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Abstract. Infinite hierarchies of rational series realised by finitely
ambiguous and finitely sequential weighted automata over fields, clas-
sifying them according to the ambiguity or sequentiality degree of real-
ising automata, are examined. It is shown that both these hierarchies
are strict if and only if the field under consideration is not locally finite;
in that case, the hierarchies are strict already for series over a unary
alphabet. Relations between finitely ambiguous and finitely sequential
unary weighted automata are explored. It is also readily observed that
polynomially ambiguous weighted automata over a field of characteristic
zero are more powerful than finitely ambiguous weighted automata over
the same field, again already over a unary alphabet. On the other hand,
it is proved that unary alphabets are insufficient to separate the series
realised by polynomially and finitely ambiguous weighted automata over
algebraically closed fields of positive characteristic.
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1 Introduction

Weighted automata of restricted ambiguity have recently attracted significant
research attention. This was often motivated by the idea that certain problems
undecidable – or not known to be decidable – for general weighted automata
might admit reasonable decision algorithms when their scope is restricted to, e.g.,
finitely or polynomially ambiguous automata. Such questions have been stud-
ied for tropical automata in connection to their determinisation [14–16], as well
as in the setting of probabilistic automata [4,12]. Unary weighted automata
of restricted ambiguity were also studied over the field of rational numbers [3],
with motivation coming from the research dealing with decision problems for lin-
ear recurrences such as the Skolem problem. Moreover, classes of weighted
automata with restricted ambiguity arise in connection with the weighted first-
order logic of M. Droste and P. Gastin [8].
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Various observations about the expressive power of weighted automata with
restricted ambiguity have recently crystallised into its more systematic study.
The so-called ambiguity hierarchy, composed by the classes of series realised
by the unambiguous, finitely ambiguous, polynomially ambiguous, and unre-
stricted weighted automata, is observed to be strict over tropical semirings
by A. Chattopadhyay et al. [6]. The same observation over the rational numbers
is due to C. Barloy et al. [3] and is established already over unary alphabets; some
of their results also follow, to some extent, from the findings of [8,21]. Moreover,
it is noted in [3] that the infinite hierarchy of series realised by k-ambiguous unary
weighted automata over the rationals, for k = 0, 1, 2, . . ., is strict.

Another restriction studied in the context of weighted finite automata is
that of finite sequentiality [2] or multisequentiality [7]. Both terms have been
used interchangeably, basically to describe deterministic weighted automata with
possibly more than one initial state. A normal form of such automata, given
by finite unions of deterministic automata, has been used as their definition
as well. Every finitely sequential automaton is finitely ambiguous, but a finitely
ambiguous automaton might not even admit a finitely sequential equivalent [2].

There has also been research on restricted ambiguity and finite sequentiality
in weighted tree automata [20,23–26].

The power of restricted ambiguity in weighted automata has thus mainly been
examined over tropical semirings.On the contrary, its study forweighted automata
over fields has so far been limited to the research dealing with the particular case
of automata over the rationals. This is relatively surprising, as weighted automata
over fields are particularly well explored and known for richness of their theory
and abundance of appealing properties [5,27]. The study of such automata has
a long history going back to M.-P. Schützenberger [29]. To the author’s knowl-
edge, finite sequentiality in weighted automata has been studied neither over fields
in general, nor over any specific field such as the rationals.

The aim of this article is to explore some of the basic relations between
classes of series realised by weighted automata with restricted ambiguity over
general fields, in hope of later leading to a full understanding of ambiguity
hierarchies over fields. In this respect, the article follows the same direction
as the manuscript [17] examining relations between polynomially ambiguous
and unrestricted weighted automata over fields. In particular, it is shown in [17]
that unrestricted weighted automata over fields of characteristic zero that are not
algebraically closed are more powerful than polynomially ambiguous weighted
automata over the same field – already over unary alphabets. On the contrary,
unary weighted automata over algebraically closed fields always admit polyno-
mially ambiguous equivalents, regardless of the field’s characteristic.

The questions asked in this article are in a sense complementary to those
considered in [17]. We mostly focus on finitely ambiguous weighted automata
over fields – we study the hierarchy of series realised by k-ambiguous automata
for k = 0, 1, 2, . . ., as well as the relations between finitely ambiguous and polyno-
mially ambiguous automata. In addition, we initiate the study of finitely sequen-
tial weighted automata over fields by examining the hierarchy of series realised by
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k-sequential automata for
k = 0, 1, 2, . . ., and observe some connections between finitely ambiguous and
finitely sequential unary weighted automata.

