.net/problems.html
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dMOPSO cannot obtain a good convergence to the true Pareto front on ZDT1–ZDT3.
The MPSO/D cannot obtain a good convergence to the true Pareto front on ZDT1,
ZDT2, and ZDT4. In contrast, LDDFMOPSO and NMPSO can convergence the true
Pareto front of the five test functions quite well and are evenly distributed.

Moreover, the Wilcoxon rank-sum test is adopted at a significance level of 0.05,
where the symbols “+”, “−”, and “=” in the last row of the tables indicate that the
result is significantly better than it, significantly worse than it, and statistically similar
to that obtained by LDDFMOPSO, respectively. The best average for each test instance
is shown in bold.

Fig. 3. Statistical boxplot of IGD indicator of different algorithms on ZDT1–ZDT4, and ZDT6,
respectively.

It can be observed directly that the performance of LDDFMOPSO is superior to the
comparative algorithm than MOPSO, dMOPSO, MPSO/D, and NMPSO. For example,
the number of optimal IGD for MOPSO, MPSO/D, and NMPSO is zero, the number of
optimal IGD for dMOPSO is one, and LDDFMOPSO has four optimal IGD values. At
the same time, the number of optimal HV for MOPSO, dMOPSO, and MPSO/D is zero,
the number of optimal HV for NMPSO is one, and LDDFMOPSO has four optimal HV
values.

At the same time, when different algorithms are run independently for 30 times,
the partial statistical block diagram of the evaluation index IGD of LDDFMOPSO
and comparative algorithm is shown in Fig. 3 (1, 2, 3, 4, and 5 represent MOPSO,
dMOPSO, MPSO/D, NMPSO, and LDDFMOPSO respectively). As shown in Fig. 3,
LDDFMOPSO recorded the minimum values on ZDT1–ZDT4 and ZDT6. It can be
clearly seen from Fig. 3 that LDDFMOPSO can obtain better non-dominated solutions
compared with other algorithms. The results are consistent with the qualitative analysis
in Table 3 (Table 4).
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5 Conclusion

We propose novel fuzzy MOPSO based on linear differential decline. The main purpose
of this algorithm is to prevent the algorithm from falling into local optimal location and
improve convergence performance of the algorithm. In the proposed algorithm, the fuzzy
control of the inertia weight is used to flexibly adjust the size of the search space, so
that the algorithm can balance the global and local search capabilities, thus improving
the convergence performance of the algorithm. At the same time, the algorithm uses
the linear differential decline strategy to adjust the position change of the particles and
prevent the algorithm from falling into local optimal location. The experimental results
show that LDDFMOPSO has good convergence and diversity. Compared with four
classical MOPSOs, LDDFMOPSO can improve the convergence performance of the
algorithm and effectively prevent the algorithm from falling into local optimal location.

Acknowledgement. This work is supported by Key Talents Program in digital economy of
Guizhou Province.
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Abstract. When addressing the multi-objective optimization, bacterial colony
optimization algorithms are easy to fall into local optimum, which leads to the
insufficient diversity and convergence. To overcome this drawback, in this study,
a new multi-objective bacterial colony optimization based on multi-subsystems,
abbreviated as MOBCOMSS, is proposed. The MOBCOMSS uses a hierarchical
clustering approach to adapt the colony into multiple sub-colony systems based on
evolutionary state. Each subsystem in the colony searches and stores information
independently. Then, the diversity and convergent information from subsystems
are returned to the elite archive for the whole colony. Besides, information suitable
for the development of diverse subsystems is extracted from the elite archive for
adaptive updating to eventually balance global and local search and achieve prob-
lem adaptation. Finally, the proposed MOBCOMSS is compared with 4 popular
algorithms in the environmental economic dispatch of power systems (EED) on the
standard IEEE 30-bus test system. The results demonstrate that MOBCOMSS can
find optimal solutionswith better convergence and diversity than other comparison
algorithms in solving the EED problem with lower computational consumption,
showing good feasibility and effectiveness.

Keywords: Multi-objective optimization · Environmental economic
dispatching · Bacterial colony optimization ·Multi-subsystem

1 Introduction

Environmental/Economic Dispatch (EED) has become an important optimization prob-
lem in power system operation with the increasing concern for environmental pollution.
According to EED, economic maintenance and pollutant emissions are both kept as
low as possible while satisfying all equality and inequality constraints [1]. Nonetheless,
minimizing total emissions and economic maintenance costs are inherently contradic-
tory, and they cannot be addressed just using traditional single-objective optimization
techniques simply due to their multiple nonlinear constraints. Therefore, it is necessary
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to transform EED problem into a multi-objective optimization problem (MOP) while
handling multiple equality and inequality constraints.

