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Preface

This volume contains the papers presented at CSR2022, the 17th International Computer
Science Symposium in Russia, held online during June 29 – July 1, 2022. CSR covers
a wide range of areas in theoretical computer science and its applications. Initially,
CSR 2022 was planned as a satellite event for the International Congress of Mathemati-
cians (ICM) in St. Petersburg, Russia. However, as the Program Committee (PC) was
starting its deliberations after completing submission reviews, Russia attacked Ukraine.
As a result, ICM and CSR 2022 were moved online. Many PC members expressed dis-
may at the attack and three PC members resigned. Others chose to continue their work,
but many wanted to emphasize that they did not support or condone the actions of the
Russian government against Ukrainian people.

We received 51 submissions, and out of these the Program Committee selected 21
papers for presentation at the symposium and for publication in the proceedings. Each
submission was reviewed by at least three Program Committee members. Submissions
by Program Committee members were reviewed by at least four other members of the
Program Committee.

The opening lecture at CSR 2022 was given by Umesh Vazirani (University of
California at Berkeley), the closing lecture was given by Mark Braverman (Princeton
University). Three invited plenary lectures were given by Irit Dinur (Weizmann Institute
of Science), Jelani Nelson (University of California at Berkeley), and Mary Wootters
(Stanford University).

Many people and organizations contributed to the smooth running and the success
of CSR 2022. In particular, our thanks go to

– all authors who submitted their work to CSR;
– themembers of the ProgramCommittee who graciously devoted their time and energy
to the evaluation process;

– the expert reviewers who helped us evaluate the papers;
– the invited speakers; and
– the members of the local Organizing Committee who made the conference possible.

May 2022 Alexander S. Kulikov
Organizing Committee Chair

Sofya Raskhodnikova
Program Committee Chair
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Optimization-Friendly Generic Mechanisms Without
Money

Mark Braverman

Princeton University, Princeton, NJ 08540, USA
https://mbraverm.princeton.edu

Our goal is to develop a generic framework for converting modern gradient-descent
based optimization algorithms into mechanisms where inputs come from self-interested
agents.

We focus on aggregating preferences from n players in a context without money.
Special cases of this setting include voting, allocation of items by lottery, and matching.
Our key technical contribution is a newmeta-algorithmwe callAPEX (Adaptive Pricing
Equalizing Externalities). The framework is sufficiently general to be combined with
any optimization algorithm that is based on local search. In the talk we outline the
algorithm, and open problem/research directions that it raises, with a particular focus
towards mechanism design + machine learning.

We discuss a special case of applying the framework to the problem of one-sided
allocation with lotteries. In this case, we obtain a strengthening of the 1979 result by
Hylland and Zeckhauser on allocation via a competitive equilibrium from equal incomes
(CEEI). The [HZ79] result posits that there is a (fractional) allocation and a set of item
prices such that the allocation is a competitive equilibrium given prices. We further
show that there is always a reweighing of the players’ utility values such that running the
standard unit-demand VCG with reweighed utilities leads to a HZ-equilibrium prices.
Interestingly, not all HZ competitive equilibria come from VCG prices.

Reference

[HZ79] Hylland, A., Zeckhauser, R.: The efficient allocation of individuals to positions.
J. Polit. Econ. 87(2), 293–314 (1979)



Expanders in Higher Dimensions

Irit Dinur

Weizmann Institute of Science

Expander graphs have been studied in many areas of mathematics and in computer
science with versatile applications, including coding theory, networking, computational
complexity and geometry.

High-dimensional expanders are a generalization that has been studied in recent
years and their promise is beginning to bear fruit. In the talk, I will survey some pow-
erful local to global properties of high-dimensional expanders, and describe several
interesting applications, ranging from convergence of random walks to construction of
locally testable codes that prove the c3 conjecture (namely, codes with constant rate,
constant distance, and constant locality).



Private Frequency Estimation via Projective Geometry

Jelani Nelson

UC Berkeley, Berkeley, CA 94705, USA
https://people.eecs.berkeley.edu/~minilek

We propose a new algorithm ProjectiveGeometryResponse (PGR) for locally dif-
ferentially private (LDP) frequency estimation. For a universe size of k and with n users,
our ε-LDP algorithm has communication cost �log2 k� bits in the private coin setting and
εlog2e+O(1) in the public coin setting, and has computation cost O(n+ k exp(ε)logk)
for the server to approximately reconstruct the frequency histogram, while achieving
optimal privacy/utility tradeoff, including optimality of the leading constant factor.
Our empirical evaluation shows a speedup of over 50x over PI-RAPPOR [FT21],
while using approximately 75x less memory for practically relevant parameter set-
tings. In addition, the running time of our algorithm is within an order of magnitude of
HadamardResponse [ASZ19] andRecursiveHadamardResponse [CKO20]which
have significantly worse reconstruction error. Our new algorithm is based on using Pro-
jective Planes over a finite field to define a small collection of sets that are close to
being pairwise independent and a dynamic programming algorithm for approximate
histogram reconstruction on the server side. We also give an extension of PGR, which
we call HybridProjectiveGeometryResponse, that allows trading off computation
time with utility smoothly.

Joint work with Vitaly Feldman (Apple), Huy Le Nguyen (Northeastern), and Kunal
Talwar (Apple). This work is to appear in ICML 2022.

References
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national Conference onArtificial Intelligence and Statistics (AISTATS), pp. 1120–129
(2019)

[CKO20] Chen, W.-N., Kairouz, p., Özgür, A.: Breaking the communication-privacy-
accuracy trilemma. In: Proceedings of the 32nd Annual Conference on Advances in
Neural Information Processing Systems (NeurIPS) (2020)

[FT21] Feldman, V., Talwar, K.: Lossless compression of efficient private local ran-
domizers. In: Proceedings of the 38th International Conference on Machine Learning
(ICML), pp. 3208–3219 (2021)



Contents

Parameterized Algorithms for Finding Highly Connected Solution . . . . . . . . . . . . 1
Ankit Abhinav, Susobhan Bandopadhyay, Aritra Banik, and Saket Saurabh

Coloring a Dominating Set Without Conflicts: q-Subset Square Coloring . . . . . . 17
V. P. Abidha, Pradeesha Ashok, Avi Tomar, and Dolly Yadav

Quotient Structures and Groups Computable in Polynomial Time . . . . . . . . . . . . . 35
Pavel Alaev

Parameterized Complexity of List Coloring and Max Coloring . . . . . . . . . . . . . . . 46
Bardiya Aryanfard and Fahad Panolan

Eternal Vertex Cover on Bipartite Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
Jasine Babu, Neeldhara Misra, and Saraswati Girish Nanoti

Non-crossing Shortest Paths in Undirected Unweighted Planar Graphs
in Linear Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
Lorenzo Balzotti and Paolo G. Franciosa

Lossy Kernelization of Same-Size Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
Sayan Bandyapadhyay, Fedor V. Fomin, Petr A. Golovach,
Nidhi Purohit, and Kirill Siminov

Output Sensitive Fault Tolerant Maximum Matching . . . . . . . . . . . . . . . . . . . . . . . . 115
Niranka Banerjee, Manoj Gupta, Venkatesh Raman, and Saket Saurabh

Bounds for Synchronizing Markov Decision Processes . . . . . . . . . . . . . . . . . . . . . . 133
Laurent Doyen and Marie van den Bogaard

Parameterized Complexity of Set-Restricted Disjoint Paths on Chordal
Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
Petr A. Golovach, Fahad Panolan, Ashutosh Rai, and Saket Saurabh

Discrete Versions of the KKM Lemma and Their PPAD-Completeness . . . . . . . . 170
Alexander Grishutin and Daniil Musatov

The Fast Algorithm for Online k-server Problem on Trees . . . . . . . . . . . . . . . . . . . 190
Kamil Khadiev and Maxim Yagafarov



xvi Contents

Finite Ambiguity and Finite Sequentiality in Weighted Automata
over Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209
Peter Kostolányi

New Bounds for the Flock-of-Birds Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224
Alexander Kozachinskiy

Heterogeneous Multi-commodity Network Flows over Time . . . . . . . . . . . . . . . . . 238
Yifen Li, Xiaohui Bei, Youming Qiao, Dacheng Tao, and Zhiya Chen

On the Determinization of Event-Clock Input-Driven Pushdown Automata . . . . 256
Mizuhito Ogawa and Alexander Okhotin

The GKK Algorithm is the Fastest over Simple Mean-Payoff Games . . . . . . . . . . 269
Pierre Ohlmann

Partial Vertex Cover on Graphs of Bounded Degeneracy . . . . . . . . . . . . . . . . . . . . 289
Fahad Panolan and Hannane Yaghoubizade

Abelian Repetition Threshold Revisited . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 302
Elena A. Petrova and Arseny M. Shur

Characterizing Level One in Group-Based Concatenation Hierarchies . . . . . . . . . 320
Thomas Place and Marc Zeitoun

How Much Randomness is Needed to Convert MA Protocols to AM
Protocols? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 338
Nikolay Vereshchagin

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 351



Parameterized Algorithms for Finding
Highly Connected Solution

Ankit Abhinav1, Susobhan Bandopadhyay1(B), Aritra Banik1,
and Saket Saurabh2

1 National Institute of Science, Education and Research,
An OCC of Homi Bhabha National Institute, Bhubaneswar 752050, Odisha, India

{ankit.abhinav,susobhan.bandopadhyay,aritra}@niser.ac.in
2 The Institute of Mathematical Sciences, HBNI, Chennai, India

saket@imsc.res.in

Abstract. To introduce our question and the parameterization, consider
the classicalVertexCover problem. In this problem, the input is a graph
G on n vertices and a positive integer �, and the goal is to find a vertex sub-
set S of size at most � such that G− S is an independent set. Further, we
want that G[S] is highly connected. That is, G[S] should be n − k edge-
connected. Clearly, the problem is NP-complete, as substituting k = n−1,
we obtain the Connected Vertex Cover problem. A simple observa-
tion also shows that the problem admits an algorithm with running time
nO(k). Since the problem is polynomial-time solvable for every fixed inte-
ger k, a natural parameter is the integer k. In all the problems we consider,
the parameter is k, and the goal is to find a solution S of size at most �,
such that G[S] is n−k edge-connected and G−S satisfies a property. We
show that this version of well-known problems such as Vertex Cover,
FeedbackVertex Set,OddCycleTransversal andMultiwayCut

admit an algorithm with running time f(k) · nO(1), that is, they are FPT
with the parameter k. One of our main subroutines to obtain these algo-
rithms is an FPT algorithm for n−k edge connected Steiner Subgraph,
which could be of an independent interest. Finally, we also show that such
an algorithm is not possible for Multicut.

Keywords: subset problems · parameterized algorithms · connectivity

1 Introduction

Vertex deletion (subset) problems form an important sub-area of graph optimiza-
tion problems. An input to a prototype vertex deletion problem consists of a graph
G and an integer � and the objective is to find a vertex subset S of size at most � such
that G−S satisfies a property, such as being an edgeless graph (Vertex Cover),
an acyclic graph (FVS), a bipartite graph(OCT), a chordal graph(CVD), a planar
graph (PVD), and a (topological) minor-free graph. In literature, several variants
of these classical vertex deletion problems are considered. The most notable ones

c© Springer Nature Switzerland AG 2022
A. S. Kulikov and S. Raskhodnikova (Eds.): CSR 2022, LNCS 13296, pp. 1–16, 2022.
https://doi.org/10.1007/978-3-031-09574-0_1
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include those where we demand that G[S] is connected, λ-edge-connected (that is,
for every pair of vertices in S there are at least λ edge-disjoint paths in G[S]) and
an edgeless graph (S is an independent set). A classical result by Lewis and Yan-
nakakis [7] shows that most of the vertex deletion problems are NP-complete and
so are its variants [10,11]. These problems have been studied extensively from the
perspective of the Approximation Algorithms and the Parameterized Complexity
to overcome these intractability results.

The objective of this article is to initiate a systematic study of finding
a “highly connected” solution for vertex subset problems in the realm of
Parameterized Complexity, with respect to a “parameterization involving
connectivity.”

We first take a detour and give the basic definitions from Parameterized
Complexity. The goal of parameterized complexity is to find ways of solving
NP-hard problems more efficiently than brute force: here the aim is to restrict
the combinatorial explosion to a parameter that is hopefully much smaller than
the input size. Formally, a parameterization of a problem is assigning an integer
k to each input instance, and we say that a parameterized problem is fixed-
parameter tractable (FPT) if there is an algorithm that solves the problem in time
f(k) · |I|O(1), where |I| is the size of the input and f is an arbitrary computable
function depending on the parameter k only. For more background, the reader
is referred to the monographs [1,3,5,8].

Problem and Parameterization. To introduce our question and the param-
eterization, we fix a concrete vertex subset problem, namely, the classical Ver-

tex Cover problem. In this vertex subset problem, the graph G − S is an
edgeless graph. In other words, the set S of size at most � must include at least
one end-point of every edge of G. When we demand that G[S] is connected or
more general λ-edge-connected then the problem is called Connected Vertex

Cover (CVC) or more generally λ-Edge-Connected VC (λ-ECVC), respec-
tively. While, the study of CVC is quite old in Parameterized Complexity [6],
only recently Einarson et al. [4] studied λ-ECVC and designed lossy kernel as
well as an algorithm with running time 2O(λ�)nO(1). In some sense, the algorithm
for λ-ECVC is the starting point of our work and one of our main motivations.
A question that triggered this work was the following:

What happens when we seek S such that G[S] is highly connected. In
particular, (n − 1)-edge-connected, or (n-k)-edge-connected, where n =
|V (G)|?

Let us call this version of Vertex Cover as HC-VC. Observe that when
we are seeking (n-k)-edge-connected subgraph, then the size of S is at least
n − k + 1, as every vertex in G[S] must have at least n − k neighbors. So, if we
apply the algorithm of Einarson et al. [4], then we get an algorithm with running
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time 2O((n−k)2)nO(1). On the other hand, since S contains all but at most k − 1
vertices of V (G), there is an algorithm running in time nO(k), that tries all vertex
subsets of size at least n−k +1 as a potential solution. Given an algorithm with
running time nO(k), a natural question that arises is the following.

Is HC-VC FPT parameterized by k?

The above algorithm for HC-VC, that runs in nO(k) time, does not use any
property of vertex cover! It seemlessly works for HC-FVS, HC-OCT, HC-CVD

and HC-PVD. In fact, this algorithm also works for domination (Dominating

Set) as well as cut (Multiway Cut, Multicut) problems. In Dominating

Set (DS), we seek S such that every vertex in G − S has a neighbor in S. In
Multiway Cut, apart from G and an integer �, we are given a vertex subset
T ⊆ V (G), called terminals, and the objective is to find an �-sized vertex subset
S, such that in G−S there is no path from s to t, for any pair of vertices s, t ∈ T .
In Multicut, apart from G and an integer �, we are given t pairs of terminals
(si, ti), and the objective is to find a �-sized vertex subset S, such that in G − S
there is no path from si to ti, i ∈ {1, . . . , t}. Thus, naturally we ask whether
HC-FVS, HC-OCT, HC-CVD, HC-PVD, HC-DS, HC-Multiway Cut and
HC-Multicut are FPT.

Our Results and Methods. We show that HC-VC, HC-FVS, HC-OCT,
HC-PVD, HC-DS, and HC-Multiway Cut are FPT. To design some of our
FPT algorithms we consider a generic vertex deletion problem, whose specific
instantiation leads to HC-VC, HC-FVS, and HC-PVD. Let F be a family of
graphs. In the F-Deletion problem, we need to ensure that G − S does not
contain any graph in L ∈ F as a minor (a graph L is a minor of G−S, if it can be
obtained from G − S by vertex deletions, edge deletions and edge contractions).
If F is an edge, or a triangle, or a K5 and K3,3, then it corresponds to HC-

VC, HC-FVS, and HC-PVD, respectively. The main idea of the algorithms for
F-Deletion problems is as follows. Let H be the subset of vertices in G such
that the degree of every vertex in H is at least n − k. We find a constant size
subset of vertices of H, say Z, that does not belong to S, but whose all but
O(1) number of common neighbors do belong to S. Since the size of common
neighbors of Z is at least n − |Z|k, we have that all but O(k) vertices get fixed.
For the remaining O(k) vertices, we can guess which one of them belongs to S
in 2O(k) time, leading to the desired FPT algorithm.

For HC-DS and HC-Multiway Cut we need additional ideas. We first show
that a graph G with n vertices and given integer k and n > 2k, is (n-k)-edge-
connected if and only if for every vertex v ∈ V (G), deg(v) ≥ n − k. This helps
us in characterizing the solution S as a subset where every vertex has degree at
least n−k. Furthermore, we need an algorithm for HC-Steiner Subgraph, as a
subroutine. Here, given a graph G, positive integers �, k and a subset of terminals
T , the objective is to find a vertex subset S of size at most � such that G[S] is (n-
k)-edge-connected and T ⊆ S. We show that HC-Steiner Subgraph admits an
algorithm with running time 2O(k log k)nO(1). Using this as a subroutine we show
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that HC-DS and HC-Multiway Cut admit 2O(k log k)nO(1) time algorithms.
We also prove that HC-Multicut problem is W[1]-hard.

2 Preliminaries

We first set up notations and give a characterization of (n-k)-edge-connected
subgraph.

Notations. Let G be a graph. We use V (G) and E(G) to denote the set of
vertices and edges of G, respectively. Throughout the paper we use n and m
to denote |V (G)| and |E(G)|, respectively. For a set S, by G − S, we mean
G[V (G) \S]. For a set of vertices A ⊆ V (G), denote A = V (G) \A. For a vertex
v, we use N(v) to denote the set of its neighbors, and use deg(v) to denote |N(v)|.
We use δ(G) to denote the smallest degree of a vertex in G. For a vertex v and a
subset V ′ ⊂ V (G), define NV ′(v) = N(v) ∩ V ′. Given a graph G and an integer
k, define VL = {u ∈ V | deg(u) < n − k} and VH = {u ∈ V | deg(u) ≥ n − k}.
Most of the symbols and notations of graph theory used are standard and taken
form [2].

A reduction rule that replaces an instance (I, k) of a parameterized language
L by a reduced instance (I ′, k′) is said to be safe, if (I, k) ∈ L if and only if
(I ′, k′) ∈ L.

2.1 Properties of (n-k)-Edge-Connected Subgraph

The next result characterizes (n-k)-edge-connected graphs in terms of degrees of
vertices.

Theorem 1. A graph G with n vertices and given integer k and n > 2k, is
(n-k)-edge-connected if and only if for every vertex v ∈ V (G), deg(v) ≥ n − k.

Proof. First, assume that the graph G is (n-k)-edge-connected. For the sake of
contradiction, assume that there exists a vertex v ∈ V (G) such that, deg(v) <
n − k. So, by deleting less than n − k many edges, v can be disconnected from
the other vertices in G, which contradicts that G is (n-k)-edge-connected.

Next, we prove the reverse direction. Towards this we will show that any
partition of the vertex set into two parts contains at least n − k crossing edges.
Let A and B any two disjoint subset of V (G) such that A � B = V (G) and
A ∩ B = ∅. We show that there are at least (n − k) edges between the vertices
in A and the vertices in B. Let |A| = p and |B| = q. Without loss of generality
assume that p ≥ q. We divide the proof into two cases. In the first case assume
that p ≤ n − k. Any vertex x ∈ A can have at most p − 1 many neighbors inside
A and can have at least ((n − k) − (p − 1)) neighbors in B. So, the total number
of edges from A to B is at least

p(n − k − p + 1) = n − k + (p − 1)(n − k) − p(p − 1)
≥ n − k + (p − 1)p − p(p − 1) (as n − k ≥ p)
= n − k.
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Thus the claim holds in this case.
In the second case we have that p ≥ n−k +1, and n ≥ 2k. Thus n−k ≥ k ≥

n − p + 1 (as p ≥ n − k + 1). Therefore, we have n − k ≥ q + 1 (q = n − p). Any
vertex y ∈ B has at most q − 1 neighbors inside B, and at least (n − k − q + 1)
neighbors in A. Therefore, the total number of crossing edges between A and B
is at least

q(n − k − q + 1) = n − k + (q − 1)(n − k) − q(q − 1)
≥ n − k + (q − 1)(q + 1) − q(q − 1) (as n − k ≥ q + 1)
= n − k + q − 1 ≥ n − k.

This concludes the proof. 
�

Let G be a graph on n vertices and S be a vertex subset such that G[S] is
(n-k)-edge-connected, then any vertex v ∈ V (G) with deg(v) < n−k can not be
part of S (follows from Theorem 1). Recall that VL = {v|deg(v) < n − k} and
VH = {v|deg(v) ≥ n − k}. Since, |S| ≥ n − k + 1, we have that |VL| < k. Next,
we obtain a result that bounds from below the size of the common intersection
of any two vertices belonging to VH .

Observation 1. For any two vertices u and v in G such that deg(u), deg(v) ≥
n − k , |N(u) ∩ N(v)| ≥ n − 2k.

Proof. We know that |N(v)| ≥ n − k, and thus, |N(v)| = |V (G) \ N(v)| ≤ k. In
the worst case all of N(v) can be a subset of N(u). So, the other neighbors of u
must be a subset of N(v). Hence, |N(u) ∩ N(v)| ≥ n − 2k. 
�

Remark 1. Observation 1, can be generalized for a set X. That is, we can show
that for a vertex subset X ⊆ V (G), such that for all u ∈ X, deg(u) ≥ n − k,
|
⋂

u∈X N(u)| ≥ n − |X|k.

3 Vertex Subset Problems

In this section, we give two simple algorithms for HC-VC and HC-FVS, that
illustrate the idea of “common neighbors branching”. Then we provide an algo-
rithm for HC-F-Deletion.

3.1 Vertex Cover and Feedback Vertex Set

The HC-VC is formally stated below.

HC-VC Parameter: k
Input: An undirected graph G with n vertices and two integers k and �.
Question: Does there exist a vertex cover S for G of size at most � such
that G[S] is (n − k)-edge connected?
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From Theorem 1 we know, if there exists a solution S, VL ∩ S = ∅. Notice
that if |VL| ≥ k or � ≤ n − k, then we have a No instance. So we proceed
assuming that |VL| < k for both the problems HC-VC and HC-FVS. Thus we
have |V (H)| > n − k.

Theorem 2. HC-VC can be solved in O(2kmn) time.

Proof. We divide the proof into two cases. In case 1, let |VH | = n − k + 1. If
VH is a vertex cover and G[VH ] is (n-k)-edge-connected, then we return Yes. We
remark that G[S] being (n-k)-edge-connected can be verified in O(m) time, using
Theorem 1. Otherwise we return a No. In case 2, We assume |VH | > n − k + 1.
If there exists a solution S, then there exists a vertex v ∈ VH \ S. Since v /∈
S, N(v) ⊆ S. As |N(v)| ≥ n − k, |VH \ N(v)| ≤ k. If there exists a subset
X ⊆ VH \ N(v) such that G[X ∪ N(v)] is (n-k)-edge-connected and is a vertex
cover of cardinality at most �, return Yes. If for all v ∈ VH , there does not exist
X ⊆ VH \ N(v) such that G[X ∪ N(v)] is (n-k)-edge-connected and is a vertex
cover of cardinality at most �, return a No. Observe that there are at most n2k

many choices for v and X. Given a set S in O(m) time, we can find out whether
S is a vertex cover. This completes the proof. 
�

Next, we give an FPT algorithm for HC-FVS which is similar to the algo-
rithm for HC-VC. The problem is defined as follows.

HC-FVS Parameter: k
Input: An undirected graph G with n vertices and two integers k and �.
Question: Does there exist a feedback vertex set S for G of size at most
� such that G[S] is (n − k)-edge connected?

Theorem 3. HC-FVS can be solved in O(4knO(1)) time.

Proof. We divide the proof into three cases. In case 1, let |VH | = n−k+1. If VH

is a feedback vertex set and G[VH ] is (n-k)-edge-connected, then we return Yes.
Otherwise, we return a No. From now onwards we assume |VH | > n − k + 1. In
case 2, we deal with the case when there exist two vertices u, v ∈ (VH \ S) such
that, uv ∈ E(G). In this case, from Observation 1, it follows that the vertices of
N(u) ∩ N(v) along with the edge uv forms cycles (in fact, triangles). As u, v are
not part of the solution, all the common neighbors of u and v should be part of
the solution. This implies that |VH \ ((N(u) ∩ N(v))| ≤ n − (n − 2k) ≤ 2k. If
there exists a subset X ⊆ VH \ (N(u) ∩ N(v)) such that G[X ∪ (N(u) ∩ N(v))]
is (n-k)-edge-connected and is a feedback vertex set of cardinality �, return Yes.
This case can be carried out in time O(4knO(1)).

Finally, if |VH | > n − k + 1 and the case 2 does not occur, we know that for
all the vertices v ∈ (VH \ S), N(v) ∩ VH ⊆ S. Observe, |N(v) ∩ VH | ≥ n − k.
Therefore |VH \ N(v)| ≤ k. If there exist a subset X ⊆ VH \ N(v) such that
G[X ∪ (N(v) ∩ VH)] is (n-k)-edge-connected and is a feedback vertex set of
cardinality �, return Yes. This case can be carried out in time O(2knO(1)). Finally,



Parameterized Algorithms for Finding Highly Connected Solution 7

if we do not find the solution in either of the cases, we return that the given
instance is a No instance. This completes the proof. 
�

In the proof of Theorem 3, whenever we considered a cycle, it was a triangle,
an odd cycle, and thus a proof identical to Theorem 3 implies that HC-OCT is
FPT. In particular, we get the following result.

Theorem 4. HC-OCT can be solved in O(4knO(1)) time.

3.2 F-Deletion

In this section, we design an FPT algorithm for HC-F-Deletion, defined below.

HC-F-Deletion Parameter: k
Input: An undirected graph G with n vertices, two integers k, � and a
finite family F of graphs.
Question: Does there exist a set S ⊆ V (G) of size at most � such that
G[S] is (n-k)-edge-connected and G \ S does not contain any graph from
F as a minor.

We assume that the maximum cardinality of the vertex set of a graph in F
is bounded by a constant, cF .

Theorem 5. HC-F-Deletion can be solved in time O(2O(kcF )nO(cF )).

Proof. From Theorem 1 we know, if there exists a solution S, VL ∩S = ∅. Notice
that if |VL| > k or |VH | < � exists, then we have a No instance. So we assume
that |VL| ≤ k and |VH | ≥ �. In case 1, let |VH | = �. If VH is a solution and G[VH ]
is (n-k)-edge-connected, then we return Yes. Next we divide the proof into two
cases: (a) |VH \ S| < cF or (b) |VH \ S| ≥ cF . The first case is easy to handle. In
time O(nO(cF )) we can try all possible subsets A ⊆ VH of cardinality at most
cF to find out whether VH \ A is a solution to our problem using an algorithm
for graph minor testing [9].

Now we handle the case when |VH \S| ≥ cF . Towards this, we guess a subset
X of size cF of VH as a potential subset of vertices belonging to VH \S. Clearly,
there are at most O(nO(cF )) choices for X. Now we fix such an X and give
an algorithm that checks if there exists a solution S to our problem such that
X ∩ S = ∅.

Let W be the set of vertices which are neighbors of every vertex of X, i.e.
W = {u | X ⊆ N(u)}. As X ⊆ VH , every vertex v ∈ X has at most k many
non-neighbors. Since |X| = cF , there can be at most k · cF many non-neighbors
of X. Therefore, |W | ≥ n − k · cF . Next, we show that at most cF − 1 vertices
of W can be outside S.

For the sake of contradiction assume that there exists a solution S such that
|W \ S| ≥ cF . Denote, A = W \ S. Observe that the graph induced by A ∪ X
contains KcF ,cF as a subgraph (and hence a minor). Further KcF ,cF has KcF as
a minor (take a cF sized matching in KcF ,cF and contract it), and any graph
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of at most cF vertices is a minor of KcF , which contradicts the fact that S is a
solution.

Thus we know for any solution S, |S∩W | ≥ |W |−(cF −1) ≥ n−kcF −(cF −1).
Therefore, we can try all possible subsets B ⊆ W of cardinality at most cF − 1
and try to find a solution S such that B = W \ S. By doing so, we fix at least
n − kcF − (cF − 1) many vertices of S. From the remaining kcF + cF many
vertices we need to select � − (n − kcF − (cF − 1)) many vertices. Observe, as
� ≤ n, therefore � − (n − kcF − cF ) ≤ kcF . Thus in time 2O(kcF+cF ), we can try
all possible subsets of C ⊂ V (G) \ B to check whether B ∪ C is a solution to
the HC-F-Deletion. To test whether G − (B ∪ C) does not contain a graph
in F as a minor, we can use the O(f(cF )k3) time algorithm of Robertson and
Seymour [9]. Alternatively, we could test this as follows. A model of a graph
H in a graph G� is a function μ assigning to the vertices of H vertex disjoint
connected subgraphs of G�, such that if uv ∈ E(H) then some edge of G� joins
a vertex of μ(u) to a vertex of μ(v). It is well known that there exists a model of
a graph H in a graph G� if and only if H is a minor of G�. Using this definition
we can test if some graph H ∈ F is a minor of G − (B ∪ C), in time 2O(kcF ).
Thus, the algorithm takes O(2O(kcF )nO(cF )) in this case. All the cases together
imply the theorem. 
�

4 Steiner Subgraph

In this section, we present an FPT algorithm for HC-Steiner Subgraph. An
algorithm for this problem is used as a subroutine for an algorithm for HC-

Multicut and HC-DS. The problem itself is defined as follows.

HC-Steiner Subgraph Parameter: k
Input: An undirected graph G with n vertices, a set T ⊆ V (G) of ter-
minals and two integers k and �.
Question: Does there exists a subset S ⊆ V (G) of size exactly � such
that T ⊆ S and G[S] is (n − k)-edge connected.

In what follows, we prepare ourselves to give an FPT algorithm for HC-

Steiner Subgraph. Recall VL = {u | deg(u) < n−k} and VH = {u | deg(u) ≥
n − k}. From Theorem 1 we know, if there exist a solution S, VL ∩ S = ∅. This
leads to the following simple reduction rule.

Reduction Rule 1. Let (G,T, k, �) be an instance of HC-Steiner Subgraph

and v ∈ VL. If k ≤ 1 or v ∈ T then return No. Otherwise set (G′ = G\{v}, T, k−
1, �) as the reduced instance.

Lemma 1. Reduction Rule 1 is safe.

Proof. If k ≤ 1, then we know that the only potential solution is G itself but
since it contains a low degree vertex by Theorem 1 we know that (G,T, k, �) is
a No instance. Furthermore, if v ∈ T , then clearly (G,T, k, �) is a No instance.
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Fig. 1. Illustration of Lemma 2

Suppose (G′ = G,T, k, �) is a Yes instance of HC-Steiner Subgraph, then
there exists a subset S ⊆ V (G) of size exactly � such that T ⊆ S, v /∈ S, and G[S]
is (n−k)-edge connected. Clearly, G[S] = G′[S] and hence, G′[S] is (n−k)-edge
connected. However, n − k = (|V (G′)| + 1) − k = |V (G′)| − (k − 1). Hence G′[S]
is (n − 1) − (k − 1) edge connected.

For the reverse direction suppose there exists a subset S ⊆ V (G′) of size
exactly � such that T ⊆ S, and G′[S] is (n − 1) − (k − 1)-edge connected. Then,
since G′ = G[V (G) \ {v}], we have that G′[S] = G[S] is (n − 1) − (k − 1)-edge
connected, which implies that G[S] is (n − k)-edge connected. This concludes
the proof. 
�

From now onwards, we assume that Reduction Rule 1 is exhaustively
applied. This implies that VL = ∅ (that is, δ(G) ≥ n−k). Further, notice
that if |VH | = |V (G)| < �, then we have a No instance. So we assume
that |V (G)| ≥ �. Finally, we also assume that |V (G)| > 2k, otherwise we
could find the desired solution in time 4knO(1).

Any solution S excludes exactly n − � many vertices from V (G) = VH . We
partition VH into two sets, V 1

H = {v | n−k ≤ deg(v) < (n−k)+ (|VH |− �)} and
V 2

H = {w | deg(w) ≥ (n − k) + (|VH | − �)}. Our next lemma shows that all but
O(k2) vertices of VH must belong to V 2

H .

Lemma 2. Let (G,T, k, �) be a Yes instance of HC-Steiner Subgraph, then
|V 2

H | ≥ n − k2 − k.

Proof. Let S be a solution to (G,T, k, �). Since, (G,T, k, �) is a Yes instance of
HC-Steiner Subgraph, we have that � = |S| ≥ n − k as G[S] is (n − k) edge
connected. Let VH\S = VH \ S and let S� ⊆ S be the set of vertices that are
neighbors to every vertex in VH\S . That is, S� = {v ∈ S | VH\S ⊂ N(v)}.
Observe that the degree of any vertex v ∈ S� is at least (n − k) + (|VH | − �) (v
has at least n − k neighbors in S). Therefore, S� ⊆ V 2

H . Refer to Fig. 1 for an
illustration. Observe, |VH | = n (as, Reduction Rule 1 is exhaustively applied)
and � > n − k. Hence, |VH | − � ≤ k. Note that the degree of each vertex in VH\S

is at least n − k. Hence, the total number of non-neighbors of VH\S in S is at
most k · (|VH |− �) < k2. Thus, |V 2

H | ≥ |S�| ≥ �−k2 ≥ n−k −k2. This completes
the proof. 
�
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Since |V 2
H | ≥ n − k2 − k, we have the following.

Corollary 1. |V 1
H | ≤ k2 + k.

Next, we define a restricted version of the HC-Steiner Subgraph problem
with which we will work.

Annotated HC-Steiner Subgraph Parameter: k
Input: An undirected graph G with n vertices, δ(G) ≥ n − k, two sets
T ⊆ V (G) (of terminals), and X ⊆ V (G), and two integers k and �.
Question: Does there exist a subset S ⊆ V (G) of G of size exactly � such
that T ⊆ S, X = S ∩ V 1

H and G[S] is (n − k)-edge connected.

Next, we establish a relation between Annotated HC-Steiner Subgraph

and HC-Steiner Subgraph. Towards doing so, we prove the following lemma.

Lemma 3. If Annotated HC-Steiner Subgraph is solvable in time
f(k)nO(1), then HC-Steiner Subgraph can be solved in time 2O(k log k)

f(k)nO(1).

Proof. Given a set X = S ∩ V 1
H , assume Annotated HC-Steiner Subgraph

is solvable in time f(k)nO(1). Observe that X ⊆ V 1
H and |V 1

H \ X| ≤ k. By
Corollary 1, |V 1

H | ≤ k2 + k, and thus, there can be at most
∑k

i=0

(
k2+k

i

)
=

2O(k log k) many choices for X (guess the complement which is of size at most k).
Thus the claim holds. 
�

Now we show that Annotated HC-Steiner Subgraph can be solved in time
f(k)nO(1). A subset Y ⊆ X is called a realizable subset, if there exists a vertex v ∈
V 2

H such that N(v)∩X = Y . Let {X1, . . . , Xψ}, be the set of all realizable subsets
of X. Next we define Hi(X) as the set of vertices in V 2

H whose neighborhood is
exactly equal to Xi in X. Namely, Hi(X) = {v | v ∈ V 2

H and N(v) ∩ X = Xi}.
Next we show a lemma which essentially shows that every vertex in Hi(X) are
identical from the perspective of solution S.

Lemma 4 (Exchange Lemma). Let S be a solution and {X1,X2, · · · ,Xψ}
be the set of all realizable subsets of X. Furthermore, let u ∈ S ∩(Hi(X)\T ) and
v ∈ Hi(X)\S, then S∪{v}\{u} is also a solution. See Fig. 2 for an illustration.

Proof. Let Sv = S ∪ {v} \ {u}. Observe that T ⊆ Sv. We need to show that
G[Sv] is (n − k)-edge connected. Here we can safely assume that |Sv| > n − 2k,
otherwise n ≤ 3k and we have a trivial kernel. Thus using Theorem 1 it suffices
to show that all vertices in Sv have degree at least n−k in G[Sv]. Recall that for
any vertex w ∈ Sv ∩V 2

H , deg(w) ≥ n−k+ |VH |−� and there are at most |VH |−�
vertices from V (G)\S. Thus for any vertex w ∈ V 2

H ∩Sv, |NSv
(w)| ≥ n−k. Next

we argue about the degree of a vertex in V 1
H . Recall that both u, v ∈ Hi(X),

and hence |NSv
(x)| = |NS(x)| for each vertex x ∈ Sv ∩V 1

H . This implies that for
every vertex z in V 1

H ∩Sv, |NSv
(z)| ≥ n−k. Thus if S is (n−k)-edge connected,

then so is Sv. This concludes the proof. 
�
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S

Hi(X) V 1
H

u

v

Fig. 2. Illustration of Lemma 4

From Lemma 4 it follows that, if we know |Hi(X)\S| = bi (that is, there are
bi vertices in Hi(X) that are not part of S), then any bi vertices can be removed
from Hi(X). This observation essentially leads us to the following lemma.

Lemma 5. Annotated HC-Steiner Subgraph can be solved in time
2O(k log k) · nO(1).

Proof. Let S be a hypothetical solution and let X = V 1
H ∩S. If |(V 1

H \X)∩T | ≥ 1,
then return a No. So we assume that (V 1

H \ X) ∩ T = ∅. Denote X̃ = S \ X.
Our objective is to find the set X̃. We partition the vertices of V 2

H on the basis
of neighborhoods into X. Let {X1, · · · ,Xψ}, be the set of all realizable subsets
of X. Next we define Hi(X) as the set of vertices in V 2

H whose neighborhood is
exactly equal to Xi in X. Namely, Hi(X) = {v | v ∈ V 2

H and N(v) ∩ X = Xi}.
We will show that ψ is upper bounded by O(k3). Every vertex in X has degree
at least n − k and hence each vertex has at most k non-neighbors. Since, |X| ≤
|V 1

H | ≤ O(k2) (Corollary 1), we have that the number of vertices in V 2
H that

is a non-neighbor to a vertex in X is bounded from above by O(k3). In other
words, all but O(k3) vertices of V 2

H , say v, have the property that X ⊆ N(v).
This immediately implies that the number of realizable subsets of X is bounded
from above by O(k3). Let b = n − � − (|V 1

H | − |X|).

Claim: Given X and the vector 〈b1, b2, · · · , bψ〉, in polynomial time we can test
whether there exists a solution S for Annotated HC-Steiner Subgraph.

Proof. From Lemma 4 we know that given 〈b1, b2, · · · , bψ〉 we can discard bi

many vertices, that are not terminals, from Hi(X) arbitrarily. If for some i we
have that |Hi(X) \T | < bi, return a No. Otherwise, let Wi be a subset of Hi(X)
containing arbitrary bi vertices. Let S� = V 2

H \ (∪iW ). If G[S� ∪ X] forms an
(n-k)-edge-connected graph we return Yes, else, we return a No. 
�

Observe that b ≤ k, thus to enumerate 〈b1, b2, · · · , bψ〉, we first guess which of
these bi’s are non-zero. This is bounded from above by

(O(k3)
k

)
= 2O(k log k). Now

indices that are non-zero, we guess the partition of b into these. This is bounded
from above by 2O(b) = 2O(k). This implies that the total number of legal vectors is
bounded from above by 2O(k log k). By enumerating all such vectors and checking
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whether there exists a feasible solution for any of them it is possible to solve
Annotated HC-Steiner Subgraph in time 2O(k log k) · nO(1). 
�

Combining Lemmas 3 and 5 we get the following result.

Theorem 6. HC-Steiner Subgraph can be solved in time 2O(k log k) · nO(1).

5 Dominating Set and Multiway Cut

In this section we give algorithms for (n-k)-edge-connected version of the classical
Dominating Set and Multiway Cut problems.

5.1 Dominating Set

Next, using the algorithm for HC-Steiner Subgraph, we show that HC-DS

is FPT.

HC-DS Parameter: k
Input: An undirected graph G with n vertices and two integers k and �.
Question: Does there exists a dominating set S of size exactly � such
that G[S] is (n − k)-edge connected?

From Theorem 1 we know, if there exist a solution S, VL ∩S = ∅. Notice that
if |VL| > k or |VH | < �, then we have a No instance. So we assume that |VL| ≤ k,
|VH | ≥ �, and � > n − k. Let V≥k+1 be the set of vertices in V (G) whose degree
is at least k + 1 and V≤k = V (G) \ Vk+1. We first show that dominating vertices
in Vk+1 is an artifact of the solution size, and we need not worry about them.

Observation 2. Any set of vertices A ⊆ VH of cardinality at least n − k domi-
nates all the vertices in V≥k+1.

The proof follows from the fact that every vertex in V≥k+1 has at least k + 1
neighbors.

We assume that n > 3k, otherwise we can find a solution by trying all
possible subsets of V (G). Observe that any (n-k)-edge-connected subset S ⊆ VH

of cardinality � is a HC-DS for G if and only if S dominates every vertex in V≤k

(follows from Observation 2). In other words, for any solution S, there exists
a subset of vertices SL ⊆ S ∩ N(V≤k) of size at most |V≤k|, which dominates
every vertex in V≤k. Observe that the cardinality of V≤k ⊆ VL is bounded by
k. Therefore, |N(V≤k)| ≤ k2. For every subset A ⊆ N(V≤k) of size at most k,
we can check whether A dominates all the vertices in V≤k. Finally, applying the
algorithm for HC-Steiner Subgraph, Theorem 6, on an instance (G,A, k, �),
we can check whether there exists a solution of size �. Therefore, we have the
following theorem.

Theorem 7. HC-DS can be solved in time 2O(k log k) · nO(1).
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5.2 Multiway Cut

We first state the problem formally.

HC-Multiway Cut Parameter: k
Input: An undirected graph G with n vertices, a set T of terminals
{t1, t2, . . . , tq} and two integers k and �.
Question: Does there exists a set S ⊆ V (G) of size at most � such that
there does not exist a path between any pair of vertices ti and tj in G\S
and G[S] is (n-k)-edge-connected?

We first give a reduction rule which takes care of some trivial No instances.
Let ti, tj ∈ T . We call a path P , from ti to tj , invalid, if all the vertices on P
belongs to VL.

Reduction Rule 2. Let (G,T, k, �) be an instance of HC-Multiway Cut. If
|VL| > k or |VH | < � then return a No. Furthermore, if there exists two terminals
ti, tj ∈ T such that there exists an invalid path from ti to tj, then return a No.

Safeness of Reduction Rule 2 is obvious and thus omitted. For a vertex v, a
low degree reachable set for v, called LDR(v), is defined as follows.

LDR(v) = {u | u ∈ VH and ∃ a path λ fromvtousuch that V (λ) \ u ⊆ VL}

In simple words, LDR(v) contains all high degree vertices which have a path
starting at v and whose all the internal vertices are of low degree. In this lan-
guage, for a vertex v ∈ VH , LDR(v) = {v}. Next, we define “low degree’ vertices
reachable from a vertex via a low degree path”. More formally,

LR(v) = {w | ∃path λ from v to w such that V (λ) ⊆ VL}.

From now onwards, we assume that Reduction Rule 2 is exhaustively
applied. This implies that |VL| ≤ k, |VH | ≥ �, and there is no invalid
path in G. The last assumption implies that for any pair of terminals
ti, tj ∈ (T ∩ VL), LR(ti) ∩ LR(tj) = ∅. Let T = {LDR(ti) | ti ∈ T}.

Lemma 6. Let (G,T, k, �) be an instance of HC-Multiway Cut. Further, let
us assume that there exists a solution S such that there exists a pair of terminals
ti, tj, and a pair of vertices x, y /∈ S, x �= y, x ∈ LDR(ti) and y ∈ LDR(tj), then
HC-Multiway Cut can be solved in time O(4k · nO(1)).

Proof. We first show that if x, y of the kind described in the statement of the
lemma exists, then all the common neighbors of x and y must be in S. Suppose
not, then there exists a vertex z ∈ (N(x) ∩ N(y)) \ S. Since x ∈ LDR(ti), there
exists a path λi from ti to x such that all the internal vertices on this path
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belong to VL. We can similarly get a path λj from tj to y. Let λj be the path λj ,
when traversed from y to tj . We remark that ti could be same as x and tj could
be the same as y. Let P = λizλj be the walk from ti to tj . We claim that all the
vertices of P are outside S. We have four cases: (a) ti �= x and tj �= y; (b) ti = x
and tj �= y; (c) ti �= x and tj = y; and (d) (a) ti = x and tj = y. We only prove
the case (a), as all other cases are identical. Indeed, if ti �= x, then we know that
ti ∈ VL, and hence by construction every vertex of λi is outside S. Similarly, we
can show that every vertex of λj is outside S. This implies, that the walk P does
not contain any vertex of S. Hence, from this walk we can construct a path P ′

from ti to tj whose intersection with S is empty, contradicting the fact that S
is a solution.

Thus, to design the desired algorithm in this case, for each pair of vertices x
and y of the kind described in the lemma, and for each subset Z ∪(N(x)∩N(y)),
Z ⊆ (VH \ ((N(x) ∩ N(y)) ∪ {x, y})), check if Z ∪ (N(x) ∩ N(y)), is a solution
to the problem. Since, |N(x) ∩ N(y)| ≥ n − 2k (Observation 1), the number of
choices we need to go through is upper bounded by n24k. This completes the
proof. 
�
Theorem 8. HC-Multiway Cut can be solved in time 2O(k log k) · nO(1).

Proof. Let (G,T, k, �) be an instance of HC-Multiway Cut and let T =
{LDR(ti) | ti ∈ T}. If for any terminals ti and tj , we have that LDR(ti) ∩
LDR(tj) �= ∅, then LDR(ti) ∩ LDR(tj) ⊆ S. First of all, observe that if
LDR(ti) ∩ LDR(tj) �= ∅, then either ti ∈ VL or tj ∈ VL. In either case, if
(LDR(ti) ∩ LDR(tj)) \ S �= ∅, then we will get a path from ti to tj with-
out a vertex from S. In other words, for any two terminals ti and tj , if
LDR(ti) ∩ LDR(tj) �= ∅, then LDR(ti) ∩ LDR(tj) ⊆ S. Let for all ti ∈ T ,
LDR′(ti) = LDR(ti) \

⋃
i�=j LDR(tj). Observe that, LDR′(ti) ∩ LDR′(tj) = ∅ for

all ti, tj ∈ T . Let T ′ = {LDR′(ti) | ti ∈ T}.
We first check, using Lemma 6, whether there exists a solution S such that

there exists a pair of terminals ti, tj , and a pair of vertices x, y /∈ S, x �= y,
x ∈ LDR′(ti) and y ∈ LDR′(tj). We can find a solution of this kind, if exists, in
time O(4k · nO(1)). From now onwards we assume that such a solution does not
exist. That is, there do not exist, ti and tj , ti �= tj , such that A = (LDR′(ti) \
LDR′(tj)) �= ∅, B = (LDR′(tj) \ LDR′(ti)) �= ∅, and (A \ S) �= ∅ and (B \ S) �= ∅.

Let W = ∪t∈TLDR(t) and W ′ = ∪t∈TLDR
′(t). Then the discussion in the

above paragraph implies that, there exists a terminal t ∈ T such that (W \
LDR′(t)) ⊆ S. We guess this terminal, say t. Finally, applying the algorithm for
HC-Steiner Subgraph, Theorem 6, on an instance (G, (W \ LDR′(t)), k, �),
we can check in time 2O(k log k)nO(1), whether there exists a solution of size �.
Let S the solution returned by the algorithm. Let us now prove that there is
no path between two terminals ti and tj in G − S. In fact one of these must be
t. Let tj = t. Suppose such a path P , exists then it must have a vertex from
LDR′(ti), and a vertex from LDR′(t). However, that will imply that P contains
a vertex from two such sets, and by the construction of (W \ LDR′(t)) that can
only happen if LDR′(ti) ∩ LDR′(t) �= ∅, a contradiction. This implies that S is
indeed a solution, concluding the proof. 
�
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6 Vertex Multicut

In this section, we give a hardness reduction for (n-k)-edge-connected version
of the classical Vertex Multicut problem. Let us first define the problem
formally.

HC-Multicut Parameter: k
Input: An undirected graph G with n vertices, a set T of pairs of termi-
nals {(si, ti)|i ∈ [q]} and two integers k and �.
Question: Does there exist a set S ⊆ V (G) of size at most � such that
there does not exist a path between any pair of vertices si and ti in G−S
and G[S] is (n-k)-edge-connected?

Here we give a reduction from the Independent Set problem to HC-

Multicut.

Theorem 9. The HC-Multicut is W[1]-hard.

Proof. Let I = (G, k − 1) be an Independent Set problem instance, where
|V (G)| = n. We assume that the parameter is k − 1 for Independent Set, for
simplicity. The question is whether there exists a subset of vertices of cardinality
(at least) k − 1 such that any two vertices in that subset are non-adjacent in
the graph G. Given an instance of the Independent Set problem, we first
construct an instance of HC-Multicut problem, as follows. Consider a clique
G′ of size n where V (G′) = V (G). Let T = {(u, v) : (u, v) ∈ E(G)} i.e. for each
edge (u, v) ∈ E(G) we include the terminal pair (u, v) in T . Now we prove the
following claim.

Claim. G has an independent set of cardinality k − 1 if and only if G′ has a
(n-k)-edge-connected multicut of size at most n − k + 1.

Proof. Let S be an independent set of cardinality k − 1 in the graph G. As G′

is a clique, graph induced on S in G′, G′[S] is also a clique with |S| = n − k + 1.
Therefore, the degree of each vertex in G′[S] is (n−k). Thus, by Theorem 1, G′[S]
is (n-k)-edge-connected. Next we show that S is a multicut for (G′, T ). Observe
that for any terminal pair (u, v) ∈ T , (u, v) ∈ E(G). Thus |{u, v}∩S| ≤ 1. Hence
at most one of the terminals from each pair of terminals can be outside S. Thus
S is a multicut for (G′, T ).

Now we prove the other direction. Assume that W is a (n-k)-edge-connected
multicut of size at most n−k+1 for G′. We prove that W is a independent set G.
Observe that for all (u, v) ∈ E(G), (u, v) ∈ T . As G′ is a clique, (u, v) ∈ E(G′).
Thus at most one of u or v can be in W otherwise there is a path between u
and v in G′[W ]. Hence, for all (u, v) ∈ E(G), |{u, v} ∩ W | ≤ 1. Further, since
|W | ≤ n − k + 1, we have that |W | ≥ k − 1. Thus proving the claim. 
�

This concludes the proof. 
�
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7 Conclusion

In this paper, we designed FPT algorithms for the highly connected versions
of several natural graph problems, with the parameter being the distance from
being “n − 1 connected”. Developing polynomial kernels or showing the nonex-
istence of polynomial kernels remains an interesting direction to pursue.

Acknowledgment. We thank anonymous referees of an earlier version of the paper
for several suggestions. Especially for finding a fatal flaw and giving suggestions for
improving the running time of the algorithm.
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Abstract. The Square Coloring of a graph G refers to coloring of ver-
tices of a graph such that any two distinct vertices which are at distance
at most two receive different colors. In this paper, we initiate the study
of a related coloring problem called the subset square coloring of graphs.
Broadly, the subset square coloring of a graph studies the square coloring
of a dominating set of a graph using q colors. Here the aim is to optimize
the number of colors used. This also generalizes the well-studied Efficient
Dominating Set problem. We show that the q-Subset Square Color-

ing problem is NP-hard for all values of q even on bipartite graphs. We
further study the parameterized complexity of this problem when param-
eterized by a number of structural parameters. We further show bounds
on the number of colors needed to subset square color some graph classes.

Keywords: Graph coloring · Square coloring · Subset square
coloring · Parameterized algorithm · Dominating set

1 Introduction

Graph coloring is an important problem in the area of graph theory. For a graph
G(V,E), the vertex coloring of G refers to a function f from the vertex set V to
a set of colors. There are different types of graph coloring problems based on the
constraints imposed on this function. A very popular graph coloring question is
the Proper Coloring where any two adjacent vertices are to be assigned differ-
ent colors. Also, several other variants of graph coloring exist, like harmonious
coloring, sigma coloring, metric coloring and acyclic coloring. In addition to the
theoretical interest, graph coloring problems are motivated by applications in
various fields like register allocation in compilers, job scheduling, transportation
networks, etc. See [6] for a detailed reading of graph coloring.

A number of graph coloring problems are motivated by a problem in Com-
munication called the Channel Allocation problem. Here there exist transmitters
v1, v2, . . . , vn and a transmitter may interfere with another transmitter due to a
number of reasons. Now the goal is to assign frequencies to the transmitters such
that clear reception of signals is guaranteed. This can be represented as a graph
where every vertex corresponds to a transmitter and the interference between
transmitters is captured by the distance between the corresponding vertices in
c© Springer Nature Switzerland AG 2022
A. S. Kulikov and S. Raskhodnikova (Eds.): CSR 2022, LNCS 13296, pp. 17–34, 2022.
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http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-09574-0_2&domain=pdf
https://doi.org/10.1007/978-3-031-09574-0_2


18 V. P. Abidha et al.

the graph. Here the frequency assigned to a transmitter corresponds to the color
assigned to the corresponding vertex. In the 90s, Griggs and Yeh [15], introduced
a concept of assigning colors (equivalently, non-negative integers) to vertices such
that the assignment of colors to any two vertices depends on whether they are
at distance at most two. This is called the L(h, k)-coloring of graphs. A col-
oring c of graph G is an L(h.k)-coloring if for any two vertices u, v ∈ V (G),
|c(u) − c(v)| ≥ h if u and v are at distance 1 and |c(u) − c(v)| ≥ k if u and v are
at distance 2. Thus, L(1, 0)- coloring is the proper coloring itself. Other versions
of this problem based on different values of h and k are well-studied [5]. Note
that L(1, 1)-coloring involves coloring of vertices with non-negative integers such
that the colors on adjacent vertices differ by at least 1 and the colors on vertices
at distance 2 also differ by at least 1. This graph coloring is also referred to as
Square coloring [4,21] since it is equivalent to the proper coloring of the square
of a graph.

We initiate the study of a variant of Square coloring called subset square
coloring. This is defined as follows:

Definition 1. Let G = (V,E) be an undirected graph. A coloring function c :
V (G) → {c0, c1 · · · cq} is called a q-subset square coloring of G if it satisfies the
following constraints:

– For every vertex v and every color ci, 1 ≤ i ≤ q, we have |c−1(ci)∩N(v)| ≤ 1.
– A vertex v can have at most deg(v) vertices with color c0 in N [v], where

deg(v) refers to degree of v.

Here, intuitively, assigning the color c0 to a vertex v corresponds to v being
uncolored. In this paper we refer to a vertex being uncolored and a vertex colored
c0, interchangably. Thus the definition implies that every vertex has at least one
colored vertex in its closed neighborhood and no color is repeated in the closed
neighborhood. Note that the set of colored vertices form a dominating set of
the graph G (A vertex is said to be dominated, if coloured vertices in its closed
neighbourhood is from the set {c1 · · · cq}). Therefore the subset square coloring
is equivalent to square coloring a dominating set of the graph using q colors.

For a given graph G, let χssc(G) represent the minimum value of q such that
there exists a q-subset square coloring of G. We also study the following algo-
rithmic question. Given a graph G, the q-Subset Square Coloring problem
is defined as follows,

Input: Graph G and q ∈ N.
Question: Can G be q-subset square colored?

The concept of subset square coloring is previously studied in the context of
a classic problem in Computational Geometry called the Art Gallery Problem.
Given a polygon P , along with two sets, M and G, of points in P , the Art Gallery
problem is to find G′ ⊆ G such that every point in M is seen by at least one
point in G′. Motivated by applications in Robotics, Erickson and LaValle [9],
introduced the Chromatic Art Gallery Problem. Here, the aim is to find a subset
G′ ⊆ G such that G′ can be colored using q colors and every point m ∈ M is
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seen by at least one point in G′ and moreover, every point in G′ that sees m gets
a distinct color. It is easy to see that for the case where M and G are the same
finite sets, the Chromatic Art Gallery Problem can be reduced to subset square
coloring of a visibility graph. We believe there exists many other application
areas related to Channel Allocation where the subset square coloring of graphs
becomes useful.

Another motivation for studying the q-Subset Square Coloring problem
is that many graphs tend to use much smaller number of colors for subset square
coloring when compared to number of colors needed for square coloring. For
example, complete graphs, star graphs, wheel graphs etc. need O(n) colors for
square coloring whereas subset square coloring can be done using one color. This
will be useful in many applications where the number of colors corresponds to a
resource that needs to be optimized.

We now explore some problems that are related to the q-Subset Square

Coloring problem.

Related Problems: The problem of Harmonious coloring, was first introduced
in 1983 by Hopcroft and Krishnamoorthy [16] which is defined as follows: The
harmonious chromatic number of a graph G, denoted by h(G), is the least num-
ber of colors which can be assigned to the vertices of G such that each vertex
has exactly one color, adjacent vertices have different colors, and any two edges
have different color pairs. Later, Yue Li Wang et al. [22] developed the concept
of d− Local Harmonious Chromatic problem which generalized the Harmonious
Chromatic problem. The d−Local Harmonious (or just d-Harmonious) chromatic
problem imposes a restriction that the different color-pair requirement is only
asked to be satisfied for every edge within distance d for any vertex. Thus the
1-Harmonious chromatic problem is same as the Square coloring problem.

The problem of Efficent Dominating Set [1] for a given graph is also of interest
while we study the subset square coloring problem. An efficent dominating set is
one which is simultaneously an independent and a perfect dominating set. A per-
fect dominating set P is one in which each vertex v ∈ V (G) has exactly one neigh-
bor in N(v) that belongs to P , whereas an independent dominating set I satisfies
the condition that set of vertices in I form an independent set. Specifically, efficent
dominating set is a special case of a subset square coloring with q = 1.

2 A Discussion of Results

In this section, we give a summary of our results.
We have already mentioned that the Efficient Dominating Set problem

is a special case of q-Subset Square Coloring. The Efficient Dominating

Set problem is already known to be NP -hard [1]. Thus the q-Subset Square

Coloring problem is NP -hard for q = 1. We prove that the q-Subset Square

Coloring problem with q = 2 is NP -hard even on planar bipartite graphs
and the q-Subset Square Coloring problem is NP -hard even on bipartite
graphs, for all values of q. Moreover, it is known that for an arbitrary graph G,
it is NP -hard to check if G admits an efficient dominating set.
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Fig. 1. Summary of parameterized results.

We consider the parameterized complexity of the q-Subset Square Color-

ing problem. For any problem, an interesting parameter to be studied is the size
of the solution. For the q-Subset Square Coloring problem, this parameter
will be q, the number of colors used. However, this turns out to be much harder
than a W -hard problem in that it is unlikely to admit an algorithm of running
time of the form f(q)ng(q).

Lemma 1. The q-Subset Square Coloring problem parameterized by q is
para-NP -hard.

The lemma follows from the fact that the q-Subset Square Coloring problem
is NP -hard even for q = 1. Moreover, the next result shows that the problem
remains W -hard even on graphs of diameter 2.

Theorem 1. The q-Subset Square Coloring problem parameterized by q is
W [2]−hard on graphs of diameter 2.

Proof. For a graph G, χssc(G) is bounded by the size of the minimum dominat-
ing set of G. When the diameter of a graph is two, all vertices in any dominating
set are at distance at most two. Therefore we can not repeat the colors of ver-
tices in a dominating set. This implies that χssc(G) is equal to the size of the
minimum dominating set. The minimum dominating set problem is known to be
W [2]−hard on graphs of diameter 2 [17]. Thus the result follows. �	

With respect to Theorem 1, we note that the q-Subset Square Coloring

problem is polynomial time solvable on planar graphs with diameter 2 [18]. Next,
we consider several structural parameters. A well studied structural parameter
for graph problems is the treewidth of the graph. Several hard problems are
shown to be FPT when parameterized by treewidth. However, the q-Subset
Square Coloring problem can be shown to be W -hard when parameterized
by treewidth. Next we consider treewidth and number of colors as a combined
parameter and show that this is FPT . This result is proved using a standard
technique in the fixed parameter tractable algorithm design called dynamic pro-
gramming over treewidth.
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Next we consider structural parameters which are possibly larger than
treewidth. One such well-studied parameter is the size of the vertex cover of
the graph. We give an FPT algorithm for the q-Subset Square Coloring

problem parameterized by the size of the vertex cover. The size of vertex cover
is usually a large parameter, especially for dense graphs. Therefore, we study a
parameter whose value is small on dense graphs called the neighborhood diver-
sity. It is also a parameter whose value can be computed in polynomial time. We
give an FPT algorithm for the q-Subset Square Coloring problem parame-
terized by neighborhood diversity. We further consider a parameter that is prov-
ably smaller than the size of vertex cover, called the distance to cluster graph and
show that the q-Subset Square Coloring problem parameterized by distance
to cluster graph is also FPT . We further consider a parameter called twin cover
whose value typically lies between those of distance to cluster graph and size of
vertex cover. Since the q-Subset Square Coloring problem parameterized by
distance to cluster graph is FPT , the q-Subset Square Coloring problem
parameterized by twin cover is also FPT . However, we give an algorithm with
a better running time.

