
Eternal Vertex Cover on Bipartite Graphs

Jasine Babu1, Neeldhara Misra2(B) , and Saraswati Girish Nanoti2

1 Indian Institute of Technology, Palakkad, Palakkad, India
jasine@iitpkd.ac.in

2 Indian Institute of Technology, Gandhinagar, Gandhinagar, India
{neeldhara.m,nanoti saraswati}@iitgn.ac.in

http://www.iitpkd.ac.in/

http://www.iitgn.ac.in

Dedicated to the memory of Professor Rolf
Niedermeier.

Abstract. The Eternal Vertex Cover problem is a dynamic variant
of the vertex cover problem. We have a two player game in which guards
are placed on some vertices of a graph. In every move, one player (the
attacker) attacks an edge. In response to the attack, the second player
(the defender) moves some of the guards along the edges of the graph in
such a manner that at least one guard moves along the attacked edge. If
such a movement is not possible, then the attacker wins. If the defender
can defend the graph against an infinite sequence of attacks, then the
defender wins.

The minimum number of guards with which the defender has a win-
ning strategy is called the eternal vertex cover number of the graph G. On
general graphs, the computational problem of determining the minimum
eternal vertex cover number is NP-hard and admits a 2-approximation
algorithm and an exponential kernel. The complexity of the problem on
bipartite graphs is open, as is the question of whether the problem admits
a polynomial kernel.

We settle both these questions by showing that Eternal Vertex Cover
is NP-hard and does not admit a polynomial compression even on bipar-
tite graphs of diameter six. We also show that the problem admits a
polynomial time algorithm on the class of cobipartite graphs.

1 Introduction

The Eternal Vertex Cover problem is a dynamic variant of the vertex
cover problem introduced by Klostermeyer and Mynhardt (2009). The setting
is the following. We have a two player game—between players whom we will
refer to as the attacker and defender—on a simple, undirected graph G. In the
beginning, the defender can choose to place guards on some of the vertices of

The second author acknowledges support from the SERB-MATRICS grant
MTR/2017/001033 and IIT Gandhinagar. The third author acknowledges support from
CSIR.

c© Springer Nature Switzerland AG 2022
A. S. Kulikov and S. Raskhodnikova (Eds.): CSR 2022, LNCS 13296, pp. 64–76, 2022.
https://doi.org/10.1007/978-3-031-09574-0_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-09574-0_5&domain=pdf
http://orcid.org/0000-0003-1727-5388
https://doi.org/10.1007/978-3-031-09574-0_5


Eternal Vertex Cover on Bipartite Graphs 65

G. The attacker’s move involve choosing an edge to “attack”. The defender is
able to “defend” this attack if she can move the guards along the edges of the
graph in such a way that at least one guard moves along the attacked edge. If
such a movement is not possible, then the attacker wins. If the defender can
defend the graph against an infinite sequence of attacks, then the defender wins
(see Fig. 1). The minimum number of guards with which the defender has a
winning strategy is called the eternal vertex cover number of the graph G and
is denoted by evc(G).

Fig. 1. An attack that is defended by moving two guards.

If S� is the subset of vertices that have guards on them after the defender
has played her �-th move, and S� is not a vertex cover of G, then the attacker
can target any of the uncovered edges to win the game. Therefore, when the
defender has a winning strategy, it implies that she can always “reconfigure” one
vertex cover into another in response to any attack, where the reconfiguration is
constrained by the rules of how the guards can move and the requirement that
at least one of these guards needs to move along the attacked edge. Therefore,
it is clear that evc(G) � mvc(G), where mvc(G) denotes the minimum size
of a vertex cover of G. It also turns out that twice as many vertices as the
mvc(G) also suffice the defend against any sequence of attacks. This might be
achieved, for example, by placing guards on both endpoints of any maximum
matching to begin with and after any attack, reconfiguring the guards to obtain
another maximum matching. Using this strategy, a 2−approximation algorithm
for Eternal Vertex Cover was obtained by Fomin et al. (2010). This also
implies mvc(G) � evc(G) � 2mvc(G).

