
Application of Homomorphic Encryption
in Machine Learning

Yulliwas Ameur, Samia Bouzefrane, and Vincent Audigier

1 Introduction to Homomorphic Encryption

This new encryption paradigm allows any entity (for example, the cloud provider) to
operate on private data in encrypted form without ever decrypting it. For example,
one widespread use case is outsourcing healthcare data to cloud computing services
for medical studies. The goal of HE is to perform operations on the plain text while
manipulating only ciphertexts (Fig. 1). Usually, wemust decrypt them and then apply
the desired processing to manipulate encrypted data (Fig. 2).

For some cryptosystems with algebraic structures, some operations are possible.
For example, two RSA ciphertexts can be multiplied to obtain the multiplication
of the two corresponding plain texts. We call this property the multiplicative
homomorphic property of the “textbook RSA” cryptosystem. Another operation can
also be performed on ciphertexts. For example, in the Paillier cryptosystem [1],
we can add two ciphertexts to obtain the addition of the two corresponding plain
texts. We call this property the additive property of the “Paillier” cryptosystem.
For example, this can be useful when we are interested in e-voting applications
to add encrypted votes without knowing the initial vote. Rivest, Adelman, and
Dertouzos first introduced the notion of homomorphic encryption in [2]. Building
a cryptosystem with both multiplicative and additive properties was a significant
problem in cryptography, until the work of Gentry [3]. Gentry proposed a first fully
homomorphic encryption based on ideal lattices. The HE is categorized depending
on the number of mathematical operations performed on the encrypted message as
following:

Y. Ameur (�) · S. Bouzefrane · V. Audigier
CEDRIC Lab, Cnam, Paris, France
e-mail: yulliwas.ameur@lecnam.net; samia.bouzefrane@lecnam.net;
vincent.audigier@lecnam.net

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
K. Daimi et al. (eds.), Emerging Trends in Cybersecurity Applications,
https://doi.org/10.1007/978-3-031-09640-2_18

391

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-09640-2_18&domain=pdf

 885 55736 a 885 55736 a
 
mailto:yulliwas.ameur@lecnam.net


12103 55736 a 12103 55736 a
 
mailto:samia.bouzefrane@lecnam.net

 -2016
56843 a -2016 56843 a
 
mailto:vincent.audigier@lecnam.net

 -2016 61493 a -2016 61493 a
 
https://doi.org/10.1007/978-3-031-09640-2_18


392 Y. Ameur et al.

Fig. 1 Diagram showing how to manipulate encrypted data on a cloud. On the left, the user
encrypts the data before sending it to the cloud, on the right, the cloud service has to decrypt the
data in order to process it

Fig. 2 Diagram showing how to manipulate encrypted data on a cloud by using homomorphic
encryption. On the left, the user encrypts the data before sending it to the cloud, on the right, the
cloud service can process on data by manipulating only ciphertexts

• Partially homomorphic encryption (PHE): is a cryptosystem that allows a
single operation (addition or multiplication) over encrypted data. When a PHE
scheme allows for additions over ciphertexts, it is considered an additively



Application of Homomorphic Encryption in Machine Learning 393

homomorphic scheme [1]. When a PHE scheme allows for multiplications, it is
considered multiplicatively homomorphic.

• Somewhat homomorphic encryption (SHE): is a cryptosystem that allows
us to perform a limited number of both additions and multiplications. SHE
cryptosystems typically allow for unlimited additions but only a restricted number
of multiplications.

• Fully homomorphic encryption (FHE): FHE schemes are themost powerful HE
schemes. They can perform both addition and multiplication, as well as circuits
of any depth. The reason HE methods have a restricted circuit depth is that the
encryption operation introduces noise to the data, and the decryption step removes
that noise. Performing operations on ciphertexts generates more noise, which
prevents correct decryption [4].

The bootstrapping approach is used by FHE systems to get around this as stated
in [3]. Bootstrapping decreases the collected noise, allowing further computation.
This procedure can be done as many times as necessary to analyze any particular
circuit. However, bootstrapping is computationally costly, so many solutions do
not employ it in reality. Therefore, we recommend the reader to refer to [5] for
more detailed information on the different homomorphic encryption schemes. We
have chosen not to describe the entire functioning of cryptosystems due to the
lack of space. Also, selecting secure and efficient instantiations of the underlying
cryptographic problem is hard for most of encryption and homomorphic schemes.
Therefore, we have chosen to list the most studied schemes by the community of
researchers and developers interested in advancing homomorphic encryption.

As usual, new cryptographic proposals need a few years before widespread
adoption in the industry, as was the case of elliptic curve cryptography, post-
quantum encryption and many other standardization projects. We are waiting for
the standardization results and recommendations of the workshops, which include
representatives from industry, government organizations and academia. This brief
review aims to guide readers fast enough, even if they are not cryptography special-
ists, to the appropriate HE scheme by directing them to the library(ies) where HE is
implementable.

1.1 HE Schemes

Research in the field of FHEmay be classified into fourmajor groups. The first family
represents the difficulty based on the lattice reduction problem, which mainly comes
from Gentry’s seminal work [3]. The second category consists of integer-based
methods [6], the hardness of which is based on theApproximate of Greatest Common
Divisor (A-GCD) problem [7]. Schemes based on learning with error (LWE) [8] and
ring learning with error (RLWE) [9], both reducible to lattice problems, constitute
the third family. Finally, the Nth-Degree truncated polynomial ring unit (NTRU)
family [10].



394 Y. Ameur et al.

Table 1 Comparison of HE
schemes

Schemes
Operation BFV BGV CKKS FHEW TFHE
Native Add/Sub ✓ ✓ ✓ ✗ ✗

Native Mult ✓ ✓ ✓ ✗ ✗

Boolean Logic ✗ ✗ ✗ ✓ ✓

SIMD ✓ ✓ ✓ ✓ ✓

Fig. 3 Homomorphic encryption timeline

All HE schemes have common steps: key generation, encryption, decryption,
and homomorphic operations on the ciphertexts. Table 1 summarizes the most
implemented and studied schemes by the cryptographic community, and Fig. 3 gives
an overview of the homomorphic encryption timeline.