For these problems, as our goal is to only show whether or not the problem
is FPT, we do not try to optimize the running times. See Fig. 1 for a summary
of the results in parameterized complexity of the q-Subset Square Coloring

problem.

Table 1. Summary of bounds for χssc for different graph classes.

Graph classes χssc: Upper χssc: Lower

bound bound

Path Pn 1 1

Cycle C3n 1 1

Cycle C3n+1 or C3n+2 2 2

Complete graph Kn 1 1

Complete bipartite graph Gn,m 2 2

Bipartite permutation graph Gn,m 4 2

Planar graphs with diameter 2 3 2

Grid graph Gn×m 2 2

Cograph Gn 2 2

Threshold graph Gn 1 1

Caterpillar graph G(n, r1, r2, · · · rt) 3 3

Tree T (V, E) O(Δ) O(Δ − 1)

Tree T (V, E) O(n) Ω(
√

n)

Split graph T (V, E) O(n) Ω(
√

n)

Next we study bounds on χssc(G) when G belongs to certain graph classes.
It is easy to see that various graph classes (that include many sparse and dense
graph classes) like complete graphs, cluster graphs, star graphs, wheel graphs,
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paths, cycles, grid graphs etc. are q-subset square colorable where q is a constant.
However, when we consider trees, we show that there exist trees with n vertices,
that requires O(

√
n) colors to be subset square colored. As trees form a sub-class

of bipartite graphs, this result extends for the class of bipartite graphs also. How-
ever, we show that a well-defined sub-class of bipartite graphs, called the Bipartite
permutation graphs are 4-subset square colorable. We further show that the class
of threshold graphs are 1-subset square colorable. Note that threshold graphs lie in
the intersection of split graphs and cographs. We observe that, while cographs, like
threshold graphs, are subset square colorable using a constant number of colors,
there exist split graphs which require O(

√
n) colors to be subset square colored.

See Table 1 for a summary of results.

3 NP−Hardness

In this section, we show that the q-Subset Square Coloring problem is NP-
hard, for all values of q. Note that the result is known for q = 1. Now, we consider
q = 2.

Theorem 2. The q-Subset Square Coloring problem, where q = 2 is NP-
hard, even on planar bipartite graphs.

Proof. We give a reduction from the planar Exact cover by 3-sets(X3C) problem.

Planar X3C (Exact cover by 3-sets)

Input : A finite set X with |X| = 3n and a collection S of 3−element subsets of
X with |S| = m.

Question: Does S contain an exact cover for X, i.e., a sub collection S′ ⊆ S such
that every element of X occurs in exactly one member of S′?

In Planar X3C problem, we have the added constraint that a bipartite graph M
such that V (M) corresponds to X ∪ S and E(M) is {(x, s)|x ∈ X, s ∈ S, x ∈ s}
is planar.

Let (U, S) be an instance of the planar X3C problem, where U = {u1, u2, ..,
u3n} and S = {S1, S2, ..., Sm}. We construct a planar bipartite graph G as follows:
For every element ui, we add a vertex xi in G and connect it with an element gadget
Di in G. For 1 ≤ i ≤ 3n, Di is a tree rooted at a vertex di, as shown in Fig. 3(a).
Each of the two child nodes of di are connected to three leaves. For every set Sj ,
1 ≤ j ≤ m, we add a set gadget Tj with a vertex tj attached to two leaves vj and
v′

j . We also add a palette gadget P which has two vertices p1 and p2 adjacent to
each other and each of them attached to three vertices of degree one. See Fig. 3(b).

Further, for 1 ≤ i ≤ 3n, 1 ≤ j ≤ m, we add an edge between xi and tj in
G, if ui ∈ Sj in (U, S). We also add the edge between vj and p1 ∈ P , for all
1 ≤ j ≤ m.

We claim that (U, S) has an exact-3-cover if and only if G(V,E) has a subset
square coloring using two colors (proof is given in the full version).

Now, the result follows from the NP-hardness of the planar X3C problem [12]
(Fig. 2). �	
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Fig. 2. Constructed graph GS from Exact cover
by 3-sets insatnce of S1 = {x1, x2, x4}, S2 =
{x2, x4, x5} and S3 = {x3, x5, x6}.

P(b)

(a)

Fig. 3. (a) Element gadget,
(b) Palette gadget

Theorem 3 (*).1 The q-Subset Square Coloring problem, where q > 2 is
NP-hard, even on bipartite graphs.

4 Parameterized Complexity

In this section, we study the parameterized complexity of the q-Subset Square

Coloring problem.
A parameterized problem is a language L ⊆ Σ∗ × N, where Σ is a fixed,

finite alphabet. For an instance (x, k) ∈ Σ∗ × N, k is called the parameter. The
complexity class FPT contains all fixed parameter tractable problems that have
an algorithm, a computable function f : N → N, and a constant c such that,
given (x, k) ∈ Σ∗ × N, the algorithm correctly decides whether (x, k) ∈ L in
time bounded by f(k) · |(x, k)|c. Theory of intractability of parameterized prob-
lems orders the problems into a hierarchy called the W -hierarchy based on its
complexity. It is organized as FPT ⊆ W [1] ⊆ W [2] · · · . Under standard com-
plexity theoretical assumptions, a problem which is W [i]-hard does not admit
FPT algorithms, where i > 0. For detailed reading of parameterized complexity
refer [8].

4.1 Parameterized by Treewidth

We first consider the treewidth of the graph as a parameter. We begin by defining
treewidth.

Tree Decomposition: [8] A tree decomposition of a graph G is a tree T in
which each vertex i ∈ T has an assigned set of vertices Xi ⊆ V , called the bag,
such that

⋃

i∈T

Xi = V , with some properties:(a) if u ∈ Xi and u ∈ Xk, then

u ∈ Xj for all j on the path from i to k in T .(b)For any edge e(u, v) ∈ E(G),
there exists an i ∈ T such that u, v ∈ Xi.

The width of a tree decomposition T is the size of the largest bag of T minus
one, and the treewidth of a graph G, denoted by τ(G), is the minimum width
over all possible tree decompositions of G.
1 Proofs of results that are marked with a star are given in the full version.
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Theorem 4 (*). The q-Subset Square Coloring problem parameterized
by tree-width is W [1]-hard.

4.2 Parameterized by Treewidth and Number of Colors

We now consider the q-Subset Square Coloring problem parameterized by
treewidth and number of colors and give an FPT algorithm. We use a standard
technique called dynamic programming over treewidth, which gives a construc-
tive proof for the fixed parameter tractability. We use a modified tree decompo-
sition called the nice tree decomposition.

Nice Tree Decomposition: [8] A tree decomposition with a distinguished root
is called a nice tree decomposition if:

- All leaf nodes and the root node have empty bags, i.e., Xl = Xr = φ, where r
is the root node and l is a leaf node.
- Every other node in the tree decomposition falls in one of the three categories:

Introduce Node: An introduce vertex node t has exactly one child t′ such that
Xt = Xt′ ∪ {v} for some v �∈ Xt′ .

Forget Node: A forget node t has exactly one child t′ such that Xt = Xt′ \{w}
for some w ∈ Xt′ .

Join Node: A join node t has exactly two children t1 and t2, such that Xt =
Xt1 = Xt2 .

Introduce Edge Node: An introduce edge node is labeled with an edge uv ∈
E(G) such that u, v ∈ Xt and has exactly one child node t′ such that Xt = Xt′ .

Note that we assume every edge is introduced exactly once and we say that
edge uv is introduced at t. If a join node contains both u and v, and the edge uv
exists in E(G), we can note that edge uv will be introduced in the subtree above
the join node. Nice tree decomposition enables us to add edges and vertices one
by one and perform operations accordingly. This variant of tree decomposition
still has O(τ · n) nodes, where τ is the treewidth of the graph G.

The following result is known.

Proposition 1. Given a graph G, in time 2O(τ)n, we can compute a nice tree
decomposition (T,X ) of G with |V (T )| ∈ |V (G)|O(1) and of width at most 5τ ,
where τ is the treewidth of G [3].

With each node t of the tree decomposition we associate a subgraph Gt

of G defined as: Gt = (Vt, Et = {e : e is introduced in the subtree rooted at t}).
Here, Vt is the union of all bags present in the subtree rooted at t.

Theorem 5. The q-Subset Square Coloring is FPT when parameterized
by the treewidth τ of the input graph and the number of colors q.

Proof. We give an algorithm based on dynamic programming over nice tree decom-
position (T,X ) of G, computed in time 2O(τ)n, using Proposition 1, of width at
most 5τ , where τ is the treewidth of G. We define subproblems on t ∈ V (T )
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for the graph Gt. We consider a partitioning of bag Xt by a mapping f : Xt →
{B,W,R}. For simplicity, we refer to the vertices in each partition respectively
as black, white and grey. Each vertex is also assigned another color by a function
c : Xt → {c0, c1, ..., cq} and a q-length tuple, by a function Γ : Xt → {0, 1, 1̂}q.
Roughly speaking, these functionswill determine how the “partial” square coloring
looks like, when restricted to Gt and vertices of Xt. c(v) denotes the color assigned
to v and c(v) = c0 denotes that v is not colored. Γ (v)[i] indicates whether v has
(either in the current graph, or in the “future”) a vertex in its closed neighborhood
that has color ci. Γ (v)[i] = 1 denotes that vertex v has a vertex in its closed neigh-
borhood of color ci in Gt, Γ (v)[i] = 1̂ denotes that vertex v has a vertex in its closed
neighborhood of color ci, that is not present in Gt, but will appear in the “future”,
and Γ (v)[i] = 0 denotes the absence of color ci in the closed neighborhood of v.
We slightly abuse the notation and use Γ (v)[ci] and Γ (v)[i] interchangeably. In the
following we give a detailed insight into the functions f , c and Γ .

Black, represented by B. Every black vertex v is given a color c(v) �= c0 in a
subset square coloring.
Grey, represented by R. A grey vertex v is not colored, not dominated, i.e.
c(v) = c0 and for each i ∈ [q], it has Γ (v)[i] ∈ {0, 1̂}.
White, represented by W . A vertex v that is neither black nor grey is a white
vertex. Note that for a white vertex v, c(v) = c0 and there is i ∈ [q], such that
Γ (v)[i] = 1.

A tuple (t, c, Γ, f) is valid if the following conditions hold for every vertex v ∈ Xt:
1. f(v) = B =⇒ c(v) �= c0 and Γ (v)[c(v)] = 1,
2. f(v) = R =⇒ c(v) = c0 and Γ (v)[i] ∈ {0, 1̂}, ∀i ∈ {1...q}, and
3. f(v) = W =⇒ c(v) = c0 and Γ (v)[i] = 1 for some i ∈ {1...q}.

For a node t ∈ V (T ), for each valid tuple (t, c, Γ, f), we have a table entry
denoted by D[t, c, Γ, f ]. We have D[t, c, Γ, f ] = true if and only if there is col :
Vt → {c0, c1, . . . , cq} (where c0 denotes no color assignment), such that:
1. col|Xt

= c,
2. for each v ∈ Xt and i ∈ {1, 2, . . . q} with Γ (v)[i] = 1, there is exactly one
vertex u ∈ NGt

[v], such that col(u) = ci,
3. for each v ∈ Xt and i ∈ [q] with Γ (v)[i] ∈ {0, 1̂}, there is no vertex u ∈ NGt

[v],
such that col(u) = ci, and
4. for each v ∈ Vt \Xt, there is at least one vertex u ∈ NGt

[v], such that col(u) �=
c0, and for all such vertices u, every other u′ ∈ NGt

[v] have col(u′) �= col(u).

In the above, such a coloring col is called a (t, c, Γ, f)-good coloring. (At any
point of time wherever we query an invalid tuple, then its value is false by default.)
Note that D[r, ∅, ∅, ∅] = true, where r is the root of the tree decomposition, if and
only if G admits a subset square coloring using (at most) q colors.

We define fv→γ where γ ∈ {B,W,R}, as the function where fv→γ(x) = f(x),
if x �= v, and fv→γ(x) = γ, otherwise. Similarly, we define the functions cv→ci

and Γv[i]→α where α ∈ {0, 1̂, 1}. We now proceed to define the recursive formulas
for the values of D.
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Leaf Node. For a leaf node t, we have Xt = ∅. Hence, the only entry is
D[t, ∅, ∅, ∅]. Moreover, by definition, we have D[t, ∅, ∅, ∅] = true.

Introduce Vertex Node. Let t be the introduce vertex node with a child t′
such that Xt = Xt′ ∪ {v} for some v �∈ Xt′ . Since the vertex v is isolated in Gt,
the following recurrence follows.

D[t, c, Γ, f ] =

⎧
⎪⎨

⎪⎩

D[t′, c|X′ , Γ|X′ , f|X′ ] if f(v) = B and Γ (v)[ci] ∈ {0, 1̂} , ∀ ci �= c(v)

D[t′, c|X′ , Γ|X′ , f|X′ ] if f(v) = R

False otherwise

Introduce Edge Node. Let t be an introduce edge node labeled with an edge
u∗v∗ and let t′ be the child of it. Thus Gt′ does not have the edge u∗v∗ but Gt

has. Consider distinct u, v ∈ {u∗, v∗}.

1. If f(u) = B, f(v) = W and Γ (v)[c(u)] = 1. We set D[t, c, Γ, f ] = D[t′, c,
Γv[c(u)]→1̂, fv→R]∨D[t′, c, Γv[c(u)]→1̂, fv→W ] (if any of the entries are invalid,
then it is false).

2. If f(u) = f(v) = B and Γ (v[c(u)]) = Γ (u[c(v)]) = 1, set D[t, c, Γ, f ] =
D[t′, c, Γv[c(u)]→1̂,u[c(v)]→1̂, f ].

3. If {f(u), f(v)} ∩ {B} = ∅, then D[t, c, Γ, f ] = D[t′, c, Γ, f ].
4. If none of the above conditions hold then D[t, c, Γ, f ] = false.

Lemma 2 (*). Recurrence for introduce edge node is correct.

Forget Node. Let t be a forget node with child t′ such that Xt = Xt′ \ {v} for
some v ∈ Xt′ . Since the vertex v does not appear again in any bag of a node
above t, v must be either black or white (otherwise, we set the entry to false).

D[t, c, Γ, f ] =
∨

1≤i≤q
α∈{0,1}q

(D[t′, cv→c0 , Γv→α, fv→W ] ∨ D[t′, cv→ci , Γv→α, fv→B ])

Join Node. Let us denote the join node by t. Let t1 and t2 be the children of t.
We know that Xt = Xt1 = Xt2 and Xt induces an independent set in the graphs
Gt, Gt1 and Gt2 . We say that the pair of tuples [t1, f1, c1, Γ1] and [t2, f2, c2, Γ2]
are [t, f, c, Γ ]-consistent if for every v ∈ Xt the following conditions hold.

– If f(v) = B then (f1(v), f2(v)) = (B,B) and c1(v) = c2(v) = c(v).
– If f(v) = W then (f1(v), f2(v)) ∈ {(W,R), (R,W ), (W,W )}.
– If f(v) = R then (f1(v), f2(v)) = (R,R).
– If Γ (v)[i] = 0 then (Γ1(v)[i], Γ2(v)[i]) ∈ {(0, 0)} for 1 ≤ i ≤ q.
– If Γ (v)[i] = 1 then (Γ1(v)[i], Γ2(v)[i]) ∈ {(1, 1̂), (1̂, 1)} for 1 ≤ i ≤ q.
– If Γ (v)[i] = 1̂ then (Γ1(v)[i], Γ2(v)[i]) ∈ {(1̂, 1̂)} for 1 ≤ i ≤ q.

It is easy to see that a vertex v belongs to Black partition in Xt if it is
Black in Xt1 and Xt2 and the color c(v) that is assigned to v is same in these
bags. Similarly, we can understand for a vertex in Grey partition. If vertex v
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belongs to White partition, it implies that it is dominated in exactly one of the
bags Xt1 and Xt2 or both. However if v is dominated in both the bags, then
the color that dominates it is different which is taken care by Γ (v)[i]. The value
of Γ (v)[i] is set to 1 for different values of the q-length tuple. Therefore, for
a vertex to belong to White partition requires one of the three combinations:
{(W,R), (R,W ), (W,W )}. Now consider the values that Γ (v)[i] can take in Xt.
If color i is not present in N [v] in any of the child nodes t1 and t2, then it
will naturally not be present in N [v] in Gt, implying Γ (v)[i] = 0. However,
Γ (v)[i] = 1 indicates the presence of a vertex with color i in N [v] in Gt. We
further note that color i appears in exactly one of the child nodes Xt1 or Xt2

but not both because presence of color i in both child nodes implies the presence
of two vertices with color i in N [v] in Gt. This follows from the observation that
Xt induces an independent set in Gt, by the property of nice tree decomposition.
The next possibility of Γ (v)[i] is 1̂. For this to be true, the color i should not be
present in Gt seen so far but will appear in the tree decomposition eventually.

We set D[t, c, Γ, f ] =
∨

(f1,f2)
(D[t1, c1, Γ1, f1] ∧ D[t2, c2, Γ2, f2]),

where [t1, f1, c1, Γ1] and [t2, f2, c2, Γ2] is [t, f, c, Γ ]-consistent.
We have described the recursive formulas for the values of D[·]. Note that we

can compute each entry in time bounded by 2O(qτ) · qO(τ)nO(1). Moreover, the
number of (valid) entries for a node t ∈ V (T ) is bounded by 2O(qτ) · qO(τ)nO(1),
and V (T ) ∈ nO(1). Thus we can obtain that the overall running time of the
algorithm is bounded by 2O(qτ)nO(1).

4.3 Parameterized by the Size of Vertex Cover

In this section, we prove that the q-Subset Square Coloring parameterized
by the size of vertex cover is FPT. Let X be a vertex cover of G, |X| = k. First
we prove the following result.

Lemma 3 (*). The number of colors required to subset square color the vertices
of graph G is at most the size of vertex cover of G.

Since both the treewidth and number of colors required to subset square
coloring is bounded by |X|, the result follows from Theorem 5.

Theorem 6. The q-Subset Square Coloring parameterized by the size of
vertex cover is FPT.

4.4 Parameterized by Neighborhood Diversity Number

We start by defining the neighborhood diversity number of a graph.

Definition 2. [13] Given a graph G = (V,E), two vertices u, v ∈ V have the
same type if and only if N(v)\{u} = N(u)\{v}. The graph G has a neighborhood
diversity t, if there exists a partition of V into at most t sets, V1, V2, . . . , Vt such
that all the vertices in Vi have the same type for i = 1, 2, . . . , t. The family
ν = {V1, V2, . . . , Vt} is called the type partition of G.
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On creating such a type partition of V (G), we observe that the vertices within a
partition either induces a clique or is an independent set. Further, for 1 ≤ i, j ≤ t,
each vertex in a partition Vi is either adjacent to every vertex in another partition
Vj or there are no edges between vertices of Vi and Vj .

Lemma 4 (*). The number of colors required to subset square color a graph G
is at most its neighborhood diversity, that is, χssc(G) ≤ t.

Now we show that q-Subset Square Coloring parameterized by t is FPT by
giving a polynomial kernel.

Theorem 7. The q-Subset Square Coloring problem parameterized by
neighborhood diversity admits a polynomial kernel of size O(t2).

Proof. Let G be a connected graph, along with a type partition of size t, t > 1.
Let G′(V ′, E′) be the graph obtained from G(V,E) by deleting all but q + 1
vertices from each type partition. We will show that G′ can be q-subset square
colored if and only if G can be q-subset square colored. Note that G′ is also a
connected graph.

Let χ be a q-subset square coloring of G′. We claim χ is a q-subset square
coloring of G as well. Let V ′

i = {v1, v2, · · · , vq+1} be a vertex set in the type
partition of V (G′). If vi and vj , 1 ≤ i, j ≤ q + 1, i �= j, are colored, then
χ(vi) �= χ(vj). Otherwise, there exists at least one common neighbor for all
vertices in V ′

i , since G′ is connected and this is a contradiction. Since there are
at most q colors, there exists at least one uncolored vertex, say vi in V ′

i . Now,
every vertex in Vi \ V ′

i is dominated in G by the same vertices that dominate vi

in G′.
In the reverse direction, assume that G admits a q-subset square coloring, χ.

Then we color the vertices v1, v2, · · · , vq+1 in V ′
i arbitrarily using the colors, if

any, used by χ on Vi. Now it is easy to see that this is a valid q-subset square
coloring for G′ as well.

Now |V (G′)| ≤ (q + 1)t. If q ≥ t, the problem is trivially a YES instance, by
Lemma 4. Therefore |V (G′)| = O(t2). Now the result follows.

4.5 Parameterized by Distance to Cluster Graph

Definition 3. A cluster graph is a disjoint union of complete graphs.

It is easy to see that cluster graphs can be 1-subset square colored. In this
section, let X ⊆ V (G) such that G[V \ X] is a cluster graph and |X| = k. Now
we observe the connection between χssc(G) and k.

Lemma 5 (*). χssc(G) ≤ |X| + 1.

Theorem 8. The q-Subset Square Coloring is FPT when parameterized
by distance to cluster graph.
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Proof. If q ≥ |X| + 1, then by Lemma 5 it is trivially true that a subset square
coloring exists. Therefore, we assume that q ≤ k.

If two or more vertices in a clique in G[V \ X] have the same neighborhood
in X, delete all but one of those vertices. This does not affect the solution as
the closed neighborhood of the vertices are the same. Therefore every clique in
G[V \ X] has at most 2k vertices.

Now we bound the number of cliques in G[V \ X]. Let {X1,X2, . . . ,X2k} be
the family of subsets of X. For two cliques Ca and Cb in G[V \ X], we say Ca

and Cb have the same type if for all 1 ≤ i ≤ 2k, either both Ca and Cb each have
a vertex whose neighborhood in X is Xi or neither of them has such a vertex.
Note that there can be at most 22

k

distinct types of cliques. Now we use the
following reduction exhaustively to get a reduced graph G′. If there exists more
than q2k +1 cliques of the same type, delete all but q2k +1 of them. Thus there
are at most k + 22

k · (q2k + 1) vertices in G′.
We claim that G has a q-subset square coloring if and only if G′ has a q-

subset square coloring. Assume G′ admits a q-subset square coloring. Let Ci be
a clique in G \ G′. Therefore G′ has (q2k + 1) cliques of the same type as Ci, let
them be C ′

1, C
′
2, . . . , C

′
q2k+1. Similarly, for v ∈ V (Ci), there exists vj ∈ V (C ′

j)
for all 1 ≤ j ≤ q2k + 1 such that N(v) ∩ X = N(vj) ∩ X. We show that there
exists at least one Cj such that one of the conditions is true.

– Cj contains a vertex vj such that N(vj) ∩ X = ∅ and vj is colored.
– none of the vertices in Cj is colored.

If the first condition is true, then we can dominate all vertices in Ci by coloring
the corresponding vertex v using the same color as vj . Now, assume that the first
condition is not true. Consider the vertices vj ∈ V (C ′

j) for all 1 ≤ j ≤ q2k + 1.
Since all of them have common neighbors in X, we can color at most q such
vertices. Since there are at most 2k vertices in a cliques, there can be at most q2k

cliques with colored vertices. All the uncolored vertices in a clique is dominated
by vertices in X. The same set of vertices can dominate the vertices in Cj in G.
The other direction is easy to see.

Since the size of the reduced instance is bounded by a function of k, it follows
that the q-Subset Square Coloring is FPT when parameterized by distance
to cluster graph.

4.6 Parameterized by the Size of Twin Cover

Definition 4. [11] For a graph G(V,E) a subset X of vertices is a twin cover
if for every edge e = uv ∈ E(G) either (a) u ∈ X or v ∈ X, or (b) u and v are
true twins.

Two vertices u and v are true twins if every other vertex is either adjacent to
both u and v or neither of them and u and v has an edge between them. It
follows from the definition that if X is a twin cover, then G[V \ X] is a disjoint
union of cliques and for every vertex v ∈ X and every clique in G[V \ X], v is
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either adjacent to every vertex in the clique or v is not adjacent to any vertex in
the clique. Thus for every graph G, distance to cluster graph of G ≤ size of twin
cover ≤ size of vertex cover. Thus it follows from Theorem 8 that the q-Subset
Square Coloring problem parameterized by twin cover is FPT. Here, we give
an algorithm with better running time.

Theorem 9. The q-Subset Square Coloring problem parameterized by the
size of twin cover is FPT.

Proof. Let X ⊂ V be a twin cover of the graph G(V,E) and |X| = k. It can be seen
that χssc(G) ≤ |X|. If q ≥ k, then return TRUE. Now, we assume that q < k.

Consider all possible (q + 1)k colorings of X using {c0, c1, . . . cq}. Now similar
to the proof of Theorem 6, we can try to extend each of these colorings to get a
valid subset square coloring. Since all the vertices in the clique in G[V \ X] are
true twins, we can delete all but one vertex from every clique to get an equivalent
reduced instance. Now the reduced instance is very similar to that in the proof
of Theorem 6, and the same algorithm applies.

Therefore the running time of the q-Subset Square Coloring problem
parameterized by the size of twin cover is O(k2k). �	

5 Bounds on the Number of Colors for the
q-SUBSET SQUARE COLORING

In this section, we discuss bounds on the minimum number of colors needed for
subset square coloring some graph classes.

5.1 Trees

We show that χssc(G) can be bounded by maximum degree, when G is a tree. As
a corollary, we also show there exists a lower bound on χssc(G) as a function of n.

Lemma 6 (*). LetΔ be themaximumdegree of a tree. ThenΔ colors are sufficient
to subset square color the tree. Moreover, Δ − 1 colors are sometimes necessary.

Corollary 1. There exist trees that require Ω(
√

n) colors to be subset square
colored.

Now, we know that Trees are a subclass of Bipartite graphs. Therefore the lower
bound applies to the class of Bipartite graphs too. In the next result, we show a
sub-class of Bipartite graphs can be subset square colored using constant number
of colors.

5.2 Bipartite Permutation Graphs

In this section we discuss bounds on χssc for bipartite permutation graphs.
A graph is a bipartite permutation graph if it is both bipartite and permutation

graph. Let G(A�B,E) be a connected bipartite permutation graph, then it admits
the strong ordering, adjacency and enclosure properties, as defined below [20].
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(1) An ordering of the vertices A in a bipartite graph G(A � B,E) has the
adjacency property if for each vertex v ∈ B, the vertices in N(v) are consecutive
in the ordering of A.
(2) An ordering of the vertices A in a bipartite graph G(A�B,E) has the enclosure
property if for every pair of vertices v, u ∈ B such that N(v) is a subset of N(u),
vertices in N(u) − N(v) occur consecutively in the ordering of A.
(3)A strong ordering of the vertices of a bipartite graph G(A � B,E) consists
of an ordering of A and an ordering of B such that for all (a, b′), (a′, b) in E,
where a, a′ are in A and b, b′ are in B, a < a′ and b < b′ imply (a, b) and (a′, b′)
are in E.

Lemma 7. If G is a connected bipartite permutation graph then χssc(G) ≤ 4.

Let A = {a1, a2, · · · an} and B = {b1, b2, · · · bm} have the strong ordering prop-
erty. For aj ∈ A, let s(aj) = min{i|bi ∈ N(aj)} and l(aj) = max{i|bi ∈ N(aj)}
be the smallest and largest vertex adjacent to aj respectively. (Symmetrically
defined for B).

Now we color a set of vertices from A, such that all vertices in B are domi-
nated. In the first step, we color the first vertex from A, a1, using color one.

In the kth step we consider the smallest j such that bj ∈ B is not dominated.
Then we color ai ∈ A such that i is the largest integer such that N(ai) contains
bj , using color one, if k is odd, or otherwise, using color two. Repeat this till
every vertex in B is dominated. Now, if ai, aj , ak ∈ A are colored in consecutive
steps, then N(ai) and N(ak) are disjoint. For contradiction, assume that N(ai)∩
N(ak) �= ∅. Let j′ = l(ai). Then the vertex bj′+1 is dominated by both aj and
ak. This contradicts that aj was colored by the algorithm to dominate bj′+1.
Thus no vertex in B has repeating colors in its neighborhood.

Similarly we can dominate all vertices in A by coloring vertices in B using
colors three and four. This proves the result. �	

Further, we show that the class of Caterpillar graphs which is a subclass of
Bipartite Permutation graphs are 3-subset square colorable.

Definition 5. [19] A Caterpillar graph is a tree such that every vertex is at
distance at most one from a central path.

Lemma 8. χssc(G) ≤ 3 when G is a caterpillar graph.

Proof. Let P be the central path of G with vertices v1, v2, . . . vn′ . Now coloring
vertices in P such that vi, for 1 ≤ i ≤ n′, is given color (i mod 3 + 1) is a valid
3-subset square coloring. The result follows.

5.3 Threshold Graph

Definition 6. [14] A graph is a threshold graph if it can constructed from the empty
graph by repeatedly adding either an isolated vertex or a dominating vertex.

Lemma 9. If G is a threshold graph then χssc(G) = 1.
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Proof. If isolated vertices are present, color them using the same color. By col-
oring the last introduced dominating vertex v, we satisfy subset square coloring
G as each vertex in G has only one colored vertex v in its closed neighborhood.

We know that the family of threshold graphs lie in the intersection of split graphs
and cographs. We consider these graph classes in subsequent sections.

5.4 Split Graph

Definition 7. [2] A graph G is a split graph if V (G) can be partitioned into two
sets A and B such that A induces a clique and B induces an independent set.

Theorem 10. There exist split graphs with n vertices that require Ω(
√

n) colors
to be subset square colored.

Proof. We will construct a split graph G = (A�B,E) as follows. Here A induces
a clique and B induces an independent set. Let A = {v1, v2, · · · vn} and B =
{vi,j |1 ≤ i, j ≤ n}. Further we add edges from vi,j ∈ B to vi ∈ A and vj ∈ A,
for all 1 ≤ i, j ≤ n. Note that G has n2 + n vertices.

All vertices vi,i ∈ B are of degree 1. To dominate vi,i ∈ B, either we need to
color vi or vi,i, for all 1 ≤ i ≤ n. If vi is colored for all i, 1 ≤ i ≤ n, then we need
n colors since all these vertices are adjacent to each other. Otherwise, assume
there exists an i such that vi is not colored and vi,i is colored. Now the n − 1
vertices vi,j ∈ B, where i �= j are dominated either by themselves or by their
other neighbor vj ∈ A. Note that here every vertex is dominated by a distinct
vertex. Thus O(n) vertices are colored from at least one of the sets, {vi,j |i �= j}
and {vj |j �= i}. Since any two vertices from one of these sets are at distance at
most 2, O(n) colors are to be used.

5.5 Cographs

We start by showing the connection between χssc(G) and the modular width of
the graph. We first define the modular width of a graph. The modular width of
graph G is computed by virtue of four operations, namely creation of isolated
vertex, disjoint union, complete join and substitution. More precisely, the modu-
lar width of G equals the maximum number of operands used by any occurrence
of substitution operation. These four operations that are involved in modular
decomposition of graph G are described in [10]. For the sake of completeness,
we mention the four operations here.

Definition 8. [10] Algebraic operations involved to compute modular width of
graph G.

– Create an isolated vertex;
– The disjoint union of two graphs, i.e., the disjoint union of two graph G1 and

G2, denoted by G1 ⊗G2, is the graph with vertex set V (G1)∪V (G2) and edge
set E(G1) ∪ E(G2);
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– The complete join of two graphs, i.e., the complete join of two graphs G1 and
G2, denoted by G1 ⊕G2, is the graph with vertex set V (G1)∪V (G2) and edge
set E(G1) ∪ E(G2) ∪ {{v, u} : v ∈ V (G1) and u ∈ V (G2)}.

– The substitution operation with respect to some graph G with vertices
v1, . . . , vn, i.e., for graphs G1, . . . , Gn the substitution of the vertices of G
by the graphs G1, . . . , Gn, denoted by G(G1, . . . , Gn), is the graph with vertex
set ∪

1≤i≤n
V (Gi) and edge set ∪

1≤i≤n
E(Gi)∪{{u, v} : u ∈ V (Gi) and v ∈ V (Gj),

vi, vj ∈ E(G) and i �= j}. Hence, G(G1, . . . , Gn) is obtained from G by sub-
stituting every vertex vi ∈ V (G) with the graph Gi and adding all edges
between the vertices of a graph Gi and the vertices of a graph Gj whenever
{vi, vj} ∈ E(G).

Definition 9. [10] Let A be an algebraic expression that uses only the four oper-
ation as mentioned in Definition 8. We define the width of A as the maximum
number of operands used by any occurrence of the substitution operation in A.
Modular width of graph G, denoted as w(G), is the least integer m such that G
can be obtained from such an algebraic expression of width at most m.

Cographs are the graphs that can be constructed from operations−creation of
an isolated vertex, disjoint union of two graphs and complete join of two graphs.
By definition, the modular width of cographs is two [7].

Now we state our result.

Lemma 10. The maximum number of colors required to subset square color a
graph G equals the modular width of G, that is, χssc(G) ≤ w(G).

Proof. Now we discuss the maximum number of colors required to subset square
color G while we perform those operations. On introducing an isolated vertex, we
color it by using one color. To dominate the vertices created as a result of disjoint
union of two graphs, we can use maximum number of colors that were used in
subset square coloring each subgraphs in the disjoint union operation. Now we
consider the complete join operation on the subgraph Gc. Let Gc = Gc1 ⊗ Gc2.
If a vertex v in V (Gci), i = {1, 2} has degree Gi(V ) − 1, then χssc(Gc) = 1.
Otherwise we can color an arbitrary vertex from Gc1 and Gc2 using two distinct
colors. Therefore the value of χssc is ≤ 2. Finally, we examine the substitution
operation. We color an arbitrary vertex v in each Gi using distinct colors. Besides
the presence of coloured neighbour(s) in Gi, a vertex may possibly be adjacent
to another coloured vertex in Gj . Therefore the value of χssc can be at most w.

Corollary 2. If G is a cograph, then χssc(G) ≤ 2.
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Abstract. We prove that every quotient structure of the form A/E,
where A is a structure computable in polynomial time (P-computable),
and E is a P-computable congruence in A, is isomorphic to a P-compu-
table structure. We also prove that for every P-computable group A =
(A, ·), there is a P-computable group B ∼= A, in which the inversion
operation x−1 is also P-computable.

Keywords: polynomial computability · computable structures ·
primitive recursive structures · groups

1 Introduction

If Σ is a finite alphabet then we denote the set of all words in this alphabet by
Σ∗. If x ∈ Σ∗ then |x| is the length of x. Let f : A → Σ∗, where A ⊆ (Σ∗)n. We
say that f is computable in polynomial time (shortly, P-computable) if there exists
a Turing machine T that, given an input set of words x̄ = 〈x1, . . . , xn〉, computes
the word f(x1, . . . , xn) in no more than P (|x̄|) steps, where |x̄| = maxi�n |xi|
and P (n) ∈ N[n] is a polynomial with natural coefficients. Such functions can be
considered as a theoretical attempt to define the concept of a quickly computable
function. It is known that this definition does not depend on the choice of a
particular Turing machine.

We can transfer the notion of P-computability to many other natural objects.
If A ⊆ (Σ∗)n then we say that the set A is P-computable if χA : (Σ∗)n → {0, 1}
is P-computable.

The main object considered in the paper is defined as follows. Let A =
(A,LA) be a structure of a finite signature L. We say that A is a P-computable
structure if there exists a finite alphabet Σ such that A ⊆ Σ∗, and A itself and
all functions and predicates in LA are P-computable. A structure A is called a
P-computable presentation of an abstract structure B if A is P-computable and
A ∼= B.
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This definition can be found, for example, in [1]. It is proved there that
every computable structure of a finite signature without functions has a P-
computable presentation. In [2], it is proved that every torsion Abelian group or
a structure with injection is isomorphic to a P-computable structure. In addition,
it is noted there that the questions about abstract isomorphisms and, for exam-
ple, computable isomorphisms are essentially different. In [3], it is proved that
every locally finite structure of a finite signature also has a P-computable pre-
sentation. In [4,5], it is proved that every finitely generated substructure of a
P-computable structure also has a P-computable presentation. In addition, a
criterion of P-computability of a finitely generated structure is proved there. In
[6], it is proved that the field of complex algebraic numbers and the ordered field
of real algebraic numbers have P-computable presentations. In general, the ques-
tion of the existence of a P-computable presentation for a given structure is quite
difficult. Some overview of this theme can be found in [7]. In [12], it is proved
that the index set of the class of computable structures having a P-computable
presentation is a Σ1

1 -complete set, i.e., has a very high complexity.
Let A and B be two isomorphic P-computable structures. We say that f :

A → B is a P-computable isomorphism if f is an isomorphism and simultaneously
a P-computable function. We say that A and B are P-computably isomorphic,
A ∼=p B, if there is an isomorphism f : A → B such that f and f−1 are
P-computable. These two definitions are essentially different. The last means
that A and B are practically identical from the point of view of polynomial
computability. In [3], it is proved that for every infinite P-computable structure
A, there are infinitely many its P-computable presentations not P-computably
isomorphic to each other.

Besides P-computable structures, we can also consider P-computable quotient
structures, i.e., structures of the form A/E, where A is a P-computable structure
and E is a P-computable congruence in A. The universe of such a structure has
the form A/E = {[x]E | x ∈ A}, where A ⊆ Σ∗ is a P-computable set, E ⊆ A2 is
a P-computable equivalence relation, and [x]E = {y ∈ A | xEy} is an equivalence
class. Sets of this form can be called P-computable quotient sets. Identifying a set
A ⊆ Σ∗ with the quotient set A/idA, we can consider P-computable structures
as a partial case of P-computable quotient structures.

In general, P-computable quotient structures are very natural objects. For
example, every free group of a finite rank has a natural P-computable presenta-
tion. If a group is defined by finitely many generators and relations, and its word
problem is decidable in polynomial time, then we obtain a natural P-computable
quotient structure.

Let A/E, B/F be two quotient sets. We say that a function f : A/E → B/F
is P-computable if there is a P-computable function f0 : A → B such that
f([x]E) = [f0(x)]F for x ∈ A. This definition allows us to define the notion
of a P-computable isomorphism f : A/E → B/F between quotient structures
literally as above, as well as the relation A/E ∼=p B/F .

In [8], it is shown that P-computable quotient structures naturally arise when
working with algebraic numbers, and two questions are posed.
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1. Is it true that every P-computable quotient structure A/E is isomorphic to
a P-computable structure?

2. Is it true that every P-computable quotient structure A/E is P-computably
isomorphic to a P-computable structure?

In the same article (see also [9]), it was proved that Question 2 almost equiv-
alent to the problem P = NP: if P = NP, then the answer is yes, and if P �= NP
and, moreover, ΣP

2 �= ΠP
2 , then the answer is no.

In this paper, we give the positive answer to Question 1. This means that
for every structure consisting of classes of words, we can find a presentation in
which each class is replaced by one canonical word (an invariant for this class),
and the relations and operations remains P-computable.

To do this, we in particular prove that every P-computable structure A has
a P-computable presentation B with universe B ⊆ Tal(ω) = {0} ∪ {1x | x � 1},
where 1x = 11 . . . 1 is the word of length x.

Removing all time limits from the definition, we can define a computable
function f : A → Σ∗, A ⊆ (Σ∗)n, as a function computable on a Turing machine.
Using an appropriate natural numbering γ : ω → Σ∗, we can also define the
notion of a primitive recursive function f : A → Σ∗. Note that for the class of
computable or primitive recursive structures, Questions 1 and 2 are trivial.

As an application of the obtained theorems and the technique used, we prove
that for every P-computable group A = (A, ·), there is a P-computable group
B ∼= A, in which the inversion operation x−1 is also P-computable, i.e., A can
be essentially improved.

2 The Universe of P-computable Structures and Quotient
Structures

As the basic computing device, we use multi-tape Turing machines described in
[11]. If x ∈ ω then we define tal(x) ∈ {0, 1}∗ as follows: tal(0) = 0 and tal(x) = 1x

for x � 1. Let Tal(ω) = {tal(x) | x ∈ ω}.

Theorem 1. Let A = (A,LA) be a P-computable structure of a finite signature
L. Then there exist a P-computable structure B = (B,LB) ∼= A with universe
B ⊆ Tal(ω) and a P-computable isomorphism g : B → A.

Proof. Let A ⊆ Σ∗, where Σ is a finite alphabet. We may assume that all words
in A have length at least 2. Consider only the case where L contains one k-
place function f , and all other symbols are predicates or constants. The case of
several functions looks exactly the same. Increasing d � 1, we may assume that
fA(a1, . . . , ak) is computed in time maxi�k{|ai|}d, and the same estimate holds
for |fA(a1, . . . , ak)|.

In the construction, we define the following series of finite objects by induc-
tion on t ∈ ω: a number nt = 2ct , a finite set Bt ⊆ {11, 12, . . . , 1nt}, finite At ⊆ A,
and a bijection gt : Bt → At. They all grow monotonically, i.e., Bt ⊆ Bt+1,
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At ⊆ At+1, and gt ⊆ gt+1 for t ∈ ω. The constant c is specified below. All these
objects are encoded in one word

Wt = gt(11) ∗ gt(12) ∗ . . . ∗ gt(1nt),

where we assume that gt(1x) = 0 for 1x �∈ Bt, and 0, ∗ �∈ Σ. The word Wt will
be an initial subword in Wt+1. Here the estimation |a| � nt holds for a ∈ At.
Then |Wt| � nt(nt+1) = P (nt), where P (n) ∈ N[n] is a polynomial with natural
coefficients.

We fix a natural order � on Σ∗, comparing words first by length, and then
lexicographically. Then Σ∗ = {u0 < u1 < . . .}. In the construction, we will
satisfy the following conditions for every t ∈ ω:

1) there is an algorithm that, given 1t and Wt, finds Wt+1 in polynomial time;
2) if a1, . . . , ak ∈ At then fA(a1, . . . , ak) ∈ At+1;
3) if ut ∈ A then ut ∈ At+1.

Let A0 = {a1, a2}, B0 = {1, 11}, and g0 : B0 → A0. We assume that A
includes at least two words a1, a2 of length 2, since n0 = 2. We can achieve this
with a finite permutation in A. Then W0 = a1 ∗ a2.

At the end of the construction, we define g =
⋃

t∈ω gt and B =
⋃

t∈ω Bt. By
3),

⋃
t∈ω At = A. Prove that the set B is P-computable. Let x > n0. Starting

from W0, we successively compute words W1,W2, . . ., waiting for a step t for
which nt < x � nt+1. We estimate the working time. If i � t then |Wi| �
P (ni) � P (nt) � P (x), where x = |1x|. If the algorithm that finds Wi+1 from
Wi requires Q(|Wi|) steps, where Q(n) ∈ N[n], then the total time for computing
W1,W2, . . . ,Wt+1 can be estimated as x · Q(P (x)), since t < nt < x. Adding
some time for auxiliary operations, we obtain a polynomial estimation for the
time of computing Wt+1.

Now we can find gt(1x) in the word Wt+1. If gt(1x) = 0 then 1x �∈ B,
otherwise 1x ∈ B. If 1x ∈ B then we also know g(1x). Therefore the function g
is also P-computable.

We define an interpretation of L on B so that g is an isomorphism. Clearly, all
predicates are P-computable in B = (B,LB), since if P ∈ L and 1x1 , . . . , 1xk ∈
B, then PB(1x1 , . . . , 1xk) ⇔ PA(g(1x1), . . . , g(1xk)).

We prove that fB is P-computable. Consider 1x1 , . . . , 1xk ∈ B and assume
that xi � x1 for i � k. Let x1 > n0. Just as above, we find Wt+1 such that
nt < x1 � nt+1. Then 1xi ∈ dom(gt+1) for all i � k. We find in Wt+1 the words
ai = gt+1(1xi), i � k, and compute the word a = fA(a1, . . . , ak) in A, which is in
At+2 by 2). Then we find Wt+2. There is y � nt+2 = nc2

t such that gt+2(1y) = a.
Passing through the word Wt+2 and comparing all its components with a, we
find 1y = fB(1x1 , . . . , 1xk).

Now we describe an algorithm for the transition from 1t,Wt to Wt+1, and
define the constant c. Passing through Wt, we write out a list a1 ∗a2 ∗ . . .∗art

of
all elements of At. To obtain At+1, pass through all tuples 〈b1, b2, . . . , bk〉 in Ak

t ,
for each compute fA(b1, . . . , bk), and compare it with the previously obtained
elements. If it is new then add it to At+1. Next, passing through all words
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u0, u1, . . . , ut, we find ut and add it to At+1, if ut ∈ A and it was not added
before. As a result, we obtain a list a1 ∗ . . .∗art

∗art+1 ∗ . . .∗art+1 of all elements
of At+1 in polynomial time. Since |a| � nt for a ∈ At, and |ut| � t � nt, we see
that |a| � nd

t for a ∈ At+1. If c � d then |a| � nt+1.
Clearly rt+1−rt � rk

t +1. Suppose c � k+2. Then nt+1 � nk+2
t � 3nk

t � nk
t +

nt+1 � rk
t +nt+1, hence, nt+1−nt � rk

t +1. We add all elements art+1, . . . , art+1

to the word Wt+1, and complete it by a set of 0 so that it consists of nt+1

components. We see that all required estimations holds if c = max{d, k + 2}. �

In the theorem, the universe of the constructed structure B is a subset of
Tal(ω). Can it always be chosen equal to Tal(ω)? In [10], an example of an infi-
nite computable graph is constructed which does not have a primitive recursive
isomorphic presentation with universe ω. Since this graph is a structure without
functions, it has a P-computable presentation A = (A,P ), where P is a two-
place predicate [1]. However, it cannot have a P-computable presentation with
universe Tal(ω), since such a presentation easily produces a primitive recursive
presentation with universe ω. We give a description of P-computable structures
whose universe can be chosen equal to Tal(ω).

Theorem 2. Let A be a structure of a finite signature L. Then the following
are equivalent:

a) A is isomorphic to a P-computable structure B with universe Tal(ω);
b) A is isomorphic to a P-computable structure B′ = (B′, LB′

) for which
there exists a P-computable injection h : Tal(ω) → B′.

Proof. The implication (a⇒ b) is clear. Let B′ = B and h(x) = x for x ∈ Tal(ω).
We prove (b⇒ a). We assume that the structure A = (A,LA) is P-computable
itself and h : Tal(ω) → A is a P-computable injection. The proof is very close to
the proof of Theorem 1. Let A ⊆ Σ∗ and L includes only one k-place function f .
The case of several functions differs only in a more bulky notation. We assume
that fA(a1, . . . , ak) is computed in time maxi�k{|ai|}d, and h(1x) is computed
in time xd for x � 2. Then |h(1x)| � xd.

We again construct monotonically growing finite objects nt = 2ct , Bt, At ⊆
A, and a bijection gt : Bt → At by induction on t. The difference is that Bt =
{11, 12, . . . , 1nt} now. This means that all components gt(1x) in the word

Wt = gt(11) ∗ gt(12) ∗ . . . ∗ gt(1nt)

are elements of At. Here the estimate |a| � nd
t holds for a ∈ At, and hence

|Wt| � nt(nd
t + 1) = P (nt). We satisfy the following conditions for every t ∈ ω:

1) there exists an algorithm that, given 1t and Wt, finds Wt+1 in polynomial
time;

2) if a1, . . . , ak ∈ At then fA(a1, . . . , ak) ∈ At+1;
3) if ut ∈ A then ut ∈ At+1.

Let A0 = {a1, a2}, B0 = {1, 11}, and g0 : B0 → A0.
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At the end of the construction, we define g =
⋃

t∈ω gt and B =
⋃

t∈ω Bt,
and obtain a bijection g : B → A. In this case, we construct the universe
B = {1x | x � 1}, but it can easily be transformed to Tal(ω). Literally as in
Theorem 1, we can show that g is P-computable. Define an interpretation LB

on B so that g becomes an isomorphism. Arguing as in Theorem 1, we see that
B is a P-computable structure.

It remains to describe an algorithm that, given 1t and Wt, finds Wt+1, and
to define the constant c. We again pass through all tuples 〈b1, . . . , bk〉 in Ak

t ,
computes fA(b1, . . . , bk), and form a list a1 ∗ . . . ∗ art+1 of all elements that
should get into At+1. If c � d then |ai| � nt+1 for all i � rt+1. If c � k + 2 then
nt+1 − nt � nk

t + 1, i.e., nt+1 � rt+1.
Find m = nt+1 − rt+1. We need to add m new elements to At+1, to get a

bijection gt+1 : Bt+1 → At+1, where |Bt+1| = nt+1. To do this, we compute the
list of all elements h(12)∗h(13)∗ . . .∗h(1nt+1), and choose there m elements that
are not yet in At+1. Since h(1x) is computed in time xd, the whole list requires
O(nd

t+1 · nt+1) steps. Since nt+1 = nd
t and nt � |Wt|, this time is polynomial.

Next, |h(1x)| � nd
t+1 for x � nt+1, i.e., the required estimation of |a| holds

for a ∈ At+1. �
As in Theorem 1, when we prove (b⇒ a) here, we get a P-computable iso-

morphism g : B → B′.

Theorem 3. Let A = (A,LA) be a P-computable structure of a finite signature
L, and let E ⊆ A2 be a P-computable congruence in A. Then there is a P-
computable structure B, isomorphic to A/E, and a P-computable isomorphism
f : B → A/E.

Proof. By Theorem 1, there exists a P-computable structure B0 = (B0, L
B0)

with universe B0 ⊆ Tal(ω), and a P-computable isomorphism g : B0 → A. Define
F = {〈a, b〉 ∈ B2

0 | 〈g(a), g(b)〉 ∈ E}. Then F is a P-computable congruence in
B0. To simplify the notation, we assume that B0 ⊆ {1x | x � 1}, i.e., tal(0) �∈ B0.
Let B = {1y ∈ B0 | ∀z < y 〈1y, 1z〉 �∈ F}. It is a P-computable set which
contains exactly one element from every equivalence class in B0/F . If 1x ∈ B0

then define π(1x) = 1y, where 1y ∈ B and 〈1x, 1y〉 ∈ F . To find π(1x), we need
to pass through all y = 1, 2, . . . , x, and check the specified condition for each.
The function π : B0 → B is P-computable.

We define an interpretation LB in B so that the function idB : B → B0

generates an isomorphism from B to B0/F . If P is a predicate in L, then
PB(1x1 , . . . , 1xn) ⇔ PB0(1x1 , . . . , 1xn). If h is a function in L, then

hB(1x1 , . . . , 1xn) = π(hB0(1x1 , . . . , 1xn)).

We obtain a P-computable structure B for which g|B generates a P-computable
isomorphism f : B → A/E, f(1x) = [g(1x)]E . �

As mentioned above, if ΣP
2 �= ΠP

2 then f−1 in the theorem is not P-
computable in general.
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Is it true that if the structure A in this theorem has universe Tal(ω), then
we can find B with universe Tal(ω)? The answer is no. Let A0 = (A0, P0),
where A0 ⊆ Tal(ω), be the P-computable graph mentioned above which has no
P-computable presentation with universe Tal(ω). We can easily present it as a
quotient structure. Let A = Tal(ω). Choose a ∈ A0. Define xEy ⇔ x = y for
x, y ∈ A0, and xEa for x ∈ A \ A0. Then E is an equivalence relation on A.
Construct A = (A,P ) as follows. If x, y ∈ A0 then P (x, y) ⇔ P0(x, y). If x, y ∈
A \ A0 then P (x, y) ⇔ P0(a, a). If x ∈ A0, y ∈ A \ A0 then P (x, y) ⇔ P0(x, a).
Clearly, A/E ∼= A0.

3 Groups with Quick Inversion Operation

If x ∈ ω then bin(x) ∈ {0, 1}∗ denotes the standard binary representation of x,
where bin(0) = 0. If x ∈ Z \ ω then bin(x) = 0 bin(−x). By log x we denote
log2 x for x � 1.

Theorem 4. Let A = (A, ·) be a P-computable group. Then there exists a P-
computable group A1

∼= A, in which the operation x �→ x−1 is also P-computable,
and a P-computable isomorphism f : A1 → A.

Proof. Let Σ be a finite alphabet and A ⊆ Σ∗. We may assume that A is
infinite, all words in A have length at least 2, and x · y is computed in A in time
max{|x|, |y|}d, where d � 2 is a constant. Let L = {ai, bi | i ∈ ω} be a countable
alphabet. We fix a natural order � on Σ∗, comparing words first by length, and
then lexicographically. Then Σ∗ = {u0 < u1 < u2 < . . .}.

The set A can also be represented as a sequence of words {e0 < e1 < e2 <
. . .}. We construct h : L → A as follows: h(ai) = ei and h(bi) = e−1

i for
i ∈ ω. Encoding symbol ai as abin(i) and bi as b bin(i), we can consider L as
a set of words in the alphabet {0, 1, a, b}. Then h is a computable function. Let
S = L∗. The defined function can be naturally extended to h : S → A so that
h(s1s2 . . . sn) = h(s1)h(s2) . . . h(sn) and h(∅) is the unit 1A of A.

We define two natural operations on S as follows: the multiplication u·v = uv
and u−1 such that if u = s1s2 . . . sn then u−1 = s̄n . . . s̄2s̄1, where āi = bi and
b̄i = ai. Then h is a homomorphism, since clearly h(u · v) = h(u) · h(v) and
h(u) · h(u−1) = 1.

Now we define L0 = {a0, b0} and

Lt = {a0, b0} ∪ {ai, bi | i < t and h(ai), h(bi) ∈ {u0, u1, . . . , ut}}.
Then Lt ⊆ Lt+1 for t ∈ ω, and

⋃
t∈ω Lt = L. Next, let

St = {u ∈ L∗
t | |u| < 2t}.

We again see that St ⊆ St+1 and
⋃

t∈ω St = S.
In the construction, we define a series of finite objects by induction on t ∈ ω:

the number nt = 2ct , a finite set Bt ⊆ {11, 12, . . . , 1nt}, and a bijection gt : Bt →
St. All of them grow monotonically: nt < nt+1, Bt ⊂ Bt+1, and gt ⊂ gt+1 for
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t ∈ ω. The constant c � 2 is defined below. All these objects are encoded by one
word

Wt = gt(11) ∗ gt(12) ∗ . . . ∗ gt(1nt).

If 1x �∈ Bt then we assume that gt(1x) = 0. We consider a word s1s2 . . . sn ∈ L∗

as the sequence of the codes for s1, s2, . . . , sn, and thus code it as a word in
the alphabet {0, 1, a, b}. The word Wt is an initial subword of Wt+1. In the
construction, we satisfy the following conditions for every t ∈ ω:

1) there is an algorithm that, given the words 1t and Wt, finds Wt+1 in polyno-
mial time;

2) if 1x ∈ Bt then |gt(1x)| � nt.

By definition L0 = {a0, b0} and S0 = {∅}. Let B0 = {1} and g0 : B0 → S0.
Then W0 = ∗0. It follows from 2) that |Wt| � nt(nt + 1) = P (nt), where
P (n) ∈ N[n].

At the end of the construction, we define B =
⋃

t∈ω Bt and g =
⋃

t∈ω gt,
obtaining a bijection g : B → S. Show that B is P-computable. Suppose x > n0.
Starting from W0, we successively compute the words W1,W2, . . . until we find
Wt+1 such that nt < x � nt+1. Prove that the time of the search depends
polynomially on x = |1x|. If i � t then |Wi| � |Wt| � P (nt) � P (x). Hence,
the total time of computing all words {Wi | i � t + 1} can be estimated as
O(x · Q(P (x))), if Wi+1 is computed from Wi in Q(|Wi|) steps, Q(n) ∈ N[n],
since t < nt � x. We have a polynomial estimate.

Moving along the word Wt+1, we find gt+1(1x). If gt+1(1x) = 0 then 1x �∈ B,
otherwise 1x ∈ B. If 1x ∈ B then we have g(1x) = gt+1(1x). Therefore, function
g is also P-computable.

The set S is a structure with the operations · and −1. We transfer these
operations to B so that g becomes an isomorphism between B = (B, ·, −1) and
(S, ·, −1). Prove that B is a P-computable structure. Suppose that 1x, 1y ∈ B and
y � x. Arguing as above, we find Wt+1 for which 1x ∈ dom(gt+1) in polynomial
time. Then 1y ∈ dom(gt+1). Find in Wt+1 words u = gt+1(1x) and v = gt+1(1y).
Then u, v ∈ L∗

t+1 and |u|, |v| < 2t+1. Hence |uv| < 2t+2 and uv ∈ St+2. Comput-
ing Wt+2, we can find z such that gt+2(1z) = uv, and obtain that 1x · 1y = 1z.
Computation of (1x)−1 looks even simpler.

We now describe an algorithm of computing Wt+1 from 1t,Wt. First, we need
to find Lt+1. Since |ut| � t, we can compute the list u0∗u1∗ . . .∗ut and check the
condition ui ∈ A for each i � t in polynomial in t time. Let e0 < e1 < . . . < em be
all the elements of the list from A. Then h(ai) = ei. If 0 < i � m and bi ∈ Lt+1,
then h(bi) = e−1

i ∈ {ej | j � m}. Passing through the list e0 ∗ e1 ∗ . . . ∗ em, we
check the condition ei · ej = 1 for each j � m. As a result, we find Lt+1 in time
that polynomially depends on t.

Further steps look quite straightforward: we find a list of all words in St+1,
exclude the elements of St that are already in Wt, and then map some initial
interval of the set {1x | nt < x � nt+1} to St+1 \ St, obtaining gt+1 and Wt+1.
Some calculations are needed here, since the number nt+1 − nt must be greater
or equal to |St+1 \ St|. If t = 0 then |S1 \ S0| = 2 and n1 − n0 = 2c − 1. The
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condition c � 2 is sufficient. Let t � 1. Clearly |Lt+1| � 2t + 2. Let 2t + 2 = e.
The number of words in L∗

t+1 of length at most n can be estimated as

e0 + e1 + . . . + en =
en+1 − 1

e − 1
� en+1.

Therefore |St+1| � (2t + 2)2
t+1

= 22
t+1·log(2t+2). Next,

nt+1 − nt = 2ct+1 − 2ct = 2ct(2ct(c−1) − 1).

If the estimate 2t+1 · log(2t+2) � ct holds, i.e., 2(1+ log(t+1)) � ( c
2 )t, then we

have that |St+1| � nt+1 −nt. For sufficiently large t, the condition c � 3 suffices.
If c � 8 then the estimate holds for all t � 1.

If i � 1 then |bin(i)| = [log i]+1 � i. If t � 1 and u ∈ St, then u = s1s2 . . . sn,
n < 2t, and sr ∈ {abin(i), bbin(i)}, where i < t, for r � n. Clearly, |u| � (t+1)2t

in this case. The same estimate works for t = 0. To satisfy 2), we need to check
that (t + 1)2t � 2ct , i.e., t log(t + 1) � ct. This holds if c � 2.

We now establish the most difficult estimate in this theorem: show that h◦g :
B → A is also a P-computable function. For this, we prove the following lemma.

Lemma 1. There is an algorithm that, given 1t and u ∈ St, finds h(u) in time
polynomial in nt.

Proof. First, we estimate the length of |h(u)|. If s ∈ Lt then s ∈ {a0, b0} or
|h(s)| � t. Since every function is polynomial on a finite set, it is sufficient to
consider the case when t � |h(a0)|, |h(b0)|, |1A|. Then |h(s)| � t for s ∈ Lt. We
prove by induction on k � t the following assertion: if u ∈ St and |u| � 2k, then
|h(u)| � td

k

. For k = 0, this has been proved.
We suppose that u ∈ St and u = s1s2 . . . sn, where 2k < n � 2k+1 and

si ∈ Lt for i � n. Then there is a decomposition n = n1 +n2, where n1, n2 � 2k.
If n is even and n = 2n1, then n1 � 2k. If n is odd and n = 2n1 + 1, then
n1 + 1

2 � 2k, and if n2 = n1 + 1 then n1, n2 � 2k. Let u′ = s1s2 . . . sn1 and
u′′ = sn1+1 . . . sn. Then u = u′u′′ and h(u) = h(u′)h(u′′). By the induction
hypothesis, |h(u′)|, |h(u′′)| � td

k

, hence |h(u)| � td
k+1

.
We now describe the computation of h(u). Denote by t(k) an upper bound

for the computing time of h(u) for |u| � 2k. Suppose that k = 0 and u = ∅ or
u ∈ {ai, bi} ⊆ Lt. Above, we constructed an algorithm that, given t, finds a list
of all characters in Lt, and then finds h(s) for each s ∈ Lt. Its working time is
estimated by a polynomial R(t) ∈ N[t]. We have that t(0) = R(t).