Klostermeyer and Mynhardt (2009) gave a characterization of the graphs for
which the upper bound is achieved. A characterization for graphs for which lower
bound is achieved remains open, but several special cases have been addressed
in the literature (see, for instance Babu et al. 2021a). Also, Klostermeyer and
Mynhardt (2011) study graphs with equal eternal vertex cover and eternal dom-
ination numbers, which is a closely related dynamic variant of the dominating
set problem.
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The natural computational question associated with this parameter is the
following: given a graph G and a positive integer k, determine if evc(G) � k.
The problem is only known to be in PSPACE in general. Fomin et al. (2010)
show that this problem is NP-hard by a reduction from vertex cover, and admits
a 2-approximation algorithm based on both endpoints of a maximum matching.
They also study the problem from a parameterized perspective. In parameterized
complexity, one asks if for an instance of size n and a parameter k, a problem
can be solved in time f(k)nO(1) where f is an arbitrary computable function
independent of n. Problems that can be solved in that time are said to be fixed
parameter tractable, and the corresponding complexity class is called FPT. They
show that the problem is fixed parameter tractable when parameterized by the
number of available guards k, by demonstrating an algorithm with running time
O

(
2O(k2) + nm

)
for Eternal Vertex Cover, where n is the number of

vertices and m the number of edges of the input graph. This work leaves open
the question of whether Eternal Vertex Cover admits a polynomial kernel1.

The computational question of Eternal Vertex Cover is also well stud-
ied on special classes of graphs. For instance, it is known to be NP-complete
when restricted to locally connected graphs, a graph class which includes all
biconnected internally triangulated planar graphs (Babu et al. 2021a). It can
also be solved in linear time on the class of cactus graphs (Babu et al. 2021b),
quadratic time on chordal graphs (Babu and Prabhakaran 2021; Babu et al.
2021b) and in polynomial time on “generalized” trees (Araki et al. 2015). How-
ever, the complexity of the problem on biparitite graphs remains open, and is
an intriguing question especially considering that the vertex cover problem is
tractable on biparitite graphs.

1.1 Our Contributions

We resolve the question of the complexity of Eternal Vertex Cover on
bipartite graphs by showing NP-hardness even on bipartite graphs of constant
diameter. It turns out that the same result can also be used to argue the
likely non-existence of a polynomial compression, which resolves the question
of whether Eternal Vertex Cover has a polynomial kernel in the negative.
Finally, we also observe that the hardness results carry over to the related problem
of Eternal Connected Vertex Cover (Fujito and Nakamura 2020), where
we would like the vertex covers at every step to induce connected subgraphs.

Summarizing, our main result is the following:

Theorem 1 (EVC on Bipartite Graphs). Both the Eternal Vertex
Cover and Eternal Connected Vertex Cover problems are NP-hard and
do not admit a polynomial compression parameterized by the number of guards
(unless NP ⊆ coNP /poly), even on bipartite graphs of diameter six.

We also show that Eternal Vertex Cover is tractable on the class of
cobipartite graphs.
1 We refer the reader to Sect. 2 for the definition of the notion of a polynomial kernel.
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Theorem 2 (EVC on Co-Bipartite Graphs). There is a quadratic-time
algorithm for Eternal Vertex Cover on the class of cobipartite graphs.

Organization. We establish notation and provide relevant definitions in Sect. 2.
The proof of Theorem 1 follows from the construction described in Lemma 1,
and is the main focus of Sect. 3, while the proof of Theorem 2 can be found
in Sect. 4. In Sect. 5, we suggest some directions for further work.

2 Preliminaries and Notations

All graphs in this paper are finite, undirected and without multiple edges and
loops. For terminology not defined in this paper we refer to Diestel (2017).

Let G = (V,E) be a graph. We will typically use n and m to denote |V | and
|E|, respectively. The set of neighbours of a vertex v in G is denoted by NG(v), or
briefly by N(v)2. More generally, for U ⊆ V, the neighbours in V\U of vertices
in U are called neighbours of U; their set is denoted by N(U). A subset S ⊆ V

is said to be independent if for all u, v ∈ S, (u, v) /∈ E.
A path is a non-empty graph P = (V,E) of the form V = {x0, x1, . . . , xk}

and E = {x0x1, x1x2, . . . , xk−1xk}, where the xi’s are all distinct. The number of
edges of a path is its length, and the path of length k is denoted by Pk. The
distance dG(x,y) in G of two vertices x,y is the length of a shortest x− y path
in G; if no such path exists, we set d(x,y) := ∞. The greatest distance between
any two vertices in G is the diameter of G, denoted by diam(G).

