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Abstract. In the Partial Vertex Cover (PVC) problem, we are
given an n-vertex graph G and a positive integer k, and the objective
is to find a vertex subset S of size k maximizing the number of edges
with at least one end-point in S. This problem is W[1]-hard on general
graphs, but admits a parameterized subexponential time algorithm with

running time 2O(
√
k)nO(1) on planar and apex-minor free graphs [Fomin

et al. (FSTTCS 2009, IPL 2011)], and a kO(k)nO(1) time algorithm on
bounded degeneracy graphs [Amini et al. (FSTTCS 2009, JCSS 2011)].
Graphs of bounded degeneracy contain many sparse graph classes like
planar graphs, H-minor free graphs, and bounded tree-width graphs (see
Fig. 1). In this work, we prove the following results:

– There are algorithms for PVC on graphs of degeneracy d with run-
ning time 2O(dk)nO(1) and (e + ed)k 2o(k)nO(1) which are improve-
ments on the previous kO(k)nO(1) time algorithm by Amini et al. [2]

– PVC admits a polynomial compression on graphs of bounded degen-
eracy, resolving an open problem posed by Amini et al. [2].

Keywords: Parameterized Algorithms · Partial Vertex Cover ·
Bounded Degeneracy · Planar Graphs

1 Introduction

In a covering problem, we are given a family F of subsets of a universe U , and the
objective is to find a minimum size subfamily of F covering all the elements in U .
Well known examples of covering problems are Set Cover, Vertex Cover,
Dominating Set, Facility Location, k-Median, k-Center, etc. Covering
problems are fundamental in combinatorial optimization and they are very well
studied in all areas of algorithms and complexity.

Another variant of covering problems is partial covering problems. In a partial
covering problem, the input is a family F of subsets of a universe U and a positive
integer k. The objective is to find a k size subset of F that covers the maximum
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number of elements in U . Two prominent examples of partial covering problems
on graphs are Partial Vertex Cover (PVC) and Partial Dominating
Set (PDS), which has got considerable attention in the field of parameterized
complexity1.

Partial Vertex Cover (PVC) Parameter: k
Input: An undirected graph G and a positive integer k
Objective: Find a vertex subset S of size k such that the number of edges
with at least one end-point in S is maximized

Partial Dominating Set (PDS) Parameter: k
Input: An undirected graph G and a positive integer k
Objective: Find a vertex subset S of size k such that the size of the closed
neighborhood of S is maximized

Even though there are many works on PVC and PDS in the realm of param-
eterized complexity, there are still some open questions about these problems.
It is previously known that PVC is W[1]-hard [10] and PDS, as a more general
problem of Dominating Set, is W[2]-hard. Amini et al. [2] proved that PVC
can be solved in time kO(k)nO(1) in bipartite graphs, triangle free graphs, planar
graphs, H-minor free graphs (for a fixed H), and bounded degeneracy graphs.
On planar graphs, they gave faster algorithms with running time 2O(k)nO(1) for
PVC and PDS. Later, Fomin et al. [5] gave parameterized subexponential time
algorithms with running time 2O(

√
k)nO(1) for PVC and PDS on planar graphs

and apex-minor free graphs. Also, unlike Dominating Set, which is known to
be FPT [1] on bounded degeneracy graphs, PDS is W[1]-hard [9] in this class.

Bounded Tree-Width

H-Minor Free

H-Topological Minor Free

Bounded Expansion

Bounded Degeneracy

Planar

Bounded Genus

Fig. 1. Inclusion relation between various sparse graph classes.

1 For basic definitions related to parameterized algorithms and complexity we refer to
Sect. 2.1.
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In this work, we give a parameterized single exponential time algorithm for
PVC on d-degenerate graphs. Our algorithm also works for the more general
weighted version of the problem.

Theorem 1.1. Given G = (V,E), a d-degenerate graph with edge weights
w : E → IR+, and an integer k > 0, there is an algorithm that runs in time
2kd+k(kd)O(log(kd))nO(1) and finds a subset S ⊆ V of size k, with maximum
possible EG(S), i.e., the total weight of edges with at least one end-point in S.

It is also possible to apply a slight change in the algorithm of Theorem 1.1 to
get a faster running time.

