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Preface

With the constantly increasing reliance of organizations on applications that span
business, banking, insurance, education, marketing, healthcare, engineering design,
manufacturing military, government, and communication sectors, protecting these
applications is vital for their survival and continuity.

Cybersecurity applications describes how the security measures, techniques,
methodologies, approaches, concepts, and procedures are specifically implemented
in these applications to make them immune against various attacks and to eliminate
or minimize security vulnerabilities, and mitigating risks and threats. By doing so,
data or code within these applications will be protected against theft or hijacking.
The implementation of these application-protecting techniques and methodologies
involves both software and hardware.

Emerging Trends in Cybersecurity Applications provides an essential compilation
of relevant and cutting-edge academic and industry work on key cybersecurity
applications topics. Furthermore, it introduces cybersecurity applications to the
public at large to develop their cybersecurity applications knowledge and awareness.
The book can be a valuable resource to applied cybersecurity experts towards
their professional development efforts and to students as a supplement to their
cybersecurity courses.

This book concentrates on a wide range of advances related to cybersecurity
applications which include, among others, applications in the areas of data science,
Internet of Things, artificial intelligence, the Web, high-tech systems, cyber-physical
systems, mobile devices, cloud computing, distributed systems, vehicles, software,
energy, and education. It introduces the concepts, techniques, methods, approaches,
and trends needed by cybersecurity applications specialists and educators to keep
current their cybersecurity applications knowledge. Further, it provides a glimpse of
future directions where cybersecurity applications are headed. It is a rich collection
of carefully selected and reviewed manuscripts written by diverse cybersecurity
applications experts in the listed fields and edited by prominent cybersecurity
applications researchers and specialists.

Emerging Trends in Cybersecurity Applications has several important features. It
provides an excellent professional development resource for educators and practi-
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tioners on state-of-the-art cybersecurity applications materials, contributes towards
the enhancement of the community outreach and engagement component of cyber-
security applications, and introduces various techniques, methods, and approaches
adopted by cybersecurity applications experts. In addition, it provides detailed
explanation of the cybersecurity applications concepts that are pertinently reinforced
by practical examples, a road map of future trends that are suitable for innovative
cybersecurity applications training, and a rich collection of manuscripts in highly
regarded cybersecurity applications topics that have not been creatively compiled
before. It is written by cybersecurity professors and industry security professionals
with long experience in the field of cybersecurity applications.

The book is organized into seven parts: the first part deals with cybersecu-
rity applications in Internet of Things; the second concentrates on cybersecurity
applications in the Internet, networking, and the cloud; the third involves cyber-
security applications in vehicles; the fourth covers cybersecurity applications in
mobile computing; the fifth spans cybersecurity applications in energy systems;
the sixth introduces cybersecurity applications in cyber-physical systems, artificial
intelligence, and software; and the seventh includes miscellaneous cybersecurity
applications. A brief overview of the chapters is introduced below.

The Internet of things (IoT) consists of various physical objects equipped with
sensors and actuators, computing capabilities, and other hardware and software
technologies that communicate to exchange data with other objects through the
Internet or other communication media. To demonstrate how such systems could
be protected, chapters on Elliptic Curve cryptography, transfer learning model for
intrusion detection systems are introduced to safeguard data exchange, and end-
to-end security are used. These chapters are enhanced with a third chapter on
application of intrusion detection system.

To demonstrate how cybersecurity is applied to the Internet, network, and the
cloud, several authors contributed their chapters. These included guiding users
towards less revealing Internet browsers, analyzing the threat landscape inside
the dark web, securing the 5G network slices auction broker, applying zero trust
architecture and probability-based authentication to preserve security and privacy
of data in the cloud, and using data mining for prevention of cross-site scripting
(XSS).

The security of vehicles is critical, especially after fully autonomous vehicles
are introduced. To cover this area, authors presented two chapters. The first treats
cyberattacks and risks in V2X-assisted autonomous highway merging, and the
second applies machine learning framework to detect various intrusions in vehicle
communications.

Nowadays, everyone owns at least one type of small electronic equipment that
connects to the Internet, such as mobile phones and tablets. As a result of this con-
nection, these devices must be protected. To this extent, two chapters are introduced:
implementation of uncertainty models for fraud detection on mobile advertising,
and improving Android applications quality through extendable, automated security
testing.
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Deployment of smart energy minimizes global warming pollution, improves
public health, and cuts costs on traditional fuels. Attacks on such energy sources
could be fatal. Hence, smart energy demands protection. To determine possible
protection against attacks, chapters on provably secure data sharing scheme for smart
gas grid in fog computing environment, countering cybersecurity threats in smart
grid systems using machine learning, and preserving the privacy and cybersecurity
of home energy data are presented.

Cyber-physical Systems, artificial intelligence, and software applications are
essential for many fields. They are being used extensively in business, health, and
government. Chapters on non-stationary watermark-based attack detection to protect
cyber-physical control systems, data-driven software vulnerability assessment and
management, and application of homomorphic encryption in machine learning
reveal examples of some approaches to protect them.

Further chapters deal with design of ethical service-level agreements to protect
ethical cyber attacks and victims, and defend against adversarial attack on knowledge
graph embedding.

The editors of Emerging Trends in Cybersecurity Applications aim to deliver a
book that is valuable for faculty, researchers, security professionals, students, and the
society at large to understand how cybersecurity could be implemented in various
fields.

Detroit, MI, USA Kevin Daimi
Sydney, NSW, Australia Abeer Alsadoon
Ulster, UK Cathryn Peoples

Paris, France Nour El Madhoun
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Ephemeral Elliptic Curve Diffie-Hellman )
to Secure Data Exchange in Internet et
of Medical Things

Osman Salem and Ahmed Mehaoua

1 Introduction

With the advances in information and communication technologies, the Internet
of Medical Things (IoMT) becomes a promising solution for remote healthcare
monitoring, where a set of wearable biosensors are used to collect the physiological
data from the monitored patient, and to transmit the acquired measurements to
a Local Processing Unit (LPU—such as Smartphone or tablet) for processing
and alerting the healthcare professionals when an emergency is detected. Such
monitoring systems are able to assist the healthcare professionals by analyzing the
acquired physiological data in the edge of the network, and raising an alarm when
an anomaly is detected by highlighting abnormal changes in monitored parameters.
The use of IoMT for remote monitoring, and for the detection of chronic diseases
gives impetus to the development and implementation of enriched and ubiquitous
health services.

The use of IoMT devices provides a tool to improve the Quality of Life (QoL)
by allowing the monitored patient to continue their Activity of Daily Living (ADL)
while being monitored and followed-up. Their fast deployment has an impact on
reducing the number of beds occupied by patients kept under monitoring. The
COVID-19 pandemic has driven an exponential rise in IoMT, with quarantine and
stay-at-home orders, which accelerated trends in telemedicine and telehealth.

However, the medical data involves stringent security requirements which are not
available in sensors with restricted resources [1]. The collected sensitive medical
data is transmitted to the LPU for processing using wireless technologies, and an
attacker in vicinity can eavesdrop or modify the intercepted data [2] leading to false
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e-mail: osman.salem @u-paris.fr; ahmed.mehaoua@u-paris.fr

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023 3
K. Daimi et al. (eds.), Emerging Trends in Cybersecurity Applications,
https://doi.org/10.1007/978-3-031-09640-2_1


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-09640-2_1&domain=pdf

 885
56843 a 885 56843 a
 
mailto:osman.salem@u-paris.fr

 10707 56843 a 10707
56843 a
 
mailto:ahmed.mehaoua@u-paris.fr

 -2016 61493 a -2016 61493 a
 
https://doi.org/10.1007/978-3-031-09640-2_1

4 0. Salem and A. Mehaoua

alarms, or can conduct a black hole attack by preventing information from being
transmitted to the LPU, in order to prevent the system from raising alarms. The
attacker may also exploit the vulnerabilities [3] in the software of [oMT device to
increase the transmission rate and deplete the energy of sensors or to flood the LPU.
Therefore, a security framework is required to ensure the integrity of the exchanged
data.

Several mechanisms have been proposed and tested in the literature for securing
the exchanged data between the sensors and the LPU [4]. The Bluetooth Low Energy
(BLE) is widely implemented today in IoMT to transmit data from sensors to the
LPU. The IoMT object requires a short range communication, low bandwidth,
low delay, and reduced energy consumption. BLE exchanges less data than normal
Bluetooth to reduce energy, and devices can stay in “sleep mode” until the next
interaction. These advantages have led to this wireless technology being widely
deployed in IoMT for remote monitoring of patients during long periods of time
(months and even years) without charging or changing the battery.