In particular, we first observe that finitely ambiguous unary weighted
automata over commutative semirings always admit finitely sequential equiva-
lents, while the sequentiality degree of an equivalent automaton is linked to a struc-
tural measure of the original finitely ambiguous automaton. We next prove that
the hierarchies of series realised by the k-ambiguous and k-sequential weighted
automata over a field F for k = 0, 1, 2, . . . are strict whenever F is not locally finite;
this also trivially is a necessary condition. Unary alphabets are sufficient to estab-
lish these results. Finally, we consider the relations between finitely and polyno-
mially ambiguous weighted automata over fields. While it is essentially trivial to
observe that already the unary polynomially ambiguous weighted automata over
fields of characteristic zero are strictly more powerful than their finitely ambigu-
ous counterparts, the case of a positive characteristic is far more interesting. We
show that polynomially ambiguous unary weighted automata over algebraically
closed fields of characteristic p > 0 always admit finitely ambiguous equivalents.
Unary alphabets are thus insufficient to separate the series realised by finitely and
polynomially ambiguous automata over such fields.

2 Preliminaries

Fields are understood to be commutative, and alphabets finite and nonempty.
We denote by N the set of all nonnegative integers and write [n] = {1, . . . , n}
for each n ∈ N. The set of all m × n matrices over a set S is denoted by Sm×n,
and the identity n × n matrix over any semiring by In. A field (a semiring) is
locally finite if its finitely generated subfields (subsemirings) are all finite. A field
is locally finite if and only if it is locally finite as a semiring.

Consult, e.g., [5,9,10,27,28] for a reference on weighted automata and formal
power series. We now briefly recall the most important concepts needed.

A (noncommutative) formal power series over a semiring S and alphabet Σ
is a mapping r : Σ∗ → S interpreted as follows: the value of r upon w ∈ Σ∗ is
denoted by (r, w) and called the coefficient of w in r; we then write

r =
∑

w∈Σ∗
(r, w)w.

The set of all formal power series over S and Σ is denoted by S⟪Σ∗⟫.
A weighted (finite) automaton over a semiring S and over an alphabet Σ is

a quadruple A = (Q,σ, ι, τ) with Q being a finite set of states, σ : Q×Σ×Q → S
a transition weighting function, ι : Q → S an initial weighting function, and
τ : Q → S a terminal weighting function.

A transition in the automaton A is a triple (p, c, q) ∈ Q × Σ × Q such
that σ(p, c, q) �= 0. A run of A is a word γ = q0c1q1c2q2 . . . qt−1ctqt ∈ (QΣ)∗Q
with q0, . . . , qt ∈ Q and c1, . . . , ct ∈ Σ such that (qk−1, ck, qk) is a transition
for k = 1, . . . , t. We also say that γ is a run on the word c1 . . . ct from q0 to qt.
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We say that γ is successful if ι(q0) �= 0 and τ(qt) �= 0. The pure value of γ is
the element σ(γ) = σ(q0, c1, q1)σ(q1, c2, q2) . . . σ(qt−1, ct, qt), and the complete
value of γ is given by σ(γ) = ι(q0)σ(γ)τ(qt). The length of γ is given by |γ| = t.
The set of all runs of A on w is denoted by R(A, w) and the set of all successful
runs of A on w by Rs(A, w). We then also write

R(A) =
⋃

w∈Σ∗
R(A, w) and Rs(A) =

⋃

w∈Σ∗
Rs(A, w).

The behaviour of a weighted automaton A = (Q,σ, ι, τ) over S and Σ is
a formal power series ‖A‖ ∈ S⟪Σ∗⟫ given by

(‖A‖, w) =
∑

γ∈Rs(A,w)

σ(γ) =
∑

γ∈R(A,w)

σ(γ)

for all w ∈ Σ∗, both sums being obviously finite. We also say that the series
‖A‖ is realised by A. A series r ∈ S⟪Σ∗⟫ is rational over S if it is realised
by a weighted finite automaton over S and Σ.

A weighted automaton A over S and Σ is said to be k-sequential for k ∈ N if
there are at most k distinct states q ∈ Q satisfying ι(q) �= 0, and if σ(p, c, q) �= 0
with σ(p, c, q′) �= 0 imply q = q′ for all p, q, q′ ∈ Q and c ∈ Σ. In particular,
1-sequential automata are typically termed deterministic or sequential [19].1

The automaton A is finitely sequential [2] if it is k-sequential for some k ∈ N.2

The ambiguity degree of A is given by a function ambA : Σ∗ → N count-
ing successful runs of A on words over Σ; that is, ambA(w) = |Rs(A, w)|
for all w ∈ Σ∗. The automaton A is said to be k-ambiguous for k ∈ N if
ambA(w) ≤ k for all w ∈ Σ∗, while 1-ambiguous automata are called unambigu-
ous. An automaton A is finitely ambiguous if it is k-ambiguous for some k ∈ N

and polynomially ambiguous if there exists a polynomial function p : N → N such
that ambA(w) ≤ p(|w|) for all w ∈ Σ∗.

