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Abstract. The Square Coloring of a graph G refers to coloring of ver-
tices of a graph such that any two distinct vertices which are at distance
at most two receive different colors. In this paper, we initiate the study
of a related coloring problem called the subset square coloring of graphs.
Broadly, the subset square coloring of a graph studies the square coloring
of a dominating set of a graph using q colors. Here the aim is to optimize
the number of colors used. This also generalizes the well-studied Efficient
Dominating Set problem. We show that the q-Subset Square Color-
ing problem is NP-hard for all values of q even on bipartite graphs. We
further study the parameterized complexity of this problem when param-
eterized by a number of structural parameters. We further show bounds
on the number of colors needed to subset square color some graph classes.

Keywords: Graph coloring · Square coloring · Subset square
coloring · Parameterized algorithm · Dominating set

1 Introduction

Graph coloring is an important problem in the area of graph theory. For a graph
G(V,E), the vertex coloring of G refers to a function f from the vertex set V to
a set of colors. There are different types of graph coloring problems based on the
constraints imposed on this function. A very popular graph coloring question is
the Proper Coloring where any two adjacent vertices are to be assigned differ-
ent colors. Also, several other variants of graph coloring exist, like harmonious
coloring, sigma coloring, metric coloring and acyclic coloring. In addition to the
theoretical interest, graph coloring problems are motivated by applications in
various fields like register allocation in compilers, job scheduling, transportation
networks, etc. See [6] for a detailed reading of graph coloring.

A number of graph coloring problems are motivated by a problem in Com-
munication called the Channel Allocation problem. Here there exist transmitters
v1, v2, . . . , vn and a transmitter may interfere with another transmitter due to a
number of reasons. Now the goal is to assign frequencies to the transmitters such
that clear reception of signals is guaranteed. This can be represented as a graph
where every vertex corresponds to a transmitter and the interference between
transmitters is captured by the distance between the corresponding vertices in
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the graph. Here the frequency assigned to a transmitter corresponds to the color
assigned to the corresponding vertex. In the 90s, Griggs and Yeh [15], introduced
a concept of assigning colors (equivalently, non-negative integers) to vertices such
that the assignment of colors to any two vertices depends on whether they are
at distance at most two. This is called the L(h, k)-coloring of graphs. A col-
oring c of graph G is an L(h.k)-coloring if for any two vertices u, v ∈ V (G),
|c(u) − c(v)| ≥ h if u and v are at distance 1 and |c(u) − c(v)| ≥ k if u and v are
at distance 2. Thus, L(1, 0)- coloring is the proper coloring itself. Other versions
of this problem based on different values of h and k are well-studied [5]. Note
that L(1, 1)-coloring involves coloring of vertices with non-negative integers such
that the colors on adjacent vertices differ by at least 1 and the colors on vertices
at distance 2 also differ by at least 1. This graph coloring is also referred to as
Square coloring [4,21] since it is equivalent to the proper coloring of the square
of a graph.

We initiate the study of a variant of Square coloring called subset square
coloring. This is defined as follows:

Definition 1. Let G = (V,E) be an undirected graph. A coloring function c :
V (G) → {c0, c1 · · · cq} is called a q-subset square coloring of G if it satisfies the
following constraints:

– For every vertex v and every color ci, 1 ≤ i ≤ q, we have |c−1(ci)∩N(v)| ≤ 1.
– A vertex v can have at most deg(v) vertices with color c0 in N [v], where

deg(v) refers to degree of v.

Here, intuitively, assigning the color c0 to a vertex v corresponds to v being
uncolored. In this paper we refer to a vertex being uncolored and a vertex colored
c0, interchangably. Thus the definition implies that every vertex has at least one
colored vertex in its closed neighborhood and no color is repeated in the closed
neighborhood. Note that the set of colored vertices form a dominating set of
the graph G (A vertex is said to be dominated, if coloured vertices in its closed
neighbourhood is from the set {c1 · · · cq}). Therefore the subset square coloring
is equivalent to square coloring a dominating set of the graph using q colors.

For a given graph G, let χssc(G) represent the minimum value of q such that
there exists a q-subset square coloring of G. We also study the following algo-
rithmic question. Given a graph G, the q-Subset Square Coloring problem
is defined as follows,

Input: Graph G and q ∈ N.
Question: Can G be q-subset square colored?

The concept of subset square coloring is previously studied in the context of
a classic problem in Computational Geometry called the Art Gallery Problem.
Given a polygon P , along with two sets, M and G, of points in P , the Art Gallery
problem is to find G′ ⊆ G such that every point in M is seen by at least one
point in G′. Motivated by applications in Robotics, Erickson and LaValle [9],
introduced the Chromatic Art Gallery Problem. Here, the aim is to find a subset
G′ ⊆ G such that G′ can be colored using q colors and every point m ∈ M is
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seen by at least one point in G′ and moreover, every point in G′ that sees m gets
a distinct color. It is easy to see that for the case where M and G are the same
finite sets, the Chromatic Art Gallery Problem can be reduced to subset square
coloring of a visibility graph. We believe there exists many other application
areas related to Channel Allocation where the subset square coloring of graphs
becomes useful.

Another motivation for studying the q-Subset Square Coloring problem
is that many graphs tend to use much smaller number of colors for subset square
coloring when compared to number of colors needed for square coloring. For
example, complete graphs, star graphs, wheel graphs etc. need O(n) colors for
square coloring whereas subset square coloring can be done using one color. This
will be useful in many applications where the number of colors corresponds to a
resource that needs to be optimized.

We now explore some problems that are related to the q-Subset Square
Coloring problem.