We suppose now that |u| = n and 2k < n � 2k+1. The algorithm of computing
h(u) is specified above: we find a decomposition n = n1 +n2, where n1, n2 � 2k,
present u = u′u′′, where |u′| = n1 and |u′′| = n2, compute h(u′), h(u′′) in time
t(k), and then obtain h(u) = h(u′) · h(u′′).

This procedure uses recursion, which requires some effort and an additional
time on a Turing machine with finite number of tapes. We will not describe this
mechanism in detail, and only note that the costs for the induction step can be
estimated as O(|h(u)|), since |u|, |h(u′)|, |h(u′′)| � |h(u)|. For example, a more
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detailed algorithm for computing terms in semigroups is given in [5]. As a result,
we obtain the formula

t(k + 1) � 2t(k) + c1 · td
k+1

,

where a constant c1 � 1 does not depend on t and k. Therefore

t(k) � 2kt(0) + c1(2k−1td
1
+ 2k−2td

2
+ . . . + 21td

k−1
+ 20td

k

).

It can be coarsened to
t(k) � c12k(t(0) + ktd

k

).

Since k = t in the worst case, the computing time for h(u) is estimated by
the expression c12t(R(t) + t · tdk

). Replacing R(t) by c2t
p, where c2, p are fixed,

we obtain an estimate of the form O(tp2ttd
t

), or O(2p log t+t+log t·dt

). If c �
d + 1 then this expression can be replaced by O(2ct) for t � t0. The lemma is
proved. �

The P-computability of h ◦ g follows from this lemma as above. If 1x ∈ B
then we find Wt+1 such that nt < x � nt+1, get u = gt+1(1x), and find h(u) in
time polynomial in nt+1, where nt+1 = nc

t � xc.
Let f0 = h◦g. Since g is an isomorphism, and h is an epimorphism preserving

the operation x−1, f0 : (B, ·, −1) → (A, ·, −1) is also an epimorphism. If E =
{〈x, y〉 ∈ B2 | f0(x) = f0(y)} then E is a P-computable congruence in B, and f0
generates a P-computable isomorphism f1 : B/E → A. By Theorem 3, there are
a P-computable structure A1 and a P-computable isomorphism f2 : A1 → B/E.
Let f = f1 ◦ f2. The theorem is proved. �

We note that Theorem 4 can be easily transferred to the case of primitive
recursive (p.r.) structures.

Corollary 1. Let A = (A, ·) be a p.r. group. Then there exist a p.r. group
A1

∼= A in which the operation x �→ x−1 is also p.r., and a p.r. isomorphism
f : A1 → A.

Proof. The proof of this fact is essentially the same as the proof of Theorem 4.
We only need to throw out all polynomial estimates from the text. The function
h remains computable. The sets Lt and St are defined literally as above. We
define the same number nt and finite objects Bt and gt : Bt → St, but the
sequence of words {Wt}t∈ω is now p.r. The word Wt can be replaced by some
natural code of gt.

Condition 1) says now that Wt+1 is constructed from Wt with a p.r. function.
Condition 2) and the estimate for |Wt| should be removed from the text. The
set B, the function g, and the structure B are p.r. If c = 8 then the estimation
|St+1 \ St| � nt+1 − nt holds.

Lemma 1 now states that the function t, u �→ h(u) is primitive recursive.
Hence, h ◦ g is also primitive recursive, and the relation E is a p.r. congruence
in B. Choosing the least element in every equivalence class, we obtain a p.r.
structure A1.
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We note that the number nt can be removed from the proof, and we can
define dom(gt) as an initial segment in ω. In this case, the universe of B would
be equal to ω. However, the factorization by E does not allow to obtain A1 with
universe ω. �

Probably, the idea of the proof is more clear in this case, when polynomial
estimations are eliminated. Initially, we construct our group as all group words
with generators {a0, b0}. For them, the procedure of finding inverse elements is
clear, as far as checking the equality of words. We wait for the moment when
b1 = a−1

1 is computed, and then start to enumerate all words with generators
{a0, b0, a1, b1}. When b2 = a−1

2 is computed, we add {a2, b2} to the generators,
and so on. As the result, we obtain a p.r. quotient structure isomorphic to A.

For computable structures, Theorem 4 is trivial, since the computability of
multiplication implies the computability of inversion.
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Abstract. In the List Coloring problem, the input is a graph G and
list of colors L : V (G) → N for each vertex v ∈ V (G). The objective
is to test the existence of a coloring λ : V (G) → N such that for each
v ∈ V (G), λ(v) ∈ L(v) and for each edge (u, v) ∈ E(G), λ(u) �= λ(v).
Fiala et al. (TCS 2011) proved that List Coloring is W[1]-hard when
parameterized by the vertex cover number of the input graph. Recently,
Gutin et al. (STACS 2020, SIDMA 2021) designed an O∗(2k) time ran-
domized algorithm for List Coloring where k is the size of the given
clique modulator of the input graph. Since List Coloring is W[1]-hard
parameterized by the vertex cover number, List Coloring is W[1]-hard
parameterized by the size of a cluster modulator. In this work we study
the problem parameteized by the size of �-cluster modulator. That is,
along with the input we are also given a vertex subset D such that G−D
is cluster graph with � connected components. We prove that assuming
Exponential Time Hypothesis (ETH), List Coloring can not be solved

in time f(|D| + �)n
o(

|D|+�
log |D|+�

)
for any computable function f .

In the Max Coloring problem, we are given a graph G and a weight
function w : V (G) → N. For a proper coloring λ, the cost of λ is defined
as follows. For each color i, w(i) is the maximum weight of a vertex col-
ored i. Then, the cost of λ is

∑
i∈C w(i), where C = {λ(v) | v ∈ V (G)}.

In the Max Coloring problem, our objective is to find a proper col-
oring with minimum cost. Araújo et al. (TCS 2018) proved that Max

Coloring is W[1]-hard even on forests when parameterized by the size
of the largest connected component in the input forest. Here, we prove
that Max Coloring is FPT with respect to parameters (i) the size of
a vertex cover, (ii) the size of a clique modulator, and (iii) the size of a
2-cluster modulator.

Keywords: Graph Coloring · Fixed Parameter Tractability ·
Randomized algorithms · Reduction · Exponential Time Hypothesis

1 Introduction

Graph coloring is a fundamental topic in algorithms and graph theory. A proper
coloring of a graph G is a function λ : V (G) → N such that for any edge
c© Springer Nature Switzerland AG 2022
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(u, v) ∈ E(G), λ(u) �= λ(v). In the Coloring problem, the input is a graph G
and an integer q, and the objective is to test whether there is a proper coloring
λ : V (G) → [q] of G1. The q-Coloring problem is a special case of Coloring

where q is fixed and not part of the input. The chromatic number of a graph G
is the minimum q for which G is a yes-instance of q-Coloring. It is well known
that 2-Coloring is polynomial time solvable and q-Coloring is NP-hard for
any q ≥ 3. In fact, the 3-Coloring problem remains NP-hard even on 4-regular
planar graphs [5]. The best known algorithm for computing the chromatic num-
ber of a given n-vertex graph is O∗(2n) and it is a long standing open problem to
improve this running time to O∗((2 − ε)n) or to prove that such running time is
not possible under some complexity theory assumptions like Strong Exponential
Time Hypothesis (SETH)2.

In this work we consider two generalizations of Coloring, namely List

Coloring and Max Coloring in the realm of parameterized complexity and
fill in some gaps about these problems in the parameterized complexity setting.
In the List Coloring problem, for each vertex v in the input graph, we are
also given a list L(v) of colors. The objective is to find a proper coloring λ such
that for each vertex v, λ(v) ∈ L(v). In the Max Coloring problem, along
with the input graph we are also given a weight function w : V (G) → N. For
a proper coloring λ, the cost of λ is defined as follows. For each color i, w(i)
is the maximum weight of a vertex colored i (if no such vertex exists, then it
is zero). That is, w(i) = maxv∈λ−1(i) w(v)3. Then, the cost of λ is

∑
i∈C w(i),

where C = {λ(v) | v ∈ V (G)}. In the Max Coloring problem, our objective
is to find a proper coloring with minimum cost. This problem is also called as
Weighted Coloring in the literature.

Fiala et al. [10] proved that List Coloring is W[1]-hard parameterized by
the vertex cover number of the input graph. Recently, Gutin et al. [12] designed
an O∗(2k) time randomized algorithm for List Coloring parameterized by
the clique modulator number of the input graph. All the randomized algorithms
mentioned in this work are Monte Carlo algorithms with one sided error. That
is, if the output of the algorithm is No, then it may be wrong with probability at
most 1/3. A clique modulator of a graph G is a vertex subset D such that G−D
is clique. A cluster modulator is a vertex subset D such that G − D is a cluster
graph (i.e., each connected component is a clique). Since List Coloring is
W[1]-hard parameterized by the vertex cover number, List Coloring is W[1]-
hard parameterized by the size of a cluster modulator. This motivates us to
study List Coloring parameterized by the size of the cluster modulator D
and the number of clusters (connected components) in G − D. Formally, this
problem is defined as follows.

1 Throughout the paper, we use [q] to denote the set {1, 2, . . . , q}.
2 O∗ notation hides polynomial factor in the input size.
3 For a function f : X → Y and y ∈ Y , f−1(y) denotes the set {x | f(x) = y}.
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List Coloring �-Cluster Modulator Parameter: |D| + �
Input: A graph G, a set of colors C, for all v ∈ V (G) a list L(v) ⊆ C, and a
vertex subset D such that G − D is an �-cluster graph
Question: Is there a proper list coloring of G?

We prove the following result.

Theorem 11. List Coloring �-Cluster Modulator can not be solved in
f(|D|+�)no(

|D|+�
log |D|+�

) for any computable function f unless the Exponential Time
Hypothesis (ETH) fails, where n = |V (G)|.

Coloring is a special case of Max Coloring where each vertex has weight
1. Max Coloring is NP-hard even on split graphs, interval graphs, triangle-
free planar graphs with bounded degree, and bipartite graphs [6,9,17]. Araújo
et al. [3] proved that Max Coloring can not be solved in time no(log n) even
on trees unless ETH fails. Escoffier et al. [9] designed a polynomial time approx-
imation scheme for Max Coloring on bounded treewidth graphs. Araújo et
al. [2] studied Max Coloring in the parameterized complexity setting and
proved that it is W[1]-hard even on forests when parameterized by the size of
the largest connected component in the input forest. Escoffier [8] studied the
problem on different graph classes when parameterized by the cost of the col-
oring. In particular Escoffier [8] proved that the problem is FPT on chordal
graphs, but para-NP-hard on bipartite graphs. That is, given a weighted bipar-
tite graph, it is NP-hard to test whether there is a proper coloring of cost at
most 7. Escoffier [8] and Araújo et al. [2] also studied Max Coloring with dual
parameter. In this work we study the following parameterized problems around
Max Coloring.

Max Coloring Vertex Cover Parameter: k
Input: A graph G where every vertex v has a non-negative weight w(v), a
vertex cover X of size k, a non-negative integer W
Question: Is there a proper max coloring of cost at most W?

Max Coloring Clique Modulator Parameter: k
Input: A graph G where every vertex v has a non-negative weight w(v), a
clique modulator D of size k, a non-negative integer W
Question: Is there a proper max coloring of cost at most W?

Max Coloring 2-Cluster Modulator Parameter: k
Input: A graph G where every vertex v has a non-negative weight w(v), a
subset D ⊂ V (G) of size k such that G − D = C1 � C2 where C1 and C2 are
two disjoint cliques, a non-negative integer W
Question: Is there a proper max coloring of cost at most W?

We prove the following results.
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Theorem 12. Max Coloring Vertex Cover admits a kernel with 2k + k
vertices.

Theorem 13. Max Coloring Clique Modulator admits a kernel of size
(2k · k) + k.

Theorem 14. There is a randomized algorithm for Max Coloring 2-

Cluster Modulator running in time kO(k)WnO(1).

Our Methods. To prove Theorem 11 we give an FPT reduction from the Col-

ored Subgraph Isomorphism problem. This result is explained in Sect. 3.
We use algebraic technique to prove Theorem 14. Towards that we define the
following problem which could be of independent interest.

Perfect Colorful Matching Parameter: k
Input: A bipartite weighted graph G, a non-negative integer W, a coloring
λ for edges, where L = {λ(e)|e ∈ E(G)} and |L| = k.
Question: Is there a perfect matching of weight at most W where every color
in L appears at least once?

We give a polynomial time Turing reduction from Max Coloring 2-

Cluster Modulator to Perfect Colorful Matching and prove the fol-
lowing theorem.

Theorem 15. There is a randomized algorithm for Perfect Colorful

Matching running in time 2O(k)WnO(1).

To prove Theorem 15 we notice that each term in the permanent of the
bipartite adjacency matrix corresponds to a matching. Thus, by suitably labeling
each edge with variables we can succinctly represent all the perfect matchings.
Moreover, the permanent of a matrix is the same as the determinant of the
matrix in the case of field of characteristic two. Thus, we construct a matrix with
variables where the monomials of the determinant polynomial represent perfect
matchings. Then, from this polynomial using known randomized techniques we
check the existence of the required matching.

Bannach et al. [4] have independently proved a more general case of Per-
fect Colorful Matching to be FPT using a reduction to the Conjoining

Bipartite Matching problem which Gutin et al. (JCSS, 2017) [11] proved its
fixed parameter tractability using algebraic methods similar to ours.

2 Preliminaries

2.1 Parameterized Complexity

An instance of a parameterized problem Q is a pair (I, k) where I is called
the input and k ∈ N is the parameter. A problem Q is called fixed-parameter
tractable (FPT) if there exists an algorithm A to solve this problem in time
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f(k)nO(1) for some function f , where n is equal to the size of input, denoted by
|I|. In this case, A is also called an FPT algorithm. Some times in the literature
of parameterized complexity, we write the complexity of such an algorithm as
O∗(f(k)). Since it is widely believed that FPT �= W[1], in order to show that a
problem is not FPT, we prove that it is W[1]-hard.

Kernelization. A kernelization algorithm A for a parameterized problem Q, is a
polynomial time algorithm that given an instance (I, k) of problem Q, outputs
an instance (I ′, k′) of problem Q such that (I, k) and (I ′, k′) are equivalent (i.e.,
(I, k) is a yes-instance if and only if (I ′, k′) is a yes-instance) and |I ′|+k′ ≤ g(k)
for some computable function g. If g is a polynomial function, then we say that
Q admits a polynomial kernel.

Exponential Time Hypothesis (ETH). In the framework of parameterized com-
plexity and exact exponential time algorithms, Exponential Time Hypothesis
(ETH) of Impagliazzo and Paturi, is a conjecture that states 3-SAT has no
subexponential (in number of variables) algorithm. [13] That is, ETH implies
that 3-SAT can not be solved in 2o(n) time. Recall that ETH will imply that
FPT �= W[1] and therefore ETH can also help us to prove that some problems
are not FPT. Moreover, ETH allows us to prove more finer algorithmic lower
bounds.

2.2 Graph Theory

In this paper, all of the graphs are undirected and all of the weighted vertices
and edges have non-negative weights.

Proper List Coloring. For an undirected graph G where for every vertex v ∈
V (G) we have a list L(v) of possible colors for this vertex, a coloring λ is called
a proper list coloring if for every vertex v ∈ V (G), λ(v) ∈ L(v) and for every
edge (v, u) ∈ E(G), λ(v) �= λ(u).

Max Coloring. In this problem, every vertex v has a weight w(v) and weight of
a color c in a certain coloring λ is w(c) = maxv:λ(v)=cw(v). The total cost of a
coloring (to be minimized) is

∑
c∈L w(c) where L = {c|∃v ∈ V (G) : λ(v) = c}.

Vertex Cover. For an undirected graph G, a subset X ⊂ V (G) is a vertex cover
of G if G − X is an independent set.

Clique Modulator, �-Cluster Modulator. For an undirected graph G, a subset
D ⊂ V (G) is called a clique modulator if G−D = C where C is a clique. Also, a
set D ⊂ V (G) is an �-cluster modulator if G−D = C1 � ...�C� where C1, ..., C�

are disjoint clusters.
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3 List Coloring �-Cluster Modulator

In this section we prove that List Coloring �-Cluster Modulator can not
be solved in time f(|D| + �)no(

|D|+�
log |D|+�

) unless ETH fails by giving a parameter-
ized reduction from the Colored Subgraph Isomorphism problem which is
formally defined as follows.

Colored Subgraph Isomorphism Parameter: k
Input: A graph H, a positive integer m and a partition V1 � V2 � . . . � Vm of
V (H), a graph Gs with m vertices and k edges. (The graph Gs is called the
small graph)
Question: Is there a subgraph S of H such that |Vi ∩ S| = 1 for all i ∈
{1, . . . , m} and S is isomorphic to Gs? That is, for any edge (i, j) ∈ E(Gs),
there is an edge in S between S ∩ Vi and S ∩ Vj .

Colored Subgraph Isomorphism can not be solved in time f(Gs)no( k
log k )

unless ETH fails (Corollary 6.3 from [14]). Let (H,Gs,m, k, (V1, ..., Vm)) be
an instance of Colored Subgraph Isomorphism. Here, we denote Ei,j to
represent the set of edges between Vi and Vj where i < j. Moreover, here for
each edge between v ∈ Vi and u ∈ Vj we denote the edge by (v, u) (i.e., the
order is from a vertex in Vi to a vertex in Vj , where i < j). That is, for i < j,
Ei,j = {(v, u)|(v, u) ∈ E(H), v ∈ Vi, u ∈ Vj}.

Now we explain how to construct the output instance (G,L : V (G) �→
2C ,D ⊆ V (G)) as follows. The color set C is defined as below:

C = {1(v,u) | (v, u) ∈ E(H)} ∪ {2v | v ∈ V (H)}.

Now, we construct the graph G and the modulator D in the following way:
(See Fig. 1 for an illustration.)

1. We introduce a set D of vertices of size k + m, which is a (2k)-cluster mod-
ulator of the graph G. For every pair (i, j) where (i, j) ∈ E(Gs), D contains
vertex zi,j with L(zi,j) = {1(v,u)|(v, u) ∈ Ei,j}. Also, for every 1 ≤ i ≤ m, D
contains xi where L(xi) = {2v|v ∈ Vi}. This completes the construction of
the vertex subset D. Notice that |D| = k + m.

2. For every pair (i, j) where (i, j) ∈ E(Gs) we introduce two cliques Ki
j and

Kj
i . Here, the vertex set of Ki

j is partitioned into two blocks W i
j � Ri

j , where
Ri

j contains |Vi| − 1 vertices and W i
j is defined as follows.

W i
j = {wv

u | v ∈ Vi, u ∈ Vj , (v, u) ∈ Ei,j}
Next, we explain the list of colors for each vertex in Ki

j . For the vertex
wv

u in W i
j , we set L(wv

u) = {1(v,u), 2v}. For each vertex y ∈ Ri
j , we set

L(y) = {2v|v ∈ Vi}. The clique Kj
i is defined similarly. That is, the vertex

set of Kj
i is partitioned into two blocks W j

i � Rj
i , where Rj

i contains |Vj | − 1
vertices and W j

i is defined as follows.

W j
i = {wu

v | u ∈ Vj , v ∈ Vi, (v, u) ∈ Ei,j}
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Next, we explain the list of colors for each vertex in Kj
i . For the vertex

wu
v in W j

i , we set L(wu
v ) = {1(v,u), 2u}. For each vertex y ∈ Rj

i , we set
L(y) = {2u | u ∈ Vj}.
Next, we explain the adjacencies among Ki

j ,K
j
i and D. We have already

mentioned that Ki
j and Kj

i are cliques in G. We make all of the vertices in
W i

j ∪ W j
i adjacent to zi,j , all of the vertices in Ri

j adjacent to xi, and all of
the vertices in Rj

i adjacent to xj .

Fig. 1. An illustration of the adjacencies among Ki
j , K

j
i and D in the graph G.

This completes the construction of the output instance (G,L,D) where |D| =
k +m. Here G−D is a (2k)-cluster graph. Moreover, the instance (G,L,D) can
be computed in polynomial time.

The intuitive idea of the reduction is the following. Let S be a subgraph
in H with exactly one vertex from each one of V1, . . . , Vm and isomorphic to
Gs. We know that S must have exactly one edge (say ei,j) from Ei,j for each
(i, j) ∈ E(Gs) and for every i, all of the edges ei,j must have the same endpoint
vi in Vi. For every 1 ≤ i < j ≤ m, the corresponding proper list coloring of
G will have 1ei,j

as the color of vertex zi,j and 2vi
as the color of xi for every

1 ≤ i ≤ m. That is the selection of colors for zi,j for 1 ≤ i < j ≤ m where
(i, j) ∈ E(Gs) and xi for 1 ≤ i ≤ m, is corresponding to the edges and vertices
in the solution of Colored Subgraph Isomorphism. As we will see in the
correctness proof, such a coloring can be extended to a proper list coloring of G.

Lemma 1. Graph G has a proper list coloring if and only if H has a subgraph S
of size m with exactly one vertex from each of V1, . . . , Vm and isomorphic to Gs.

Proof. First, we prove that if a subgraph S (isomorphic to Gs and with exactly
one vertex in each Vi) exists for the instance (H,Gs,m, k, (V1, . . . , Vm)), then a
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proper list coloring c exists for G. For each i ∈ {1, . . . , m}, let vi be the vertex
of S which is in Vi. That is, S = {v1, . . . , vm} where {vi} = Vi ∩ S for all
i ∈ {1, . . . , m}. Now we introduce a proper list coloring of G, c : V (G) �→ C as
follows.

– For every 1 ≤ i ≤ m, c(xi) = 2vi
.

– For every (i, j) ∈ E(Gs), c(zi,j) = 1(vi,vj), c(wvi
vj

) = 2vi
, and c(wvj

vi ) = 2vj
.

– For every (i, j) ∈ E(Gs) and (v, u) ∈ Ei,j \ {(vi, vj)}, c(wv
u) = c(wu

v ) = 1(v,u).
– For every (i, j) ∈ E(Gs), each vertex in Ri

j is colored with an arbitrary and
unique color from {2v|v ∈ Vi \{2vi

}}. That is, c restricted to Ri
j , is a bijection

from Ri
j to {2v | v ∈ Vi \ {2vi

}}. Similarly, each vertex in Rj
i is colored with

an arbitrary and unique color from {2u | u ∈ Vj \ {2vj
}}.

This completes the definition of the coloring function c. Moreover, it is easy
to see that for any y ∈ V (G), c(y) ∈ L(y). Next, we prove that c is indeed a
proper coloring of G. From the definition of c, notice that for each (i, j) ∈ E(Gs),
the vertices in Ki

j get distinct colors and the vertices in Kj
i get distinct colors.

Moreover, no vertex W i
j ∪W j

i is colored with 1(vi,vj) = c(zi,j). Also, no vertex in
Ri

j is colored with 2vi
= c(xi) and no vertex in Rj

i is colored with 2vj
= c(xj).

This completes the proof of the forward direction of the proof.
For the reverse direction, we show that if G has a proper list coloring c, then

there exists a subgraph S in H such that S has exactly one vertex in each Vi

and is isomorphic to Gs. We define a function h : C �→ E(H) ∪ V (H) as follows.

h(s) =
{

e if s = 1e for some e ∈ E(H)
v if s = 2v for some v ∈ V (H)

Now, let S = {h(c(xi)) | i ∈ {1, . . . , m}}. Next, we prove that S has a
subgraph isomorphic to Gs and one vertex in each Vi in G. Notice that for
each i ∈ {1, . . . , m}, c(xi) ∈ {2v | v ∈ Vi}. Therefore, |S ∩ Vi| = 1. Let vi be
h(c(xi)) for all i ∈ {1, . . . , m}. Next, we prove that for each (i, j) ∈ E(Gs),
h(c(zi,j)) = (vi, vj) and this will prove that S has a subgraph that is isomorphic
to Gs. It can be trivially shown that h(c(zi,j)) ∈ Ei,j and vi = h(c(xi)) ∈ Vi.
To complete the proof, it is enough to show that for every (i, j) ∈ E(Gs), vi

and vj are the endpoints of the edge h(c(zi,j)). Fix i, j ∈ {1, . . . ,m} such that
i < j and (i, j) ∈ E(Gs). Let h(c(zi,j)) = (u, v) such that v ∈ Vi and u ∈ Vj .
Since c(zi,j) = 1(u,v), the only possible color for wv

u by the coloring c, is 2v.
Also, we know that |Ri

j | = |Vi| − 1, hence by the construction of the color lists
of the vertices in Ri

j there exists only one vertex v′ ∈ Vi such that 2v′ is not
used to color any vertex in Ri

j by the coloring c. This implies that v = v′.
Moreover, v is the only vertex in Vi such that 2v is not used in Ri

j and hence
we conclude that c(xi) = 2v (since xi is connected to all of the vertices in Ri

j

and L(xi) = {2v′ | v′ ∈ Vi}). This implies that v = vi. By similar arguments, we
can show that h(c(xj)) = u and hence vj = u. This completes the proof of the
lemma.
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The following theorem follows from the above reduction and Lemma 1. Note
that in the graph G constructed as above, |D| = k+m and the number of clusters
is 2k and also, it is not hard to see that we can assume that Gs is connected
(otherwise, it can be solved for each component separately). Therefore, we can
assume that |D| + � = Θ(k).

Theorem 11. List Coloring �-Cluster Modulator can not be solved in
f(|D|+�)no(

|D|+�
log |D|+�

) for any computable function f unless the Exponential Time
Hypothesis (ETH) fails, where n = |V (G)|.

4 Max Coloring Vertex Cover

In this section we introduce a kernelization for the Max Coloring Vertex

Cover problem. Let I = G − X and {I1, ..., I2k} be the partitioning of I into
its equivalence classes with respect to N(v) (where N(v) is the set of vertices of
X that are connected to v) and mi (i ∈ [2k]) be a vertex in Ii with maximum
weight (∀i ∈ [2k], v ∈ Ii : w(mi) ≥ w(v)). Let M = {m1, ...,m2k} and R = I \M .
For every color c in a coloring λ, define λ−1(c) as the set of all of vertices v such
that λ(v) = c.

Lemma 2. Instance (G,X, k) has a proper coloring with cost at most W if and
only if instance (G − R,X, k) has a proper coloring with cost at most W.

Proof. The forward direction is trivial. Since G − R is a subgraph of G, any
proper coloring of G is also a proper coloring of G − R. Moreover, since the
weight of each vertex in G − R is same as the weight in G, the cost of the
coloring in G − R will be at most the cost of the coloring in G.

Now, we prove the reverse direction. Let λ2 be a proper coloring of G − R
with weight at most W. We prove the coloring below is a proper coloring of G
with cost at most W.

λ1(v) =
{

λ2(mi) If there exists i such that v ∈ Ii

λ2(v) otherwise

In the coloring above it is not hard to see that for every color c, λ−1
2 (c) ⊂ λ−1

1 (c)
and for every vertex v ∈ λ−1

1 (c) \ λ−1
2 (c) such that v ∈ Ii, mi is also in λ−1

1 (c).
Thus, cost of c in λ1 is equal to cost of c in λ2. Therefore, total cost of λ1 is
equal to total cost of λ2. Hence, λ1 is a proper max coloring of cost at most W.

Lemma 2 implies the following.

Theorem 12. Max Coloring Vertex Cover admits a kernel with 2k + k
vertices.
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5 Max Coloring Clique Modulator

In this section we introduce a kernelization algorithm for Max Coloring

Clique Modulator. Let (G,D,W) be the input instance and C = V (G−D).
For every v ∈ C we define ND(v) to be the set of vertices in D that are adjacent
to v. Using ND(v), C will be partitioned into equivalence classes C1, ..., C2k , such
that two distinct vertices v, u ∈ C are in the same equivalence class Ci if and
only if ND(v) = ND(u). Now, for every equivalence class Ci, define Mi to be the
set of t vertices in Ci with the largest weights, where t = min{|Ci|, k}. Formally,
Mi is a subset of Ci such that |Mi| = min{|Ci|, k} and for any two vertices
v ∈ Mi and u ∈ Ci \ Mi, w(v) ≥ w(u). We call a vertex v ∈ C unaccompanied
in a proper coloring λ if there does not exist another vertex that has the same
color as v. That is, v is the only vertex colored with the color λ(v).

Lemma 3. If there exists a proper coloring λ that is a solution for an instance
(G,D, k,W) of Max Coloring Clique Modulator, then there exists a solu-
tion λ′ such that for every i ∈ [2k], all of the vertices in Ci\Mi are unaccompanied.

Proof. Let v ∈ Ci \ Mi be a vertex that is not unaccompanied in λ. That is,
there exists j such that v has the same color as Dj (λ(v) = λ(Dj)), where Dj

is a nonempty subset of D. Since Ci \ Mi �= ∅, Mi has strictly more than k ver-
tices. We know that some vertices in D have the same color as v, and Mi is a clique.
This implies that at most k−1 vertices of Mi are not unaccompanied, and so there
exists u ∈ Mi that is unaccompanied. Let λ′ be the coloring made by switching
the color of vertices u and v from coloring λ (i.e., λ′(v) = λ(u), λ′(u) = λ(v) and
λ and λ′ are the same for the rest of the vertices). Note that since v and u are
from the same equivalence class Ci, λ′ is still a proper coloring. We claim λ′ has
a total cost not greater than λ. Let Δ be the total cost of λ′ minus total cost of
λ, also let a be the largest weight among the other vertices with color λ(v). For
every color c, define w(c) to be the maximum weight among vertices with color c.
Since w(v) ≤ w(u) (due to construction) we can have three cases:

i) a ≤ w(v) ≤ w(u) : In this case maximum weight of none of the colors will
change, so Δ = 0.

ii) w(v) ≤ a ≤ w(u) : In this case w(λ(u)) = w(u) and w(λ(v)) = a but after
the change, we will have that w(λ′(v)) = w(v) and w(λ′(u)) = w(u) therefore
Δ = w(u) + w(v) − (w(u) + a) ≤ 0.

iii) w(v) ≤ w(u) ≤ a : In this case w(λ(u)) = w(u) and w(λ(v)) = a but after
the change, we will have that w(λ′(u)) = a and w(λ′(v)) = w(v) therefore
Δ = w(v) + a − (w(u) + a) ≤ 0.

Hence, Δ is always less than or equal to zero. Therefore, λ′ is a coloring with
total cost at most equal to the total cost of λ and with less vertices in Ci \ Mi

that are not unaccompanied than λ. Thus, we can decrease the number of such
vertices (vertices in Ci \ Mi for some i that are not unaccompanied) as long as
they exist. Therefore, there is a proper coloring with no such vertices and cost
at most the cost of λ. This completes the proof of the lemma.
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Since for an unaccompanied vertex u the maximum weight of its color class is
w(u), by the lemma above, we can say that instance (G,D, k,W) is a yes-instance
if and only if (G−R,D, k,W −S) is a yes-instance; where R =

⋃
i∈[2k](Ci −Mi)

and S =
∑

v∈R w(v). Hence, we have the following theorem.

Theorem 13. Max Coloring Clique Modulator admits a kernel of size
(2k · k) + k.

6 Max Coloring 2-Cluster Modulator

In this section we give a Turing reduction running in time kO(k)nO(1) from
Max Coloring 2-Cluster Modulator to Perfect Colorful Matching.
In Sect. 7 we prove that Perfect Colorful Matching is fixed parameter
tractable. The Turing reduction is formulated in the following lemma.

Lemma 4. There is an algorithm running in time kO(k)nO(1) that given an
instance (G,D,W) outputs a collection I of kO(k) instances of Perfect Col-

orful Matching with the following properties.

– The parameter associated with each instance in I is at most |D| + 1.
– (G,D,W) is a yes-instance of Max Coloring 2-Cluster Modulator if

and only if there is a yes-instance of Perfect Colorful Matching in I.
Let (G,D,W) be the given input instance of Max Coloring 2-Cluster

Modulator. Let C1 and C2 be the two connected components of G−D. Recall
that both C1 and C2 are cliques. Let D = {D1, ...,Dt} be a partitioning of D
such that there is no edge in G between two vertices of Di for any i ∈ {1, ..., t},
and let A0, A1, A2, A12 be a partitioning of D. For each such choice of D and
A0, A1, A2, A12 we construct an instance of Perfect Colorful Matching.
Towards that let us fix D = {D1, ...,Dt} and A0, A1, A2, A12 with the above
mentioned properties.

For every i ∈ {1, ..., t}, let mi be a vertex of Di with maximum weight.
For this choice, we would like to encode an instance I of Perfect Colorful

Matching, such that for each proper coloring λ of G with the following prop-
erties, there is a perfect matching in the instance I with a weight equal to the
cost of λ.

– For every v, u ∈ V (D), λ(v) = λ(u) if and only if there exists i such that
v, u ∈ Di. In other words D1, ...,Dt are color classes of D and let λ(Di) be
the color of the vertices in Di.

– For every Di ∈ A0, |λ−1(λ(Di)) ∩ C1| = |λ−1(λ(Di)) ∩ C2| = 0.
– For every Di ∈ A1, |λ−1(λ(Di)) ∩ C1| = 1 and |λ−1(λ(Di)) ∩ C2| = 0.
– For every Di ∈ A2, |λ−1(λ(Di)) ∩ C1| = 0 and |λ−1(λ(Di)) ∩ C2| = 1.
– For every Di ∈ A12, |λ−1(λ(Di)) ∩ C1| = |λ−1(λ(Di)) ∩ C2| = 1.

We say that a proper coloring is compatible with (D, A0, A1, A2, A12), if it satisfies
the above mentioned properties. Now, we construct a weighted edge colored
bipartite graph H with bipartition V (H) = H1 � H2 as follows. Notice that H
will have parallel edges.
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– Vertex set H1 initially contains V (C1) ∪ {di | Di ∈ A2} and vertex set of H2

initially contains V (C2) ∪ {di | Di ∈ A1}. That is, for each vertex in C1, we
have a vertex in H1 and for each set Di in A2, we have a vertex in H1.

– For every i ∈ {1, . . . , t} and v ∈ C2 with Di ∈ A2, if Di∪{v} is an independent
set in G, then we add an edge between di and v with weight max{w(v), w(mi)}
and color the edge with t + 1.

– For every i ∈ {1, . . . , t} and v ∈ C1 with Di ∈ A1, if Di∪{v} is an independent
set in G, then we add an edge between di and v with weight max{w(v), w(mi)}
and color the edge with t + 1.

– For every i ∈ {1, . . . , t}, v ∈ C1, and u ∈ C2 with Di ∈ A12, if Di ∪ {v, u} is
an independent set in G, then we add an edge between v and u with weight
max{w(v), w(u), w(mi)} and color the edge with i.

– For every v ∈ C1 and u ∈ C2, we add an edge between v and u with weight
max{w(v), w(u)} and color the edge with t + 1.

– Pad the partition with smaller number of vertices among H1 and H2 with
new dummy vertices R = {r1, ..., rp} where p = ||H1| − |H2|| = ||C1 ∪ A2| −
|C2 ∪ A1||. We add an edge between every vertex in R and every vertex v of
the other partition which is in C1 ∪ C2. This edge has weight w(v) and color
t + 1. Note that, now we have that |H1| = |H2|.

Intuitively, in the graph H, choosing an edge between vertices v ∈ C1 and u ∈ C2

to be in the matching of graph H, represents the idea of using the same color
for both v and u in the coloring of graph G and if the color of this edge is i
where i ≤ t, vertices of Di (which by construction, is in A12) will also have the
same color. Also, choosing an edge between a vertex di and v for the matching in
graph H, represents using the same color for vertices in Di and v in the coloring.
Furthermore, picking an edge between a vertex v ∈ C1∪C2 and a dummy vertex
r ∈ R, corresponds to v using the color of no other vertices (that is, there will
be a color class that only contains v).

In this setting, it can be seen that if the matching contains edges of all colors,
then we will have exactly one color class for every vertex in C1 ∪ C2 ∪ A1 ∪ A2

and at least one color for every vertex in A12 (for these vertices we can choose
an arbitrary color class from these options). Besides, we know that all of the
colors used in A0, are only used for one of the sets Di ∈ A0, thus we can color
them independent of the color of all of the other vertices in G. As implied above,
every edge in the matching of H corresponds to a potential color class in H and
furthermore, it can be seen that weight of the potential color class is equal to
the weight of its corresponding edge in H. See Fig. 2 for an illustration.

This brings us to the following lemma:

Lemma 5. There exists an optimal proper coloring of G of cost at most W that
is compatible with (D, A0, A1, A2, A12) if and only if there exists a perfect colorful
matching of H with weight at most W − ∑

i:Di∈A0
w(mi).

Proof. Suppose λ is a proper coloring of G that is compatible with
(D, A0, A1, A2, A12) and cost of λ is W. Now we construct a perfect colorful
matching M of H with weight W − ∑

i:Di∈A0
w(mi). For every Di ∈ A1, we
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Fig. 2. An example of construction of graph H from G

know that λ−1(λ(Di)) = Di ∪ {v} for some v ∈ C1. So we add the unique edge
between v and di (in H) to M . Note that weight of this edge is equal to the
weight of λ(Di) and the color of the edge is t + 1. Similarly, for every Di ∈ A2,
we know that λ−1(λ(Dj)) = Dj ∪ {u} for some u ∈ C2. So we add the unique
edge between u and dj (in H) to M . Also here, the weight of this edge is equal
to the weight of λ(Dj) and the color of the edge is t+1. For every Di ∈ A12, we
know that λ−1(λ(Di)) = Di ∪{u, v} for some u′ ∈ C1 and v′ ∈ C2, and therefore
we know that there exists an edge e′ between v′ and u′ with color i and weight
of e′ is equal to the weight of λ(Di). We add this edge e′ to M . Note that now,
every vertex in C1 ∪ C2 which is sharing its color (in the coloring of λ) with a
vertex in D, has appeared in exactly one edge in M .

Also, since every pair of vertices v and u (v ∈ C1 and u ∈ C2) that are
not sharing the colors with vertices of D can clearly use the same color, we can
assume that in an optimal coloring λ of G, there do not exist two vertices v and
u (v ∈ C1 and u ∈ C2) such that neither of them share their colors with other
vertices (because we can construct another coloring λ′ which uses exact same
coloring as λ but color classes of v and u are merged, and then the cost of λ′ will
be min{w(v), w(u)} less than λ). Therefore, only the clique with more vertices
left has vertices that do not share their color with any other vertices. Let us
assume that this clique is C1 (the other case is similar and hence omitted). For
every two vertices v ∈ C1 and u ∈ C2 such that λ−1(λ(v)) = λ−1(λ(u)) = {v, u}
we add the unique edge e with color t + 1 in between them to the matching M .
We know that the weight of e is equal to the weight of λ(v) = λ(u).

Finally, for all of the remaining vertices (which we know that they are vertices
that do not share their color with any other vertex and are in C1) we choose
a unique vertex of R for each one of them (by construction of R we know that
they are exactly the same size) and add the edge between each two of them to
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M . Note that for each one of these edges, their weight is equal to the weight of
corresponding color in the coloring λ of G.

We can see that by the construction above, M is a perfect matching and since
for every Di ∈ A12 we added an edge of color i and also an edge of color t + 1
is added to M . Here, we may assume that max{|C1|, |C2|} > t, and otherwise
the instance has size bounded by O(k). Because of this assumption, we have also
added an edge to M with color t+1. Therefore, M is a colorful perfect matching.

Also, it can be easily seen that for every vertex in C1 ∪ C2 maximum weight
of its color in G is appeared exactly once in M (on its corresponding edge in
M) and there is no other edge weights appearing on edges of M . Therefore,
weight of M is equal to sum of the weights of color classes {c | ∃v ∈ C1 ∪ C2 :
λ(v) = c} which we know that is equal to the sum of weights of the color classes
{c | ∃v ∈ V (G) : λ(v) = c} \ {c|∃Di ∈ A0 : λ(Di) = c}. This weight is equal to
W − ∑

i:D1∈A0
w(mi). Therefore, w(M) = W − ∑

i:D1∈A0
w(mi).

Now, we prove the reverse direction. Let M be a perfect colorful matching
of H with weight W ′. Now, we introduce a coloring λ which is compatible with
(D, A0, A1, A2, A12) and has weight W ′ +

∑
i:Di∈A0

w(mi).
First, we arrange edges of M in an arbitrary order e1, e2, ..., e�. Now, for every

vertex x ∈ {di | Di ∈ A1 ∪ A2} ∪ C1 ∪ C2 we know that it appears in exactly
one edge of M (say er). If x ∈ C1 ∪ C2, we set λ(v) = r. If x = di for some i,
then for each v ∈ Di, we set λ(v) = r. Also, for every Di ∈ A12 we know that at
least one of the edges in M has color i. Let j be the least value such that ej has
color i. Then, set λ(u) = j for all u ∈ Di. Finally, for every Di ∈ A0, set λ(Di)
a unique distinct color other than the previously used colors.

By construction of H it can be easily seen that the described coloring λ is
a proper coloring of G. Also, it can be seen that there is a one-to-one mapping
between edges of M and colors used for the vertices in V (G) − (

⋃
Di∈A0

Di)
such that the weight of every edge is equal to maximum weight of vertices in
its corresponding color class in G. Since colors used for vertices in (

⋃
Di∈A0

Di)
and V (G) − (

⋃
Di∈A0

Di) are disjoint, it can be seen that the cost of λ is equal
to W ′ +

∑
i:Di∈A0

w(mi).

It is not hard to see that number of different tuples (D, A0, A1, A2, A12) is
upper bounded by kO(k). Note that the reduction above will result an instance
of Perfect Colorful Matching with parameter at most k + 1. Thus, the
above construction of H and Lemma 5 implies Lemma 4.

Lemma 4 and Theorem 15 implies the following theorem.

Theorem 14. There is a randomized algorithm forMax Coloring 2-Cluster

Modulator running in time kO(k)WnO(1).

7 Perfect Colorful Matching

In this section we discuss an FPT algorithm for Perfect Colorful Match-

ing. In order to do this, first we construct a matrix A with multivariate polyno-
mial elements. After that we use an algebraic sieving method to find the answer
from this matrix.
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7.1 Matrix Construction

First, we introduce variables X = {xc|c ∈ L}, Y = {ye|e ∈ E(G)} and z.
Note that it can be assumed that colors are 1, 2, 3, ..., k (i.e., L = [k] and X =
{x1, ..., xk}). Let V1 and V2 be the two partitions of G (i.e., G = (V1, V2, E)).
Now, construct matrix A with each dimension representing one of the partitions
of G such that for every edge e = (v, u) ∈ E(G) (v ∈ V1, u ∈ V2), Av,u =
yexλ(e)z

w(e) where w(e) is weight of edge e (In case of multiple edges Av,u is
sum of monomials corresponding to all of these edges) and otherwise (if (v, u) /∈
E(G)) Av,u = 0. Note that every monomial of permanent of A, denoted by
per(A), corresponds to a perfect matching in G (and vice versa). For every perfect
matching M in G, monomial Πe∈Myexλ(e)z

w(e) is a monomial of per(A) which is
equal to (Πe∈Mye)(Πe∈M )xλ(e))z

∑
e∈M w(e) and because of unique appearances

of variables in Y , none of them will be canceled even if we consider this matrix
is over a field of characteristic two. We will consider this matrix over a field of
characteristic two and the reason for it is the following. In a field of characteristic
two, the permanent of a matrix is equal to its determinant and hence this can
be computed in polynomial time.

Next, we present the following lemma:

Lemma 6. (G,λ, L, k,W) is a yes-instance if and only if permanent of A has
a monomial divisible by Πc∈Lxc and not divisible by zW+1.

Proof. First, we prove that if there exists a colorful perfect matching M with
total weight of at most W then there exists a monomial of A divisible by Πc∈Lxc

and not divisible by zW+1. The monomial corresponding to M in per(A) is equal
to (Πe∈Mye)(Πe∈M )xλ(e))z

∑
e∈M w(e). Since M is a perfect colorful matching,

L = {λ(e)|e ∈ M}. Therefore Πe∈Mxλ(e) is divisible by Πc∈Lxc. Also, M has
weight at most W so

∑
e∈M w(e) < W + 1, and hence the corresponding mono-

mial is not divisible by zW+1.
Now, we prove the reverse direction. If there exists a monomial P in per(A)

with the stated properties, then its corresponding perfect matching M can be
uniquely recovered using appearances of variables in Y . Since P is divisible by
Πc∈Lxc, for every c ∈ L, M has at least one edge from color c, thus M is a
perfect colorful matching. Also, since weight of M is equal to the greatest power
of z appeared in P and P is not divisible by zW+1, M has a total weight of at
most W.

7.2 Evaluation

Now, we discuss an FPT algorithm to find out if per(A) has a monomial divisible
by Πc∈Lxc and not divisible by zW+1. First we state some of the known results
which we use for this computation.

Lemma 7 (DeMillo-Lipton-Schwartz-Zippel [7,15,18]). If B(x1, ..., xn) is
a multivariate not identically zero polynomial of degree d over a field F , then for
a1, ..., an that are picked uniformly at random from F , Pr[B(a1, ..., an) = 0] ≤ d

|F| .
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In order to use this lemma, we need to find a finite field of large order and for
purposes used later, we find this field such that its characteristic is 2. We do
that by finding an irreducible polynomial f ∈ F2[x] of degree at least 6n + 3W
and extending F2 (the Galois field of size 2) by defining F as F[x]

f . We can find
such a polynomial f using the following lemma:

Lemma 8 ([1]). For a prime p and an integer r, there exists an algorithm
to find an irreducible polynomial f ∈ Fp such that r ≤ deg(f) ≤ cr log p for a
constant c such that its running time is (cr(log p2))2.

For a polynomial B(x1, ..., xn) and a subset I ⊂ [n], define B−I(x1, . . . , xn) =
B(y1, ..., yn) where yi = xi if i ∈ I and yi = 0 otherwise. We also use the following
result.

Lemma 9 ([16]). For a polynomial B(x1, ..., xn) over a field of characteristic
2 and J ⊂ [n], if we define Q(x1, ..., xn) =

∑
I⊂J B−I(x1, ..., xn) then for any

monomial M , coefQM = coefBM if M is divisible by Πj∈Jxj and coefQM = 0
otherwise.

Because of Lemma 8, we assume that A is a matrix over a field F [X] of
characteristic two such that the number of elements in F is at least three
time the degree of the polynomial perm(A). By the construction of matrix
A, we know that for every v and u, there exists polynomials P v,u

0 (x1, ..., xk),
P v,u
1 (x1, ..., xk), P v,u

2 (x1, ..., xk), ... such that Av,u = yv,u

∑W
i=0 P v,u

i (x1, ..., xk)zi.
For a set I ⊂ [k], define A−I to be a matrix such that (A−I)v,u =
yv,u

∑W
i=0 (P v,u

i )−I(x1, ..., xk)zi.

Lemma 10 ([12]). Given an evaluation of the variables in set X, the value
of P v,u

i (x1, ..., xk) and therefore A−I can be computed for all I ⊂ [k] and all
(v, u) ∈ E(G) in time and space O∗(2k).

Note that since F is a field of characteristic 2, in this field for every matrix
M , det(M) = per(M). Therefore, instead of looking for a monomial with stated
properties in per(A), we can look for it in det(A). Let us continue the algorithm
using the stated lemmas. Next, we pick X and Y uniformly at random from
a sufficiently large field F stated as above. Now, it can be seen that in A and
A−I (for every I ⊂ [k]), every element is a polynomial of z with degree at most
W. We know that there exists a polynomial algorithm to compute determinant
of a matrix, therefore there exists a circuit with polynomial number of nodes
and operations multiplication and addition to calculate determinant of a matrix
over a field of characteristic 2. Also, we know that in the computations of the
determinant used for this problem, monomials with power of z greater than
W are not important, therefore we can define our definition of addition and
multiplication by just looking at monomials of power at most W of z so that
every operation is done in O(W). Now, using this circuit, for every matrix A−I ,
det(A−I) and therefore det(A)−I can be calculated with in O∗(2k) time. Thus,
by Lemma 9 (if we set J = [k] in that theorem), it can be seen that with high
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probability det(A) has a monomial divisible by Πc∈[k]xc and not divisible by
xW+1 if and only if

∑
I⊂[k] det(A−I) =

∑
I⊂[k] det(A)−I calculated uniformly

picked X and Y as above has a non-zero coefficient for zW′
where W ′ is at most

W. Now from the single variate polynomial we compute the coefficients of zW′

for all W ′ ≤ W. This completes the proof of following theorem.

Theorem 15. There is a randomized algorithm for Perfect Colorful

Matching running in time 2O(k)WnO(1).

8 Conclusion

We proved several results about parameterized complexity of different variations
of list coloring and max coloring. First, we used a reduction from Colored Sub-

graph Isomorphism to prove that not only List Coloring �-Cluster Mod-

ulator is W[1]-hard, but also it cannot be solved in time f(|D| + �)no(
|D|+�

log |D|+�
)

unless ETH fails. This answers a natural problem raised after Gutin et al. [12]
proved fixed parameterized tractability of this problem where � = 1. However,
parameterized complexity of this problem with � = c for some constant c > 1 is
still unknown. Then we gave a kernel with 2k + k vertices for Max Coloring

Vertex Cover and a kernel of size 2k.k+k for Max Coloring Clique Mod-

ulator. One obvious open problem is to give polynomial kernels for this prob-
lems. Finally, we presented an FPT algorithm for Max Coloring 2-Cluster

Modulator using a reduction to Perfect Colorful Matching. It could be
interesting to derandomize the algorithm for Perfect Colorful Matching.
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Abstract. The Eternal Vertex Cover problem is a dynamic variant
of the vertex cover problem. We have a two player game in which guards
are placed on some vertices of a graph. In every move, one player (the
attacker) attacks an edge. In response to the attack, the second player
(the defender) moves some of the guards along the edges of the graph in
such a manner that at least one guard moves along the attacked edge. If
such a movement is not possible, then the attacker wins. If the defender
can defend the graph against an infinite sequence of attacks, then the
defender wins.

The minimum number of guards with which the defender has a win-
ning strategy is called the eternal vertex cover number of the graph G. On
general graphs, the computational problem of determining the minimum
eternal vertex cover number is NP-hard and admits a 2-approximation
algorithm and an exponential kernel. The complexity of the problem on
bipartite graphs is open, as is the question of whether the problem admits
a polynomial kernel.

We settle both these questions by showing that Eternal Vertex Cover
is NP-hard and does not admit a polynomial compression even on bipar-
tite graphs of diameter six. We also show that the problem admits a
polynomial time algorithm on the class of cobipartite graphs.

1 Introduction

The Eternal Vertex Cover problem is a dynamic variant of the vertex
cover problem introduced by Klostermeyer and Mynhardt (2009). The setting
is the following. We have a two player game—between players whom we will
refer to as the attacker and defender—on a simple, undirected graph G. In the
beginning, the defender can choose to place guards on some of the vertices of
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G. The attacker’s move involve choosing an edge to “attack”. The defender is
able to “defend” this attack if she can move the guards along the edges of the
graph in such a way that at least one guard moves along the attacked edge. If
such a movement is not possible, then the attacker wins. If the defender can
defend the graph against an infinite sequence of attacks, then the defender wins
(see Fig. 1). The minimum number of guards with which the defender has a
winning strategy is called the eternal vertex cover number of the graph G and
is denoted by evc(G).

Fig. 1. An attack that is defended by moving two guards.

If S� is the subset of vertices that have guards on them after the defender
has played her �-th move, and S� is not a vertex cover of G, then the attacker
can target any of the uncovered edges to win the game. Therefore, when the
defender has a winning strategy, it implies that she can always “reconfigure” one
vertex cover into another in response to any attack, where the reconfiguration is
constrained by the rules of how the guards can move and the requirement that
at least one of these guards needs to move along the attacked edge. Therefore,
it is clear that evc(G) � mvc(G), where mvc(G) denotes the minimum size
of a vertex cover of G. It also turns out that twice as many vertices as the
mvc(G) also suffice the defend against any sequence of attacks. This might be
achieved, for example, by placing guards on both endpoints of any maximum
matching to begin with and after any attack, reconfiguring the guards to obtain
another maximum matching. Using this strategy, a 2−approximation algorithm
for Eternal Vertex Cover was obtained by Fomin et al. (2010). This also
implies mvc(G) � evc(G) � 2mvc(G).

Klostermeyer and Mynhardt (2009) gave a characterization of the graphs for
which the upper bound is achieved. A characterization for graphs for which lower
bound is achieved remains open, but several special cases have been addressed
in the literature (see, for instance Babu et al. 2021a). Also, Klostermeyer and
Mynhardt (2011) study graphs with equal eternal vertex cover and eternal dom-
ination numbers, which is a closely related dynamic variant of the dominating
set problem.
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The natural computational question associated with this parameter is the
following: given a graph G and a positive integer k, determine if evc(G) � k.
The problem is only known to be in PSPACE in general. Fomin et al. (2010)
show that this problem is NP-hard by a reduction from vertex cover, and admits
a 2-approximation algorithm based on both endpoints of a maximum matching.
They also study the problem from a parameterized perspective. In parameterized
complexity, one asks if for an instance of size n and a parameter k, a problem
can be solved in time f(k)nO(1) where f is an arbitrary computable function
independent of n. Problems that can be solved in that time are said to be fixed
parameter tractable, and the corresponding complexity class is called FPT. They
show that the problem is fixed parameter tractable when parameterized by the
number of available guards k, by demonstrating an algorithm with running time
O

(
2O(k2) + nm

)
for Eternal Vertex Cover, where n is the number of

vertices and m the number of edges of the input graph. This work leaves open
the question of whether Eternal Vertex Cover admits a polynomial kernel1.

The computational question of Eternal Vertex Cover is also well stud-
ied on special classes of graphs. For instance, it is known to be NP-complete
when restricted to locally connected graphs, a graph class which includes all
biconnected internally triangulated planar graphs (Babu et al. 2021a). It can
also be solved in linear time on the class of cactus graphs (Babu et al. 2021b),
quadratic time on chordal graphs (Babu and Prabhakaran 2021; Babu et al.
2021b) and in polynomial time on “generalized” trees (Araki et al. 2015). How-
ever, the complexity of the problem on biparitite graphs remains open, and is
an intriguing question especially considering that the vertex cover problem is
tractable on biparitite graphs.

1.1 Our Contributions

We resolve the question of the complexity of Eternal Vertex Cover on
bipartite graphs by showing NP-hardness even on bipartite graphs of constant
diameter. It turns out that the same result can also be used to argue the
likely non-existence of a polynomial compression, which resolves the question
of whether Eternal Vertex Cover has a polynomial kernel in the negative.
Finally, we also observe that the hardness results carry over to the related problem
of Eternal Connected Vertex Cover (Fujito and Nakamura 2020), where
we would like the vertex covers at every step to induce connected subgraphs.

Summarizing, our main result is the following:

Theorem 1 (EVC on Bipartite Graphs). Both the Eternal Vertex

Cover and Eternal Connected Vertex Cover problems are NP-hard and
do not admit a polynomial compression parameterized by the number of guards
(unless NP ⊆ coNP /poly), even on bipartite graphs of diameter six.

We also show that Eternal Vertex Cover is tractable on the class of
cobipartite graphs.
1 We refer the reader to Sect. 2 for the definition of the notion of a polynomial kernel.
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Theorem 2 (EVC on Co-Bipartite Graphs). There is a quadratic-time
algorithm for Eternal Vertex Cover on the class of cobipartite graphs.

Organization. We establish notation and provide relevant definitions in Sect. 2.
The proof of Theorem 1 follows from the construction described in Lemma 1,
and is the main focus of Sect. 3, while the proof of Theorem 2 can be found
in Sect. 4. In Sect. 5, we suggest some directions for further work.

2 Preliminaries and Notations

All graphs in this paper are finite, undirected and without multiple edges and
loops. For terminology not defined in this paper we refer to Diestel (2017).

Let G = (V,E) be a graph. We will typically use n and m to denote |V | and
|E|, respectively. The set of neighbours of a vertex v in G is denoted by NG(v), or
briefly by N(v)2. More generally, for U ⊆ V, the neighbours in V\U of vertices
in U are called neighbours of U; their set is denoted by N(U). A subset S ⊆ V

is said to be independent if for all u, v ∈ S, (u, v) /∈ E.
A path is a non-empty graph P = (V,E) of the form V = {x0, x1, . . . , xk}

and E = {x0x1, x1x2, . . . , xk−1xk}, where the xi’s are all distinct. The number of
edges of a path is its length, and the path of length k is denoted by Pk. The
distance dG(x,y) in G of two vertices x,y is the length of a shortest x− y path
in G; if no such path exists, we set d(x,y) := ∞. The greatest distance between
any two vertices in G is the diameter of G, denoted by diam(G).

A vertex cover of a graph G = (V,E) is a subset S of the vertex set such
that every edge has at least one of its endpoints in S. Note that V \ S is an
independent set. We use mvc(G) to denote the size of a minimum vertex cover
of G. A dominating set of a graph G is a subset X of the vertex set such that
every vertex of G either belongs to X or has a neighbor in X.

Consider a graph G = (V,E) on n vertices and m edges. Guards are placed on
the vertices of the graph in order to protect it from an infinite sequence (which
is not known to the guards in advance) of attacks on the edges of the graph.
In each round, one edge uv ∈ E is attacked, and each guard either stays on the
vertex it is occupying or moves to a neighboring vertex.

Moreover, the guards are bound to move in such a way that at least one
guard moves from u to v or from v to u. The minimum number of guards which
can protect all the edges of G is called the eternal vertex cover number of G and
is denoted by evc(G).

A bipartite graph is a graph whose vertex set can be partitioned into at most
two independent sets. A co-bipartite graph is a graph which is the complement
of a bipartite graph. In other words, a co-bipartite graph is a graph whose vertex
set can be partitioned into at most two cliques.

2 Here, as elsewhere, we drop the index referring to the underlying graph if the refer-
ence is clear.
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Parameterized Complexity. A parameterized problem L is a subset of Σ∗ ×N for
some finite alphabet Σ. An instance of a parameterized problem consists of (x,k),
where k is called the parameter. A central notion in parameterized complexity
is fixed parameter tractability (FPT), which means for a given instance (x,k)
solvability in time f(k) · p(|x|), where f is an arbitrary function of k and p is a
polynomial in the input size. The notions of kernelization and compression are
defined as follows.

Definition 1. A kernelization algorithm, or in short, a kernel for a parameter-
ized problem Q ⊆ Σ∗ × N is an algorithm that, given (x,k) ∈ Σ∗ × N, outputs
in time polynomial in |x| + k a pair (x′,k′) ∈ Σ∗ × N such that (a) (x,k) ∈ Q if
and only if (x′,k′) ∈ Q and (b) |x′| + k′ � g(k), where g is an arbitrary com-
putable function. The function g is referred to as the size of the kernel. If g is a
polynomial function then we say that Q admits a polynomial kernel.

Definition 2. A polynomial compression of a parameterized language Q ⊆ Σ∗×
N into a language R ⊆ Σ∗ is an algorithm that takes as input an instance (x,k) ∈
Σ∗ × N, works in time polynomial in |x|+ k, and returns a string y such that:

1. |y| � p(k) for some polynomial p(·), and
2. y ∈ R if and only if (x,k) ∈ Q.

Our focus in this paper is the Eternal Vertex Cover problem, in which
we are interested in computing evc(G) for a graph G, and its parameterized
complexity with respect to the number of guards:

Eternal Vertex Cover

Input: A graph G = (V,E) and a positive integer k ∈ Z
+.

Parameter: k

Question: Does G have an eternal vertex cover of size at most k?

Eternal Vertex Cover is known to admit an exponential kernel of size
4k(k+ 1) + 2k (Fomin et al. 2010). We use the following standard framework to
show that it is unlikely to admit a polynomial compression.

Definition 3. Let P and Q be parameterized problems. We say that P is poly-
nomial parameter reducible to Q, written P �ppt Q, if there exists a polynomial
time computable function f : Σ∗ × N → Σ∗ × N and a polynomial p, such that
for all (x,k) ∈ Σ∗ × N (a) (x,k) ∈ P if and only (x′,k′) = f(x,k) ∈ Q and (b)
k′ � p(k). The function f is called polynomial parameter transformation.

Proposition 1. Let P and Q be parameterized problems such that there is a
polynomial parameter transformation from P to Q. If Q has a polynomial com-
pression, then P also has a polynomial compression.