The choice of encryption scheme has a multitude of implications:

• It specifies which operations are possible and, as a result, which types of activation
and architectures may be employed.

• It can determine the plaintext space. Messages should be encoded before theymay
be sent in plaintext. The majority of schemes, including BGV, BFV, only support
integers. CKKS can handle real numbers, but TFHE can only handle individual
bits.

1.2 HE Libraries

There exist several open-source libraries for the implementation of the HE scheme.
They provide key generation, encryption, decryption, and homomorphic operations
for each scheme; library APIs frequently include additional features for maintaining
and manipulating ciphertexts. Even though there is a lack of technical interoper-
ability, but also a lack of conceptual interoperability; for example, even libraries
that use the same scheme can provide surprisingly different results. The ongoing



Application of Homomorphic Encryption in Machine Learning 395

Table 2 Overview of existing FHE libraries: CPU-targeting (top) and GPU-targeting (bottom)

Supported schemes ________________
Name Input language BFV BGV CKKS FHEW TFHE
HE-CPU-TARGETING
Concrete Rust ✗ ✗ ✗ ✗ ✓

FHEW C++ ✗ ✗ ✗ ✓ ✗

FV-NFlib C++ ✓ ✗ ✗ ✗ ✗

HEAAN C++ ✗ ✗ ✓ ✗ ✗

HElib C++ ✓ ✓ ✓ ✗ ✗

lattigo Go ✓ ✗ ✓ ✗ ✗

PALISADE C++ ✓ ✓ ✓ ✓ ✓

SEAL C++, .NET ✓ ✓ ✓ ✗ ✗

TFHE C++ ✗ ✗ ✗ ✗ ✓

HE-GPU-TARGETING
cuFHE C++, Python ✗ ✗ ✗ ✗ ✓

nuFHE C++, Python ✗ ✗ ✗ ✗ ✓

standardization efforts attempt to develop a unified view of the most popular schemes
(Table 2).

1.3 FHE Restrictions

Current HE methods have a significant restriction. They cannot support division
operations and comparisons easily, such as the equality/inequality test. Number
comparison and sign determination are critical processes for MLaaS

2 Privacy-Preserving in Machine Learning (PPML): HE
Solutions

Using a third-party infrastructure reduces the problems of resources and complexity
but introduces privacy issues of sensitive information. To construct a privacy-
preserving framework for machine learning techniques, it must first identify the most
important privacy requirements:

• Input privacy: Only the real data owner should have access to the input.
• Output privacy: The output/result of theMLmethods’ assessment is not permitted

to be known by the cloud server.
• Model privacy: A private machine learning model that is also an asset should not

be shared with anyone except its owner.



396 Y. Ameur et al.

Another approach is to look if the privacy-preserving framework targets the
learning phase or the inference phase of the machine learning algorithm. Depending
on the frameworkwewant to design, we have to use privacy-preserving technologies.
The leading privacy-preserving machine learning techniques are

• Multi-party computation: These methods involve one or more trusted parties
that can be used to outsource specific computations by the algorithm owner.

• Differential privacy: These methods rely on data randomization and pertur-
bation. Because it affects the information, this method has the drawback of
negatively influencing the model’s performance.

• Federated learning: Federated learning is a machine learning setting where
many clients collaboratively train a model under the administration of a central
server while keeping the training data local.

• Garbled circuit: Garbled circuit, also known as Yao’s garbled circuit, is an
underlying technology of secure two-party computation initially proposed by
Andrew Yao. GC provides an interactive protocol for two parties (a garbler and
an evaluator) obliviously evaluate an arbitrary function represented as a Boolean
circuit.

• Homomorphic encryption: An encryption that allows performing operations
over encrypted data. See Sect. 1 for more detail.

• Hybrid PPML techniques: In addition to the above-mentioned single-protocol
PPML, some commonly used frameworks typically use hybrid protocols, which
combine two or more protocols by making use of the advantages and avoiding the
problems of each. For example, the basic idea behind themixed protocol that com-
bines HE and GC is to calculate operations that have an efficient representation as
Arithmetic circuits (e.g., additions and multiplications) using HE and operations
that have an efficient representation as Boolean circuits (e.g., comparisons) using
GC. However, converting between share systems is not simple, and the charges
are very high. Furthermore, various frameworks integrate MPC with differential
privacy.

We are interested therein machine learning research Using homomorphic encryption
“HEML.” According to this bibliometrics [11], the number of papers on HEML
has constantly been rising since 2009. Each year from 2005 to 2015, fewer than
100 HEML papers were published. However, the number of publications per year
increased significantly after 2015, reaching between 200 and 500 in recent years.
This section summarizes recent works and gives many practical applications of
homomorphic encryption for privacy-preserving purposes for eachmachine learning
algorithm. We end the section with a summary of the work to ease the reading of
this synthesis (Fig. 4).



Application of Homomorphic Encryption in Machine Learning 397

Fig. 4 HEML scenario

2.1 Logistic Regression

Logistic regression is a powerful machine learning approach that uses a logistic
function to model two or more variables. Logistic models are commonly used in the
medical community to predict binary outcomes, such as whether a patient requires
treatment or whether a disease appears [12]. It has been utilized in applications such
as evaluating diabetes patients’ medications [13], and social sciences [14].

iDASH is an annual competition that attempts to deploy novel cryptographic
methods in a biological environment. Since 2014, genomics and biomedical privacy
have been incorporated into iDASH. Both the third track of the 2017 iDASH
competition [15] and the second track of the 2018 iDASH competition driven the
development of homomorphic encryption-based solutions for building a logistic
regression model over encrypted data. The performance of LR training based on
homomorphic encryption (HE) has improved significantly as a result of these two
competitions. Homomorphic encryption has been used in much research on training
logistic regression models.