Theorem 1.2. Given G = (V,E), a d-degenerate graph with edge weights
w : E → IR+, and an integer k > 0, there is an algorithm that runs in time
(e + ed)k 2o(k)nO(1) and finds a subset S ⊆ V of size k, with maximum possible
EG(S), i.e., the total weight of edges with at least one end-point in S.

In [2], Amini et al. asked whether PVC and PDS admit polynomial kernels
on planar graphs. We prove that PVC admits a polynomial compression on d-
degenerate graphs, a more general class of sparse graphs. To get a better size
bound for planar graphs, we prove the following general theorem.

Theorem 1.3. Given a d-degenerate graph G = (V,E) that does not contain
any Kp,p as a subgraph, and an integer k > 0, there is a polynomial-time algo-
rithm that outputs a subgraph H = (V ′ ⊆ V,E′ ⊆ E) of G with O(pd2(2dk)p)
vertices and a weight function ρ : V ′ → {0, . . . , 2dk} on the vertex set V ′ with
the following properties.

– For any vertex subset S′ ⊆ V ′ ⊆ V , EG(S′) is equal to EH(S′)+
∑

v∈S′ ρ(v).
– Let S be a partial vertex cover of size k in G covering at least t edges. Then

there is a vertex set S′ ⊆ V ′ of size k such that EH(S′) +
∑

v∈S′ ρ(v) is at
least t.

Since planar graphs are 5-degenerate and do not contain K3,3 as a subgraph,
we get the following corollary from Theorem 1.3.

Corollary 1.3.1. There is a polynomial compression for PVC on planar
graphs. Here, the compressed instance is a graph H with O(k3) vertices and
a weight function on the vertex set of H where the weight of each vertex can be
encoded using O(k) bits.

Because no d-degenerate graph contains Kd+1,d+1 as a subgraph, we also
have the following corollary.

Corollary 1.3.2. There is a polynomial compression for PVC on d-degenerate
graphs. Here, the compressed instance is a graph H with O(kd+1) vertices and a
weight function on the vertex set of H, where the weight of each vertex can be
encoded using at most kd bits.

Independent of our work, Koana et al. [12] recently showed that PVC on
d-degenerate graphs admits a kernel of size kO(d) and unless coNP ⊆ NP\poly,
it does not admit any kernel of size O(kd−2−ε).
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Our Methods. First, we explain the overview of our FPT algorithm mentioned
in Theorem 1.1, which is based on the following randomized process. Notice that
for a d-degenerate graph, there is a sequence of vertices such that for any vertex
v, the number of v’s neighbors at the right of it in the sequence is at most d.
Let S be a solution for PVC and let S′ be the set of vertices that are not in S,
but they are a “right neighbor” of a vertex in S. Clearly, |S ∪ S′| ≤ k + kd. If
we color each vertex red or blue uniformly at random, with probability at least

1
2k+kd , all the vertices in S would get red, and all the vertices in S′ would get
blue. Now we assign a value val(v) to any vertex v, which is |NG(v)| minus the
number of red “right neighbors” of v. This assignment of values ensures that
each edge incident on a red vertex contributes to the value of exactly one red
vertex. Observing that for every vertex in S all of its red “right neighbors” are
also in S, the solution will be the k most valuable red vertices, and the number
of edges covered by them will be the sum of their values. This algorithm can
be derandomized using universal sets. In Sect. 3, we present the deterministic
version of the algorithm.

Next, we give a high-level idea of our polynomial compression algorithm. We
prove that a “large” d-degenerate graph without any Kp,p as a subgraph, has an
independent set I of size k + 1 and a vertex subset C such that for any distinct
x, y ∈ I, NG(x) ∩ NG(y) = C. Then, we prove that there is a solution that does
not contain the least degree vertex of I. This leads to a simple reduction rule as
long as the number of vertices is not polynomially bounded in k. This algorithm
is explained in Sect. 4.

Other Related Works. In [16] some generalization of vertex cover (e.g. PVC)
parameterizing by tree-width is studied. Also, PVC parameterized by the num-
ber of covered edges is studied in [11]. There are also extensive works on the
approximability of PVC on general graphs [13–15]. For example, Manurangsi
in [14] presents a simple FPT approximation scheme that runs in (1/ε)O(k)nO(1)

as well as an approximation kernelization scheme of O(k/ε) vertices for weighted
PVC.