Related Problems: The problem of Harmonious coloring, was first introduced
in 1983 by Hopcroft and Krishnamoorthy [16] which is defined as follows: The
harmonious chromatic number of a graph G, denoted by h(G), is the least num-
ber of colors which can be assigned to the vertices of G such that each vertex
has exactly one color, adjacent vertices have different colors, and any two edges
have different color pairs. Later, Yue Li Wang et al. [22] developed the concept
of d− Local Harmonious Chromatic problem which generalized the Harmonious
Chromatic problem. The d−Local Harmonious (or just d-Harmonious) chromatic
problem imposes a restriction that the different color-pair requirement is only
asked to be satisfied for every edge within distance d for any vertex. Thus the
1-Harmonious chromatic problem is same as the Square coloring problem.

The problem of Efficent Dominating Set [1] for a given graph is also of interest
while we study the subset square coloring problem. An efficent dominating set is
one which is simultaneously an independent and a perfect dominating set. A per-
fect dominating set P is one in which each vertex v ∈ V (G) has exactly one neigh-
bor in N(v) that belongs to P , whereas an independent dominating set I satisfies
the condition that set of vertices in I form an independent set. Specifically, efficent
dominating set is a special case of a subset square coloring with q = 1.

2 A Discussion of Results

In this section, we give a summary of our results.
We have already mentioned that the Efficient Dominating Set problem

is a special case of q-Subset Square Coloring. The Efficient Dominating
Set problem is already known to be NP -hard [1]. Thus the q-Subset Square
Coloring problem is NP -hard for q = 1. We prove that the q-Subset Square
Coloring problem with q = 2 is NP -hard even on planar bipartite graphs
and the q-Subset Square Coloring problem is NP -hard even on bipartite
graphs, for all values of q. Moreover, it is known that for an arbitrary graph G,
it is NP -hard to check if G admits an efficient dominating set.
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Fig. 1. Summary of parameterized results.

We consider the parameterized complexity of the q-Subset Square Color-
ing problem. For any problem, an interesting parameter to be studied is the size
of the solution. For the q-Subset Square Coloring problem, this parameter
will be q, the number of colors used. However, this turns out to be much harder
than a W -hard problem in that it is unlikely to admit an algorithm of running
time of the form f(q)ng(q).

Lemma 1. The q-Subset Square Coloring problem parameterized by q is
para-NP -hard.

The lemma follows from the fact that the q-Subset Square Coloring problem
is NP -hard even for q = 1. Moreover, the next result shows that the problem
remains W -hard even on graphs of diameter 2.

Theorem 1. The q-Subset Square Coloring problem parameterized by q is
W [2]−hard on graphs of diameter 2.

Proof. For a graph G, χssc(G) is bounded by the size of the minimum dominat-
ing set of G. When the diameter of a graph is two, all vertices in any dominating
set are at distance at most two. Therefore we can not repeat the colors of ver-
tices in a dominating set. This implies that χssc(G) is equal to the size of the
minimum dominating set. The minimum dominating set problem is known to be
W [2]−hard on graphs of diameter 2 [17]. Thus the result follows. �	

With respect to Theorem 1, we note that the q-Subset Square Coloring
problem is polynomial time solvable on planar graphs with diameter 2 [18]. Next,
we consider several structural parameters. A well studied structural parameter
for graph problems is the treewidth of the graph. Several hard problems are
shown to be FPT when parameterized by treewidth. However, the q-Subset
Square Coloring problem can be shown to be W -hard when parameterized
by treewidth. Next we consider treewidth and number of colors as a combined
parameter and show that this is FPT . This result is proved using a standard
technique in the fixed parameter tractable algorithm design called dynamic pro-
gramming over treewidth.
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Next we consider structural parameters which are possibly larger than
treewidth. One such well-studied parameter is the size of the vertex cover of
the graph. We give an FPT algorithm for the q-Subset Square Coloring
problem parameterized by the size of the vertex cover. The size of vertex cover
is usually a large parameter, especially for dense graphs. Therefore, we study a
parameter whose value is small on dense graphs called the neighborhood diver-
sity. It is also a parameter whose value can be computed in polynomial time. We
give an FPT algorithm for the q-Subset Square Coloring problem parame-
terized by neighborhood diversity. We further consider a parameter that is prov-
ably smaller than the size of vertex cover, called the distance to cluster graph and
show that the q-Subset Square Coloring problem parameterized by distance
to cluster graph is also FPT . We further consider a parameter called twin cover
whose value typically lies between those of distance to cluster graph and size of
vertex cover. Since the q-Subset Square Coloring problem parameterized by
distance to cluster graph is FPT , the q-Subset Square Coloring problem
parameterized by twin cover is also FPT . However, we give an algorithm with
a better running time.

For these problems, as our goal is to only show whether or not the problem
is FPT, we do not try to optimize the running times. See Fig. 1 for a summary
of the results in parameterized complexity of the q-Subset Square Coloring
problem.

Table 1. Summary of bounds for χssc for different graph classes.

Graph classes χssc: Upper χssc: Lower

bound bound

Path Pn 1 1

Cycle C3n 1 1

Cycle C3n+1 or C3n+2 2 2

Complete graph Kn 1 1

Complete bipartite graph Gn,m 2 2

Bipartite permutation graph Gn,m 4 2

Planar graphs with diameter 2 3 2

Grid graph Gn×m 2 2

Cograph Gn 2 2

Threshold graph Gn 1 1

Caterpillar graph G(n, r1, r2, · · · rt) 3 3

Tree T (V, E) O(Δ) O(Δ − 1)

Tree T (V, E) O(n) Ω(
√

n)

Split graph T (V, E) O(n) Ω(
√

n)

Next we study bounds on χssc(G) when G belongs to certain graph classes.
It is easy to see that various graph classes (that include many sparse and dense
graph classes) like complete graphs, cluster graphs, star graphs, wheel graphs,
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paths, cycles, grid graphs etc. are q-subset square colorable where q is a constant.
However, when we consider trees, we show that there exist trees with n vertices,
that requires O(

√
n) colors to be subset square colored. As trees form a sub-class

of bipartite graphs, this result extends for the class of bipartite graphs also. How-
ever, we show that a well-defined sub-class of bipartite graphs, called the Bipartite
permutation graphs are 4-subset square colorable. We further show that the class
of threshold graphs are 1-subset square colorable. Note that threshold graphs lie in
the intersection of split graphs and cographs. We observe that, while cographs, like
threshold graphs, are subset square colorable using a constant number of colors,
there exist split graphs which require O(

√
n) colors to be subset square colored.