A weighted automaton A = (Q,σ, ι, τ) over S and Σ is accessible if for each
q ∈ Q, there exists a run of A from some p with ι(p) �= 0 to q; coaccessible if
for each p ∈ Q, there exists a run of A from p to some q with τ(q) �= 0; and trim
if it is both accessible and coaccessible.

In what follows, we often without loss of generality confine ourselves to
automata with state sets [n] for n ∈ N – we then write A = (n, σ, ι, τ) instead
of A = ([n], σ, ι, τ). Moreover, we apply the standard graph-theoretic terminol-
ogy to weighted automata. This refers to a directed multigraph whose vertices
are states of the automaton, while for each pair of states p, q, the transitions
of the form (p, c, q) correspond bijectively to directed edges from p to q.

Weighted automata over a semiring S and alphabet Σ can also be viewed
as linear S-representations over Σ, i.e., quadruples P = (n, i, μ, f), where n ∈ N,
1 Some authors also call such automata subsequential, while they reserve

the term sequential for a more restricted class of automata. See S. Lombardy and
J. Sakarovitch [19] for more information.

2 Note that C. Allauzen and M. Mohri [1] use the term finitely subsequential transducer
in a completely different sense.
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i ∈ S1×n is a vector of initial weights, μ : (Σ∗, ·, ε) → (Sn×n, ·, In) is a monoid
homomorphism, and f ∈ Sn×1 is a vector of terminal weights. The series ‖P‖
realised by P is given by (‖P‖, w) = iμ(w)f for all w ∈ Σ∗. A series r ∈ S⟪Σ∗⟫
is recognisable over S if it is realised by a linear S-representation.

The classes of recognisable and rational series over words coincide by a well-
known classical result [27]. In fact, every weighted automaton A = (n, σ, ι, τ)
over S and Σ corresponds to a linear S-representation PA = (n, i, μ, f), where i =
(ι(1), . . . , ι(n)), the matrix μ(c) = (ci,j)n×n is given by ci,j = σ(i, c, j) for every
c ∈ Σ and i, j = 1, . . . , n, and f = (τ(1), . . . , τ(n))T . Clearly ‖PA‖ = ‖A‖.

Consider in addition a mapping ν : S → N given for all a ∈ S by

ν(a) =
{

1 if a �= 0,
0 if a = 0.

(1)

Applying this mapping componentwise to vectors and matrices, it is clear that
ambA(c1 . . . ct) = ν(i)ν(μ(c1)) . . . ν(μ(ct))ν(f) for all t ∈ N and c1, . . . , ct ∈ Σ.

We mostly work with linear representations over unary alphabets in what
follows. We usually write a linear representation P = (n, i, μ, f) over Σ = {c}
as P = (n, i, A, f), where A = μ(c) is the only matrix needed to specify the homo-
morphism μ. This means that given a weighted automaton A over a semiring S
and unary alphabet Σ = {c} with PA = (n, i, A, f),

(‖A‖, ct
)

= iAtf

holds for all t ∈ N. The automaton A can thus also be interpreted as an initial
value problem for the system of difference equations (i.e., recurrences)

xt+1 = Axt for all t ∈ N,

the initial conditions being given by x0 = f . When S = F is a field, the theory
of difference equations [11] allows us to express the components of xt, and thus also
(‖A‖, ct), in closed form over the algebraic closure F of F. Indeed, by similarity of A
to a matrix over F in the Jordan canonical form, it follows that for all t ∈ N,

(‖A‖, ct
)

=
∑

λ∈σ

α(λ)−1∑

j=0

aλ,j

(
t

j

)
λt−j , (2)

where σ denotes the spectrum of A over F, the algebraic multiplicity of each
eigenvalue λ of A is denoted by α(λ), and aλ,j ∈ F are constants for λ ∈ σ
and j = 0, . . . , α(λ) − 1. Recall that the spectrum σ contains precisely the roots
over F of the characteristic polynomial chA(x) = det(xIn − A) of A, and that
the algebraic multiplicity of λ ∈ σ is its multiplicity as a root of chA(x).