Wu et al. [16] trained a privacy-preserving logistic regression model using HE;
however, the time complexity of linear HE increases exponentially with the number
of parameters. Aono et al. [17] used an additive HE scheme and delegated particular
challenging HE computations to a trusted client, the authors in this work introduced
an approximation to convert the likelihood function into a low-degree polynomial.

The issue of doing LR training in an encrypted environment was discussed by
Kim et al. [18]. They used complete batch gradient descent in the training phase,
using the least-squares approach to approximate the logistic regression. They also
employed the CKKS scheme, which allows for a homomorphic approximation of
the sigmoid function.



398 Y. Ameur et al.

There is no closed-form solution to logistic regressions, so wemust use non-linear
optimization methods to find the maximum likelihood estimators of the regression
parameters. During training, gradient descent and Newton-Raphson are the most
commonly used methods. The Newton-Raphson method requires matrix inversion,
and most HE schemes do not natively support division and matrix inversion. On the
other hand, Gradient descent does not require the division operation and so is a better
candidate for homomorphic logistic regression.

Although the gradient descent approach appears to be better suited for homo-
morphic evaluation than other training methods, some technical issues remain for
implementation. The sigmoid function is themost challenging to evaluate since exist-
ing homomorphic encryption techniques only allow the evaluation of polynomial
functions, so Taylor polynomials have been widely employed for sigmoid function
approximation [19, 20]

For implementation and performance of private logistic regression (He-based
solutions), see Table 3.

2.2 Naive Bayes and Decision Trees

Naive Bayesian classification is a simple probabilistic Bayesian classification based
on Bayes’ theorem. It uses a naive Bayesian classifier, or naive bayes classifier,
belonging to the family of linear classifiers. Bost et al. [21] propose a privacy-
preserving naive bayes classification algorithm. A client learns the classification
of her data point X in their model without knowing the classification model or
disclosing any information about her input. The model’s estimated parameters
are encrypted and transferred to a cloud server. The authors use two partially
homomorphic encryption schemes, quadratic reciprocity [22] and Paillier [1], in the
same work [21] implements a privacy-preserving strategy for three algorithms, and
one of those is decision trees. This work has shown that polynomials may be utilized
to express decision trees. The decision tree node values must be compared to the
evaluation data, and the outputs must be used to construct the polynomial, yielding
the evaluation results. For implementation and performance of private naive bayes
and decision tree (He-based solutions), see Table 4.

2.3 K-Nearest Neighbors

The k-Nearest Neighbors (k-NN) a simple method that can handle continuous,
categorical, and mixed data. Furthermore, as a non-parametric method, k-NN can be
relevant for many data structures as long as the number of observations is sufficiently
large. In addition, for a predefined number of neighbors k, the model does not require
any training step since the prediction for a new observation is obtained by:



Application of Homomorphic Encryption in Machine Learning 399

Table 3 Summary of main works on private prediction for logistic regression: “-” means that the
information has not been disclosed

Ref. HE scheme/Type Platform Evaluation time Accuracy Datasets
Logistic regression
[16] [1] /LHE - - 82.89% Dataset

SPECT—267
instances—23
features

[17] [1] /LHE 2.60 GHz × 2 CPU,
128 GB RAM

- 73.7% SPECTF heart
dataset—267
instances—44
features)

[17] [1] /LHE 2.60 GHz × 2 CPU,
128 GB RAM

- 80.7% Pima diabetes
dataset—768
instances—8
features

[18] CKKS/LHE intel Xeon 2.3 GHz
processor with 16
cores and 64GB of
RAM

131min 86.03% Edinburgh—
1253
instances—10
features

[18] CKKS/LHE intel Xeon 2.3 GHz
processor with 16
cores and 64GB of
RAM

101min 69.30% Lbw—189
instances—10
features

[18] CKKS/LHE intel Xeon 2.3 GHz
processor with 16
cores and 64GB of
RAM

265min 79.23% Nhanes3—15649
instances—16
features

[18] CKKS/LHE intel Xeon 2.3 GHz
processor with 16
cores and 64GB of
RAM

119min 68.85% Pcs—379
instances—10
features

[18] CKKS/LHE intel Xeon 2.3 GHz
processor with 16
cores and 64GB of
RAM

109min 74.43% Uis—575
instances,—9
features

[19] YASHE/LHE Intel Core i7- 3520M
at 2893.484 MHz

- - Heart Disease
Framingham—
4000
instances—15
features

[20] Linearly
homomorphic
encryption

Amazon EC2
c4.8xlarge machines
running Linux, with
60GB of RAM each.

149.7sec 98.62% MNIST
dataset—60 000
instances—784
features



400 Y. Ameur et al.

Table 4 Summary of main works on private prediction for naive bayes and decision tree “-” means
that the information has not been disclosed

Ref. HE scheme/Type Platform Evaluation time Accuracy Datasets
Naive bayes
[21] [1] + [22]/LHE Two Intel Core

i7 (64 bit)
processors for a
total 4 cores
running at 2.66
GHz and 8 GB
RAM

479 ms - Breast
Cancer—2
classes—9
features

[21] [1] + [22]/LHE Two Intel Core
i7 (64 bit)
processors for a
total 4 cores
running at 2.66
GHz and 8 GB
RAM

1415 ms - Nursery—9
classes—5
features

[21] [1] + [22]/LHE Two Intel Core
i7 (64 bit)
processors for a
total 4 cores
running at 2.66
GHz and 8 GB
RAM

3810 ms - Audiology—
14 classes—70
features

Decision tree
[21] [1] + [22]/LHE Two Intel Core

i7 (64 bit)
processors for a
total 4 cores
running at 2.66
GHz and 8 GB
RAM

239 ms - Nursery

[21] [1] + [22]/LHE Two Intel Core
i7 (64 bit)
processors for a
total 4 cores
running at 2.66
GHz and 8 GB
RAM

899 ms - ECG

• Identifying the k nearest neighbors (according to a given distance)
• Computing the majority class among them (for a classification problem) or by

averaging values (for a regression problem).