See Table 1 for a summary of results.

3 NP−Hardness

In this section, we show that the q-Subset Square Coloring problem is NP-
hard, for all values of q. Note that the result is known for q = 1. Now, we consider
q = 2.

Theorem 2. The q-Subset Square Coloring problem, where q = 2 is NP-
hard, even on planar bipartite graphs.

Proof. We give a reduction from the planar Exact cover by 3-sets(X3C) problem.

Planar X3C (Exact cover by 3-sets)

Input : A finite set X with |X| = 3n and a collection S of 3−element subsets of
X with |S| = m.

Question: Does S contain an exact cover for X, i.e., a sub collection S′ ⊆ S such
that every element of X occurs in exactly one member of S′?

In Planar X3C problem, we have the added constraint that a bipartite graph M
such that V (M) corresponds to X ∪ S and E(M) is {(x, s)|x ∈ X, s ∈ S, x ∈ s}
is planar.

Let (U, S) be an instance of the planar X3C problem, where U = {u1, u2, ..,
u3n} and S = {S1, S2, ..., Sm}. We construct a planar bipartite graph G as follows:
For every element ui, we add a vertex xi in G and connect it with an element gadget
Di in G. For 1 ≤ i ≤ 3n, Di is a tree rooted at a vertex di, as shown in Fig. 3(a).
Each of the two child nodes of di are connected to three leaves. For every set Sj ,
1 ≤ j ≤ m, we add a set gadget Tj with a vertex tj attached to two leaves vj and
v′

j . We also add a palette gadget P which has two vertices p1 and p2 adjacent to
each other and each of them attached to three vertices of degree one. See Fig. 3(b).

Further, for 1 ≤ i ≤ 3n, 1 ≤ j ≤ m, we add an edge between xi and tj in
G, if ui ∈ Sj in (U, S). We also add the edge between vj and p1 ∈ P , for all
1 ≤ j ≤ m.

We claim that (U, S) has an exact-3-cover if and only if G(V,E) has a subset
square coloring using two colors (proof is given in the full version).

Now, the result follows from the NP-hardness of the planar X3C problem [12]
(Fig. 2). �	
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Fig. 2. Constructed graph GS from Exact cover
by 3-sets insatnce of S1 = {x1, x2, x4}, S2 =
{x2, x4, x5} and S3 = {x3, x5, x6}.

P(b)

(a)

Fig. 3. (a) Element gadget,
(b) Palette gadget

Theorem 3 (*).1 The q-Subset Square Coloring problem, where q > 2 is
NP-hard, even on bipartite graphs.

4 Parameterized Complexity

In this section, we study the parameterized complexity of the q-Subset Square
Coloring problem.

A parameterized problem is a language L ⊆ Σ∗ × N, where Σ is a fixed,
finite alphabet. For an instance (x, k) ∈ Σ∗ × N, k is called the parameter. The
complexity class FPT contains all fixed parameter tractable problems that have
an algorithm, a computable function f : N → N, and a constant c such that,
given (x, k) ∈ Σ∗ × N, the algorithm correctly decides whether (x, k) ∈ L in
time bounded by f(k) · |(x, k)|c. Theory of intractability of parameterized prob-
lems orders the problems into a hierarchy called the W -hierarchy based on its
complexity. It is organized as FPT ⊆ W [1] ⊆ W [2] · · · . Under standard com-
plexity theoretical assumptions, a problem which is W [i]-hard does not admit
FPT algorithms, where i > 0. For detailed reading of parameterized complexity
refer [8].

4.1 Parameterized by Treewidth

We first consider the treewidth of the graph as a parameter. We begin by defining
treewidth.

Tree Decomposition: [8] A tree decomposition of a graph G is a tree T in
which each vertex i ∈ T has an assigned set of vertices Xi ⊆ V , called the bag,
such that

⋃

i∈T

Xi = V , with some properties:(a) if u ∈ Xi and u ∈ Xk, then

u ∈ Xj for all j on the path from i to k in T .(b)For any edge e(u, v) ∈ E(G),
there exists an i ∈ T such that u, v ∈ Xi.

The width of a tree decomposition T is the size of the largest bag of T minus
one, and the treewidth of a graph G, denoted by τ(G), is the minimum width
over all possible tree decompositions of G.
1 Proofs of results that are marked with a star are given in the full version.
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Theorem 4 (*). The q-Subset Square Coloring problem parameterized
by tree-width is W [1]-hard.

4.2 Parameterized by Treewidth and Number of Colors

We now consider the q-Subset Square Coloring problem parameterized by
treewidth and number of colors and give an FPT algorithm. We use a standard
technique called dynamic programming over treewidth, which gives a construc-
tive proof for the fixed parameter tractability. We use a modified tree decompo-
sition called the nice tree decomposition.

Nice Tree Decomposition: [8] A tree decomposition with a distinguished root
is called a nice tree decomposition if:

- All leaf nodes and the root node have empty bags, i.e., Xl = Xr = φ, where r
is the root node and l is a leaf node.
- Every other node in the tree decomposition falls in one of the three categories:

Introduce Node: An introduce vertex node t has exactly one child t′ such that
Xt = Xt′ ∪ {v} for some v �∈ Xt′ .

Forget Node: A forget node t has exactly one child t′ such that Xt = Xt′ \{w}
for some w ∈ Xt′ .

Join Node: A join node t has exactly two children t1 and t2, such that Xt =
Xt1 = Xt2 .