The constants aλ,j of (2) are always uniquely determined as a solution to
a linear system of equations given by (2) for t = 0, . . . , n − 1, in which they
are the only unknowns. In particular, every choice of initial values on the left-
hand sides uniquely determines the constants aλ,j and conversely, every choice
of the constants aλ,j gives different initial values [11]. This observation can be
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established, e.g., as a consequence of the fact that the matrix of the above-
mentioned linear system is the so-called Casorati matrix [11] of the functions(

t
j

)
λt−j for λ ∈ σ and j = 0, . . . , α(λ) − 1. This is a generalised Vandermonde

matrix [11,13], so it is necessarily invertible. The linear system thus always
has a unique solution. Moreover, any finite set of pairwise distinct functions
of the form

(
t
j

)
λt−j with λ ∈ F and j ∈ N is linearly independent.

Similarly, consider a weighted automaton A over any semiring S and unary
alphabet Σ = {c}, with PA = (n, i, A, f). Let ν : S → N be given by (1). Then

ambA(ct) = ν(i)ν(A)tν(f)

for all t ∈ N, so that ambA(ct) admits a closed form analogous to (2) over C:

ambA(ct) =
∑

λ∈σ′

α′(λ)−1∑

j=0

a′
λ,j

(
t

j

)
λt−j , (3)

where σ′ denotes the spectrum of ν(A), the algebraic multiplicity of an eigenvalue
λ of ν(A) is denoted by α′(λ), and a′

λ,j ∈ C for λ ∈ σ′ and j = 0, . . . , α′(λ) − 1.
We call ν(A) the enumeration matrix of A in what follows.

3 Finite Ambiguity and Sequentiality in Unary Automata

We now make some preliminary remarks on finitely ambiguous and finitely
sequential unary weighted automata. First, let us note that the ambiguity degree
of a weighted automaton does not at all depend on its weights. This means that
weights can be forgotten and the known criteria [30] for nondeterministic finite
automata without weights can be applied in order to determine whether a given
weighted automaton is, say, finitely or polynomially ambiguous.

q ww

(a) For polynomial ambiguity.

p qw w w

(b) For finite ambiguity.

Fig. 1. The “forbidden configurations” for polynomially and finitely ambiguous trim
finite automata, as identified by A. Weber and H. Seidl [30]. Distinct arrows represent
distinct runs, as opposed to transitions.

Let us recall these criteria, as described by A. Weber and H. Seidl [30].
A trim finite automaton A with state set Q over an alphabet Σ is polynomially
ambiguous if and only if there does not exist a state q with at least two distinct
runs from q to q upon some word w ∈ Σ∗. Moreover, A is finitely ambiguous
if and only if there is no pair of distinct states p, q such that for some w ∈ Σ∗,
there are runs upon w from p to p, from p to q, as well as from q to q. These
“forbidden configurations” for polynomially and finitely ambiguous automata
are schematically depicted in Fig. 1.

These criteria admit a particularly simple form for unary automata, which
we now make explicit.
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Theorem 1. Let S be a semiring and A a trim unary weighted automaton
over S and Σ = {c}. The automaton A is:

(i) Polynomially ambiguous if and only if its strongly connected components are
all either single vertices, or directed cycles.

(ii) Finitely ambiguous if and only if, in addition to (i), there is no run of A
passing through two distinct directed cycles.

The characterisations of Theorem 1 can also be obtained, for a unary weighted
automaton A with PA = (n, i, A, f), with a little help of the Perron-Frobenius
theory [22] applied to the enumeration matrix ν(A). Indeed, the condition (i) is
equivalent to all eigenvalues of ν(A) being of absolute value 0 or 1. If this is the case,
(3) reduces to a polynomial function and A is polynomially ambiguous. Otherwise,
the Perron-Frobenius theory gives us existence of an eigenvalue λ > 1 with at least
one nonzero coefficient a′

λ,j in (3) – the automaton A is not polynomially ambigu-
ous.Given (i), the equivalence of (ii)with finite ambiguity can be easily established
by noting that a possibility of passing through two different cycles in a single run
is equivalent to unboundedness of ambA.

Given these characterisations of polynomially and finitely ambiguous trim
unary weighted automata, the number of strongly connected components taking
the form of cycles becomes a natural measure of their structural complexity.

Definition 2. Let S be a semiring, A a trim polynomially ambiguous unary
weighted automaton over S and Σ = {c}, and k ∈ N. We say that A is a k-cycle
automaton if it contains at most k directed cycles.

It is easy to see thatA as above is a k-cycle automaton if and only if the algebraic
multiplicity of 1 as an eigenvalue of its enumeration matrix is at most k. We mostly
apply this measure to finitely ambiguous automata in what follows; nevertheless,
note that this measure is incomparable with the ambiguity degree in general.