Devices in BLE are classified into two types: central and peripheral. The cen-
tral device (e.g., smartphone) has higher computational power and storage than
peripherals and sends commands and collects data from peripherals. Conversely, the
peripheral or the slave cannot initiate a connection and can only connect to a single
master. It only executes received orders and sends packages to advertise its presence.
The peripherals stop sending advertising packets when they receive a specific packet,
indicating that they are connected to a central device. Peripherals are sensors that
collect and send data to the central device for processing, such as the collection of
blood pressure, SpO2 and body temperature, and other physiological parameters by
sensors, as well as their transmission to a central processing unit (smartphone or
tablet).

BLE operates using radio frequency on 2.4-2.8 GHz band within a distance of
10m. It operates with 40 physical channels, against 80 for legacy Bluetooth, for
frequency and time multiplexing thanks to the L2ZCAP layer. The difference between
two channels is found to be 2 MHz. The devices in advertising mode send packets of
31 bytes at regular intervals. This task is conducted only on 3 of the channels: 37,
38, and 39. The other channels are reserved for data exchange between devices [5].

To establish a connection, the central device alternates between scanning for
pairing requests and sending advertising packets. It scans to check if it can find a
peripheral to begin the exchange with it. The scanning process is expensive, so the
scan usually does not run indefinitely. The BLE devices exchange their services,
their capabilities, their inputs (such as the presence of keyboard or not) and output
resources, their names and their manufacturers’ information, authentication method,
etc. during the first phase of pairing, which is not encrypted. However, the second
phase is for key exchange and needs to be secured.

In the second phase of pairing, one of the devices generates a Temporary Key (TK)
which will be known from both devices. Confirmation of the key is made through
the exchange of random values, encrypted and then decrypted. With the TK and
random values, a Short-Term Key (STK) is derived by devices without traveling in
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the network. The connection will be encrypted with this key at the link layer level.
Eventually, a Long Term Key (LTK) can be exchanged for bonding.

Four pairing models are supported by BLE: “Just Works,” Out of Band, Numerical
Comparison, and Passkey. The BLE secures the communication using the Advanced
Encryption Standard (AES) algorithm with a key length of 128 bits. However, when
the object does not have I/O capabilities, the BLE “Just Works” pairing mode does
not provide any protection against MitM (Man in the Middle) or eavesdropping. As
the IoMT device does not have display or keyboard, the default value of pairing code
0x00 is used as value for TK (T K = 0), which in turn is used to derive the STK and
the LTK.

In other words, we can connect to any BLE device that uses the “Just Works”
pairing mode and access the exchanged medical data. In fact, this pairing mode is
deployed in several healthcare devices available in the market, and it does not provide
any protection against MitM and must not be used in healthcare monitoring services.
In the real world, sensors do not have I/O interfaces and this mode is currently
deployed in healthcare products available in the market. The illegal access to medical
data causes a huge violation to the privacy of the monitored patient, and the injection
of faulty measurements may threaten the life of patient with a decision based on
faulty measurements.

In this chapter, we implement the ECDHE with key renewal process to secure
the communications and prevent MitM attacks while using the same security
mechanisms in BLE for confidentiality and integrity. We use the Elliptic Curve
Cryptography (ECC) with pre-distributed public keys used to derive the encryption
key. The ECC has a small key size compared to RSA, where a 384 bits key is
equivalent to 3072 bits in RSA [6]. Elliptic curve is more convenient for IToMT
devices with constrained resources, where its usage is limited to derive a shared
key using ECDH. The AES-CCM implemented in the BLE standard is used in
our approach to provide encryption and integrity, and to prevent the MitM from
conducting eavesdropping or injection attacks.

The IoMT devices are susceptible to various exploits and an attacker can easily
change the behavior of compromised devices to increase the transmission rate and
flood the LPU. Such change increases the energy consumption of the compromised
devices and the LPU and threatens the functioning of the network. There is a need
of a suitable system to detect such intrusion and to alert the user. We applied the
sequential change point detection algorithm PELT [7] and the box-and-whisker plot
on the number of received packets by the LPU to detect such changes and raise a
network alert for user.

The rest of this chapter is organized as follows. In Sect. 2, we review recent related
work. Section 3 presents our proposed approach for securing the communication link
between the devices and to detect anomaly in the physiological parameters and in the
number of received packets. In Sect. 4, we present our experimental results from the
application of our proposed framework on real physiological data. Finally, Sect.5
concludes the chapter and presents our future work.
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2 Related Work

Despite the security measures adopted in BLE, some attacks are still feasible up to
date. They range from simple passive data interception to identity theft and Denial of
Service (DoS). Pallavi et al. in [8] review feasible security attacks on IoT devices with
BLE transmission technology. Sevier et al. in [9] highlighted BLE vulnerabilities and
proved that TK is vulnerable and showed how to sniff and decrypt acquired BLE data.
They used Ubertooth dongle to capture BLE packets and to obtain the signal strength
of the different channel frequencies. As this dongle is able to capture exchanged
packets in the handshake, the TK could be cracked using the Crackle software on
the Ubertooth data capture. Therefore, the LTK can be derived from the TK [10],
and Wireshark can be used to decrypt the BLE packets when the LTK is provided.
As Ubertooth outputs PCAP file, the sniffer Wireshark can read it and decrypt the
packets in an automatic manner.

Lounis et al. in [11] confirm the results of Sevier et al. in [9]. Using the “Just
Works” pairing mode, they demonstrated its weakness by showing how to generate
keys. Moreover, simple technologies have been used for conducting the sniffing
attack. Data from smart deadbolt, bike lock, and a lightbulb have been captured and
decrypted in their experiments. However, the “Just Works” pairing method is not
secure enough to generate a TK.

Cominelli et al. in [12] presented an open-source sniffer based on a Software-
Defined Radio framework to capture BLE data packets in a very simple manner.
They used the Graphic Processor Unit (GPU) to process the traffic. Even though
sniffing can be dangerous for sensitive medical data, the attacker can induce a Denial
of Service (DoS) or even spoof a device.

Therefore, the IoMT are vulnerable to various attacks as the data is transmitted
using BLE wireless technology from the sensor to the LPU [13]. An adversary
can modify, eavesdrop, or delete the data [14]. The impact of such attacks has
been highlighted on insulin pumps with over dosage to kill the patient, and on
pacemaker [15] to threaten the patient’s life.

The work of Lahmadi et al. in [16] demonstrated a MitM attack against BLE
and showed the low security features and inherent vulnerabilities. Afterward, they
compared two unsupervised learning techniques to detect suspicious data, followed
by classification method to tag packets as normal or attack from suspicious mea-
surements. Their work is very near in his spirit to our work, where they combined
supervised and unsupervised techniques to detect anomaly. However, the supervised
classification requires labelled training data, which is not easy to find or to build.
It is interesting to propose a lightweight and reliable sequential and non-parametric
approach to prevent passive and active attacks conducted by MitM.

Aghilietal. in [17] proposed a lightweight multi-factor authentication protocol for
e-health systems in IoMT. Ayub et al. in [18] proposed a secure authenticated key
agreement protocol using the concepts of Physically Unclonable Function (PUF).
Other research work focused on authentication, encryption, integrity, and intrusion
detection to secure the network of IoMT devices [2]. However, most of the proposed
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solutions have higher computation complexity which prevents their deployment on
the constrained resources in IoMT devices.

Gulen et al. in [19] implemented ECC on the MSP430 micro-controller, which is
commonly used in wireless sensor devices to secure wireless transmissions. Their
implementation combined number transformation and elliptic curves to reduce the
processing complexity. However, the implementation of other elliptic curves with
more efficient formulas for key derivation is required to evaluate the complexity of
such techniques.

To overcome these problems, Ahmed et al. in [20] proposed an enhanced ECDH
for securing the data exchange of IoT applications. Our approach is similar in the
spirit to their approach, where we use the Ephemeral ECDH to derive a session key
for securing the data exchange of IoMT devices in “Just Works” pairing mode. The
use of ephemeral keys allows key renewal in every time period.

On the other hand, the IoMT raises an alarm when a healthcare emergency is
detected. Change Point Detection (CPD) algorithms seek to detect abrupt changes
in the monitored physiological parameters, such as detecting changes in SpO2 to
identify severe hypoxia or patient with COVID-19, or detecting changes in Blood
Pressure (BP) to subsequently identify hypertension after vaccine. These changes
need to be identified automatically with the large amount of collected data.

Several approaches for identifying changes in monitored data have been proposed
in the literature [21]. The most common methods are those based on segmentation.
These methods identify one or more points in a dataset where the statistical proper-
ties (e.g., mean and variance), change over time, based on the likelihood of the data
in the time series. Among the proposed segmentation methods [21-23], window-
based change point detection, Binary Segmentation (BS), and Optimal Partitioning
(OP).