Introduce Edge Node: An introduce edge node is labeled with an edge uv ∈
E(G) such that u, v ∈ Xt and has exactly one child node t′ such that Xt = Xt′ .

Note that we assume every edge is introduced exactly once and we say that
edge uv is introduced at t. If a join node contains both u and v, and the edge uv
exists in E(G), we can note that edge uv will be introduced in the subtree above
the join node. Nice tree decomposition enables us to add edges and vertices one
by one and perform operations accordingly. This variant of tree decomposition
still has O(τ · n) nodes, where τ is the treewidth of the graph G.

The following result is known.

Proposition 1. Given a graph G, in time 2O(τ)n, we can compute a nice tree
decomposition (T,X ) of G with |V (T )| ∈ |V (G)|O(1) and of width at most 5τ ,
where τ is the treewidth of G [3].

With each node t of the tree decomposition we associate a subgraph Gt

of G defined as: Gt = (Vt, Et = {e : e is introduced in the subtree rooted at t}).
Here, Vt is the union of all bags present in the subtree rooted at t.

Theorem 5. The q-Subset Square Coloring is FPT when parameterized
by the treewidth τ of the input graph and the number of colors q.

Proof. We give an algorithm based on dynamic programming over nice tree decom-
position (T,X ) of G, computed in time 2O(τ)n, using Proposition 1, of width at
most 5τ , where τ is the treewidth of G. We define subproblems on t ∈ V (T )
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for the graph Gt. We consider a partitioning of bag Xt by a mapping f : Xt →
{B,W,R}. For simplicity, we refer to the vertices in each partition respectively
as black, white and grey. Each vertex is also assigned another color by a function
c : Xt → {c0, c1, ..., cq} and a q-length tuple, by a function Γ : Xt → {0, 1, 1̂}q.
Roughly speaking, these functionswill determine how the “partial” square coloring
looks like, when restricted to Gt and vertices of Xt. c(v) denotes the color assigned
to v and c(v) = c0 denotes that v is not colored. Γ (v)[i] indicates whether v has
(either in the current graph, or in the “future”) a vertex in its closed neighborhood
that has color ci. Γ (v)[i] = 1 denotes that vertex v has a vertex in its closed neigh-
borhood of color ci in Gt, Γ (v)[i] = 1̂ denotes that vertex v has a vertex in its closed
neighborhood of color ci, that is not present in Gt, but will appear in the “future”,
and Γ (v)[i] = 0 denotes the absence of color ci in the closed neighborhood of v.
We slightly abuse the notation and use Γ (v)[ci] and Γ (v)[i] interchangeably. In the
following we give a detailed insight into the functions f , c and Γ .

Black, represented by B. Every black vertex v is given a color c(v) �= c0 in a
subset square coloring.
Grey, represented by R. A grey vertex v is not colored, not dominated, i.e.
c(v) = c0 and for each i ∈ [q], it has Γ (v)[i] ∈ {0, 1̂}.
White, represented by W . A vertex v that is neither black nor grey is a white
vertex. Note that for a white vertex v, c(v) = c0 and there is i ∈ [q], such that
Γ (v)[i] = 1.

A tuple (t, c, Γ, f) is valid if the following conditions hold for every vertex v ∈ Xt:
1. f(v) = B =⇒ c(v) �= c0 and Γ (v)[c(v)] = 1,
2. f(v) = R =⇒ c(v) = c0 and Γ (v)[i] ∈ {0, 1̂}, ∀i ∈ {1...q}, and
3. f(v) = W =⇒ c(v) = c0 and Γ (v)[i] = 1 for some i ∈ {1...q}.

For a node t ∈ V (T ), for each valid tuple (t, c, Γ, f), we have a table entry
denoted by D[t, c, Γ, f ]. We have D[t, c, Γ, f ] = true if and only if there is col :
Vt → {c0, c1, . . . , cq} (where c0 denotes no color assignment), such that:
1. col|Xt

= c,
2. for each v ∈ Xt and i ∈ {1, 2, . . . q} with Γ (v)[i] = 1, there is exactly one
vertex u ∈ NGt

[v], such that col(u) = ci,
3. for each v ∈ Xt and i ∈ [q] with Γ (v)[i] ∈ {0, 1̂}, there is no vertex u ∈ NGt

[v],
such that col(u) = ci, and
4. for each v ∈ Vt \Xt, there is at least one vertex u ∈ NGt

[v], such that col(u) �=
c0, and for all such vertices u, every other u′ ∈ NGt

[v] have col(u′) �= col(u).

In the above, such a coloring col is called a (t, c, Γ, f)-good coloring. (At any
point of time wherever we query an invalid tuple, then its value is false by default.)
Note that D[r, ∅, ∅, ∅] = true, where r is the root of the tree decomposition, if and
only if G admits a subset square coloring using (at most) q colors.

We define fv→γ where γ ∈ {B,W,R}, as the function where fv→γ(x) = f(x),
if x �= v, and fv→γ(x) = γ, otherwise. Similarly, we define the functions cv→ci

and Γv[i]→α where α ∈ {0, 1̂, 1}. We now proceed to define the recursive formulas
for the values of D.
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Leaf Node. For a leaf node t, we have Xt = ∅. Hence, the only entry is
D[t, ∅, ∅, ∅]. Moreover, by definition, we have D[t, ∅, ∅, ∅] = true.

Introduce Vertex Node. Let t be the introduce vertex node with a child t′
such that Xt = Xt′ ∪ {v} for some v �∈ Xt′ . Since the vertex v is isolated in Gt,
the following recurrence follows.

D[t, c, Γ, f ] =

⎧
⎪⎨

⎪⎩

D[t′, c|X′ , Γ|X′ , f|X′ ] if f(v) = B and Γ (v)[ci] ∈ {0, 1̂} , ∀ ci �= c(v)

D[t′, c|X′ , Γ|X′ , f|X′ ] if f(v) = R

False otherwise

Introduce Edge Node. Let t be an introduce edge node labeled with an edge
u∗v∗ and let t′ be the child of it. Thus Gt′ does not have the edge u∗v∗ but Gt

has. Consider distinct u, v ∈ {u∗, v∗}.