MOP means two or more contradictory goals are optimized concurrently. Moreover,
these objective functions always contradict each other. Numerous evolutionary algo-
rithms have been used to solve the multi-objective EED problem successfully, attracting
the interest ofmany scholars [1, 2].Many optimization algorithms based on bacteriawere
proposed in recent years, where the prominent examples are bacterial foraging algorithm
(BFO) [3], bacterial colony optimization (BCO) [4], slime mould algorithm (SAM) [5].
On the one hand, most bacterial algorithms could be highly efficient in solving single-
objective optimization problems for its global search ability [5, 6].On the other hand,
bacterial optimization algorithms showed adaptive behavior of intelligent emergence
facing high computational consumption and inefficient utilization of prior knowledge
in multi-objective optimization problems [3, 7]. For EED problem, Panigrahi et al. [8]
applied a fuzzy method for BFO to solve the EED problem. Tan et al. [9] proposed a
discrete BFO that used the health classification method to control the reproduction and
elimination opportunities on EED problem.

Simulation results show the effectiveness of above algorithms. However, thesemulti-
objectiveBFOalgorithms are basedon a complex three-layer nested computing structure,
effective calculations are at the cost of sacrificing a large amount of computing power. In
addition, the capability to balance global search and local search is still needed to enhance
for multi-objective BFO algorithms. The disequilibrium leads to local Pareto or even
stops convergence prematurely. The BCO further proposed a life cycle model instead of
the three-layer nested structure that enhances computing effectiveness. However, BCO
is updated and iterated with the guidance of individual bacteria which leads to trapping
into local optimal easily.

Given the above considerations, a new multi-objective bacterial colony optimization
based on multi-subsystems, abbreviated as MOBCOMSS, is developed in this paper.
The MOBCOMSS newly proposed to consider not only the behavior in the evolution-
ary structure but also multi-subsystems search strategy for enhancing the diversity of
population and avoiding trapping in local Pareto front.

2 Background

2.1 Environmental/economic Power Dispatch (EED)

EED is to find a dispatching scheme that solves for the optimal value of both objective
functions (fuel cost and pollution emissions) while satisfying the power supply-demand
balance and unit capacity constraints. The EED is a non-linear and high-dimensional
optimization problem that must also satisfy both equation and inequality constraints,
making it difficult to find a globally optimum solution using traditional gradient-based
optimization methods.

In this paper, the IEEE 6 machine 30-bus standard system is chosen for verifying the
performance of MOBCOMSS, More detailed parameters can check [9].
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2.2 Bacterial Colony Optimization (BCO)

Bacterial Colony Optimization (BCO)is a new evolutionary algorithm proposed by Niu
et al. [4] that simulates bacterial life-cycle behaviors in the swarm intelligence way.
The main improvement in BCO is the way to forage that bacterium usually towards
nutrients by exchanging information between individuals instead of randomwalks.More
information about BCO can refer to [4, 6].

3 Multi-objective Bacterial Colony Optimization Based
on Multi-subsystems

From previous multi-objective optimization algorithms based on bacteria, it seems that
there are generally problems such as insufficient population diversity and poor conver-
gence, which in turn lead to failure to obtain a good Pareto front [3, 9]. In order to
enable populations to preserve and extract information with diversity and convergence,
this paper proposes a multi-subsystem search strategy with adaptive colony behaviors.
For a specific algorithmic framework see Fig. 1 and Algorithm 1.

Fig. 1. The overall framework of MOBCOMSS.

3.1 Multi-subsystems Search Strategy

The main idea of bacterial colony optimization is to first initialize the colony Xi =
[xi1 , xi2 , . . . , xin ]T , i = 1, 2, 3, . . . ,m, and perform random foraging behavior. The
whole population is updated through continuous iteration with each bacterium updating
its position through group communication [4]. Traditional bacterial colony optimization
algorithms typically set a global optimum individual and drives the entire population
towards found global optimum [6, 9]. The global optimum oriented search allows the
algorithm to converge more quickly than a random search. Nevertheless, a single global
optimum is not necessarily effective in multi-objective optimization problems. Multi-
objective optimization is often not optimal for all objectives due to conflicts between
objectives, which drives us to explore how to obtain the information that drives the
evolution of the entire population.

Inspired by the biological swarm phenomenon of system-subsystem-individual sys-
tem, we explored the influence of multiple subsystems in a bacterial colony system and
devised a multi-subsystem search strategy. As shown in the Algorithm 1 on lines 3–10,
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the similarity of the population is calculated firstly with the metric that can be used as
positional similarity, convergent similarity relative to the origin, and diversity similarity.
The whole population is sliced by means of hierarchical clustering to obtained multiple
sub-colony systems, each of which includes multiple bacteria.