Homomorphic encryption has already been investigated by various authors for
k-NN [23–26]. The authors of [23] suggested a homomorphic additive encryption
scheme [1]. They investigated the privacy preservation in an outsourced k-NN
systemwith various data owners. The untrusted entity securely computes the compu-



Application of Homomorphic Encryption in Machine Learning 401

Table 5 Summary of main works on privateK-nearest neighbors: “-” means that the information
has not been disclosed

REF HE scheme/Type Platform Evaluation time Accuracy Datasets
K-nearest neighbors
[23] [1]/LHE - - 97.85% Cancer 1 (9

features)
[23] [1]/LHE - - 96.49% Cancer

2—569
instances,—
30 features)

[23] [1]/LHE - - 81.82% Diabetes
[23] [1]/LHE - - 97% MNIST

dataset—
60 000
instances—
784 features

[26] [27]/FHE Intel Core i7-
6600U CPU

11.6 min 94.8 MNIST
dataset—
60,000
instances—
784 features

tations of distances by using HE. However, the comparison and classification phases
require interactions. Given that the computational and communication difficulties
scale linearly, they admit that the method may not be practical for massive data
volumes. The cost of communications between the entities is also a limitation in
the deployment of this work [24].

Recently, [26] proposed a secure k-NN algorithm in quadratic complexity con-
cerning the size of the database completely non-interactively by using a fully
homomorphic encryption [27]. However, they assume that the majority vote is done
on a clear-text domain, which is a significant security flaw that we will address here.
Doing a majority vote on a clear-text domain imposes interaction between entities,
which causes information leakage. For implementation and performance of private
k nearest neighbors (He-based solutions), see Table 5

2.4 Neural Networks and Deep Learning

Deep learning is one of the most sophisticated techniques in machine learning, and it
has received a lot of attention in recent years. It is presently employed in a variety of
areas and applications, including pattern recognition, medical prediction, and speech
recognition. Deep learning experiences are enhanced significantly by utilizing strong
infrastructures such as clouds and implementing collaborative learning for model
training. However, this compromises privacy, particularly when sensitive data is
processed during the training and prediction stages, as well as when the training



402 Y. Ameur et al.

model is disseminated. In this section, we discuss known privacy-preserving deep
learning algorithms based on homomorphic encryption, we present recent challenges
concerning the intersection of HE cryptosystems and neural networks models, as
well as methods to overcome limitations.

HE cannot be used naively in neural networks algorithms. There are a lot of
challenges and restrictions that must be overcome. The constraints differ according to
the scheme, however, several common issues emerge in most systems. The learning
and inference phases of the deep learning algorithm can be distinguished.

2.4.1 Privacy-Preserving Deep Learning: Private Training

Several techniques have been proposed; they consider collaborative training, in
which the training is performed collaboratively between different participants, or
individual training, in which the training is performed by a single participant, such
as a client who wants to use a cloud to train its model.

Aono et al. [28] proposed a solution in collaborative learning mode, where
participants send the calculated encrypted local gradients to the cloud after each
iteration of local training, startingwith the initial weights obtained from the cloud. To
ensure homomorphic ciphertext integrity, each participant uses a unique TLS/SSL
secure channel. The cloud then updates the encrypted global weights vector, which
the participants download. The approach theoretically achieves the same accuracy as
standard asynchronous SGD, whereas evaluations show that MLP and CNN reach
97% and 99% accuracy, respectively. In terms of efficiency, an overhead in com-
munication and calculation was seen; however, the authors considered it negligible.
However, the accuracy/privacy trade-off might be adjusted to efficiency/Privacy,
allowing the precision to be preserved while maintaining Privacy.

The privacy-preserving back-propagation technique described in [29] is based
on BGV fully homomorphic encryption and Maclaurin polynomial approximation
of the sigmoid activation function. The client encrypts input data and configured
parameters before uploading them to the cloud, which executes one loop. The client
downloads and decrypts the findings before updating its local model. It then encrypts
and sends the updated parameters back to the cloud, which repeats the process.
This method is repeated until the maximum error threshold or number of iterations
is achieved. Although BGV encryption provides for the protection of private data
throughout the learning process, it does need the approximation of the activation
function. This might lead to a drop in accuracy. In terms of efficiency, while the
solution achieved a two times greater efficiency, i.e., 45% of the training time of
the standard model, it experienced compute and communication costs due to the
encryption-related overhead.

Zhang et al. [30] employs the Taylor theorem to estimate the sigmoid activation
function polynomially. The evaluation findings revealed a reduction in accuracy
for both classification and prediction tasks. However, the authors proposed adding
additional Taylor series terms to decrease classification loss, raising the BGV
encryption level, resulting in poor performance. The method could achieve 2.5 times



Application of Homomorphic Encryption in Machine Learning 403

greater classification efficiency and two times higher overall efficiency in learning
time.

Zhang et al. [31] described a more recent solution based on encryption. A
client who wants to participate to the model’s training transmits its data encrypted
using the Paillier scheme [1] to the server, which performs all possible neural
network calculations except non-linear activation functions. To continue execution,
the encrypted weighted sums before each activation function are provided to the
client, who will be in charge of performing the calculation. The result is then
encrypted again and sent back to the server.

2.4.2 Privacy-Preserving Deep Learning: Private Inference

Fully homomorphic encryption is deployed in a line of research that performs private
classification of encrypted data using a neural network that has been trained using
plain data.

Gilad-Bachrach et al. [32] is the first solution for privacy-preserving deep learning
for inference, developed by Microsoft Research. The approach is based on the
YASHE a (leveled homomorphic encryption) LHE scheme was proposed. The
user encrypts their data and sends it to the cloud, which runs the model and
returns an encrypted prediction. It has since been demonstrated that the YASHE
scheme is vulnerable to subfield lattice attack [33]. To make the network compatible
with homomorphic encryption, max-pooling is replaced by a scaled-mean pool
function, and activation functions are approximated by the square function, which is
the lowest-degree non-linear polynomial function. According to the authors, these
adjustments should preferably be considered during training on unencrypted data.
For example, the solution could achieve 99% accuracy and 59,000 predictions per
hour on a single PC for the MNIST dataset.