A vertex cover of a graph G = (V,E) is a subset S of the vertex set such
that every edge has at least one of its endpoints in S. Note that V \ S is an
independent set. We use mvc(G) to denote the size of a minimum vertex cover
of G. A dominating set of a graph G is a subset X of the vertex set such that
every vertex of G either belongs to X or has a neighbor in X.

Consider a graph G = (V,E) on n vertices and m edges. Guards are placed on
the vertices of the graph in order to protect it from an infinite sequence (which
is not known to the guards in advance) of attacks on the edges of the graph.
In each round, one edge uv ∈ E is attacked, and each guard either stays on the
vertex it is occupying or moves to a neighboring vertex.

Moreover, the guards are bound to move in such a way that at least one
guard moves from u to v or from v to u. The minimum number of guards which
can protect all the edges of G is called the eternal vertex cover number of G and
is denoted by evc(G).

A bipartite graph is a graph whose vertex set can be partitioned into at most
two independent sets. A co-bipartite graph is a graph which is the complement
of a bipartite graph. In other words, a co-bipartite graph is a graph whose vertex
set can be partitioned into at most two cliques.

2 Here, as elsewhere, we drop the index referring to the underlying graph if the refer-
ence is clear.
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Parameterized Complexity. A parameterized problem L is a subset of Σ∗ ×N for
some finite alphabet Σ. An instance of a parameterized problem consists of (x,k),
where k is called the parameter. A central notion in parameterized complexity
is fixed parameter tractability (FPT), which means for a given instance (x,k)
solvability in time f(k) · p(|x|), where f is an arbitrary function of k and p is a
polynomial in the input size. The notions of kernelization and compression are
defined as follows.

Definition 1. A kernelization algorithm, or in short, a kernel for a parameter-
ized problem Q ⊆ Σ∗ × N is an algorithm that, given (x,k) ∈ Σ∗ × N, outputs
in time polynomial in |x| + k a pair (x′,k′) ∈ Σ∗ × N such that (a) (x,k) ∈ Q if
and only if (x′,k′) ∈ Q and (b) |x′| + k′ � g(k), where g is an arbitrary com-
putable function. The function g is referred to as the size of the kernel. If g is a
polynomial function then we say that Q admits a polynomial kernel.

Definition 2. A polynomial compression of a parameterized language Q ⊆ Σ∗×
N into a language R ⊆ Σ∗ is an algorithm that takes as input an instance (x,k) ∈
Σ∗ × N, works in time polynomial in |x|+ k, and returns a string y such that:

1. |y| � p(k) for some polynomial p(·), and
2. y ∈ R if and only if (x,k) ∈ Q.

Our focus in this paper is the Eternal Vertex Cover problem, in which
we are interested in computing evc(G) for a graph G, and its parameterized
complexity with respect to the number of guards:

Eternal Vertex Cover
Input: A graph G = (V,E) and a positive integer k ∈ Z

+.
Parameter: k

Question: Does G have an eternal vertex cover of size at most k?

Eternal Vertex Cover is known to admit an exponential kernel of size
4k(k+ 1) + 2k (Fomin et al. 2010). We use the following standard framework to
show that it is unlikely to admit a polynomial compression.

Definition 3. Let P and Q be parameterized problems. We say that P is poly-
nomial parameter reducible to Q, written P �ppt Q, if there exists a polynomial
time computable function f : Σ∗ × N → Σ∗ × N and a polynomial p, such that
for all (x,k) ∈ Σ∗ × N (a) (x,k) ∈ P if and only (x′,k′) = f(x,k) ∈ Q and (b)
k′ � p(k). The function f is called polynomial parameter transformation.

Proposition 1. Let P and Q be parameterized problems such that there is a
polynomial parameter transformation from P to Q. If Q has a polynomial com-
pression, then P also has a polynomial compression.

In the Red Blue Dominating Set problem, we are given a bipartite graph
G = (B ∪ R,E) and an integer k and asked whether there exists a vertex set
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S ⊆ R of size at most k such that every vertex in B has at least one neighbor
in S. In the literature, the sets B and R are called “blue vertices” and “red
vertices”, respectively. It is known (see Dom et al. 2014, Theorem 4.1) that
RBDS parameterized by (|B|,k) does not have a polynomial kernel, and more
generally, a polynomial compression (see Fomin et al. 2019, Corollary 19.6):

Proposition 2 (Corollary 19.6 Fomin et al. (2019)). The Red Blue Dom-
inating Set problem, parameterized by |B| + k, does not admit a polynomial
compression unless coNP ⊆ NP/poly.