Multiple bacterial colony subsystems operate independently and an external archive
of a central information hub is designed to store the optimality search information. For
multi-objective optimization problems, diversity and convergence information is stored
in the external archive. During independent optimization searches, subsystems extract
information from the central information hub that is appropriate for the development of
that subsystem and proceeds to the next step of the adaptive optimization process until
a specified number of iterations.

Algorithm 1. Overview of MOBCOMSS
01: Input: npop; MaxFEs; learning rate α; Genetic Parameters
02: Initialization: Pop (Population)
03: while Fes MaxFEs do
04: Calculate the individual similarity with crowding distance and position;
05: Hierarchical Clustering;
06: Store non-dominated solutions to EA (External archive);
07: for each subsystem Pop do
08: for each bacterium subsystem do
09: Position updating using Eq.(1)
10: end
11: end
12: Parents selection;
13: Crossover;
14: Mutation;
15: if meet elimination condition then
16: Adaptive Elimination;
17: else
18: Continue;
19: end
20: Update the elite archive
21: end
22: Output: EA (External archive)

3.2 Improved Bacterial Colony Behaviors

The previous bacterial colony optimization had a high reliance on individual optimum
and single global optimum, which did not satisfy the requirements for diversity and con-
vergence in multi-objective optimization. To enhance the ability to improve the diversity
of the population and accelerate the convergence of the algorithm, a newupdatingmethod
is proposed as shown in Eq. (1).

xti = w · xt−1
i + Ci ·

{
r1 ·

(
xc − xt−1

i

)
+ r1 ·

(
xd − xt−1

i

)}
(1)
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where w is the initial weight, Ci represents the chemotaxis steps and the xc and xd
are convergent leaders and diversity leaders suit for each of subsystem. As shown in
lines 11–13, in order to further enhance population diversity, the proposed algorithm
introduces operations such as selection, crossover and mutation in genetic algorithms
instead of the traditional replication operations of colony optimization. Furthermore,
to avoid the population falling into a local optimum, an adaptive elimination strategy
is proposed, see lines 14–18. Adaptive elimination refers to the fact that if the current
convergent optimum stored in the central information hub does not change for a long
time which means that the whole algorithm is not further improved. If the convergence
information remains unchanged for a long time, as shown in Eq. (2), the probability of
elimination of the population is increased as the number of iterations increases.

Pedt = Pedt−1 + 0.1, if xd not changed (2)

A timer is put up in the adaptive elimination adjustment to keep track of the time it
takes for the convergence to stagnate. Whenever the counter hits a predetermined value,
the likelihood of elimination rises in lockstep with the growth in the counter. Similarly,
the eliminated bacteria are replaced to some new position.

4 Simulation Analysis

4.1 Experimental Setup

In this paper, MOBCOMSS is applied to the EED optimization problem and the energy
consumption parameters, emission parameters and loss factors of the generating units
are referred to the relevant literature [9]. In this paper, MOPSOCD [10], MMOPSO
[11], NSGAII [12], PESAII [13] are selected as comparative algorithms. The simulation
analysis is carried out for the two cases of considering network losses and not considering
network losses respectively. All experiments are carried out on a PC with Intel Core i-5
10210U@1.60GHz and 16GBmemory, windows 11 system andMatlab 2020b. Among
all comparison algorithms, the population size is set to 100 and the maximal number
of fitness evaluations (FEs) is set at 10000. All the experimental results are obtained
after 30 independent runs. In the experiments, the Hypervolume (HV) [14] and Spread
[15] metric are used to evaluate the optimization performance of the algorithm, and the
reference point for HV is set as [1.1,1.1,…,1.1]d .

4.2 Results and Analysis

Table 1 gives the best solutions for economic cost in case 1 and case 2 obtained by diverse
algorithms. The proposed MOBCOMSS and the MMOPSO get the minimum value of
economic cost is 605.9984 ($/h), significantly better than other algorithms. As shown
in Table 1, The proposed MOBCOMSS gets the minimum value of economic cost is
605.9984 ($/h) while other algorithms getting results above it, which means the MOB-
COMSS ismuch better than other algorithms. Table 2 gives the best solutions for environ-
mental emission in case 1 and case 2 by selected algorithms. From Table 2, the minimum
value of case 1 emissions obtained by the proposedMOBCOMSS is 0.194180 (t/h),while
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the minimum values of that obtained by MOPSOCD, MMOPSO, NSGAII, PESAII are
higher than that of MOBCOMSS. Table 2 shows that MOBCOMSS, MMOPSO and
NSGAII reach 0.194179 simultaneously in case 2. However, the proposed algorithm
outperforms other algorithms in terms of emission at higher precision.

Table 1. Best solutions for cost ($/h) in case 1/2. (30 trials).