2 Preliminaries

For a graph G = (V,E), we denote the number of vertices and edges by n and
m, respectively. For a vertex v ∈ V we denote the set of neighbors of v by NG(v)
and the degree of v by |NG(v)|. For A ⊆ V , we use EG(A) to denote the total
number (weight) of edges with at least one end-point in A. We denote a complete
bipartite graph with partitions of size p and q by Kp,q. We use [n] to denote the
set {1, 2, . . . , n}.
Definition 2.1 (d-degenerate graph). An undirected graph G is said to be
d-degenerate if every subgraph of G contains a vertex of degree at most d. The
degeneracy of a graph is the smallest value of d for which it is d-degenerate.

We use the following proposition to derive Corollary 1.3.1 from Theorem 1.3.
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Proposition 1. Planar graphs are 5-degenerate.

Proof. By Euler’s formula, we know m ≤ 3n − 6 for all n ≥ 3. Therefore,∑
v∈V |NG(v)| ≤ 6n − 12, and there is a vertex of a degree at most 5 in any

planar graph. Since every subgraph of a planar graph is also planar, planar
graphs are 5-degenerate. 	


For a graph G = (V,E), let λ be an ordering of vertices of G; i.e. λ : [n] → V
is a bijective function. We say λ is d-posterior, if λ(i) has at most d neighbors
among λ(i + 1), λ(i + 2), . . . , λ(n). Also, for v = λ(i), we call NG(v) ∩ {λ(i +
1), λ(i + 2), . . . , λ(n)} posterior neighbors of v and we denote them by PNλ(v).
Note that since λ is a d-posterior ordering, we have PNλ(v) ≤ d for all v ∈ V .
Next, we will state some useful propositions about d-degenerate graphs.

Proposition 2. There exists a d-posterior ordering for vertices of any d-
degenerate graph G.

Proof. Let G1 = G, and for 2 ≤ i ≤ n construct Gi by removing the minimum
degree vertex from Gi−1. Set λ(i) to be a minimum degree vertex in Gi. 	

Proposition 3. For a d-degenerate graph G = (V,E), we have m ≤ nd.

Proof. Consider a d-posterior ordering λ and note that m =
∑

v∈V PNλ(v) ≤ nd
because PNλ(v) ≤ d for any v ∈ V . 	

Proposition 4. Let G = (V,E) be a d-degenerate graph. Then, there is a (d+1)-
coloring for V such that for any (u, v) ∈ E, u and v get different colors; i.e.,
f : V → [d + 1] such that f(u) �= f(v) for all (u, v) ∈ E. Furthermore, one can
construct this coloring in time nO(1).

Proof. Let λ be a d-posterior ordering of V and for each i from n to 1, choose a
color for λ(i) which does not occur in PNλ(λ(i)). 	


2.1 Parameterized Complexity

We state the following definitions slightly modified from the Kernelization
book [8].

Definition 2.2 (FPT optimization problem). A parameterized optimiza-
tion problem Π is fixed parameter tractable (FPT) if there is an algorithm (called
FPT algorithm) that solves Π, such that the running time of the algorithm on
instances of size n with parameter k is upper bounded by f(k) · nO(1) for a com-
putable function f .

Definition 2.3 (Polynomial-time preprocessing algorithm). A poly-
nomial-time preprocessing algorithm A for a parameterized optimization problem
Π is a pair of polynomial-time algorithms. The first one is called the reduc-
tion algorithm, and given an instance (I, k) of Π, the reduction algorithm
outputs an instance (I ′, k′) = RA(I, k) of a problem Π ′. The second algorithm
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is called the solution lifting algorithm. This algorithm takes an instance (I, k)
of Π, the output instance (I ′, k′) of the reduction algorithm, and a solution s′

to the instance (I ′, k′). The solution lifting algorithm works in time polynomial
in |I|, k, |I ′|, k′ and |s′|, and outputs a solution s to (I, k) such that if s′ is an
optimal solution to (I ′, k′) then s is an optimal solution to (I, k).