We now note that every trim finitely ambiguous k-cycle automaton A over
a unary alphabet decomposes, for k ≥ 1, into k finitely ambiguous 1-cycle
automata. The construction is intuitively obvious: for each of the cycles, we
make use of the criterion (ii) of Theorem 1, and alter the original automaton
A in order to obtain a 1-cycle automaton, whose successful runs are exactly
the successful runs of A visiting at least one state on the cycle in question. Then
we only need to take care of the runs of A that do not visit any cycle – but these
can clearly be realised by a 0-cycle automaton, which may be “adjoined” to any
of the k automata without spoiling their 1-cycle property.

Proposition 3. Let S be a semiring, k ∈ N \ {0}, and A a trim finitely
ambiguous k-cycle automaton over S and Σ = {c}. Then there are trim 1-cycle
automata A1, . . . ,Ak over S and Σ such that Rs(A) = Rs(A1) ∪· . . . ∪· Rs(Ak),
the values of successful runs of A1, . . . ,Ak being the same as in the original
automaton A. This in particular implies that for all t ∈ N,

(‖A‖, ct
)

=
k∑

j=1

(‖Aj‖, ct
)
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and

ambA(ct) =
k∑

j=1

ambAj
(ct).

Proof. Without loss of generality, assume that A contains precisely k cycles.3 Let
A = (Q,σ, ι, τ) and let the k cycles of A correspond to state sets C1, . . . , Ck ⊆ Q,
respectively. Thus, denoting by Q0 ⊆ Q the set of states that do not belong to any
cycle, we obtain Q = Q0 ∪· C1 ∪· . . . ∪· Ck. For j = 1, . . . , k, denote by R(j)

s (A)
the set of all successful runs of A visiting at least one state of Cj , i.e.,

R(j)
s (A) = {γ ∈ Rs(A) | Q(γ) ∩ Cj �= ∅},

where Q(γ) is the set of states passed by γ, i.e., Q(γ) = {q0, . . . , qt} for each
γ = q0cq1cq2 . . . qt−1cqt ∈ R(A) with q0, . . . , qt ∈ Q. For

R(0)
s (A) = {γ ∈ Rs(A) | Q(γ) ∩ Cj = ∅ for j = 1, . . . , k},

we clearly obtain Rs(A) = R(0)
s (A) ∪· R(1)

s (A) ∪· . . . ∪· R(k)
s (A).

For j = 1, . . . , k, we may also decompose Q as Q = Q→ ∪· Cj ∪· Q← ∪· Q×,
where Q→ consists of all q ∈ Q\Cj from which there exists a run to a state in Cj ,
Q← consists of all q ∈ Q \ Cj to which there exists a run from some state in Cj ,
and Q× = Q \ (Q→ ∪ Cj ∪ Q←). Denote by Q′

0 the set of all states q ∈ Q0 such
that q ∈ Q(γ) for some run γ ∈ R(0)

s (A). Let Qj = Q′
0 ∪ Q→ ∪ Cj ∪ Q← if

j = 1 and Qj = Q→ ∪Cj ∪Q← otherwise. Let Aj = (Qj , ιj , σj , τj) be a weighted
automaton over S and Σ = {c} such that for all p, q ∈ Qj ,

ιj(q) =
{

ι(q) if q ∈ Q→ ∪ Cj or j = 1,
0 otherwise,

σj(p, c, q) =
{

σ(p, c, q) if p �∈ Q→, q �∈ Q←, or j = 1
0 otherwise,

τj(q) =
{

τ(q) if q ∈ Cj ∪ Q← or j = 1,
0 otherwise.

Then Aj is clearly a trim 1-cycle automaton for j = 1, . . . , k. Moreover, obviously
Rs(A1) = R(0)

s (A) ∪· R(1)
s (A) and Rs(Aj) = R(j)

s (A) for j = 2, . . . , k, so that
indeed Rs(A) = Rs(A1) ∪· . . . ∪· Rs(Ak), the values of these runs in A1, . . . ,Ak

being clearly the same as in A. �

Let us now turn our attention to unary weighted automata over commutative

semirings, for which we relate finite ambiguity with finite sequentiality.