Methods Case P1 P2 P3 P4 P5 P6 Cost Emission

MOBCOMSS C1 0.121165 0.286481 0.583648 0.992943 0.523379 0.351946 605.9984 0.220724

C2 0.120808 0.286384 0.583565 0.992423 0.524187 0.352195 605.9984 0.220702

MOPSOCD C1 0.114755 0.288016 0.590255 0.988176 0.525345 0.352914 606.0074 0.220654

C2 0.118497 0.288106 0.582691 0.988334 0.526146 0.35583 606.0028 0.22043

MMOPSO C1 0.121026 0.286232 0.584042 0.992663 0.523847 0.351736 605.9984 0.220722

C2 0.121004 0.286407 0.583672 0.9929 0.523653 0.351926 605.9984 0.220729

NSGAII C1 0.121191 0.283844 0.58349 0.994651 0.526673 0.349685 606.0002 0.220925

C2 0.121343 0.284665 0.583159 0.992522 0.525649 0.352203 605.9989 0.220723

PESAII C1 0.125551 0.288536 0.583595 0.988879 0.523704 0.349215 606.0034 0.22031

C2 0.122422 0.286405 0.584904 0.991566 0.51855 0.355684 606.0016 0.220542

Table 2. Best solutions for emission (ton/h) in case 1/2. (30 trials).

Methods Case P1 P2 P3 P4 P5 P6 Cost Emission

MOBCOMSS C1 0.411291 0.465579 0.543524 0.390158 0.54634 0.512457 646.2336 0.19418

C2 0.410987 0.461506 0.543599 0.391264 0.546415 0.51553 646.0564 0.194179

MOPSOCD C1 0.404013 0.466756 0.546965 0.392052 0.540709 0.518472 645.8045 0.194184

C2 0.410904 0.466762 0.537149 0.395849 0.54337 0.515441 645.9386 0.194183

MMOPSO C1 0.413928 0.464214 0.546861 0.391304 0.53896 0.514232 646.3356 0.194181

C2 0.410271 0.464083 0.545808 0.388842 0.546933 0.513304 646.2185 0.194179

NSGAII C1 0.412433 0.462986 0.543986 0.392253 0.546065 0.511635 646.0202 0.19418

C2 0.411563 0.461548 0.546942 0.389859 0.545276 0.514091 646.1526 0.194179

PESAII C1 0.409714 0.45389 0.555662 0.388831 0.548949 0.511831 645.6954 0.194193

C2 0.413379 0.459561 0.553073 0.389989 0.539954 0.513335 646.16 0.194185

To demonstrate further the distribution of solutions on the obtained Pareto front,
Fig. 2 displays the graphical results produced by the MOBCOMSS algorithm and other
four algorithms for case 1 and case 2. At the same time, the hypervolume HV and Spread
are applied to measure the performance of algorithm. As shown in Fig. 2, the Pareto
front obtained by MMOPSO on case 1/2, MOPSOCD on case 1, NSGAII on case 1 and
PESAII on case 1/2 can be seen to be unevenly distributed, with vacant Pareto fronts.
In addition, the Pareto front of MOPSOCD on case 2, NSGAII on case 2 and PESAII
on case 1/2 have overlapping solutions. In contrast, the pareto fronts obtained by the
proposed MOBCOMSS on case 1 and case 2 are smoother and more uniform, with a
wider distribution and no overlapping solutions.
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From Table 3, the proposed MOBCOMSS is able to achieve the highest HV value
compared to the other algorithms in Case 1 and Case 2, respectively, and Table 4 shows
that the lowest Spread value can be achieved for the diversity metric, which proves the
effectiveness of the proposed algorithm in improving diversity as well as convergence.

Table 3. Statistical results of the metrics HV for Case 1/2 (30 trials).

HV Case Best Worst Median Average STD

MOBCOMSS C1 0.128396 0.128356 0.128387 0.128385 8.03E-06

C2 0.128394 0.128355 0.12839 0.128387 8.38E-06

MOPSOCD C1 0.128371 0.128327 0.128354 0.128352 1.16E-05

C2 0.12837 0.128296 0.128351 0.128347 2.01E-05

MMOPSO C1 0.128391 0.128366 0.128387 0.128384 7.65E-06

C2 0.128394 0.128372 0.128388 0.128387 5.25E-06

NSGAII C1 0.128385 0.128366 0.128379 0.128378 5.38E-06

C2 0.128386 0.12837 0.128379 0.128378 4.34E-06

PESAII C1 0.128348 0.128157 0.128311 0.128306 4.14E-05

C2 0.128352 0.128169 0.128304 0.128292 5.07E-05

Table 4. Statistical results of the metrics Spread for Case 1/2 (30 trials).