In the Red Blue Dominating Set problem, we are given a bipartite graph
G = (B ∪ R,E) and an integer k and asked whether there exists a vertex set
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S ⊆ R of size at most k such that every vertex in B has at least one neighbor
in S. In the literature, the sets B and R are called “blue vertices” and “red
vertices”, respectively. It is known (see Dom et al. 2014, Theorem 4.1) that
RBDS parameterized by (|B|,k) does not have a polynomial kernel, and more
generally, a polynomial compression (see Fomin et al. 2019, Corollary 19.6):

Proposition 2 (Corollary 19.6 Fomin et al. (2019)). The Red Blue Dom-

inating Set problem, parameterized by |B| + k, does not admit a polynomial
compression unless coNP ⊆ NP/poly.

Note that based on Propositions 1 and 2, to show that a polynomial compression
for Eternal Vertex Cover parameterized by the number of guards implies
coNP ⊆ NP/poly, it suffices to show a polynomial parameter transformation
from Red Blue Dominating Set to Eternal Vertex Cover.

For more background on parameterized complexity and algorithms, the
reader is referred to the books Cygan et al. (2015); Fomin et al. (2019); Nie-
dermeier (2006); Flum and Grohe (2006); Downey and Fellows (2013).

3 Hardness on Bipartite Graphs

In this section we demonstrate the intractability of Eternal Vertex Cover

on the class of bipartite graphs of diameter six. Our key tool is a reduction
from Red Blue Dominating Set which also happens to be a polynomial
parameter transformation.

Lemma 1. There is a polynomial parameter transformation from Red Blue

Dominating Set parameterized by |B|+k to Eternal Vertex Cover param-
eterized by solution size.

Proof. Let 〈G = (V,E),b + k〉 be an instance of Red Blue Dominating Set.
We have V = R∪B. We denote the vertices in R by {v1, . . . , vr}, the vertices in B

by {u1, . . . ,ub} and use m to denote |E|. We assume that G is connected, since
Red Blue Dominating Set does not have a polynomial sized kernel even for
connected graphs.

We assume that every blue vertex has at least one red neighbour and by
returning a trivial No-instance of Eternal Vertex Cover if some blue vertex
has no red neighbour. The correctness of this follows from the fact that if some
blue vertex does not have a red neighbour then it cannot be dominated by any
subset of R.

Further, we assume that k < b by returning a trivial Yes-instance of Eter-
nal Vertex Cover if k � b. Also we assume b > 1, since when b = 1, the
instance is easily resolved and we may return an appropriate instance of Eter-
nal Vertex Cover (a trivial Yes instance if k � 1 and a trivial No instance
otherwise).
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The Construction. We will develop an instance of Eternal Vertex Cover

which we denote by 〈H, �〉 based on 〈G,k〉 as follows (see also Fig. 2). First, we
introduce r red vertices, denoted by A := {vi | 1 � i � r} and b blue vertices,
denoted by B := {ui | 1 � i � b}. Next, for all i ∈ [b], we add b2 + 3 dependent
vertices of type i, denoted by Ci := {wi

j | 1 � j � b2 + 3}. Now, we add b2 + 3
dependent vertices of type �, denoted by D := {wi

j | 1 � j � b2 + 3}. Finally,
we add two special vertices denoted by � and †, which we will refer to as the
universal and backup vertices respectively. To summarize, the vertex set consists
of the following r + (b3 + b2 + 4b + 5) vertices:

V(H) := A ∪ B ∪ C1 ∪ · · · ∪ Cb ∪ D ∪ {�, †}.
We now describe the edges in H:

– There are m structural edges given by (vp,uq) for every pair (p,q) such that
(vp,uq) ∈ E(G). In other words, for every edge (vp,uq) in the graph G, the
original vertex vp is adjacent to the partner vertex uq.

– The dependent vertices of type i are adjacent to the ith blue vertex, i.e., for
every i ∈ [b], we have a sliding edge (ui,w) for each w ∈ Ci.

– The dependent vertices of type � are adjacent to the universal vertex, i.e., we
have a sliding edge (�,w) for each w ∈ D.

– The universal vertex � is adjacent to every red vertex via a supplier edge. For
every i ∈ [r], we have the edge (vi, �).

– Finally, we have the edge (�, †), indicating that the backup vertex † is adjacent
to the universal vertex. We call this edge a bridge.

To summarize, we have the following edges in H:

E(H) = {(vp,uq) | 1 � p � r; 1 � q � b; and (vp,uq) ∈ E(H)} ←− the structural edges

∪ {(u1,w) | w ∈ C1)} ←− the type 1 sliding edges

∪
.
.
.

∪ {(ui,w) | w ∈ Ci)} ←− the type i sliding edges

∪
.
.
.

∪ {(ub,w) | w ∈ Cb)} ←− the type b sliding edges

∪ {(�,w) | w ∈ D)} ←− the type � sliding edges

∪ {(vi,�) | 1 � i � r} ←− the supplier edges

∪ {(�, †)} ←− the bridge edge.

(1)

We now let � := b+ k+ 2, and this completes the description of the reduced
instance 〈H, �〉.

Claim. The vertex cover number of H is b + 1.
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Proof. This follows from the fact that there is a matching of size b + 1 in H,
consisting of edges joining each blue vertex and � to one of their adjacent depen-
dent vertices. (showing the lower bound), and that B ∪ {�} is a vertex cover in H

(which implies the upper bound).

Proposition 3. Any vertex cover of H that has at most � vertices must contain
B ∪ {�}.

Proof. Consider a vertex cover S ⊆ V(H) that does not contain some blue vertex
ui ∈ B. Then S must contain all the dependent vertices in Ci, but since |Ci| =
b2 + 3, this contradicts our assumption that |S| � �. Consider a vertex cover
S ⊆ V(H) that does not contain the universal vertex �. Then S must contain
all the dependent vertices in D, but since |D| = b2 + 3, this contradicts our
assumption that |S| � �.

Proposition 4. If G has a red blue dominating set of size k, then the connected
vertex cover number of H is at most b + k + 1.

Proof. Let S be a Red Blue Dominating Set of size k in G. Consider the set
T = B∪ {�}∪S. First we show that H[T ] is connected. It is sufficient to show that
each vertex has a path joining it to the universal vertex. Clearly the universal
vertex is a neighbour of all the red vertices and hence it is connected to them.
Any blue vertex has a neighbour in the dominating set and this red neighbour
is adjacent to the universal vertex. So all the blue vertices are connected to the
universal vertex.

�

†

Fig. 2. A schematic depicting the construction of (H, �) starting with an instance (G,k)
of Red Blue Dominating Set. The red vertices from G instance are shown in the red
rectangle on the top while the blue vertices are in the blue rectangle positioned at the
bottom. The solid green lines correspond to edges in E(G). The small orange vertices
are the dependent vertices (some of them are omitted for clarity), while the global and
backup vertices are shown by nodes labeled � and † respectively. The wavy line shows
the bridge, the dotted lines shows the supplier edges while the dashed lines show the
sliding edges.
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Next we show that T is a vertex cover of H. Any structural edge has both
its endpoints in T . Since B ∪ {�} ⊂ T , any sliding edge has one endpoint in T .
All the supplier edges and the bridge edge have one endpoint in T which is the
universal vertex �. Thus cvc(H) � b + k + 1.

The Forward Direction. Suppose 〈G = (V,E),k〉 is a Yes-instance of Red Blue

Dominating Set. We argue that 〈H, �〉 is a Yes-instance of Eternal Vertex

Cover. From Klostermeyer and Mynhardt (2009), we have evc(H) � cvc(H)+1.
Further, Proposition 4 implies that evc(H) � b + k + 2 i.e. evc(H) � �. Thus
〈H, �〉 is a Yes-instance of Eternal Vertex Cover.

The Backward Direction. Suppose 〈H, �〉 is a Yes-instance of Eternal Ver-

tex Cover. We argue that 〈G = (V,E),k〉 is a Yes-instance of Red Blue

Dominating Set.
We know that any sequence of edge attacks in H can be defended by deploying

at most � = b + k + 2 guards. Let S denote the initial placement of guards.
We now consider two cases:

Case 1. S contains the backup vertex. We already know that S contains all the
blue vertices and the universal vertex by Proposition 3. This accounts for the
positions of (b+ 1) guards. Additionally, because of the case we are in, we have
one guard on the backup vertex. So the remaining k guards occupy either red
or dependent vertices. We will define a corresponding dominating set of size at
most k in G.

Specifically, let A′ := {j | 1 � j � r and vi ∈ S} and B′ := {j | 1 � j �
b and Cj ∩S 
= ∅}. For each j ∈ B′, let �j be such that v�j is an arbitrarily chosen
neighbor of uj in G. Note that it is possible that j1 
= j2 in B′ but �j1 = �j2 . We
now define C′ := {�j | j ∈ B′}. We claim that S := {vi | i ∈ A′ ∪C′} is a dominating
set for the blue vertices in G.

Intuitively speaking, our choice of dominating set is made by choosing all red
vertices in G for whom the corresponding vertices in H have a guard on them,
and additionally, for all blue vertices who have a guard on a dependent neighbor
vertex in H, we choose an arbitrary red neighbor in G—while this choice may
coincide for some blue vertices, we note that the total number of chosen vertices
is no more than the number of guards who are positioned on dependent and red
vertices, i.e., k. In other words, we have that |A′ ∪ C′| � k.

Suppose S is not a dominating set for the blue vertices in G. Then, let ut ∈ B

be a vertex that is not dominated by S. Let us attack a structural edge (ut, vq).
Note that vq is not occupied by a guard, and the guard on ut is forced to move
to vq to defend this attack. However, observe that our assumption that ut is
not dominated in G implies that no neighbor of ut has a guard in S. Therefore,
there is no guard that can move to ut now. But, by Proposition 3, the new
configuration must contain a guard on ut, because it is a vertex cover of H of
size at most l. This is a contradiction. Therefore, S is indeed a dominating set
in G of size at most k.
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Case 2. S does not contain the backup vertex. In this case, we attack the bridge.
Let S′ denote the placement of the guards obtained by defending this attack.
Note that S′ must contain the backup vertex. Now we argue as we did in the
previous case. This concludes the proof in the reverse direction.

Observe that the instance that we construct in the proof of Lemma 1 is both
bipartite and has diameter at most six.

Recall that any vertex cover of H that has at most � vertices must contain
B ∪ {�}. It is easy to verify that all the vertex covers used by the defense in the
forward direction induced connected subgraphs, since every vertex cover con-
tains all the blue vertices, a dominating set for the blue vertices, and a universal
vertex that is adjacent to all the vertices in the dominating set; and any other
vertex is adjacent to one of the blue vertices (or the universal vertex). There-
fore, the reduction above also serves to demonstrate the hardness of Eternal

Connected Vertex Cover on bipartite graphs—note that the argument for
the reverse direction is exactly the same since every connected vertex cover is
also a vertex cover.

Overall, Lemma 1 along with Proposition 2 and the remarks above lead to
our main result.

Theorem 1 (EVC on Bipartite Graphs). Both the Eternal Vertex

Cover and Eternal Connected Vertex Cover problems are NP-hard and
do not admit a polynomial compression parameterized by the number of guards
(unless NP ⊆ coNP /poly), even on bipartite graphs of diameter six.

4 A Polynomial-Time Algorithm for Co-bipartite Graphs

In this section, we focus on a proof of Theorem 2.

Theorem 2 (EVC on Co-Bipartite Graphs). There is a quadratic-time
algorithm for Eternal Vertex Cover on the class of cobipartite graphs.

The proof of this theorem is derived essentially by combining some existing
results. To the best of our knowledge, this result has not been stated explicitly
elsewhere and is not subsumed by known polynomial-time algorithms for special
classes of graphs like chordal graphs, cactus graphs, and generalized trees3.

Let G = (V = A � B,E) be a cobipartite graph with bipartition A,B. Recall
that G[A] and G[B] are cliques. Consider that A has p vertices {a1,a2, . . . ,ap}

and B has q vertices {b1,b2, . . . ,bq}. Without loss of generality we assume that
p � q and that no vertex in A is universal. (If there is some such universal
vertex in A, simply shift that vertex to B). We also assume throughout that G

3 The notion of generalized trees in the context of eternal vertex cover was considered
by Araki et al. (2015). Such graphs are characterized by the following property: every
block is an elementary bipartite graph or a clique having at most two cut-vertices in
it. Note that a cobipartite graph with four vertices in both parts with two disjoint
edges across the parts is not a generalized tree.
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is connected and p � 1: if p = 0 then G is a clique and evc(G) = mvc(G) =
|V(G)|− 1.

Since the cliques require p − 1 and q − 1 vertices respectively for a vertex
cover, we have mvc(G) � p + q − 2. Since p = |A| � 1, there exists a (non-
universal) vertex ai on the A side and therefore it has at least one non-neighbor
(say bj) and thus we have a vertex cover of size p+q−2 given by V(G)\{ai,bj}.
Therefore, mvc(G) = p + q − 2. We make a note of this fact in the following
claim.

Claim. For any co-bipartite graph G with bipartitions A and B with all the
notations as described above, if there are no universal vertices in A and |A| � 1,
mvc(G) = p + q − 2.

It is easy to see that for any graph G, if the number of guards is one less than
the number of vertices, the defender always has a winning strategy. Therefore,
in our case, evc(G) � p + q − 1.

Thus, for all co-bipartite graphs (other than cliques) we have:

mvc(G) = p + q − 2 and p + q − 2 � evc(G) � p + q − 1.

Now, one easy way to obtain a polynomial time algorithm for co-bipartite
graphs is to use the PSPACE algorithm given by Fomin et al. (2010), as follows.
When G is a co-bipartite graph on n vertices which is not a clique, the based on
the above, we have that mvc(G) is n − 2 and evc(G) is either n − 2 or n − 1.
For k ∈ {n − 2,n − 1}, the value of

(
n
k

)
is at most n2. This is the number of

vertices in the multigraph obtained by Fomin et al. (2010). The number of edges
of the multigraph is at most the square of number of vertices, multiplied by the
number of edges of G. The construction of this graph can therefore be done in
polynomial time, using the procedure given by Fomin et al. (2010). It is also
possible to identify whether evc(G) = k where k ∈ {n − 2,n − 1} in polynomial
time using the algorithm given by Fomin et al. (2010).

This running time can be improved to O(n2) as follows. Since G is not a
clique, at least one vertex of A is not a universal vertex. From results in Babu et
al. (2020), it follows that for evc(G) = mvc(G) = n − 2, for each vertex v there
must be a vertex cover of G of size n − 2 that contains v and all cut vertices of
G. Note that a cobipartite graph with bipartition (A,B) can have at most one
cut vertex in A and at most one B. Further, a vertex u ∈ A is a cut vertex if
and only if N(B) ∩ A = {u}. Likewise, a vertex u ∈ B is a cut vertex if and only
if N(A) ∩ B = {u}. Therefore, we can enumerate the set of cut vertices in linear
time, and check if the necessary condition holds in O(n2) time.

We will also argue that this necessary condition is also sufficient to guarantee
evc(G) = n − 2, thus completing the description of an O(n2) algorithm to
determine evc(G) when G is a cobipartite graph. Suppose that the necessary
condition for evc(G) = mvc(G) = n − 2 holds. Then every minimum vertex
cover of G must contain exactly |A|− 1 vertices of A and exactly |B|− 1 vertices
from B. Therefore, if v is a universal vertex in B, then v must be present in every
minimum vertex cover of G. Further, |A| > 1 and no vertex of A is a pendant
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vertex. It also follows from the necessary condition that A must have at least
two non-cut, non-universal vertices. Similarly, B must also contain at least two
non-universal, non-cut vertices.

Under the necessary condition, we can now show that evc(G) = n − 2.
Each configuration will have the following invariant: all cut vertices occupied
by guards, exactly one of the non-cut, non-universal vertex of A and exactly one
of the non-cut non-universal vertex of B are unoccupied and all other vertices
occupied. If an attack on an edge inside A or B happens, the unguarded endpoint
of that edge must be a non-cut, non-universal vertex of G. A rearrangement of
guards to achieve a symmetric configuration can be done easily. Consider an
attack on an edge u − v with u ∈ A and v ∈ B, when v is not occupied. Then
v is not a cut vertex of G and there is another v ′ ∈ B which has a neighbor u ′

in A and v ′ has a guard. We can move the guards from u to v, v ′ to u ′ and a
sequence of other movements inside cliques B and A to maintain our invariant.
This concludes our proof.

Remark 1. We note that the problem of determining the EVC of cobipartite
graphs can also be reduced the problem to a “reachability game” played on a
graph of size poly(n), leading to an O(n4) algorithm Grädel et al. (2002).

5 Concluding Remarks

We established the hardness of Eternal Vertex Cover on bipartite graphs
of constant diameter. We also showed that, under standard complexity-theoretic
assumptions, the problem does not admit a polynomial compression on these
graph classes when parameterized by the number of guards. Because of the rela-
tionship between mvc(G) and evc(G), this also implies hardness when param-
terized by the vertex cover number. In the light of these developments, it will
be interesting to pursue improved FPT and approximation algorithms for these
classes of graphs. It is also unclear if Eternal Vertex Cover is in NP even
on these classes of graphs.

Remark 2. The full version of this paper can be found on ArXiV (Babu et al.
2022). The Appendix has a different algorithm with a comparable running time
in the context of Theorem 2.
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Abstract. Given a set of terminal pairs on the external face of an undi-
rected unweighted planar graph, we give a linear-time algorithm for com-
puting the union of non-crossing shortest paths joining each terminal
pair, if such paths exist. This allows us to compute distances between
each terminal pair, within the same time bound.

We also give a novel concept of incremental shortest path subgraph of
a planar graph, i.e., a partition of the planar embedding in subregions
that preserve distances, that can be of interest itself.

Keywords: planar graphs · non-crossing paths · shortest paths ·
undirected unweighted graphs · multiple pairs · external face

1 Introduction

The problem of computing shortest paths in planar graphs arises in application
fields such as intelligent transportation system (ITS) and geographic information
system (GIS) [22,36], route planning [6,16,30], logistic [27], traffic simulations [3]
and robotics [23]. In particular, non-crossing paths in a planar graph are studied
to optimize VLSI layout [7], where two non-crossing paths may share edges and
vertices, but they do not cross each other in the plane.

We are given a planar graph G = (V,E), where V is a set of n vertices and
E is a set of edges, with |E| = O(n). The graph has a fixed embedding, and we
are also given a set of k terminal pairs (s1, t1), (s2, t2), . . . , (sk, tk) lying on the
external face of G. The non-crossing shortest paths problem (NCSP problem)
consists in computing the union of k non-crossing shortest paths in G, each
joining a terminal pair (si, ti), provided that such non-crossing paths exist (they
exist if and only if the terminal pairs are well-formed, see Subsect. 2.2).
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State of the Art. Takahashi et al. [33] solved the NCSP problem in a non-negative
edge-weighted planar graph in O(n log k) time (actually, in their paper the time
complexity is O(n log n), that can easily reduced to O(n log k) by applying the
planar single source shortest path algorithm by Henzinger et al. [20]). Their
result is improved by Steiger in O(n log log k) time [32], exploiting the algorithm
by Italiano et al. [21]. These two algorithms maintain the same time complexity
also in the unweighted case.

Our Results. In this paper, we solve the NCSP problem on unweighted planar
graphs in O(n) time. We improve, in the unweighted case, the results in [32,33].
By applying the technique in [4] we can compute distances between all terminal
pairs in linear time.

Our algorithm relies on two main results:

– an algorithm due to Eisenstat and Klein [11], that gives in O(n) time an
implicit representation of a sequence of shortest-path trees in an undirected
unweighted planar graph G, where each tree is rooted in a vertex of the
external face of G. Note that, if we want to compute shortest paths from
the implicit representation of shortest path trees given in [11], then we spend
Θ(kn) time; this happens when all k shortest paths share a subpath of Θ(n)
edges.

– the novel concept of incremental shortest paths (ISP) subgraph of a graph
G, introduced in Sect. 3, that is a subgraph incrementally built by adding
a sequence of shortest paths in G starting from the infinite face of G. We
show that an ISP subgraph of G partitions the embedding of G into distance
preserving regions, i.e., for any two vertices a, b in G lying in the same region
R it is always possible to find a shortest path in G joining a and b that is
contained in R.

Related Work. Our article fits into a wider context of computing many distances
in planar graphs. In the positive weighted case, the all pairs shortest paths
(APSP) problem is solved by Frederickson in O(n2) time [14], while the single
source shortest paths (SSSP) problem is solved in linear time by Henzinger
et al. [20]. The best known algorithm for computing many distances in planar
graphs is due to Gawrychowski et al. [15] and it allows us to compute the distance
between any two vertices in O(log n) time after a preprocessing requiring O(n3/2)
time. In the planar unweighted case, SSSP trees rooted at vertices in the external
face can be computed in linear time as in [11]. More results on many distances
problem can be found in [8–10,13,28,29].

If we are interested in distances from any vertex in the external face to any
other vertex, then we can use Klein’s algorithm [24] that, with a preprocessing
of O(n log n) time, answers to each distance query in O(log n) time.

Kowalik and Kurowski [25] deal with the problem of deciding whether any
two query vertices of an unweighted planar graph are closer than a fixed constant
k. After a preprocessing of O(n) time, their algorithm answers in O(1) time, and,
if so, a shortest path between them is returned.
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Non-crossing shortest paths are also used to compute max-flow in undirected
planar graphs [18,19,31]. In particular, they are used to compute the vitality of
edges and vertices with respect to the max-flow [1,2,5].

Balzotti and Franciosa [4] show that, given the union of a set of non-crossing
shortest paths in a planar graph, the lengths of each shortest path can be com-
puted in linear time. This improves the result of [33], that can only be applied
when the union of the shortest paths is a forest.

Wagner and Weihe [35] present an O(n) time algorithm for finding edge-
disjoint (not necessarily shortest) paths in a undirected planar graph such that
each path connects two specified vertices on the infinite face of the graph.

Improved Results. We specialize the problem of finding k non-crossing short-
est paths in [33] to the unweighted case, decreasing the time complexity from
O(n log k) to O(n) (for every k). Therefore, in the case of unweighted graphs we
improve the results in [12,26,34].

Erickson and Nayyeri [12] generalized the work in [33] to the case in which
the k terminal pairs lie on h face boundaries. They prove that k non-crossing
paths, if they exists, can be found in 2O(h2)n log k time. Applying our results, if
the graph is unweighted, then the time complexity decreases to 2O(h2)n.

The same authors of [33] used their algorithm to compute k non-crossing
rectilinear paths with minimum total length in a plane with r obstacles [34].
They found such paths in O(n log n) time, where n = r + k, which reduces to
O(n) time if the graph is unweighted by using our results.

Kusakari et al. [26] showed that a set of non-crossing forests in a planar graph
can be found in O(n log n) time, where two forest F1 and F2 are non-crossing if
for any pair of paths p1 ⊆ F1 and p2 ⊆ F2, p1 and p2 are non-crossing. With our
results, if the graph is unweighted, then the time complexity becomes linear.

Our Approach. We represent the structure of terminal pairs by a partial order
called genealogy tree. We introduce a new class of graphs, ISP subgraphs, that
partition a planar graph into regions that preserve distances. Our algorithm is
split in two parts.

In the first part we use Eisenstat and Klein’s algorithm that gives a sequence
of shortest path trees rooted in the vertices of the external face. We choose some
specific shortest paths from each tree to obtain a sequence of ISP subgraphs
X1, . . . Xk. By using the distance preserving property of regions generated by ISP
subgraphs’, we prove that Xi contains a shortest si-ti path, for all i ∈ {1, . . . , k}.

In the second part of our algorithm, we extract from each Xi a shortest si-ti
path and we obtain a set of non-crossing shortest paths that is our goal. In this
part we strongly use the partial order given by the genealogy tree.

Structure of the Paper. After giving some definitions in Sect. 2, in Sect. 3 we
explain the main theoretical novelty. In Sect. 4 first we resume Eisenstat and
Klein’s algorithm in Subsect. 4.1, then in Subsects. 4.2 and 4.3 we show the
two parts of our algorithm, and we prove the whole computational complexity.
Conclusions are given in Sect. 5.
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2 Definitions

Let G be a plane graph, i.e., a planar graph with a fixed planar embedding. We
denote by f∞

G (or simply f∞) its unique infinite face, it will be also referred to
as the external face of G. Given a face f of G we denote by ∂f its boundary
cycle. Topological and combinatorial definitions of planar graph, embedding and
face can be found in [17].

We recall standard union and intersection operators on graphs, for conve-
nience we define the empty graph as a graph without edges.

Definition 1. Given two undirected (or directed) graphs G = (V (G), E(G)) and
H = (V (H), E(H)), we define the following operations and relations:

– G ∪ H = (V (G) ∪ V (H), E(G) ∪ E(H)),
– G ∩ H = (V (G) ∩ V (H), E(G) ∩ E(H)),
– G ⊆ H ⇐⇒ V (G) ⊆ V (H) and E(G) ⊆ E(H),
– G \ H = (V (G), E(G) \ E(H)).

Given an undirected (resp., directed) graph G = (V (G), E(G)), given an edge
(resp., dart) e and a vertex v we write, for short, e ∈ G in place of e ∈ E(G)
and v ∈ G in place of v ∈ V (G).

We denote by uv the edge whose endpoints are u and v and we denote
by −→uv the dart from u to v. For every dart −→uv we define rev[−→uv] = −→vu and
head[−→uv] = v. For every vertex v ∈ V (G) we define the degree of v as deg(v) =
|{e ∈ E(G) | v is an endpoint of e}|.

For each � ∈ N we denote by [�] the set {1, . . . , �}.
Given a (possibly not simple) cycle C, we define the region bounded by C,

denoted by RC , as the maximal subgraph of G whose external face has C as
boundary.

2.1 Paths and Non-crossing Paths

Given a directed path p we denote by p its undirected version, in which each
dart

−→
ab is replaced by edge ab; moreover, we denote by rev[p] its reverse version,

in which each dart
−→
ab is replaced by dart

−→
ba.

We say that a path p is an a-b path if its extremal vertices are a and b; clearly,
if p is a directed path, then p starts in a and it ends in b. Moreover, given i ∈ [k],
we denote by i-path an si-ti path, where si, ti is one of the terminal pairs on the
external face.

Given an a-b path p and a b-c path q, we define p ◦ q as the (possibly not
simple) a-c path obtained by the union of p and q.

Let p be a simple path and let a, b ∈ V (p). We denote by p[a, b] the subpath
of p with extremal vertices a and b.

We denote by w(p) the length of a path p of a general positive weighted
graph G. If G is unweighted, then we denote the length of p as |p|, that is the
number of edges.
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We say that two paths in a plane graph G are non-crossing if the (undi-
rected) curves they describe in the graph embedding do not cross each other,
non-crossing paths may share vertices and/or edges or darts. This property obvi-
ously depends on the embedding of the graph; a combinatorial definition of
non-crossing paths can be based on the Heffter-Edmonds-Ringel rotation prin-
ciple [17]. Crossing and non-crossing paths are given in Fig. 1.

Fig. 1. paths in (a) and (b) are crossing, while paths in (c) and (d) are non-crossing.

2.2 Genealogy Tree

W.l.o.g., we assume that terminal pairs are distinct, i.e., there is no pair i, j ∈ [k]
such that {si, ti} = {sj , tj}. Let γi be the path in f∞

G that goes clockwise from
si to ti, for i ∈ [k]. We also assume that pairs {(si, ti)}i∈[k] are well-formed,
i.e., for all j, � ∈ [k] either γj ⊂ γ� or γj ⊃ γ� or γj and γ� have no common
edges; otherwise it can be easily seen that it is not possible to find a set of k
non-crossing paths joining terminal pairs. This property can be easily verified
in linear time, since it corresponds to checking that a string of parentheses is
balanced, and it can be done by a sequential scan of the string.

We define here a partial ordering as in [4,33] that represents the inclusion
relation between γi’s. This relation intuitively corresponds to an adjacency rela-
tion between non-crossing shortest paths joining each pair. Choose an arbitrary
i∗ such that there are neither sj nor tj , with j �= i∗, walking on f∞ from si∗

to ti∗ (either clockwise or counterclockwise), and let e∗ be an arbitrary edge on
that walk. For each j ∈ [k], we can assume that e∗ �∈ γj , indeed if it is not true,
then it suffices to switch sj with tj . We say that i ≺ j if γi ⊂ γj . We define
the genealogy tree TG of a set of well-formed terminal pairs as the transitive
reduction of poset ([k],≺). W.l.o.g., we assume that i∗ = 1, hence the root of
TG is 1.

If i ≺ j, then we say that i is a descendant of j and j is an ancestor of i.
Moreover, we say that j is the parent of i, and we write p(i) = j, if i ≺ j and
there is no r such that i ≺ r and r ≺ j. Figure 2 shows a set of well-formed
terminal pairs, and the corresponding genealogy tree for i∗ = 1.

From now on, in all figures we draw f∞
G by a solid light grey line. W.l.o.g.,

we assume that the external face is a simple cycle, hence, G is a biconnected
graph. Indeed, if not, it suffices to solve the NCSP problem in each biconnected
component.
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Fig. 2. on the left a set of well-formed terminal pairs. Any value in {1, 3, 5, 7} can be
chosen as i∗. If we choose i∗ = 1, then we obtain the genealogy tree on the right.

3 ISP Subgraphs

In this section we introduce the concept of incremental shortest paths (ISP) sub-
graph of a graph G, that is a subgraph incrementally built by adding a sequence
of shortest paths in G starting from f∞

G (see Definition 2). The interest towards
ISP subgraphs is due to the fact that for any two vertices a, b in G lying in a
same face f of the ISP subgraph there is always a shortest path in G joining a
and b contained in f (boundary included). All the results of this section hold for
positive weighted graphs, where the length of a path is the sum of edge weights
instead of the number of edges.

This is the main novel result of this paper, that allows us to prove that, in
order to build the union of shortest paths joining terminal pairs, we can start
from the union of some of the shortest paths computed by the algorithm in [11].

Definition 2. A graph X is an incremental shortest paths (ISP) subgraph of
a positive weighted graph G if X = Xr, where X0, X1, . . . , Xr is a sequence of
subgraphs of G built in the following way: X0 = f∞

G and Xi = Xi−1 ∪ pi, where
pi is a shortest xi-yi path in G with xi, yi ∈ Xi−1.

Remark 1. All degree one vertices of an ISP subgraph of G are in f∞
G .

We define now operator ↓, that given a path π and a cycle C, in case π crosses
C, replaces some subpaths of π by some portions of C, as depicted in Fig. 3(b).
We observe that π ↓ ∂f could be not a simple path even if π is.

Definition 3. Let C be a cycle in a positive weighted graph G. Let a, b be two
vertices in RC and let π be a simple a-b path. In case π ⊆ RC we define
π ↓ C = π. Otherwise, let (v1, v2, . . . , v2r) be the ordered subset of vertices of π
that satisfies the following: π[a, v1] ⊆ RC , π[v2r, b] ⊆ RC , π[v2i−1, v2i] and RC

have no common edges and π[v2i, v2i−1] ⊆ RC , for all i ∈ [r]. For every i ∈ [r],
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let μi be the v2i−1-v2i path on C such that the region bounded by μi ◦π[v2i−1, v2i]
does not contain RC . We define π ↓ C = π[a, v1] ◦ μ1 ◦ π[v2, v3] ◦ μ2 . . . ◦
π[v2r−2, v2r−1] ◦ μr ◦ π[v2r, b].

Definition 2 and Definition 3 are depicted in Fig. 3.

Fig. 3. (a) an ISP subgraph X of G; extremal vertices xi, yi of pi are drawn, for i ∈ [5].
Different faces of X have different colors. An example of Definition 3 is given in (b).

In the following theorem we show that, given any face f of an ISP subgraph
X of G, every path π in G whose extremal vertices are in R∂f is not shorter
than π ↓ ∂f .

Theorem 1. Let X be an ISP subgraph of a positive weighted graph G. Let f
be any face of X, and let a, b be two distinct vertices in R∂f . For any a-b path
π we have w(π ↓ ∂f) ≤ w(π).

Proof. Let {Xi}i∈[r] be the sequence of ISP subgraphs such that X = Xr, and
let pi be the path that builds Xi from Xi−1. We assume that pi has no vertices in
Xi−1 other than its endpoints xi and yi, otherwise we can split pi on intersections
with Xi−1 and repeatedly apply the same proof to each portion of pi. We prove
the thesis by induction on j for every choice of a face f of Xj , a, b ∈ R∂f and
a-b path π.

In the base case, where j = 1, there are exactly two faces A and B in X1

other than f∞
G . Let a, b ∈ V (R∂A) (the same argument holds for B) and let π

be any a-b path. In case π ⊆ R∂A we have π ↓ ∂A = π, hence the thesis trivially
holds. In case π �⊆ R∂A, then π ↓ ∂A is not longer than π because some subpaths
of π have been replaced by subpaths of p1 with the same extremal vertices and
p1 is a shortest path.

We assume that the thesis holds for all i < j and we prove it for j. Let f be
a face of Xj and let f ′ be the unique face of Xj−1 such that f ⊂ f ′ (Fig. 4(a)
and Fig. 4(b) show faces f and f ′, respectively). Let a, b ∈ V (R∂f ) and let π be
an a-b path. Three cases may occur:
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case π ⊆ R∂f : the thesis trivial holds, since π ↓ ∂f = π;
case π ⊆ R∂f ′ and π �⊆ R∂f : since π ⊆ R∂f ′ and π �⊆ R∂f , then π crosses pj an

even number of times, thus π ↓ ∂f is not longer than π, since some subpaths
of π have been replaced by subpaths of pj with the same extremal vertices
and pj is a shortest path (see Fig. 4(c) where π is the red and dashed path);

case π �⊆ R∂f ′ : since f ⊆ f ′, it is easy to see that π ↓ ∂f = (π ↓ ∂f ′) ↓ ∂f .
Let us consider π′ = π ↓ ∂f ′. By induction, it holds that w(π′) ≤ w(π). We
observe now that π′ ⊆ R∂f ′ and π′ �⊆ R∂f , hence the previous case applies,
showing that w(π′ ↓ ∂f) ≤ w(π′). Finally, the two previous inequalities
imply w(π ↓ ∂f) ≤ w(π ↓ ∂f ′) ≤ w(π) (see Fig. 4(c) where π is the green
and continue path). ��

Fig. 4. in (a) and (b) faces f and f ′ build on the ISP graph in Fig. 3(a). In (c) we
depict the second and third case of the proof of Theorem 1.

We can state now the main property of ISP subgraphs.

Corollary 1. Let X be an ISP subgraph of G and let f be any face of X. For
every a, b ∈ R∂f there exists a shortest a-b path of G contained in R∂f .
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4 Our Algorithm

We summarize in Subsect. 4.1 the result of Eisenstat and Klein’s paper [11], that
deals with the multiple-source shortest paths problem. For the sake of clarity,
we split our algorithm in two parts:

– in Subsect. 4.2 we introduce algorithm NCSPsupergraph, that builds a
sequence {Xi}i∈[k] of subgraphs of G such that Xk contains a shortest path for
each terminal pair, and it possibly contains some extra edges. We anticipate
that Xi ∪ f∞

G is an ISP subgraph of G, for all i ∈ [k].
– in Subsect. 4.3 we present algorithm NCSPunion that, by using the sequence

of graphs {Xi}i∈[k] found by algorithm NCSPsupergraph, builds a directed
graph that is exactly the union of the shortest directed paths joining each
terminal pair contained in the output of algorithm NCSPsupergraph.

4.1 Eisenstat and Klein’s Result

The algorithm in [11] takes as input an undirected unweighted planar graph
G, where v1, v2, . . . , vr is the sequence of vertices in the external face of G in
clockwise order, and returns an implicit representation of a sequence of shortest
path trees Ti, for i ∈ [r], where each Ti is rooted in vi.

The sequence of trees Ti, for i ∈ [r], is represented by explicitly listing the
darts in T1, and listing the darts that are added to transform Ti into Ti+1, for
1 < i ≤ r (for each added dart from x to y, the unique dart that goes to y
in Ti is deleted; with the only two exceptions of the added dart leading to vi,
and the deleted dart leading to vi+1). Hence, the output of their algorithm is
T1 and a sequence of sets of darts. A key result in [11] shows that if a dart d
appears in Ti+1 \ Ti, then d cannot appear in any Tj+1 \ Tj , for j > i. Thus the
implicit representation of the sequence of shortest path trees has size O(n). This
representation can be computed in O(n) time.

4.2 Algorithm NCSPsupergraph

Algorithm NCSPsupergraph builds a sequence {Xi}i∈[k] of subgraphs of G by
using the sequence of shortest path trees given by Eisenstat and Klein’s algo-
rithm. We point out that we are not interested in the shortest path trees rooted
at every vertex of f∞

G , but we only need the shortest path trees rooted in si’s.
So, we define Ti as the shortest path tree rooted in si, for i ∈ [k], i.e., Ti = Tsi

.
We denote by Ti[v] the path in Ti from si to v.

The algorithm starts by computing the first subgraph X1, that is just the
undirected 1-path in T1, i.e., T1[t1] (we recall that all Ti’s trees given by algorithm
in [11] are rooted directed tree, thus T1[t1] is the undirected version of T1). Then
the sequence of subgraphs Xi, for i = 2, . . . , k is computed by adding some
undirected paths extracted from the shortest path trees Ti’s defined by Eisenstat
and Klein’s algorithm.
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We define the set Hi ⊆ Xi of vertices h such that at least one dart d is added
while passing from Ti−1 to Ti such that head[d] = h. Hence, Hi is the set of
vertices of Xi whose parent in Ti differs from the parent in Ti−1. At iteration i,
we add path Ti[h] to Xi, for each h in Hi.

Algorithm NCSPsupergraph:
Input: an undirected unweighted planar embedded graph G and k well-formed

terminal pairs of vertices (si, ti), for i ∈ [k], on the external face of G
Output: an undirected graph Xk that contains a set of non-crossing paths

P = {π1, . . . , πk}, where πi is a shortest si-ti path, for i ∈ [k]
1 Compute a shortest path tree T1 rooted in s1;

2 X1 = T1[t1];
3 for i = 2, . . . , k do
4 Xi = Xi−1;
5 Compute Ti from Ti−1 by the algorithm of Eisenstat and Klein [11];
6 Compute the set Hi of vertices of Xi whose parent in Ti differs from the

parent in Ti−1;

7 For all h ∈ Hi, Xi = Xi ∪ Ti[h];
8 Let ηi be the undirected path on Ti that starts in ti and walks backwards

until a vertex in Xi is reached;
9 Xi = Xi ∪ ηi;

Lemma 1. Algorithm NCSPsupergraph has O(n) time complexity.

Proof. Eisenstat and Klein’s algorithm requires O(n) time, implying that the
Hi’s and the Ti’s can be found in O(n) time. Algorithm NCSPsupergraph visits
each edge of G at most O(1) times (in Line 7, Ti[h] can be found by starting
in h and by walking backwards on Ti until a vertex of Xi is found). The thesis
follows. ��

Figure 5 shows how algorithm NCSPsupergraph builds X4 starting from X3.
Starting from X3 in Fig. 5(a), Fig. 5(b) shows the darts whose head is in H4.
Consider the unique dart d whose head is the vertex x: we observe that d is
already in X3, this happens because rev[d] ∈ T3[t3]. Indeed, it is possible that
at iteration i some portions of some undirected paths that we add in Line 7 are
already in Xi−1. Figure 5(c) highlights

⋃
h∈H4

T4[h] and η4, while in Fig. 5(d) X4

is drawn.
Subgraphs {Xi}i∈[k] built by algorithm NCSPsupergraph, together with f∞

G ,
satisfy all the hypothesis of Theorem 1. Indeed, paths added in Line 7 and Line 9
are shortest paths in G joining vertices in Xi−1, thus fulfilling Definition 2. So,
we exploit Theorem 1 to prove that Xi contains an i-path, for i ∈ [k], and, in
particular, Xk contains a set of non-crossing paths P = {π1, . . . , πk}, where πi

is a shortest i-path, for i ∈ [k]. The main idea is to show that Xi contains an
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Fig. 5. algorithm NCSPsupergraph: graph X4 is built starting from X3.

undirected path that has the same length as the shortest i-path found by the
algorithm by Eisenstat and Klein. This is proved in Theorem 2.

Given a subgraph X of G, we say that an i-path p is the leftmost i-path in
X if for every i-path q ⊆ X it holds Rp◦γi

⊆ Rq◦γi
.

We say that an undirected path p always turns left if p chooses the leftmost
edge, w.r.t. the fixed embedding, in each vertex going from a to b, where a
and b are the extremal vertices of p. Note that not the leftmost a-b path is not
necessarily the path that starts in a and always turns left until b is reached.

Theorem 2. Let πi be the undirected leftmost i-path in Xi, for i ∈ [k]. The
following statements hold:

2.(1) πi is the si-ti path in Xi that always turns left, for i ∈ [k],
2.(2) πi is a shortest i-path, for i ∈ [k],
2.(3) for all i, j ∈ [k], πi and πj are non-crossing.

Proof. We prove all the statements separately.

2.(1) For convenience, for every i ∈ [k], let λi be the undirected path on Xi

that starts in si and always turns left until it reaches either ti or a vertex
x of degree one in Xi; we observe that λi is well defined and, by Remark 1,
x ∈ f∞

G . We have to prove that λi = πi.
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Let i ∈ [k]. First, we observe that si ∈ Xi because si−1 ∈ Hi, thus, by Line 7,
Ti[si−1] ⊆ Xi. This implies si ∈ Xi as we have claimed.
Let x be the extremal vertex of λi other than si. Assume by contradiction that
x �= ti. Two cases are possible: either x ∈ V (f∞

G ) \ V (γi) or x ∈ V (γi) \ {ti}.
The first case cannot occur because Line 7 and Line 9 imply Ti[ti] ⊆ Xi, thus
λi would cross ηi, absurdum. In the second case, let us assume by contradiction
that x ∈ V (γi)\{ti}. Let d ∈ λi be the dart such that head[d] = x. By definition
of λi, vertex x has degree one in Xi. By Line 2, Line 7 and Line 9, all vertices
with degree one are equal to either s� or t�, for some � ∈ [k], and this implies
that there exists j < i such that x ∈ {sj , tj}. This is absurdum because there
is not sj or tj in V (γi) \ {si, ti} such that j < i. Hence λi is an i-path, and, by
its definition, λi is the leftmost i-path in Xi. Therefore λi = πi.

2.(2) We prove that πi is a shortest i-path by using Theorem 1, indeed, Xi ∪f∞
G

is an ISP subgraph of G by construction. Let G′ be the graph obtained from G
by adding a dummy path q from si to ti in f∞

G with high length (for example,
|q| = |E(G)|). Let C be the cycle πi ◦ q. We observe that Ti[ti] ↓ C = πi and
C is the boundary of a face of G′. Thus, by Theorem 1, |πi| ≤ |Ti[ti]|. Since
Ti[ti] is a shortest path, then πi is a shortest path in G′, hence it also is a
shortest path in G.

2.(3) Let us assume by contradiction that there exist i, j ∈ [k] such that πi

and πj are crossing, with i < j. Thus πj has not turned always left in Xj ,
absurdum. ��

4.3 Algorithm NCSPunion

The graph Xk given by the algorithm NCSPsupergraph contains a shortest path
for each terminal pair, but Xk may also contain edges that do not belong to any
shortest path. To overcome this problem we apply algorithm NCSPunion, that
builds a directed graph Yk =

⋃
i∈[k] ρi, where ρi is a directed shortest i-path, for

i ∈ [k]. Moreover, we prove that Yk can be built in linear time. This implies that,
by using the results in [4], we can compute the length of all shortest i-paths, for
i ∈ [k], in O(n) time (see Theorem 4).

We use the sequence of subgraphs {Xi}i∈[k]. By Theorem 2, we know that
Xi contains a shortest undirected i-path πi and we can list its edges in O(|πi|)
time. But if an edge e is shared by many πi’s, then e is visited many times. Thus
obtaining

⋃
i∈[k] πi by this easy procedure requires O(kn) time. To overcome this

problem, we should visit every edge in
⋃

i∈[k] πi only a constant number of times.
Now we introduce two useful lemmata the will be used later. The first lemma

shows that two uncomparable directed paths πi and πj (i.e., such that i �≺ j and
j �≺ i) in the genealogy tree TG cannot share a dart, although it is possible
that

−→
ab ∈ πi and

−→
ba ∈ πj . The second lemma deals with the intersection of

non-crossing paths joining comparable pairs.

Lemma 2. Let πi be a shortest directed i-path and let πj be a shortest directed
j-path, for some i, j ∈ [k]. If j is not an ancestor neither a descendant of i in
TG, then πi and πj have no common darts.



Non-crossing Shortest Paths 89

Proof. Let us assume by contradiction that πi and πj have at least one common
dart, and let d be the dart in πi ∩πj that appears first in πi. Let R be the region
bounded by πj [sj , tail(d)], πi[si, tail(d)] and the clockwise undirected si−sj path
in f∞ (Fig. 6(a) shows πi, πj and R). Being πj a simple path, then πj crosses πi

in at least one vertex in πi[si, tail(d)]. Let x be the first vertex in πi[si, tail(d)]
after head(d) in πj . Now by looking to the cycle πi[x,head(d)] ◦ πj [head(d), x],
it follows that πi and πj can be both shortest paths, absurdum (Fig. 6(b) shows
this cycle). ��

Lemma 3. Let {πi}i∈[k] be a set of non-crossing directed paths. Let i, j ∈ [k], if
i is a descendant of j, then πi ∩ πj ⊆ π�, for all � ∈ [k] such that i ≺ � ≺ j.

Proof. Let us assume πi and πj have at least one common vertex and choose
� ∈ [k] such that i ≺ � ≺ j. Let v be a vertex in πi ∩ πj and let Q be the region
bounded by πj [sj , v], πi[si, v] and the clockwise undirected sj − si path in f∞

(region Q and vertex v are shown in Fig. 6(c)). It is clear that if v �∈ π�, then
{πi, πj , π�} is not a set of non-crossing paths, absurdum. ��

Fig. 6. in (a) and (b) paths πj and πi, dart d, region R and vertex x used in the proof
of Lemma 2. In (c) region Q and vertex v used in the proof of Lemma 3.

Now we show how to use these two lemmata for our goals. Let ρi be a shortest
directed i-path and let ρj be a shortest directed j-path, for some i, j ∈ [k], i �= j.
By Lemma 2, if i and j are not comparable in TG, then ρi and ρj have no common
darts. Moreover, by Lemma 3, if i is an ancestor of j in TG, then ρi ∩ ρj ⊆ ρp(j).
By using these two facts, in order to list darts in ρi, then it suffices to find darts
in ρi \ρp(i), for all i ∈ [k] \ {1} (we remind that 1 is the root of TG). To this goal
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we use algorithm NCSPunion, that builds a sequence of directed graphs {Yi}i∈[k]

such that Yk is equal to
⋃

i∈[k] ρi, where ρi is a shortest directed i-path, for
i ∈ [k].

We prove the correctness of algorithm NCSPunion in Theorem 3. At iteration
i we compute ρi \ ρp(i), showing that ρi \ ρp(i) = σi ∪ rev[τi], where σi and τi

are computed in Line 5 and Line 6, respectively. We observe that if ρi and ρp(i)

have no common darts, then σi = rev[τi] = ρi.
To better understand Line 2 of algorithm NCSPunion, we recall that X1 is an

undirected 1-path, hence Y1 is the directed version of this path.

Algorithm NCSPunion:
Input: an undirected unweighted planar embedded graph G and k well-formed

terminal pairs of vertices (si, ti), for i ∈ [k], on the external face of G
Output: a directed graph Yk formed by the union of directed non-crossing

shortest paths from si to ti, for i ∈ [k]
1 Compute X1 as in algorithm NCSPsupergraph;
2 Y1 is the directed version of X1 oriented from s1 to t1;
3 for i = 2, . . . , k do
4 Compute Xi as in algorithm NCSPsupergraph;
5 σi is the directed path that starts in si and always turns left in Xi until

either σi reaches ti or the next dart di of σi satisfies di ∈ Yi−1;
6 τi is the directed path that starts in ti and always turns right in Xi until

either τi reaches si or the next dart d′
i of τi satisfies rev[d′

i] ∈ Yi−1;
7 Yi = Yi−1 ∪ σi ∪ rev[τi];

Lemma 4. Algorithm NCSPunion has O(n) time complexity.

Proof. Algorithm NCSPunion uses algorithm NCSPsupergraph, that has O(n)
time complexity by Lemma 1. Moreover, algorithm NCSPunion visits each dart
of the “directed version” of Xk at most O(1) times, where the directed version
of Xk is the directed graph built from Xk by replacing each edge ab by the pair
of darts

−→
ab and

−→
ba. Thus, algorithm NCSPunion requires O(n) time, since Xk is

a subgraph of G. ��

Theorem 3. Graph Yk computed by algorithm NCSPunion is the union of k
shortest directed non-crossing i-paths, for i ∈ [k].

Proof. Let {πi}i∈[k] be the set of paths defined in Theorem 2. For all i ∈ [k], we
denote by −→πi the directed version of πi, oriented from si to ti.

First we define ρ1 = −→π1 and for all i ∈ [k] \ {1} we define

ρi =

{−→πi [si, ui] ◦ ρp(i)[ui, vi] ◦ −→πi [vi, ti], if −→πi and ρp(i) share no darts,
−→πi , otherwise,

(1)
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where we assume that if V (−→πi ∩ ρp(i)) �= ∅, then ui and vi are the vertices in
V (−→πi ∩ ρp(i)) that appear first and last in −→πi , respectively; the definition of ρi as
in (1) is shown in Fig. 7. Now we split the proof into three parts: first we prove
that {ρi}i∈[k] is a set of shortest paths (we need it to apply Lemma 2); second we
prove that {ρi}i∈[k] is a set of non-crossing paths (we need it to apply Lemma 3);
third we prove that Y =

⋃
i∈[k] ρi (we prove it by Lemma 2 and Lemma 3).

{ρi}i∈[k] is a set of shortest paths: we proceed by induction on i. The base
case is trivial because π1 is a shortest path by definition. Let us assume that
ρj is a shortest j-path, for j < i, we have to prove that ρi is a shortest i-path.
If −→πi and ρp(i) have no common darts, then ρi = −→πi by (1), thus the thesis
holds because {πi}i∈[k] a set of shortest paths. Hence let us assume that −→πi

and ρp(i) have at least one common dart, then it suffices, by definition of ρi,
that |πi[ui, vi]| = |ρp(i)[ui, vi]|. It is true by induction.

{ρi}i∈[k] is a set of non-crossing paths: we proceed by induction on i. The base
case is trivial because there is only one path. Let us assume that {ρj}j∈[i−1]

is a set of non-crossing paths, we have to prove that ρi does not cross ρj , for
any j < i.
If ρi and ρj are crossing and j is not an ancestor of i, then, by construction of
ρi, either ρp(i) and ρj are crossing or πi and πj are crossing; that is absurdum
in both cases by induction and Theorem 2. Moreover, by definition, ρi does
not cross ρp(i), and by induction, if � is an ancestor of i such that � �= p(i),
then ρi does not cross ρ�, indeed, if not, then ρ� would cross ρp(i), absurdum.
Hence {ρi}i∈[k] is a set of non-crossing paths.

Y is the union of ρi’s: now we prove that Y =
⋃

i∈[k] ρi. In particular we show
that ρ1 = −→π1 and for all i ∈ [k] \ {1}

ρi =

{
σi ◦ ρp(i)[ui, vi] ◦ rev[τi], if −→πi and ρp(i) share no darts,
−→πi , otherwise.

(2)

Again, we proceed by induction on i. The base case is trivial, thus we assume
that (1) is equivalent to (2) for all i < �. We have to prove that (1) is equivalent
to (2) for i = �.
If −→π� does not intersect any dart of ρp(�), then (1) is equivalent to (2). Thus
we assume that −→π� and ρp(�) have at least one common dart. By (1) and (2)
and by definition of σi and τi in Line 5 and Line 6, respectively, it suffices to
prove that di ∈ ρp(i) and rev[d′

i] ∈ ρp(i).
Now, by induction we know that di ∈ ρ� for some � < i, we have to show that
di ∈ ρp(i). By Lemma 2 and being {ρj}j∈[k] a set of shortest paths, it holds
that � is an ancestor or a descendant of i. Being the sj ’s visited clockwise
by starting from s1, then � is an ancestor of i. Finally, by Lemma 3 and
being {ρj}j∈[k] a set of non-crossing path, it holds that ρi ∩ ρ� ⊆ ρp(i). Being
p(i) < i, then di ∈ ρp(i) as we claimed. By a similar argument, it holds that
rev[d′

i] ∈ ρp(i). ��
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Fig. 7. Proof of Theorem 3, explanation of (1).

It is proved in [4] that, starting from the union of a set of shortest (not
necessarily non-crossing) paths between well-formed terminal pairs, distances
between terminal pairs can be computed in linear time. Thus we can give the
following main theorem.

Theorem 4. Given an undirected unweighted plane graph G and a set of well-
formed terminal pairs {(si, ti)} on the external face f∞ of G we can compute
U =

⋃
i∈[k] pi and the lengths of all pi, for i ∈ [k], where pi is a shortest i-path

and {pi}i∈[k] is a set of non-crossing paths, in O(n) time.

Proof. By Theorem 3, the required graph U is the undirected version Yk of the
graph computed by algorithm NCSPunion, that has O(n) time complexity by
Lemma 4. Moreover, we compute the length of pi, for all i ∈ [k], in O(n) time
by using the results in [4]. ��

Remark 2. For graphs with small integer weights, we can obtain all the previous
results in O(n + L) time, where L is the sum of all edge weights, by splitting an
edge of weight r in r unweighted edges.

5 Conclusions

In this paper we have shown a linear time algorithm to compute the union of
non-crossing shortest paths whose extremal vertices are in the external face of
an undirected unweighted planar graph.

The algorithm relies on the algorithm by Eisenstat and Klein for computing
SSSP trees rooted on the vertices of the external face and on the novel concept of
ISP subgraph of a planar graph, that can be of interest itself. The same approach
cannot be extended to weighted graphs, because the algorithm of Eisenstat and
Klein works only in the unweighted case.

As stated in [12] our results may be applied in the case of terminal pairs
lying on h face boundaries.

We wish to investigate the non-crossing shortest paths problem when each
terminal pair contains only one vertex on the external face.
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Abstract. In this work, we study the k-median clustering problem with
an additional equal-size constraint on the clusters, from the perspec-
tive of parameterized preprocessing. Our main result is the first lossy
(2-approximate) polynomial kernel for this problem, parameterized by
the cost of clustering. We complement this result by establishing lower
bounds for the problem that eliminate the existences of an (exact) kernel
of polynomial size and a PTAS.

Keywords: k-median clustering · parameterized approximation ·
kernelization · lossy kernels

1 Introduction

Lossy kernelization stems from parameterized complexity, a branch in theoretical
computer science that studies complexity of problems as functions of multiple
parameters of the input or output [27]. A central notion in parameterized com-
plexity is kernelization, which is a generic technique for designing efficient algo-
rithms availing a polynomial time preprocessing step that transforms a “large”
instance of a problem into a smaller, equivalent instance. Naturally, the prepro-
cessing step is called the kernelization algorithm and the smaller instance is called
the kernel. One limitation of the classical kernelization technique is that kernels
can only examine “lossless” preprocessing, in the sense that a kernel must be
equivalent to the original instance. This is why most of the interesting problems
arising from machine learning, e.g., clustering, are intractable from the perspec-
tive of kernelization. Lossy or approximate kernelization is a successful attempt
of combining kernelization with approximation algorithms. Informally, in lossy
kernelization, given an instance of the problem and a parameter, we would like
the kernelization algorithm to output a reduced instance of size polynomial in
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the parameter; however the notion of equivalence is relaxed in the following way.
Given a c-approximate solution (i.e., one with the cost within c-factor of the
optimal cost) to the reduced instance, it should be possible to produce in poly-
nomial time an αc-approximate solution to the original instance. The factor α is
the loss incurred while going from the reduced instance to the original instance.
The notion of lossy kernelization was introduced by Lokshtanov et al. in [45].
However, most of the developments of lossy kernelization up to now are in graph
algorithms [2,28,29,40,48], see also [35, Chapter 23] for an overview.

One of the actively developing areas of parameterized complexity concerns
fixed-parameter tractable- or FPT-approximation. We refer to the survey [32]
for an overview of the area. Several important advances on FPT-approximation
concern clustering problems. It includes tight algorithmic and complexity results
for k-means and k-median [18] and constant factor FPT-approximation for
capacitated clustering [20]. The popular approach for data compression used
for FPT-approximation of clustering is based on coresets. The notion of coresets
originated from computational geometry. It was introduced by Har-Peled and
Mazumdar [37] for k-means and k-median clustering. Informally, a coreset is a
summary of the data that for every set of k centers, approximately (within (1±ε)
factor) preserves the optimal clustering cost.

Lossy kernels and coresets have a lot of similarities. Both compress the space
compared to the original data, and any algorithm can be applied on a coreset
or kernel to efficiently retrieve a solution with guarantee almost the same as the
one provided by the algorithm on the original input. The crucial difference is
that coreset constructions result in a small set of weighted points. The weights
could be up to the input size n. Thus a coreset of size polynomial in k/ε, is
not a polynomial sized lossy kernel for parameters k, ε because of the log n bits
required to encode the weights. Moreover, usually coreset constructions do not
bound the number of coordinates or dimension of the points.

While the notion of lossy kernelization proved to be useful in the design of
graph algorithms, we are not aware of its applicability in clustering. This brings
us to the following question: What can lossy kernelization offer to clustering?

In this work, we make the first step towards the development of lossy kernels
for clustering problems. Our main result is the design of a lossy kernel for a
variant of the well-studied k-Median clustering with clusters of equal sizes.
More precisely, consider a collection (multiset) of points from Zd under the �p-
norm. Thus every point is a d-dimensional vector with integer coordinates. For
a nonnegative integer p, we use ‖x‖p to denote the �p-norm of a d-dimensional

vector x = (x[1], . . . , x[d]) ∈ Rd, that is, for p ≥ 1, ‖x‖p =
( d∑

i=1

|x[i]|p)1/p and for

p = 0, ‖x‖0 is the number of nonzero elements of x, i.e., the Hamming norm. For
any T ⊆ Zd, we define costp(T ) = min

c∈Rd

∑

x∈T

‖c−x‖p. Then k-Median
1 clustering

1 Traditionally this problem is studied with real input points, but because of the choice
of the parameterization, it is natural for us to assume that points have integer coordi-
nates. As the coordinates can be scaled, this does not lead to the loss of generality.
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(without constraints) is the task of finding a partition {X1, . . . , Xk} of a given
family X ⊆ Zd of points minimizing the sum

∑k
i=1 costp(Xi).

In many real-life scenarios, it is desirable to cluster data into clusters of equal
sizes. For example, to tailor teaching methods to the specific needs of various
students, one would be interested in allocating k fair class sizes by grouping
students with homogeneous abilities and skills [38]. In scheduling, the standard
task is to distribute n jobs to k machines while keeping identical workloads
on each machine and simultaneously reducing the configuration time. In the
setting of designing a conference program, one might be interested in allocating
n scientific papers according to their similarities to k “balanced” sessions [51].

The following model is an attempt to capture such scenarios.

Input: A collection (multiset) X = {x1, . . . ,xn} of n points of Zd

and a positive integer k such that n is divisible by k.
Task: Find a partition {X1, . . . , Xk} (k-clustering) of X with

|X1| = · · · = |Xk| = n
k minimizing

∑k
i=1 costp(Xi).

Equal Clustering

First, note that Equal Clustering is a restricted variant of the capacitated
version [20] of k-Median where the size of each cluster is required to be bounded
by a given number U . Also note, that some points in X may be identical. (In
the above examples, several students, jobs, or scientific papers can have identical
features but could be assigned to different clusters due to the size limitations.)
We refer to the multisets X1, . . . , Xk as the clusters.

To describe the lossy-kernel result, we need to define the parameterized ver-
sion of Equal Clustering with the cost of clustering B (the budget) being the
parameter. Following the framework of lossy kernelization [45], when the cost of
an optimal clustering exceeds the budget, we assume it is equal to B + 1. More
precisely, in Parameterized Equal Clustering, we are given an additional
integer B (budget parameter). The task is to find a k-clustering {X1, . . . , Xk}
with |X1| = · · · = |Xk| and minimizing the value

costBp (X1, . . . , Xk) =

{∑k
i=1 costp(Xi) if

∑k
i=1 costp(Xi) ≤ B,

B + 1 otherwise.