3 If A contains � cycles with 1 ≤ � < k, then we obtain in this way a decomposition
into � automata A1, . . . , A�, and a decomposition into k automata follows by taking
A�+1, . . . , Ak empty. If � = 0, then A itself can be taken for a 1-cycle automaton A1,
while A2, . . . , Ak can be empty.
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Lemma 4. Let S be a commutative semiring, and A a trim finitely ambiguous
1-cycle automaton over S and unary alphabet Σ = {c}. Then there is a deter-
ministic weighted automaton B over S and Σ such that ‖B‖ = ‖A‖.
Proof. The observation is trivial when A contains no cycle. We may thus assume
that there is precisely one cycle in A = (Q,σ, ι, τ). Let � ∈ N \ {0} be its length,
and γC = q1cq2 . . . q�cq1, for some q1, . . . , q� ∈ Q, a run of A on c� that goes
around the cycle exactly once. Then there is t0 ∈ N such that for all t ≥ t0,
each run γ of A upon ct visits q1 and goes around the cycle from q1 to q1
at least �(t − t0)/�� times.4 Such γ first follows some run γ1 until it visits q1
for the first time, then goes �(t − t0)/�� times around γC , and finally follows
some run γ2 from q1 (the run γ2 may revisit q1). Setting M = σ(γC), we get
σ(γ) = (σ(γ1)σ(γ2)) M�(t−t0)/�	.

Now, |γ1| + |γ2| = t − ��(t − t0)/�� = t − ((t − t0) − s) = t0 + s, where
s ∈ {0, . . . , � − 1} is the remainder after dividing t − t0 by � – in other words,
we have t − t0 ≡ s (mod �). The set of all possible pairs (γ1, γ2) is thus finite
for all s ∈ {0, . . . , � − 1} and depends only on s. It thus follows that there are
b0, . . . , b�−1 ∈ S such that for s = 0, . . . , �−1 and all t ≥ t0 with t−t0 ≡ s (mod �),

(‖A‖, ct
)

= bsM
�(t−t0)/�	.

Moreover, for t = 0, . . . , t0 − 1, denote by at the value (‖A‖, ct).

Fig. 2. The equivalent deterministic weighted automaton B.

The automaton A is then obviously equivalent to the deterministic weighted
automaton B over S and Σ = {c} in Fig. 2. �

Theorem 5. Let S be a commutative semiring, k ∈ N\{0}, and A a trim finitely
ambiguous k-cycle automaton over S and unary alphabet Σ = {c}. Then there
is a k-sequential weighted automaton B over S and Σ such that ‖B‖ = ‖A‖.
4 One can take, e.g., t0 = |Q|.
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Proof. Decompose A into trim finitely ambiguous 1-cycle automata A1, . . . ,Ak

as in Proposition 3, so that Aj has a deterministic equivalent Bj = (Qj , σj , ιj , τj)
for j = 1, . . . , k by Lemma 4. Then ‖A‖ = ‖B‖ for B the union of B1, . . . ,Bk, i.e.,
a k-sequential automaton B = (Q,σ, ι, τ) with Q = (Q1×{1})∪ . . .∪ (Qk ×{k}),
ι(q, j) = ιj(q), σ((p, j), c, (q, j)) = σj(p, c, q), and τ(q, j) = τj(q) for all p, q ∈ Q,
j ∈ [k], and c ∈ Σ, while σ(p, c, q) = 0 for all other (p, c, q) ∈ Q × Σ × Q. �

Corollary 6. Every finitely ambiguous unary weighted automaton A over a com-
mutative semiring S admits a finitely sequential equivalent (and vice versa).

4 Infinite Hierarchies

We now consider weighted automata over fields and first focus on the infinite
hierarchies of formal power series realised, for k = 0, 1, 2, . . ., by the k-ambiguous
and k-sequential weighted automata. Our aim is to show that these hierarchies
are strict if and only if the underlying field is not locally finite, while unary
alphabets are sufficient to establish this observation. C. Barloy et al. [3] have
noted that the finite ambiguity hierarchy over the rationals is strict, describing
a counterexample witnessing this fact. We provide a similar counterexample that
works over all other than locally finite fields and note that strictness of the finite
sequentiality hierarchy is implied by this counterexample as well.

Lemma 7. Let F be a field that is not locally finite and k ∈ N. Then there exists
a series r ∈ F⟪c∗⟫ realised by a (k + 1)-sequential weighted automaton over F

and Σ = {c}, but by no k-ambiguous weighted automaton over F.

Proof. As F is not locally finite, there necessarily exists some α ∈ F of infinite
multiplicative order, i.e., α ∈ F such that αs = αt for s, t ∈ N implies s = t.
In fact, such α is known to exist in every other than locally finite commutative
semiring [18, Lemma 7.2]; for fields, its existence also follows by containment
of the rational numbers in fields of characteristic zero and by existence of ele-
ments transcendental over the Galois field Fp in other than locally finite fields
of characteristic p > 0.