Note that based on Propositions 1 and 2, to show that a polynomial compression
for Eternal Vertex Cover parameterized by the number of guards implies
coNP ⊆ NP/poly, it suffices to show a polynomial parameter transformation
from Red Blue Dominating Set to Eternal Vertex Cover.

For more background on parameterized complexity and algorithms, the
reader is referred to the books Cygan et al. (2015); Fomin et al. (2019); Nie-
dermeier (2006); Flum and Grohe (2006); Downey and Fellows (2013).

3 Hardness on Bipartite Graphs

In this section we demonstrate the intractability of Eternal Vertex Cover
on the class of bipartite graphs of diameter six. Our key tool is a reduction
from Red Blue Dominating Set which also happens to be a polynomial
parameter transformation.

Lemma 1. There is a polynomial parameter transformation from Red Blue
Dominating Set parameterized by |B|+k to Eternal Vertex Cover param-
eterized by solution size.

Proof. Let 〈G = (V,E),b + k〉 be an instance of Red Blue Dominating Set.
We have V = R∪B. We denote the vertices in R by {v1, . . . , vr}, the vertices in B

by {u1, . . . ,ub} and use m to denote |E|. We assume that G is connected, since
Red Blue Dominating Set does not have a polynomial sized kernel even for
connected graphs.

We assume that every blue vertex has at least one red neighbour and by
returning a trivial No-instance of Eternal Vertex Cover if some blue vertex
has no red neighbour. The correctness of this follows from the fact that if some
blue vertex does not have a red neighbour then it cannot be dominated by any
subset of R.

Further, we assume that k < b by returning a trivial Yes-instance of Eter-
nal Vertex Cover if k � b. Also we assume b > 1, since when b = 1, the
instance is easily resolved and we may return an appropriate instance of Eter-
nal Vertex Cover (a trivial Yes instance if k � 1 and a trivial No instance
otherwise).
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The Construction. We will develop an instance of Eternal Vertex Cover
which we denote by 〈H, �〉 based on 〈G,k〉 as follows (see also Fig. 2). First, we
introduce r red vertices, denoted by A := {vi | 1 � i � r} and b blue vertices,
denoted by B := {ui | 1 � i � b}. Next, for all i ∈ [b], we add b2 + 3 dependent
vertices of type i, denoted by Ci := {wi

j | 1 � j � b2 + 3}. Now, we add b2 + 3
dependent vertices of type �, denoted by D := {wi

j | 1 � j � b2 + 3}. Finally,
we add two special vertices denoted by � and †, which we will refer to as the
universal and backup vertices respectively. To summarize, the vertex set consists
of the following r + (b3 + b2 + 4b + 5) vertices:

V(H) := A ∪ B ∪ C1 ∪ · · · ∪ Cb ∪ D ∪ {�, †}.
We now describe the edges in H:

– There are m structural edges given by (vp,uq) for every pair (p,q) such that
(vp,uq) ∈ E(G). In other words, for every edge (vp,uq) in the graph G, the
original vertex vp is adjacent to the partner vertex uq.

– The dependent vertices of type i are adjacent to the ith blue vertex, i.e., for
every i ∈ [b], we have a sliding edge (ui,w) for each w ∈ Ci.

– The dependent vertices of type � are adjacent to the universal vertex, i.e., we
have a sliding edge (�,w) for each w ∈ D.

– The universal vertex � is adjacent to every red vertex via a supplier edge. For
every i ∈ [r], we have the edge (vi, �).

– Finally, we have the edge (�, †), indicating that the backup vertex † is adjacent
to the universal vertex. We call this edge a bridge.

To summarize, we have the following edges in H:

E(H) = {(vp,uq) | 1 � p � r; 1 � q � b; and (vp,uq) ∈ E(H)} ←− the structural edges

∪ {(u1,w) | w ∈ C1)} ←− the type 1 sliding edges

∪
.
.
.

∪ {(ui,w) | w ∈ Ci)} ←− the type i sliding edges

∪
.
.
.

∪ {(ub,w) | w ∈ Cb)} ←− the type b sliding edges

∪ {(�,w) | w ∈ D)} ←− the type � sliding edges

∪ {(vi,�) | 1 � i � r} ←− the supplier edges

∪ {(�, †)} ←− the bridge edge.