BS [23] is a sequential approach with a computational complexity O(nlogn)
where n is the number of samples in the segment. The principle of this method is to
detect a change point in the time series, and to subdivide it into two parts, where the
first is before the change and the second is after the change. The operation is repeated
on the two resulting parts. BS is fast and seeks to identify the minimum number of
change points.

Window-based change point detection is used to perform rapid segmentation of
the signal. The algorithm uses two windows that slide along the data stream. The
statistical properties of the signals in each window are compared to measure the
deviation. Window Segmentation (WS) has low complexity O(nw) where n and w
are the number of sample and the size of window, respectively. However, it does
not produce optimal segmentations [22]. The OP method has higher computational
complexity O(n%) when compared to the previous two methods (BS & WS) but is
able to find the exact global optimum.

Killick et al. in [24] improved the OP by proposing a new approach to search
for change points. Their proposed approach is the PELT [7], which is an efficient
approximate search method able to detect all change points with respect to the change
of the mean or the variance, and regardless of the statistical distribution of the time
series. Its basic idea is to divide the time series into several segments where the
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average of each segment is significantly different from the previous and subsequent
segments. The penalty is an adjustable parameter in PELT to control the number of
detected change points.

The PELT has several advantages compared to other methods, especially in terms
of linear computational complexity O(n) as it uses dynamic programming and
pruning [7]. Yeung et al. in [25] used the PELT method to analyze public feelings
towards personal masks during the COVID-19 period using Twitter data. Valdez et
al. in [26] exploited PELT to identify significant changes in the volume and feeling of
tweets to obtain mental health information in the USA during COVID-19 pandemic.
The detection of such changes has a significant implication to trigger mitigation
efforts.

Several previous work [21, 22] devoted to the search for the most adequate
strategy to segment the data and compare many CPD algorithms. Their results proved
that PELT provides the best tradeoff between complexity and detection accuracy,
where it has the lower complexity and memory requirements when compared to other
methods. This is why we will use PELT in our approach for CPD in the measurements
to detect healthcare emergency, and in the number of received packets to detect
compromised sensors with a high transmission rate, which intends to flood the LPU
and deplete the energy.

3 Proposed Approach

Most IoMT devices do not have I/O capabilities and the “Just works” with the default
pin code is used. To secure the communication links between devices and the LPU
and to prevent attacks conducted by MitM (as shown in Fig. 1), which is able to
intercept and alter the data, our proposed approach is based on pre-distributed ECC
keys before deployment. These small size pre-distributed keys are used to derive a
shared session key to encrypt the communication between devices and LPU using
the AES-CCM deployed in BLE.

The creation of asymmetric keys is based on modern public key ECC, which
is based on mathematical elliptic curves known to produce a smaller key size than
RSA. The reduced key size makes the encryption operation faster and reduces the
processing complexity. Let F' be a field with N elements, E is an elliptic curve with

-)))@-)))‘%

Heart attack LPU

Fig. 1 MitM attacks against [oMT
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a set of points (x, y), and G is the identity or the neutral element of the curve. E is a
function known as the Weierstrass Equation (given in Eq. 1) defined over the field F":

(E) : y*+ aixy + a3y = x> + apx? + asx +ag (1)

The coeflicients ay, a, a3, a4, ag € F have real values. A curve of the Weierstrass
equation is said to be smooth if the partial derivatives in x and y of the Eq. 2 do not
cancel each other at the same time instant.

f,y) =y 4 aixy + a3y —x° — apx? — agx —ag 2)
For their use in cryptography, a simplification of the Eq. 1 is given in Eq. 3:
y2=x¥—ax + b with 4a* + 270> #£0 (3)

To create an asymmetric key pair (P, K), we used openSSL with P-384 (secp384r1)
to derive the 384-bit key pair, where P; is used to denote the public key, which results
from ECC point multiplication of G with the private key (1;):

Pi=n*G “4)

The operator “*” is used to denote ECC point multiplication. With a pre-distributed
key, the use of ECDH mechanism does not require any exchange between the two
devices to derive the shared symmetric encryption key, as shown in Fig.2 and in
Eq.5. In Fig. 2, Py, denotes the public key of the LPU, Pp denotes the public key of
the IoMT device, and S; denotes the derived shared key.

Sy = n; * Pj with i#j (®))

where Sy is the secret key used to guarantee the security of exchanged data, and P;
is the public key of the other device. However, the derived secret key is always the
same. To renew the key in our approach, the LPU starts by deriving an ephemeral
ECC key pair (g, Pr) for each IoMT device, and transmits the public key (digitally
signed) to the device to derive the same ephemeral secret key (as shown in Fig. 3),

Fig. 2 Elliptic curve LPU ToMT Dev
Diffie-Hellman (ECDH)
N6, By M By P,
|
S‘ =1 *P,u; g *‘p
== D, = ! ’
- "f;‘ % H“ *7 k }.H L

=1, *F |
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LPU ToMT Dey
M2 Po P o+ oy P,
|
i P,.DS, (P,)
I >
S, = KDF[I:, (7, +n, )mod ;:J

S, = KDF[:,?{., (P.+ P, )mod u:
= Kl);‘-'(.r},, (7, *G+n, *G)mod H]
- K;‘):‘"[r;,l(i(rh +17, Jmod n]
= Kl)!—'[;‘j,(r;f +7, Jmod J‘J'J

Fig. 3 Ephemeral ECDH

which will change every period of time 7. In Fig. 3, the Key Derivation Function is
denoted by KDF, and the function DS, (Pg) is used to denote the Digital Signature
(DS) of ephemeral key Pg.

The confidentiality and integrity of the exchanged data are provided by AES-
CCM to avoid the MitM from accessing the content or modifying the values of
measurements. To prevent data suppression by the MitM, the transmission is reliable
and must be acknowledged (ACK) in both directions to avoid black hole attack. In
the case where the IoMT device does not receive an ACK after 3 retransmissions
for k consecutive packets, it raises a local alert (light or sound) to notify user with a
network or security problem.

To detect anomaly in acquired vital signs, we start by preprocessing the data over a
window of measurements. Let yj., denote the set of measurements during the period
of time T, where yi.,, = (y1,...,Yyn) is a set of n physiological measurements
with real values. The CPD algorithm is able to identify m changes along with
their positions #1.,, = (¢1, ..., ). The position of the change point is an integer
between 1 and . The time series is supposed to be piecewise stationary, which means
that some characteristics of the process suddenly change at unknown time instants
1 <t <...<ty,. The data are normalized, and their values are between O and 1.

To detect change points, we applied the PELT method that aims to identify the
instants of change in yy.,. It is based on the OP and pruning method. The OP method
aims to minimize cost:

m—+1

D ACOG 415 ) + B ©)

i=1
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where C is a cost function for the ith segment, and 8 is a penalty to prevent over-
fitting. Subsequently, PELT uses pruning to increase the efficiency of the OP method
while ensuring that the method finds an overall minimum of the cost function. The
optimal segmentation is F(n):

m+1

F(n) zngin{z [C (V415 oo i +ﬂ)]} 7

i=1

The main idea behind the pruning is to remove these values of ¢+ which can never
be minima of the minimization performed in each iteration. The OP method applies
recursive conditioning by starting with a first conditioning on the last change point
and calculating the optimal segmentation of the data up to the change point:

m

F(n) = mtin Iﬁ}fl; [CO@ +1)s s v) + B] o

+ CO(tp41)s -+ 5 Yn)

Using Eq. 6 to simplify the previous equation, the internal minimization is equal to
F (t,,) and the Eq. 8 can be re-written as:

F(n) = min {F @) + COapt1ys -5 )} €))

We applied the PELT on the received measurements and on the number of received
packets. The CPD in the received measurements allows to detect emergency and
to raise alarms for healthcare professionals, while the CPD in the total number of
packets allows to detect compromised sensors with an increased transmission rate.
However, the PELT method is sensitive to changes and identify all the change points
with several false alarms. To increase the reliability of the system by reducing the
False Alarm Rate (FAR), we apply the box-and-whiskers (boxplot) by comparing
each identified change point by PELT with robust statistical parameters derived from
a window of previous w values in order to confirm its deviation.

Let Y = {y;—w.i, .- -, y1,i} represents the sliding window of the last w values
([DPC — w, DPC)) for the ith monitored attribute. The first quartile Q; and the
third quartile Q3 of Y;” are used to derive the interquartile range 6 = IQR =
03 — Q1. A measurement is considered as abnormal (as shown in Fig.4) if the
following condition is satisfied:

Min O Median 0, ax

Y i Il|‘w

Anomaly

Anomalies

Fig. 4 Box-and-whiskers
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Vi <01 —15.(03— Q1) Vy,i=03+15(03— Q1) (10)

A medical alarm is raised if the deviation is detected only in the monitored
biometric parameters and not in the number of received packets.