To overcome the heavy computation cost of HE, a dual cloudmodel was proposed,
in which two clouds, A and B, collaborate to generate classification results in a
secure environment [34]. Cloud A operates the neural network on private data
encrypted by the client with Paillier cryptosystem [1], but delegates activation
function computations to the cloud B since they share a key. The technique is
repeated until the final layer is reached. Client A then protects the final output with
a random salt from cloud B, which uses the softmax function and sends the final
encrypted result to the client. A theoretical scenarios-based security and accuracy
study demonstrated how the approach successfully defends against potential threats.

Chabanne et al. [35] suggested a method for classification problems over the
CNN model based on BGV an FHE scheme. The combination of polynomial
approximation and batch normalization is the major technological breakthrough.
During the training phase, a batch normalization layer is introduced before each
ReLU layer to avoid excessive accuracy deterioration, and max-pooling is replaced
by average-pooling, which is more FHE-friendly and has a small overhead.

Prior to each ReLU, a batch normalization layer is introduced with a low-degree
(2) polynomial approximation. When the model is complete, the user encrypts



404 Y. Ameur et al.

its private data and sends it to the model, carrying out the specified analysis.
The evaluation findings revealed that the solution has a short running time, with
comparable performance, as if there was no privacy.

Attempt to use HE for deep learning problems. They provide methods by using
low-degree polynomials to approximate the most generally used neural network
activation functions (ReLU, Sigmoid, and Tanh) [36]. This is a critical step in
the development of effective homomorphic encryption methods. They then train
convolutional neural networks using those approximation polynomial functions
before implementing the models over encrypted data and evaluating its performance.

Zhu and Lv [37] suggest a recent homomorphic encryption-based approach. The
user encrypts their personal information and transmits it to the server for prediction.
The Paillier scheme accelerates linear, convolutional, and pooling transformations.
The authors chose ReLU as the activation function and suggested, rather than
utilizing polynomial approximation, an interactive protocol between the client and
the server for its computation. The user gets the ReLU input data, decrypts it, and
communicates the positivity or negativity of this input to the server, enabling the
server to calculate the output. The evaluation findings revealed that the solution could
reach near model accuracy in plain text and was similar to Cryptonet[32]. In terms
of efficiency, the approach saves a significant amount of time.

Recently, authors in [38] have resulted in considerable improvements by using the
scheme TFHE [27]. FHEmethods permit unrestricted encrypted operations and give
accurate polynomial approximations to non-polynomial activation functions using a
programmable bootstrapping technique, an extension of the bootstrapping technique
that allows resetting the noise in ciphertext to a fixed level while—at the same time—
evaluating a function for free.

2.5 Clustering

Clustering is an unsupervisedmachine learning problem that automatically identifies
natural grouping (clusters) in data. A clustering algorithm can be collaborative or
individual. In both cases, a model can be based on a server, and the calculations
are exclusively performed on the server or assisted by a server. In this case, some
calculations are delegated to the server. Three models can be found in the literature:

1. data comes from several parties, and these parties collaborate to train a clustering
model.

2. single party that holds the data but not the computational resources needed to
perform the calculations. The data is outsourced to perform clustering.

3. data comes from multiple parties and is paired to build a shared database. Then
the data is outsourced to perform clustering.

Cases 2 and 3 are similar; this case is called “outsourced clustering.” The first
case is called “distributed clustering.” Plenty of clustering algorithms have been



Application of Homomorphic Encryption in Machine Learning 405

seen in the privacy-preserving framework: k-means, k-medoids, GMM, Meanshift,
DBSCAN, baseline agglomerative HC BIRCH and Affinity Propagation. Among
them, k-means has been intensively studied. In what follows, we focus on works
that use homomorphic encryption.

2.5.1 Collaborative Clustering

In the case of collaborative clustering, several parties own data and want to collabo-
rate to get good quality clustering without disclosing the information contained in the
data. This case has been extensively studied in two parts. Liu et al. [39] interested in
the case where two parties with limited computational resources would like to run k-
means by outsourcing the computations to the cloud. Both parties will have a result
based on both datasets. In this case, one party’s data should be kept confidential
from the cloud and the other party. The authors based two schemes to propose a
solution: the Liu encryption and the Pallier encryption. Each party encrypts the data
and sends it to the cloud. The cloud performs calculations and comparisons based on
additional information about both parties. To recalculate the centers, the cloud sends
the sum of all vectors to both parties, and the parties use a protocol to calculate the
new centers. The authors [40] propose a protocol to perform secure k-means in the
semi-honest model. In this work, the Pallier scheme has been used. The computation
of the Euclidean distance requires interaction with the data owner to perform the
multiplications. The comparison is performed using bit-by-bit encryption.

The authors [41] studied clustering using the k-medoids algorithm applied to
intrusion detection. Multiple organizations collaborate to perform clustering and
have better results without sharing the content of this information in the clear.
In addition, the system relies on a semi-honest party to perform clustering using
Pallier encryption. The k-medoid algorithm requires more complex operations than
addition. This requires interactions between collaborators to decrypt this data at
runtime and thus perform the operations.

2.5.2 Individual Clustering

A clustering is individual if only one person has data and he wants to have the results
of the clustering of this data. Most of the works interested in this kind of clustering
require an intermediate decryption step. The authors [42] demonstrate a solution to
perform k-means using a collaboration between the client and a server. They used the
BV scheme [43]. In this work, they proposed three variant solutions. Each solution
takes as input a dataset of dimension nxd, an integer k which denotes a the number of
clusters and a threshold of iterations. The algorithm returns a matrix of dimension
kxd that indicates the cluster centers. In the first variant, the computation of the
centers and the assignment are done at the client level, which implies that the client
performs a lot of computations (only the distances are computed at the server level).
In the second variant, the client performs the comparisons and the division. At the



406 Y. Ameur et al.

same time, the server calculates the distances and the assignment of the points, then
the sum to calculate the new centers. This variant induces an information leakage on
how the points are distributed on the clusters. Finally, a third variant tries to solve
the information leakage problem by returning an encrypted assignment vector of
a point instead of the clear assignment. The authors [44] propose a method for k-
means that limits interaction with the data owner using the concept of “Updatable
DistanceMatrix (UDM).” The latter is a 3Dmatrix whose first two dimensions equal
the number of data in the dataset, and the third dimension equals the number of
attributes. Each cell in thematrix is initialized to the difference between the attributes
of the data vectors. The idea is to save the encrypted data and the UDM matrix to
a third party. This matrix is updated at each iteration of k-means using an offset
matrix obtained by calculating the difference between the new and current centers.
This method is expensive in terms of time and memory to store the UDM matrix.