Consider a series r ∈ F⟪c∗⟫ given for all t ∈ N by
(
r, ct

)
= αt + α2t + . . . + α(k+1)t. (4)

Then r is clearly realised by a (k + 1)-sequential weighted automaton.
Suppose for contradiction that r is realised by some k-ambiguous weighted

automaton A over F and Σ = {c}. Without loss of generality, assume A is trim;
moreover, let PA = (n, i, A, f). The spectrum of A then allows us to uniquely
express (r, ct), as a function of t ∈ N, in the form (2). It thus follows by (4),
together with the linear independence of pairwise distinct functions

(
t
j

)
λt−j with

λ ∈ F and j ∈ N, that α, α2, . . . , αk+1 are eigenvalues of A.5

5 Note that αdt =
(

t
0

) (
αd

)t−0
for d = 1, . . . , k + 1.
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As A is finitely ambiguous, Theorem 1 tells us that its strongly connected
components are all either directed cycles, or single vertices (without a loop).
Nonzero eigenvalues of A are thus precisely the roots of characteristic polynomi-
als of matrices corresponding to the directed cycles, each taking the form x� − b
for some � ∈ N \ {0} and b ∈ F \ {0}.

For each a ∈ F, let ξ(a) be the set of all multiples of a by roots of unity in F,
i.e., ξ(a) =

{
κa | κ ∈ F; ∃t ∈ N \ {0} : κt = 1

}
. The roots of each polynomial

x� − b are then contained in ξ(a) for any of its roots a ∈ F: indeed, if a, a′ ∈ F

are roots of x� − b, then they are both nonzero and
(

a′

a

)�

=
b

b
= 1,

so that

a′ =
(

a′

a

)
a ∈ ξ(a).

On the other hand, the sets ξ(α), ξ(α2), . . . , ξ(αk+1) are pairwise disjoint –
if this was not a case, there would exist x < y ∈ [k + 1] such that καx = ναy

for some roots of unity κ, ν ∈ F; this would imply that αy−x = κ/ν is a root
of unity, contradicting the infinite multiplicative order of α. In particular, none
of the polynomials x� − b can have two distinct roots among α, α2, . . . , αk+1.
It follows that A contains K ≥ k + 1 cycles.

Decompose the K-cycle automaton A into 1-cycle automata A1, . . . ,AK

as in Proposition 3. For j = 1, . . . ,K, let PAj
= (nj , ij , Aj , fj). Then, by what

has been said, [K] = J0 ∪· J1 ∪· . . . ∪· Jk+1, where Jd consists, for d = 1, . . . , k + 1,
of precisely all j ∈ [K] such that the eigenvalues of Aj are in ξ(αd) ∪ {0}, while
they are not all zero; the nonzero eigenvalues of Aj for j ∈ J0 do not belong
to any ξ(αd) with d ∈ [k + 1]. It thus follows by uniqueness of the form (2) that
there exists some t0 ∈ N such that for all t ≥ t0,

∑

j∈Jd

(‖Aj‖, ct
)

= αdt for d = 1, . . . , k + 1.

As these values are always nonzero, we find out that the set
⋃

j∈Jd
Rs(Aj , c

t) is
nonempty for d = 1, . . . , k + 1, the decomposition of Proposition 3 guaranteeing
that Rs(A, ct) = Rs(A1, c

t) ∪· . . . ∪· Rs(AK , ct). There are thus at least k + 1
successful runs of A on ct, so A cannot be k-ambiguous: a contradiction. �


For F a field, Σ an alphabet, and k ∈ N, let AMBk(F, Σ) and SEQk(F, Σ)
denote, respectively, the sets of series realised by the k-ambiguous and k-
sequential automata over F and Σ. The following theorem is obtained directly
by Lemma 7.

Theorem 8. Let F be a field and Σ an alphabet. If F is not locally finite, then
AMBk(F, Σ) � AMBk+1(F, Σ) and SEQk(F, Σ) � SEQk+1(F, Σ) for all k ∈ N.

As all weighted automata over locally finite semirings are determinisable [19],
both hierarchies collapse over locally finite fields: AMBk(F, Σ) = AMBk+1(F, Σ)
and SEQk(F, Σ) = SEQk+1(F, Σ) for F locally finite and k ≥ 1.
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5 Separation of Finite and Polynomial Ambiguity

We now examine the relations between finitely and polynomially ambiguous
weighted automata over fields. C. Barloy et al. [3] have proved that polynomially
ambiguous unary weighted automata over the rationals are more powerful than
their finitely ambiguous counterparts. Let us first observe that their observation
directly generalises to all fields of characteristic zero.