Before stating our results, let us first discuss some limitations and advantages
of parameterization of Decision Equal Clustering by the budget B. First,
parameterization by B is reasonable when the vectors are integer-valued, which is
a common situation when the data is categorical, that is, can admit a fixed number
of possible values. For example, it could be gender, blood type, or political orien-
tation. A prominent example of categorical data is binary data, where the points
are binary vectors. Binary data arise in several critical applications. For example,
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in electronic commerce, each transaction can be modeled as a binary vector (known
as market basket data), each of whose coordinates denotes whether a particular
item is purchased or not [44,52]. In document clustering, each document can be
modeled as a binary vector, each of whose coordinates denotes whether a specific
word is present or not in the document [44,52].

The most drastic effect of compression occurs when B is small. Intuitively,
this means that many of the data points are the same. Such a condition is com-
mon in handling personal data that cannot be re-identified. For example, the
k-anonymity property requires each person in the data set to be undistinguish-
able from at least k individuals whose information appears in the release [50].

Finally, comparing lossy kernelization from Theorem 1 and the coresets for
k-Median and k-Means. The sizes of all known coreset constructions depend
on the number of clusters k, and thus guarantee compression only for small
values of k. On the other hand, the size of the lossy kernel is independent of k.
In particular, such type of results are interesting when we have to identify many
clusters of small size.

Our first main result is the following theorem providing a polynomial 2-
approximate kernel.

Theorem 1. For every nonnegative integer constant p, Parameterized

Equal Clustering admits a 2-approximate kernel when parameterized by B,
where the output collection of points has O(B2) points of Zd′

with d′ = O(Bp+2),
where each coordinate of a point takes an absolute value of O(B3).

In other words, the theorem provides a polynomial-time algorithm that com-
presses the original instance X to a new instance whose size is bounded by a
polynomial of B and such that any c-approximate solution in the new instance
can be turned in polynomial time to a 2c-approximate solution of the original
instance.

A natural question is whether the approximation ratio of lossy kernel in The-
orem 1 is optimal. While we do not have a complete answer to this question,
we provide lower bounds supporting our study of the problem from the perspec-
tive of approximate kernelization. Our next result rules out the existence of an
“exact” kernel for the problem. To state the result, we need to define the deci-
sion version of Equal Clustering. In this version, we call it Decision Equal

Clustering, the question is whether for a given budget B, there is a k-clustering
{X1, . . . , Xk} with clusters of the same size such that

∑

1≤i≤k

costp(Xi) ≤ B.

Theorem 2. For �0 and �1-norms, Decision Equal Clustering has no poly-
nomial kernel when parameterized by B, unless NP ⊆ coNP/poly, even if the
input points are binary, that is, are from {0, 1}d.

On the other hand, we prove that Decision Equal Clustering admits a
polynomial kernel when parameterized by k and B.
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Theorem 3. For every nonnegative integer constant p, Decision Equal

Clustering admits a polynomial kernel when parameterized by k and B, where
the output collection of points has O(kB) points of Zd′

with d′ = O(kBp+1) and
each coordinate of a point takes an absolute value of O(kB2).

When it comes to approximation in polynomial time, we show (Theorem 4)
that it is NP-hard to obtain a (1 + εc)-approximation for Equal Clustering

with �0 (or �1) distances for some εc > 0. However, parameterized by k and
ε, standard techniques yield (1 + ε)-approximation in FPT time. For �2 norm,
there is a general framework for designing algorithms of this form for k-Median

with additional constraints on cluster sizes, introduced by Ding and Xu [26]. The
best-known improvements by Bhattacharya et al. [11] achieve a running time of
2 ˜O(k/εO(1))nO(1)d in the case of Equal Clustering, where Õ hides polyloga-
rithmic factors. In another line of work, FPT-time approximation is achieved via
constructing small-sized coresets of the input, and the work [8] guarantees an
ε-coreset for Equal Clustering (in �2 norm) of size (kd log n/ε)O(1), and conse-
quently a (1+ε)-approximation algorithm with running time 2 ˜O(k/εO(1))(nd)O(1).

Moreover, specifically for Equal Clustering, simple (1+ε)-approximations
with similar running time can be designed directly via sampling. A seminal work
of Kumar et al. [41] achieves a (1+ ε)-approximation for k-Median (in �2 norm)
with running time 2 ˜O(k/εO(1))nd. The algorithm proceeds as follows. First, take a
small uniform sample of the input points, and by guessing ensure that the sample
is taken only from the largest cluster. Second, estimate the optimal center of this
cluster from the sample. In the case of k-Median, Theorem 5.4 of [41] guarantees
that from a sample of size (1/ε)O(1) one can compute in time 2(1/ε)O(1)

d a set of
candidate centers such that at least one of them provides a (1+ε)-approximation
to the cost of the cluster. Finally, “prune” the set of points so that the next
largest cluster is at least Ω(1/k) fraction of the remaining points and continue
the same process with one less cluster. One can observe that in the case of Equal
Clustering, a simplification of the above algorithm suffices: one does not need
to perform the “pruning” step, as we are only interested in clusterings where all
the clusters have size exactly n/k. Thus, (1/ε)O(1)-sized uniform samples from
each of the clusters can be computed immediately in total time 2 ˜O(k/εO(1))nd.
This achieves (1 + ε)-approximation for Equal Clustering with the same
running time as the algorithm of Kumar et al. In fact, the same procedure
works for �0 norm as well, where for estimating the cluster center it suffices
to compute the optimal center of a sample of size O(1/ε2), as proven by Alon
and Sudakov [4]. Thus, in terms of FPT approximation, Equal Clustering is
surprisingly “simpler” than its unconstrained variant k-Median, however, our
hardness result of Theorem 4 shows that the problems are similarly hard in terms
of polynomial time approximation.

Related Work. Since the work of Har-Peled and Mazumdar [37] for k-means
and k-median clustering, designing small coresets for clustering has become a
flourishing research direction. For these problems, after a series of interesting
works, the best-known upper bound on coreset size in general metric space is
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O((k log n)/ε2) [30] and the lower bound is known to be Ω((k log n)/ε) [6]. For
the Euclidean space (i.e., �2-norm) of dimension d, it is possible to construct
coresets of size (k/ε)O(1) [31,49]. Remarkably, the size of the coresets in this
case does not depend on n and d. For Equal Clustering, the best known
coreset size of (kd log n/ε)O(1) (for p = 2) follows from coresets for the more
general capacitated clustering problem [8,20].

Clustering is undoubtedly one of the most common procedures in unsuper-
vised machine learning. We refer to the book [1] for an overview on clustering.
Algorithms for k-median and k-means has been one of the most interesting prob-
lems in the area of approximation and led to a plethora of work [3,13,15,39,43].
For k-median, the best known polynomial time approximation factor is 2.675
[13] and for k-means, it is 6.356 [3]. Moreover, if one is allowed to use FPT time
parameterized by k, then these two factors can be improved to ≈ (1 + 2/e) ≤
1.736 and ≈ (1 + 8/e) ≤ 3.944, respectively [18]. Assuming the Gap-ETH [46],
these factors are indeed tight [18]. PTASes are known for Euclidean version of
k-median and k-means when the dimension is a constant [5,9,19,21,36]. Cohen-
Addad et al. [22] obtained an no(k) lower bound for k-median when d ≥ 4. When
the dimension d is arbitrary, one can obtain (1 + ε)-approximation in FPT(k)
time where the dependency on n and d are only linear [41]. Feng et al. in [33] gave
a unified framework to design FPT approximation algorithms for clustering.

Equal Clustering belongs to a wide class of clustering with constraints on
the sizes of the clusters. In many applications of clustering, constraints come nat-
urally [10]. In particular, there is a rich literature on approximation algorithms
for various versions of capacitated clustering. While for the capacitated version
of k-median and k-means in general metric space, no polynomial time O(1)-
approximation is known, bicriteria constant-approximations violating either the
capacity constraints or the constraint on the number of clusters, by an O(1)
factor can be obtained [12,14–16,25,42]. Cohen-Addad and Li [20] designed
FPT ≈ 3- and ≈ 9-approximation with parameter k for the capacitated ver-
sion of k-median and k-means, respectively. For these problems in the Euclidean
plane, Cohen-Addad [17] obtained a true PTAS. Moreover, for higher dimen-
sional spaces (i.e., d ≥ 3), he designed a (1+ ε)-approximation that runs in time
n(log n/ε)O(d)

[17]. Being a restricted version of capacitated clustering, Equal

Clustering admits all the approximation results mentioned above.

Our Approach. We briefly sketch the main ideas behind the construction of our
lossy kernel for Parameterized Equal Clustering. The lossy kernel’s main
ingredients are a) a polynomial algorithm based on an algorithm for computing
a minimum weight perfect matching in bipartite graphs, b) preprocessing rules
reducing the size and dimension of the problem, and c) a greedy algorithm. Each
of the steps is relatively simple and easily implementable. However, the proof
that these steps result in the lossy kernel with the required properties is not
easy.

Recall that for a given budget B, we are looking for a k-clustering of a
collection of points X = {x1, . . . ,xn} into k clusters of the same size minimizing
the cost. We also assume that the cost is B + 1 if the instance points do not
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admit a clustering of cost at most B. Informally, we are only interested in optimal
clustering when its cost does not exceed the budget. First, if the cluster’s size
s = n

k is sufficiently large (with respect to the budget), we can construct an
optimal clustering in polynomial time. More precisely, we prove that if s ≥ 4B+1,
then the clusters’ medians could be selected from X. Moreover, we show how to
identify the (potential) medians in polynomial time. In this case, constructing
an optimal k-clustering could be reduced to the classical problem of computing
a perfect matching of minimum weight in a bipartite graph.

The case of cluster’s size s ≤ 4B is different. We apply a set of reduction rules.
These rules run in polynomial time. After exhaustive applications of reduction
rules, we either correctly conclude that the considered instance has no clustering
of cost at most B or constructs an equivalent reduced instance. In the equivalent
instance, the dimension is reduced to O(kBp+1) while the absolute values of the
coordinates of the points are in O(kB2).

Finally, we apply the only approximate reduction on the reduced instance.
The approximation procedure is greedy: whenever there are s identical points,
we form a cluster out of them. For the points remaining after the exhaustive
application of the greedy procedure, we conclude that either there is no clustering
of cost at most B or the number of points is O(B2). This construction leads us
to the lossy kernel. However the greedy selection of the clusters composed of
identical points maybe not be optimal. In particular, the reductions used to
obtain our algorithmic lower bounds given in Sects. 4 and 5 exploit the property
that it may be beneficial to split a block of s identical points between distinct
clusters.

Nevertheless, the greedy clustering of identical points leads to a 2-approxi-
mation. The proof of this fact requires some work. We evaluate the clustering
cost obtained from a given optimal clustering by swapping some points to form
clusters composed of identical points. Further, we upper bound the obtained
value by the cost of the optimum clustering. For the last step, we introduce
an auxiliary clustering problem formulated as a min-cost flow problem. This
reduction allows to evaluate the cost and obtain the required upper bound.

Due to space constraints various proofs are omitted in this extended abstract.
The full details are available in [7].

2 Preliminaries

In this section, we give basic definition and introduce notation used throughout
the paper. We also state some useful auxiliary results.

Parameterized Complexity and Kernelization. We refer to the books [23,
35] for a formal introduction to the area. Here we only define the notions used
in our paper.

Formally, a parameterized problem Π is a subset of Σ∗ × N, where Σ is a
finite alphabet. Thus, an instance of Π is a pair (I, k), where I ⊆ Σ∗ and k is a
nonnegative integer called a parameter. It is said that a parameterized problem
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Π is fixed-parameter tractable (FPT) if it can be solved in f(k) · |I|O(1) time for
some computable function f(·).

A kernelization algorithm (or kernel) for a parameterized problem Π is an
algorithm that, given an instance (I, k) of Π, in polynomial time produces an
instance (I ′, k′) of Π such that (i) (I, k) ∈ Π if and only if (I ′, k′) ∈ Π, and (ii)
|I ′| + k′ ≤ g(k) for a computable function g(·). The function g(·) is called the
size of a kernel; a kernel is polynomial if g(·) is a polynomial. Every decidable
FPT problem admits a kernel. However, it is unlikely that all FPT problems have
polynomial kernels and the parameterized complexity theory provide tools for
refuting the existence of polynomial kernels up to some reasonable complexity
assumptions. The standard assumption here is that NP �⊆ coNP/poly.

We also consider the parameterized analog of optimization problems. Since
we only deal with minimization problems where the minimized value is nonneg-
ative, we state the definitions only for optimization problems of this type. A
parameterized minimization problem P is a computable function

P : Σ∗ × N × Σ∗ → R≥0 ∪ {+∞}.

The instances of a parameterized minimization problem P are pairs (I, k) ∈
Σ∗ ×N, and a solution to (I, k) is simply a string s ∈ Σ∗, such that |s| ≤ |I|+k.
Then the function P (·, ·, ·) defines the value P (I, k, s) of a solution s to an
instance (I, k). The optimum value of an instance (I, k) is

OptP (I, k) = min
s∈Σ∗ s.t. |s|≤|I|+k

P (I, k, s).

A solution s is optimal if OptP (I, k) = P (I, k, s). A parameterized minimization
problem P is said to be FPT if there is an algorithm that for each instance
(I, k) of P computes an optimal solution s in f(k) · |I|O(1) time, where f(·) is
a computable function. Let α ≥ 1 be a real number. An FPT α-approximation
algorithm for P is an algorithm that in f(k) · |I|O(1) time computes a solution
s for (I, k) such that P (I, k, s) ≤ α · OptP (I, k), where f(·) is a computable
function.

It is useful for us to make some comments about defining P (·, ·, ·) for the
case when the considered problem is parameterized by the solution value. For
simplicity, we do it informally and refer to [35] for details and explanations. If s
is not a “feasible” solution to an instance (I, k), then it is convenient to assume
that P (I, k, s) = +∞. Otherwise, if s is “feasible” but its value is at least k + 1,
we set P (I, k, s) = k + 1.

Lossy Kernels. Finally we define α-approximate or lossy kernels for parameter-
ized minimization problems. Informally, an α-approximate kernel of size g(·) is
a polynomial-time algorithm, that given an instance (I, k), outputs an instance
(I ′, k′) such that |I ′| + k′ ≤ g(k) and any c-approximate solution s′ to (I ′, k′)
can be turned in polynomial time into a (c · α)-approximate solution s to the
original instance (I, k). More precisely, let P be a parameterized minimization
problem and let α ≥ 1. An α-approximate (or lossy) kernel for P is a pair of
polynomial algorithms A and A′ such that
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(i) given an instance (I, k), A (called a reduction algorithm) computes an
instance (I ′, k′) with |I ′| + k′ ≤ g(k), where g(·) is a computable function,

(ii) the algorithm A′ (called a solution-lifting algorithm), given the initial
instance (I, k), the instance (I ′, k′) produced by A, and a solution s′ to
(I ′, k′), computes an solution s to (I, k) such that

P (I, k, s)
OptP (I, k)

≤ α · P (I ′, k′, s′)
OptP (I ′, k′)

.

To simplify notation, we assume here that P (I,k,s)
OptP (I,k) = 1 if OptP (I, k) = 0 and

use the same assumption for P (I′,k′,s′)
OptP (I′,k′) . As with classical kernels, g(·) is called

the size of an approximate kernel, and an approximate kernel is polynomial if
g(·) is a polynomial.

Vectors and Clusters. For a vector x ∈ Rd, we use x[i] to denote the i-th
element of the vector for i ∈ {1, . . . , d}. For a set of indices R ⊆ {1, . . . , d}, x[R]
denotes the vector of R|R| composed by the elements of vector x from set R,
that is, if R = {i1, . . . , ir} with i1 < . . . < ir and y = x[R], then y[j] = x[ij ]
for j ∈ {1, . . . , r}. In our paper, we consider collections X of points of Zd. We
underline that some points of such a collection may be identical. However, to
simplify notation, we assume throughout the paper that the identical points of
X are distinct elements of X assuming that the points are supplied with unique
identifiers. By this convention, we often refer to (sub)collections of points as
(sub)sets and apply the standard set notation.

Let X be a collection of points of Zd. For a vector c ∈ Rd, we define the
cost of X with respect to c as costp(X, c) =

∑
x∈X ‖c − x‖p. Slightly abusing

notation we often refer to c as a (given) median of X. We say that c∗ ∈ Rd

is an optimum median of X if costp(X) = costp(X, c∗) = minc∈Rd costp(X, c).
Notice that the considered collections of points have integer coordinates but the
coordinates of medians are not constrained to integers and may be real.

Let X = {x1, . . . ,xn} a collection of points of Zd and let k be a positive
integer such that n is divisible by k. We say that a partition {X1, . . . , Xk} of
X is an equal k-clustering of X if |Xi| = n

k for all i ∈ {1, . . . , k}. For an equal
k-clustering {X1, . . . , Xk} and given vectors c1, . . . , ck, we define the cost of
clustering with respect to c1, . . . , ck as

costp(X1, . . . , Xk, c1, . . . , ck) =
k∑

i=1

costp(Xi, ci).

The cost of an equal k-clustering {X1, . . . , Xk} is defined as costp(X1, . . . , Xk) =
costp(X1, . . . , Xk, c1, . . . , ck), where c1, . . . , ck are optimum medians. For an
integer B ≥ 0,

costBp (X1, . . . , Xk) =

{
costp(X1, . . . , Xk) if costp(X1, . . . , Xk) ≤ B,

B + 1 otherwise.
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We define Opt(X, k)

= min{costp(X1, . . . , Xk) | {X1, . . . , Xk} is an equal k-clustering of X},

and given a nonnegative integer B, Opt(X, k, B)

= min{costBp (X1, . . . , Xk) | {X1, . . . , Xk} is an equal k-clustering of X}.

We conclude this section by observing that, given vectors c1, . . . , ck ∈ Rd, we
can find an equal k-clustering {X1, . . . , Xk} that minimizes

∑k
i=1 costp(Xi, ci)

using a reduction to the classical Minimum Weight Perfect Matching prob-
lem on bipartite graphs that is well-known to be solvable in polynomial time.

Lemma 1 (�).2 Let X = {x1, . . . ,xn} be a collection of points of Zd and k be
a positive integer such that n is divisible by k. Let also c1, . . . , ck ∈ Rd. Then an
equal k-clustering {X1, . . . , Xk} of minimum cost(X1, . . . , Xk, c1, . . . , ck) can be
found in polynomial time.

3 Lossy Kernel

In this section, we prove Theorem 1 by establishing a 2-approximate polynomial
kernel for Parameterized Equal Clustering. Throughout this section we
assume that p ≥ 0 defining the �p-norm is a fixed constant.

We start by proving the following results about medians of clusters when
their size is sufficiently big with respect to the budget.

Lemma 2 (�). Let {X1, . . . , Xk} be an equal k-clustering of a collection of
points X = {x1, . . . ,xn} of Zd of cost at most B ∈ Z≥0, and let s = n

k . Then
each cluster Xi for i ∈ {1, . . . , k} contains at least s − 2B identical points.

Lemma 3 (�). Let {X1, . . . , Xk} be an equal k-clustering of a collection of
points X = {x1, . . . ,xn} of Zd of cost at most B ∈ Z≥0, and let s = n

k ≥ 4B +1.
Let also c1, . . . , ck ∈ Rd be optimum medians for X1, . . . , Xk, respectively. Then
for every i ∈ {1, . . . , k}, ci = xj for the unique xj ∈ Xi such that Xi contains
at least s − 2B points identical to xj.

Using Lemma 3, we can identify optimum medians.

Lemma 4 (�). Let {X1, . . . , Xk} be an equal k-clustering of a collection of
points X = {x1, . . . ,xn} of Zd of cost at most B ∈ Z≥0, and let s = n

k ≥ 4B +1.
suppose that Y ⊆ X is a collection of at least B + 1 identical points of X. Then
there is i ∈ {1, . . . , k} such that an optimum median of Xi coincides with xj for
xj ∈ Y .

2 The proofs of statements labeled (�) are omitted in the extended abstract and are
available in [7].
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We use our next lemma to upper bound the clustering cost if we collect s = n
k

identical points in the same cluster.

Lemma 5 (�). Let {X1, . . . , Xk} be an equal k-clustering of a collection of
points X = {x1, . . . ,xn} of Zd, and let c1, . . . , ck ∈ Rd. Suppose that S is a
collection of s = n

k identical points of X and xj ∈ S. Then there is an equal
k-clustering {X ′

1, . . . , X
′
k} of X with X ′

1 = S such that

costp(X ′
1, . . . , X

′
k, c′

1, . . . , c
′
k) ≤ costp(X1, . . . , Xk, c1, . . . , ck) + s||c1 − xj ||p,

where c′
1 = xj and c′

h = ch for h ∈ {2, . . . , k}.
Our next lemma shows that we can solve Parameterized Equal Clus-

tering in polynomial time if the cluster size is sufficiently big with respect to
the budget. To prove it, we exploit Lemmas 1, 3, 4, and 5.

Lemma 6 (�). There is a polynomial-time algorithm that, given a collection
X = {x1, . . . ,xn} of n points of Zd, a positive integer k such that n is divisi-
ble by k, and a nonnegative integer B such that n

k ≥ 4B + 1, either computes
Opt(X, k) ≤ B and produces an equal k-clustering of minimum cost or correctly
concludes that Opt(X, k) > B.

Our next aim is to show that we can reduce the dimension and the absolute
values of the coordinates of the points if Opt(X, k) ≤ B. To achieve this, we
mimic some ideas of the kernelization algorithm of Fomin et al. in [34] for the
related clustering problem. However, they considered only points from {0, 1}d

and the Hamming norm. The proof uses Lemma 2.

Lemma 7 (�). There is a polynomial-time algorithm that, given a collection
X = {x1, . . . ,xn} of n points of Zd, a positive integer k such that n is divisible by
k, and a nonnegative integer B, either correctly concludes that Opt(X, k) > B or
computes a collection of n points Y = {y1, . . . ,yn} of Zd′

such that the following
holds:

(i) For every partition {I1, . . . , Ik} of {1, . . . , n} such that |I1| = · · · =
|Ik| = n

k , either costp(X1, . . . , Xk) > B and costp(Y1, . . . , Yk) > B or
costp(X1, . . . , Xk) = costp(Y1, . . . , Yk), where Xi = {xh | h ∈ Ii} and
Yi = {yh | h ∈ Ii} for every i ∈ {1, . . . , k}.

(ii) d′ = O(kBp+1).
(iii) |yi[h]| = O(kB2) for h ∈ {1, . . . , d′} and i ∈ {1, . . . , n}.

Finally, we use Lemma 5 to upper bound the additional cost incurred by the
greedy clustering of blocks of identical points.

Lemma 8 (�). Let X = {x1, . . . ,xn} be a collection of n points of Zd and set
k be a positive integer such that n is divisible by k. Suppose that S1, . . . , St are
disjoint collections of identical points of X such that |S1| = · · · = |St| = n

k and
Y = X\(

S1 ∪ · · · ∪ St

)
. Then Opt(Y, k − t) ≤ 2 · Opt(X, k).
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Now we are ready to show the result about approximate kernel.

Theorem 1. For every nonnegative integer constant p, Parameterized

Equal Clustering admits a 2-approximate kernel when parameterized by B,
where the output collection of points has O(B2) points of Zd′

with d′ = O(Bp+2),
where each coordinate of a point takes an absolute value of O(B3).

Proof. Let (X, k, B) be an instance of Parameterized Equal Clustering

with X = {x1, . . . ,xn}, where the points are from Zd and n is divisible by
k. Recall that a lossy kernel consists of two algorithms. The first algorithm
is a polynomial time reduction producing an instance (X′, k′, B′) of bounded
size. The second algorithm is a solution-lifting and for every equal k′-clustering
{X ′

1, . . . , X
′
k} of X′, this algorithm produces in polynomial time an equal k-

clustering {X1, . . . , Xk} of X such that3

costBp (X1, . . . , Xk)
Opt(X, k, B)

≤ 2 · cost
B′
p (X ′

1, . . . , X
′
k′)

Opt(X′, k′, B′)
. (1)

We separately consider the cases when n
k ≥ 4B + 1 and n

k ≤ 4B.
Suppose that n

k ≥ 4B + 1. Then we apply the algorithm from Lemma 6. If
the algorithm returns the answer that X does no admit an equal k-clustering
of cost at most B, then the reduction algorithm returns an trivial no-instance
(X′, k′, B′) of constant size, that is, an instance such that X′ has no clustering
of cost at most B′. For example, we set X′ = {(0), (1)}, k′ = 1, and B′ = 0.
Here and in the further cases when the reduction algorithm returns a trivial no-
instance, the solution-lifting algorithm returns an arbitrary equal k-clustering of
X. Since costBp (X1, . . . , Xk) = Opt(X, k, B) = B +1, (1) holds. Assume that the
algorithm from Lemma 6 produced an equal k-clustering {X1, . . . , Xk} of min-
imum cost. Then the reduction returns an arbitrary instance of Parameter-

ized Equal Clustering of constant size. For example, we can use X′ = {(0)},
k′ = 1, and B′ = 0. The solution-lifting algorithms always returns {X1, . . . , Xk}.
Clearly, costBp (X1, . . . , Xk) = Opt(X, k, B) and (1) is fulfilled.

From now on, we assume that n
k ≤ 4B, that is, n ≤ 4Bk. We apply the algo-

rithm from Lemma 7. If this algorithm reports that there is no equal k-clustering
of cost at most B, then the reduction algorithm returns a trivial no-instance
and the solution-lifting algorithm outputs an arbitrary equal k-clustering of X.
Clearly, (1) is satisfied. Assume that this is not the case. Then we obtain a col-
lection of n ≤ 4Bk points Y = {y1, . . . ,yn} of Zd′

satisfying conditions (i)–(iii)
of Lemma 7. That is, (i) for every partition {I1, . . . , Ik} of {1, . . . , n} such that
|I1| = · · · = |Ik| = n

k , either costp(X1, . . . , Xk) > B and costp(Y1, . . . , Yk) > B
or costp(X1, . . . , Xk) = costp(Y1, . . . , Yk), where Xi = {xh | h ∈ Ii} and
Yi = {yh | h ∈ Ii} for every i ∈ {1, . . . , k}, (ii) d′ = O(kBp+1), and (iii)
|yi[h]| = O(kB2) for h ∈ {1, . . . , d′} and i ∈ {1, . . . , n}. By (i), for given an

3 Note that by our simplifying assumption,
costBp (X1,...,Xk)

Opt(X,k,B)
= 1 if Opt(X, k, B) = 0,

and the same assumption is used for
costB

′
p (X′

1,...,X
′
k′ )

Opt(X′,k′,B′) .
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equal k-clustering clustering {Y1, . . . , Yk} of Y, we can compute the correspond-
ing clustering {X1, . . . , Xk} by setting Xi = {xh | yh ∈ Yi} for i ∈ {1, . . . , k}.
Then Opt(X, k, B) = Opt(Y, k, B) and

costBp (X1, . . . , Xk)
Opt(X, k, B)

=
costBp (Y1, . . . , Yk)
Opt(Y, k, B)

. (2)

Hence the instances (X, k, B) and (Y, k, B) are equivalent. We continue with
the compressed instance (Y, k, B).

Now we apply the greedy procedure that constructs clusters S1, . . . , St com-
posed by identical points. Formally, we initially set X′ := Y , k′ := k, and i := 0.
Then we do the following:

– while X′ contains a collections S of s identical points, set i := i + 1, Si := S,
X′ := X′\S, and k′ := k′ − 1.

Denote by X′ the set of points obtained by the application of the procedure and
let S1, . . . , St be the collections of identical points constructed by the procedure.
Note that k′ = k − t. We also define B′ = 2B. Notice that it may happen that
X′ = Y or X′ = ∅. The crucial property exploited by the kernelization is that
by Lemma 8, Opt(X′, k′) ≤ 2 · Opt(Y, k).

We argue that if k′ > B, then we have no k-clustering of cost at most B.
Suppose that k′ > B′. Consider an arbitrary equal k′-clustering {X ′

1, . . . , X
′
k′}

of X′. Because the construction of S1, . . . , St stops when there is no collection
of s identical points, each cluster X ′

i contains at least two distinct points. Since
all points have integer coordinates, we have that costp(X ′

i) ≥ 1 for every i ∈
{1, . . . , k′}. Therefore, costp(X ′

1, . . . , X
′
k′) =

∑k′

i=1 costp(X
′
i) ≥ k′ > B′ = 2B.

This means that 2·Opt(Y, k) ≥ Opt(X′, k′) > 2B and Opt(Y, k) > B. Using this,
our reduction algorithm returns a trivial no-instance. Then the solution-lifting
algorithm outputs an arbitrary equal k-clustering of X and this satisfies (1).

From now on we assume that k′ ≤ B′ = 2B and construct the reduction and
solution lifting algorithms for this case.

If k′ = 0, then X′ = ∅ and the reduction algorithm simply returns an arbi-
trary instance of constant size. Otherwise, our reduction algorithms returns
(X′, k′, B′). Observe that since k′ ≤ B′ = 2B, |X′| ≤ n ≤ 4B2. Recall that
d′ = O(Bp+2) and |x′

i[h]| = O(B3) for h ∈ {1, . . . , d′} for every point x′
i ∈ X′.

We conclude that the instance (X′, k′, B′) of Parameterized Equal Clus-

tering satisfies the size conditions of the theorem.
Now we describe the solution-lifting algorithm and argue that (1) holds.
If k′ = 0, then the solution-lifting algorithm ignores the output of the reduc-

tion algorithm which was arbitrary. It takes the equal k-clustering {S1, . . . , Sk}
of Y and outputs the equal k-clustering {X1, . . . , Xk} of X by setting Xi = {xh |
yh ∈ Si} for i ∈ {1, . . . , k}. Clearly, costp(S1, . . . , Sk) = costp(X1, . . . , Xp) = 0.
Therefore, (1) holds.

If k′ > 0, we consider an equal k′-clustering {X ′
1, . . . , X

′
k′} of X′. The

solution-lifting algorithm constructs an equal k-clustering {S1, . . . , St,X
′
1, . . . ,

X ′
k′}, that is, we just add the clusters constructed by our greedy procedure.
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Since the points in each set Si are identical, costp(Si) = 0 for every i ∈ {1, . . . , t}.
Therefore,

costp(S1, . . . , St,X
′
1, . . . , X

′
k′) = costp(X ′

1, . . . , X
′
k′).

Notice that since Opt(X′, k′) ≤ 2 · Opt(Y, k), we have that Opt(X′, k′, B′) ≤
2 · Opt(Y, k, B). Indeed, if Opt(Y, k) ≤ B, then Opt(X′, k′) ≤ 2B = B′. Hence,
Opt(Y, k, B) = Opt(Y, k), Opt(X′, k′, B′) = Opt(X′, k′), and Opt(X′, k′, B′) ≤
2 · Opt(Y, k, B). If Opt(Y, k) > B, then Opt(Y, k, B) = B + 1. In this case
2 · Opt(Y, k, B) = 2B + 2 > Opt(X′, k′, B′), because Opt(X′, k′, B′) ≤ B′ + 1 =
2B + 1. Finally, since costp(S1, . . . , St,X

′
1, . . . , X

′
k′) = costp(X ′

1, . . . , X
′
k′) and

Opt(X′, k′, B′) ≤ 2 · Opt(Y, k, B), we conclude that

costBp (S1, . . . , St,X
′
1, . . . , X

′
k′)

Opt(Y, k, B)
≤ 2 · cost

B
p (X1, . . . , X

′
k′)

Opt(X′, k′, B′)
. (3)

Then the solution-lifting algorithm computes the k-clustering {X1, . . . , Xk}
for the equal k-clustering {Y1, . . . , Yk} = {S1, . . . , St,X

′
1, . . . , X

′
k′} of Y by set-

ting Xi = {xh | yh ∈ Yi} for i ∈ {1, . . . , k}. By (2) and (3), we obtain (1).
This concludes the description of the reduction and solution-lifting algo-

rithms, as well as the proof of their correctness. To argue that the reduction
algorithm is a polynomial-time algorithm, we observe that the algorithms from
Lemmata 6 and 7 run in polynomial time. Trivially, the greedy construction of
S1, . . . , St, X, and k′ can be done in polynomial time. Therefore, the reduction
algorithm runs in polynomial time. The solution-lifting algorithm is also easily
implementable to run in polynomial time. This concludes the proof. �

4 Kernelization

In this section we study (exact) kernelization of clustering with equal sizes.
First, we show that it is unlikely that Decision Equal Clustering admits
a polynomial kernel when parameterized by B only. We prove this for �0 and
�1-norms. Our lower bound holds even for points with binary coordinates, that
is, for points from {0, 1}d. For this, we use the result of Dell and Marx [24] about
kernelization lower bounds for the Perfect r-Set Matching problem.

Theorem 2 (�). For �0 and �1-norms, Decision Equal Clustering has no
polynomial kernel when parameterized by B, unless NP ⊆ coNP/poly, even if the
input points are binary, that is, are from {0, 1}d.

Now we prove Theorem 3 that we restate here.

Theorem 3. For every nonnegative integer constant p, Decision Equal

Clustering admits a polynomial kernel when parameterized by k and B, where
the output collection of points has O(kB) points of Zd′

with d′ = O(kBp+1) and
each coordinate of a point takes an absolute value of O(kB2).
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Proof. Let (X, k, B) be an instance of Decision Equal Clustering with X =
{x1, . . . ,xn}, where the points are from Zd. Recall that n is divisible by k.

Suppose n
k ≥ 4B + 1. Then we can apply the algorithm from Lemma 6. If

the algorithm returns that there is no equal k-clustering of cost at most B, then
the kernelization algorithm returns a trivial no-instance of Decision Equal

Clustering. Otherwise, if Opt(X, k) ≤ B, then the algorithm returns a trivial
yes-instance.

Assume that n
k ≤ 4B, that is, n ≤ 4Bk. Then we apply the algorithm

from Lemma 7. If this algorithm reports that there is no equal k-clustering of
cost at most B, then the kernelization algorithm returns a trivial no-instance of
Decision Equal Clustering. Otherwise, the algorithm from Lemma 7 returns
a collection of n ≤ 4Bk points Y = {y1, . . . ,yn} of Zd′

satisfying conditions (i)–
(iii) of the lemma. By (i), we obtain that the instances (X, k, B) and (Y, k, B)
of Decision Equal Clustering are equivalent. By (ii), we have that the
dimension d′ = O(k(Bp+1)), and by (iii), each coordinate of a point takes an
absolute value of O(kB2). Thus, (Y, k, B) is a required kernel. �

5 APX-Hardness of EQUAL CLUSTERING

In this section, we prove APX-hardness of Equal Clustering w.r.t. Ham-
ming (�0) and �1 distances. The constructed hard instances consists of high-
dimensional binary (0/1) points. As the �0 and �1 distances between any two
binary points are the same, we focus on the case of �0 distances. Our reduction
is from 3-Dimensional Matching (3DM) is based on the inapproximability
result of Petrank [47].

Theorem 4 (�). There exists a constant εc > 0, such that it is NP-hard to
obtain a (1 + εc)-approximation for Equal Clustering with �0 (or �1) dis-
tances, even if the input points are binary, that is, are from {0, 1}d.

6 Conclusion

We initiated the study of lossy kernelization for clustering problems and proved
that Parameterized Equal Clustering admits a 2-approximation kernel.
It is natural to ask whether the approximation factor may be improved. In
particular, does the problem admit a polynomial size approximate kernelization
scheme (PSAKS) that is a lossy kernelization analog of PTAS (we refer to [35]
for the definition)? Note that we proved that Equal Clustering is APX-hard
and this refutes the existence of PTAS and makes it natural to ask the question
about PSAKS. We also believe that it is interesting to consider the variants of the
considered problems for means instead of medians. Here, the cost of a collection
of points X ⊆ Zd is defined as minc∈Rd

∑
x∈X ‖c−x‖p

p for p ≥ 1. Clearly, if p = 1,
that is, in the case of Manhattan norm, our results hold. However, for p ≥ 2, we
cannot translate our results directly, because our arguments rely on the triangle
inequality. We would like to conclude the paper by underlining our belief that
lossy kernelization may be natural tool for the lucrative area of approximation
algorithms for clustering problems.
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Abstract. We consider the problem of maintaining the size of a Max-

imum Matching in the presence of failures of vertices and edges. For
a graph G, we use μ(G) to denote the size of a maximum matching of
G. A subgraph H of G is an (α, f)-Fault Tolerant Matching Sub-

graph ((α, f)-FTMS) if it has the following property: For any set F
of at most f vertices or edges in G, α · μ(G − F ) ≤ μ(H − F ). Assadi
and Bernstein [SOSA 2019] showed that for any ε > 0, there exists a
( 2
3

− ε, f)-FTMS of size O(n + f). In this paper we initiate a study of
(1, f)-FTMS or f -FTMS in short.

In particular we obtain the following results,
– On bipartite graphs, there exists 1-FTMS, for one edge fault with

O(μ(G)) vertices and edges. We complement this upper bound with
the matching lower bound of Ω(μ(G)) on 1-FTMS for one edge fault.

– On general graphs, there exists f -FTMS for at most f edge faults
with O(μ(G)2 + μ(G)f) edges and O(μ(G) · f) vertices. We also
provide a matching lower bound of Ω(max{μ(G)2, μ(G)f}) edges
and Ω(μ(G)f) vertices for f -FTMS, f ≥ 2 for at most f edge faults.

The same construction works for vertex faults, and they result in even
tighter bounds for f = 1. Our algorithmic results exploit the structural
properties of matchings and use tools from Parameterized Algorithms,
such as Expansion Lemma. We leave open the question of existence of
1-FTMS for one edge fault, of linear size (in terms of μ(G)) on general
graphs.
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1 Introduction

Given a graph G with m edges and n vertices, a matching in G is a set of edges such
that no two edges in the set share any common endpoint. The study of matching
has been one of the important problems in graph theory [22,23]. In particular, the
problem of finding maximum matching has interested many researchers and there
is a huge body of work for this problem [15,17,20,21,24–26].

Graphs used to model real-life networks are prone to failures. Such networks
are modeled as graphs where vertices communicate with each other through
edges. A failure of an edge (edges) or vertex (vertices) of the network may lead
to a breakdown in communication. This motivates us to build algorithms that
are resilient to failures. Such algorithms are built in the fault tolerant model. A
fault tolerant algorithm is expected to work inspite of failures in the network.
Normally it is assumed that the number of failures in the network is much less
than the size of the network. Thus, when we say that there are f edge or vertex
faults, then f � m. Also, we assume that the faults are repaired readily, thus
they are not permanent.

We now give a formal definition of our model, which is called the fault tolerant
subgraph model in literature: Given a graph G, we want to find a subgraph H of
G such that after any set of F failures, a property P in G − F is maintained in
H − F . In general, the solution of the fault tolerant subgraph problem is judged
by the size of the subgraph H. Fault tolerant subgraphs have been developed for
various problems like reachability [4,5], shortest path [9,18,28–30] and spanners
[8,11,12,14,27].

In the fault tolerant model the set F of failures is picked adversarially. If
instead, each edge or vertex of a graph fails independently at random with a
probability p then this setting is known as the non-adaptive stochastic match-
ing problem as defined in [10]. This problem has been extensively studied in
literature [2,3,6,7,32].

Our Results and Techniques
We formally define our problem.

Definition 1. ((α, f)-FTMS) Given a graph G, let μ(G) denote the size of a
maximum matching of G. An (α, f)-FTMS is a subgraph H of G such that for
any set of edges or vertices F of cardinality at most f , α ·μ(G−F ) ≤ μ(H −F ).
When α = 1, we simply drop α. Thus, (1, f)-FTMS is referred to as f-FTMS.
For a graph G, we use Ψ(G) to denote the minimum number of edges in an
f-FTMS of G. That is,

Ψ(G) = min
H is an f -FTMS of G

|E(H)|

Let G′ be a family of graphs, then for all n ∈ N , we define the following:

FTMS(G′, n, f) = max
G∈G′,|V (G)|=n

Ψ(G)
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To the best of our knowledge, FTMS has only been studied by Assadi and
Bernstein [1]. They showed that for any ε > 0, there exists a ( 23 − ε, f)-FTMS of
size O(n+f), while any (23 + ε, f)-FTMS, when f = Θ(n) requires n1+Ω( 1

log log n )

edges. Our study initiates the study of exact maximum matching in the fault
tolerant setting. One of our results (see Theorem 8 in Sect. 4.2) show that there
exist graphs where even 2-FTMS requires Ω(n2) edges.

This seems to suggest that we have reached the end of the road for f ≥ 2.
However, we observe that for our example, μ(G) = Ω(n). Thus, we can also
express our lower bound as μ(G)2. This motivates us to look for a fine-grained
definition of f-FTMS that not only take into account n and f , but also some
parameter that captures the size of the maximum matching of the input graph.
In particular, we can come up with the following new definitions.

Let G′ be a family of graphs, then for all n, � ∈ N , we define the following:

FTMS(G′, n, �, f) = max
G∈G′,|V (G)|=n,μ(G)=�

Ψ(G)

Henceforth, we refer to FTMS(G′, n, �, f) as f -FTMS. With respect to our
new definition, when G′ is a family of graphs as given in Theorem 8, we have
that 2-FTMS is at most O(�2). Thus, a natural question arises: Can we derive a
similar upper bound even when G′ denotes the family of all graphs? Indeed, we
provide a matching upper and lower bound on these quantities in this paper.

Our first result gives a bound when f = 1 edge fault for bipartite graphs. We
show the following,

Theorem 1. For a bipartite graph G, there exists a 1-FTMS of G, for one edge
fault of size O(μ(G)). Furthermore, there exist graphs G for which any 1-FTMS
for one edge fault requires Ω(μ(G)) edges and vertices.

The construction achieving 1-FTMS in Theorem 1 is based on “preserving
augmenting paths’’. That is, we start with a maximum matching M , and con-
struct H iteratively. Initially, H contains M and in each iteration for every edge
e ∈ M , if there exists an augmenting path P in G − {e}, then we add an aug-
menting path P ′ to H. We can not add any augmenting path as this could blow
up the size of H. Thus, we need to construct H carefully. Towards this, orient the
matched edges in one direction and the unmatched edges in the opposite direc-
tion in G. Then each component of H is constructed such that it is a maximal
strongly connected component (SCC) of the oriented graph. Observe that any
SCC is a 1-FTMS for all edges of M in that SCC. This intuition is detailed in
Sect. 3. The construction requires careful analysis both for size and its correct-
ness. The analyses requires maintaining several invariants and updating them
carefully.

In fact, we observe that almost the same construction yields the following
result for vertex faults,

Theorem 2. For any graph G, there exists a 1-FTMS of G, for one vertex fault,
of size O(μ(G)). Furthermore, there exist graphs G for which any 1-FTMS for
one vertex fault requires Ω(μ(G)) edges and vertices.
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In contrast to one edge fault where our results hold for only bipartite graphs,
it is interesting to note that for one vertex fault our results can be extended
to general graphs. This is due to the fact that due to a vertex fault certain
types of augmenting paths from Theorem 1 do not need to be considered when
constructing a 1−FTMS for one vertex fault. For the specific types of augmenting
paths that we need to consider, Theorem 1 holds true even for general graphs.
Hence, the theorem follows.

Our second result, gives tight bounds when f ≥ 2 for general graphs. In this
result the usage of the terms f−FTMS or f faults refer to both vertex or edge
faults. Our proofs for both upper and lower bounds work for both vertex and
edge faults simultaneously giving the same bounds. Specifically, we show,

Theorem 3. For any graph G, there exists an f-FTMS of G of size O((μ(G))2+
μ(G)f). Furthermore, there exist graphs G for f ≥ 2 for which any f-FTMS
requires Ω(max{μ(G)2, μ(G)f}) edges and Ω(μ(G)f) vertices.

Note that the restriction on the bound f ≥ 2 is only on the lower bound and
not the upper bound. The algorithm that achieves the upper bound mentioned in
Theorem 3 combines two efficient construction for f -FTMS. The first algorithm
is a simple greedy algorithm. Let M be a maximum matching of G and I =
V (G) − V (M). We call the edges between V (M) and I cross edges. We show
that a graph induced on V (M), together with at most 3f cross edges incident to
each vertex in V (M), is a valid f -FTMS subgraph H. The essence of the proof
lies in the following structural claim: for any set of edges F ⊆ E(G) of size at
most f , there exists a matching MF in H − F such that μ(G − F ) = |MF | and
it uses at most 2f cross edges. We further refine this construction making use
of expansion lemma [16,31], a tool used in parameterized complexity, to further
reduce the number of vertices in the f -FTMS. This construction gives the desired
upper bound on f -FTMS, as claimed in Theorem 3.

2 Preliminaries

Given a graph G = (V,E), a matching μ is a set of edges such that no two edges
in μ are adjacent to each other. We also use V (G) and E(G) to denote the vertex
and the edge set of G, respectively. An edge in μ is said to be matched. All other
edges are said to be unmatched. We say a vertex is matched if it is incident to an
edge in μ. Otherwise a vertex is unmatched. A maximum matching is a matching
of largest cardinality. In the rest of the paper we define μ(G) to be the size of a
maximum matching of graph G. We sometimes abuse notation and also refer to
an edge (a, b) ∈ μ(G) or the set of edges of the maximum matching μ(G), which
will be clear from the context. We define μ(V ) to be the matched vertices in the
matching μ(G). A path is called an augmenting path with respect to a matching
μ if the two endpoints of the path are unmatched in μ and the edges of the path
alternate between edges in μ and edges not in μ. P [x, y] denotes the subpath of
a path P starting from the vertex x ∈ P and ending at the vertex y ∈ P .
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3 1-FTMS

In this section, we show a construction of a 1-FTMS H of a bipartite graph in
case of one edge fault and of a general graph for one vertex fault. Suppose an
edge e = (a, b) or a vertex a is removed from the graph G. As a result, let M∗ be
the new maximum matching in G − e or in G − a. A maximum matching is not
unique, hence our aim in creating a 1−FTMS H is not to compute the matching
M∗, but some matching M ′ in H such that |M ′| = |M∗|.

Let us look at the edges which should be kept in H. We compute the size of a
maximum matching μ(G) in G and include the edges of this maximum matching
in H. Let us look at the other edges that need to be included in H. A failed edge
e may be a matched or an unmatched edge. Similarly, a failed vertex a may be
a matched or an unmatched vertex. If e or a is unmatched then the matching
μ(G−e) = μ(G) or μ(G−a) = μ(G). Since H contains μ(G), no new edges need
to be included in H.

If e or a is matched, then we require more work to figure out the edges we
need to add to H. Let a’s matching endpoint be b. When an edge e = (a, b) is
deleted, a and b become newly unmatched vertices. When a matched vertex a is
deleted, b becomes a newly unmatched vertex. We now need to add edges to H
based on the following two cases:

(i) There is an augmenting path from a to b in G − e.
In this case, we will add edges in H such that there is an augmenting path
from a to b in H − e. We will refer to these augmenting paths as Type 1
augmenting paths.

(ii) There is an augmenting path from a or b to an unmatched vertex in G − e
or there is an augmenting path from b to an unmatched vertex in G − a.
Again, we will add edges in H such that there is an augmenting path from
a or b to an unmatched vertex in H − e or there is an augmenting path from
b to an unmatched vertex in G − a. We will refer to these augmenting paths
as Type 2 augmenting paths.

3.1 1 FTMS for Bipartite Graphs

It would seem that we need to add an augmenting path for each edge (a, b) ∈
μ(G). Thus, the number of edges that needs to be added to H may be huge.
However, we show the following theorem in this section which bounds the number
of edges and vertices in 1-FTMS of a bipartite graph:

Theorem 4. For a bipartite graph G, there exists a 1-FTMS of G for one edge
fault, with 5μ(G) edges and 3μ(G) vertices.

The proof of the above theorem will follow from the following sections. In
Sect. 3.2, we show the construction and correctness of a 1-FTMS H. In Sect. 3.3,
we give a bound on the size of this subgraph.



120 N. Banerjee et al.

3.2 Construction of H

As an initial attempt to construct our subgraph H, let us try a greedy approach
where for every matched edge (a, b) ∈ μ(G), we find an augmenting path starting
from either a or b and keep the path in H. There is the following issue with
this approach: let us assume that the augmenting paths picked for the first k
matched edges are vertex disjoint. Then we have formed k disjoint components
in H. However when the (k + 1)st matched edge is processed, its augmenting
path touches all the k components previously generated. Thus, for the (k + 1)st

edge, we need to add at least k unmatched edges in H. This turns out to be
very bad if k = Ω(μ(G)). Indeed, one can create an example where the number
of edges added to H are O(μ(G)2).

The above approach suggests that a construction would work if at any point
of time, there are small number of components in H. Ideally we would like an
augmenting path of the (k + 1)st matched edge to extend a single component if
possible and that is exactly what our construction of H1 (the first part of the
algorithm to construct H) does.

The algorithm is broken into two parts. In Algorithm 1, we construct a sub-
graph H1 of G. H1 has the following property: for a matched edge (a, b) ∈ μ(G),
if there exists an augmenting path from a to b in G − (a, b) then there exists an
augmenting path from a to b in H1 − (a, b). In Algorithm 2, we construct a sub-
graph H2 of G. H2 has the following property: for a matched edge (a, b) ∈ H2 if
there exists an augmenting path from a or b to an unmatched vertex in G−(a, b)
then there exists an augmenting path from a or b to an unmatched vertex in
H2 − (a, b). Our subgraph H is a union of subgraphs H1,H2 and μ(G). Initially
both H1 and H2 are empty graphs. We denote P as an augmenting path starting
from a or b in the graph G − (a, b). We will start with the construction of H1.

Algorithm 1: Constructing H1 for 1-fault

1 H1 = φ;
2 for (a, b) ∈ μ(G) − H1 do
3 if ∃ an alternating path P from a to b in G − (a, b) then
4 H1 = H1 ∪ P ∪ (a, b);
5 for (p, q) ∈ μ(G) − H1 do
6 if ∃ an alternating path P from p to q in G − (p, q) that

intersects with H1 then
7 Let xi ∈ P be the vertex such that P hits H1 for the first

time;
8 Let xj ∈ P be the vertex such that P hits H1 for the last

time;
9 P = P [p, xi] ∪ P [xj , q];

10 H1 = H1 ∪ P ∪ (p, q);
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Construction of H1. Algorithm 1 gives a pseudocode description of the con-
struction of H1. In lines 2–4, the outer for loop finds a pair (a, b) ∈ μ(G) − H1

such that there is an augmenting path P in the graph G − (a, b) from a to b.
Once such a pair is found, we add P ∪ (a, b) to H1. Next, from lines 5–10 in the
inner for loop we go through all matching edges (p, q) ∈ μ(G) − H1, to check
if there exists an augmenting path P from p to q that intersects with H1 i.e.
P ∩H1 
= φ. We include a subset of edges of the path P in H1, namely the edges
of the paths P [p, xi] and P [xj , q]. Here, P hits H1 for the first time at xi and
the last time at xj .

a2

a1

a3

a4

a5

a6

b1

b2

b3

b4

b5

b6

Fig. 1. Construction of H1. (a1, b1), (a2, b2) and (a3, b3) are the edges computed first
in line 4 which generates the blue bold and dotted edges and are added to H1. Line 5
(inner for loop) of the algorithm looks at an edge of the form (a6, b6) /∈ H1 currently.
Here P [p, xi] = (a6, b4, a4, b1) and P [xj , q] = (b6, a5, b5, a2)

See Fig. 1 for an illustration of the construction of H1.
Correctness: We now prove the correctness of the above algorithm. To this

end, we need to show that for any matched edge e = (a, b), if there is an aug-
menting path from a to b in G − e, then there is an augmenting path from a to
b in H1 − e. We will first point a feature of the Algorithm 1.

For any matched edge (a, b), if there is an augmenting path in G − (a, b)
that intersects with the current H1, then the algorithm detects it and inserts
the portion of the augmenting path in G − H1 along with the matched edge
(a, b) in H1. In the outer for loop Algorithm 1 only matched edges outside
H1 are considered. So after processing (a, b) and its augmenting path in G −
H1 none of the matched edges in this path is considered in the outer for loop
again. Therefore, edges added to H1 in any two iterations of the outer for loop
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Algorithm 1 are vertex disjoint. For any matched edge (p, q), looked at by the
algorithm in the inner for loop, the algorithm only adds the parts P [p, xi] and
P [xj , q] which are not in the current H1 to H1. Therefore, the matched edges
added by the algorithm in the outer for loop are disjoint to the matched edges
added by the algorithm in the inner for loop.

Remark 1. The endpoints of the edges added to H1 in any two different iterations
of the outer for loop of Algorithm 1 are vertex disjoint. The endpoints of the
matched edges processed and added by the algorithm in the outer for loop is
vertex disjoint to the endpoints of the matched edges processed and added in
the inner for loop.

We will use the above observations crucially in our subsequent proofs. Let us
state one more useful remark and lemma.

Remark 2. Let G be a bipartite graph with partitions A and B. If there exists
an alternating cycle C in H with respect to the maximum matching μ(G) then,

1. ∀{u, v} ∈ C, u ∈ A, v ∈ B, there exists an alternating path of odd length
between the matched edge incident to u and the matched edge incident to v.

2. ∀e = (a, b) ∈ C ∩ μ(G), a ∈ A, b ∈ B, there exists an augmenting path from a
to b in C − e or vice versa.
This follows as G is a bipartite graph and C is an alternating cycle.

Lemma 1. At any point of time during the construction of H1, for any matched
edge (a, b) ∈ μ(G) if a ∈ H1 then b ∈ H1.

Proof. By Remark 1, we can focus on each iteration of the outer for loop of
Algorithm 1 as edges added in different iterations are vertex disjoint. Before the
inner for loop of Algorithm 1 starts, we just have an alternating cycle in H1.
Therefore, for each matched edge (a, b) ∈ C, the observations holds.

If a is added to H1 in the t-th iteration of the inner for loop, then there can
be two cases:

(i) (a, b) is processed in line 5 in which case we add (a, b) in H1 in line 10 or,
(ii) (a, b) is present in an augmenting path of some matched edge (c, d) processed

in line 5. In this case, (a, b) belongs to either P [c, xi] or P [xj , d] and is thus
added to H1.

We will now prove our main lemma of this subsection which proves the cor-
rectness of H1.

Lemma 2. Given a bipartite graph G with partitions A and B, let μ(G) be the
maximum matching in G.

(i) for any pair of vertices u, v ∈ H1 such that u ∈ A, v ∈ B, there exists an
alternating path of odd length between the matched edge incident to u and
the matched edge incident to v.
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(ii) for all matched edges (a, b) in H1 such that a ∈ A, b ∈ B, if there exists an
augmenting path P with respect to μ(G) from a to b in G − e then there
exists an augmenting path P ′ with respect to μ(G) from a to b in H1 − e.

Proof. By Remark 1, we can focus on each iteration of the outer for loop of
Algorithm 1 as edges added in different iterations are vertex disjoint.

Our proof uses induction on the number of iterations of the inner for loop in
Algorithm 1. For the base case, we consider all edges processed by the algorithm
before the first iteration of the inner for loop. Thus, H1 just contains alternating
cycle C. So, ∀{u, v} ∈ C such that u ∈ A, v ∈ B, Remark 2(i) holds true. All
matched vertex pairs {a, b} ∈ μ(G) ∩ C satisfy Remark 2(ii). Therefore, the
lemma holds true for the base case.

By induction hypothesis, assume that for all matched edges processed by the
algorithm until the tth iteration of the inner for loop, our lemma holds true. We
will show that the lemma holds true for a matched edge e = (p, q) processed by
the algorithm at the (t + 1)th iteration. Assume that the algorithm processes an
augmenting path from p to q to extend H1.

Let P = {x0 = p, x1, . . . , x� = q} be the augmenting path in G − e such that
a subpath of P is then used to extend H1. We follow the path P from p till we
hit a vertex xi ∈ H1 for the first time. We also follow the path P from a vertex
xj ∈ H1 to the vertex q, where xj was the last vertex in the path P which hit
H1. P [p, xi] and P [xj , q] are added to H1.

By Lemma 1, both edges (xi−1, xi) and (xj , xj+1) are unmatched edges.
So we have xi ∈ B ∩ H1 and xj ∈ A ∩ H1. By induction hypothesis, there
exists an alternating path Pc of odd length starting from the matched edge
incident to xi and ending with the matched edge incident to xj . Thus, P ′ =
P [p, xi] ∪ Pc ∪ P [xj , q] is an augmenting path from p to q in H1 − e satisfying
part (ii) of the lemma for p and q.

We need to show that our lemma holds true for all the newly added matched
edges, that is, (c, d) ∈ P [p, xi] ∪ P [xj , q]. We first prove the second part of the
lemma. The path P ′ ∪ (p, q) − (c, d) is an augmenting path from c to d. Thus,
all vertices in the path P [p, xi] and P [xj , q] satisfy part (ii).

To show part (i), observe that P ′ ∪ (p, q) forms an alternating cycle C′
. Con-

sider the following three cases where u ∈ A and v ∈ B:

1. u ∈ C′
and v ∈ C′

(i) holds as C′
is an alternating cycle.

2. u ∈ C′
but v /∈ C′

Let (u′, v′) be a matched edge in Pc where u′ ∈ A and v′ ∈ B. Such a
matched edge should exist as Pc is not empty. Since u and u′ lie in C′

, there
is an alternating path from u to u′. Since u′ ∈ H1 and v ∈ H1, by induction
hypothesis, there is an alternating path from u′ to v. The concatenation of
the above two paths gives us an alternating path from u to v, thus satisfying
(i).

3. u /∈ C′
but v ∈ C′

Symmetric to the above case.
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Remark 3. The construction of H1 uses critically that the graph is bipartite, as
otherwise, Remark 2 and subsequently Lemma 2 may not hold.

Construction of H2. Algorithm 2 gives a pseudocode description of the con-
struction of H2. To this end, we introduce a new variable X which stores all
vertices processed by Algorithm 2 that have an alternating path starting with
an unmatched edge to an unmatched vertex. In lines 2–6, let us assume that
we are processing an augmenting path P from a to an unmatched vertex. When
P hits a vertex q ∈ X for the first time, we add the path P [a, p] in H2 where
(p, q) ∈ μ(G). Lines 7–9 then adds every alternate vertex from P [a, p] to X.

Algorithm 2: Constructing H2 for 1-fault

1 H2 = φ,X = φ;
2 for (a, b) ∈ μ(G) − H2 do
3 if ∃P1 from a to an unmatched vertex u in G − (a, b) or ∃P2 from b to

an unmatched vertex v in G − (a, b) then
4 for P ∈ {Pk|k ∈ {1, 2}} do
5 Let (p, q) be the first matched edge in P from the vertex a such

that q ∈ X;
6 H2 = H2 ∪ P [a, p] ∪ (a, b);
7 for (u, v) ∈ P do
8 if (u, v) ∈ μ(G) then
9 X = X ∪ v;

Correctness: Next we will prove the correctness of H2 using the following
theorem.

Lemma 3. Given a graph G, let μ(G) be the maximum matching in G. For all
matched edges e = (a, b), if there exists an augmenting path from a or b to an
unmatched vertex in G − e, then there exists an augmenting path from a or b to
an unmatched vertex in H2 − e.

Proof. Any matching edge that satisfies the statement of the lemma is processed
by Algorithm 2. So we focus on the edges that are processed in the for loop of
Algorithm 2. Our proof uses induction on the number of iterations of this for
loop. Along with the statement of the lemma, we also prove by induction that
after each iteration of the for loop, X contains all vertices in current H2 that
have an alternating path starting from an unmatched edge to an unmatched
vertex.

For the base case, which is the first iteration of the for loop, for a matched
edge (a, b), if there exists an augmenting path P from a or b to an unmatched
vertex in G−e, then we insert the entire path P in H2. In addition, in Algorithm
2, alternate vertices of P are inserted to X. This proves the base case.
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Suppose for all matched edges until the tth iteration of the for loop, our
lemma (and our assertion on X) holds. We will show that the lemma (and our
assertion on X) holds true after an edge e = (a, b) processed by the algorithm at
the (t+1)th iteration. Assume that there is an augmenting path P from vertex a
to an unmatched vertex in G−e. The proof for an augmenting path from vertex
b is the same.

We follow P until we hit a matched edge (p, q) in the path such that q ∈ X.
We add the truncated path P [a, p] to H2. Since q ∈ X, by induction hypothesis,
there is an alternating path Q starting with an unmatched edge from q to a
unmatched vertex. Therefore the path P [a, p] ∪ (p, q) ∪ Q gives our required
augmenting path from a to an unmatched vertex in the (t+1)th iteration. Thus,
our lemma holds after the (t + 1)th iteration.