4 Experimental Results

To conduct an experiment and analyze the performance of our proposed approach,
we used real physiological data collected from a patient with cardiovascular disease.
The monitored patient is 68 years old, 1.75 m living independently in his apartment
and kept under monitoring. The used dataset is private, collected using other
prototype and stored inside a CSV file. We focus only on the chunk with changes
in our experiments.

Five vital signs are available in the dataset: ABP Mean (Ambulatory BP), Heart
Rate (HR), Pulse, SpO2, and Respiration Rate (RR). The measurement units are:
mmHg for BP, beat per minute (bpm) for HR and Pulse, respiration per minute
(rpm) for RR and % for SpO2. A value of SpO2 lower than 95% is symptomatic
of asphyxia and requires ventilator and assistance. To simulate a real life scenario in
Fig. 1, we used two Raspberry Pi 4B, with 8 GB of RAM and BLE as IoMT devices
that read data from the CSV file and transmit records to the LPU (Android tablet)
for processing. The first device transmits SpO2 and Pulse, while the second is used
to transmit BP, HR, and RR.

We start our experiments by using AdaFruit USB stick (presented in Fig.5) as
BLE sniffer and Wireshark to prove the ability of MitM to access the data in the
BLE pairing mode. The captured data by Wireshark sniffer in “Just works” mode is
shown in Fig. 12, where the clear text value of the HR is 96 bpm. We refer to [16]
and several tutorials available online to conduct such an attack using kali Linux [27].

To prevent security attacks and leakage of sensitive data, we start by implementing
our approach for ephemeral key derivation from ECDH, which is used to encrypt
the data. We also configure the two devices to renew the key every 10 minutes to

Fig. 5 Sniffer BlueFruit
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prevent off-line password guessing. The anomaly detection is implemented in the
LPU and aims to identify changes in physiological and total number of received
packets. The received data on the LPU from the two Raspberry devices are decrypted
before processing.

The Continuous Noninvasive Atrial BP measurement (CNAP) is used to measure
the BP continuously in real-time. Several CNAP monitors based on PhotoPlethys-
moGraphy (PPG) are available in the market [28]. The variations of ABP Mean
(denoted by BP) measurements are presented in Fig. 6, where the heavy change is
visible around the time instant 18,000 sec and lasts until the end. The ABP Mean is
derived from Systolic Blood Pressure (SBP) and Diastolic Blood Pressure (DBP) as
given in Eq. 11:

1 2
ABPMean = -SBP + SDBP (11)

Similarly, the variations of the HR and PULSE are shown in Figs. 7 and 8 where
correlated changes occur at the same instant as the BP. The variations of the RR and
SpO2 are presented in Figs. 9 and 10, respectively. The SpO2 falls down and becomes
lower than 90% (asphyxia) at the same time instant 18,000 sec, and this explains the
simultaneous increase in the number of RR and in the measurements of BP, HR,
and PULSE. The patient tries to get more oxygen by increasing his respiration and
making more effort. In fact, the patient needs oxygen assistant in this chunk of data.

The variations of whole physiological parameters (BP, HR, Pulse, Respiration,
SpO2) are presented in Fig. 11, where we can identify a correlated change point
around 18,000 sec for approximately whole parameters. The HR and PULSE
superpose as they measure the same information (Fig. 12).

Fig. 6 Blood pressure
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In the second set of experiments, we start by conducting a MitM attack to
capture and verify the encryption of the data. A screenshot of the captured data
with Wireshark is presented in Fig. 13, where we can notice that encrypted data
cannot be decoded by the sniffer. Afterward, we test the security of our approach
by assuming the worst case scenario to simulate MitM attack, where an attacker
successfully compromises both IoMT devices by exploiting software vulnerability.
We start by increasing the transmission rate and the value of measurements for only
one device in the beginning, followed by simultaneous increase in the rate of the
second device (as shown in Fig. 14a) to deplete the energy of compromised sensors,
and to flood the LPU with packets containing modified values. The measurements
of HR in the beginning of attack can be distinguished from the Pulse as shown in
Fig. 14b, where the variations are surrounded by an ellipse.
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Fig. 9 Respiration rate

Fig. 10 SpO2

Fig. 11 All parameters
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| W [ btle.length!=0
Liste de Paquet v UTF-8/ASCII/UTF-16 v [_] Sensible a la casse
No. Source Protocol Info
15847 Slave_0x9bd48681 LE LL  Control Opcode: LL

15985 Slave_@x9bd48681 ATT Rcvd Write Respons:
16029 Slave 0x9bd48681 ATT Rcvd Handle Value
16073 Slave_0x9bd48681 ATT Rcvd Handle Value

v Bluetooth Attribute Protocol
> Opcode: Handle Value Notification (©x1b)
> Handle: 0x000d (Heart Rate: Heart Rate Measurement)
> Flags: @x@e, Energy Expended, Sensor Support, Senso
Value: 96

Fig. 12 MitM: Wireshark with the value of HR

No. Source Protocol Info

1063.. Master_Oxcacl6c26 ATT Sent Handle value Indication, Handle: ©x
1063.. Slave_Oxcacl6c26 SMP Rcvd Security Request: AuthReq: Bonding,
+ 1063.. Master_©xcacl6c26 ATT Sent Read By Group Type Request, GATT Pr

1063.. Slave_Oxcacl6c26 LE LL Empty PDU
1063.. Master_Oxcac16c26 LE LL Empty PDU
1063.. Slave_Oxcac16c26 LE LL Control Opcode: LL_CONNECTION_PARAM_RSP
1063.. Master_Oxcacl6c26 LE LL Control Opcode: LL_CONNECTION_UPDATE_RE(
1063.. Slave_Oxcacl16c26 LE LL Empty PDU
1063.. Master_Oxcacl6c26 LE LL Empty PDU

.. Slave_Oxcac16c26 Rcvd Read By Group Type Response, Attri
1063.. Master_Oxcacl6c26 ATT Sent Read By Group Type Request, GATT Pr
1063.. Slave_Oxcac16c26 LE LL Empty PDU
A0ED Martnr OunnanifaniE 1LE LI Emntie DNDLL

» Bluetooth Low Energy Link Layer
» Bluetooth L2CAP Protocol
~ Bluetooth Attribute Protocol
» Opcode: Read By Group Type Response (©0x11)
Length: 6
» Attribute Data, Handle: ©x0001, Group End Handle: ©€x8005, UUID: Fax
[UUID: GATT Primary Service Declaration (©x2800)]
[Request in Frame: 106303]

poee d9 06 1f 01 74 16 06 @a ©1 11 32 Pa 00 97 00 0O reeot e AEER
PE16 ©e 26 6c c1 ca 06 OGc P8 0O 64 00 11 06 01 00 OS5 ) R
0e20 00 11 11 bd 65 10 . .

Fig. 13 MitM: encrypted data
The average of received measurements in each second was derived and used in

Fig. 14b. Our approach detects a change in the number of received packets for these
variations and raises a local alert for user as a network connection alert. In such
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Fig. 14 Injected
measurements. (a) Injected
values. (b) Normal and alarm
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situation, the user must re-initialize the system to force the change of the encryption
key.

The raised medical alert is represented by vertical red line in Fig. 14b and
triggered only if there is no change point in the number of received packets.

In the third set of experiments, we conduct a performance comparison using the
Receiver Operating Characteristic (ROC) to study the impact of the threshold on the
accuracy of the system in terms of True Positive Rate (TPR) and False Alarm Rate
(FAR). The TPR and FAR are given in the following equations:

TP
TPR= —— (12)
TP+ FN
FP
FAR= — (13)
FP+TN

where TP is the number of True Positives, FP is the number of False Positives, FN is
the number of False Negatives, and TN is the number of True Negatives. The ROC
represents the variation of TPR with respect to FAR when changing the value of the
score. A value of TPR closer to 100% indicates a high detection accuracy, while a
lower value of FAR is desirable to achieve to enhance the reliability of the system.
However, increasing the value of TPR induces an increase of FAR, and decreasing
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the FAR induces a reduction in TPR. Therefore, a tradeoff between TPR and FAR is
required by changing the value of the decision threshold.

The ROC curve presented in Fig. 15 shows the relationship between the TPR and
FAR for our proposed approach. To prove the effectiveness of our approach, we also
conduct a performance comparison with existing works [29] which are based on the
difference between predicted and measured values to identify changes in time series.
The prediction of the current measurement was achieved using Long Short-Term
Memory (LSTM), AutoRegressive Integrated Moving Average ARIMA(p,d, q),
and Auto Regressive AR(p), with p =4,d =1,and g = 2.