The authors [45] have tried an exact implementation of k-means that requires
no intermediate decryption. Instead, the method relies on building a logic circuit to
perform k-means using TFHE. From a theoretical point of view, the method gives
equivalent results to the plaintext version. However, this method is not feasible; with
two dimensions and 400 points, the execution time has been estimated at 25 days.

The authors[46] also propose a solution that focuses on k-means. In this solution,
the BGV scheme [47] is used. The authors remark that deciphering the intermediate
steps at the client level is a costly operation. The proposed solution relies on using
a third party as a trusted entity to decrypt the intermediate results. A private key
equivalent (but different) to the owner’s and a switch matrix are generated to be used
by the trusted server. The proposed solution is considered secure in a semi-honest
model but not in the malicious case.

3 Discussion and Challenges

Many challenges need to be tackled to apply privacy-preserving machine learning
in real-world applications. Although the HE standards, platforms, and implementa-
tions described in this chapter contribute to the advancement of HEML, there are
still specific remaining challenges to be tackled, including overhead, performance,
interoperability, bootstrapping bottlenecks, sign determination, and common frame-
works:

• Overhead: Compared to its unencrypted counterpart, HEML has significant
overhead, making it unsuitable for many applications. However, for non-HE
models, the training phase of ML comprises a computationally intensive effort.
However, even withmodern techniques, it becomes increasingly difficult with HE.
A recent trend is to bypass the training step by employing pre-trained models to
find a balance between complexity and accuracy.

• Hardware Acceleration and parallelization: Incorporating well-known and
new leading to many algorithms is one approach to deal with the computational



Application of Homomorphic Encryption in Machine Learning 407

overhead. High-performance computers, distributed systems, and specialized
resources can all be used in HEML models. Multi-core processing units (GPUs,
FPGAs, etc.) and customized chips (ASICs) provide more friendly and effi-
cient HEML environments. Another approach to improving overall efficiency
is batching and parallelizing numerous bootstrapping operations. To accelerate
FHE programs, one of the research directions is to develop the ability to support
multiple hardware acceleration, this is one of the projects under development in
the PALISADE library[4].

• Comparison andmin/max function:Weneed newmethods to compare numbers
which are encrypted by Homomorphic Encryption (HE). Actually, comparison
and min/max functions are evaluated using Boolean functions where input num-
bers are encrypted bit-wise. However, the bit-wise encryption methods require
relatively expensive computations for basic arithmetic operations such as addition
and multiplication.

• PPML tools: For the deployment of these technologies, it is practically difficult
to design a high-performing and secure PPML solution without a thorough
HE understanding. However, PPML developers must be knowledgeable in both
machine learning and security. PPML, which uses HE, has not been extensively
accepted by the ML community due to HE’s high barrier to entry and the absence
of user-friendly tools. In terms of model accuracy, how we can ensure that the
PPML Homomorphic encryption (HE), we need to develop metric for evaluating
models in encrypted domain.

• Hybrid protocols: Adopting hybrid protocols, which combine two or more
protocols to use the advantages and avoid the disadvantages of each, is a promising
direction for performance improvements.

• Homomorphic encryption (HE) with missing data: Missing data are a sig-
nificant problem, as the information available is incomplete and, therefore, less
accurate. To solve this problem, we often use suppression of observations with
missing data and imputation of missing data. The actual challenge is how to do
thesemethods in the context of encrypted data by using homomorphic encryption.

References

1. P. Paillier, Public-key cryptosystems based on composite degree residuosity classes, in Inter-
national Conference on the Theory and Applications of Cryptographic Techniques (Springer,
1999), pp. 223–238

2. R.L. Rivest, L. Adleman, M.L. Dertouzos, On data banks and privacy homomorphisms, in
Foundations of Secure Computation (Academia Press, 1978), pp. 169–179

3. C. Gentry, Fully homomorphic encryption using ideal lattices, inProceedings of the 41st Annual
ACM Symposium on Theory of Computing, STOC 2009, Bethesda, MD, USA, May 31 June 2,
2009, ed. by M. Mitzenmacher (ACM, 2009), pp. 169–178. https://doi.org/10.1145/1536414.
1536440

4. PALISADE Lattice Cryptography Library (release 1.11.5) (2021). https://palisade-crypto.org/


 22397 55197 a 22397
55197 a
 
https://doi.org/10.1145/1536414.1536440
https://doi.org/10.1145/1536414.1536440

 24553 57411 a 24553 57411
a
 
https://palisade-crypto.org/


408 Y. Ameur et al.

5. A. Acar et al., A survey on homomorphic encryption schemes: theory and implementation.
ACM Comput. Surv. 51(4) (2018). ISSN:0360-0300. https://doi.org/10.1145/3214303

6. M. van Dijk et al., Fully homomorphic encryption over the integers, in Advances in Cryptology
– EUROCRYPT 2010, ed. by H. Gilbert (Springer, Berlin, Heidelberg, 2010), pp. 24–43.
ISBN:978-3-642-13190-5

7. C. Gentry, Computing arbitrary functions of encrypted data. Commun. ACM 53(3), 97–105
(2010). ISSN:0001-0782. https://doi.org/10.1145/1666420.1666444

8. O. Regev, On lattices, learning with errors, random linear codes, and cryptography, in Proceed-
ings of the Thirty-Seventh Annual ACM Symposium on Theory of Computing, STOC ’05 (Asso-
ciation for Computing Machinery, Baltimore, MD, USA, 2005), pp. 84–93. ISBN:1581139608.
https://doi.org/10.1145/1060590.1060603