Next, we add all the alternate vertices in the path P [a, p] in X as all of them
now have an alternating path starting from an unmatched edge to an unmatched
vertex as well. After this update, X contains all vertices in current H2 that have
an alternating path starting from an unmatched edge to an unmatched vertex.
Thus, our assertion on X also holds.

Lemmas 2 and 3 together show that H is a 1-FTMS of G.

Remark 4. Observe that the construction and proof of correctness of H2 holds
even for general graphs. This means that construction of all Type 2 augmenting
paths hold for general graphs.

3.3 Bounding the Size of H

Lemma 1 implies that a matched edge (a, b) is added only once to H1. Whenever
such a matched edge is added it is part of a cycle (in line 4) or a path (in line 10).
Therefore, for every matched edge added to H1, there is at most two unmatched
edge incident to it which is added in H1. The matched edges contribute at most
μ(G) edges to H1. Thus, in this case H1 contains μ(G) matched edges and 2μ(G)
unmatched edges for a total size of 3μ(G) edges.

Let us now bound the size of H2. Every time a vertex is added to the set
X it contributes exactly one unmatched edge to H2. As each vertex is added to
X only once and there are at most 2μ(G) such vertices this contributes 2μ(G)
edges to H2. Thus, the total size of the number of edges of H is 5μ(G).

Next, we calculate the number of vertices in H. H contains all 2μ(G) matched
vertices of G. H also contains at most one unmatched vertex adjacent to either a
or b where (a, b) ∈ μ(G) but not both. This is because if there was an unmatched
vertex from both a and b, then we could extend our initial maximum matching
μ(G). Therefore H contains at most μ(G) unmatched vertices. Thus, the total
size of H is 3μ(G) vertices. Lemmas 2 and 3 together with the bound on the size
of H give a proof of Theorem 4.
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3.4 1 Vertex Fault for General Graphs

Surprisingly, for a vertex fault our above results can also be extended to general
undirected graphs. As the following lemma shows, it is enough to consider just
Type 2 augmenting paths when constructing a 1-FTMS for one vertex fault.

Lemma 4. To construct a 1-FTMS for one vertex fault, only augmenting paths
of Type 2 have to be added.

Proof. Let (a, b) be any arbitrary matched edge in μ(G). If a is deleted, there
cannot be an augmenting path from b to a in G − a. Thus, Type 1 augmenting
paths do not need to be considered to construct a 1-FTMS for one vertex fault.
Hence, for a vertex fault a, only augmenting paths of Type 2 from b have to be
added to the 1-FTMS H.

We directly get the following theorem for the construction of a 1-FTMS for
one vertex fault.

Theorem 5. For any graph G, there exists a 1-FTMS of G for one vertex fault
with 2μ(G) edges and 3μ(G) vertices.

Proof. Lemma 4 and Remark 4 together imply that the construction of Type 2
augmenting paths as given by the subgraph H2, gives a 1-FTMS for one vertex
fault for any general undirected graph. The space bounds also follow directly
from Sect. 3.3 as we simply need to consider the space used in the construction
of H2.

3.5 Lower Bound

In the following lower bound, 1-FTMS refers to both a single vertex or a single
edge failure.

Theorem 6. (	)1 For any positive integer n, there exists a graph G = (V,E)
on n vertices and a maximum matching μ(G) whose 1-FTMS requires at least
3μ(G) vertices and 2μ(G) edges.

4 f-Fault Tolerant Subgraph for General Graphs

In this section we give an algorithm to find an f -FTMS with
(
2μ(G)

2

)
+2μ(G) ·3f

edges and 2μ(G)(f +3) vertices in general graphs. Also, f -FTMS will mean both
at most f vertex and edge faults as all proofs in this section work for both. The
algorithm proceeds in two phases, we first construct a subgraph H ′ that has the
desired number of edges, but the number of vertices could be larger than the
claimed bound following the technique used in [19]. To improve the bound on
the number of vertices, we run the second phase of our algorithm and obtain
the desired f -FTMS, H, with the claimed number of vertices and edges. We
conclude the section with a lower bound of Ω(μ(G)2) edges on 2-FTMS and
Ω(μ(G)f) vertices for f -FTMS.
1 Results marked with � are deferred to the full version.
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4.1 Construction of f-FTMS

Given an undirected graph G and a positive integer f our algorithm constructs
an f -FTMS, H ′. A similar construction to the following was also used in [19].
We give the construction and proof for completeness. Moreover, we also take
care of constants in our bounds.

Construction 1: Let M be a maximum matching of G. Let V (M) denote
the vertices incident to the edges of M and I = V (G)−V (M). Observe that
I is an independent set. For every vertex v ∈ V (M), let Iv denote the set of
arbitrary 3f neighbors of v present in I. If v has less than 3f neighbors then
Iv contains all the neighbors of v that are in I. Furthermore, let Ev denotes
the edges between v and the vertices in Iv. The vertex set of subgraph H ′

is V (M) ∪v∈V (M) Iv and the edge set consists of E(G[V (M)]) ∪v∈V (M) Ev.

In plain words, for H ′ we take the graph induced on V (M) and for every
vertex in V (M) add arbitrary 3f neighbors of it (if they are present or take all
the neighbors) that are in I.

Next we need to prove that H ′, as constructed above, is indeed an f -FTMS.
Towards this we need to show that for any set F of at most f edges or vertices
in E(G), μ(G − F ) ≤ μ(H ′ − F ). Since, H ′ − F is a subgraph of G − F we
have that μ(G − F ) ≥ μ(H ′ − F ). These two inequalities together would imply
that μ(G − F ) = μ(H ′ − F ). For the proof of correctness we show the following
lemma.

Lemma 5. (	) Let G be an undirected graph and f be a positive integer. Fur-
thermore, let H ′ be the subgraph constructed as above. Then, for any set F of at
most f edges or vertices in E(G), μ(G − F ) ≤ μ(H ′ − F ).

Using Lemma 5 we show that H ′ is an f -FTMS.

Lemma 6. (	) For an undirected graph G and a positive integer f , there exists
an f-FTMS with (2μ(G))(3f + 1) vertices and

(
2μ(G)

2

)
+ 2μ(G) · 3f edges.

In Lemma 6, the number of vertices in H can be a large as 2μ(G)(3f + 1).
We give another construction of f -FTMS, where the number of vertices is upper
bounded by at most 2μ(G)(f + 3). However, in this construction we are not
able to upper bound the number of edges, as claimed. So to simultaneously
achieve an upper bound on the number of vertices and edges, we first apply
construction-1 and obtain an f -FTMS, H ′, with the required number of edges
and then apply the second construction on H ′ to get the desired f -FTMS H.
That is, we compose the two constructions to get the desired upper bound on
the number of vertices and the edges.

Towards this we need expansion lemma. A q-star, q ≥ 1, is a graph with
q + 1 vertices, one vertex of degree q, called the center, and all other vertices of
degree 1 adjacent to the center. Let G be a bipartite graph with bipartition A
and B. For a positive integer q, a set of edges M ⊆ E(G) is called a q-expansion
of A into B if (a) every vertex of A is incident to exactly q edges of M ; and (b)
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M saturates exactly q|A| vertices in B. Note that q-expansion saturates all the
vertices of A and for every u, v ∈ A, u 
= v, the set of vertices Eu adjacent to u
by edges of M does not intersect the set of vertices Ev adjacent to v via edges
of M . Thus, every vertex v ∈ A could be thought of as the center of star with q
leaves in B, with all these |A| stars being vertex-disjoint.

We now state the following lemma which is crucial in the second construction
of f -FTMS.

Lemma 7 ([13]). Let G be a bipartite graph with bipartitions (A,B) and q > 0
be a positive integer such that,

– |B| ≥ q|A|,
– There are no isolated vertices in B.

Then there exists non-empty vertex sets X ⊆ A and Y ⊆ B such that there is a
q-expansion of X into Y and no vertex in Y has a neighbor outside X, that is,
N(Y ) ⊆ X. Moreover, the sets X and Y can be found in polynomial time.

The second construction is based on the following reduction rule. This rule
removes a vertex that it deems irrelevant for the purpose. To get the final H, we
apply the next rule until no longer possible.

Reduction Rule 1: Let M be a maximum matching of G. Let V (M)
denote the vertices incident to the edges of M and I = V (G) − V (M).
Observe that I is an independent set. We obtain a bipartite graph G′ with
vertex bipartitions A := V (M) and B := I, and it contains all the cross
edges. That is, all the edges with one endpoint in A and the other in B. We
apply the first applicable rule below.

Case 1: If there is a vertex v that is isolated in B, then delete v and return
G − {v}.

Case 2: Else, assume that B does not have any isolated vertex. Now, if
|B| ≥ (f + 2)|A|, then by Lemma 7 there exist non-empty vertex sets
X ⊆ A and Y ⊆ B such that there is a (f + 2)-expansion of X into Y
and N(Y ) ⊆ X. Let v be a vertex in Y , then delete v and return G−{v}.
If |B| < (f + 2)|A|, then return G itself.

Next we show that our reduction rule is sound.

Lemma 8. (	) Let G be an undirected graph and f be a positive integer. Let
G′ = G−{v} be the graph returned by an application of Reduction Rule 1. Then,
G′ is f-FTMS.

Using Reduction Rule 1, we give our second construction of f -FTMS.

Construction 2: Let G be a graph and f be a positive integer. Apply
Reduction Rule 1, until no longer possible. Let the resulting graph be H.

Lemma 9. (	) For an undirected graph G and a positive integer f , there exists
an f-FTMS with 2μ(G)(f + 3) vertices.
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Next by composing two constructions we obtain the final f -FTMS.

Theorem 7. 	 For an undirected graph G and a positive integer f , there exists
an f-FTMS with (2μ(G))(f + 3) vertices and

(
2μ(G)

2

)
+ 2μ(G) · 3f edges.

4.2 Lower Bounds

Let us look at the lower bound on the size of H in terms of the number of edges,
when F is a set of at most f edge or vertex faults.

Theorem 8. For any positive integers n, � with n ≥ 2� and � is even, there
exists a bipartite graph G on n vertices with μ(G) = � and any f-FTMS of G

has at least μ(G)2

4 + μ(G) edges.

Proof. See Fig. 2 for an illustration. We will prove that any 2−FTMS of G has
at least μ(G)2

4 + μ(G) edges. This will also imply that the theorem holds for any
f > 2 as well, as we can simply add extra dummy edges in our constructed
graph and treat those edges as faults. Let n, � be two positive integers such that
n ≥ 2�. We first describe the construction of a bipartite graph G on n vertices.
The vertex set V (G) consists of 4 parts, A,B,C and D each part consisting
of q = �

2 vertices. Finally, add n − 2� isolated vertices in G, so that the total
number of vertices of G becomes n. Let Z = {z1, . . . , zq} denote the vertices
in part Z ∈ {A,B,C,D}. For i ∈ [q], ai ∈ A is adjacent exactly to one vertex
bi ∈ B. Similarly, each vertex ci ∈ C is adjacent exactly to one vertex di ∈ D.
Furthermore, each vertex ai ∈ A has edges to all vertices di ∈ D. That is, there
is a complete bipartite graph between vertices of A and D and every vertex in
B and C has degree exactly equal to one. To see that G is a bipartite graph,
consider the bipartitions A = A ∪ C, and B = B ∪ D. Finally, add isolated
vertices to either of the part.

The unique maximum matching in this graph is M = {(ai, bi), (ci, di) | i ∈
[q]}. The size of |M | = 2q = �. Let H be a 2-FTMS of G. We will show that H
must contain all the edges of G. Towards this we first note that H must contain
all the edges of M , as M is a unique maximum matching of G.

Next we show that all the non-matching edges of G are also required. For
contradiction, suppose an edge of the form (aj , dk) for a fixed j, k ∈ [1, . . . , q] is
not present in H. Suppose that edges (aj , bj) and (ck, dk) are deleted in G. Then
(aj , dk) must be included in the maximum matching of G − {(aj , bj), (ck, dk)}.
Thus the size of maximum matching in G − {(aj , bj), (ck, dk)} is � − 1. But the
maximum matching size in H − {(aj , bj), (ck, dk)} is equal to � − 2 as (aj , dk) /∈
H. This contradicts our assumption that H was 2-FTMS of G. Therefore the
subgraph H contains all �2/4 + � edges of G.

The above proof also works for 2 vertex faults. Instead of deleting the edges
(aj , bj) and (ck, dk) from G, delete the vertices bj and dk from G. As bj and dk

are of degree 1, edge faults and vertex faults are equivalent.

Theorem 8 shows that the upper bound achieved on the number of edges on
f -FTMS of G in Theorem 7 is tight. In the next result, we show that in fact our
upper bound on the number of vertices is also asymptotically tight.
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A B C D

a1

a3

b2

b3

b4

b1

a2

a4

c1

c2

c3

c4

d1

d2

d3

d4

Fig. 2. The bipartite graph G where A and C are one partition and B and D the other
partition. Each partition contains 8 vertices. If edges (a1, b1) and (c2, d2) are deleted,
then the edge (a1, d2) must be included in 2-FTMS.

Theorem 9. (	) For any positive integers n, �, f with n = �(f +2), there exists
a bipartite graph G on n vertices with μ(G) = � and any f-FTMS of G must
contain at least μ(G)(f + 1) vertices.
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8. Bilò, D., Grandoni, F., Gualà, L., Leucci, S., Proietti, G.: Improved purely addi-
tive fault-tolerant spanners. In: Algorithms - ESA 2015–23rd Annual European
Symposium, Patras, Greece, 14–16 September 2015, pp. 167–178 (2015)
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Abstract. We consider Markov decision processes with synchronizing
objectives, which require that a probability mass of 1 − ε accumulates
in a designated set of target states, either once, always, infinitely often,
or always from some point on, where ε = 0 for sure synchronizing, and
ε → 0 for almost-sure and limit-sure synchronizing.

We introduce two new qualitative modes of synchronizing, where the
probability mass should be either positive, or bounded away from 0. They
can be viewed as dual synchronizing objectives. We present algorithms
and tight complexity results for the problem of deciding if a Markov
decision process is positive, or bounded synchronizing, and we provide
explicit bounds on ε in all synchronizing modes. In particular, we show
that deciding positive and bounded synchronizing always from some
point on, is coNP-complete.

1 Introduction

Markov decision processes (MDP) are finite-state probabilistic systems with con-
trollable (non-deterministic) choices. They play a central role in several applica-
tion domains for practical purpose [14,19], and in theoretical computer science
as a basic model for the analysis of stochastic transition systems [2,9].

In the traditional state-based semantics, we consider the sequences of states
that form a path in the underlying graph of the MDP. When a control policy (or
strategy) for the non-deterministic choices is fixed, we obtain a purely stochastic
process that induces a probability measure over sets of paths [2,7].

In the more recent distribution-based semantics, the outcome of a stochastic
process is a sequence of distributions over states [3,18]. This alternative seman-
tics has received some attention recently for theoretical analysis of probabilistic
bisimulation [16] and is adequate to describe large populations of agents [8,12]
with applications in system biology [1,18]. The behaviour of an agent is modeled
as an MDP with some state space Q, and a large population of identical agents
is described by a (continuous) distribution d : Q → [0, 1] that gives the fraction
d(q) of agents in the population that are in each state q ∈ Q. The control prob-
lem is to construct a strategy for the agents that guarantees a specified global
outcome of the agents, defined in terms of sequences of distributions. Specifica-
tions of interest include safety objectives [1] and synchronization objectives [12].
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Fig. 1. A Markov chain that is positively but not boundedly synchronizing (for all
modes except eventually).

A distribution is p-synchronized in a set T of states if it assigns to the states
in T a mass of probability at least p. Synchronization objectives require that p-
synchronized distributions occur in the outcome sequence, either, at some posi-
tion (eventually), at all positions (always), infinitely often (weakly), or always
from some point on (strongly), where synchronization is sure winning for p = 1,
and almost-sure or limit-sure winning for p arbitrarily close to 1 [12].

Consider eventually synchronizing as an illustration. Formally, denoting by
dσ

i (T ) the probability mass in a set T under strategy σ at position i in a given
MDP, the three winning modes for eventually synchronizing correspond to the
following three possible orders of the quantifiers:

– ∀ε > 0 · ∃σ · ∃i : dσ
i (T ) ≥ 1 − ε, for limit-sure winning,

– ∃σ · ∀ε > 0 · ∃i : dσ
i (T ) ≥ 1 − ε, for almost-sure winning,

– ∃σ · ∃i · ∀ε > 0 : dσ
i (T ) ≥ 1 − ε, for sure winning.

Note that the formula ∀ε > 0 : dσ
i (T ) ≥ 1−ε is equivalent to dσ

i (T ) = 1 in the
case of sure winning. Defining the value of a strategy σ as val(σ) = supi dσ

i (T ),
the question for limit-sure winning is analogous to the cutpoint isolation problem
for value 1, i.e. whether the value 1 can be approached arbitrarily closely [4,20].
Previous work [12] shows that the above three questions are PSPACE-complete,
and presents a construction of the (existentially quantified) strategy σ when one
exists.

In this paper, we consider dual synchronization objectives obtained either
by taking the negation of the synchronization objectives, or by replacing the
existential quantifier on strategies by a universal quantifier.

1. Taking the negation corresponds to the control player having no strategy to
satisfy the synchronization objective. In that case, we show that a more pre-
cise information can be derived, namely bounds on the value of ε, which is
existentially quantified, and we construct explicit values for the four synchro-
nizing modes. These values give bounds on the isolation distance of the value
1. For instance, the negation of limit-sure eventually synchronizing in T is
given by the formula:

∃ε > 0 · ∀σ · ∀i : dσ
i (T ) ≤ 1 − ε.

We show that the statement holds for a value ε = εe(n, α, α0) that depends
on the number n of states of the MDP, the smallest positive probability α
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Table 1. Positive and Bounded winning modes for always, strongly, weakly, and even-
tually synchronizing objectives.

Always Strongly

Positively ∃σ ∀i dσ
i (T ) > 0 ∃σ ∃N ∀i ≥ N dσ

i (T ) > 0

Boundedly ∃σ infi dσ
i (T ) > 0 ∃σ lim infi→∞ dσ

i (T ) > 0

Weakly Eventually

Positively ∃σ ∀N ∃i ≥ N dσ
i (T ) > 0 ∃σ ∃i dσ

i (T ) > 0

Boundedly ∃σ lim supi→∞ dσ
i (T ) > 0 ∃σ supi dσ

i (T ) > 0

in the transitions of the MDP, and the smallest positive probability α0 in
the initial distribution d0 (see Theorem 1). The most interesting case is when
limit-sure weakly synchronizing does not hold, that is:

∃ε > 0 · ∀σ · ∃N · ∀i ≥ N : dσ
i (T ) ≤ 1 − ε.

Given the value ε = εw that satisfies this condition (see Theorem 2), the value
of N can be arbitrarily large (depending on the strategy σ). Nevertheless, we can
effectively construct a constant Nw such that, for all strategies σ, in the sequence
(dσ

i )i∈N there are at most Nw distributions that are (1 − εw)-synchronized in T .

2. Replacing the existential strategy quantifier by a universal quantifier corre-
sponds to an adversarial MDP where all strategies need to satisfy the require-
ment, or after taking the negation, to the existence of a strategy that violates
a dual of the synchronizing requirement. Note that there is no more alterna-
tion of quantifiers on ε and on σ (∀ε · ∀σ is the same as ∀σ · ∀ε), which gives
rise to only two new winning modes in existential form:

– ∃σ · ∃ε > 0 · ∀i : dσ
i (T ) ≥ ε, that we call bounded winning,

– ∃σ · ∀i · ∃ε > 0 : dσ
i (T ) ≥ ε, that we call positive winning (since this is

equivalent to ∃σ · ∀i : dσ
i (T ) > 0).

Table 1 presents the analogous definitions of bounded and positive winning
for the four synchronizing modes. It is easy to see that for eventually synchroniz-
ing, the positive and bounded mode coincide, while for the other synchronizing
modes the positive and bounded modes are distinct, already in Markov chains
(see Fig. 1).

We establish the complexity of deciding bounded and positive winning in
the four synchronizing modes, given an MDP and initial distribution (which
we call the membership problem), and we also construct explicit values for ε.
Adversarial MDPs are a special case of two-player stochastic games [7] in which
only the second player (the adversary of the first player) is non-trivial. The
results of this paper will be useful for the analysis of adversarial MDPs obtained
from a game by fixing a strategy of the first player. The complexity results are
summarized in Table 2. For positive winning, memoryless winning strategies
exist (playing all actions uniformly at random is sufficient), and the problem
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Table 2. Computational complexity of the membership problem (for eventually syn-
chronizing, the positive and bounded modes coincide).

Always Eventually Weakly Strongly

Positively coNP-C
NL-C

NL-C coNP-C

Boundedly coNP-C NL-C coNP-C

can be solved by graph-theoretic techniques on Markov chains. For bounded
winning, the most challenging case is strongly synchronizing, where we show
that a simple form of strategy with memory is winning, and that the decision
problem is coNP-complete. We give a structural characterization of bounded
strongly synchronizing MDPs, and show that it can be decided in coNP. Note
that the coNP upper bound is not obtained by guessing a strategy, since the
coNP lower bound holds in the case of Markov chains where strategies play no
role. Omitted proofs and additional material can be found in an extended version
of this paper [13].

Related works. The distribution-based semantics of MDPs [3,18] has received an
increased amount of attention recently, with works on safety objectives [1] and
synchronizing objectives [12] (see also references therein). Logic and automata-
based frameworks express distribution-based properties, by allowing different
order of the logical quantifiers, such as ∀σ∃i in standard reachability which
becomes ∃i∀σ in synchronized reachability [3,6,17]. The bounded and posi-
tive winning modes introduced in this paper have not been considered before.
They bear some similarity with the qualitative winning modes in concurrent
games [11].

Applications are found in modeling of large populations of identical agents,
such as molecules, yeast, bacteria, etc. [1,18] where the probability distributions
represent concentrations of each agent in the system. Analogous models have
been considered in a discrete setting where the number of agents is a parameter n,
giving rise to control problems for parameterized systems, asking if there exists
a strategy that brings all n agents synchronously to a target state [5,8].

2 Definitions

A probability distribution over a finite set Q is a function d : Q → [0, 1] such
that

∑
q∈Q d(q) = 1. The support of d is the set Supp(d) = {q ∈ Q | d(q) > 0}.

We denote by D(Q) the set of all probability distributions over Q. Given a set
T ⊆ Q, let d(T ) =

∑
s∈T d(s).

A Markov decision process (MDP) is a tuple M = 〈Q,A, δ〉 where Q is a
finite set of states, A is a finite set of labels called actions, and δ : Q×A → D(Q)
is a probabilistic transition function. A Markov chain is an MDP with singleton
action set |A| = 1. Given a state q ∈ Q and an action a ∈ A, the successor state
of q under action a is q′ with probability δ(q, a)(q′).
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Given X,Y ⊆ Q, let

APre(Y,X) = {q ∈ Q | ∃a ∈ A : Supp(δ(q, a)) ⊆ Y ∧ Supp(δ(q, a)) ∩ X = ∅},

be the set of states from which there is an action to ensure that all successor
states are in Y and that with positive probability the successor state is in X,
and for X = Q, let Pre(Y ) = APre(Y,Q) = {q ∈ Q | ∃a ∈ A : Supp(δ(q, a)) ⊆ Y }
be the set of states from which there is an action to ensure (with probability 1)
that the successor state is in Y . For k > 0, let Prek(Y ) = Pre(Prek−1(Y ))
with Pre0(Y ) = Y . Note that the sequence Prek(Y ) of iterated predecessors is
ultimately periodic, precisely there exist k1 < k2 ≤ 2|Q| such that Prek1(Y ) =
Prek2(Y ).

Strategies. A (randomized) strategy in M is a function σ : (QA)∗Q → D(A)
that, given a finite sequence ρ = q0a0q1a1 . . . qk, chooses the next action ak with
probability σ(ρ)(ak). We write σ1 ⊆ σ2 if Supp(σ1(ρ)) ⊆ Supp(σ2(ρ)) for all
ρ ∈ (QA)∗Q. A strategy σ is pure if for all ρ ∈ (QA)∗Q, there exists an action
a ∈ A such that σ(ρ)(a) = 1. In all problems considered in this paper, it is known
that pure strategies are sufficient [12]. However, the bounds we provide in case
there is no winning strategy hold for all strategies, pure or randomized.

Given an initial distribution d0 ∈ D(Q) and a strategy σ in M, the
probability of a finite sequence ρ = q0a0q1a1 . . . qk is defined by Prσ

d0
(ρ) =

d0(q0) ·
∏k−1

j=0 σ(q0a0 . . . qj)(aj) ·δ(qj , aj)(qj+1). For an initial distribution d0 such
that d0(q0) = 1, we sometimes write Prσ

q0(·) and say that q0 is the initial state.
We say that ρ is compatible with σ and d0 if Prσ

d0
(ρ) > 0. By extension, an infi-

nite sequence π ∈ (QA)ω is compatible with σ and d0 if all prefixes of π that end
in a state are compatible. It is standard to extend (in a unique way) Prσ

d0
over

Borel sets of infinite paths in (QA)ω (called events), by assigning probability
Prσ

d0
(ρ) to the basic cylinder set containing all infinite paths with prefix ρ [2,22].

Given a set T ⊆ Q of target states, and k ∈ N, we define the following events
(sometimes called objectives):

– �T = {q0a0q1 · · · ∈ (QA)ω | ∀i : qi ∈ T} the safety event of staying in T ;
– �T = {q0a0q1 · · · ∈ (QA)ω | ∃i : qi ∈ T} the event of reaching T ;
– �k T = {q0a0q1 · · · ∈ (QA)ω | qk ∈ T} the event of reaching T after exactly

k steps;

A distribution d0 is almost-sure winning for an event Ω if there exists a
strategy σ such that Prσ

d0
(Ω) = 1, and limit-sure winning if supσ Prσ

d0
(Ω) = 1,

that is the event Ω can be realized with probability arbitrarily close to 1. Finally
d0 is sure winning for Ω if there exists a strategy σ such that all paths compatible
with σ and d0 belong to Ω.

Safety and reachability events are dual, in the sense that �T and �(Q \ T )
form a partition of (QA)ω. It is known for safety objectives �T that the three
winning regions (sure, almost-sure winning, and limit-sure winning) coincide in
MDPs, and for reachability objectives �T , almost-sure and limit-sure winning
coincide [10]. It follows that if the negation of almost-sure reachability holds,
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that is Prσ
d0

(�T ) < 1 for all strategies σ, then equivalently infσ Prσ
d0

(�(Q \
T )) > 0 (note the strict inequality), the probability mass that remains always
outside T can be bounded. An explicit bound can be obtained from the classical
characterization of the winning region for almost-sure reachability [9].

Lemma 1. If a distribution d0 is not almost-sure winning for a reachability
objective �T in an MDP M, then for all strategies σ, for all i ≥ 0, we have
Prσ

d0
(�i T ) ≤ 1−α0 ·αn where n = |Q| is the number of states and α the smallest

positive probability in M, and α0 = min{d0(q) | q ∈ Supp(d0)} is the smallest
positive probability in the initial distribution d0.

In Lemma 1 it is crucial to notice that the bound α0 · αn is independent of
the number i of steps.

Synchronizing objectives. We consider MDPs as generators of sequences of prob-
ability distributions over states [18]. Given an initial distribution d0 ∈ D(Q)
and a strategy σ in M, the sequence Mσ = (Mσ

i )i∈N of probability distri-
butions (from d0, which we assume is clear from the context) is defined by
Mσ

i (q) = Prσ
d0

(�i {q}) for all i ≥ 0 and q ∈ Q. Hence, Mσ
i is the probability

distribution over states after i steps under strategy σ. Note that Mσ
0 = d0.

Informally, synchronizing objectives require that the probability of some set T
of states tends to 1 in the sequence (Mσ

i )i∈N, either always, once, infinitely
often, or always after some point [12]. Given a target set T ⊆ Q, we say that
a probability distribution d is p-synchronized in T if d(T ) ≥ p (and strictly
p-synchronized in T if d(T ) > p), and that a sequence d0d1 . . . of probability
distributions is:

(a) always p-synchronizing if di is p-synchronized (in T ) for all i ≥ 0;
(b) event(ually) p-synchronizing if di is p-synchronized (in T ) for some i ≥ 0;
(c) weakly p-synchronizing if di is p-synchronized (in T ) for infinitely many i’s;
(d) strongly p-synchronizing if di is p-synchronized (in T ) for all but finitely

many i’s.

Given an initial distribution d0, we say that for the objective of {always,
eventually, weakly, strongly} synchronizing from d0, the MDP M is:

– sure winning if there exists a strategy σ such that the sequence Mσ from d0
is {always, eventually, weakly, strongly} 1-synchronizing in T ;

– almost-sure winning if there exists a strategy σ such that for all ε > 0
the sequence Mσ from d0 is {always, eventually, weakly, strongly} (1 − ε)-
synchronizing in T ;

– limit-sure winning if for all ε > 0, there exists a strategy σ such that
the sequence Mσ from d0 is {always, eventually, weakly, strongly} (1 − ε)-
synchronizing in T ;

For λ ∈ {always, event, weakly, strongly}, we denote by 〈〈1〉〉λ
sure(T ) the win-

ning region defined as the set of initial distributions d0 such that M is sure
winning for λ-synchronizing in T (in this notation, we assume that M is clear
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Fig. 2. An MDP where {q0} ∈ 〈〈1〉〉eventlimit ({q2}).

from the context). We define analogously the winning regions 〈〈1〉〉λ
almost(T ) and

〈〈1〉〉λ
limit (T ) of almost-sure and limit-sure winning distributions.
It is known that for all winning modes, only the support of the initial dis-

tributions is relevant, that is for every winning region W = 〈〈1〉〉λ
μ(T ) (where

μ ∈ {sure, almost, limit}), for all distributions d, d′, if Supp(d) = Supp(d′), then
d ∈ W if and only if d′ ∈ W [12]. Therefore, in the sequel we sometimes write
S ∈ 〈〈1〉〉λ

μ(T ), which can be read as any distribution d with support S is in
〈〈1〉〉λ

μ(T ). For each synchronizing mode λ and winning mode μ, the membership
problem asks to decide, given an MDP M, a target set T , and a set S, whether
S ∈ 〈〈1〉〉λ

μ(T ).
Consider the MDP in Fig. 2, with initial state q0 and target set T = {q2}.

The probability mass cannot loop through q2 and therefore, it is immediate that
the MDP is neither always, nor weakly, nor strongly (1 − ε)-synchronizing, thus
{q0} ∈ 〈〈1〉〉λ

almost(T ) for λ = always, weakly, strongly, and thus also {q0} ∈
〈〈1〉〉λ

sure(T ).
For eventually synchronizing in q2, at every step, half of the probability mass

in q0 stays in q0 while the other half is sent to q1. Thus, the probability mass
in q0 tends to 0 but is strictly positive at every step, and the MDP is not
sure eventually synchronizing, {q0} ∈ 〈〈1〉〉eventsure (T ). In state q1, action a keeps
the probability mass in q1, while action b sends it to the target state q2. If
action b is never chosen, then q2 is never reached, and whenever b is chosen, a
strictly positive probability mass remains in q0, thus the MDP is not almost-
sure eventually synchronizing, {q0} ∈ 〈〈1〉〉eventalmost (T ). On the other hand, for every
ε > 0, the strategy that plays a in q1 for k steps such that 1

2k
< ε, and then

plays b, is winning for eventually (1 − ε)-synchronizing in T . Thus the MDP is
limit-sure eventually synchronizing, {q0} ∈ 〈〈1〉〉eventlimit (T ).

The MDP in Fig. 3 is also limit-sure eventually synchronizing in {q2}. As
the probability mass is sent back to q0 from q2, the MDP is even almost-sure
weakly (and eventually) synchronizing, using a strategy that plays action a in
q1 for k steps to accumulate probability mass 1 − 1

2k
in q1, then plays action b

and repeats the same pattern for increasing values of k.

End-Components. Given a state q ∈ Q and a set S ⊆ Q, let AS(q) be the set
of all actions a ∈ A such that Supp(δ(q, a)) ⊆ S. A closed set in an MDP is
a set S ⊆ Q such that AS(q) = ∅ for all q ∈ S. A set S ⊆ Q is an end-
component [2,10] if (i) S is closed, and (ii) the graph (S,ES) is strongly connected
where ES = {(q, q′) ∈ S × S | δ(q, a)(q′) > 0 for some a ∈ AS(q)} denote the set
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Fig. 3. An MDP where {q0} ∈ 〈〈1〉〉weakly
almost({q2}).

of edges given the actions. In the sequel, end-components should be considered
maximal, that is such that no strict superset is an end-component. We denote by
E the union of all end-components, and for q ∈ E , we denote by E(q) the maximal
end-component containing q. A fundamental property of end-components is that
under arbitrary strategies, with probability 1 the set of states visited infinitely
often along a path is an end-component.

Lemma 2 ([9,10]). Let M be an MDP. For all strategies σ, we have
lim infi→∞ Mσ

i (E) = 1.

Tracking Counter in MDPs. It will be useful to track the number of steps (mod-
ulo a given number r) in MDPs. Given a number r ∈ N, define the MDP
M × [r] = 〈Qr,A, δr〉 where Qr = Q × {r − 1, . . . , 1, 0} and δr is defined as
follows, for all 〈q, i〉, 〈q′, j〉 ∈ Qr and a ∈ A:

δr(〈q, i〉, a)(〈q′, j〉) =

{
δ(q, a)(q′) if j = i − 1 mod r,

0 otherwise.

For a distribution d ∈ D(Q) and 0 ≤ t < r, we denote by d × {t} the
distribution defined, for all q ∈ Q, by d × {t}(〈q, i〉) = d(q) if t = i, and d ×
{t}(〈q, i〉) = 0 otherwise. Given a finite sequence ρ = q0a0q1a1 . . . qn in M, and
0 ≤ t < r, there is a corresponding sequence ρ′ = 〈q0, k0〉a0〈q1, k1〉a1 . . . 〈qn, kn〉
in M × [r] where k0 = t and ki+1 = ki − 1 mod r for all 0 ≤ i < n. Since the
sequence ρ′ is uniquely defined from ρ and t, there is a clear bijection between
the paths in M starting in q0 and the paths in M × [r] starting in 〈q0, t〉. In
the sequel, we freely omit to apply and mention this bijection. In particular, we
often consider that a strategy σ in M can be played directly in M × [r].

Consider the MDP in Fig. 4 (which is in fact a Markov chain), with initial
state q0 and target set T = {q2, q3}. There are two end-components, S1 = {q1, q2}
and S2 = {q3, q4}. Although both S1 and S2 are sure eventually synchronizing
in T (from q1 and q3 respectively), the uniform distribution over {q1, q3} is not
even limit-sure eventually synchronizing in T .

3 Eventually Synchronizing

In the rest of this paper, fix an MDP M = 〈Q,A, δ〉 and let n = |Q| be the size
of M, and let α be the smallest positive probability in the transitions of M.
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Fig. 4. A Markov chain with two periodic end-components.

We first consider eventually synchronizing, that is synchronization must happen
once.

3.1 Sure Winning

We recall the following characterization of the sure-winning region for eventually
synchronizing [12, Lemma 7]: d ∈ 〈〈1〉〉eventsure (T ) if and only if there exists k ≥ 0
such that Supp(d) ⊆ Prek(T ). Intuitively, from all states in Prei(T ), there exists
an action to ensure that the successor is in Prei−1(T ) (for all i > 0), and therefore
there exists a strategy to ensure that the probability mass in Prek(T ) reaches
T in exactly k steps. Now, if q0 ∈ Prek(T ), then for all sequences of actions
a0, . . . , ak−1 there is a path q0a0q1a1 . . . qk of length k that ends in qk ∈ Q \ T .
It is easy to derive the following result from this characterization.

Lemma 3. If d0 ∈ 〈〈1〉〉eventsure (T ) is not sure eventually synchronizing in T , then
for all strategies σ, for all i ≥ 0, we have:

Mσ
i (T ) ≤ 1 − α0 · αi

where α0 is the smallest positive probability in d0.

Note that the bound 1−α0 ·αi tends to 1 as i → ∞, which is unavoidable since
MDPs that are not sure eventually synchronizing may be almost-sure eventually
synchronizing [12]. The following variant of Lemma 3 will be useful in the sequel.

Remark 1. If {q0} ∈ 〈〈1〉〉eventsure (T ) and we take α′
0 = d0(q0), then from the initial

distribution d0 we have, for all strategies σ, for all i ≥ 0:

Mσ
i (T ) ≤ 1 − α′

0 · αi.

3.2 Limit-Sure Winning

If the MDP M is not limit-sure winning for eventually synchronizing in T , then
the probability in Q \ T is bounded away from 0 in all distributions in Mσ (for
all strategies σ). We give an explicit bound εe as follows.
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Theorem 1. Given an initial distribution d0, let α0 be the smallest positive
probability in d0, and let εe = α0 · α(n+1)·2n . If d0 ∈ 〈〈1〉〉eventlimit (T ) is not limit-
sure eventually synchronizing in T , then for all strategies σ, for all i ≥ 0, we
have:

Mσ
i (T ) ≤ 1 − εe,

that is, no distribution in Mσ is strictly (1 − εe)-synchronizing in T .

Proof. We recall the characterization1 of [12, Lemma 11] for limit-sure synchro-
nizing in an arbitrary set T . For all k ≥ 0, we have

〈〈1〉〉eventlimit (T ) = 〈〈1〉〉eventsure (T ) ∪ 〈〈1〉〉eventlimit (R),

where R = Prek(T ).
We use this characterization with a specific k (and R) as follows. Consider the

sequence of predecessors Prei(T ) (for i = 1, 2, . . . ), which is ultimately periodic.
Let 0 ≤ k < 2n and 1 ≤ r < 2n be such that Prek(T ) = Prek+r(T ), and let
R = Prek(T ). Thus R = Prek+r(T ) = Prer(R).

Since d0 ∈ 〈〈1〉〉eventlimit (T ), we have:

(a) d0 ∈ 〈〈1〉〉eventsure (T ), and (b) d0 ∈ 〈〈1〉〉eventlimit (R).

By (a), it follows from Lemma 3 that Mσ
i (T ) ≤ 1 − α0 · αi for all strategies σ

and all i ≥ 0, which establishes the bound in the lemma for the first 2n steps,
since α0 · αi ≥ εe for all i ≤ 2n.

We now recall the characterization(See footnote 1) of [12, Lemma 12] for
limit-sure synchronizing in the set R, which has the property that R = Prer(R):
d0 ∈ 〈〈1〉〉eventlimit (R) if and only if there exists 0 ≤ t < r such that d0 × {t}
is almost-sure winning for the reachability objective �(R × {0}) in the MDP
M × [r]. By (b), it follows that for all 0 ≤ t < r, the distribution d0 × {t} is
not almost-sure winning for the reachability objective �(R × {0}) in the MDP
M × [r].

Let N = M × [r]. By Lemma 1, from all distributions d0 × {t} (for all
0 ≤ t < r), for all strategies σ and all i ≥ 0, we have:

N σ
i (R × {0}) ≤ 1 − α0 · α|Qr| = 1 − α0 · αn·2n .

Since this holds for all t = 0, . . . , r −1, we conclude that Mσ
i (Q\R) ≥ α0 ·αn·2n

in the original MDP M from d0, for all strategies σ and all i ≥ 0.
Since R = Prek(T ), it follows from Lemma 3 and Remark 1 that, if at step i a

mass of probability p is outside R, then at step i+k a mass of probability at least
p ·αk is outside T . Hence we have Mσ

i+k(Q \T ) ≥ α0 ·αn·2n ·αk ≥ α0 ·α(n+1)·2n

for all strategies σ and for all i ≥ 0, which implies Mσ
i (Q \ T ) ≥ α0 · α(n+1)·2n

for all i ≥ 2n (since k < 2n).
1 The results of [12, Lemma 11 & 12] consider a more general definition of limit-sure

synchronizing, where the support of the (1−ε)-synchronizing distribution is required
to have its support contained in a given set Z. We release this constraint by taking
Z = Q.
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Combining the results for i ≤ 2n and for i ≥ 2n, we get Mσ
i (T ) ≤ 1 − εe for

all i ≥ 0, which concludes the proof. ��
Theorem 1 also gives a sufficient condition that can be used as an alternative

to [12, Lemma 11] to show that an MDP is limit-sure eventually synchronizing.
This will be useful in the proof of our main result (Theorem 2).

A variant of Theorem 1 is obtained by observing that if d0 ∈ 〈〈1〉〉eventlimit (T ),
there exists a set S0 ⊆ Supp(d0) such that S0 ∈ 〈〈1〉〉eventlimit (T ). It may be that
S0 is a strict subset of Supp(d0), and then it is sufficient to consider α0 as the
smallest positive probability of d0 on S0.

Remark 2. If S0 ∈ 〈〈1〉〉eventlimit (T ) and S0 ⊆ Supp(d0), then we can define α0 by
min{d0(q) | q ∈ S0} in the bound εe of Theorem 1.

3.3 Almost-Sure Winning

A simple argument shows that the almost-sure winning region for eventually
synchronizing consists of the union of the sure winning region for eventually
synchronizing and the almost-sure winning region for weakly synchronizing [21,
Section 5.1.2], that is 〈〈1〉〉eventalmost(T ) = 〈〈1〉〉eventsure (T ) ∪ 〈〈1〉〉weakly

almost(T ).
It follows that if d0 ∈ 〈〈1〉〉eventalmost (T ), then both d0 ∈ 〈〈1〉〉eventsure (T ) and d0 ∈

〈〈1〉〉weakly
almost(T ), and we can use both the results of Lemma 3 and Theorem 2.

4 Weakly Synchronizing

We now consider weakly synchronizing, which intuitively requires that synchro-
nization happens infinitely often.

4.1 Sure Winning

We recall the following characterization of the sure-winning region for weakly
synchronizing [12, Lemma 18]: for all distributions d0 ∈ D(Q), we have d0 ∈
〈〈1〉〉weakly

sure (T ) if and only if there exists a set S ⊆ T such that Supp(d) ⊆ Prek(S)
for some k ≥ 0, and S ⊆ Prer(S) for some r ≥ 1.

Lemma 4. If d0 ∈ 〈〈1〉〉weakly
sure (T ) is not sure weakly synchronizing in T , then for

all strategies σ, in the sequence Mσ there are at most 2n distributions that are
1-synchronized in T , that is Mσ

i (T ) = 1 for at most 2n values of i.

4.2 Limit-Sure and Almost-Sure Winning

The winning region for limit-sure and almost-sure weakly synchronizing coin-
cide [12, Theorem 7]. Therefore, in the sequel we treat them interchangeably.
We recall the following characterization of almost-sure weakly synchronizing.
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Lemma 5 ([12, Lemma 23,Theorem 7]). For all distributions d0, the following
equivalence holds: d0 ∈ 〈〈1〉〉weakly

almost(T ) if and only if there exists a set T ′ ⊆ T such
that:

d0 ∈ 〈〈1〉〉eventlimit (T ′) and T ′ ∈ 〈〈1〉〉eventlimit (Pre(T ′)).

The condition in Lemma 5 ensures that from d0 almost all the probability
mass (namely 1 − ε for arbitrarily small ε > 0) can be injected in a set T ′ of
target states in 0 or more steps, and that from T ′ almost all the probability mass
can be injected in Pre(T ′), thus also in T ′ (but, in at least 1 step). Intuitively,
by successively halving the value of ε one can construct a strategy that ensures
almost all the probability mass loops through T ′, thus a limit-sure weakly syn-
chronizing strategy (which is equivalent to the existence of an almost-sure weakly
synchronizing strategy).

If d0 ∈ 〈〈1〉〉weakly
almost(T ) is not almost-sure weakly synchronizing, we use

Lemma 5 to show that for all sets T ′ ⊆ T , if d0 ∈ 〈〈1〉〉eventlimit (T ′) is limit-sure
eventually synchronizing in T ′, then T ′ is not limit-sure eventually synchro-
nizing in Pre(T ′) (i.e., T ′ ∈ 〈〈1〉〉eventlimit (Pre(T ′))). This implies that a bounded
number of distributions in the sequence Mσ can be (1 − ε)-synchronized in T
(for sufficiently small ε). We now state the main result of this section.

Theorem 2. Given an initial distribution d0, let α0 be the smallest positive
probability in d0, and let εw = α0 · α(n+2)·4n

n2n+1 and Nw = 2n.
If d0 ∈ 〈〈1〉〉weakly

almost (T ) is not almost-sure weakly synchronizing in T , then
for all strategies σ, in the sequence Mσ at most Nw distributions are strictly
(1 − εw)-synchronized in T , that is Mσ

i (T ) > 1 − εw for at most Nw values of i.

Proof. Given the assumption of the lemma, we show the following statement
by induction on k = 0, 1, . . . , 2n: if there are k distributions in Mσ that are
strictly (1 − εw)-synchronized in T , then there exist k distinct nonempty sets
T1, . . . , Tk ⊆ T such that no distribution after those k distributions in Mσ is
strictly (1 − εw)-synchronized in Tj (for all 1 ≤ j ≤ k).

For k = 2n, one of the sets Tj is equal to T and it follows that at most
2n distributions in Mσ can be (1 − εw)-synchronized in T , which concludes
the base case. For the proof by induction, we use the bound εe of Theorem 1.
Let F = (n + 1) · 2n (thus εe = α0 · αF ) and for k = 0, 1, . . . define zk =
α0
n ·

(
αF+1

n

)k

. We prove a slightly stronger statement: for k = 0, 1, . . . , 2n, if there
are k positions i1 < i2 < . . . < ik such that the distributions Mσ

ij
(j = 1, . . . , k)

are strictly (1 − εw)-synchronized in T , then there exist k distinct nonempty
sets T1, . . . , Tk ⊆ T such that no distribution after position ij in Mσ is strictly
(1 − zj · αF+1)-synchronized in Tj (for all 1 ≤ j ≤ k).

This statement is indeed stronger since the sequence zk is decreasing, and εw

was chosen such that εw ≤ z2n , from which it follows that 1 − εw ≥ 1 − zk for
all k ≤ 2n.

The base case for k = 0 holds trivially. For the induction case, assume that the
statement holds for a given k < 2n, and show that it holds for k+1 as follows. If
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there are k+1 positions i1 < i2 < . . . < ik+1 such that all distributions dj = Mσ
ij

(j = 1, . . . , k + 1) are strictly (1 − εw)-synchronized in T , then by the induction
hypothesis, no distribution after position ij in Mσ is strictly (1 − zj · αF+1)-
synchronized in Tj (for all 1 ≤ j ≤ k).

Now consider the distribution dk+1 at position ik+1, which is (1 − εw)-
synchronized in T and appears after position ik in Mσ. We construct the set
Tk+1 = {q ∈ T ∩ Supp(dk+1) | dk+1(q) > zk+1}, which contains the states in T
that carry enough probability mass (namely zk+1) according to dk+1.

Note that not all states in T ∩Supp(dk+1) carry a probability mass less than
zk+1: otherwise, the total mass of T in dk+1 would be at most n · zk+1 ≤ 1 − εw

(this inequality holds thanks to n ≥ 2), in contradiction with dk+1 being (1−εw)-
synchronized in T . Therefore Tk+1 is nonempty. Hence the set Tk+1 can be
obtained from T by removing at most n − 1 states and we have

{
dk+1(Tk+1) > 1 − εw − (n − 1) · zk+1 ≥ 1 − n · zk+1 = 1 − zk · αF+1

dk+1(q) > zk+1 for all q ∈ Tk+1

So dk+1 is strictly (1 − zk · αF+1)-synchronized in Tk+1, and therefore also
strictly (1 − zj · αF+1)-synchronized in Tk+1 (for all 1 ≤ j ≤ k). Then, the
induction hypothesis implies that the set Tk+1 is distinct from T1, . . . , Tk. Since
1 − zk · αF+1 ≥ 1 − z0 · αF+1 > 1 − εe, it follows that dk+1 = Mσ

ik+1
is strictly

(1 − εe)-synchronized in Tk+1, and by Theorem 1, that the initial distribution
d0 is limit-sure eventually synchronizing in Tk+1, that is d0 ∈ 〈〈1〉〉eventlimit (Tk+1).

By Lemma 5, this entails that Tk+1 is not limit-sure eventually synchro-
nizing in Pre(Tk+1) (i.e., Tk+1 ∈ 〈〈1〉〉eventlimit (Pre(Tk+1))), and by Theorem 1,
for all distributions d in Mσ that occur at or after position ik+1, we have
d(Pre(Tk+1)) ≤ 1−zk+1 ·αF where zk+1 < min{dk+1(q) | q ∈ Tk+1∩Supp(dk+1)}
is a lower bound on the smallest positive probability of a state of Tk+1 in the
distribution dk+1, taken as the initial distribution (see Remark 2). It follows that
for all distributions d in Mσ that occur (strictly) after position ik+1, we have
d(Tk+1) ≤ 1 − zk+1 · αF+1. Hence no distribution in Mσ after dk+1 is strictly
(1 − zk+1 · αF+1)-synchronized, which concludes the proof of the induction case.
��

5 Always and Strongly Synchronizing

The anaysis of always and strongly synchronizing modes is relatively straight-
forward, and we present the bounds in Theorem 3.

Theorem 3. Given an initial distribution d0, let α0 be the smallest positive
probability in d0, and let εa = α0 · αn

n and εs = α0 · α2n

n2 .

– if d0 ∈ 〈〈1〉〉always
sure (T ) is not sure always synchronizing in T , then for all strate-

gies σ, in the sequence Mσ there exists a position i ≤ n such that Mσ
i is not

(1 − εa)-synchronized in T ,
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– if d0 ∈ 〈〈1〉〉stronglysure (T ) is not sure strongly synchronizing in T , then for all
strategies σ, in the sequence Mσ there exist infinitely many positions i0 <
i1 < i2 < . . . where i0 ≤ n and ij+1 − ij ≤ n for all j ≥ 0 such that Mσ

ij
is

not 1-synchronized in T .
– if d0 ∈ 〈〈1〉〉stronglyalmost (T ) is not almost-sure strongly synchronizing in T , then

for all strategies σ, in the sequence Mσ there exist infinitely many positions
i0 < i1 < i2 < . . . where i0 ≤ n and ij+1 − ij ≤ n for all j ≥ 0 such that Mσ

ij

is not (1 − εs)-synchronized in T .

6 Adversarial Synchronizing Objectives

In an adversarial MDP the strategies are universally quantified, which corre-
sponds to satisfying an objective regardless of the choice of strategies by an
adversary. Replacing ∃σ by ∀σ in the definition of the three winning modes
gives, after taking the negation to get existentially quantified strategies, the
following new winning modes.

Given a set T ⊆ Q, we say that a sequence d0d1 . . . of probability distribu-
tions is:

– positively {always, eventually, weakly, strongly} winning if di(T ) > 0 for,
respectively, all i ≥ 0, some i ≥ 0, infinitely many i’s, all but finitely many
i’s.

– boundedly {always, eventually, weakly, strongly} winning if there exists ε > 0
such that di(T ) > ε for, respectively, all i ≥ 0, some i ≥ 0, infinitely many
i’s, all but finitely many i’s.

For λ ∈ {always, event, weakly, strongly}, we denote by 〈〈1〉〉λ
positive(T )

(resp., 〈〈1〉〉λ
bounded (T )) the set of initial distributions d0 from which there exists

a strategy σ such that the sequence Mσ is positively (resp., boundedly) λ-
synchronizing in T , and we say that σ is positively (resp., boundedly) λ-
synchronizing in T from d0.

Table 1 summarizes the new definitions. Note that replacing the existential
quantification on strategies in boundedly winning mode by a supremum gives
the same question, since ∃σ : f(σ) > 0 is equivalent to supσ f(σ) > 0. For the
same reason, we have the identity 〈〈1〉〉eventpositive(T ) = 〈〈1〉〉eventbounded (T ). It is easy to
show that the definitions imply the identity 〈〈1〉〉always

bounded (T ) = 〈〈1〉〉always
positive(T ) ∩

〈〈1〉〉stronglybounded (T ), which we also obtain as a corollary of Lemma 6 below.

Remark 3. It immediately follows from the definitions that for all synchronizing
modes λ ∈ {always, event, weakly, strongly}, and μ ∈ {positive, bounded}:

– 〈〈1〉〉always
μ (T ) ⊆ 〈〈1〉〉stronglyμ (T ) ⊆ 〈〈1〉〉weakly

μ (T ) ⊆ 〈〈1〉〉eventμ (T ),
– 〈〈1〉〉λ

bounded (T ) ⊆ 〈〈1〉〉λ
positive(T ),
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and moreover,

– 〈〈1〉〉eventpositive(T ) = 〈〈1〉〉eventbounded (T ), and
– 〈〈1〉〉always

bounded (T ) = 〈〈1〉〉always
positive(T ) ∩ 〈〈1〉〉stronglybounded (T ).

It is easy to see that if there exists a strategy σ that is positively λ-
synchronizing in T , then the strategy σu that plays at every round all actions
uniformly at random is also positively λ-synchronizing in T , because the condi-
tion di(T ) > 0 is equivalent to Supp(di) ∩ T = ∅, and because we have σ ⊆ σu,
which implies that Supp(Mσ

i ) ⊆ Supp(Mσu
i ) for all i ≥ 0.

Hence, in all four synchronization modes, the question is equivalent to the
same question in Markov chains (obtained from the given MDP by fixing the
strategy σu) which can be solved as follows. Given a Markov chain, consider
the underlying directed graph 〈Q,E〉 where (q, q′) ∈ E if δ(q, a)(q′) > 0 (where
A = {a}). For positive eventually synchronizing, it suffices to find a state in T
that is reachable in that graph, and for positive weakly synchronizing, it suffices
to find a state in T that is both reachable and can reach itself. These questions
are NL-complete. For positive always and strongly synchronizing, the question
is equivalent to the model-checking problem for the formulas G∃T and FG∃T in
the logic CTL+Sync, which are both coNP-complete [6, Lemma 2 & Section 3].

For boundedly winning, we show that one strategy is good enough in all four
synchronization modes, like for positive winning. The strategy plays like σu for
the first 2n rounds, and then switches to a strategy σE that, in the states q ∈ E ,
plays uniformly at random all actions that stay in the end-component E(q) of
q (thus all actions in AE(q)), and in the transient states q ∈ E , plays all actions
uniformly at random. We call this strategy the freezing strategy. Intuitively we
use σu to scatter the probability mass in all end-components of the MDP, and
then σE to maintain a bounded probability in each end-component.

Lemma 6. Let M be an MDP with n states and initial distribution d0, and let
T be a target set. Consider the following conditions:

(1) ∀i ≥ 0 : Mσu
i (T ) > 0 (2) ∀i ≥ 2n : Mσu

i (E ∩ T ) > 0

Then, the following equivalences hold:

(a) d0 ∈ 〈〈1〉〉always
positive(T ) if and only if Condition (1) holds;

(b) d0 ∈ 〈〈1〉〉stronglybounded (T ) if and only if Condition (2) holds;
(c) d0 ∈ 〈〈1〉〉always

bounded (T ) if and only if Conditions (1) and (2) hold;

Proof. Equivalence (a) follows from the definition of positive always synchro-
nizing, and from the fact that the uniform strategy σu is sufficient for positive
winning.

We show Equivalence (b) as follows. First, if Condition (2) does not hold, then
Mσu

i (E ∩ T ) = 0 for some i ≥ 2n, and thus also for infinitely many i’s (since
the sequence Supp(Mσu

i ) is ultimately periodic, after at most 2n steps). For arbi-
trary strategy σ, we have Supp(Mσ

i ) ⊆ Supp(Mσu
i ) for all i ≥ 0, therefore
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Mσ
i (E ∩T ) = 0 for infinitely many i’s. By Lemma 2, we have lim infi→∞ Mσ

i (E) =
1 which entails that lim sup Mσ

i (E \ T ) = 1 and lim sup Mσ
i (Q \ T ) = 1, that

is lim inf Mσ
i (T ) = 0. Since this holds for arbitrary strategy σ, it follows that

d0 ∈ 〈〈1〉〉stronglybounded (T ).
For the converse direction, assuming Condition (2) holds, we show that d0 ∈

〈〈1〉〉stronglybounded (T ), witnessed by the freezing strategy σf (which plays like σu for the
first 2n rounds, and then switches to the strategy σE).

We show the key property that

Supp(Mσu
i ) ∩ E = Supp(Mσf

i ) ∩ E for all i ≥ 2n.

Fix an arbitrary i ≥ 2n and let p be a period of the sequence Supp(Mσu)
such that i−p ≤ 2n and Supp(Mσu

i ) = Supp(Mσu
i−p). Consider the Markov chain

ME obtained by fixing the strategy σE in M. From the basic theory of Markov
chains, each end-component C in M is a recurrent class in ME . For each i ≥ 2n,
either all or none of the states in a periodic class of C are in the support of Mσu

i .
To show the key property, first consider a state q ∈ Supp(Mσu

i )∩E for i ≥ 2n,
and show that q ∈ Supp(Mσf

i )∩E . Let S be the periodic class of E(q) containing
q (in ME), and thus

S ⊆ Supp(Mσu
i ) ∩ E , and thus S ⊆ Supp(Mσu

i−p) ∩ E .

Since σu and σf coincide on the first 2n rounds, we have S ⊆ Supp(Mσf

i−p) ∩ E .
Now consider the strategy σE and an initial distribution with support S, and

denote by S + j the support of the probability distribution after playing σE for
j steps. Then, since σE ⊆ σf ⊆ σu,

S + p ⊆ Supp(Mσf

i ) ∩ E , and S + p ⊆ Supp(Mσu
i ) ∩ E .

We can repeat the same argument with S + p instead of S, and show by
induction that S + j · p ⊆ Supp(Mσf

i ) ∩ E for all j ≥ 1. In particular, by taking
j the period of the end-component containing q, we get S + j · p = S and thus
S ⊆ Supp(Mσf

i ) ∩ E , which establishes one direction of the key property (the
converse direction follows from σf ⊆ σu).

From the theory of Markov chains, in every end-component state q ∈ E , the
positive probability mass is bounded away from 0 in ME , that is there exists
a bound ε > 0 such that for all i ≥ 2n, for all q ∈ E , if Mσf

i (q) = 0, then
Mσf

i (q) ≥ ε. By the key property and Condition (2), for all i ≥ 2n, there exists
q ∈ E ∩T such that Mσf

i (q) = 0, which implies that lim infi→∞ M
σf

i (T ) ≥ ε > 0
and thus d0 ∈ 〈〈1〉〉stronglybounded (T ).

Finally, the proof for Equivalence (c) follows the same steps as above to
show that Conditions (1) and (2) imply d0 ∈ 〈〈1〉〉always

bounded (T ), where Condi-
tion (1) is used to bound M

σf

i (T ) for the first 2n rounds, and thus to ensure that
M

σf

i (T ) ≥ B > 0 for all i ≥ 0, hence d0 ∈ 〈〈1〉〉always
bounded (T ). The converse direction

immediately follows from the first part of Remark 3 and Equivalences (a) and (b).
��
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We extract explicit bounds from the proof of Lemma 6. All end-components
are reached within a most n steps (under σu), and further all states in (a periodic
class of) a recurrent class are reached (synchronously) within a most n2 steps [15,
Theorem 4.2.11], thus all states in the periodic class have probability mass at

least εa = α0 ·
(

α
|A|

)n+n2

where α0 is the smallest positive probability in the
initial distribution d0 (note that α/|A| is the smallest probability in the Markov
chain ME). It follows that the freezing strategy ensures probability at least εa

in T at every step (if M is boundedly always synchronizing), and probability at
least εa in T at every step after N = n + n2.

The conditions (1) and (2) in Lemma 6 can be decided in coNP as follows.
For Condition (1) we guess an index i ≤ 2n (in binary) and compute the i-th
power of the Boolean transition matrix M ∈ {0, 1}n2

where M(q, q′) = 1 if there
is a transition from state q to state q′ in the Markov chain obtained from the
given MDP M by fixing the strategy σu. The matrix M i can be computed in
polynomial time by successive squaring of M . Then it suffices to check whether
M i(q0, q) = 0 for all q0 ∈ Supp(d0) and q ∈ T . For Condition (2), since the
sequence Supp(Mσu

i ) is ultimately periodic, we guess two indices i, p ≤ 2n (p ≥ 1)
and check that Supp(Mσu

i ) = Supp(Mσu
i+p) and Supp(Mσu

i ) ∩ E ∩ T = ∅, using
the same approach by successive squaring. Note that the union E of all end-
components can be computed in polynomial time [9,10].

Conditions (1) and (2) are also coNP-hard, using the same reduction that
established coNP-hardness of the positive always and positive bounded syn-
chronizing [6, Lemma 2 & Section 3], in which positive and bounded winning
mode coincide. It follows that the membership problem for bounded always and
bounded strongly synchronizing is coNP-complete.