1. If f(u) = B, f(v) = W and Γ (v)[c(u)] = 1. We set D[t, c, Γ, f ] = D[t′, c,
Γv[c(u)]→1̂, fv→R]∨D[t′, c, Γv[c(u)]→1̂, fv→W ] (if any of the entries are invalid,
then it is false).

2. If f(u) = f(v) = B and Γ (v[c(u)]) = Γ (u[c(v)]) = 1, set D[t, c, Γ, f ] =
D[t′, c, Γv[c(u)]→1̂,u[c(v)]→1̂, f ].

3. If {f(u), f(v)} ∩ {B} = ∅, then D[t, c, Γ, f ] = D[t′, c, Γ, f ].
4. If none of the above conditions hold then D[t, c, Γ, f ] = false.

Lemma 2 (*). Recurrence for introduce edge node is correct.

Forget Node. Let t be a forget node with child t′ such that Xt = Xt′ \ {v} for
some v ∈ Xt′ . Since the vertex v does not appear again in any bag of a node
above t, v must be either black or white (otherwise, we set the entry to false).

D[t, c, Γ, f ] =
∨

1≤i≤q
α∈{0,1}q

(D[t′, cv→c0 , Γv→α, fv→W ] ∨ D[t′, cv→ci , Γv→α, fv→B ])

Join Node. Let us denote the join node by t. Let t1 and t2 be the children of t.
We know that Xt = Xt1 = Xt2 and Xt induces an independent set in the graphs
Gt, Gt1 and Gt2 . We say that the pair of tuples [t1, f1, c1, Γ1] and [t2, f2, c2, Γ2]
are [t, f, c, Γ ]-consistent if for every v ∈ Xt the following conditions hold.

– If f(v) = B then (f1(v), f2(v)) = (B,B) and c1(v) = c2(v) = c(v).
– If f(v) = W then (f1(v), f2(v)) ∈ {(W,R), (R,W ), (W,W )}.
– If f(v) = R then (f1(v), f2(v)) = (R,R).
– If Γ (v)[i] = 0 then (Γ1(v)[i], Γ2(v)[i]) ∈ {(0, 0)} for 1 ≤ i ≤ q.
– If Γ (v)[i] = 1 then (Γ1(v)[i], Γ2(v)[i]) ∈ {(1, 1̂), (1̂, 1)} for 1 ≤ i ≤ q.
– If Γ (v)[i] = 1̂ then (Γ1(v)[i], Γ2(v)[i]) ∈ {(1̂, 1̂)} for 1 ≤ i ≤ q.

It is easy to see that a vertex v belongs to Black partition in Xt if it is
Black in Xt1 and Xt2 and the color c(v) that is assigned to v is same in these
bags. Similarly, we can understand for a vertex in Grey partition. If vertex v
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belongs to White partition, it implies that it is dominated in exactly one of the
bags Xt1 and Xt2 or both. However if v is dominated in both the bags, then
the color that dominates it is different which is taken care by Γ (v)[i]. The value
of Γ (v)[i] is set to 1 for different values of the q-length tuple. Therefore, for
a vertex to belong to White partition requires one of the three combinations:
{(W,R), (R,W ), (W,W )}. Now consider the values that Γ (v)[i] can take in Xt.
If color i is not present in N [v] in any of the child nodes t1 and t2, then it
will naturally not be present in N [v] in Gt, implying Γ (v)[i] = 0. However,
Γ (v)[i] = 1 indicates the presence of a vertex with color i in N [v] in Gt. We
further note that color i appears in exactly one of the child nodes Xt1 or Xt2

but not both because presence of color i in both child nodes implies the presence
of two vertices with color i in N [v] in Gt. This follows from the observation that
Xt induces an independent set in Gt, by the property of nice tree decomposition.
The next possibility of Γ (v)[i] is 1̂. For this to be true, the color i should not be
present in Gt seen so far but will appear in the tree decomposition eventually.

We set D[t, c, Γ, f ] =
∨

(f1,f2)
(D[t1, c1, Γ1, f1] ∧ D[t2, c2, Γ2, f2]),

where [t1, f1, c1, Γ1] and [t2, f2, c2, Γ2] is [t, f, c, Γ ]-consistent.
We have described the recursive formulas for the values of D[·]. Note that we

can compute each entry in time bounded by 2O(qτ) · qO(τ)nO(1). Moreover, the
number of (valid) entries for a node t ∈ V (T ) is bounded by 2O(qτ) · qO(τ)nO(1),
and V (T ) ∈ nO(1). Thus we can obtain that the overall running time of the
algorithm is bounded by 2O(qτ)nO(1).

4.3 Parameterized by the Size of Vertex Cover

In this section, we prove that the q-Subset Square Coloring parameterized
by the size of vertex cover is FPT. Let X be a vertex cover of G, |X| = k. First
we prove the following result.

Lemma 3 (*). The number of colors required to subset square color the vertices
of graph G is at most the size of vertex cover of G.

Since both the treewidth and number of colors required to subset square
coloring is bounded by |X|, the result follows from Theorem 5.

Theorem 6. The q-Subset Square Coloring parameterized by the size of
vertex cover is FPT.

4.4 Parameterized by Neighborhood Diversity Number

We start by defining the neighborhood diversity number of a graph.