(1)

We now let � := b+ k+ 2, and this completes the description of the reduced
instance 〈H, �〉.

Claim. The vertex cover number of H is b + 1.
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Proof. This follows from the fact that there is a matching of size b + 1 in H,
consisting of edges joining each blue vertex and � to one of their adjacent depen-
dent vertices. (showing the lower bound), and that B ∪ {�} is a vertex cover in H

(which implies the upper bound).

Proposition 3. Any vertex cover of H that has at most � vertices must contain
B ∪ {�}.

Proof. Consider a vertex cover S ⊆ V(H) that does not contain some blue vertex
ui ∈ B. Then S must contain all the dependent vertices in Ci, but since |Ci| =
b2 + 3, this contradicts our assumption that |S| � �. Consider a vertex cover
S ⊆ V(H) that does not contain the universal vertex �. Then S must contain
all the dependent vertices in D, but since |D| = b2 + 3, this contradicts our
assumption that |S| � �.

Proposition 4. If G has a red blue dominating set of size k, then the connected
vertex cover number of H is at most b + k + 1.

Proof. Let S be a Red Blue Dominating Set of size k in G. Consider the set
T = B∪ {�}∪S. First we show that H[T ] is connected. It is sufficient to show that
each vertex has a path joining it to the universal vertex. Clearly the universal
vertex is a neighbour of all the red vertices and hence it is connected to them.
Any blue vertex has a neighbour in the dominating set and this red neighbour
is adjacent to the universal vertex. So all the blue vertices are connected to the
universal vertex.

�

†

Fig. 2. A schematic depicting the construction of (H, �) starting with an instance (G,k)
of Red Blue Dominating Set. The red vertices from G instance are shown in the red
rectangle on the top while the blue vertices are in the blue rectangle positioned at the
bottom. The solid green lines correspond to edges in E(G). The small orange vertices
are the dependent vertices (some of them are omitted for clarity), while the global and
backup vertices are shown by nodes labeled � and † respectively. The wavy line shows
the bridge, the dotted lines shows the supplier edges while the dashed lines show the
sliding edges.



72 J. Babu et al.

Next we show that T is a vertex cover of H. Any structural edge has both
its endpoints in T . Since B ∪ {�} ⊂ T , any sliding edge has one endpoint in T .
All the supplier edges and the bridge edge have one endpoint in T which is the
universal vertex �. Thus cvc(H) � b + k + 1.

The Forward Direction. Suppose 〈G = (V,E),k〉 is a Yes-instance of Red Blue
Dominating Set. We argue that 〈H, �〉 is a Yes-instance of Eternal Vertex
Cover. From Klostermeyer and Mynhardt (2009), we have evc(H) � cvc(H)+1.
Further, Proposition 4 implies that evc(H) � b + k + 2 i.e. evc(H) � �. Thus
〈H, �〉 is a Yes-instance of Eternal Vertex Cover.

The Backward Direction. Suppose 〈H, �〉 is a Yes-instance of Eternal Ver-
tex Cover. We argue that 〈G = (V,E),k〉 is a Yes-instance of Red Blue
Dominating Set.

We know that any sequence of edge attacks in H can be defended by deploying
at most � = b + k + 2 guards. Let S denote the initial placement of guards.

We now consider two cases:

Case 1. S contains the backup vertex. We already know that S contains all the
blue vertices and the universal vertex by Proposition 3. This accounts for the
positions of (b+ 1) guards. Additionally, because of the case we are in, we have
one guard on the backup vertex. So the remaining k guards occupy either red
or dependent vertices. We will define a corresponding dominating set of size at
most k in G.

Specifically, let A′ := {j | 1 � j � r and vi ∈ S} and B′ := {j | 1 � j �
b and Cj ∩S 
= ∅}. For each j ∈ B′, let �j be such that v�j is an arbitrarily chosen
neighbor of uj in G. Note that it is possible that j1 
= j2 in B′ but �j1 = �j2 . We
now define C′ := {�j | j ∈ B′}. We claim that S := {vi | i ∈ A′ ∪C′} is a dominating
set for the blue vertices in G.