We now show the solution for bounded weakly synchronizing. It suffices to
find a state in T ∩ E that is reachable in the underlying graph of the Markov
chain Mσu , which is a NL-complete problem (like for positive weakly synchro-
nizing, except we require a reachable state in T ∩ E , not just in T ). Indeed, if
all reachable end-components are contained in Q \ T , then by Lemma 2 we have
lim infi→∞ Mσ

i (Q \ T ) = 1, that is lim supi→∞ Mσ
i (T ) = 0. For the converse

direction, if a state q̂ ∈ T ∩ E is reachable, then by a similar argument as above
based on the theory of Markov chains, as the probability mass in the states of the
periodic classes (that contain some probability mass) is bounded away from 0 in
MσE , it follows that within every p steps, where p is the period of the recurrent
class E(q̂) the probability mass in q̂ is at least α0 · (α/|A|)n+n2

. Therefore, M is
boundedly weakly synchronizing in T . For the sake of completeness, note that
for eventually synchronizing MDPs, the probability mass εe = α0 · (α/|A|)n in
T can be ensured within n steps (using σu).

Theorem 4. The complexity of the membership problem for positive and
bounded synchronizing objectives is summarized in Table 2.

In Table 2, the merged cells for eventually synchronizing reflect the fact that
the winning regions coincide (see Remark 3). The winning regions for the other
synchronizing modes do not coincide, already in Markov chains (see Fig. 1).
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Abstract. The Disjoint Paths problem takes as input a graph and
pairs of terminals, and asks whether all the terminal pairs can be con-
nected by paths that are vertex disjoint. It is known to be NP-complete
even on interval graphs. On general graphs, the framework of Robert-
son and Seymour can be used to get an FPT result parameterized by
the number of terminals, but the running time is very high. Considering
this, there has been a lot of work on Disjoint Paths on restricted graph
classes like planar graphs, chordal graphs, etc.

In this work, we look at a generalization of the Disjoint Paths prob-
lem, namely Set-Restricted Disjoint Paths (SRDP), where in addi-
tion to terminal pairs, we are also given subsets of vertices as domains
for each pair, and we want to connect the terminal pairs by vertex dis-
joint paths that use the vertices only from their respective domains. This
problem is known to be in XP on chordal graphs. We show that the FPT
result of Disjoint Paths on chordal graphs can be generalized to SRDP.
In particular, we show that SRDP can be solved in time O∗(2O(k log k))
on chordal graphs (here the O∗ notation hides the polynomial factors
in the running time), where k is the number of terminal pairs. We com-
plement this result by showing that SRDP does not have a polynomial
kernel on interval graphs, a subclass of chordal graphs.

Keywords: chordal graphs · disjoint paths · set restricted disjoint
paths · fpt · kernel

1 Introduction

Disjoint Paths is a well studied problem in the theory of algorithms. The input
to the problem is a graph, and a set of k terminal pairs {(s1, t1), . . . , (sk, tk)}.
The objective is to test whether there exists k vertex disjoint paths P1, . . . , Pk
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such that Pi is a path from si to ti for all i ∈ {1, . . . , k}. Disjoint Paths is
NP-Complete even on interval graphs [14]. In the seminal work on the graph
minor theory, Robertson and Seymour [15] designed an algorithm for Disjoint
Paths running in time f(k)n3 where f is a computable function and n is the
number of vertices in the input graph. This work introduced the irrelevant vertex
technique which was used later to design many FPT algorithms [1,8,11]. Here,
when the input graph has large treewidth, an irrelevant vertex can be found and
safely deleted. Then, finally the treewidth of the graph will be bounded by a
function of k. But here the function f in the running time is a highly growing
function and because of that there were attempts to design fast FPT algorithms
for the problem on many graph classes. Adler et al. [1] proved that Disjoint

Paths on planar graphs can be solved in time 22
O(k)

n2. Towards proving this
result, the authors showed that if a planar graph has large treewidth, then an
irrelevant vertex can be found and deleted. Thus, to prove the result authors
reduce the problem to planar graphs with bounded treewidth. Very recently,
Lokshtanov et al. [13] designed a fast FPT algorithm for the problem on planar
graphs running in time 2O(k2)nO(1). Their algorithm is based on the treewidth
reduction technique and an algebraic co-homology based technique.

Kammer and Tholey [12] studied Disjoint Paths on chordal graphs. They
proved that the problem can be solved in time O(2O(k log k)n + m) by reducing
the treewidth of the input graph and utilizing the fact that every bag in the
tree decomposition of the chordal graph is a clique. In this work we study a
generalization of Disjoint Paths, called Set-Restricted Disjoint Paths
which is defined below. The problem Set-Restricted Disjoint Paths was
introduced by Belmonte et al. [3].

Set-Restricted Disjoint Paths (SRDP)
Input: A graph G = (V,E), a set of pairs of vertices T = {(si, ti) | i ∈ [k]} and

a set of respective domains U = {U1, . . . , Uk} ⊆ 2V (G).
Parameter: k
Question: Do there exist k internally vertex disjoint paths P1, . . . , Pk such that for

each i ∈ [k], Pi is a path between si and ti and V (Pi) ⊆ Ui?

Here, the terminal pairs can overlap, and hence the paths are required to be
vertex disjoint internally). SRDP is NP-complete on interval graphs (a subclass
of chordal graphs) since Disjoint Paths is NP-complete on interval graphs[14].
In contrast to Disjoint Paths, Belmonte et al. [3] proved that SRDP is para-
NP-hard on general graphs even when k = 2. Also, they show that SRDP on
chordal graphs is in XP, i.e., it can be solved in time nf(k), for some function
f . Recently, this problem was considered by Ahn et al. [2] and designed an FPT
algorithm on well-partitioned chordal graphs, a subclass of chordal graphs that
generalizes split graphs.

In this work we prove that SRDP on chordal graphs is FPT and the prob-
lem does not admit a polynomial kernel even on interval graph, a subclass of
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chordal graphs. So this implies that SRDP does not admit a polynomial kernel
on chordal graphs as well.

Theorem 1. SRDP can be solved in time O∗(2O(k log k)) on chordal graphs.

Theorem 2. SRDP does not admit a polynomial kernel on interval graphs
unless NP ⊆ coNP/poly.

The existence of a polynomial kernel for Disjoint Paths on chordal graphs
still remains an open problem. In this work, we show that while the algorithm
for Disjoint Path on chordal graphs can be generalized to work for SRDP,
SRDP not admitting a polynomial kernel even on interval graphs adds a nice
twist to the tale of Disjoint Paths on chordal graphs. Our hardness result
relies crucially on the domains, and it is not obvious how it can be generalized
to get a similar hardness for Disjoint Paths on chordal or interval graphs.

Our Methods. For our positive results, we borrow from the techniques of Kam-
mer and Tholey [12] which they used to solve the Disjoint Paths problem, by
extending them to SRDP. The algorithm for bounded treewidth chordal graphs
remains essentially the same, by exploiting the fact that not more than two ver-
tices from any clique would be used by a minimal solution of SRDP. Hence,
guessing these 2k+2 vertices and their colors would give us a coloring analogous
to one defined in [12]. We just need to be careful about the domains while look-
ing at the configurations. For the treewidth reduction part, our approach is same
in spirit as that of [12], but we have tried to do the reduction arguably more
systematically, by considering the bags in groups depending on their degrees.

Finally, the kernelization lower bound result makes use of the technique of
AND-cross-composition introduced by Bodlaender et al. [5]. For this, we start
with instances of the Disjoint Paths problem on interval graphs, which is
known to be NP-hard, to arrive at an instance of SRDP on interval graphs with
small parameter, which is a Yes instance if and only if all the Disjoint Paths
instances were Yes instances.

2 Preliminaries

In this section, we first give the notations and definitions which are used in the
paper. Then we state some known results which will be used later in the paper.

Notations and Definitions: We use [n] to denote the set of first n positive
integers {1, 2, 3, . . . n}. For a graph G, we denote the set of vertices of the graph
by V (G) and the set of edges of the graph by E(G). We denote |V (G)| and |E(G)|
by n and m respectively, where the graph is clear from context. We abbreviate
an edge {u, v} as uv sometimes. For a set S ⊆ V (G), the subgraph of G induced
by S is denoted by G[S] and it is defined as the subgraph of G with vertex set S
and edge set {{u, v} ∈ E(G) : u, v ∈ S} and the subgraph obtained after deleting
S (and the edges incident to the vertices in S) is denoted as G−S. For v ∈ V (G),
we will use G − v to denote G − {v} for ease of notation. All vertices adjacent
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to a vertex v are called neighbours of v and the set of all such vertices is called
open neighbourhood of v, denoted by NG(v). For a set of vertices S ⊆ V (G), we
define NG(S) = (∪v∈SN(v))\S. We define the closed neighbourhood of a vertex
v in the graph G to be NG[v] := N(G) ∪ {v} and closed neighbourhood of a set
of vertices S ⊆ V (G) to be NG(S) := N(S) ∪ S. We drop the subscript G when
the graph is clear from the context. We say a vertex v is simplicial in G if N(v)
forms a clique in G. For C ⊆ V (G), if G[C] is connected and N(C) = ∅, then
we say that G[C] is a connected component of G.

A path P in a graph G is a subgraph of G where V (P ) = {x1, x2, . . . , x�} ⊆
V (G) and E(P ) = {{x1, x2}, {x2, x3}, . . . , {x�−1, x�}} ⊆ E(G) for some � ∈ [n].
We denote it by P := x1x2 . . . x�. The vertices x1 and x� are called endpoints
of the path P and the remaining vertices in V (P ) are called internal vertices of
P . We also say that P is an x1-x� path. The length of a path is the number of
vertices in it. Let P be a path in the graph G on at least three vertices. We say
that {u, v} ∈ E(G) is a chord of P if u, v ∈ V (P ) but {u, v} /∈ E(P ). A path P
is chordless if it has no chords. We also use P to denote the set of vertices or
edges of the path P sometimes, when it is clear from the context.

Definition 1. Let G be a graph. A tree-decomposition of a graph G is a pair
(F, β), where F is a tree and and β : V (F ) → 2V (G) such that

1. ∪x∈V (F )β(x) = V (G),
2. for every edge uv ∈ E(G) there is a x ∈ V (F ) such that {u, v} ⊆ β(x), and
3. for every vertex v ∈ V (G) the subgraph of F induced by the set β−1(v) :=

{x | v ∈ β(x)} is connected.

For x ∈ V (F ), we call β(x) the bag of v, and for the sake of clarity of
presentation, we sometimes use x and β(x) interchangeably. We refer to the
vertices in V (F ) as nodes or bags.

Chordal Graphs and Interval Graphs. A graph G is called chordal if it does
not contain any chordless cycle of length at least four. It is well known that the
set of chordal graphs is closed under the operation of taking induced subgraphs
and contracting edges [10]. A clique-tree of G is a tree-decomposition of G where
every bag is a maximal clique. We further insist that every bag of the clique-tree
is distinct. The following lemma shows that the class of chordal graphs is exactly
the class of graphs that have a clique-tree.

Lemma 1 ([10]). A graph G is a chordal graph if and only if G has a clique-tree.

Even though the maximal cliques of a chordal graph define the nodes of its
clique-tree, they can be connected in different ways to get different clique-trees
for the same graph. Observe that since every bag is a maximal clique, not only
the bags are distinct in the clique-tree (F, β), but also for any x, y ∈ V (F ), we
have that none of β(x) and β(y) is a subset of the other, i.e., β(x) � β(y) and
β(y) � β(x).

Given a tree F and a surjective function β : V (F ) → S where S ⊆ 2V , such
that it satisfies property 3 of Definition 1, we can associate a graph H with
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V (H) = ∪S∈SS and E(H) defined by uv ∈ E(H) if and only if there exists
x ∈ V (F ) such that {u, v} ⊆ β(x). It is easy to see that in this case the graph
H is chordal and that the bags of (F, β) correspond to the maximal cliques of H
and we say that H is the chordal graph associated with the clique-tree (F, β).

A graph G is an interval graph if it is isomorphic to an intersection graph
of intervals of the real line. Equivalently, an interval graph G is a chordal graph
having a clique-tree (F, β), where F is a path; we say that (F, β) is a clique-path.
We refer the book of Golumbic [10] for this property.

3 FPT Algorithm

In this section we show that SRDP is FPT on chordal graphs. First we give
an algorithm for SRDP on chordal graphs of bounded treewidth, and in the
next subsection we show how the treewidth can be reduced. For an SRDP
instance (G,T,U), we assume the graph G to be connected. The case when G is
disconnected can be easily reduced to this. For an SRDP instance (G,T,U), we
sometimes use T to also denote the set ∪i∈[k]{si, ti}.

3.1 Algorithm for Bounded Treewidth Graphs

In this section, we show that SRDP is FPT on chordal graphs of bounded
treewidth, when treewidth is also a parameter in addition to the number of
terminal pairs.

Theorem 3. SRDP can be solved in O∗(twO(k)) time on chordal graphs of
treewidth tw.

We say that a set of paths P = {P1, . . . , Pk} is a solution to (G,T, U) if for
all i ∈ [k], Pi is a path between si and ti and V (Pi) ⊆ Ui. We say that a solution
P = {P1, . . . , Pk} is minimal if for all i ∈ [k], there does not exist a path P ′

i

between si and ti of length smaller than that of Pi such that V (P ′
i ) ⊆ Ui and

(P \ Pi) ∪ P ′
i is also a solution. We start with a simple lemma.

Lemma 2. Let (G,T = {(si, ti) : i ∈ [k]},U) be an instance of SRDP. Let
(F, β) be a clique-tree of G and let P = {P1, . . . , Pk} be a minimal solution. Then,
for any x ∈ V (F ) and i ∈ [k], |V (Pi) ∩ β(x)| ≤ 2. Moreover, for any x ∈ V (F )
and i ∈ [k], if |V (Pi)∩β(x)| = 2, then uv ∈ E(Pi), where {u, v} = V (Pi)∩β(x).

Proof. For the sake of contradiction suppose there exist x ∈ V (F ) and i ∈ [k]
such that |V (Pi) ∩ β(x)| ≥ 3. Let Pi := v1v2 . . . v�. Let j, r, s be the indices in
[k] such that j < r < s and vj , vr, vs ∈ β(x). Since vjvs ∈ E(G) (because β(x)
is a clique in G), we have that P ′

i := v1 . . . vj−1vjvsvs+1v� is a path from v1 to
v� and V (P ′

i ) ⊆ V (Pi). This is a contradiction to the assumption that P is a
minimal solution.

Suppose there exist x ∈ V (F ) and i ∈ [k] such that |V (Pi) ∩ β(x)| = 2.
Let Pi := v1v2 . . . v�. Let j, r be two distinct indices in [k] such that j < r and
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vj , vr ∈ V (Pi) ∩ β(x). We claim that r = j + 1 and hence vjvr ∈ E(Pi). If
r > j + 1, then P ′

i = v1 . . . vjvrvr+1 . . . v� is a path from v1 to v� such that
V (P ′

i ) ⊂ V (Pi). This is a contradiction to the assumption that P is a minimal
solution. ��

Now we are ready to prove Theorem 3.

Proof sketch of Theorem 3. A dynamic programming algorithm for k-Disjoint
Paths on a clique-tree is designed by Kammer and Tholey [12]. Notice that
here we have one additional condition that for each i ∈ [k], V (Pi) ⊆ Ui for the
si-ti path Pi in a solution. Thus, our algorithm is an extension the algorithm
of Kammer and Tholey [12] where we have an additional constraint. So here we
give a proof sketch. Let (G,T = {{si, ti} : i ∈ [k]},U = {U1, . . . , Uk}) be the
input instance of SRDP. First we compute a clique-tree (F, β) of G using a
linear time algorithm mentioned in [4]. In [12], a solution to k-Disjoint Paths
is viewed as coloring function. Here the objective is to find a coloring c : U → [k]
on a subset U of vertices of G using k colors [k] such that the following holds.

– {si, ti : i ∈ [k]} ⊆ U .
– For each i ∈ [k], c(si) = c(ti). Moreover, for any j ∈ [k] \ {i}, c(si) �= c(sj).
– For each i ∈ [k], there is a path from si to ti in the subgraph of G induced

on c−1(j), where j = c(si) = c(ti).

For our problem we will have one additional constraint as follows.

– For each i ∈ [k], c−1(j) ⊆ Uj , where j = c(si) = c(ti).

By Lemma 2, we get that for each node x in F and for each color j, there is at
most two vertices in β(x) colored j. This implies that the number of states with
respect to a bag in a dynamic programming algorithm is bounded by twO(k).
The steps of the algorithm is similar to the one in [12] where we make sure that
the additional constraint is satisfied. Hence, the running time of the algorithm
is O∗(twO(k)). ��

3.2 Treewidth Reduction and FPT Algorithm

In this section, given an instance of SRDP where the input graph is chordal, we
will show how to reduce the treewidth to a polynomial function of the parameter.
This is achieved by reducing the clique sizes in the clique-tree of the input graph.
For that, we first apply some simple reduction rules that would provide more
structure to the instance.

Reduction Rule 1. Let (G,T,U) be an instance of SRDP such that si = sj

for some i, j ∈ [k], i �= j. Then we add a new vertex s∗ to the graph and add
edges such that N(s∗) = N [si], and replace the pair (sj , tj) by (s∗, tj) to obtain
a new instance (G′, T ′,U).

Lemma 3. Reduction Rule 1 is correct.
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Proof. If (G,T,U) is a Yes instance, then let P = {P1, . . . , Pk} be a solution
for it. Then we get a solution for (G′, T ′,U) by replacing sj with s∗ in Pj . This
can be done since N(s∗) = N [sj ]. The converse follows from replacing s∗ by sj

in a solution for (G′, T ′,U). ��
Observe that even though the reduction rule has been stated in terms of

si = sj , we can also apply it if some ti = tj or si = tj , and the same proof
of correctness works. It is also easy to see that it can be applied in polynomial
time. So now onwards, we will assume that Reduction Rule 1 has been applied
exhaustively, and all the terminals in all the terminal pairs are distinct.

Reduction Rule 2. Let (G,T,U) be an instance of SRDP such that siti ∈
E(G), then output a new instance (G − {si, ti}, T \ {(si, ti)},U \ {Ui}).

The correctness of the reduction rule follows from the fact that if the instance
is a Yes instance then there exists a solution with Pi = siti. After applying this
reduction rule exhaustively, we can assume that siti /∈ E(G) for all i ∈ [k]. Since
all the bags in the clique-tree of G induce cliques, this means that no bag in the
clique-tree of G contains both si and ti. Now we give the following reduction rule
that makes each terminal belong to only one bag of the clique-tree. We would
need the following notation for that. Let (G,T,U) be an instance of SRDP
where G is a chordal graph and let (F, β) be a clique-tree of G. For each i ∈ [k],
let Bsi

be the set of nodes in V (F ) that contain si and let Bti be the set of nodes
that contain ti. We denote by ΠG(si, ti) be the shortest length path between a
node in Bsi

and Bti in F . We will drop the subscript G if the graph is clear from
context.

Reduction Rule 3. Let (G,T,U) be an instance of SRDP such that G is a
chordal graph and let (F, β) be a clique-tree of G. Let x and y be the endpoints
of ΠG(si, ti). Delete si from all the nodes of the clique-tree except from x and
delete ti from all the nodes of the clique-tree except from y. Let G′ be the graph
corresponding to the new clique-tree. Output (G′, T,U).

Lemma 4. Reduction Rule 3 is correct.

Proof. Let (G,T,U) be a Yes instance and let P = {P1, . . . .Pk} be a minimal
solution for it. We claim that in Pi, the vertex adjacent to si is in β(x) and
the vertex adjacent to ti is in β(y). This would prove the correctness, since
removing si and ti from other bags is equivalent to reducing their adjacency to
β(x) and β(y) respectively. Now, since ΠG(si, ti) is the shortest path between
bags containing si and ti, we know that si is not in any other bag of ΠG(si, ti)
except x. So if si is adjacent to a vertex u /∈ β(x) in Pi, deleting β(x) disconnects
si from ti. This means that the path has to contain a vertex v from β(x). But we
know that siv ∈ E(G) as si, v ∈ β(x) and β(x) induces a clique. This means that
the path Pi contains a chord and hence is not induced, which is a contradiction
to minimality of P.

For the other direction, any solution to (G′, T,U) is a solution to (G,T,U)
as G′ is a subgraph of G. ��
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Since we can find the clique-tree of chordal graph in linear time [4], Reduction
Rule 3 can be applied in polynomial time. After exhaustive application of the
reduction rule, all the terminals belong to unique bags in the clique-tree of G.
For a terminal si (or ti), let xsi

(or xti) be the unique bag in V (F ) that contains
it. Observe that ΠG(si, ti) is the path between xsi

and xti .

Reduction Rule 4. Let (G,T,U) be an instance of SRDP where G is a
chordal graph and let v ∈ V (G) \ T be a simplicial vertex in G. Output the
instance (G − v, T,U ′) where U ′ is obtained from U by deleting v from all the
domains.

Lemma 5. Reduction Rule 4 is correct.

Proof. Let G′ = G − v. As G′ is an induced subgraph of G, it is chordal, and
any solution to (G′, T,U) remains a solution to (G,T,U). For the converse, let
P = {P1, . . . , Pk} be a minimal solution to (G′, T,U). Suppose, for the sake of
contradiction that P is not a solution to G. Then there exist (si, ti) ∈ T such
that Pi is not a path between si and ti such that V (Pi) ⊆ Ui. That means Pi

must pass through v. Let u and w be the neighbours of v on this path, and let
P ′

i be the path obtained by deleting v from Pi and using the edge between u
and w, which exists because v is a simplicial vertex. Since V (P ′

i ) � V (Pi), we
have that P is not a minimal solution, which is a contradiction. ��

Now we can show that each leaf bag in the clique-tree must contain a terminal.

Lemma 6. Let (G,T,U) be an instance of SRDP, where G is a chordal graph.
Suppose Reduction Rule 4 is not applicable on (G,T,U). Let (F, β) be a clique-
tree of G. Then for each leaf node x ∈ V (F ), β(x)∩T �= ∅ (as mentioned earlier,
in a slight abuse of notation, here we take T = ∪i∈[k]{si, ti}).
Proof. Let us suppose, for the sake of contradiction, that there exists a leaf
x ∈ V (F ), such that β(x) ∩ T = ∅. Let NF (x) = {x1}. Since all the bags are
distinct and also maximal cliques, we must have a vertex v ∈ V (G) \ T such
that v ∈ β(x) \ β(x1). But then N [v] = β(x) which is a clique and hence v is
simplicial in G. It is a contradiction to that fact that Reduction Rule 4 does not
apply and proves the statement of the lemma. ��

Let (G,T,U) be an instance of SRDP and let (F, β) be a clique-tree of G. We
divide the vertex set of F into three parts as following. Let V (F ) = F1∪F2∪F≥3,
where F1 is set of leaves of F , F2 is the set of nodes of F with degree exactly 2
and F≥3 is the set of nodes of degree at least three. Let FT be the set of nodes
that contain terminals, and let FB := FT ∪ F≥3. We refer to the set FB as the
set of branching nodes. Lemma 6 has already shown that F1 ⊆ FT , so bounding
the size of FB would bound the sizes of F1, F3, and FT together.

Lemma 7. Let (G,T,U) be an instance obtained after applying Reduction
Rule 4 exhaustively, and let (F, β) be a clique-tree of G. Then, |FB | ≤ 4k.
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Proof. We know from Lemma 6 that after applying Reduction Rule 4, each leaf
bag contains a terminal. This gives us F1 ⊆ FT . The number of terminals is 2k.
We also know that because of Reduction Rule 3, each terminal occurs in exactly
one bag of (F, β). This gives us |FT | ≤ 2k. As the number of vertices with degree
at least three in a tree is at most the number of leaves, we also get |F≥3| ≤ 2k.
Since FB = FT ∪ F≥3, we get |FB | ≤ 4k as desired. ��

Now, we will describe a marking procedure that would reduce the size of
the branching nodes. For that, we will make use the notion of ΠG(si, ti) defined
earlier. Let (si, ti) ∈ T be a pair of terminals in an instance (G,T,U) of SRDP
and let (F, β) be a clique-tree of G. Let Π(si, ti) := x1x2 . . . xd where si ∈ β(x1)
and ti ∈ β(xd). For each i ∈ [k] and p ∈ [d], we define two orderings ≤(si,ti) and
≤(ti,si) on vertices of β(xp) ∩ Ui as following. For u, v ∈ β(x) ∩ Ui, u ≤(si,ti) v
if and only if, for all q ≥ p, q ∈ [d], if u ∈ β(xq) then v ∈ β(xq). Similarly, for
defining ≤(ti,si), we say that u ≤(ti,si) v if and only if, for all q ≤ p, q ∈ [d], if
u ∈ β(xq) then v ∈ β(xq). In other words, the ordering represents how far along
Π(si, ti) the vertices of β(xp) ∩ Ui go, ranking the ones that go the farthest on
either side as the highest.

Now we describe what we call marking procedure (I). For each bag x ∈ FB ,
for each (si, ti) ∈ T for which x ∈ Π(si, ti), we mark 2k +1 vertices in β(x)∩Ui

which are largest in the ordering ≤(si,ti) and call the set Mx(si, ti). We also mark
2k+1 vertices in β(x)∩Ui which are largest in the ordering ≤(ti,si) and call that
set Mx(ti, si). If |β(x)∩Ui| ≤ 2k+1, then we mark all the vertices in β(x)∩Ui as
Mx(ti, si). Let the set of all marked vertices inside a bag β(x), such that x ∈ FB

be M(x) :=
⋃

(si,ti)∈T (Mx(si, ti) ∪ Mx(ti, si)) and let M := ∪x∈FB
M(x).

Now we are ready to give the next reduction rule which will help us bound
the size of nodes in FB .

Reduction Rule 5. Let (G,T,U) be an instance of SRDP where G is a
chordal graph and let (F, β) be a clique-tree of G. If there exists a node x ∈ FB

such that β(x) \ M is nonempty, then delete an arbitrary vertex v ∈ β(x) \ M
from G and output (G−v, T,U ′), where U ′ is obtained from U by deleting v from
all the domains.

Lemma 8. Reduction Rule 5 is correct.

Proof. Let G′ := G − v. As G′ is an induced subgraph of G, G′ is chordal and
any solution for (G′, T,U ′) is a solution for (G,T,U). For the other direction,
let P = {P1, . . . , Pk} be a minimal solution for (G,T,U). Let us assume, for
the sake of contradiction that (G′, T,U ′) is a No instance. Since Pis are vertex
disjoint, at most one of them can pass through v, and all others still exist in G′.
Without loss of generality, let P1 pass through v in G.

Let P1 := s1v1v2 . . . vp−1vpvp+1 . . . vqt1 and let vp := v for some p ∈ [q]. Since
P1 ∈ P, we have that vr ∈ U1 for all r ∈ [q]. Also, let Π(s1, t1) := x1x2 . . . xd

where s1 ∈ β(x1) and t1 ∈ β(xd). Since P1 has to be chordless due to minimality
of P, v has to occur in some bag in Π(s1, t1), otherwise P1 would have a chord.
Now we look at the following two cases.
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Case 1: There exists xv ∈ FB ∩{x2, . . . , xd−1} such that v ∈ β(xv). Clearly,
v /∈ M(xv) as otherwise v would not be deleted. We know that marking pro-
cedure (I) marked 2k + 1 vertices in β(xv) as Mxv

(s1, t1) such that for each
u ∈ Mxv

(s1, t1), v ≤(s1,t1) u. Since P is a minimal solution, we have that any
Pi uses at most two vertices from β(xv) due to Lemma 2. We get that at least
one vertex from Mxv

(s1, t1) is not being used by any Pi for i ∈ [k]. Let w2 be
an arbitrary vertex in Mxv

(s1, t1) \ ∪i∈[k]V (Pi). By the same logic, let w1 be an
arbitrary vertex in Mxv

(t1, s1) \ ∪i∈[k]V (Pi). Observe that it might be the case
that w1 = w2.

We claim that P ′
1 := siv1v2 . . . vp−1w1w2vp+1 . . . vqti is a path in G′ such

that V (P ′
1) ⊆ U1 (there is a slight abuse of notation, as it might be the case

that w1 = w2). Since w1, w2 /∈ ∪i∈[k]V (Pi) and w1, w2 ∈ U1 by definition of
Mxv

(s1, t1) and Mxv
(t1, s1), all we need to show is that the edges w1w2 (in

case w1 �= w2), vp−1w1, and w2vp+1 exist in G′ (or in G, as G′ is an induced
subgraph of G). Since w1, w2 ∈ β(xv), that induces a clique in G, we have that
w1w2 ∈ E(G′).

We have that P1 := s1v1v2 . . . vp−1vvp+1 . . . vqt1. Let y be a bag on the path
Π(s1, t1) such that vvp+1 ∈ β(y). Such a bag exists due to Lemma 2 and P1

being chordless (due to minimality of P). Now, from the definition of ≤(s1,t1)

we have the following. Since v ≤(s1,t1) w2, w2 is present in all the bags after x,
along the path Π(s1, t1) towards xd (that contains t1), wherever v is present. In
particular, w2 ∈ β(y), and hence w2vp+1 ∈ E(G′). Similarly we can show that
vp−1w1 ∈ E(G′) by traversing Π(s1, t1) in the other direction, and making use
of the ordering ≤(t1,s1).

Case 2: There does not exist xv ∈ FB ∩{x2, . . . , xd−1} such that v ∈ β(xv).
Since the bags in V (F ) that contain v induce a connected subgraph and v has to
occur in a bag in FB to be deleted, we conclude that in this case either v ∈ β(x1)
or v ∈ β(xd). We look at the case when v ∈ β(x1), the case when v ∈ β(xd) is
similar. Now, since x1 ∈ Π(s1, t1), marking procedure (I) marked 2k +1 vertices
in β(x1) ∩ U1 as Mx1(s1, t1) such that for each u ∈ Mx1(s1, t1), v ≤(s1,t1) u.
Now, we can replace v by a vertex in Mx1(s1, t1) which is not used by any other
path, following the same procedure as in Case 1. This finishes the proof of the
lemma. ��
Lemma 9. Let (G,T,U) be an instance of SRDP after applying Reduction
Rule 5 exhaustively, and let (F, β) be a clique-tree of G. Let FB be set of branching
nodes as defined above. Then, |β(x)| = O(k3) for all x ∈ FB.

Proof. For any x ∈ FB , we know that |β(x)| ≤ |M |, since otherwise Reduction
Rule 5 would apply. We know by definition of M that M = ∪x∈FB

M(x) and
from Lemma 7 that |FB | ≤ 4k. So, to prove the lemma, all we need to show is
that M(x) = O(k2) for each x ∈ FB . This is true because we have k terminal
pairs, and for each of them we mark at most 4k + 2 vertices in β(x). This gives
|M(x)| ≤ 2k(k + 1) as desired. ��

Now, to decrease the treewidth of the graph, all we need to do is to bound
the bag sizes for degree 2 bags in a clique-tree of G. For that, we will be looking
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at paths in the clique-tree of G such that all the internal nodes of the paths are
degree 2 nodes, and the endpoints are branching nodes. Let VB = ∪x∈FB

β(x).
We will be marking some vertices in the nodes in F2 which are not in VB .

Let (G,T,U) be an instance of SRDP where G is a chordal graph and (F, β)
be a clique-tree of G. We also take two fixed orderings f : V (G) → [n] and
g : V (F ) → [|V (F )|]. Let Q := x1x2 . . . xq be a path in F such that x1, xq ∈ FB ,
g(x1) < g(xq), xγ /∈ FB for all γ ∈ {2, 3, . . . , q − 1}. For each xj such that
j ∈ {2, . . . , q − 2} (such a j does not exist if q < 4) and for each i ∈ [k],
we define an ordering <i on the vertices of (β(xj) ∩ Ui) \ VB as follows. For
u, v ∈ (β(xj) ∩ Ui) \ VB , we say that u <i v, if one of the following two is true.

1. There exists r ∈ {j + 1, . . . q − 1} such that v ∈ β(xr) and u /∈ β(xr), or
2. For all r ∈ {j+1, . . . q−1}, v ∈ β(xr) if and only if u ∈ β(xr), and f(u) < f(v).

We also define these orderings <i for vertices of (β(xq−1) ∩ Ui) \ VB , as
following. For u, v ∈ (β(xq−1) ∩ Ui) \ VB, we say that u <i v if and only if
f(u) < f(v). Observe that <i is a total ordering on the vertices of (β(xj)∩Ui)\VB

for all j ∈ {2, . . . , q − 1}.
Now, marking procedure (II) considers all paths Q := x1x2 . . . xq in F such

that x1, xq ∈ FB , g(x1) < g(xq), and xγ /∈ FB for all γ ∈ {2, 3, . . . , q − 1},
and does the following. The first step of marking procedure (II), for every bag
xj such that j ∈ {2, . . . , q − 1} and for every i ∈ [k], marks 2k + 1 vertices in
β(xj)∩Ui that are highest in the ordering <i. If |β(xj)∩Ui| ≤ 2k+1, then all the
vertices in β(xj)∩Ui are marked. Let D1(xj , i) denote the set of vertices in β(xj)
marked by the first step of marking procedure (II) according to the ordering <i.
In addition to that, for j ∈ {3, . . . , q − 1} and for each i ∈ k, the second step of
marking procedure (II) marks the vertices D2(xj , i) := D1(xj−1, i) ∩ β(xj). Let
D(xj) :=

⋃
i∈k(D1(xj , i) ∪ D2(xj , i)) be the set of all marked vertices in xj by

both the steps of the marking procedure (II). Before we give the final reduction
rule, we prove the following lemma.

Lemma 10. Let (G,T,U) be an instance of SRDP where G is a chordal graph
and (F, β) be a clique-tree of G. Let Q := x1x2 . . . xq be a path in F such that
x1, xq ∈ FB, xγ /∈ FB for all γ ∈ {2, 3, . . . , q − 1}. Let v /∈ VB such that v is
marked for some internal node of Q by marking procedure (II). Then, the graph
induced by all the internal nodes of Q where v is marked is connected.

Proof. Without loss of generality, let g(x1) < g(xq). Let us assume for the sake
of contradiction that the graph induced by all the internal nodes of Q where
v is marked is not connected. This means that there exists a subpath Q′ =
y1y2 . . . yr of Q (with the vertices taken in the same order as in Q) such that
v ∈ D(y1) ∩ D(yr) but v /∈ D(yj) for j ∈ {2, . . . , r − 1}. Let us look at yr−1.
Since v is not marked there, for all i ∈ [k] such that v ∈ Ui, there is a set of
2k + 1 vertices Wi in (β(yr−1) ∩ Ui) \ VB such that v <i w for all w ∈ Wi.
But by definition of <i, since v ∈ β(yr) this would mean that Wi ⊆ β(yr) for
all i ∈ [k] such that v ∈ Ui. Since v <i w for all w ∈ Wi, this implies that
v /∈ D1(yr, i) for any i ∈ [k] such that v ∈ Ui. Now, the only way for v to be
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marked in yr is if v ∈ D2(yr, i) for some i ∈ [k]. But for that, we need to have that
v ∈ D1(yr−1, i), and hence we get that v is marked for yr−1, which is the desired
contradiction. ��

Now we are ready to give our final reduction rule.

Reduction Rule 6. Let (G,T,U) be an instance of SRDP where G is a
chordal graph and let (F, β) be a clique-tree of G. Let Q := x1x2 . . . xq be a path
in F such that g(x1) < g(xq), x1, xq ∈ FB, xγ /∈ FB for all γ ∈ {2, 3, . . . , q − 1}.
Suppose there exists v /∈ VB such that there exists j ∈ {2, . . . , q − 1} and
v /∈ D(xj). Delete v from all the bags xj such that v /∈ D(xj) to get a clique-tree
(F, β′). Output (G′, T,U), where G′ is the graph corresponding to (F, β′).

Before we show the correctness of the reduction rule, let us first observe that
due to Lemma 10, what we get is indeed a clique-tree, and hence G′ is a chordal
graph.

Lemma 11. Reduction Rule 6 is correct.

Proof. For the forward direction, let (G,T,U) be a Yes instance and let
P = {P1, . . . , Pk} be a minimal solution to it. Suppose that (G′, T,U) is a
No instance. If none of the paths in P use v, then P remains a solution to
(G′, T,U), a contradiction. Without loss of generality, let P1 go through v. Let
P1 := s1v1v2 . . . vp−1vpvp+1 . . . vqt1, which has length q + 1 and let vp := v for
some p ∈ [q]. Let Q := x1x2 . . . xq be the path in F such that g(x1) < g(xq),
x1, xq ∈ FB , xγ /∈ FB for all γ ∈ {2, 3, . . . , q − 1} and v appears in some internal
node(s) of Q. Clearly, v /∈ β(x1) ∪ β(xq) as then we would have v ∈ VB and
Reduction Rule 6 would not apply.

We know that vp−1vp+1 /∈ E(G) as that would give rise to a chord in P1

and violate the minimality of P. This means that there does not exist x ∈ V (F )
such that vp−1, vp+1 ∈ β(x). On the other hand, since vp−1v, vvp+1 ∈ E(G), there
exist xi and xj such that vp−1, v ∈ β(xi) and v, vp+1 ∈ β(xj). If i = j, then we
would have that vp−1, vp+1 appear in the same bag in G, and would give rise to
a chord in P1, a contradiction. Hence we have i �= j. Since v /∈ β(x1) ∪ β(xq),
xi, xj are internal vertices of Q. We consider the case when i < j. The case when
j < i is symmetric, and exactly the same proof works by considering the t1 − s1
path.

Let P ∗ := s1v1v2 . . . vp−1u1 . . . ur be a minimum length path in G′ that
minimizes the distance between bags containing ur and xj in (F, β′), such that
u1, . . . , ur ∈ U1 and {u1, . . . , ur} ∩ Pz = ∅ for all z ∈ {2, . . . , k}. In other words,
we try to extend the path Pp := s1v1v2 . . . vp−1 in G′ along Q towards xj using
only the vertices from U1 that are not used by any other path in P. Note that
there is a slight abuse of notation and it might be the case that ur = vp−1 in
case the path cannot be extended beyond vp−1.

Let the bag that minimizes the distance between bags containing ur and xj

(the last bag that contains ur) in (F, β′) be xi′ . Clearly, i′ < j, otherwise we
would have that vp+1 is adjacent to some vertex in P ∗, and that would give
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us the desired replacement path for P1. So we have that for P ∗, the distance
between bags containing ur and xj in (F, β′) is j − i′ ≥ 1. Also, we have that
i′ ≥ i as P ∗ by definition contains Pp. We know that v ∈ β(xi) ∩ β(xj), and
i ≤ i′ < j, using the connectivity property of tree-decomposition, this gives us
that v ∈ β(xi′) and v ∈ β(xi′+1).

Now, if v is marked by the first step of marking procedure (II) as a vertex in
D1(xi′ , 1), we would have that v ∈ D2(xi′+1, 1). We also see that urv ∈ E(G′) as
ur, v ∈ β′(xi′). This gives us that for the path P ∗∗ := s1v1v2 . . . vp−1u1 . . . urv,
the distance between bags containing v and xj in (F, β′) is less than j − i′, a
contradiction to the definition of P ∗. So, v /∈ D1(xi′ , 1). This means that there
is a set of 2k +1 vertices W1 := D1(xi′ , 1) in β(xi′)\VB such that v <1 w for all
w ∈ W1. By definition of <i, this would imply that W1 ⊆ β(xi′+1) as v ∈ β(xi′+1)
and v <1 w for all w ∈ W1. This gives us that W1 = D1(xi′ , 1) ∩ β(xi′+1) and
hence W1 = D2(xi′+1, 1). This lets us conclude that W1 ⊆ β′(xi′+1).

If there exists w ∈ W1∩{vp+1, . . . , vq}, then we obtain the desired path P ′
1 by

using w to concatenate Pp and Pr := vp+1 . . . vqt1. This is possible as w ∈ P1 and
hence w cannot be used by any other path in P. So, no vertex of W1 is used by
Pr. Now, since all the paths P2, P3, . . . , Pk and P ∗ are minimal in G′, they do not
use more than two vertices from the bag xi′+1 due to Lemma 2. This means that
there exists w ∈ β′(xi′+1) such that w is not used by the paths P2, P3, . . . , Pk,
and P ∗. Since W1 ⊆ β′(xi′), we also have that urw ∈ E(G′). Hence the path P ∗

can be extended to get a new path P ∗∗ := s1v1v2 . . . vp−1u1 . . . urw, such that
distance between bags containing w and xj in (F, β′) is smaller than j − i′. Since
w ∈ U1 and w /∈ Pz for all z ∈ {2, . . . , k}, this gives us the desired contradiction
to the definition of P ∗, and finishes the proof for the forward direction.

For the other direction, if (G′, T,U) is a Yes instance then (G,T,U) is a Yes
instance because G′ is a subgraph of G. ��

Now we are ready to prove the lemma that bounds the treewidth of the
graph.

Lemma 12. Let (G,T,U) be an instance of SRDP obtained after applying
reductions Rules 1–6 exhaustively. Then tw(G) = O(k3).

Proof. Let (F, β) be a clique tree of G. Since G is reduced with respect to
reduction Rules 1–5, we know from Lemma 7 that for each x ∈ FB, we have
β(x) = O(k3). Since F3, F1 ⊆ FB, we only need to bound β(x) for x ∈ F2 to
bound the treewidth of G.

The first step of marking procedure (II) marks at most 2k + 1 vertices as
D1(x, i) for each i ∈ k for a bag x ∈ F2. So the total number of vertices marked
in the first step for a bag x ∈ F2 is at most k(2k + 1). Similarly, for the second
step, again for each i ∈ [k], there as at most 2k + 1 vertices marked as D2(x, i)
for a bag x ∈ F2. So the total number of vertices marked in the second step for
a bag x ∈ F2 is at most k(2k + 1). In total, this gives us D(x) ≤ 2k(2k + 1)
for all x ∈ F2. Since G is reduced with respect to Reduction Rule 6, this means
that |β(x)| ≤ |VB |+2k(2k+1) as otherwise Reduction Rule 6 would apply. This
gives us that β(x) = O(k3) for all x ∈ V (F ), and hence tw(G) = O(k3). ��
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Now we are ready to prove the main result (Theorem 1) of this section.

Proof of Theorem 1. Given an instance (G,T,U), we reduce it using reductions
Rules 1–6 exhaustively. We have already shown the correctness of reductions
Rules 1–6, so that gives us that the output instance is a Yes instance if and
only if the original instance is a Yes instance. It is easy to see that the reduction
rules can be applied in polynomial time. Lemma 12 gives that after exhaustive
application of the reduction rules, the treewidth of the resulting graph is bounded
by O(k3). Then we use the algorithm from Theorem 3 to solve the instance in
time O∗((k3)O(k)) which is O∗(2O(k log k)) as desired. ��

4 Kernelization Lower Bound for Interval Graphs

In this section, we show that SRDP does not admit a polynomial kernel on
interval graph up to reasonable complexity assumptions. This is done by mak-
ing use the cross-composition technique introduced by Bodlaender, Jansen and
Kratsch [5] (see also [7,9] for the introduction to the technique). To apply the
cross-composition technique, we need the following additional definitions. Since
we are using an AND-cross-composition, we are giving definitions tailored for
this case.

We remind that a decision problem L is a language L ⊆ Σ∗ where Σ∗ is the
set of strings over a finite alphabet Σ, and a parameterized problem is defined
as P ⊆ Σ∗ × N. An equivalence relation R on the set of strings Σ∗ is called a
polynomial equivalence relation if the following two conditions hold:

(i) there is an algorithm that given two strings x, y ∈ Σ∗ decides whether x
and y belong to the same equivalence class in time polynomial in |x| + |y|,

(ii) for any finite set S ⊆ Σ∗, the equivalence relation R partitions the elements
of S into a number of classes that is polynomially bounded in the size of the
largest element of S.

Let L ⊆ Σ∗ be a problem and let R be a polynomial equivalence relation
on Σ∗. Let also P ⊆ Σ∗ × N be a parameterized problem. An AND-cross-
composition of L into P (with respect to R) is an algorithm that, given p
instances I1, I2, . . . , Ip ∈ Σ∗ of L belonging to the same equivalence class of
R, takes time polynomial in

∑p
i=1 |xi| and outputs an instance (I ′, k) ∈ Σ∗ × N

such that:

(i) the parameter value k is polynomially bounded in max{|I1|, . . . , |Ip|}+log p,
(ii) the instance (I ′, k) is a Yes-instance for P if and only if Ii is a Yes-instance

of L for every i ∈ [p].

It is said that L AND-cross-composes into P if an AND-cross-composition algo-
rithm exists for a suitable relation R. We use the following result of Bodlaender,
Jansen and Kratsch [5].

Theorem 4 ([5]). If an NP-hard language L AND-cross-composes into a param-
eterized problem P , then P does not admit a polynomial kernel unless NP ⊆
coNP/poly.
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We use this theorem to show that SRDP has no polynomial kernel on interval
graph assuming NP �⊆ coNP/poly by demonstrating an AND-cross-composition
from Disjoint Paths that was shown to be NP-complete on interval graph by
Natarajan and Sprague [14].

Proof of Theorem 2. We consider instances (G,T ) of Disjoint Paths such that
the terminal vertices in distinct pairs in T are distinct and for every (si, ti) ∈ T ,
si �= ti and {si, ti} /∈ E(G). Clearly, Disjoint Paths remains NP-complete
when constrained to such instances [14]. We say that two instances (G1, T1) and
(G2, T2) are equivalent if |T1| = |T2|, that is, the number of required paths is the
same in both instances.

Let (G1, T1), . . . , (Gp, Tp) be equivalent instances of Disjoint Paths, where
G1, . . . , Gp are interval graphs. For every i ∈ [p], let Ti = {(si

1, t
i
i), . . . , (s

i
k, tik)}

and denote by (Qi, βi) a clique path of Gi. We assume that Qi = xi
1 . . . xi

qi for
i ∈ [k]. Notice that a clique-path of an interval graph or, equivalently, its interval
representation can be found in linear time using, e.g., the classical algorithm of
Booth and Lueker [6].

Because si
j �= tij and {si

j , t
i
j} /∈ E(Gi) for all i ∈ [p] and j ∈ [k], we can

assume without loss of generality that if si
j ∈ βi(x�) and tij ∈ βi(xr), then

� < r. In words, for every pair of terminals (si
j , t

i
j) ∈ Ti, si

j occurs before tij in
the bags of the clique-path. Otherwise, we can swap si

j and tij in the terminal
pair. For every i ∈ [p] and j ∈ [k], let �i

j = max{� ∈ [qi] | si
j ∈ βi(�)} and

ri
j = min{r ∈ [qi] | tij ∈ βi(r)}. By our assumption, �i

j < ri
j for all j ∈ [p] and

i ∈ [k].
For every i ∈ [p], we modify the graph Gi and its clique-path (Qi, βi) as

follows:

– for every j ∈ [k] and every h ∈ {1, . . . , �j
i}, set βi(xi

h) := βi(xi
h) ∪ {si

j},
– for every j ∈ [k] and every h ∈ {ri

j , . . . , qi}, set βi(xi
h) := βi(xi

h) ∪ {tij}.

Denote the obtained graph by G′
i and let (Qi, β

′) be its clique-path. In words, G′
i

is constructed by including every terminal si
j in the first �i

j bags and including
each terminal tij in the last qi−ri

j +1 bags (see Fig. 1). Notice that now si
1, . . . , s

i
k

are in the first bag and ti1, . . . , t
i
k are in the last bag. By the construction, each

G′
i is an interval graph and we have the following property that immediately

follows from the fact that each bag is a clique.

β(xi
qi
)

si
jsi

jsi
j

tij tij tij

β(xi
1) β(xi

�ij
) β(xi

rij
)

Fig. 1. Construction of G′
i.
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Claim. For every i ∈ [p], (Gi, Ti) is a Yes-instance of Disjoint Paths if and
only if (G′

i, Ti) is a Yes-instance.

tpks1k

s11

w2
k = t1k = s21

w2
1 = t11 = s21

G′
1 G′

2
G′

p

tp1

Fig. 2. Construction of G.

We construct the instance (G,T,U) of SRDP, where |T | = |U| = k as follows.
To construct G, we

– construct disjoint copies of G′
1, . . . , G

′
p,

– for each i ∈ {2, . . . , p} and for every j ∈ [k], identify ti−1
j and si

j , and denote
the obtained vertex wi

j .

For i ∈ {2, . . . , p}, we define Wi = {wi
1, . . . , w

i
k}. Notice that G is an interval

graph and its clique-path can be obtained by the concatenation of the clique-
paths of G′

1, . . . , G
′
p (see Fig. 2). We set T = {(s11, t

p
1), . . . , (s

1
k, tpk)}. We define

U = {U1, . . . , Uk} as follows: for every j ∈ [k],

Uj =
( p⋃

i=1

(V (G′
i) \ ({si

1, . . . , s
i
k} ∪ {ti1, . . . , t

i
k}))

) ∪ {s1j , t
p
j} ∪ {w1

j , w2
j , . . . , wp

j }.

Because G′
1, . . . , G

′
p can be constructed in polynomial time, the time taken for

the construction of the instance (G,T,U) is polynomial. Note that the parameter
k is upper bounded by max{|V (G1), . . . , |V (Gp)|}. We claim that (G,T, U) is a
Yes-instance of SRDP if and only if (Gi, Ti) is a Yes-instance of Disjoint
Paths for every i ∈ [p].

Suppose that (G,T,U) is a Yes-instance of SRDP and denote by P1, . . . , Pk

the paths forming a solution, where Pj is an (s1j , t
p
j )-path for every j ∈ [k].

Consider j ∈ [k]. By the construction of G′ (see Fig. 2), the sets W2, . . . , Wp

are (s1j , t
p
j )-separators. Hence, Pj contains a unique vertex from Wi for each

i ∈ {2, . . . , p}. Let wj
1 = s1j and wj

p+1 = tpj . Since for each i ∈ {1, . . . , p+1}, only
wi

j ∈ Wi is in the domain Uj , we have that w1
j , . . . , wp+1

j ∈ V (Pj). Moreover, for
every i ∈ {1, . . . , p}, the (wi

j , w
i+1
j )-subpath P i

j of Pi is, in fact, an (si
j , t

i
j)-path

in G′
i. Thus, for every i ∈ [p], P i

1, . . . , P
i
k are disjoint paths in G′

i and for every
j ∈ [k], P i

j is an (si
j , t

i
j)-path. This means that (G′

i, Ti) is a Yes-instance of
Disjoint Paths for every i ∈ [p]. By Claim 4, we conclude that (Gi, Ti) is a
Yes-instance of Disjoint Paths for every i ∈ [p].
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Assume that (Gi, Ti) is a Yes-instance of Disjoint Paths for every i ∈ [p].
Then each (G′

i, Ti) is a Yes-instance as well by Claim 4. For every i ∈ [p], denote
by P i

1, . . . , P
i
k disjoint path in G′

i, where P i
j is an (si

j , t
i
j)-path for j ∈ [k]. Recall

that in the construction of G, ti−1
j and si

j are identified for i ∈ {2, . . . , p} and
j ∈ [k]. Using this, for j ∈ [k], we define Pj as the concatenation of P 1

j , . . . , P p
j

and obtain an (s1j , t
p
j )-path. By the definition of the domains, V (Pj) ⊆ Uj for

j ∈ [k]. Because P i
1, . . . , P

i
k are disjoint for all i ∈ [p], P1, . . . , Pk are also disjoint.

Therefore, they form a solution for (G,T,U). We conclude that (G,T,U) is a
Yes-instance of SRDP.

We obtain that Disjoint Paths AND-cross-composes into SRDP. By The-
orem 4, SRDP does not admit a polynomial kernel unless NP ⊆ coNP/poly.
This concludes the proof. ��
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Abstract. PPAD is the class of computational search problem that are
equivalent to the EndOfALine problem: given a succinct representation
of a directed graph consisting of chains and cycles and a source in this
graph, find a sink or another source. It turns out that this class contains
many problems of searching for a fixed point in various frameworks. The
complete problems inPPAD include Sperner’s lemma, discrete analogues
of Brouwer and Kakutani theorems, Nash equilibrium, market equilibria,
cake-cutting and many other models in mathematical economics.

In this paper we analyze the Knaster–Kuratowski–Mazurkievicz
(KKM) lemma: if an n-dimensional simplex is covered by n + 1 closed
sets and every face of the simplex is covered by the union of the respec-
tive sets, then the intersection of all sets is non-empty. We elaborate a
discrete analogue of a covering by closed sets, base on it several discrete
analogues of the KKM lemma and prove that the corresponding search
problems are PPAD-complete.

Keywords: Fixed points · Discrete topology · Sperner’s lemma ·
KKM lemma · PPAD-completeness

1 Introduction

Many models in mathematical economics define some sort of an equilibrium
and prove that such equilibrium always exists. There is an extended discussion
whether an equilibrium is a good prediction of what actually happens. In classical
paradigm, the system should achieve an equilibrium, but an alternative point of
view says that external conditions change faster than the system ends up in an
equilibrium, so actually the system is always out of the equilibrium. In any case,
to apply such kind of a model, one needs to compute an equilibrium. Thus it
becomes important to design algorithms that find an equilibrium and to estimate
the computational complexity of the problem. Complexity is itself an argument
about applicability of the model. According to Kamal Jain’s quote [25]: “If your
laptop cannot find it, neither can the market”. This is why many particular
economic models are analyzed from a complexity-theoretic point of view.
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Existence of an equilibrium in many models stands on a small number of
basic mathematical facts about fixed points, especially Brouwer and Kakutani
theorems. This is why the complexity of the respective computational problems
was analyzed already in the pioneering work [28]. In some cases, another fixed-
point theorem is employed: the KKM lemma. As far as we know, it was never
analyzed from a computational point of view, probably because one straight-
forward way of discretizing it yields a proposition that is clearly equivalent to
Sperner’s lemma. In this paper we introduce and analyze other discrete versions
that better represent the spirit of the original KKM lemma.

1.1 Overview and Discussion of the Main Results

Originally, Knaster, Kuratowski and Mazurkievicz proved the following
lemma [20]:

Lemma 1. Suppose that a simplex

Δd =
{

(x0, x1, . . . , xd) | xi ≥ 0,

d∑
j=0

xj = 1
}

is covered by the union of closed sets S0, S1, . . . , Sd. Moreover, a face of the
simplex with xi = 0 is covered by the union of all sets without Si. (If several
coordinates are zero on a low-dimensional face, then all the respective sets need
not be used to cover this face.) Then there exists a point that belongs to all Si.

But a simplex is poorly suitable for discretization, because in higher dimen-
sions it does not have a regular tiling by equal figures. On the other hand, a cube
can be split into equal cubelets. This is why we restate the lemma on a cube:

Lemma 2. Suppose that a cube [0, 1]d = {(x1, . . . , xd) | 0 ≤ xi ≤ 1} is covered
by the union of closed sets S0, S1, . . . , Sd. Moreover, a face of the cube with
xi = 0 is covered by the union of all sets without Si and all faces with xj = 1
are covered by all sets without S0. (If several conditions hold simultaneously on
a low-dimensional face, then all the respective sets may be excluded from the
coverage of this face.) Then there exists a point that belongs to all Si.

A sinple idea of discretization would be to split the cube into cubelets (or,
probably, some other polyhedral cells) and add a condition that all sets Si must
include any cell as a whole. We can say that every cell is colored in one or more
colors and we are looking for a cell that is colored in all colors. Later we use
“cover sets” and “colors” interchangeably. The question is what to take as an
analogue of the closedness condition. We consider the following variants:

1. No discrete analogue of closedness: just consider closed cells. In this case it
is true that there must exist a point (not a cell) colored in all colors, but this
claim is just equivalent to Sperner’s lemma. This discretization does not fully
capture the spirit of the closedness condition. The latter implies that a border
point of one set must also belong to another set. In the discrete version we
color not points, but cells, so we would like to have a similar condition that
a border cell of one set must also belong to another set.
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2. Add the above mentioned condition: say that a cell is on the border of a set
if it belongs to the set and one of its neighbors does not. Require any border
cell to belong to at least one other set. Unfortunately, it is insufficient for
having a cell that belongs to all sets. In two dimensions it can be proved that
there is either a multicolored cell, or three neighboring two-colored cells with
three different color pairs. In higher dimensions no analogue is true.
This condition has a drawback: in the continuous setting, if we consider inter-
sections of different sets with the border of one particular set, then a border
point of one intersection must still lie in some other intersection. But our
discrete condition does not imply a similar property.

3. Finally, add explicitly the property mentioned above. Require that it is impos-
sible that one cell is colored in i, but not j, and an adjacent one is colored
in j, but not i. It turns out that this condition is sufficient for obtaining a
multicolored cell. For the quadratic tiling in 2D it is sufficient to pose this
condition only on cells neighboring by an edge, but in higher dimensions or
for general tilings the condition must be required for neighbors by at least
one vertex. So, our first main result is the following discrete KKM theorem.

Theorem 1 (For the full statement see Theorem 6). Suppose that a d-
dimensional cube is split into cells that are colored in d + 1 colors satisfying the
usual KKM border conditions. Suppose that the cells sharibg at least one point
are not colored in such a way that the first one has color i, but not j, and the
second one has color j, but not i. Then there exists at least one cell colored in
all colors.

Since a multicolored cell does always exist, one can ask how to find it. More
precisely, one need to find either a multicolored cell or a violation of the coloring
assumptions. If a coloring is described explicitly by the colors of all cells, then a
multicolored cell or a violated condition may be found efficiently by exhaustive
search. A more interesting problem arises when a coloring of an exponential num-
ber of cells is succinctly described by a polynomial number of bits and the colors
of any particular cell may be found in polynomial time. In this case exhaustive
search is intractable, so the question is whether there exists a polynomial algo-
rithm that finds either a multicolored cell or a violated condition. Our second
result estimates the complexity of this problem.

As usual for total search problems, NP-hardness does not capture the com-
plexity of this problem. Moreover, NP-hardness of such problem would imply
NP = coNP [21]. On the other hand, the class of all total search problems,
TFNP, does not have known complete problems because of its “semantic”
nature. A usual approach is to specify “syntactic” subclasses of TFNP and ana-
lyze completeness in these subclasses. One of the most important classes that
contains many problems about fixed points and economic equilibria is PPAD.
We classify discrete KKM into this class and show its completeness.

Theorem 2 (For the full statement see Theorem 10). Suppose that an d-
dimensional cube is regularly split into 2nd equal cubelets. Suppose that a coloring
of these cubelets is described by a polynomial-size circuit Cn. Consider a problem
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of finding either a multicolored cell or a cubelet where the condition of Theorem 1
is violated. Then this problem lies in PPAD and is PPAD-complete for d ≥ 2.

1.2 Related Work

Fixed-point analysis is a classical area lying between calculus, topology, com-
binatorics, game theory and theoretical economics. The most celebrated results
include Sperner’s lemma about multicolored simplices [34], Brouwer theorem
about fixed points of continuous mappings on a convex compact [5], Kakutani
theorem about fixed points of point-set mappings [18], Nash theorem about
equilibria in non-cooperative games [23,24], Arrow–Debreu theorem about com-
petitive equilibrium [1], Scarf theorem about the core [30,32], Simmons–Su theo-
rems about envy-free cake-cutting [35] and consensus halving [33], among many
others. A classical exposition of the subject is presented by Border in [4].

Complexity analysis of fixed points was initiated in the seminal work by
Papadimitriou [28], where the class PPAD was introduced among other search
classes. It was proved there that computational problems SPERNER (in 3D),
BROUWER, KAKUTANI and some others are PPAD-complete. Later Daskalakis
et al. [11] and Chen and Deng [8] obtained the celebrated result about PPAD-
completeness of finding a Nash equilibrium, even for 2 players. The latter authors
also proved [9] that SPERNER is complete even in 2D. One difference between
2-player and 3-player Nash is that for 2 players an equlibrium can be found
exactly and for 3 players only approximately: there exists an example [6] of a
3-player game with rational outcomes but only irrational equilibria. This is why
approximation factor is very important. It was analyzed in [10,12,29]. Many eco-
nomics models were treated from complexity point of view, inluding Fisher and
Arrow-Debreu market equlibria [7,14,36], fractional core allocations [19], approx-
imate envy-free cake-cutting [26], equilibria in public good [27] and congestion
games [2], clearing payments in financial networks [31] and stable jurisdiction
partitions [22], to name a few. A good survey may be found in [15].