Definition 2. [13] Given a graph G = (V,E), two vertices u, v ∈ V have the
same type if and only if N(v)\{u} = N(u)\{v}. The graph G has a neighborhood
diversity t, if there exists a partition of V into at most t sets, V1, V2, . . . , Vt such
that all the vertices in Vi have the same type for i = 1, 2, . . . , t. The family
ν = {V1, V2, . . . , Vt} is called the type partition of G.
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On creating such a type partition of V (G), we observe that the vertices within a
partition either induces a clique or is an independent set. Further, for 1 ≤ i, j ≤ t,
each vertex in a partition Vi is either adjacent to every vertex in another partition
Vj or there are no edges between vertices of Vi and Vj .

Lemma 4 (*). The number of colors required to subset square color a graph G
is at most its neighborhood diversity, that is, χssc(G) ≤ t.

Now we show that q-Subset Square Coloring parameterized by t is FPT by
giving a polynomial kernel.

Theorem 7. The q-Subset Square Coloring problem parameterized by
neighborhood diversity admits a polynomial kernel of size O(t2).

Proof. Let G be a connected graph, along with a type partition of size t, t > 1.
Let G′(V ′, E′) be the graph obtained from G(V,E) by deleting all but q + 1
vertices from each type partition. We will show that G′ can be q-subset square
colored if and only if G can be q-subset square colored. Note that G′ is also a
connected graph.

Let χ be a q-subset square coloring of G′. We claim χ is a q-subset square
coloring of G as well. Let V ′

i = {v1, v2, · · · , vq+1} be a vertex set in the type
partition of V (G′). If vi and vj , 1 ≤ i, j ≤ q + 1, i �= j, are colored, then
χ(vi) �= χ(vj). Otherwise, there exists at least one common neighbor for all
vertices in V ′

i , since G′ is connected and this is a contradiction. Since there are
at most q colors, there exists at least one uncolored vertex, say vi in V ′

i . Now,
every vertex in Vi \ V ′

i is dominated in G by the same vertices that dominate vi

in G′.
In the reverse direction, assume that G admits a q-subset square coloring, χ.

Then we color the vertices v1, v2, · · · , vq+1 in V ′
i arbitrarily using the colors, if

any, used by χ on Vi. Now it is easy to see that this is a valid q-subset square
coloring for G′ as well.

Now |V (G′)| ≤ (q + 1)t. If q ≥ t, the problem is trivially a YES instance, by
Lemma 4. Therefore |V (G′)| = O(t2). Now the result follows.

4.5 Parameterized by Distance to Cluster Graph

Definition 3. A cluster graph is a disjoint union of complete graphs.

It is easy to see that cluster graphs can be 1-subset square colored. In this
section, let X ⊆ V (G) such that G[V \ X] is a cluster graph and |X| = k. Now
we observe the connection between χssc(G) and k.

Lemma 5 (*). χssc(G) ≤ |X| + 1.

Theorem 8. The q-Subset Square Coloring is FPT when parameterized
by distance to cluster graph.
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Proof. If q ≥ |X| + 1, then by Lemma 5 it is trivially true that a subset square
coloring exists. Therefore, we assume that q ≤ k.

If two or more vertices in a clique in G[V \ X] have the same neighborhood
in X, delete all but one of those vertices. This does not affect the solution as
the closed neighborhood of the vertices are the same. Therefore every clique in
G[V \ X] has at most 2k vertices.

Now we bound the number of cliques in G[V \ X]. Let {X1,X2, . . . ,X2k} be
the family of subsets of X. For two cliques Ca and Cb in G[V \ X], we say Ca

and Cb have the same type if for all 1 ≤ i ≤ 2k, either both Ca and Cb each have
a vertex whose neighborhood in X is Xi or neither of them has such a vertex.
Note that there can be at most 22

k

distinct types of cliques. Now we use the
following reduction exhaustively to get a reduced graph G′. If there exists more
than q2k +1 cliques of the same type, delete all but q2k +1 of them. Thus there
are at most k + 22

k · (q2k + 1) vertices in G′.
We claim that G has a q-subset square coloring if and only if G′ has a q-

subset square coloring. Assume G′ admits a q-subset square coloring. Let Ci be
a clique in G \ G′. Therefore G′ has (q2k + 1) cliques of the same type as Ci, let
them be C ′

1, C
′
2, . . . , C

′
q2k+1. Similarly, for v ∈ V (Ci), there exists vj ∈ V (C ′

j)
for all 1 ≤ j ≤ q2k + 1 such that N(v) ∩ X = N(vj) ∩ X. We show that there
exists at least one Cj such that one of the conditions is true.

– Cj contains a vertex vj such that N(vj) ∩ X = ∅ and vj is colored.
– none of the vertices in Cj is colored.

If the first condition is true, then we can dominate all vertices in Ci by coloring
the corresponding vertex v using the same color as vj . Now, assume that the first
condition is not true. Consider the vertices vj ∈ V (C ′

j) for all 1 ≤ j ≤ q2k + 1.
Since all of them have common neighbors in X, we can color at most q such
vertices. Since there are at most 2k vertices in a cliques, there can be at most q2k

cliques with colored vertices. All the uncolored vertices in a clique is dominated
by vertices in X. The same set of vertices can dominate the vertices in Cj in G.
The other direction is easy to see.

Since the size of the reduced instance is bounded by a function of k, it follows
that the q-Subset Square Coloring is FPT when parameterized by distance
to cluster graph.

4.6 Parameterized by the Size of Twin Cover

Definition 4. [11] For a graph G(V,E) a subset X of vertices is a twin cover
if for every edge e = uv ∈ E(G) either (a) u ∈ X or v ∈ X, or (b) u and v are
true twins.

Two vertices u and v are true twins if every other vertex is either adjacent to
both u and v or neither of them and u and v has an edge between them. It
follows from the definition that if X is a twin cover, then G[V \ X] is a disjoint
union of cliques and for every vertex v ∈ X and every clique in G[V \ X], v is
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either adjacent to every vertex in the clique or v is not adjacent to any vertex in
the clique. Thus for every graph G, distance to cluster graph of G ≤ size of twin
cover ≤ size of vertex cover. Thus it follows from Theorem 8 that the q-Subset
Square Coloring problem parameterized by twin cover is FPT. Here, we give
an algorithm with better running time.