HV Case Best Worst Median Average STD

MOBCOMSS C1 0.555919 0.665939 0.627925 0.620376 3.03E-02

C2 0.548758 0.670397 0.619972 0.621405 3.07E-02

MOPSOCD C1 0.607426 0.757483 0.694027 0.69153 3.63E-02

C2 0.597029 0.776177 0.684779 0.682769 0.045266

MMOPSO C1 0.548858 0.714839 0.652339 0.651771 4.77E-02

C2 0.515596 0.750139 0.652181 0.650466 0.049113

NSGAII C1 0.568894 0.792423 0.689091 0.694539 5.33E-02

C2 0.632373 0.840626 0.705666 0.712683 0.044622

PESAII C1 0.887064 1.133629 0.997456 0.987289 5.25E-02

C2 0.744185 1.169833 0.927624 0.940232 0.079911
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Fig. 2. Pareto solutions produced by five methods for case1 and case2
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Fig. 2. continued

5 Conclusion

In this paper, a novel multi-objective bacterial colony optimization based on multi-
subsystem (MOBCOMSS) is proposed and used to solve the EED problem. The MOB-
COMSS proposed a multi-subsystem search strategy, which enhances the population
diversity and multi-objective optimization adaptability during algorithm execution pro-
cess. Furthermore, the MOBCOMSS proposed an adaptive pattern of bacterial colony
behavior to accelerate the convergence of the algorithm and avoid falling into local
optimum. Finally, the simulation is validated in two cases considering transport losses
and not. The simulation results show that the proposed MOBCOMSS has good perfor-
mance and the Pareto frontier obtained with limited computational power is uniformly
distributed.
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Abstract. To improve evacuation efficiency and safety, indoor obstacles are usu-
ally used in different scenes. However, layout of indoor obstacles may have many
actual constraints; thus more equivalent or alternative schemes should be provided
to decision-makers. To carry out the above objective, amultimodal multi-objective
layout optimization problem of indoor obstacles is proposed in the present study.
Moreover, a state-of-the-art multimodal multi-objective evolutionary algorithm
is used to solve this problem. Simulation results show that the current study can
provide more schemes to decision-makers for different scenario constraints when
the evacuation efficiency and safety are the same.

Keywords: Multimodal multi-objective optimization · Evolutionary
computation · Crowd evacuation · Obstacle layout · Evacuation efficiency

1 Introduction

With the increase in number of large-scale buildings, indoor crowd safety has been
widely concerned. Moreover, the evacuation efficiency and safety are great impacted by
environmental factors, such as exits and obstacles [1]. Actually, a short evacuation time
and a low evacuation risk are two main objectives in the crowd evacuation. Therefore,
using obstacle is a feasible method to implement the above objectives. Note that exit
obstacle may hinder crowd evacuation in initial studies [2]. Subsequently, many studies
show that exit obstacle can improve the crowd evacuation efficiency, i.e., reduce the
crowd time [3]. However, Koo et al. [4] pointed out that the crowed time and the crowed
safety may be conflicted due to the exit obstacle. In other words, the efficiency and
the safety of crowd evacuation cannot be satisfied at the same time. Additionally, many
environmental constraints need to be considered in layout of indoor obstacles, such as the
cost, building structure, and so on. Therefore, more alternative schemes should provide
when the efficiency and safety of crowd evacuation are the same. Clearly, the layout
optimization of indoor obstacle is a multimodal multi-objective optimization problem
(MMOP), in which at least one objective vector has multiple equivalent solutions in the
decision space [5, 6].

To solve the above issue, a multimodal multi-objective layout optimization model
of indoor obstacle is introduced in the present study. In this model, the evacuation time
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and the evacuation risk are two objectives, and three optimized variables are the obsta-
cle length, the distance from obstacle to exit, and the deviate distance from obstacle to
the center of exit. Moreover, a self-organized speciation based multi-objective particle
swarm optimizer (SS-MOPSO) [7] is used to solve this problem. Compared with pre-
vious studies, the experimental results indicate that the SS-MOPSO can provide more
alternative layout schemes, which permit users to choose the most suitable one based on
actual scenarios or their preferences.

The remaining study is described as follows. Section 2 introduces the related work
of crowd evacuation. Section 3 introduces the social force model (SFM) and multi-
modal multi-objective optimization (MMO). The proposed model and the multimodal
multi-objective optimization evolutionary algorithm (MMOEA) used in this study are
presented in Sect. 4. Section 5 shows the experimental results and analysis. Finally, the
study is concluded in Sect. 6.