The obtained ROC is presented in Fig. 15 where for a TPR of 99%, our approach
has a FAR of 6%, followed by LSTM with 8%, ARIMA with 9% and AR with 12%.
In fact, the use of our approach slightly outperforms the LSTM in term of FAR.
On the other hand, even if the four methods have a linear computational complexity
O(n), our method has less execution time for processing one record than LSTM,
where the decision delay of our method is 25.56 sec while the delay for LSTM is
39.63 sec, followed by ARIMA with 20.61 sec and AR with 18.48 sec.

5 Conclusion

In this chapter, we proposed a framework to secure the exchange of medical data in
IoMT and to detect anomaly in the number of received packets and in the acquired
vital signs from monitored patient. We used the ECDHE to exchange the session key
in “Just Works” pairing mode, while keeping the same mechanisms used in BLE to
ensure confidentiality and integrity. To detect healthcare emergency, we applied the
PELT algorithm followed by boxplot to detect changes in the monitored physiological
parameters with reduced FAR and low computational complexity. Furthermore, to
detect attacks aiming to deplete the energy of sensors or to flood LPU, we applied the
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same change point detection algorithm on the number of received packets in LPU to
raise network alarms.

We conducted several experiments on data from different subjects for perfor-
mance analysis and we compare the performance of our approach with previous
works. Our experimental results on real physiological data showed that our approach
is effective and able to achieve a good detection accuracy with a FAR of 6%.
The comparison results showed that our system slightly outperforms LSTM and
regression based systems. Our future work will focus on anomaly detection in the
amount of energy consumed by compromised IoMT device.
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1 Introduction

Internet-of-Things (IoT) is rapidly gaining momentum in recent years. From the
inception of the term in 1999 [4], IoT has emerged as the solution to many application
areas. Such solutions are making a mark in every domain, including agriculture,
transportation, health care, supply chain, smart homes, smart cities, and many more.
Emerging technologies like cloud computing, fog computing, machine learning have
further enhanced the usability of these devices. Along with IoT, there has been a
growth in machine-to-machine (M2M) interactions. Gartner has predicted that the
number of interconnected devices would grow to 20.4 billion by the end of 2022. The
number of M2M connections is expected to grow up to 27 billion by 2024. Looking
at these estimates, it becomes clear that IoT would be the next cornerstone for the
ever-growing digital economy. The enterprise IoT platform market will grow to $7.6
billion in 2024 [26]. The reason for this huge spike is the usability of these devices.
From the monitoring of a patient’s health at all times to efficient consumption of
electricity to continuous monitoring of goods in transportation. With just an internet-
connected mobile phone in our hand, all these pieces of information are available in
seconds [3]. IoT has made life easy for everyday users and industries alike.

The prominence of IoT in the market has attracted the attention of both security
researchers and adversaries. To meet the growing need, manufacturers are focusing
on time-to-market, giving less consideration to the security issues. Numerous
experiments have proven that these devices get hacked with equipment that is
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readily available [30]. Many manufacturers delegate the responsibility of securing
the devices to the user. Devices get configured with default credentials, and the
user is expected to change the password to make the device secure. In some
implementations, the credential change is not enforced, and the device continues
to operate with the default user privileges. From a survey conducted, 57% of the
consumers believe that the responsibility of securing these devices should be on the
vendor, and ironically 48% admitted they did not know these devices could be used
to conduct cyberattacks [11, 18].

The negligence of security consideration from the manufacturers exposed sen-
sitive and personal information about the consumers to the adversaries. Poorly
architected devices allow the execution of arbitrary code, allowing a malicious
user to use them as an entry point into someone’s private network [6, 9]. Smaller
manufacturers neglect to provide options to patch these vulnerabilities after being
discovered. Malware like Mirai, Reaper, Hajime, and EchoBot take advantage of the
situation by converting these devices into bots. Perpetrators used such botnets to
cause massive DDoS attacks [6]. Mirai caused a 1.1 Tbps attack using 148,000 IoT
devices. The number of infected endpoints has doubled after the Mirai source code
was made public. Major DDoS attacks like the GitHub attack in 2012 and Dyn Inc.
DNS servers attack in 2016 were notable using botnets.

With the exponential growth of IoT and its usage, device security must be consid-
ered from the design phase [12]. The heterogeneous nature of the IoT ecosystem
poses a challenge to the researchers to define a unified solution for the end-to-
end security for IoT. Lack of standards and regulations gives manufacturers the
freedom to build custom solutions. These architectures pose a challenge as each
vendor implements its custom solutions without considering all risks. The challenge
is further enhanced by the resource limitations of these devices, in terms of energy,
storage, and computation power. Such limits prevent the application of standard
security solutions implemented in traditional network devices like routers.

In this chapter, we defined end-to-end security architecture for IoT devices. We
start by understanding the security issues in IoT in Sect. 2. Then we deep dive into
the most common cloud-based architecture in Sect.3. With the understanding of
security issues and architecture, in Sects. 4 and 5, we discuss in detail how the plug-
pair-play (P3) model could be used to provide end-to-end security in communication
and firmware updates. In Sect. 6 we cross-check data security using the model with
the security issues defined in Sect. 2. We also evaluate the memory utilization of the
device. In Sect. 7 we conclude and state the future works in IoT security.

2 Security Issues in IoT Devices

Researchers [27] scrutinized approximately 1.2 Gigabytes of data and correlated
it with the Shodan and MaxMind databases to find a distribution of exploited IoT
devices. Of the 19,629 devices uniquely probed, they identified that China hosts the
most vulnerable devices (3,345), followed by Brazil (1,326) and Indonesia (1,191).
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Out of the vulnerable devices, Internet Service Providers hosted around 25%. These
statistics raise the question as to what are the security risks associated with IoT
devices.

We can divide IoT applications into four layers, namely sensing layer, network
layer, middleware layer, and application layer [10, 17]. Each layer presents its threat
and issues. The sensing layer represents the physical access to the sensors and
actuators. The network layer deals with problems associated with transmitting data
from the devices to a larger computational unit for processing. The middleware
provides an abstraction between the network layer and the application layer. It
provides the API for the application layer to function. The application layer is
responsible for providing the service requested by the user.

Summarizing the security issues in the different layers of an IoT application:

e Lack of physical security: Many of these devices operate autonomously in
unattended environments [25]. A perpetrator gaining access to these devices can
replace the node with a vulnerable one, or physically damage them. The attacker
can also inject malicious code into these devices gaining access to the entire
network. Such issues result in node capturing, side-channel attack, eavesdropping,
or even sleep deprivation attack.

* Resource limitation: Constrained resources, especially for the sensors and
actuators are a major concern raised by all researchers. Lack of available resources
limits the implementation of security solutions as present in a traditional network
device. Thus, making these devices a source of interest for the attackers. A simple
DoS/DDoS attack or a flooding attack can make the device unavailable, inducing
operational disruption.

* Insufficient user authentication: As established earlier, manufacturers provide
minimal security solutions using default credentials and not enforcing strict rules
to change them. An attacker uses the lack of proper authentication to spoof
requests to the device and gain total control over them. They can also use these
devices and turn them into a botnet. This can be a step in a chain of attacks to use
these botnets to perform a DDoS attack on a larger target [3].

* Inadequate encryption: Encryption effectively defuses the data and makes it
unreadable to any prying eyes. Cryptography depends on the randomness of the
algorithm and key size to effectively morph the data. Due to limited storage, it
becomes difficult to store large keys. Similarly, limitation in computation power
makes it difficult to run complex algorithms. A hacker takes advantage of it by
performing a brute force attack to break the encryption. An attacker can perform
a sniffing attack to expose critical data resulting in a breach of confidentiality
[9, 33].

* Inefficient access control: Manufacturers enable the functionality of these
devices with users having higher privilege. Once an attacker gains control of the
device, they can perform any operation with that access. Using root privilege the
attacker can disrupt the entire network on which the device is connected. The
attacker can monitor all traffic on that network to gain unauthorized access to
systems that they would not have otherwise.
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* Improper patch management: While most bigger players in the market provide
some means to provide security patches to their devices, there are numerous
incidents where the smaller players do not provide such options. With a known
vulnerability, the attackers can easily target these devices and gain total control.
Others provide an option to patch, but the patches are not checked for integrity,
making them susceptible to code injection attacks.

Other issues like weak programming practices and insufficient audit logging
are common to both traditional software development and IoT applications. IoT
applications suffer from some of the same issues that are seen commonly in web and
mobile development. Limited energy and computational power enhance the problem
further. It is difficult to implement traditional solutions on IoT devices.