Theorem 9. The q-Subset Square Coloring problem parameterized by the
size of twin cover is FPT.

Proof. Let X ⊂ V be a twin cover of the graph G(V,E) and |X| = k. It can be seen
that χssc(G) ≤ |X|. If q ≥ k, then return TRUE. Now, we assume that q < k.

Consider all possible (q + 1)k colorings of X using {c0, c1, . . . cq}. Now similar
to the proof of Theorem 6, we can try to extend each of these colorings to get a
valid subset square coloring. Since all the vertices in the clique in G[V \ X] are
true twins, we can delete all but one vertex from every clique to get an equivalent
reduced instance. Now the reduced instance is very similar to that in the proof
of Theorem 6, and the same algorithm applies.

Therefore the running time of the q-Subset Square Coloring problem
parameterized by the size of twin cover is O(k2k). �	

5 Bounds on the Number of Colors for the
q-SUBSET SQUARE COLORING

In this section, we discuss bounds on the minimum number of colors needed for
subset square coloring some graph classes.

5.1 Trees

We show that χssc(G) can be bounded by maximum degree, when G is a tree. As
a corollary, we also show there exists a lower bound on χssc(G) as a function of n.

Lemma 6 (*). LetΔ be themaximumdegree of a tree. ThenΔ colors are sufficient
to subset square color the tree. Moreover, Δ − 1 colors are sometimes necessary.

Corollary 1. There exist trees that require Ω(
√

n) colors to be subset square
colored.

Now, we know that Trees are a subclass of Bipartite graphs. Therefore the lower
bound applies to the class of Bipartite graphs too. In the next result, we show a
sub-class of Bipartite graphs can be subset square colored using constant number
of colors.

5.2 Bipartite Permutation Graphs

In this section we discuss bounds on χssc for bipartite permutation graphs.
A graph is a bipartite permutation graph if it is both bipartite and permutation

graph. Let G(A�B,E) be a connected bipartite permutation graph, then it admits
the strong ordering, adjacency and enclosure properties, as defined below [20].



Coloring a Dominating Set Without Conflicts: q-Subset Square Coloring 31

(1) An ordering of the vertices A in a bipartite graph G(A � B,E) has the
adjacency property if for each vertex v ∈ B, the vertices in N(v) are consecutive
in the ordering of A.
(2) An ordering of the vertices A in a bipartite graph G(A�B,E) has the enclosure
property if for every pair of vertices v, u ∈ B such that N(v) is a subset of N(u),
vertices in N(u) − N(v) occur consecutively in the ordering of A.
(3)A strong ordering of the vertices of a bipartite graph G(A � B,E) consists
of an ordering of A and an ordering of B such that for all (a, b′), (a′, b) in E,
where a, a′ are in A and b, b′ are in B, a < a′ and b < b′ imply (a, b) and (a′, b′)
are in E.

Lemma 7. If G is a connected bipartite permutation graph then χssc(G) ≤ 4.

Let A = {a1, a2, · · · an} and B = {b1, b2, · · · bm} have the strong ordering prop-
erty. For aj ∈ A, let s(aj) = min{i|bi ∈ N(aj)} and l(aj) = max{i|bi ∈ N(aj)}
be the smallest and largest vertex adjacent to aj respectively. (Symmetrically
defined for B).

Now we color a set of vertices from A, such that all vertices in B are domi-
nated. In the first step, we color the first vertex from A, a1, using color one.

In the kth step we consider the smallest j such that bj ∈ B is not dominated.
Then we color ai ∈ A such that i is the largest integer such that N(ai) contains
bj , using color one, if k is odd, or otherwise, using color two. Repeat this till
every vertex in B is dominated. Now, if ai, aj , ak ∈ A are colored in consecutive
steps, then N(ai) and N(ak) are disjoint. For contradiction, assume that N(ai)∩
N(ak) �= ∅. Let j′ = l(ai). Then the vertex bj′+1 is dominated by both aj and
ak. This contradicts that aj was colored by the algorithm to dominate bj′+1.
Thus no vertex in B has repeating colors in its neighborhood.

Similarly we can dominate all vertices in A by coloring vertices in B using
colors three and four. This proves the result. �	

Further, we show that the class of Caterpillar graphs which is a subclass of
Bipartite Permutation graphs are 3-subset square colorable.

Definition 5. [19] A Caterpillar graph is a tree such that every vertex is at
distance at most one from a central path.

Lemma 8. χssc(G) ≤ 3 when G is a caterpillar graph.

Proof. Let P be the central path of G with vertices v1, v2, . . . vn′ . Now coloring
vertices in P such that vi, for 1 ≤ i ≤ n′, is given color (i mod 3 + 1) is a valid
3-subset square coloring. The result follows.

5.3 Threshold Graph

Definition 6. [14] A graph is a threshold graph if it can constructed from the empty
graph by repeatedly adding either an isolated vertex or a dominating vertex.

Lemma 9. If G is a threshold graph then χssc(G) = 1.
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Proof. If isolated vertices are present, color them using the same color. By col-
oring the last introduced dominating vertex v, we satisfy subset square coloring
G as each vertex in G has only one colored vertex v in its closed neighborhood.

We know that the family of threshold graphs lie in the intersection of split graphs
and cographs. We consider these graph classes in subsequent sections.

5.4 Split Graph

Definition 7. [2] A graph G is a split graph if V (G) can be partitioned into two
sets A and B such that A induces a clique and B induces an independent set.

Theorem 10. There exist split graphs with n vertices that require Ω(
√

n) colors
to be subset square colored.

Proof. We will construct a split graph G = (A�B,E) as follows. Here A induces
a clique and B induces an independent set. Let A = {v1, v2, · · · vn} and B =
{vi,j |1 ≤ i, j ≤ n}. Further we add edges from vi,j ∈ B to vi ∈ A and vj ∈ A,
for all 1 ≤ i, j ≤ n. Note that G has n2 + n vertices.