Intuitively speaking, our choice of dominating set is made by choosing all red
vertices in G for whom the corresponding vertices in H have a guard on them,
and additionally, for all blue vertices who have a guard on a dependent neighbor
vertex in H, we choose an arbitrary red neighbor in G—while this choice may
coincide for some blue vertices, we note that the total number of chosen vertices
is no more than the number of guards who are positioned on dependent and red
vertices, i.e., k. In other words, we have that |A′ ∪ C′| � k.

Suppose S is not a dominating set for the blue vertices in G. Then, let ut ∈ B

be a vertex that is not dominated by S. Let us attack a structural edge (ut, vq).
Note that vq is not occupied by a guard, and the guard on ut is forced to move
to vq to defend this attack. However, observe that our assumption that ut is
not dominated in G implies that no neighbor of ut has a guard in S. Therefore,
there is no guard that can move to ut now. But, by Proposition 3, the new
configuration must contain a guard on ut, because it is a vertex cover of H of
size at most l. This is a contradiction. Therefore, S is indeed a dominating set
in G of size at most k.
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Case 2. S does not contain the backup vertex. In this case, we attack the bridge.
Let S′ denote the placement of the guards obtained by defending this attack.
Note that S′ must contain the backup vertex. Now we argue as we did in the
previous case. This concludes the proof in the reverse direction.

Observe that the instance that we construct in the proof of Lemma 1 is both
bipartite and has diameter at most six.

Recall that any vertex cover of H that has at most � vertices must contain
B ∪ {�}. It is easy to verify that all the vertex covers used by the defense in the
forward direction induced connected subgraphs, since every vertex cover con-
tains all the blue vertices, a dominating set for the blue vertices, and a universal
vertex that is adjacent to all the vertices in the dominating set; and any other
vertex is adjacent to one of the blue vertices (or the universal vertex). There-
fore, the reduction above also serves to demonstrate the hardness of Eternal
Connected Vertex Cover on bipartite graphs—note that the argument for
the reverse direction is exactly the same since every connected vertex cover is
also a vertex cover.

Overall, Lemma 1 along with Proposition 2 and the remarks above lead to
our main result.

Theorem 1 (EVC on Bipartite Graphs). Both the Eternal Vertex
Cover and Eternal Connected Vertex Cover problems are NP-hard and
do not admit a polynomial compression parameterized by the number of guards
(unless NP ⊆ coNP /poly), even on bipartite graphs of diameter six.

4 A Polynomial-Time Algorithm for Co-bipartite Graphs

In this section, we focus on a proof of Theorem 2.

Theorem 2 (EVC on Co-Bipartite Graphs). There is a quadratic-time
algorithm for Eternal Vertex Cover on the class of cobipartite graphs.

The proof of this theorem is derived essentially by combining some existing
results. To the best of our knowledge, this result has not been stated explicitly
elsewhere and is not subsumed by known polynomial-time algorithms for special
classes of graphs like chordal graphs, cactus graphs, and generalized trees3.

Let G = (V = A � B,E) be a cobipartite graph with bipartition A,B. Recall
that G[A] and G[B] are cliques. Consider that A has p vertices {a1,a2, . . . ,ap}

and B has q vertices {b1,b2, . . . ,bq}. Without loss of generality we assume that
p � q and that no vertex in A is universal. (If there is some such universal
vertex in A, simply shift that vertex to B). We also assume throughout that G

3 The notion of generalized trees in the context of eternal vertex cover was considered
by Araki et al. (2015). Such graphs are characterized by the following property: every
block is an elementary bipartite graph or a clique having at most two cut-vertices in
it. Note that a cobipartite graph with four vertices in both parts with two disjoint
edges across the parts is not a generalized tree.
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is connected and p � 1: if p = 0 then G is a clique and evc(G) = mvc(G) =
|V(G)|− 1.

Since the cliques require p − 1 and q − 1 vertices respectively for a vertex
cover, we have mvc(G) � p + q − 2. Since p = |A| � 1, there exists a (non-
universal) vertex ai on the A side and therefore it has at least one non-neighbor
(say bj) and thus we have a vertex cover of size p+q−2 given by V(G)\{ai,bj}.
Therefore, mvc(G) = p + q − 2. We make a note of this fact in the following
claim.

Claim. For any co-bipartite graph G with bipartitions A and B with all the
notations as described above, if there are no universal vertices in A and |A| � 1,
mvc(G) = p + q − 2.