2 Related Work

In early emergencymanagement studies, indoor obstacles are often regarded as hindering
the pedestrian flow, which has a negative influence on evacuation efficiency and safety
[2]. However, many recent studies have shown that indoor obstacles can reduce the
total evacuation time in some cases. Helbing et al. [8] pointed out that obstacles can
relieve the pressure on pedestrians and alleviate congestion, which could improve the
evacuation efficiency. Chen et al. [9] found that the impact of obstacles on the evacuation
efficiency is not all positive in the evacuation environment with obstacles. Zuriguel et al.
[10] speculated that obstacles can relieve the pressure of the exit through the actual
soldier evacuation experiment. Wang et al. [11] investigated the influence of placing
obstacles in front of the corner exit, wherein the distance from the obstacle to the exit
played an obvious role in evacuation. Sitcco et al. [12] suggested that the three-entry
vestibule structure can considerably improve real-life emergency evacuations. Liu et al.
[13] proposed to make full use of rigid obstacles’ guiding function close to hazard
sources. Ding et al. [14] indicated that, if the flexible obstacle is too close to the exit
and its height is very low, then it can reduce evacuation time compared to the rigid
obstacle. To discover the effect of the obstacles near the door, a game-theoretical model
of pedestrian evacuation was built by Chen et al. [15]. Therefore, layout optimization of
indoor obstacles is important.

To tackle the above issues, a large number of meta-heuristics algorithms have been
proposed in previous studies. For example, Zhao et al. [16] proposed a crowed evacuation
simulation method for planning the route in terms of the dynamic changes of evacuation,
which is solvedby an improved artificial bee colony algorithm.Experiments show that the
improved model can efficiently evacuate a dense crowd in multiple scenes. Considering
attractive force of target position, repulsive forces of crowd and obstacles, Zong et al.
[17] employed a visual guidance-based artificial bee colony algorithm to optimize the
evacuation process with a large number of obstacles and evacuees. A modified particle
swarm optimizer [18] with a dual-strategy adaptive control method was introduced to
alleviate the message divergence between leaders and agents. Evacuation experiments
are set in a rectangle venue with multiple exits, the result shows that the movement of
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leaders is different from other agents and the setting of doors can significantly affect the
evacuation time. For the crowd dynamics problems, Cui et al. [19] managed to analyze
optimal initial individual evacuation condition. In experiments, a genetic algorithm is
incorporated into the floor field cellular automata model, and the simulation results
indicate that the initial condition including amixture of patient and impatient pedestrians
has a great influence on the evacuation efficiency.

3 Preliminary Knowledge

3.1 The Social Force Model

Based on Newton’s second law, the resultant force received by pedestrians is converted
into acceleration and speed, which changes the position of pedestrians. The basic form
of SFM [20] is:

mα

d−→v α(t)

dt
= −→

f 0
α +

∑

β( �=α)

−→
f αβ +

∑

W

−→
f αw, (1)

where mα is the quality of pedestrian α;
−→
f 0

α represents the driven force of pedestrian α,

and names the desired force;
−→
f αβ represents the repulsive force between pedestrian α

and pedestrian β;
−→
f αw represents the repulsive force of the wall to pedestrians.

−→
f 0

α=mα

v0α(t)−→e 0
α(t)−−→v α(t)

τα

, (2)

where v0α(t) is the desired speed value of pedestrian α at t time;−→e 0
α is the target direction

of pedestrian α, and it directs the exit; −→v α(t) is the actual speed of pedestrian α; τα is
the reaction time of pedestrian α.
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�vtβα

−→
t αβ collectively referred to as the

granular force
−→
f P

αβ ; Aαe
rαβ−dαβ

Bα
−→n αβ is the psychological repulsion force

−→
f s

αβ ; Aα

and Bα are two constants; rαβ represents the sum of psychological exclusion distance
between pedestrian α and pedestrian β; dαβ indicates the actual distance between pedes-
trian α and pedestrian β; k and κ are fixed coefficients; −→n αβ denotes the normalized
vector, which includes the direction and distance from pedestrian α to pedestrian β;
�vtβαtαβ = (

vβ − vα

)−→
t αβ is the speed difference in tangential direction between pedes-

trian α and pedestrian β;
−→
t αβ =

(
−n2αβ,−n1αβ

)
refers to the normalized vector which

is perpendicular to −→n 0.
−→
f αw=Aαe

rα−dαw
Bα

−→n αw+kg(rα − dαw)
−→n αw+κg(rα − dαw)�vtwα

−→
t αw, (4)

g(x)=
{
x, x > 0

0, x ≤ 0
.,

In Eq. (4),
−→
f αw is similar to

−→
f αβ .
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3.2 Multimodal Multi-objective Optimization

The MMOP can be defined as follows [5, 6]:

min
s.t.x∈�

F(x) = (f1(x), f2(x), ..., fm(x))T , (5)

where x = (x1, x2, ..., xN )T represents n-dimensional decision vector; � ∈ RN denotes
n-dimensional decision space;m-dimensional objective space is composed of all possible
values of F(x).