All vertices vi,i ∈ B are of degree 1. To dominate vi,i ∈ B, either we need to
color vi or vi,i, for all 1 ≤ i ≤ n. If vi is colored for all i, 1 ≤ i ≤ n, then we need
n colors since all these vertices are adjacent to each other. Otherwise, assume
there exists an i such that vi is not colored and vi,i is colored. Now the n − 1
vertices vi,j ∈ B, where i �= j are dominated either by themselves or by their
other neighbor vj ∈ A. Note that here every vertex is dominated by a distinct
vertex. Thus O(n) vertices are colored from at least one of the sets, {vi,j |i �= j}
and {vj |j �= i}. Since any two vertices from one of these sets are at distance at
most 2, O(n) colors are to be used.

5.5 Cographs

We start by showing the connection between χssc(G) and the modular width of
the graph. We first define the modular width of a graph. The modular width of
graph G is computed by virtue of four operations, namely creation of isolated
vertex, disjoint union, complete join and substitution. More precisely, the modu-
lar width of G equals the maximum number of operands used by any occurrence
of substitution operation. These four operations that are involved in modular
decomposition of graph G are described in [10]. For the sake of completeness,
we mention the four operations here.

Definition 8. [10] Algebraic operations involved to compute modular width of
graph G.

– Create an isolated vertex;
– The disjoint union of two graphs, i.e., the disjoint union of two graph G1 and

G2, denoted by G1 ⊗G2, is the graph with vertex set V (G1)∪V (G2) and edge
set E(G1) ∪ E(G2);
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– The complete join of two graphs, i.e., the complete join of two graphs G1 and
G2, denoted by G1 ⊕G2, is the graph with vertex set V (G1)∪V (G2) and edge
set E(G1) ∪ E(G2) ∪ {{v, u} : v ∈ V (G1) and u ∈ V (G2)}.

– The substitution operation with respect to some graph G with vertices
v1, . . . , vn, i.e., for graphs G1, . . . , Gn the substitution of the vertices of G
by the graphs G1, . . . , Gn, denoted by G(G1, . . . , Gn), is the graph with vertex
set ∪

1≤i≤n
V (Gi) and edge set ∪

1≤i≤n
E(Gi)∪{{u, v} : u ∈ V (Gi) and v ∈ V (Gj),

vi, vj ∈ E(G) and i �= j}. Hence, G(G1, . . . , Gn) is obtained from G by sub-
stituting every vertex vi ∈ V (G) with the graph Gi and adding all edges
between the vertices of a graph Gi and the vertices of a graph Gj whenever
{vi, vj} ∈ E(G).

Definition 9. [10] Let A be an algebraic expression that uses only the four oper-
ation as mentioned in Definition 8. We define the width of A as the maximum
number of operands used by any occurrence of the substitution operation in A.
Modular width of graph G, denoted as w(G), is the least integer m such that G
can be obtained from such an algebraic expression of width at most m.

Cographs are the graphs that can be constructed from operations−creation of
an isolated vertex, disjoint union of two graphs and complete join of two graphs.
By definition, the modular width of cographs is two [7].

Now we state our result.

Lemma 10. The maximum number of colors required to subset square color a
graph G equals the modular width of G, that is, χssc(G) ≤ w(G).

Proof. Now we discuss the maximum number of colors required to subset square
color G while we perform those operations. On introducing an isolated vertex, we
color it by using one color. To dominate the vertices created as a result of disjoint
union of two graphs, we can use maximum number of colors that were used in
subset square coloring each subgraphs in the disjoint union operation. Now we
consider the complete join operation on the subgraph Gc. Let Gc = Gc1 ⊗ Gc2.
If a vertex v in V (Gci), i = {1, 2} has degree Gi(V ) − 1, then χssc(Gc) = 1.
Otherwise we can color an arbitrary vertex from Gc1 and Gc2 using two distinct
colors. Therefore the value of χssc is ≤ 2. Finally, we examine the substitution
operation. We color an arbitrary vertex v in each Gi using distinct colors. Besides
the presence of coloured neighbour(s) in Gi, a vertex may possibly be adjacent
to another coloured vertex in Gj . Therefore the value of χssc can be at most w.

Corollary 2. If G is a cograph, then χssc(G) ≤ 2.
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20. Spinrad, J., Brandstädt, A., Stewart, L.: Bipartite permutation graphs. Discret.
Appl. Math. 18(3), 279–292 (1987)

21. van den Heuvel, J., McGuinness, S.: Coloring the square of a planar graph. J.
Graph Theory 42(2), 110–124 (2003)

22. Wang, Y.L., Lin, T.W., Wang, L.: The local harmonious chromatic problem. In:
Proceedings of the 27th Workshop on Combinatorial Mathematices and Compu-
tation Theory, Taichung, Taiwan (2010)

https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1007/978-3-319-03898-8_15
https://doi.org/10.1007/978-3-319-03898-8_22
https://doi.org/10.1007/978-3-319-03898-8_22

	Coloring a Dominating Set Without Conflicts: q-Subset Square Coloring
	1 Introduction
	2 A Discussion of Results
	3 NP-Hardness
	4 Parameterized Complexity
	4.1 Parameterized by Treewidth
	4.2 Parameterized by Treewidth and Number of Colors
	4.3 Parameterized by the Size of Vertex Cover
	4.4 Parameterized by Neighborhood Diversity Number
	4.5 Parameterized by Distance to Cluster Graph
	4.6 Parameterized by the Size of Twin Cover

	5 Bounds on the Number of Colors for the q-Subset Square Coloring
	5.1 Trees
	5.2 Bipartite Permutation Graphs
	5.3 Threshold Graph
	5.4 Split Graph
	5.5 Cographs

	References