9. V. Lyubashevsky, C. Peikert, O. Regev, On ideal lattices and learning with errors over rings. J.
ACM 60(6) (2013). ISSN:0004-5411. https://doi.org/10.1145/2535925

10. K.R. Rohloff, D. Cousins, A scalable implementation of fully homomorphic encryption built
on NTRU, in Financial Cryptography Workshops (2014)

11. Z. Chen et al., Bibliometrics of machine learning research using homomorphic encryption.
Mathematics 9, 2792 (2021). https://doi.org/10.3390/math9212792

12. T. Hastie, R. Tibshirani, J. Friedman, Unsupervised learning. The Elements of Statistical
Learning (Springer, 2009), pp. 485–585

13. R. Bender, U. Grouven, Ordinal logistic regression in medical research. J. R. Coll. Physicians
Lond. 31(5), 546 (1997)

14. V. Gayle, P. Lambert, R.B. Davies, Logistic regression models in sociological research, in
University of Stirling, Technical Paper, 1 (2009)

15. X. Wang et al., iDASH secure genome analysis competition 2017 (2018)
16. S. Wu et al., Privacy-preservation for stochastic gradient descent application to secure logistic

regression, in The 27th Annual Conference of the Japanese Society for Artificial Intelligence,
vol. 27 (2013), pp. 1–4

17. Y. Aono et al., Scalable and secure logistic regression via homomorphic encryption, in
Proceedings of the Sixth ACM Conference on Data and Application Security and Privacy
(2016), pp. 142–144

18. M. Kim et al., Secure logistic regression based on homomorphic encryption: Design and
evaluation. JMIR Med. Inf. 6(2), e8805 (2018)

19. J.W. Bos, K. Lauter, M. Naehrig, Private predictive analysis on encrypted medical data. J.
Biomed. Inf. 50, 234–243 (2014)

20. P. Mohassel, Y. Zhang, Secureml: A system for scalable privacy-preserving machine learning,
in 2017 IEEE Symposium on Security and Privacy (SP) (IEEE, 2017), pp. 19–38

21. R. Bost et al., Machine learning classification over encrypted data. IACR Cryptol. ePrint Arch.
2014, 331 (2015)

22. S. Goldwasser, S. Micali, Probabilistic encryption & how to play mental poker keeping secret
all partial information, in Proceedings of the Fourteenth Annual ACM Symposium on Theory
of Computing, STOC ’82 (Association for Computing Machinery, San Francisco, California,
USA, 1982), pp. 365–377. ISBN:0897910702. https://doi.org/10.1145/800070.802212

23. F. Li, R. Shin, V. Paxson, Exploring privacy preservation in outsourced K-nearest neighbors
with multiple data owners, in Proceedings of the 2015 ACM Workshop on Cloud Computing
Security Workshop, CCSW ’15 (Association for Computing Machinery, Denver, Colorado,
USA, 2015), pp. 53–64. ISBN:9781450338257. https://doi.org/10.1145/2808425.2808430

24. B.K. Samanthula, Y. Elmehdwi, W. Jiang, k-Nearest neighbor classification over semantically
secure encrypted relational data. IEEE Trans. Knowl. Data Eng. 27(5), 1261–1273 (2015).
https://doi.org/10.1109/TKDE.2014.2364027

25. W.K. Wong et al., Secure KNN computation on encrypted databases, in Proceedings of
the 2009 ACM SIGMOD International Conference on Management of Data, SIGMOD ’09
(Association for Computing Machinery, Providence, Rhode Island, USA, 2009), pp. 139–152.
ISBN:9781605585512. https://doi.org/10.1145/1559845.1559862


 19559 800 a 19559 800 a
 
https://doi.org/10.1145/3214303

 9260 6335 a 9260 6335
a
 
https://doi.org/10.1145/1666420.1666444

 -563 10763 a -563 10763
a
 
https://doi.org/10.1145/1060590.1060603

 13859 12977 a 13859
12977 a
 
https://doi.org/10.1145/2535925

 10574 17405 a 10574 17405 a
 
https://doi.org/10.3390/math9212792

 17126 45079
a 17126 45079 a
 
https://doi.org/10.1145/800070.802212

 17597 49507 a 17597 49507 a
 
https://doi.org/10.1145/2808425.2808430

 -563 52827 a -563 52827 a
 
https://doi.org/10.1109/TKDE.2014.2364027

 8382 57255 a 8382 57255
a
 
https://doi.org/10.1145/1559845.1559862


Application of Homomorphic Encryption in Machine Learning 409

26. M. Zuber, R. Sirdey, Efficient homomorphic evaluation of k-NN classifiers. Proc. Privacy
Enhanc. Technol. 2021, 111–129 (2021)

27. I. Chillotti et al., TFHE: fast fully homomorphic encryption over the torus. J. Cryptol. 33(1),
34–91 (2020)

28. Y. Aono et al., Privacy-preserving deep learning via additively homomorphic encryption. IEEE
Trans. Inf. Forensics Secur. 13(5), 1333–1345 (2017)

29. F. Bu et al., Privacy preserving back-propagation based on BGV on cloud, in 2015 IEEE
17th International Conference on High Performance Computing and Communications, 2015
IEEE 7th International Symposium on Cyberspace Safety and Security, and 2015 IEEE 12th
International Conference on Embedded Software and Systems (IEEE, 2015), pp. 1791–1795

30. Q. Zhang, L.T. Yang, Z. Chen, Privacy preserving deep computation model on cloud for big
data feature learning. IEEE Trans. Comput. 65(5), 1351–1362 (2016). https://doi.org/10.1109/
TC.2015.2470255

31. Q. Zhang et al., GELU-Net: A globally encrypted, locally unencrypted deep neural network for
privacy-preserved learning, in IJCAI (2018), pp. 3933–3939