Some basic concepts in MMO are presented as follows [21]:

Definition 1 (Dominance relation): For a minimization optimization problem, there are
two vectors u and v, if ∀n ∈ {1, 2, · · ·,m}, un ≤ vn and u �= v, then v is considered to
dominate v, summarized as u � v.

Definition 2 (Pareto optimal set): A solution x∗ ∈ RD is called a Pareto optimal solution
of aMMOP if and only if there is no other solution x such thatF(x) � F(x∗). The Pareto
set (PS) is regarded as the set of all the Pareto optimal solutions, noted as X∗.

Definition 3 (Pareto front): Pareto Front of a MMOP can be defined as PF ={
F(x∗)

∣∣x∗ ∈ X∗ }
.

In theMMO, there may exist two or more distinct PSs corresponding to the same PF
[5, 6]. To effectively solve MMOPs, a large number of MMOEAs have been proposed
in previous studies [6, 7, 21–23].

4 Proposed Methodology

4.1 The Proposed Model

The present study aims to optimize the layout of obstacles, thus the SFM based on the
collision prediction is used [24].

the deviate distance from 
obstacle to the center of 

exit (d2)

ob
st

ac
le

_l
en

gt
h

( l)

the distance from 
obstacle to exit (d1)

Fig. 1. Three optimized variables of obstacle
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Three optimized variables are shown in Fig. 1, which are the obstacle length, the
distance from obstacle to exit, and the deviate distance from obstacle to the center of
exit.

Based on Ref. [24], the SFM with obstacles can be defined as follows:

mα

d−→v α(t)

dt
= −→

f 0
α +

∑

β( �=α)

−→
f αβ +

∑

W

−→
f αw+

∑

O

−→
F αo, (6)

where
−→
F αo represents the force of the obstacle to pedestrian α.

−→
F αo=

2mα

(−→
B αo − −→

D αo − −→v αo�t
)

(�t)2
, (7)

where
−→
B αo denotes the vector, which includes the buffer distance and the direction

between pedestrian α and the obstacle;
−→
D αo represents the vector from the obstacle to

pedestrian α; −→v αo is the speed of the pedestrian perpendicular to the obstacle; �t is the
time interval of pedestrian movement.

Other specific rules are shown below (Fig. 2).

(1) The pedestrian target is the exit unless the obstacle is sensed.
(2) The pedestrian target is changed to channel A or B due to the resultant force

−→
F αo.

(3) The pedestrian target will be the exit after passing through the obstacle.

A

C

B

oBα

oDα

α

Fig. 2. Impact of obstacle on pedestrian

The relationship between obstacles and evacuation efficiency is only considered in
existing studies [25]. However, both the evacuation efficiency and the evacuation safety
are considered in the current study [26]. The objective functions of the model can be
defined as follows:

minF(x) = (ST (x), SA(x)), (8)

where ST denotes the total evacuation time, which is from the beginning of evacuation
until the last person leaves the room; SA represents the evacuation risk coefficient and
can be defined as follows.

SA(x) = max

(
max(Fc(x)) − Fcrαt(x)

max(Fc(x))

)
, (9)
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Fc(x) = 20.254 ∗ ρ0 + 846.97 ∗ v0α(t) + 0.846 ∗ C − 120.84.,

Fcrαt(x) = 1050 ∗ vα(t) − 53.33.,

where Fc is the crowing pressure value that expresses the risk of emergency; ρ0
represents the crowd density; C denotes the congestion level based on the number of
pedestrians in a certain space; vα(t) is the speed of pedestrian; Fcrαt means the critical
squeeze force in the crowd to maintain the stability of the body under the action of
external force.

4.2 A Self-organized Speciation BasedMulti-objective Particle SwarmOptimizer

In this study, a self-organized speciation based multi-objective particle swarm optimizer
(SS-MOPSO) is used to solve the multimodal multi-objective layout optimization of
indoor obstacle. The pseudocode of SS-MOPSO is described in Algorithm 1 [7]. In
lines 1 to 2, the entire population POP(0) and POA are initialized. In lines 3 to 7, the
good particles are selected and input into POA. In line 8, the self-organization speciation
is applied to form multiple species. In lines 9 to 17, the particles are evaluated so that
the best particle can be chosen to store by using the Non-dominated-SCD-sort method.
Eventually, these steps will not stop until reaching the stopping condition.
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5 Experimental Results and Analysis