3 Cloud-Based IoT Architecture

As described in Sect. 2, IoT applications face similar challenges as traditional web
and mobile applications. However, they do not possess the computational power
and storage to implement solutions like anti-virus, intrusion detection systems,
and a firewall. To counter these issues, the research community proposed diverse
architectural solutions. Due to the heterogeneous nature of the IoT ecosystem,
the diversity in technology has increased. Communication standards like Z-Wave,
Zigbee, 6LOWPAN, NFC, RFID, and others help interact with the devices. To
connect them to the cloud backend standards like MQTT, SMQTT, JavaScript IoT
are used.

Bluetooth Low Energy (LE) is used in most smartphone devices to connect with
other peripherals. Researchers have demonstrated the use of IPv6 over Bluetooth
LE [28]. Bluetooth LE Link-layer security protects wireless communication using
Cipher Block Chaining Message Authentication Code (CCM). The OpenConnect
project proposed the integration of these devices in a cloud-based architecture
[29]. REST API endpoints integrate the devices with the central command center.
The integration service maintains the security of the architecture. An arithmetic
computer-based information hiding technique was developed to provide features like
IP watermark, digital fingerprinting, and lightweight encryption ensuring energy
efficiency to resource-constrained devices [16].

Many proposals embark on the authentication issue for resource-constrained
devices. A certificate-based authentication technique address the default password
problem [3]. The solution proposes to provide a certificate to every entity in
the system by a trusted certification authority. Another solution uses a one-time
password (OTP) scheme secured using elliptic curve cryptography. It uses the
Lamport algorithm to generate the OTP. One research used the physical properties
of a device for authentication them in a smart home environment [20]. A random set
of challenges along with symmetric key cryptography secure the device.
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Software-Defined Network (SDN) is gaining a lot of momentum in recent
years. Software-Defined Networking (SDN) is an approach to networking that uses
software-based controllers or application programming interfaces (APIs) to commu-
nicate with underlying hardware infrastructure and direct traffic on a network [24].
SDN controllers consist of three layers, namely infrastructure layer, control layer, and
application layer [21] as shown in Fig. 1. The infrastructure layer interacts with the
device through open interfaces like OpenFlow. The application layer interacts with
all third-party libraries to cater to users’ needs. The control plane is a collection
of network APIs. It helps the interaction between the infrastructure layer and the
application layer.

IoT architectures can take advantage of the layered approach in SDN architecture.
IoT on an SD network avoids the complexity associated with generating, storing, and
forwarding data through a traditional network. Security mechanisms like authen-
tication, access control are maintained in the application layer. This separation of
concern between layers helps the infrastructure layer focus on data forwarding and
routing without concern about data privacy and security. Focusing on providing an
end-to-end security model, we would use a generalized cloud-based architecture. The
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Fig. 2 Proposed architecture for IoT ecosystem

model presented in this chapter would implement data protection in the application
layer following the SDN paradigm. End-to-end security solutions are proposed for
IoT devices on SDN network [23]. The proposed architecture uses policies to secure
the devices, network components, and services. The separation of the control plane
and data plane is used to implement these policies.

An cloud-based IoT architecture consists of three primary entities as shown in
Fig.2:

¢ Device represents the IoT endpoint that performs a specific operation. It repre-
sents the sensors and actuators that can operate autonomously and generate data
passed to a cloud system for further processing and analysis. Some devices like
a motion detection camera or a light bulb are designed only to fulfill operations
requested by the user. On such occasions, data analysis is not necessary.

* User requests information from the device. In this architecture, we have cate-
gorized the user group as owners and delegates. Each device is associated with
only one owner. The owner has total authority over the machine. The delegates
represent all other people or systems that interact with the appliance. Delegates
can interact with the device after the owner approves the pairing. The owner grants
access to a delegate to perform specific operations on a device. Throughout this
chapter, we have addressed the owner and delegate separately when needed and
collectively referred to them as users on concepts that apply to both.

* Gateway consists of API endpoints that are hosted in the cloud. They help coor-
dinate the communications between users and devices. It also holds information
about users, devices, registrations, and transaction logs. Each new device that is
manufactured is recorded in the device database. The gateway holds the identity
and public key of the device. It takes the computation and memory-intensive
operations like data analytics and forensics away from the device. During user
registration, a record gets added to the user database.
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4 The Plug-Pair-Play (P3) Model to Establish a Secure
Communication Channel

With the security issues presented in Sect. 2, having an end-to-end security solution
is essential. Researchers have provided multiple different solutions to provide overall
security. There have been proposals for using machine learning and deep learning
techniques to detect malware and DDoS attacks [2, 19]. Some research used geospa-
tial attributes of the devices to secure them in the transportation industry. Sensors
are used within the smart city to identify the vehicles. End-to-end solutions are
proposed for smart home systems as well [22]. One of the big challenges of providing
an end-to-end solution for IoT devices is the heterogeneous nature of the devices.
The proposed solutions either focus on specific sectors or do not describe the full
spectrum from initiation of the devices to secure communication. SDN-dependent
security solutions [23] are still in the research phase and cannot get easily integrated
into the current network architecture.

A step-by-step approach to secure communications with IoT devices that can be
easily integrated into the current network architecture is described by [7]. Internet-
connected devices are rapidly replacing regular electronic devices. Users are very
used to the plug-and-play model used widely in the industry. For a remote control
car, we connect the battery, and it instantly starts operating. The section describes
a similar plug-pair-play (P3) model for IoT devices. The model depends on a cloud
architecture, where there is a gateway available to manage the registration of the
users and devices. The model can operate in both traditional network architecture
and SDN architecture. Since SDN is still under research, we would use traditional
networking solutions like TLS/SSL to protect data in transit.

The P3 connection model is effective in multiple scenarios to maintain a secure
channel of communication with the devices. It relies on a personal area network
(PAN) channel for establishing communication. In all the below architectural imple-
mentation of the model, Bluetooth LE is taken as an example of PAN. Other
technologies like Zigbee, Near-Field Communication (NFC), and InfraRed (IR) can
also be considered to provide the same outcome [13]. Once the initial handshaking
is completed, the model uses Wi-Fi for every other request and response with the
device.

4.1 Secure Communication Between User and Gateway

As described in Sect. 3, the user provides commands and instructions to the device
to perform specific operations. The framework relies on a few prebuilt security
mechanisms to secure transactions. The model dictates that all communications over
the internet between user and device go through the gateway. It provides a few key
benefits:
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* The gateway can keep track of all communications for forensics.

* For device data that require analytics, the gateway can provide the computing
power to perform the operation.

* The device need to verify that the request is coming from the gateway and reject
every other request.

The user registers with the gateway before using the device. Mobile apps are
common nowadays to perform such operations. The app provides the interface for
the user to register and connect to the gateway. After logging in, an authentication
header accompanies any request to the gateway. JSON Web Token (JWT) [31] is
a common industry standard for authenticating requests and identifying users. The
token consists of three sections, namely header, payload, and signature. The header
section contains information about the algorithm used for the signature. The payload
holds user data, commonly called user claims. The signature section has the digital
signature of the encoded payload. The signature verifies the integrity of the data and
ensures that the payload is not tampered with.

Transport Layer Security (TLS) protects the requests and responses in transit.
TLS encrypts the header and body before it is put in the wire. This prevents any
wiretapping or man-in-the-middle attack. Figure 3 shows the Wireshark output
showing the encrypted communication to the gateway. The transaction use port 443.

4.2 Secure Communication Between Device and Gateway

A public-private key pair provides authentication when the device and gateway
communicate. The manufacturing process generates a unique key pair for each
device. The gateway keeps the public key in a secure data store while the device holds
the private key. Similarly, the gateway has its public-private key pair. The device
stores the public key of the gateway in EEPROM. We recommend using Elliptic
Curve Cryptography (ECC) for asymmetric encryption. ECC turns out to be the
preferred choice of public-key cryptography for resource-constrained devices. The
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smaller key size and efficient algorithm make it more appealing for IoT devices. The
operational time for signing and verification is comparable between ECC and RSA.
A 256 bits ECC key can provide the same level of security as the 2048 bits RSA key.

Along with the keys, each device also has a unique device id. The identifier
helps the user and gateway to recognize the device. The below formula shows the
approach to provide authentication and integrity checks for every request between
the device and gateway.

<device id, current_ timestamp, raw_data> —data
<data, Enc{H(data), PrivKeYieice}> — package

The raw_data represents the dataset that the device is trying to send to the user.
We would look deeper into how to secure raw_data in Sect. 4.5. The raw_data
combined with the device id and the current timestamp forms the pay-
load. When a request goes from the device to the gateway, the device ididentifies
the device. The current timestamp ensures that the quest is not a replay attack.
There are various ways to use the timestamp to determine if a request is stale. One
of the common techniques is to save the timestamp in a database. If the new request
has a timestamp less than or equal to the saved value, then the request is stale. The
security operations center (SOC) can look into these requests for validation.