Definition 2.4 (Compression, Kernelization). A polynomial time prepro-
cessing algorithm A is called a compression, if sizeA is upper bounded by a com-
putable function g : N → N where sizeA is defined as follows:

sizeA(k) = sup{|I ′| + k′ : (I ′, k′) = RA(I, k) for any instance (I, k) of the problem}

If the upper bound g(.) is a polynomial function of k, we say A is a polynomial
compression. A compression (polynomial compression) is called a kernelization
(polynomial kernelization) if the input and output of the reduction algorithm are
instances of the same problem, i.e., Π = Π ′.

3 FPT Algorithm for Weighted Partial Vertex Cover

In this section, we show that PVC can be solved in parameterized single expo-
nential time on d-degenerate weighted graphs. That is, we prove Theorem 1.1.

We will use a universal set in our algorithm defined as follows (see also
section 5.6.1 of [4]).

Definition 3.1 ((n, l)-universal set). An (n, l)-universal set is a family U of
subsets of [n] such that for any A ⊆ [n] of size l, the family {U ∩ A : U ∈ U}
contains all 2l subsets of A.

Lemma 3.1 (Naor et al. [17]). For any n, l ≥ 1, one can construct an (n, l)-
universal set of size 2llO(log l) log n in time 2llO(log l)n log n.

We now describe our FPT algorithm for solving PVC in the given d-
degenerate weighted graph G = (V,E). To give a better intuition, we first state
the algorithm informally. Consider a d-posterior ordering for the vertices. Sup-
pose we have an oracle that paints the vertices with blue and red, such that all
vertices in the solution get red, all vertices that are not in the solution but are
a posterior neighbor of a vertex in the solution get blue, and other vertices get
either red or blue. Observe that the solution is a subset of red vertices such that
for any vertex in the solution, its red posterior neighbors are also in the solution.
Then we will assign a value to each vertex, such that the solution will be the set
of k most valuable red vertices. In the algorithm, we use a universal set instead
of the oracle. The following is the exact description of the algorithm.

Let λ be a d-posterior ordering of V and l = min(n, k+kd). First, we construct
an (n, l)-universal set U of subsets of V , and for each U ∈ U with size ≥ k and
v ∈ V , we define the value of v with respect to U as:

valU (v) =
∑

u∈NG(v)\(PNλ(v)∩U)

w(u, v)
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And we define sol(U) ⊆ U as the set of k most valuable vertices in U , and we
set the value of U to be val(U) =

∑
v∈sol(U) valU (v). Finally, we return sol(U)

for the most valuable U .
To prove Theorem 1.1, first we show the following lemmas.

Lemma 3.2. For any U ∈ U and A ⊆ U , we have
∑

v∈A valU (v) ≤ EG(A).

Proof. Recall that EG(A) is the total weight of edges with at least one end-point
in A.

Any edge e = (u, v) with exactly one end-point, say v, in A is counted at most
once in valU (v) and since u /∈ A, it is also counted at most once in

∑
v∈A valU (v).

For an edge e′ = (u′, v′) with both end-points in A, without loss of generality,
suppose u′ is later than v′ in the ordering λ, i.e., λ−1(u′) > λ−1(v′). Therefore,
u′ ∈ PNλ(v′) and since A ⊆ U , u′ ∈ PNλ(v′)∩U and e is not counted in valU (v′).
On the other hand, v′ /∈ PNλ(u′), and e is counted in valU (u′). Therefore, e is
counted exactly once in

∑
v∈A valU (v).

Since the weights of edges are positive and all edges counted exactly once
in EG(A) are counted at most once in

∑
v∈A valU (v), we have

∑
v∈A valU (v) ≤

EG(A). 	

Now, let S be a hypothetical solution, and define S̃ = S ∪ (⋃

v∈S PNλ(v)
)
.

Note that:

|S̃| ≤ |S| +
∣
∣
∣
∣
∣

⋃

v∈S

PNλ(v)

∣
∣
∣
∣
∣
≤ k + k.d (since |S| = k and PNλ(v) ≤ d)

Therefore we have |S̃| ≤ l. Consider a subset T ⊆ V with size l such that S̃ ⊆ T .
According to Definition 3.1, there is a set Ũ ∈ U such that S = Ũ ∩T . Note that
since |S| = k, size of Ũ is ≥ k, and valŨ and sol(Ũ) are defined.