32. R. Gilad-Bachrach et al., Cryptonets: Applying neural networks to encrypted data with high
throughput and accuracy, in International Conference on Machine Learning (PMLR, 2016),
pp. 201–210

33. M. Albrecht, S. Bai, L. Ducas, A subfield lattice attack on overstretched NTRU assumptions, in
Proceedings, Part I, of the 36th Annual International Cryptol- ogy Conference on Advances in
Cryptology—CRYPTO 2016—Volume 9814 (Springer, Berlin, Heidelberg, 2016), pp. 153–178.
ISBN:978-3-662-53017-7. https://doi.org/10.1007/978-3-662-53018-4_6

34. M. Baryalai, J. Jang-Jaccard, D. Liu, Towards privacy-preserving classification in neural
networks, in 2016 14th Annual Conference on Privacy, Security and Trust (PST) (2016),
pp. 392–399. https://doi.org/10.1109/PST.2016.7906962

35. H. Chabanne et al., Privacy-preserving classification on deep neural network. Cryptology ePrint
Arch. (2017)

36. E. Hesamifard, H. Takabi, M. Ghasemi, Deep neural networks classification over encrypted
data, in Proceedings of the Ninth ACM Conference on Data and Application Security and
Privacy (2019), pp. 97–108

37. Q. Zhu, X. Lv, 2P-DNN: Privacy-preserving deep neural networks based on Homomorphic
cryptosystem. Preprint (2018). arXiv:1807.08459

38. I. Chillotti, M. Joye, P. Paillier, Programmable bootstrapping enables efficient homomorphic
inference of deep neural networks, in Cyber Security Cryptography and Machine Learning, ed.
by S. Dolev et al. (Springer International Publishing, Cham, 2021), pp. 1–19. ISBN:978-3-030-
78086-9

39. X. Liu et al., Outsourcing two-party privacy preserving K-means clustering protocol in wireless
sensor networks, in 2015 11th International Conference onMobile Ad-hoc and Sensor Networks
(MSN) (2015), pp. 124–133. https://doi.org/1.1109/MSN.2015.42

40. Z.L. Jiang et al., Efficient two-party privacy preserving collaborative k-means clustering
protocol supporting both storage and computation outsourcing. Information Sciences 518,
168–180 (2020). ISSN:0020-0255. https://doi.org/10.1016/j.ins.2019.12.051. https://www.
sciencedirect.com/science/article/pii/S0020025519311624

41. G. Spathoulas, G. Theodoridis, G.-P. Damiris, Using homomorphic encryption for privacy-
preserving clustering of intrusion detection alerts. Int. J. Inf. Secur. 20, 347–370 (2021). https://
doi.org/10.1007/s10207-020-00506-7

42. A. Theodouli, K.A. Draziotis, A. Gounaris, Implementing private k-means clustering using
a LWE-based cryptosystem, in 2017 IEEE Symposium on Computers and Communications
(ISCC) (2017), pp. 88–93

43. Z. Brakerski, V. Vaikuntanathan, C. Gentry, Fully homomorphic encryption without bootstrap-
ping, in In Innovations in Theoretical Computer Science (2012)

44. N. Almutairi, F. Coenen, K. Dures, K-means clustering using homomorphic encryption and an
updatable distancematrix: secure third party data clusteringwith limited data owner interaction,
in DaWaK (2017)



25925 11870 a 25925 11870 a
 
https://doi.org/10.1109/TC.2015.2470255
https://doi.org/10.1109/TC.2015.2470255

 9636 22940 a 9636 22940 a
 
https://doi.org/10.1007/978-3-662-53018-4_6

 4612 26260 a 4612 26260
a
 
https://doi.org/10.1109/PST.2016.7906962

 10317 41758 a 10317 41758 a
 
https://doi.org/1.1109/MSN.2015.42

 13765 45079 a 13765
45079 a
 
https://doi.org/10.1016/j.ins.2019.12.051

 30005 45079 a 30005 45079 a
 
https://www.sciencedirect.com/science/article/pii/S0020025519311624
https://www.sciencedirect.com/science/article/pii/S0020025519311624


32211 48400 a 32211 48400 a
 
https://doi.org/10.1007/s10207-020-00506-7
https://doi.org/10.1007/s10207-020-00506-7


410 Y. Ameur et al.

45. A. Jäschke, F. Armknecht, Unsupervised machine learning on encrypted data. IACR Cryptol.
ePrint Arch. 2018, 411 (2018)

46. G. Sakellariou, A. Gounaris, Homomorphically encrypted K-means on cloud-hosted servers
with low client-side load. Computing 101(12), 1813–1836 (2019). ISSN:0010-485X. https://
doi.org/10.1007/s00607-019-00711-w

47. Z. Brakerski, C. Gentry, V. Vaikuntanathan, (Leveled) Fully homomorphic encryption without
bootstrapping, in Proceedings of the 3rd Innovations in Theoretical Computer Science Confer-
ence, ITCS ’12 (Association for Computing Machinery, Cambridge, MA, 2012), pp. 309–325.
ISBN:9781450311151. https://doi.org/10.1145/2090236.2090262


 32211 3014 a 32211 3014 a
 
https://doi.org/10.1007/s00607-019-00711-w
https://doi.org/10.1007/s00607-019-00711-w

 8382 8549 a 8382 8549 a
 
https://doi.org/10.1145/2090236.2090262

	Application of Homomorphic Encryption in Machine Learning
	1 Introduction to Homomorphic Encryption
	1.1 HE Schemes
	1.2 HE Libraries
	1.3 FHE Restrictions

	2 Privacy-Preserving in Machine Learning (PPML): HE Solutions
	2.1 Logistic Regression
	2.2 Naive Bayes and Decision Trees
	2.3 K-Nearest Neighbors
	2.4 Neural Networks and Deep Learning
	2.4.1 Privacy-Preserving Deep Learning: Private Training
	2.4.2 Privacy-Preserving Deep Learning: Private Inference

	2.5 Clustering
	2.5.1 Collaborative Clustering
	2.5.2 Individual Clustering


	3 Discussion and Challenges
	References