It is easy to see that for any graph G, if the number of guards is one less than
the number of vertices, the defender always has a winning strategy. Therefore,
in our case, evc(G) � p + q − 1.

Thus, for all co-bipartite graphs (other than cliques) we have:

mvc(G) = p + q − 2 and p + q − 2 � evc(G) � p + q − 1.

Now, one easy way to obtain a polynomial time algorithm for co-bipartite
graphs is to use the PSPACE algorithm given by Fomin et al. (2010), as follows.
When G is a co-bipartite graph on n vertices which is not a clique, the based on
the above, we have that mvc(G) is n − 2 and evc(G) is either n − 2 or n − 1.
For k ∈ {n − 2,n − 1}, the value of

(
n
k

)
is at most n2. This is the number of

vertices in the multigraph obtained by Fomin et al. (2010). The number of edges
of the multigraph is at most the square of number of vertices, multiplied by the
number of edges of G. The construction of this graph can therefore be done in
polynomial time, using the procedure given by Fomin et al. (2010). It is also
possible to identify whether evc(G) = k where k ∈ {n − 2,n − 1} in polynomial
time using the algorithm given by Fomin et al. (2010).

This running time can be improved to O(n2) as follows. Since G is not a
clique, at least one vertex of A is not a universal vertex. From results in Babu et
al. (2020), it follows that for evc(G) = mvc(G) = n − 2, for each vertex v there
must be a vertex cover of G of size n − 2 that contains v and all cut vertices of
G. Note that a cobipartite graph with bipartition (A,B) can have at most one
cut vertex in A and at most one B. Further, a vertex u ∈ A is a cut vertex if
and only if N(B) ∩ A = {u}. Likewise, a vertex u ∈ B is a cut vertex if and only
if N(A) ∩ B = {u}. Therefore, we can enumerate the set of cut vertices in linear
time, and check if the necessary condition holds in O(n2) time.

We will also argue that this necessary condition is also sufficient to guarantee
evc(G) = n − 2, thus completing the description of an O(n2) algorithm to
determine evc(G) when G is a cobipartite graph. Suppose that the necessary
condition for evc(G) = mvc(G) = n − 2 holds. Then every minimum vertex
cover of G must contain exactly |A|− 1 vertices of A and exactly |B|− 1 vertices
from B. Therefore, if v is a universal vertex in B, then v must be present in every
minimum vertex cover of G. Further, |A| > 1 and no vertex of A is a pendant
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vertex. It also follows from the necessary condition that A must have at least
two non-cut, non-universal vertices. Similarly, B must also contain at least two
non-universal, non-cut vertices.

Under the necessary condition, we can now show that evc(G) = n − 2.
Each configuration will have the following invariant: all cut vertices occupied
by guards, exactly one of the non-cut, non-universal vertex of A and exactly one
of the non-cut non-universal vertex of B are unoccupied and all other vertices
occupied. If an attack on an edge inside A or B happens, the unguarded endpoint
of that edge must be a non-cut, non-universal vertex of G. A rearrangement of
guards to achieve a symmetric configuration can be done easily. Consider an
attack on an edge u − v with u ∈ A and v ∈ B, when v is not occupied. Then
v is not a cut vertex of G and there is another v ′ ∈ B which has a neighbor u ′

in A and v ′ has a guard. We can move the guards from u to v, v ′ to u ′ and a
sequence of other movements inside cliques B and A to maintain our invariant.
This concludes our proof.

Remark 1. We note that the problem of determining the EVC of cobipartite
graphs can also be reduced the problem to a “reachability game” played on a
graph of size poly(n), leading to an O(n4) algorithm Grädel et al. (2002).

5 Concluding Remarks

We established the hardness of Eternal Vertex Cover on bipartite graphs
of constant diameter. We also showed that, under standard complexity-theoretic
assumptions, the problem does not admit a polynomial compression on these
graph classes when parameterized by the number of guards. Because of the rela-
tionship between mvc(G) and evc(G), this also implies hardness when param-
terized by the vertex cover number. In the light of these developments, it will
be interesting to pursue improved FPT and approximation algorithms for these
classes of graphs. It is also unclear if Eternal Vertex Cover is in NP even
on these classes of graphs.

Remark 2. The full version of this paper can be found on ArXiV (Babu et al.
2022). The Appendix has a different algorithm with a comparable running time
in the context of Theorem 2.
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