Lemma 3.3. EG(S) =
∑

v∈S valŨ (v).

Proof. It is enough to show that each edge with at least one end-point in S is
counted exactly once in

∑
v∈S valŨ (v).

Consider any e = (u, v) with exactly one end-point, say v, in S. Note that
u /∈ S and (

PNλ(v) ∩ Ũ
)

⊆ (S̃ ∩ Ũ) ⊆ (T ∩ Ũ) = S

Therefore, u /∈
(
PNλ(v) ∩ Ũ

)
and e is counted in valŨ (v). Since u /∈ S, e is

counted in
∑

v∈S valŨ (v) exactly once. For edges with two end-points in S, the
proof is the same as the proof of Lemma 3.2. 	


We finally prove Theorem 1.1. For convenience, we restate the theorem here.

Theorem 1.1. Given G = (V,E), a d-degenerate graph with edge weights
w : E → IR+, and an integer k > 0, there is an algorithm that runs in time
2kd+k(kd)O(log(kd))nO(1) and finds a subset S ⊆ V of size k, with maximum
possible EG(S), i.e., the total weight of edges with at least one end-point in S.
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Proof. By Lemma 3.2 and optimality of S, val(U) =
∑

v∈sol(U) valU (v) ≤
EG(sol(U)) ≤ EG(S) for all U ∈ U with size ≥ k. Also, note:

val(Ũ) =
∑

v∈sol(Ũ)

valŨ (v) (definition of val(Ũ))

≥
∑

v∈S

valŨ (v) (definition of sol(Ũ) and since S ⊆ Ũ)

= EG(S) (Lemma 3.3)

Therefore, for the most valuable U , val(U) = EG(S). Since val(U) ≤
EG(sol(U)) ≤ EG(S), sol(U) is also a solution and EG(sol(U)) = val(U). This
implies the algorithm’s correctness and shows that the weight of the edges cov-
ered by the solution is equal to val(U).

Finally, the running time of constructing the family U is

2kd+k(kd + k)O(log(kd+k))nO(1).

Moreover, we only have a polynomial process for each U ∈ U . Since, the size of
U is 2kd+k(kd + k)O(log(kd+k)) log n, the total running time is

2kd+k(kd + k)O(log(kd+k))nO(1).

	


3.1 Improved Running Time Using Lopsided Universal Sets

One can use lopsided universal sets instead of universal sets in the above algo-
rithm to get the running time (e + ed)k 2o(k)nO(1). In the following we briefly
introduce lopsided universal sets.

Definition 3.2 ((n, p, q)-lopsided universal set). An (n, p, q)-lopsided uni-
versal set is a family U of subsets of [n] such that for any A ⊆ [n] of size p and
B ⊆ [n]\A of size q, there is a U ∈ U that A ⊆ U and B ∩ U = ∅.
Lemma 3.4 (Fomin et al. [6]). There is an algorithm that given n, p and q
constructs an (n, p, q)-lopsided universal set U of size

(
p+q

p

) ·2o(p+q) log n in time

O
((

p+q
p

) · 2o(p+q)n log n
)
.

Now, let p = k and q = min(n − k, kd) and follow the same steps as the
aforementioned algorithm using an (n, p, q)-lopsided universal set U instead of
an (n, l)-universal set. The proof of the correctness is also the same, except that
for Lemma 3.3, Ũ ∈ U should be such that S ⊆ Ũ and

(
S̃\S

)
∩ Ũ = ∅. Finally,

for the running time, we have the following:

Proposition 5. For any r and n such that 1 ≤ r ≤ n we have
(
n
r

) ≤ (
en
r

)r.

Using the same analysis as the first algorithm, the running time of
this algorithm would be

(
k+kd

k

) · 2o(k)nO(1) which by the Proposition 5 is
(e + ed)k 2o(k)nO(1). This proves Theorem 1.2.
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4 Polynomial Compression for Partial Vertex Cover

In this section, we present a polynomial compression for PVC in families of
graphs with bounded degeneracy. That is, we prove Theorem 1.3.