5.1 Environment Settings

The room is set to be 18 m × 12 m, and the width of the exit is set to be 1.5 m [24].
The pedestrian parameters are set as below: the diameter is set to be 0.6 m, the mass is
set to be 80 kg, the expected speed is set to be 1.5 m/s, and the reaction time τ is set to
be 0.5 s. The number of all pedestrians is 100. All pedestrians are evenly distributed in
the 12 m × 12 m area, which is illustrated in Fig. 3. Additionally, the parameters of the
SFM are given in Table 1.

the distance from 

obstacle to exit (d1)

the deviate distance 
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Fig. 3. Evacuation environment setting

Table 1. Parameter setting in SFM

Parameter Value Unit

Aα 2000 N

Bα 0.08 m

κ 1.0 × 105 kg·s−2

k 3.0 × 104 kg·s−2

r 3 m

Bαo 1.5 m

obstacle_width 0.2 m

5.2 Experimental Results

In this experiment, the total evacuation time and the emergency risk are considered as
the two objectives. For the SS-MOPSO algorithm, the population size and the maximum
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fitness evaluation are set to 800 and 120000, respectively. Additionally, the algorithm is
executed for 5 independent times on the problem.

The PF approximation obtained by SS-MOPSO is illustrated in Fig. 4. It can be
observed from Fig. 4 that the evacuation risk increases with the shortening of evacuation
time. It means that the evacuation safety and the evacuation efficiency are conflicted
with each other. Consequently, the decision makers cannot achieve the optimal scheme
when the evacuation efficiency and safety are high at the same time, but they can balance
these two objectives based on the obtained solution set. For example, if the evacuation
efficiency is a priority, such as subway stations and airports, decision makers can select
some schemes with a short evacuation time. Moreover, these schemes should satisfy
with the minimum evacuation safety. Additionally, if the evacuation safety is a priority,
decision makers can choose some schemes with a low evacuation risk. Moreover, the
evacuation efficiency can be considered via the achieved solution set.

Fig. 4. The PF approximation obtained by SS-MOPSO

To further display the obtained results, the solutions of three points (i.e., C, D, and
E) shown in Fig. 4 are presented in Table 2. Moreover, six obstacle layouts of these cases
given in Table 3 are illustrated in Fig. 5.

It can be seen from Table 2 that the obstacle length of C1 is shorter than that of C2,
but the obstacle of C2 is relatively closer to the room center than that of C1. Therefore,
decision makers can select a suitable scheme to meet the requirement of scenarios.

According to the results shown in Table 2 , D2 is longer than D1. However, their
positions in the room are notmuch different.When cost becomes themain consideration,
D1 is more likely to be selected.

As can be shown in Table 2, the most significant distinction between E1 and E2 is
the deviation from the exit center. In this case, planners can choose E1 or E2 according
to the actual utilization needs of space.

Considering the layout of these 6 solutions, it is the length of obstacle that plays
a major role in evacuation efficiency and safety. Note that the shorter the length of
obstacle, it is more inclined to improve the evacuation efficiency but increase the risk
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of evacuation at the same time. That is because obstacle will separate the pedestrian
flow so as to change the path and alleviate the aggregation degree of pedestrians, which
improve the safety in evacuation proceeding. While the obstacle increases the walking
time of pedestrians and reduces the evacuation efficiency. Furthermore, The longer the
obstacle, the more obvious the effect.

Based on the all results, it can be observed that there is a reverse relationship between
evacuation efficiency and evacuation safety. For decision makers, they have to weigh
up two objectives to make the most realistic judgment. Due to the MMOP analysis in
layout of indoor obstacles, the solutions can not only assist decisionmakers to balance the
contradiction between evacuation efficiency and risk, but also choose different obstacle
layout schemes according to the actual situation.

Table 2. Obstacle layout information

PS l(m) d1(m) d2(m) Time Risk PF*

C1 1.62 1.69 −1.93 2053 0.286 C

C2 2.33 2.38 −1.18

D1 1.55 2.15 −1.49 2096 0.272 D

D2 2.82 2.25 −1.62

E1 3.92 2.31 −1.45 2211 0.261 E

E2 4.19 2.32 1.18

    
(a) C1                                   (b) C2                                              (c) D1   

    
(d) D2                                (e) E1                              (f) E2  

Fig. 5. The layout of indoor obstacles in six cases
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6 Conclusion

The evacuation efficiency and the evacuation safety are two main objectives need to
be optimized in the field of crowd evacuation. To improve the effect of evacuation
process with obstacles, a multimodal multi-objective layout optimization problem of
indoor obstacles is proposed in the present study. Moreover, the state-of-the-art SS-
MOPSO is utilized to achievemore layout schemes of indoor obstacle. The experimental
results show that the decision makers can easily choose a satisfactory scheme from the
obtained solution set based on actual indoor layout. Additionally, the proposed algorithm
can provide users with more equivalent obstacle layout schemes when the evacuation
efficiency and the evacuation safety remain unchanged.
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