The payload hash is signed using the private key of the device. The hashed signed
value can act as a digital signature for the device. The hashed value provides the
integrity check for the payload and the digital signature provides authentication
and non-repudiation.

The gateway uses the device id to extract the correct public key. The public
key helps verify the digital signature. Then the hash is used to validate the integrity
of the payload. As mentioned above, the current timestamp ensures the
request is not old. After all the validations and verifications, the gateway can safely
transmit the raw_data back to the user. Figure 4 shows the validation workflow
for a request from the device to the gateway. A similar technique can protect the
communication back to the device.

4.3 Setting Up Shared Key for Owner

The security communication between user and device cannot be preset. In this
section, we describe the steps to set up a security key between the owner and the
device. The model defines that every device has only one owner. Any other user
would be considered a delegate and require the owner’s permission to interact with
the device. Section 4.4 describes the steps to set up the keys for a delegate. Since
these keys are auto-generated, a symmetric key algorithm would best serve the
purpose. The random unique key avoids password-based authentication or setting up
default credentials in the device. The step is performed only once during the device
1nitiation.
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Figure 5 shows the steps to set up the shared key between the device and its owner.
The workflow assumes that the user is already registered to the gateway and is logged
in to the mobile app as described in Sect. 4.1. A PA network initiates communication
with the device. In our demonstration, we use Bluetooth LE. Bluetooth LE is similar
to classic Bluetooth and effective for ultra-low power applications [28]. It is present
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in all modern mobile phones and connected devices. The attack vector is small for a
PAN network and is an efficient choice to set up keys.

Pairing: The initial pairing creates that handshaking between the owner and the
device to perform the remaining steps. The owner uses his mobile app to search
for the available device to pair. Each device has a unique identifier that the app
locates to establish the pairing. In this process, the owner’s phone acts as a master,
and the device acts as a slave.

Generate session key: In the next steps of the workflow, we would share
passwords and keys between the owner and device. We need to secure all these
communications to avoid an eavesdropping attack. Curve25519 is an elliptic
curve algorithm using 128 bits of key and designed for Elliptic Curve Diffie-
Hellman (ECDH) key exchange. Here, both the owner and device generate a key
and exchange the public part. On receiving the public part of the key they both
generate the session key K using Diffie-Hellman to protect the next steps in the
workflow.

Connect Wi-Fi: The owner encrypts the Wi-Fi SSID and password with the
sessionkey Enc{<WiFi SSID, WiFi password>, K} andsendsit. The
device uses the credential to connect to the internet and ensures a successful
connection with the gateway. The Wi-Fi information gets stored in memory for
the remaining workflow. It returns a “success” to the owner.

User verification: The device needs to verify the identity of the owner. The owner
sends the user_ id encrypted Enc{user id, K} using the session key.
The device forwards this identifier to the gateway along with the device’s digital
signature for verification. The gateway validates the identity of the device. Then
the user_id is matched against the user database. On successful verification, a
partial registration record gets created.

Device verification: On a successful response from the gateway, the device
returns an encrypted device mac to the owner Enc{device mac, K;}.
The owner forwards the mac and the authentication header to the gateway for
device verification. The gateway verifies the user identity and then compares the
device mac against the newly created partial registration record. Once all the
validations pass, the registration record is marked complete, and success gets
returned to the user.

Generate and share the symmetric key: Both the device and owner have
validated the identity of each other. The owner creates the symmetric key by
generating 256 bits key and a 128 bits initialization vector. The owner stores
the keys and shares them with the device Enc {K,Ks}. The device saves
the keys and the user_ id. The Wi-Fi credentials are also stored. Then an
acknowledgment is sent back to the user.

Disconnect: The workflow established a secure key between the device and the
owner. The Bluetooth interface is no longer needed to be active. The owner sends
a termination request to the device, and the device complies.

The key generated in this session can secure communication between the user and

device. After the initiation, all future communications can flow through the public
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internet, and the key can be used to maintain the confidentiality of the data. As
established earlier, all communications flow through the gateway. In scenarios where
data analytics is not required, the key can reside only with the user and device. The
gateway does not need to interpret the message. The registration record can ensure
that unauthorized requests to the device are terminated at the gateway.

Recycling a symmetric key is essential to avoid key detection. A similar process
can help generate a new key. After the handshaking and establishing a session key,
the user can generate a new key and send it to the device. The device uses the
user id to locate the previous key and replace it with the new one. A general
industry recommendation is to recycle keys every 90—-180 days.

4.4 Setting Up Shared Key for Delegate

The previous section described how an owner connects to a device without prior
registration. Here we will discuss the situation where the device has an owner, and
another user is trying to establish a connection. As described earlier, a delegate
refers to people and appliances that want to connect to the device and is not the
owner. When a delegate wants to pair with the device, they need approval from the
owner. This workflow allows the owner to provide access control on the IoT device.
It prevents unauthorized access and prevents perpetrators from misusing internet-
connected systems.

Figure 6 shows the steps for a delegate to connect to the device. A similar
workflow is followed for delegates as described in Sect.4.3. The delegate initiates
the pairing, similar to the owner. After pairing and setting up the session key, the
delegate sends its user id to the device. The device is already connected to the
Wi-Fi, so no credentials are further required. The device sends the user’s identifier
to the gateway for verification.

The user verification process adds an extra step of approval from the owner. The
gateway verifies the registration records and finds the device has an existing owner.
The gateway sends a notification to the owner requesting permission to create the
partial registration record. If the owner approves, the gateway creates the partial
record and responds to the device. The device sends the encrypted mac_address
to the delegate. The delegate verifies the identity of the device with the gateway
and the registration record is completed. Then a secret is generated by the delegate
and sent to the device. The device stores it in EEPROM along with the user id.
Following that, the delegate sends a termination request. All further communications
between the delegate and the device go through the public internet. The secret
maintains confidentiality when communicating between the delegate and the device.

If the owner rejects, the transaction gets terminated. The device returns a failed
verification code to the delegate. This process provides an option to the owner
to decide who gets access to the device. In this article, we concentrated on the
security of data communication. The steps shown in this workflow provided equal
authorization for all delegates. Role-based access control (RBAC) can be effective
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on devices that perform multiple operations. That would give more control to the
owner and they can define what operations can be performed by each delegate.

The secret key generated in the P3 connection model identifies each pair of users
and devices. As described above, there are no predefined secret or default credentials
in this workflow. A dynamic symmetric key is generated dynamically that protects
all communications over the public internet. This approach is particularly effective
for a novice user. This process works in the background, and the user does not have
to configure or remember any additional details to enable security. It also plays well
with the plug-and-play paradigm that general users are well accustomed to.

4.5 Secure Communication Between User and Device

When data flows over the internet, it goes through a chain of network devices. It
is practically impossible to secure every one of them from being wiretapped. The
shared secret K generated in the P3 connection model can be used to maintain the
confidentiality of information flowing between user and device.

Researchers have proposed multiple solutions for a user to communicate with the
device. The heartbeat approach is popular for network devices. The device sends out
apulse at a regular interval, indicating the device is active and functioning. The same
technique could be effective for IoT devices. The device can inform the gateway that
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it is operating. The gateway could use the pulse response forwarding requests from
the user.

<command, user id> — data
Enc (data, K) — enc_data

Figure 7 shows the data flowing from the user to the device via the gateway. Before
sending the data to the gateway, the user uses the key X to encrypt the command and
user_id to generate enc_data. The user sends the enc_data to the gateway
along with device id and the JWT token in the auth header. The gateway on
receiving the request verifies the user’s identity using the JWT token. Next, the
gateway extracts the device registration using the user idanddevice_ id. After
all the validation, the gateway waits for the device’s heartbeat. On receiving a pulse,
the gateway forwards the user’s request along with the user id and the device’s
digital signature.

Dec(enc_data, K) — <command, user_ids>

On receiving a user request in the pulse response, the device validates the digital
signature to ensure the response is from the gateway. The user idisused to extract
the correct P3 key from the EEPROM. The device uses the key to extract out the
command and the user id send from the user from enc data. The device
matches both the user identifiers for validation.

The command is used to perform the specific operation requested by the user.
The generated payload is again encrypted back using K before sending back to the
gateway. Figure 8 shows the workflow back from the device to the user via the
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gateway. On receiving the encrypted request from the device the gateway verifies

the digital signature to ensure the integrity of the request. The time stamp is

validated to rule out replay attacks. Then the gateway checks if there are any pending

requests from the user for this device. If yes, the enc_data is forwarded to the user.
To summarize the whole workflow,

* The user sends out a command to the device encrypted using K and the authenti-
cation header to identify itself to the gateway.

* The gateway verifies the user and the registration record.

* The request is forwarded to the device along with the user’s identifier as a pulse
response.