For convenience we will allow self-loops for this part, but not parallel edges.
For a vertex v with self-loops, we will not count v in NG(v) so v /∈ NG(v), and
we will use LG(v) to denote the number of self-loops of v. Therefore, the given
graph G = (V,E) is undirected, unweighted and any v ∈ V might have several
self-loops. Also, G does not contain Kp,p and without considering self-loops, it
is d-degenerate.

We say a subset U ⊆ V of size k + 1 is nice if U is an independent set and
there is a subset C ⊆ V such that for any u, u′ ∈ U , NG(u) ∩ NG(u′) = C. For
each u ∈ U , we call NG(u)\C private neighbors of u with respect to U , and we
denote it by PVU (u). Figure 2 shows a nice subset.

C

u1

uk+1

u2

u3

uk

PV U (u1)

PV U (u2)

PV U (u3)

PV U (uk)

PV U (uk+1)

Fig. 2. A nice subset U = {u1, u2, . . . , uk+1}

Lemma 4.1. Let G = (V,E) be an undirected graph with possible self-loops. For
integers h, p ≥ 1, suppose I ⊆ V is an independent set of size t > p · (hk)p, such
that |NG(v)| ≤ h for all v ∈ I. Then either there is a nice U ⊆ I or G contains
a Kp,p. Furthermore, having G and I, we can find a nice subset or a Kp,p in
polynomial time.

Proof. First, we show by induction that for each 0 ≤ i ≤ p, either (a) there is
a nice subset U ⊆ I, or (b) there is a Ui ⊆ I of size ti > p · (hk)p−i such that
Qi =

⋂
u∈Ui

NG(u) has size ≥ i.
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For i = 0, clearly U0 = I. If i ≥ 1, by induction we know one of (a) or
(b) is true for i − 1. If (a) is true, then we are done. So there is a Ui−1 ⊆ I
with conditions as mentioned earlier. If there was a vertex v ∈ V \Qi−1 with
> p · (hk)p−i neighbors in Ui−1, let Ui be Ui−1 ∩ NG(v) and (b) will be true for
i. Otherwise, all vertices in V \Qi−1 have ≤ p · (hk)p−i neighbors in Ui−1, and
we do the following:

As long as there is an unmarked vertex in Ui−1, we pick an unmarked vertex
u ∈ Ui−1 and mark all vertices in Ui−1 that have a neighbor in NG(u)\Qi−1.

Since NG(u) ≤ h and each vertex in V \Qi−1 has ≤ p ·(hk)p−i neighbors in Ui−1,
at most php−i+1kp−i vertices would get marked after picking u. Therefore, we
would pick at least |Ui−1|

php−i+1kp−i > p·(hk)p−i+1

php−i+1kp−i = k vertices. Since these vertices
are independent, their number is at least k +1, they are neighbors of Qi−1, and
they do not have common neighbors out of Qi−1, each of their subsets of size
k + 1 forms a nice subset and (a) will be true.

If i = p, the above proposition implies that either there is a nice subset
U ⊆ I or a Kp,p. In the same way as the induction, we also can construct Ui

and Qi using Ui−1 and Qi−1. This is easily doable by checking all vertices in
V \Qi−1 to see whether they have > p · (hk)p−i neighbors in Ui−1. If we could
not find such a vertex, then we can find a nice subset like the induction by
marking vertices. If we could construct all Uis, then we can easily find a Kp,p in
the induced subgraph of (Up ∪ Qp). 	

Lemma 4.2. Let G = (V,E) be a d-degenerate graph with possible self-loops.
Then there are ≥ n

2d+1 vertices v with |NG(v)| ≤ 2d.

Proof. Note
∑

v∈V |NG(v)| = 2(m − ∑
v∈V LG(v)) ≤ 2nd that the inequality is

by Proposition 3. Suppose number of vertices like v with |NG(v)| > 2d is t. Then
we have:

t(2d + 1) ≤
∑

v∈V

|NG(v)| ≤ 2nd

This implies that

t ≤ 2nd

2d + 1
, and

n − t ≥ n

2d + 1

This completes the proof of the lemma. 	