Theorem 9. Let F be a field of characteristic zero. Then there exists a series
r ∈ F⟪c∗⟫ realised by a polynomially ambiguous weighted automaton over F

and Σ = {c}, but by no finitely ambiguous weighted automaton over F.

Proof. Let (r, ct) = t for all t ∈ N. Then r is clearly realised by a polynomially
ambiguous automaton. Suppose for contradiction that there is a finitely ambigu-
ous automaton realising r. Then it can be decomposed into 1-cycle automata
by Proposition 3. As F is of characteristic zero, all polynomials x� − b with
� ∈ N \ {0} and b ∈ F \ {0} are separable. The nonzero eigenvalues of A are thus
of algebraic multiplicity 1 for every 1-cycle automaton A with PA = (n, i, A, f).
By uniqueness of the expression (2) for (r, ct), it follows that it cannot contain
the term

(
t
1

)
1t−1, so that (r, ct) cannot equal t for all t ∈ N. �


The situation for fields of positive characteristic seems to be slightly different.
We make just a single step towards its understanding, by showing that polynomi-
ally and finitely ambiguous automata over algebraically closed fields of positive
characteristic are equally powerful when restricted to unary alphabets.

Theorem 10. Let F be an algebraically closed field of characteristic p > 0 and A
a polynomially ambiguous unary weighted automaton over F and Σ = {c}. Then
there is a finitely ambiguous weighted automaton B over F such that ‖B‖ = ‖A‖.
Proof. Without loss of generality, let us assume that A with PA = (n, i, A, f) is
trim. By Theorem 1, the strongly connected components of A are all directed
cycles or single vertices, so that

chA(x) = x�0

s∏

k=1

(
x�k − bk

)

for some �0, s ∈ N, �1, . . . , �s ∈ N \ {0}, and b1, . . . , bs ∈ F \ {0}. For k = 1, . . . , s,
let σk ⊆ F consist of all roots of x�k − bk that are not in σ1 ∪· . . . ∪· σk−1.6 Let
σ0 = {0} if 0 is a root of chA(x), and σ0 = ∅ otherwise. Moreover, given a root
λ ∈ F of chA(x), let α(λ) denote its multiplicity. Then (2) can be rewritten as

(‖A‖, ct
)

=
s∑

k=0

(
rk, ct

)
, (5)

6 The field F is algebraically closed, so all roots of chA(x) are indeed in F.
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where rk ∈ F⟪c∗⟫ is given, for k = 0, . . . , s and all t ∈ N, by

(
rk, ct

)
=

∑

λ∈σk

α(λ)−1∑

j=0

aλ,j

(
t

j

)
λt−j (6)

for some constants aλ,j ∈ F for λ ∈ σk and j = 0, . . . , α(λ) − 1.
Now, the series r0 can clearly be realised by a finitely ambiguous automaton.

For k = 1, . . . , s, let m ∈ N\{0} satisfy pm ≥ α(λ) for all λ ∈ σk. Let M = �kpm

and B = bpm

k , and let us consider a deterministic 1-cycle weighted automaton
Ak = (M,σ, ι, τ) with σ(t, c, t + 1) = 1 for t = 1, . . . ,M − 1, σ(M, c, 1) = B,
σ(t, c, t′) = 0 for all remaining (t, t′) ∈ [M ]2, ι(1) = 1, ι(t) = 0 for t = 2, . . . , M ,
and τ(t) = (rk, ct−1) for t = 1, . . . ,M . If PAk

= (M, ik, Ak, fk), then

chAk
(x) = xM − B =

(
x�k

)pm

− bpm

k =
(
x�k − bk

)pm

,

as F is of characteristic p. The eigenvalues of Ak thus form a superset of σk

and the algebraic multiplicity of every eigenvalue λ ∈ σk of Ak is at least α(λ).
The constants in the expression (2) for the series (‖Ak‖, ct) are uniquely deter-
mined by (‖Ak‖, ct) = (rk, ct) for t = 0, . . . ,M − 1. It follows that the expres-
sion (2) for (‖Ak‖, ct) is the same as in (6). In other words, ‖Ak‖ = rk.

Each of the series rk for k = 0, . . . , s is thus realised by a finitely ambiguous
automaton. Existence of B thus follows by (5). �


Note that the property that we have just established holds trivially –
and regardless of the alphabet considered – for weighted automata over finite
fields and their algebraic extensions, which are always locally finite. It would
thus be interesting to know whether there exists a field of positive characteristic,
over which the series realised by polynomially ambiguous and finitely ambigu-
ous weighted automata can be separated, and how the answer to this question
depends on the size of the alphabet.
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