* The device verifies the gateway’s digital signature and then extracts the key K
using the user’s identifier. The device uses K to decrypt the command. Then it
performs the required operation to formulates the response and encrypts it with
K.

» The encrypted response is sent to the gateway, which gets forwarded to the user.

* The user decrypts the response using K and completes the cycle.

Thus, end-to-end confidentiality, integrity, and authentication are maintained
when communicating from a user to a device. One thing to note, all communications
are encrypted in transit using TLS. So if there is wiretapping somewhere in the
middle, the information flowing in the network is protected.

Here the request from the user and response from the device is encrypted. Only
the pair holding the secret can decrypt this conversation. Auto-generation of the key
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can be used to integrate multiple users and devices. The model makes security work
in the background and becomes user-friendly for general users.

5 Using P3 Connection Model to Update Device Firmware

The attack surface is evolving, and zero-day vulnerabilities are coming out more
frequently. Having an option for IoT devices to get firmware updates is equally
important as any desktop or mobile solution. The research community has provided
multiple solutions to safely update the firmware [5, 14, 34]. The IETF SUIT working
group is working on a standard framework update process for IoT devices. The group
defines that the manifest should include the information about the firmware and a
security wrapper to protect the metadata end-to-end.

The software in an IoT device consists of two parts, namely the bootloader and
firmware. The bootloader helps load the firmware in memory for the device to
function. The developer makes changes and recompiles the code to generate a new
firmware. A content delivery network (CDN) hosts the updated firmware from where
the device can access it. The device downloads the new firmware in one oOf the
available slot, and point the bootloader to this new location. Then the device is
restarted and operates with the new code. The old firmware is kept for rollback and
eventually discarded.

Here we describe how we can use the P3 key to perform the firmware update.
The P3 key generated in Sects. 4.3 and 4.4, provides an end-to-end secure commu-
nication between the user and device. We can use this channel to pass the metadata
information securely from the user to the device. This metadata includes the CDN
URL and the hash of the download. Figure 9 describes the steps by which the device
can safely download and update the firmware.

» The first step is for the gateway to notify the owner that the device needs an update.
As mentioned previously, the owner has total authority over the device and thus
is responsible for informing the device of the update.

e The owner requests the gateway to provide the metadata information about
the new update. The request contains the auth header to identify the owner to
the gateway. The gateway validates the identity and sends the manifest back
containing the CDN URL and the hash of the download. This separation of the
hash from the firmware download maintains integrity. If an attacker somehow gets
access to the CDN and alters the firmware, the hash would prevent the device from
using it.

¢ The owner encrypts the metadata using the P3 key K and forwards the same to the
device via the gateway. Section 4.5 explains the steps for secure communication
from the owner to the device.

* The device on receiving the package validates the identity of the gateway. Then
the package is decrypted using the same key K.
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the device extracts the CDN URL from the metadata and requests to download
the updated firmware. A hash is generated of the downloaded and compared
against the provided hash in the metadata from the owner. If there is a mismatch,
the device returns an error to the user via the gateway. Otherwise, a successful
download message is returned.

The firmware is kept in one of the available slots, and the bootloader points to this
new slot. The device restarts to implement the change. If everything looks good,
the gateway gets notified by a success message. If the update fails, a rollback
operation takes effect, and the bootloader points back to the old slot. Gateway is
notified of the failure.

The gateway informs the owner using a push notification of the update status.

As seen above, the automated symmetric key generated in the P3 connection

model can help perform device updates. Updating the device is of utmost importance
to improve the security and performance of the device. Software keep improving,
and so should the devices. Here we have considered the scenario where there is a
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full update of the firmware. There are situations, where only a part of the firmware
is updated. We would need further research in this area. There are also scenarios
where the bootloader needs an update. Those are complex situations and need further
research as well.

6 Model Evaluation

To test the P3 connection model, we implemented a humidity and temperature sensor.
The following components make up the IoT device:

¢ The NodeMCU v3 ESP8266 microcontroller acts as the computing unit.

e HC-05 Wireless RF transceiver acted as a PAN endpoint operating on Bluetooth
LE.

¢ The DTH-22 sensor recorded the reading of the environment.

* UCTRONICS 0.96 inch OLED module for the device display.

The ESP8266 microcontroller has 512 KB of EEPROM storage, 64 KB of instruc-
tional RAM, and 96 KB of data RAM.

The gateway was developed on AWS API Gateway using lambda functions to
support the REST calls. The user registration was stored using the AWS Cognito
service. DynamoDB acted as a data warehouse for the gateway to store the device
and registration records.

We developed a React Native app on an Android platform to act as the user.

To validate the model’s performance, we evaluated two aspects, data security, and
device memory utilization.

6.1 Data Security

Throughout the chapter, we focused on data security. The framework implemented
end-to-end security for communications between the user and the device. Looking
back at the security issues pointed out in Sect. 2, let us evaluate how the model can
address each of the problems:

e Lack of physical security: We did not go into the depth of physical security in
this chapter. We focused mainly on data privacy. However, the heartbeat pulse can
be used to maintain physical security. A heartbeat pulse is sent from the device
to the gateway at a regular interval. If the gateway fails to receive the pulse, it
can send a push notification to the owner notifying that the device is offline. This
is a more reactive approach to physical security and does not cover the fact that
the device can be physically manipulated by an attacker. This area needs more
research.
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* Resource limitation: In our implementation we used both symmetric and asym-
metric encryption and were able to achieve the desired result with a limited
resource. One thing to note here, the number of users that can connect to a
device depends on the EEPROM storage. In our experiment, we could connect
a maximum of four with the 96 KB of data RAM. Section 6.2 details the memory
utilization of the device in an end-to-end secure communication.

* Insufficient user authentication: P3 model enforces authentication at all levels.
We tried to implement a zero-trust ecosystem, where every request is authenti-
cation. The gateway and device use digital signatures amongst them. The user
identifies itself using the authentication header. And we generated a symmetric
key for communication between the user and device. Every request between the
entities are authenticated before any operation is performed.

* Inadequate encryption: We used elliptic curve cryptography (ECC) for asym-
metric and AES 256 for symmetric encryption. Both are suited well for con-
strained devices. We were able to successfully perform an end-to-end commu-
nication from the user to the device.

 Inefficient access control: We distinguished the users into two categories, owner
and delegates. The owner has total control over the device and gets notifications
for firmware updates and critical situations. The delegates are like general users
and can interact with the device with approval from the owner. In our workflow,
we did not distinguish amongst the delegates, but that can be easily achieved using
the same model.

* Improper patch management: Sect. 5 detailed the steps on how we can achieve
a secure firmware update. Following the IETF SUIT group’s guidelines, we
separated the metadata and provided end-to-end security in sending them to the
device from the owner. The hash gets passed in the metadata which validates the
new firmware’s integrity.

6.2 Memory Utilization

The end-to-end secure communication was the most memory-intensive crypto-
graphic operation. The device verified the digital signature of the gateway to ensure
the sender’s authenticity. Post that, it extracts the encrypted message from the user
and then decrypts it using AES 256. After performing the given command, the
device encrypts the response using AES 256 and attaches its digital before sending
a response to the gateway.

The memory utilization for the device was tracked using an inbuilt ESP library.
We added a wrapper around the ESP.getFreeHeap () function to print the
available memory on the Arduino console.
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Fig. 10 Memory utilization during command execution

/! Function to print the current memory usage
void availableMemory () {
Serial . print ("Memory available: ");
Serial . printin (ESP.getFreeHeap () ) ;

Figure 10 shows the memory utilization for the five consecutive command
execution. We must note that the heartbeat continues to function as a command gets
executed, so the memory start and end times are different from the two operations.
We noticed that the available memory at the start of each cycle for command
execution is around 42 MB. Each execution cycle took around 2080 bytes. We
repeated the experiment five times, and we got the same results.

7 Conclusion

The P3 connection model, described in this chapter, provides the groundwork for
end-to-end secured communication with IoT devices. The model integrates millions
of users and devices seamlessly. The framework relies on the principle of zero trust.
More research in the area of zero-interaction authentication (ZIA) can provide the
required solution to protect the privacy of data [15]. In the workflow, we used
Bluetooth LE for the initial pairing. Other technologies like cellular IoT, near-
field communication (NFC), and long-term evolution (LTE) could be potential
alternatives to Bluetooth [32]. LPWAN [1] could be used to avoid the dependency
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of home routers. This is an area of research for efficient pairing of devices within
proximity.

The threat to the IoT devices is genuine, and with the growing number of internet-
connected devices, the attack vector is growing [8]. Eliminating trust from the
security framework could help establishing trust among the users. The P3 connection
model securely set up a secret key for users and devices. Verification of the parties
eliminates the threat of unauthorized access. In our implementation we built a device
with minimal stor