Lemma 4.3. Any d-degenerate graph G = (V,E) with possible self-loops has an
independent set I with size ≥ n

(d+1)(2d+1) such that |NG(v)| ≤ 2d for all v ∈ I

and one can find such an independent set in time (n + m)O(1).

Proof. First, construct a (d+1)-coloring for V in nO(1) using Proposition 4. By
Lemma 4.2 there are ≥ n

(2d+1) vertices with |NG| ≤ 2d and therefore, there are
≥ n

(2d+1)(d+1) vertices with |NG| ≤ 2d and the same color, which means they
form an independent set. 	
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Now, we are ready to describe the kernel. As long as, n > p(d + 1)(2d +
1)(2dk)p, we apply the following reduction rule.

Reduction PVC 1. Use Lemma 4.3 to find an independent set I of size ≥
n

(d+1)(2d+1) > p · (2dk)p such that |NG(v)| ≤ 2d for all v ∈ I. Then, since the
given graph G does not contain any Kp,p, by setting h = 2d and using Lemma 4.1,
find a nice subset U ⊆ I. Then remove u ∈ U that minimizes |NG(u)| + LG(u)
and add a self-loop to each vertex of NG(u).

To show the soundness of the reduction rule, we prove the following lemma.

Lemma 4.4. Suppose G = (V,E) is a graph with possible self-loops, and U ⊆ V
is nice. Then, for any u ∈ U with the minimum |NG(u)| + LG(u), there is a
solution for PVC which does not contain u.

Proof. Consider any solution S containing u. Since |S| = k, there is a u′ ∈ U
such that (i) ({u′} ∪ PVU (u′)) ∩ S = ∅. Therefore, we have:

EG(S\{u} ∪ {u′}) ≥ EG(S) − (|NG(u)| + LG(u)) + (|NG(u′)| + LG(u′))
(by (i))

≥ EG(S) (since |NG(u)| + LG(u) ≤ |NG(u′)| + LG(u′))

This implies that S\{u} ∪ {u′} is a solution that does not contain u. 	

We finally prove Theorem 1.3. For convenience, we restate the theorem here.

Theorem 1.3. Given a d-degenerate graph G = (V,E) that does not contain
any Kp,p as a subgraph, and an integer k > 0, there is a polynomial-time algo-
rithm that outputs a subgraph H = (V ′ ⊆ V,E′ ⊆ E) of G with O(pd2(2dk)p)
vertices and a weight function ρ : V ′ → {0, . . . , 2dk} on the vertex set V ′ with
the following properties.

– For any vertex subset S′ ⊆ V ′ ⊆ V , EG(S′) is equal to EH(S′)+
∑

v∈S′ ρ(v).
– Let S be a partial vertex cover of size k in G covering at least t edges. Then

there is a vertex set S′ ⊆ V ′ of size k such that EH(S′) +
∑

v∈S′ ρ(v) is at
least t.

Proof. The running time of the described algorithm is polynomial by Lemma
4.1 and 4.3, and the reduction rule is safe by Lemma 4.4. The number of vertices
in the kernel is ≤ p(d + 1)(2d + 1)(2dk)p, which is O(pd2(2dk)p). Although the
number of self-loops may be large, notice that the number of self-loops on a
vertex will be at most n. We may remove the self-loops and add it as a weight
on the vertex. Thus, each weight can be represented using at most log n bits.
Since we have an algorithm for the problem with running time 2O(kd)nO(1),
i.e., Theorem 1.1, when kd ≤ log n the algorithm runs in polynomial time and
thereby, it would be a compression itself. Otherwise, we have that logn ≤ kd
that guarantees the weight function ρ mentioned in the theorem statement. 	
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5 Conclusion

In this work we gave a single exponential parameterized algorithm and a polyno-
mial compression for PVC on graphs of bounded degeneracy that include many
sparse graph classes like planar graphs and H-minor free graphs. Is it possible
to get similar results on biclique free graphs, a superclass of bounded degener-
acy graphs? Notice that there is a linear kernel for Dominating Set on planar
graphs, H-minor free graphs, and apex-minor free graphs [3,7]. Can we get a
linear kernel or compression for PVC on planar graphs?
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