1.3 Roadmap

The remaining part of the paper is organized as follows. In Sect. 2 we give for-
mal definitions of computational search problems and reductions among them,
present the class PPAD and several important problems inside it and discuss
the original KKM lemma. In Sect. 3 we present our discrete variants of the KKM
lemma and prove them. In Sect. 4 we prove that the respective computational
problems belong to PPAD and are complete in this class. Section 5 presents a
conclusion and some open questions.

2 Preliminaries

2.1 Search Problems and Reductions

In this subsection we briefly describe the main notions in the theory of compu-
tational search problems.
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Definition 1. Suppose that V : {0, 1}∗ ×{0, 1}∗ → {0, 1} is a computable predi-
cate. Then the corresponding search problem is the following: given x, either find
y such that V (x, y) = 1 or indicate that there is no such y.

If V is computable in polynomial time of |x|, then we may assume that |y|
is also polynomial: a standard Turing machine would not be able to read more
bits. This motivates the following definition:

Definition 2. FNP is the class of all search problems where V is computable
in polynomial time. In other words, V maps {0, 1}n × {0, 1}p(n) to {0, 1} and is
computable in time q(n) for some polynomials p(n) and q(n). The problem is to
find y such that V (x, y) = 1 or indicate that there is no such y, on input x.

A very important subclass is the class of total problems, where ∀x∃y V (x, y).
The existence of y may be obtained by different kinds of reasoning, like the
pigeonhole principle, the parity argument, the gradient descent method, the
existence of a prime divisor etc.

Definition 3. TFNP is the subclass of total search problems in FNP. That is,
for any x it is guaranteed that there exists y such that V (x, y) = 1 and the task
is to find such y.

Reduction of one computational problem to another is a very important
concept in complexity theory. In the context of search problems the no-solution
case must be handled. We employ the following definition:

Definition 4. A search problem V is polynomially reducible to W if there
are polynomially computable functions f : {0, 1}∗ → {0, 1}∗ and g : {0, 1}∗ ×
{0, 1}∗ → {0, 1}∗ ∪ {⊥} such that the following is true:

1. If ∃y V (x, y) = 1, then ∃z W (f(x), z) = 1;
2. If W (f(x), z) = 1 and g(x, z) 	= ⊥, then V (x, g(x, z)) = 1;
3. If W (f(x), z) = 1 and g(x, z) = ⊥, then ∀y V (x, y) = 0.

Thus f reduces an instance of V to an instance of W and g restores a solution
for V from a solution for W . Note that the definition captures the case when W
always has a solution and V does not: in this case g(x, z) returns ⊥.

It is a routine to check that this reduction is transitive and that a problem
reducible to a polynomially solvable one is also polynomially solvable. As usual,
the notion of reducibility yields the notion of completeness: a problem is complete
in some class if it belongs to this class and any other problems from the class is
reducible to this problem. FNP-complete problems are closely connected to NP-
complete ones, but Megiddo and Papadmitriou have shown [21] that problems
from TFNP cannot be FNP-complete, unless NP = coNP. On the other hand,
there are no known TFNP-complete problems: standard generic constructions
do not work due to the “semantic” nature of TFNP. This is why “syntactic”
subclasses of TFNP are considered.
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2.2 The Class PPAD and Its Complete Problems

Subclasses of TFNP are defined by the main idea that implies existence of a
solution. PPAD means “Polynomial parity argument, directed version” and the
idea behind it is very basic: if there is an unbalanced vertex in a directed graph,
that is, a vertex with different indegree and outdegree, then there must exist
another unbalanced vertex. Informally, PPAD consists of all total search prob-
lems, where a solution exists due to this principle. Formally, one basic problem
is chosen and the class is defined as the set of all problems that are reducible
to it. Usually the main principle is applied to a graph where all indegrees and
outdegrees are bounded by 1.

Definition 5. An instance of the problem EndOfALine is described by two poly-
nomial-size circuits N and P with n inputs and n outputs. This pair defines a
directed graph with 2n vertices: an edge (x, y) for x 	= y belongs to the graph
if simultaneously y = N(x) and x = P (y). A source is a vertex s such that
N(s) 	= s, P (N(s)) = s and N(P (s)) 	= s. A sink is a vertex t such that
P (t) 	= t, N(P (t)) = t and P (N(t)) 	= t. In the search problem, the circuits N
and P are given, as well as a source s. The task is to find either a sink t, or
another source s′.

In the graph defined by N and P any vertex has both indegree and outdegree
at most one. Thus the graph must consist of chains, cycles and isolated vertices.
Since a source is given, there must exist a sink, so the problem always has a
solution.

A similar problem Imbalance may be defined if N and P return not one vertex
but a polynomial list of vertices. In this case an edge (x, y) belongs to the graph if
y ∈ N(x) and x ∈ P (y). Thus N and P define a graph with exponential number
of vertices but only polynomial degree. In the search problem, the circuits N
and P are given, as well as an unbalanced vertex v. The task is to find another
unbalanced vertex. It is clear that EndOfALine is a particular case of Imbalance.
Papadimitriou [28] and Beame et al. [3] claimed that there exists a reduction in
the opposite way. Unfortunately, there construction was incorrect and a correct
one was constructed only recently by Goldberg and Hollender [16,17].

The class PPAD is defined in the following way:

Definition 6. A search problem belongs to PPAD if it is polynomially reducible
to EndOfALine. It is PPAD-complete if, moreover, any other problem in PPAD
is polynomially reducible to it.

It is easy to see that PPAD-completeness may be defined solely through
EndOfALine: a problem W is PPAD-complete if W and EndOfALine are polyno-
mially reducible to each other. Thus both EndOfALine and Imbalance are PPAD-
complete. Some other PPAD-complete problems are mentioned in Sect. 1.2. The
most important for us would be the Sperner’s lemma in 2D. Unlike the classical
Sperner’s lemma where the vertices of a triangulation are colored, we would like
to take the dual approach and color the cells.
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Definition 7. Search problem 2D-Sperner is the following one. A square [0, 2n]×
[0, 2n] is split into cells [x, x+1]× [y, y+1] for integer x and y. Denote the set of
cells by Q. A coloring col : Q → {0, 1, 2} is specified by a poly(n)-size circuit. It
is guaranteed that the bottom row is colored in 0 and 1, the left column is colored
in 0 and 2 and the top and right sides are colored in 1 and 2. The task is to find
an integer point such that among the four adjacent cells all colors are present.

Existence of such node follows from the standard Sperner’s lemma. Chen and
Deng proved [9] that this problem is PPAD-complete. Thus PPAD-complete-
ness of W follows from a mutual reduction between W and 2D-Sperner.

2.3 Sperner’s and KKM Lemmas

In this section we briefly discuss why Sperner’s and KKM lemmas follow from
each other. We employ “cubic” versions of each lemma. For the KKM lemma, it
is precisely Lemma 2. For Sperner’s lemma, consider the following one:

Lemma 3. Suppose that a cube [0, 1]d is split into Nd equal cubelets of the
form

[
x1
N , x1+1

N

] × · · · × [
xd

N , xd+1
N

]
for integer x1, . . . , xd. Denote by Q the set

of cubelets and index the cubelets by x = (x1, . . . , xd). Suppose that a coloring
function col : Q → {0, 1, . . . , d} is specified in such way that:

1. The cubelets adjacent to a “zero” face of the cube are not colored in the index
of this face. Formally, if xi = 0, then col(x) 	= i. If several coordinates are
zero, then all respective colors are excluded.

2. The cubelets adjacent to a “one” face of the cube are not colored in 0. For-
mally, if xi = N − 1, then col(x) 	= 0. This condition is combined with the
previous one, if applicable.

Then there exists a node of the lattice
(
x1
N , . . . , xd

N

)
such that among 2d cubelets

adjacent to this node all values of col are present.

Here we do not present a full proof of either lemma, but we need to show the
connection between them.

Claim. Lemmas 2 and 3 are equivalent.

Proof. Firstly, show how the KKM lemma implies Sperner’s lemma. Take the
closures of all cubelets of a particulat color, unite them and treat the result as a
respective set in the assumption of the KKM lemma. It can be routinely checked
that the border conditions are satisfied. Then there must exist a point covered
by all sets. Since any cubelet have only one color, this point must be on the
border of a cell. Even if it is not in the corner, it must be on a face and every
corner of this face will suit.

Secondly, show how Sperner’s lemma implies the KKM lemma. Consider a
KKM coloring of a cube and its splitting into Nd cubelets. Color every cubelet in
some color of some point inside it. For border cubelets, choose a color satisfying
the border conditions of Sperner’s lemma. The border conditions of the KKM
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lemma guarantee that it is possible. Thus, by Sperner’s lemma, there must be a
node adjacent to cells of all colors. This means that in a O

(
1√
N

)
-vicinity of this

node there exist points covered by all sets. Let N go to the infinity and consider
a limit point of the constructed nodes. There are elements of all sets arbitrarily
close to this point. Because all sets are closed, the limit point itself belongs to
all of them. This is exactly the conclusion of the KKM lemma, so we are done.

3 Discrete Analogues of the KKM Lemma

Here we present three ways to discretize the KKM lemma and argue that the last
one is the most natural. For simplicity, we will talk about regular cubic tilings,
but in the last subsection we will expand the result to arbitrary ones.

3.1 General Framework

We consider a d-dimensional cube [0, 2n]d that is split into 2nd regular unit
cubelets of the form [x1, x1 + 1] × · · · × [xd, xd + 1] for integer x1, . . . , xd. We
characterize a cubelet by x = (x1, . . . , xd). Denote the set of cubelets by Q =
{0, . . . , 2n − 1}d. In all variants we consider a multivalued function col : Q ⇒
{0, 1, . . . , d} that satisfies the conditions specified below.

Definition 8. A multivalued function col : Q ⇒ {0, 1, . . . , d} is called normal if
the following conditions hold:

1. Every cell is colored in at least one color. Formally, col(x) is non-empty.
2. If x is adjacent to a face of the cube where some coordinate is minimal, then

x is not colored in this coordinate. Formally, if xi = 0, then col(x) 	� i.
3. If x is adjacent to a face of the cube where some coordinate is maximal, then

x is not colored in 0. Formally, if xi = 2n − 1, then col(x) 	� 0.

These conditions resemble coloring conditions of the original KKM lemma. The
main question is how to replace the condition of closedness of all sets.

3.2 The First Variant: Closed Cells

The first idea is just to expand the coloring of cells to the coloring of points and
assume all cells to be closed. In this case there icould be no multicolored cell,
but there must exist a node with adjacent cells of all colors.

Theorem 3. Suppose that a normal coloring is defined on a cube [0, 2n]d. Then
there exists a point with integer coordinates such that among the colors of the
adjacent cells all possible colors occur.

Proof. This is a simple corollary of Sperner’s lemma as stated in Lemma 3.
Indeed, for each cell take a single value such that the border conditions are
satisfied. Sperner’s lemma implies that there exists a node with adjacent cells of
all colors. For the initial coloring it will be true all the more.
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This theorem is almost equivalent to Sperner’s lemma and thus is of low
interest. We would like to have assumptions that would yield a multicolored cell,
not just a multicolored point. To this end, we should more closely analyze what
does the closedness condition mean.

3.3 The Second Variant: Several Colors on the Border

Recall the continuous variant of the KKM lemma: a cube K is covered by closed
sets. Consider a point x on the border of some set Si. Then there are points
from K \ Si arbitrarily close to x. They must be covered by other sets. Since
the number of sets is finite, there exists some Sj , j 	= i, that contains points
arbitrarily close to x. Since Sj is closed, x must belong to Sj . Thus we get the
following property: if x lies on the border of Si, then it must also belong to some
other Sj . Try to repeat this property in the discrete framework straightforwardly:
if a cell is on the border of some color, then it must be colored in some other
color. Formally, say that adj(x, y) is true if cells x and y have at least one point
in common. Then we impose the following condition:

∀i∀x∀y ((adj(x, y) ∧ col(x) � i ∧ col(y) 	� i) → ∃j 	= i col(x) � j) (∗)

Unfortunately, this does not guarantee that there exists a multicolored cell.
Here is an example (the numbers indicate the colors, a 2-colored cell is divided
diagonally):

0 1

2

Note that in this example the central node is adjacent to cells of all possible
color pairs. It turns out that in 2 dimensions it holds in general:

Theorem 4. Suppose that a normal coloring col with condition (*) is defined
on a square [0, 2n]2. Then at least one of the two facts hold:

– There exists a multicolored cell, that is, col(x) = {0, 1, 2} for some x,
– There exist three cells x, y and z that have a corner point in common such

that col(x) = {0, 1}, col(y) = {1, 2} and col(z) = {1, 2}.
Proof. Here we present a beautiful and direct but not very short proof. In The-
orem 8 we present a shorter proof that uses Sperner’s lemma.

Firstly we present an intuitive exposition and then formally clarify it. The
conditions on col imply that the bottom left cell is colored in 0, the bottom right
cell is colored in 1 and the top left one is colored in 2. Somewhere in the bottom
row there must be a border cell of color 0. Due to (*), it must be colored in some
other color, and due to the normality condition it must be color 1. Similarly,
some cell in the left column is colored in 0 and 2. There must be a way between
these two cells passing through border cells of color 0 (this assertion is clarified
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below in Lemma 4). All these cells must have at least one other color, again due
to (*), see Fig. 1(a). Since the additional color is different on the two ends of the
way, there must be two adjacent cells colored differently: x with colors {0, 1} and
y with colors {0, 2}. Adjacent to them, there must be a cell z not colored in 0
(this assertion is also clarified below). W.l.o.g., it is colored in 1. Then there are
two cases. If z is a border cell of color 1, then there must be another color. Since
z does not have color 0, the other color must be 2 and we have three adjacent
cells with all color pairs, as claimed. If z is not a border cell of color 1, then all
its adjacent cells must be colored in 1. Since y is adjacent to z, y must have all
colors, as claimed. The two cases are illustrated on Fig. 1.

0 1

2

(a) A way of 2-colored cells

0 1

2

(b) 3 adjacent color pairs

0 1

2

(c) A multicolored cell

Fig. 1. Two cases of Theorem 4.

Now we clarify our topological assertions. In fact, we cannot take an arbitrary
way made of border cells and arbitrary neighboring cells with different color pairs
on it. On Fig. 2(a), there is a unique pair of such cells on the way, but the cells adja-
cent to them also lie on the border. The reason is that the way takes an accidental
“shortcut”. The argument works if the way on Fig. 2(b) is considered instead.

0 1

2

(a) An accidental shortcut

0 1

2

(b) The correct way

Fig. 2. Choosing the right way.

Now we show how to construct a suitable way in general. We start by defining
what we mean by “way” and by “suitable”.

Definition 9. Call a border way a sequence of pairs (x, e) where x is a cell and
e is its edge such that the following holds:
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– col(x) � 0 and col(w) 	� 0 for w that borders x by e.
– If (x2, e2) follows (x1, e1) in the sequence, then e1 and e2 have one common

point. Hence x1 and x2 either have a common corner, or have a common
edge, or are equal to each other.

Note that a border way is completely defined by the sequence of edges: since
every edge must separate two cells with different colors, the sequence of cells
may be completely restored. Adding the cells to the definition simplifies the
subsequent analysis.

Now let us prove that a suitable way exists:

Lemma 4. Suppose that col is a normal coloring satisfying (*). Then there
exists a border way ((x1, e1), . . . , (xm, em)) such that e1 has a common point
with the left side of the square and em has a common point with the bottom one.

Proof. Consider the set of all edges that separate a cell that has color 0 from a
cell that does not have color 0. These edges form a graph G, where the ends of
these edges are vertices. Since the bottom left cell has color 0 and the bottom
right cell does not have color 0, there must be an odd number of such edges
that are adjacent to the bottom side of the square. All these edges correspond
to vertices of degree 1 in graph G. Similarly, there must be an odd number of
edges that are adjacent to the left side of the square.

Note that all nodes strictly inside the square have an even degree. Indeed, if
an edge is incident to such node, then among four adjacent cells one has color
0 and another does not have. For the remaining 2 cells there are 4 options and
for each of them the degree of the central node is either 2 or 4:

Thus we have a graph with an odd number of odd-degree vertices on the
bottom side of the square, odd number of odd-degree vertices on the left side,
no vertices on the top and right sides and only even-degree vertices inside the
square. Since any connected component must have even number of odd-degree
vertices, at least one connected component must contain vertices from both the
bottom and the left sides. Thus there is a way from the bottom side to the left
side in this graph. By adding the adjacent cells with color 0, we get a border
way, as claimed.

Let us proceed with the proof of the theorem. Consider the border way
((x1, e1), . . . , (xm, em)) that goes from the left to the bottom. Since all xi are
border cells of color 0, they must have at least one other color. Since the coloring
is normal and x1 lies on the left, its other color must be 2. Similarly, the other
color of xm is 1. Thus there exists i such that xi is colored in 0 and 2 and
xi+1 is colored in 0 and 1. Consider wi that borders xi through ei. Since ei has
a common point with ei+1, wi must also have a common point with ei+1 and
hence with xi+1. Thus wi may be taken as z from the initial exposition of the
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proof. Indeed, wi does not have color 0, so w.l.o.g. it has color 2. If it is its only
color, then all its neighbors must also have color 2, including xi+1. Thus xi+1

has all three colors. Otherwise wi has both colors 1 and 2 and thus xi, xi+1 and
wi are mutually adjacent and have all three possible color pairs.

Theorem 4 has two drawbacks. Firstly, we do not obtain a multicolored cell,
instead we have two variants. Secondly, it is hardly generalizable to higher dimen-
sions. Natural generalizations like existence of adjacent cells that have all color
sets of size d or all possible color pairs are wrong. The reason is that condi-
tion (*) does not fully capture the effect of closed sets in the original lemma. In
particular, the condition is no longer valid if we narrow it to the cells that have
a particular color, while in the continuous case the property that border points
of a set belong to some other set remains valid if we take intersections with one
particular set. This is why we propose another variant.

3.4 The Third Variant: No Distinct Colors on Adjacent Cells

In this subsection we present a framework that guarantees existence of a multi-
colored cell in any dimension. Now we want to discretize the following property
of closed sets: if x lies on the border of closed set S, then either x also lies in
closed set T , or the distance between x and T is strictly positive. In other words,
if x lies in S but not in T , then all points sufficiently close to x do not lie in
T either. Of course, this property cannot be repeated literally: somewhere cells
in T and not in T must be neighbors. We impose the following condition (the
framework is as before):

∀x∀y(adj(x, y) → ¬∃i∃j(i ∈ col(x) \ col(y) ∧ j ∈ col(y) \ col(x))). (∗∗)

It is a simple exercise to check that it is equivalent to the following:

∀x∀y(adj(x, y) → (col(x) ⊂ col(y) ∨ col(y) ⊂ col(x))). (1)

Later we employ (**) and (1) interchangeably.
We proceed with another discrete version of the KKM lemma in 2D.

Theorem 5. Let col be a normal coloring of a square that satisfies condi-
tion (**) where adjacency is understood as having a common edge. Then there
exists a cell colored in all three colors.

Proof. Firstly show that (**) implies (*). Indeed, suppose that cell x is a border
cell of color i. It must have a neighbor y that is not colored in i. It must be
colored in some j. If i is the only color of x, then (**) is violated. Thus x must
be colored in some other color, namely, j.

Now we can apply Theorem 4. If there is a multicolored cell, then we are
done. Otherwise there are three adjacent cells with all color pairs. In any case
two of them would be adjacent by an edge and thus violate (**). Thus only the
multicolored case is possible, as claimed.
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In the high-dimensional case we have to weaken the adjacency condition and
thus to strengthen the assumption.

Theorem 6. Let col be a normal coloring of a hypercube that satisfies condi-
tion (**) where adjacency is understood as having at least one common point.
Then there exists a cell colored in all colors.

Proof. Here we adopt a much simpler approach that works due to strengthening
of the assumption. Just take the cells that are colored in particular colors and
apply the original KKM lemma to the respective sets. The normality of col
implies that the border conditions of the KKM lemma are satisfied. Then there
exists a point p that is colored in all colors. This point may be adjacent to several
cells. Note that all these cells are also adjacent to each other, since they have p
in common. If one of these cells is also colored in all colors, then we are done.
Otherwise consider the cell x that is colored in the maximum number of colors.
Suppose that x is not colored in i. Then some other cell y must be colored in i. If y
is not colored in some j ∈ col(x), then (**) is violated. Otherwise col(y) contains
all col(x) and also i, then x does not have the maximum number of colors. This
contradiction shows that a multicolored cell always exists, as claimed.

3.5 Non-regular Tilings

Note that the proof of Theorem 6 did not use the fact that all cells are equal. Nei-
ther it used that the cells are cubelets. The same methods may yield a theorem
for a general tiling:

Theorem 7. Suppose that a hypercube [0, 1]d is split into polytopes such that no
polytope touches opposite faces of the hypercube. Denote the set of polytopes by
Q. Suppose that there is a multivalued function col : Q → {0, 1, . . . , d} such that
the following conditions hold:

– For any cell x the set col(x) is non-empty;
– If cell x is adjacent to a face of the hypercube with xi = 0, then col(x) 	� i;
– If cell x is adjacent to a face of the hypercube with xi = 1, then col(x) 	� 0;
– The condition (**) holds where adjacency of polytopes means that they have

at least one point in common.

Then there exists a cell colored in all colors.

The proof of Theorem 6 works almost without any change, so we do not repeat
it. Note that for non-quadratic tilings Theorem 5 is no longer valid. Figure 3
shows s counterexample for a triangular grid. It can be easily modified for a
square.

4 Computational Problems and Their PPAD-
Completeness

In this section we analyze the computational complexity of the search problems
that correspond to different versions of the KKM lemma. Meanwhile, we present
alternative proofs that employ Sperner’s lemma.
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0 1

2

Fig. 3. A counterexample to Theorem 5 for a non-quadratic tiling.

4.1 Two Dimensions

We start from the 2-dimensional case that is more vivid and has stronger theo-
rems. We consider the following computational problems:

Definition 10. A computational search problem 2D-KKM is the following: the
algorithm gets a polynomial-size circuit C that defines a multi-valued function
col on a 2n × 2n table. Suppose that C is interpreted in such way that normality
(as in Definition 8) of col is guaranteed. Consider two variants of the problem:

– 2D-KKM-A: find a multicolored cell, or three adjacent cells with all possible
color pairs, or a cell where condition (*) is violated.

– 2D-KKM-B: find a multicolored cell, or two cells adjacent by edge where con-
dition (**) is violated.

Firstly we show that both these problems lie in PPAD and then demonstrate
their completeness. In fact we describe a cycle of 3 reductions between these two
problems and 2D-Sperner, as in Definition 7.

Theorem 8. Both 2D-KKM-A and 2D-KKM-B lie in PPAD.

Proof. We show the reductions 2D-KKM-B ≤ 2D-KKM-A ≤ 2D-Sperner.
The first reduction uses the proof idea of Theorem 5. Indeed, we take the

same coloring and while solving 2D-KKM-A find either a multicolored cell, or
three adjacent cells with all color pairs, or a cell where (*) is violated. In the
first case, the found solution is also suitable for 2D-KKM-B. In the latter two
cases, condition (**) is violated for the found cells, so 2D-KKM-B is solved, too.

Now describe a reduction from 2D-KKM-A to 2D-Sperner, which gives an
alternative proof of Theorem 4. In a coloring given as the input of 2D-KKM-A,
every cell may have one of the seven possible colorings: 0, 1, 2, 01, 12, 20 and
012. We transform it to a single-valued coloring in 3 colors by the following rule:
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Old color(s) New color

0, 01, 012 01

1, 12 12

2, 20 20

Note that the new coloring satisfies the border condition of Sperner’s lemma.
Indeed, the bottom row was colored in 0, 1 or 01, so the new color must be 01
or 12, and similarly for the other sides. Thus, by Sperner’s lemma, in the new
coloring there must exist a node with adjacent cells colored in 01, 12 and 20.

If color 01 comes from 012 in the initial coloring, then a multicolored cell is
found (see Fig. 4(a)). Suppose that 01 comes from 0. Then, by the contraposition
to (*), it cannot be a border cell of color 0 (otherwise we found a place where (*)
is violated). Then the cell now colored in 12 must have been colored also in 0. But
this contradicts our construction. Hence 01 must come from also 01. Similarly
12 and 20 cannot come from 1 and 2, respectively, so they must come from 12
and 20. Thus three adjacent cells with all color pairs are found (see Fig. 4(b)).

In any case, a solution to 2D-Sperner leads to a solution of 2D-KKM-A and
thus a reduction is justified. Meanwhile, we obtained an alternative proof of
Theorem 4. Despite it seems to be much shorter, in fact a similar topological
argument is hidden inside Sperner’s lemma.

0 1

2

01 12

20

(a) The case of a multicolored cell. The
red dot adjacent to a multicolored cell
in the initial coloring

0 1

2

01 12

20

(b) The case of three different color
pairs. The red dot is adjacent to to
three cells of different color pairs.

Fig. 4. Proof of Theorem 8. The left part in each pair shows the initial coloring: color
0 is yellow, color 1 is blue, color 2 is red. The right parts shows the new coloring for
Sperner’s lemma: color 01 is green, color 12 is magenta, color 20 is orange. The red dot
shows a multicolored node in Sperner’s lemma. (Color figure online)

Theorem 9. Both 2D-KKM-A and 2D-KKM-B are PPAD-complete.

Proof. Since 2D-KKM-B is reducible to 2D-KKM-A and 2D-Sperner is PPAD-
complete, it is sufficient to show that 2D-Sperner is reducible to 2D-KKM-B.

The idea is the following: take a refined grid where the new cells correspond
to cells, edges and nodes of the initial grid. Formally if the initial grid had size
N × N , then the new grid has size (2N + 1) × (2N + 1). A cell (p, q) is colored
in i if some cell adjacent to

(
p
2 , q

2

)
was colored in i in the initial table. In other

words, cell (p, q) is colored in the colors of:
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–
(
p−1
2 , q−1

2

)
if both p and q are odd;

–
(
p−1
2 , q

2 − 1
)

and
(
p−1
2 , q

2

)
if p is odd and q is even;

–
(
p
2 − 1, q−1

2

)
and

(
p
2 , q−1

2

)
if p is even and q is odd;

–
(
p
2 − 1, q

2 − 1
)
,
(
p
2 − 1, q

2

)
,
(
p
2 , q

2 − 1
)

and
(
p
2 , q

2

)
if both p and q are even.

The procedure is illustrated on Fig. 5.

0 1

2

0 1

2

0 1

2

Fig. 5. Reducing 2D-Sperner to 2D-KKM-B.

Let us show that it is indeed a reduction. Firstly, it can be routinely checked
that border conditions of Sperner’s lemma imply normality of the resulting col-
oring. Now let us check (**) for edge adjacency. The pair of neighboring cells
may have two types: one corresponds to a cell of the initial grid and the other
corresponds to an edge, or one corresponds to an edge of the initial grid and the
other corresponds to a node. In the first case the cell is incident to the edge, so
the color of the first cell belongs to the color set of the second cell. In the second
case the edge is incident to the node, so all cells incident to the edge are also
incident to the node. Thus the color set of the first cell must be included in the
color set of the second cell. So, (**) is also justified.

Due to Theorem 5, there must exist a multicolored cell in the new coloring. It
must correspond to a node in the initial grid, since cells and edges have at most
two colors. This node is a solution for 2D-Sperner, so the reduction is justified.

4.2 Higher Dimensions

Finally, estimate the search complexity of Theorem 6. Define the respective
computational problem:

Definition 11. Search problem KKM is the following: the input is a poly(n)-size
circuit C that defines a point-set function col from {0, . . . , 2n−1}d to {0, . . . , d}.
Suppose that normality (as in Definition 8) of col is guaranteed by the way C is
interpreted. The task is to find either a multicolored cell, or a violation of (**).

Theorem 10. The problem KKM is PPAD-complete.

Proof. The reduction from KKM to Sperner works in any dimension and proves
that KKM ∈ PPAD. In the other direction we show how to reduce KKM in a
lower dimension to that in a higher one.
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To reduce KKM to Sperner, we need to produce a single-valued coloring from
a multi-valued one. Unlike the construction for Theorem 8, define the new color
as the minimal among the old ones. Sperner’s border conditions can be routinely
checked. Thus in the new coloring there must exist a node with adjacent cells of
all colors. Among them, the cell x colored in 0 must have been a multicolored
one. Indeed, suppose that color i was missed. Take the adjacent cell y colored in
i in the new coloring. Since the new color is the minimal old color, y must have
been colored in i, but not in 0. Thus x and y violate (**). So, in any case either
a multicolored cell is found, or a violation of (**), which solves KKM.

To reduce Sperner to KKM, we need to modify the proof of Theorem 9, since
the notion of adjacency was changed. Check the claim in 2D when (**) is applied
to cells sharing a vertex. Now there are two additional cases with neighboring
cells. Firstly, a cell corresponding to a cell in the initial grid is adjacent to a cell
corresponding to a vertex of the same cell. Here the color of the former cell is
included into the color set of the latter one, so (**) is satisfied. Secondly, two
cells correspoding to the edges in the initial grid may also be adjacent. In this
case (**) may be violated. But it happens in one possible case: one of the cells
is colored in i and j and the other is colored in i and k, like in this figure:

Such configuration means that the original edges belong to a cell of color i which
is adjacent to cells of colors j and k. They must be also adjacent to each other,
so there must be a node in the original grid adjacent to cells of all colors. Thus,
both a multicolored cell and violation of (**) yield a solution of Sperner.

Unfortunately, this argument does not work in higher dimensions. Instead,
we reduce a problem in dimension d to a problem in dimension d + 1. Since the
base case is obtained, we just use induction. The caveat is that it is not trivial
to satisfy (**) (and thus Theorem 6 is weaker than we would like it to be). For
instance, it is not satisfied for a simple configuration on Fig. 6(a), but a small
shift shown on Fig. 6(b) restores the property.

0 1

2

(a) Violation of (∗∗)

0 1

2

(b) Restoration of (∗∗) by a small change

Fig. 6. Construction of a coloring with (**)
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Let us describe how to generalize such shift. Suppose that a coloring col of
a d-dimensional grid is normal and satisfies (**). Construct a coloring col′ of a
(d+1)-dimensional grid. Let us denote by (x, z) the cell with first d coordinates x
and last coordinate z. Replicate col in the bottom d+1 layers. That is, col′(x, z) ⊃
col(x) if z ≤ d. All upper cells are colored only in d+1. That is, col′(x, z) = {d+1}
if z > d. Also if |col(x)| = k, then cells (x, d), (x, d − 1), . . . , (x, d − k + 1) are
also colored in d + 1. Summarizing, we have the following:

col′(x, z) =

⎧
⎪⎨
⎪⎩

col(x), if z ≤ d − |col(x)|;
col(x) ∪ {d + 1}, if d − |col(x)| < z ≤ d;
{d + 1}, if z > d.

(2)

A routine check shows that this coloring is normal. Let us check (**).
Case 1: let (x, z) be adjacent to (y, z). Then x must be adjacent to y. By

induction hypothesis, w.l.o.g., col(x) ⊂ col(y). Hence |col(x)| ≤ |col(y)| and thus
d−|col(x)| ≥ d−|col(y)|. So, if (d+1) ∈ col′(x, z), then also (d+1) ∈ col′(y, z)
and col′(x, z) ⊂ col′(y, z). Thus (**) is satisfied.

Case 2: let (x, z) be adjacent to (y, z+1). Then x must be adjacent to y. Here
the subcases col(x) ⊂ col(y) and col(y) ⊂ col(x) are not symmetric, so consider
them one by one. Firstly, note that if z = d, then col′(y, z + 1) = {d + 1} and
col′(x, z) � (d + 1), so (**) is true. If z > d, then col′(y, z + 1) = col′(x, z) =
{d + 1}, so (**) is also true. Now, let z < d and col(x) ⊂ col(y). In this case
the argument from case 1 is valid. Finally, let z < d and col(y) � col(x). Then
|col(y)| ≤ |col(x)| − 1. Then if (d + 1) ∈ col′(y, z + 1), then z + 1 > d − |col(y)|.
Hence z > d− |col(y)| − 1 ≥ d− |col(x)| and (d+1) ∈ col(x, z). Thus col′(y, z +
1) = col(y) ∪ {d + 1} ⊂ col(x) ∪ {d + 1} = col′(x, z). In all cases (**) is justified.

Since ���′ satisfies (**), there must be a multicolored cell (x, z). It can occur
only if col(x) = {0, . . . , d}. Thus, a multicolored cell in dimension d is found and
it completes the reduction.

5 Conclusion

In this paper, we introduced a discrete analogue of covering with closed sets,
applied it to the KKM lemma and analyzed complexity of the respective search
problems. We want to specify some open questions and future directions:

– Is this approach applicable to other existence theorems that deal with cov-
erings with closed sets? For instance, one can analyze Lesbegue theorem: if
the cube [0, 1]n is covered by M closed sets such that no point is included in
more than n sets, then one of the sets must contain points from two opposite
faces of the cube.

– Could Theorem 6 be strengthened by weakening the adjacency condition
in (**)? Our hypothesis is that in dimension 3 it is sufficient to require (**)
for cells adjacent by an edge.

– Can our PPAD-completeness results be applied to some economic model?
One possible candidate is Gale’s lemma from [13].



188 A. Grishutin and D. Musatov

Acknowledgments. The authors thank attendants of the 3rd Hungarian-Russian
Combinatorics workshop, Kolmogorov seminar at Moscow State university and 4th
conference “Autumn mathematical readings at Adyghea” for their attention and dis-
cussion of preliminary versions of this work.

References

1. Arrow, K.J., Debreu, G.: Existence of an equilibrium for a competitive economy.
Econometrica 22(3), 265–90 (1954)

2. Babichenko, Y., Rubinstein, A.: Settling the complexity of Nash equilibrium in
congestion games. In: Proceedings of the 53rd Annual ACM SIGACT Symposium
on Theory of Computing, pp. 1426–1437 (2021)

3. Beame, P., Cook, S., Edmonds, J., Impagliazzo, R., Pitassi, T.: The relative com-
plexity of NP search problems. J. Comput. Syst. Sci. 57(1), 3–19 (1998)

4. Border, K.C.: Fixed Point Theorems With Applications to Economics and Game
Theory. Cambridge University Press, Cambridge (1985)
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Abstract. We consider online algorithms for the k-server problem on
trees. There is a k-competitive algorithm for this problem, and it is
the best competitive ratio. M. Chrobak and L. Larmore provided it.
At the same time, the existing implementation has O(n) time com-
plexity for processing a query and O(n) for prepossessing, where n is
the number of nodes in a tree. Another implementation of the algo-
rithm has O(k2 + k log n) time complexity for processing a query and
O(n log n) for prepossessing. We provide a new time-efficient implemen-
tation of the algorithm. It has O(n) time complexity for preprocessing
and O

(
k(log n)2

)
for processing a query.

Keywords: online algorithms · k-server problem · tree · time
complexity

1 Introduction

Online optimization is a field of optimization theory that deals with optimiza-
tion problems not knowing the future [27]. The most standard method to define
the effectiveness of an online algorithm is a competitive ratio [18,30]. The com-
petitive ratio is the worst-case ratio between the cost of a solution found by
the algorithm and the cost of an optimal solution. In the general setting, online
algorithms have unlimited computational power. Nevertheless, many papers con-
sider them with different restrictions. Some of them are restrictions on memory
[1,4,7,10,14,19–24,26], other ones are restrictions on time complexity [13,29].
This paper focuses on efficient online algorithms in terms of time complexity. One
of the well-known online minimization problems is the k-server problem on trees
[11]. Other related well-known problems are the matching problem, r-gathering
problem, facility assignment problem [2,3,16]. There is a k-competitive deter-
ministic algorithm for the k-server problem on trees, and the algorithm has the
best competitive ratio. Expected competitive ratio for a best-known randomized
algorithm [5,6] is O(log3 n log2 k), where n is the number of nodes in a tree. In
this paper, we are focused on the deterministic one. So, the competitive ratio of
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the deterministic algorithm is the best one. At the same time, the naive imple-
mentation has O(n) time complexity for each query and preprocessing. There
is a time-efficient algorithm for general graphs [29] that uses a min-cost-max-
flow algorithm, but it is too slow in the case of a tree. In the case of a tree,
there exists an algorithm with time complexity O(n log n) for preprocessing and
O

(
k2 + k log n

)
for each query [17].

We suggest a new time-efficient implementation of the algorithm from [11].
It has O(n) time complexity for preprocessing and O

(
k(log n)2

)
for processing

a query. It is based on data structures and techniques like a segment tree [28],
heavy-light decomposition (heavy path decomposition) [15,31] for a tree and
fast algorithms for computing Lowest Common Ancestor (LCA) [8,9]. Let us
compare our algorithm with the implementation from [17]. Our prepossessing
procedure is more efficient, and we obtain speed-up for the query processing
procedure in the case of k = ω

(
(log n)2

)
. The algorithm is more efficient than

the naive algorithm in the case of k = o
(
n/(log n)2

)
.

The structure of the paper is as follows. Preliminaries are presented in Sect. 2.
Section 4 contains a subproblem on a segment tree that is used in the main
algorithm. The main algorithm is discussed in Sect. 3. Section 5 concludes the
paper.

2 Preliminaries

An online minimization problem consists of a set I of inputs and a cost
function. An input is I = (x1, . . . , xn), where n is a length of an input |I| = n.
Furthermore, a set of feasible outputs (or solutions) O(I) is associated with
each I; an output is O = (y1, . . . , yn). The cost function assigns a positive real
value cost(I,O) to I ∈ I and O ∈ O(I). The optimal solution for I ∈ I is
Oopt(I) = argminO∈O(I)cost(I,O).

Let us define an online algorithm for this problem. A deterministic online
algorithm A computes an output sequence A(I) = (y1, . . . , yn) such that yi is
computed based on x1, . . . , xi. We say that A is c-competitive if there exists a
constant α ≥ 0 such that, for every n and for any input I of size n, we have:
cost(I,A(I)) ≤ c · cost(I,OOpt(I)) + α. Here, c is the minimal number that
satisfies the inequality. Also we call c the competitive ratio of A.

2.1 Graph Theory

Let us consider a rooted tree G = (V,E), where V is a set of nodes (vertices), and
E is a set of edges. Let n = |V | be the number of nodes, and V = {v1, . . . , vn}.
Let the root of the tree be the v1 node.

A path P is a sequence of nodes (v1, . . . , vh) that are connected by edges, i.e.
(vi, vi+1) ∈ E for all i ∈ {1, . . . , h−1}. Note, that there are no duplicates among
v1, . . . , vh. Here, h is the length of the path. We use v ∈ P notation if there is j
such that vj = v. The notation is reasonable, because there is no duplicates in
a path. Note that for any two nodes u and v the path between them is unique
because G is a tree.
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The distance dist(v, u) between two nodes v and u is the length of the
path between them. A height of a node v is the distance from the root that
is dist(v1, v). For each node v except the root node we can define a parent
node Parent(v), it is a node such that dist(v1,Parent(v)) + 1 = dist(v1, v)
and it belongs to the path from v1 to v. We assume that for the root
node, Parent(v1) = NULL. Additionally, we can define a set of children
Children(v) = {u : Parent(u) = v}.

Distance. For each node v we compute the distance from the v1 (root) node
to the node v. We call it dist(v1, v). We can do it using Depth-first search algo-
rithm [12]. There is a well-known simple algorithm for computing of dist(v1, v),
we present it for completeness in the arXiv version [25]. Let ComputeDistance

be a subroutine that computes distances. After invocation of this procedure, we
can obtain dist(v1, v) in O(1) time complexity.

Heavy-Light Decomposition. Heavy-light decomposition is a decomposi-
tion of the tree to a set of paths P. The technique is presented in [15,31]. It has
the following properties:

• Each node v of the tree belongs to exactly one path from P, i.e., all paths
have no intersections, and they cover all nodes of the tree.

• For any node v, a path from v to the root of the tree contains nodes of at
most log2 n paths from P.

• Let us consider a node v and a path P ∈ P such that v ∈ P . Then, beg(v)
is the node that belongs to P and has the minimal height, i.e. beg(v) is such
that dist(v1, beg(v)) = min

u∈P
dist(v1, u).

• For a node v of the tree, let P (v) be the path from P that contains v.
• For a node v of the tree, let indexP (v) be an index of an element of the path

P . For an index i of an element in the path P , let nodeP (i) be the node v.
In other words, if P = (v1, . . . , vh), then vindexP (v) = v, and vi = nodeP (i)

• We can construct the set P with O(n) time complexity.

Lowest Common Ancestor. Given two nodes u and v of a rooted tree, the
Lowest Common Ancestor is a node w such that w is an ancestor of both u and
v, and w is the closest one to u and v among all such ancestors. The following
result is well-known.

Lemma 1 ([8,9]). There is an algorithm for the LCA problem with the following
properties: (i) The time complexity of the preprocessing step is O(n) (ii)The time
complexity of computing LCA for two nodes is O(1).

Let LCA Preprocessing() be the subroutine for the preprocessing step.
Let LCA(u, v) be the procedure for computing LCA of two nodes u and v. We
can compute the distance dist(v, q) between nodes v and q using LCA in O(1).
Let l = LCA(v, q) be a lowest common ancestor of v and q. Then, dist(v, q) =
dist(v1, q) + dist(v1, v) − 2 · dist(v1, l).
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2.2 k-server Problem on a Tree

We have a rooted tree G = (V,E). We are also given k servers that can move
among nodes of G. At each time slot, a query q ∈ V appears, and we have to
“serve” it, that is, choose one of our servers and move it to q. Other servers are
also allowed to move. Our measure of cost is the distance by which we move
our servers. In other words, if before the query positions of servers are v1, . . . , vk
and after the query they are v′

1, . . . , v
′
k, then q ∈ {v′

1, . . . , v
′
k} and the cost of the

move is
∑k

i=1 dist(vi, v′
i). The problem is to design a strategy that minimizes

the cost of serving a sequence of queries given online.

2.3 Coloration Problem

Let us present the coloration problem used as a sub-task in the main algorithm
for the k-server problem. It is used in the following way. In a tree, we color a
node v by a color j if the server j visits the node. More detailed motivation is
presented in the next section.

Coloration Problem. Assume that we have a sequence of d nodes v1, . . . , vd
of the tree G. We associate a color ci with a node vi of the tree G, where
0 ≤ ci ≤ Z for some positive integer Z. Initially, all nodes are not colored, i.e.
ci = 0. We should be able to do several operations. Each operation can be one
of three types:

• Update. For three integers l, r, c (1 ≤ l ≤ r ≤ d, 1 ≤ c ≤ Z), we should color
all elements of segment [l, r] by c, i.e. ci ← c for l ≤ i ≤ r.

• Request. For an integer x (1 ≤ x ≤ d), we should return cx.
• Request Closest Colored. For two integers l, r (1 ≤ l ≤ r ≤ d), we should

return the minimal and the maximal indexes of colored elements from the
segment, i.e. the maximal and the minimal i such that ci > 0 and l ≤ i ≤ r.

We can implement these operations using the segment tree data structure
[28]. The definition of the Segment Tree data structure is presented in Sect. 4.
Assume that we have several procedures. The procedure ConstructST(1, d)
constructs a segment tree. This procedure is used by the initialization pro-
cess for the coloration problem solution (Lemma 5). The procedure returns
the root of the segment tree. The time complexity is O(d). The procedure
ColorRequest(x, root) implements the Request operation for cx and a
segment tree with a root node root (Lemma 6). It has O(log d) time com-
plexity. The procedure ColorUpdate(l, r, c, root) implements the Update
operation for a segment [l, r], a color c and a segment tree with a root
node root (Lemma 7). It has O(log d) time complexity. The procedure
GetClosestColorRight(l, r, root) implements the Request Closest Col-
ored operation for a segment [l, r] and a segment tree with a root node root
(Lemma 8). It returns the minimal index from the segment and has O(log d)
time complexity. The GetClosestColorLeft(l, r, root) procedure has simi-
lar properties and returns the maximal index. The more detailed discussion is
presented in Sect. 4.
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3 The Fast Online Algorithm for k-server Problem
on Trees

Let us describe a k-competitive algorithm for the k-server problem on trees
from [11].

Chrobak-Larmore’s k-competitive Algorithm for the k-server Prob-
lem from [11]. Let us have a query q, and let servers be in nodes v1, . . . , vk. Let
a server i be active if there is no other servers on the path from vi to q. If several
severs in a node, then the server with the smallest index is active. Formally, let
us consider a path P = (w1, . . . , wh), where w1 = vi and wh = q. Then, vi′ �∈ P
for i′ �= i. If there is vi′ = vi, then the server i is active if i′ > i. In each phase, we
move each active server one step towards the node q. After each phase, the set of
active servers can be changed. We repeat phases (moves of servers) until one of
the servers reaches the query node q. The naive implementation of the algorithm
has time complexity O(n) for each query. It can be the following. Firstly, we run
the Depth-first search algorithm with time labels [12]. Using it, we can put labels
to each node that allows us to check for any two nodes u and v, whether u is an
ancestor of v in O(1). After that, we can move each active server to the query
step by step. Together all active servers cannot visit more than O(n) nodes.

Here, we present an effective implementation of Chrobak-Larmore’s algo-
rithm. The algorithm contains two parts that are preprocessing and query pro-
cessing. The preprocessing part is done once and has O(n) time complexity (The-
orem 1). The query processing part is done for each query and has O

(
k(log n)2

)

time complexity (Theorem 2).

3.1 Preprocessing

We do the following steps for the preprocessing:

• We construct a Heavy-light decomposition P for the tree. Properties of decom-
position are described in Sect. 2.1. Assume that, for construction P, we have
ConstructingHLD() subroutine.

• We do the required preprocessing for the LCA algorithm that is discussed in
Sect. 2.1. Assume that we have LCA Preprocessing() subroutine for this
procedure.

• For each path P ∈ P we construct a segment tree that will be used
for the coloration problem that is described in Sect. 2.3 and Sect. 4. Let
ConstructingSegemntTree(P ) be a subroutine for construction a seg-
ment tree for the path P . Let STP be a segment tree for the path P .

• Additionally, for each node v we compute the distance from the v1 (root)
node to the node v using ComputeDistance subroutine from Sect. 2.1.

Finally, we have Algorithm 1 for the preprocessing.
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Algorithm 1. Preprocessing. Preprocessing procedure.
P ← ConstructHLD()

LCA Preprocessing()
for P ∈ P do

STP ← ConstructST(P )
end for
dist(v1, v1) ← 0, ComputeDistance()

Theorem 1. Algorithm 1 for the preprocessing has time complexity O(n).

Proof. As it was mentioned in Sect. 2.1 the time complexity of Heavy-light
decomposition P construction is O(n). Due to Lemma 5, time complexity of
ConstructST(P ) is O(|P |). The total time complexity of constructing all seg-
ment trees is O

(∑
P∈P |P |) = O(n) because of property of the decomposition.

Time complexity of ComputeDistance is O(n). Therefore, the total time com-
plexity is O(n). ��

3.2 Query Processing

Let us have a query on a node q, and servers are in nodes v1, . . . , vk. We make
the following steps:

Step 1. Let us sort all servers by the distance to the node q. We assume that if
two servers have the same distance to the node q, then the server with a smaller
index should precede the server with a bigger index. Let Sort(q, v1, . . . , vk)
be a sorting procedure. On the following steps we assume that dist(vi, q) ≤
dist(vi+1, q) for i ∈ {1, . . . , k − 1}.

Step 2. The first server from v1 processes the query. We move them to the
node q and color all nodes of a path from v1 to q to color 1. The node’s color
shows the number of a server that visited the node. Let the coloring process be
implemented as a procedure ColorPath(v1, q, 1). The procedure and detailed
description of this step is presented in the end of this section.

Step 3. For i ∈ {2, . . . k} we consider a server that stays in the vi node. It
becomes inactive when some other server j becomes closer to the query than
i-th server. It is easy to see that j < i because the distance from vj to the target
q is smaller than vi to the same target q. When i-th server becomes inactive,
the server j is active. Therefore, the node where j-th server was in that moment
should have color j.
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To obtain the index j, we search a colored node closest to vi on the path
from vi to q. The color of this node is j. Let the search of the closest colored
node be implemented as a procedure GetClosestColor(vi, q). It is described
in the end of this section. Let the obtained node be w and its color is j. The
j-th server reaches the node w in z = dist(vj , w) steps. After that the i-th server
becomes inactive. So, we should move the i-th server to a node v′

i to z steps on
the path from vi to w. Let the moving process be implemented as a procedure
Move(vi, w, z). It is described in the end of this section. Then, we color all
nodes on the path from vi to v′

i to the color i. Let us describe the procedure as
Algorithm 2.

Algorithm 2. Query(q). Query procedure.
Sort(q, v1, . . . , vk)
ColorPath(v1, q, 1)
v′
1 ← q
for i ∈ {2, . . . , k} do

(w, j) ← GetClosestColor(vi, q)
z ← dist(vj , w)
v′
i ← Move(vi, w, z)
ColorPath(vi, v

′
i, i)

end for

Coloring of a Path. Let us consider the problem of coloring nodes on a path
from a node v to a node u. The color is c.

Let l = LCA(v, u) be an LCA of v and u. Let P1, . . . , Pt ∈ P be paths
that contain nodes of the path from v to l and let P ′

1, . . . , P
′
t′ ∈ P be paths

that contain nodes of the path from l to u. Let w0 = v, w0 ∈ P1; w1 =
beg(P1), Parent(w1) ∈ P2; w2 = beg(P2), Parent(w2) ∈ P3; . . . wt−1 =
beg(Pt−1), Parent(wt−1) ∈ Pt; wt = l; and w′

0 = u, w′
0 ∈ P ′

1; w′
1 =

beg(P ′
1), Parent(w′

1) ∈ P ′
2; w′

2 = beg(P ′
2), Parent(w′

2) ∈ P ′
3; . . . w

′
t−1 =

beg(P ′
t′−1), Parent(w′

t′−1) ∈ P ′
t ; w′

t′ = l. Then, the coloring process is two
steps:

• ColorUpdate(indexPi
(Parent(wi−1)), indexPi

(wi), c, STPi
) for i ∈

{2, . . . , t}, and ColorUpdate(indexPi
(w0), indexPi

(w1), c, STP1);
• ColorUpdate(indexP ′

i
(Parent(w′

i−1)), indexP ′
i
(w′

o), c, STP ′
i
) for i ∈

{2, . . . , t′}, and ColorUpdate(indexP ′
i
(w′

0), indexP ′
i
(w′

1), c, STP ′
1
). The proce-

dure is presented as Algorithm 3.
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Algorithm 3. ColorPath(v, u, c). Coloring the path between v and u.
l ← LCA(v, u), w ← v, P ← P (v)
while P �= P (l) do

bw ← beg(P )
ColorUpdate(indexP (w), indexP (bw), c, STP )
w ← Parent(bw), P ← P (w)

end while
ColorUpdate(indexP (w), indexP (l), c, STP )
w ← u, P ← P (u)
while P �= P (l) do

bw ← beg(P )
ColorUpdate(indexP (w), indexP (bw), c, STP )
w ← Parent(bw), P ← P (w)

end while
ColorUpdate(indexP (w), indexP (l), c, STP )

Lemma 2. Time complexity of Algorithm 3 is O
(
(log n)2

)
.

Proof. Due to properties of Heavy-light decomposition from Sect. 2.1, t, t′ =
O(log n). Due to Lemma 7, each invocation of ColorUpdate for P has time
complexity O(log |P |) = O(log n). So, the total time complexity is O

(
(log n)2

)
.
��

The Search of the Closest Colored Node. Let us consider the prob-
lem of searching the closest colored node on the path from v to u. The
idea is similar to the idea from the previous section. Let l = LCA(v, u) be
a LCA of v and u. Let P1, . . . , Pt ∈ P be paths that contain nodes of a
path from v to l and let P ′

1, . . . , P
′
t′ ∈ P be paths that contain nodes of

a path from l to u. Let w0 = v, w0 ∈ P1; w1 = beg(P1), Parent(w1) ∈
P2; w2 = beg(P2), Parent(w2) ∈ P3; . . . ;wt−1 = beg(Pt−1), Parent(wt−1) ∈
Pt; wt = l; and w′

0 = u, w′
0 ∈ P ′

1; w′
1 = beg(P ′

1), Parent(w′
1) ∈ P ′

2; w′
2 =

beg(P ′
2), Parent(w′

2) ∈ P ′
3; . . . ;w

′
t−1 = beg(P ′

t′−1), Parent(w′
t′−1) ∈

P ′
t ; w′

t′ = l. For the searching process, firstly, we invoke the proce-
dure GetClosestColorRight(indexPi

(w0), indexPi
(wi), STPi

). Assume that
the procedure returns NULL if there are no colored nodes in the seg-
ment. If the procedure returns NULL, then we invoke the procedure
GetClosestColorRight(indexPi

(Parent(wi−1)), indexPi
(wi), STPi

) for i ∈
{2, . . . , t}. We stop on the minimal i such that the result is not NULL. If all of
them are NULL, then we continue. Then, we invoke the procedure

GetClosestColorLeft(indexP ′
i
(Parent(w′

i−1)), indexP ′
i
(wi), STP ′

i
) for

i ∈ {t′, . . . , 2}. We stop on the maximal i such that a result is not NULL.
If all of them NULL, then we invoke GetClosestColorLeft(indexP ′

1
(w′

0)),
indexP ′

1
(w1), STP ′

1
). The procedure is presented as Algorithm 4.
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Algorithm 4. GetClosestColor(v, u). Getting the closest colored vertex on
the path between v and u.

l ← LCA(v, u), w ← v, P ← P (v), g ← NULL
while g = NULL and P �= P (l) do

bw ← beg(P )
g ← GetClosestColorRight(indexP (w), indexP (bw), STP )
if g = NULL then

w ← Parent(bw), P ← P (w)
end if

end while
if g = NULL then

g ← GetClosestColorRight(indexP (w), indexP (l), STP )
end if
if g = NULL then

i ← 0, w′
i ← u, P ← P (u)

while P �= P (l) do
i ← i + 1, w′

i ← beg(P ), bw ← Parent(w′
i), P ← P (bw)

end while
g ← GetClosestColorLeft(indexP (Parent(w′

i)), indexP (l), STP )
while g = NULL do

P ← P (wi), bw ← Parent(w′
i−1)

g ← GetClosestColorLeft(indexP (bw), indexP (w′
i), STP )

i ← i − 1
end while

end if
resW ← nodeP (g), j ← ColorRequest(g, STP )
return (resW, j)

Let us discuss time complexity of the algorithm.

Lemma 3. Time complexity of Algorithm 4 is O
(
(log n)2

)
.

Proof. Due to properties of Heavy-light decomposition from Sect. 2.1, we have
t, t′ = O(log n). Due to results from Sect. 2.3, each invocation of the procedure
GetClosestColorLeft or GetClosestColorRight for P has time com-
plexity O(log |P |) = O(log n). So, the total time complexity is O

(
(log n)2

)
. ��

Moving of a Server. Let us consider a moving of a server from v to a distance
g on a path from v to u. The idea is similar to the idea from the previous section.
Let l = LCA(v, u) be a LCA of v and u. Let P1, . . . , Pt ∈ P be paths that con-
tains nodes of a path from v to l and let P ′

1, . . . , P
′
t′ ∈ P be paths that contains

nodes of a path from l to u. Let w0 = v, w0 ∈ P1; w1 = beg(P1), Parent(w1) ∈
P2; w2 = beg(P2), Parent(w2) ∈ P3; . . . ;wt−1 = beg(Pt−1), Parent(wt−1) ∈
Pt; wt = l; and w′

0 = u, w′
0 ∈ P ′

1; w′
1 = beg(P ′

1), Parent(w′
1) ∈ P ′

2; w′
2 =

beg(P ′
2), Parent(w′

2) ∈ P ′
3; . . . ;w

′
t−1 = beg(P ′

t′−1), Parent(w′
t′−1) ∈

P ′
t ; w′

t′ = l. Then, the moving process is the following. We check whether the
distance dist(Parent(wi−1), wi) ≤ g. If dist(Parent(wi−1), wi)) ≤ g, then we
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can return the node nodePi
(indexPi

(Parent(wi−1)) + g) as a result and stop
the process. Otherwise, we reduce g ← g−dist(Parent(wi−1), wi)−1 and move
to the next i, i.e. i ← i + 1. We do it for i ∈ {1, . . . , t}.

If g > 0, then we continue with the path from l to u. We check whether
dist(Parent(w′

i−1), w
′
i) ≤ g. If dist(Parent(w′

i−1), w
′
i)) ≤ g, then we can

return the node nodeP ′
i
(indexP ′

i
(w′

i) − g) as a result and stop the process. Oth-
erwise, we reduce t ← t − dist(Parent(w′

i−1), w
′
i) − 1 and move to the previous

i, i.e. i ← i − 1. We do it for i ∈ {t′, . . . , 1}.

Lemma 4. Time complexity of the moving is O (log n).

Proof. Due to properties of Heavy-light decomposition from Sect. 2.1, we have
t, t′ = O(log n). The time complexity for processing of each path is O(1). So, the
total time complexity is O (log n). ��

Correctness and Complexity of the Query Processing

Theorem 2. The query processing Algorithm 2 has time complexity
O

(
k(log n)2

)
.

Proof. The complexity of servers sorting by distance is O(k log k). Due to Lemma
2, Lemma 3 and Lemma 4, the complexity for processing one server is
O

(
log n + (log n)2 + (log n)2

)
= O

(
(log n)2

)
. So, the total complexity of pro-

cessing all servers is O
(
k log k + k(log n)2

)
= O

(
k(log n)2

)
because k < n. ��

4 Segment Tree with Range Updates for Coloration
Problem

In the paper, we use a segment tree with range updates for Coloration Problem
(Sect. 2.3) as one of the main tools for the main algorithm. The data structure
allows us to do the main operations for the coloration problem with logarithmic
time complexity. As a book with a description of the data structure [28] can be
used.

Firstly, let us describe the segment tree data structure. It is the full binary
tree of height h such that 2h−1 < d ≤ 2h. The data structure works with the
sequence of elements of the length 2h, but we are care only about the first d
elements. Each node of the tree is associated with some segment [a, b] such that
1 ≤ a ≤ b ≤ 2h. Each leaf is associated with elements of the sequence or we can
say that it is associated with a segment of size 1. i-th node of the last level is
associated with a segment [i, i]. Let us consider an internal node v and its two
children u and w. Then, u is associated with a segment [a, q], w is associated
with a segment [q + 1, b], and v is associated with a segment [a, b] for some
1 ≤ a ≤ q < b ≤ 2h. Note that because of the structure of the tree, we have
q = (a + b)/2.

Each node v of the segment tree is labeled by a color C(v), where 0 ≤
C(v) ≤ Z. Assume that v is associated with a segment [a, b]. If C(v) = 0, then
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the segment [a, b] is not colored at all or it has not a single color. If 1 ≤ C(v) ≤
Z, then the segment has a single color C(v), i.e. ca = C(v), . . . , cb = C(v).
Additionally, we add two labels Max(v) and Min(v). a ≤ Max(v) ≤ b is the
maximal index of a colored element of the segment. a ≤ Min(v) ≤ b is the
minimal index of a colored element of the segment. Initially, Max(v) ← −1,
Min(v) ← 2h + 1.

For a node v and the associated segment [a, b], we use the following notation.

• Left(v) is the left border of the segment. Left(v) = a
• Right(v) is the right border of the segment. Right(v) = b
• LeftChild(v) is the left child of v.
• RightChild(v) is the right child of v.

Let ConstructST(a, b) be a procedure that returns the root of a segment
tree for a segment [a, b]. The procedure is standard and has a property that
described in Lemma 5. Let us present the description and the proof of the lemma
in the arXiv version [25] for completeness.

Lemma 5. Time complexity of ConstructST(1, d) the segment tree construct-
ing procedure is O(d).

Let us describe the processing of three types of operations.

Request. The operation is requesting cx for some 1 ≤ x ≤ 2h. We start
with the root node of the segment tree. Assume that we observe a node v. If
C(v) = 0, then we go to the child that is associated with a segment [a, b], where
a ≤ x ≤ b. We continue this process until we meet v such that C(v) ≥ 1 or v is
a leaf. If C(v) ≥ 1, then the result is C(v). If C(v) = 0 and v is a leaf, then cx is
not assigned yet. Let a name of the procedure be ColorRequest(x, root). It
is a request for a color cx from a segment tree with root node as the root. If the
color is not assigned, then the procedure returns 0. The implementation of the
procedure is presented in the arXiv version [25] and properties are presented in
the following lemma.

Lemma 6. The request color procedure ColorRequest is correct and has
O(log d) time complexity.

Proof. If the segment tree stores correct colors for segments, then the correctness
of the algorithm follows from the description. The algorithm returns a color only
if x belongs to a segment that has a single color. On each step, we change a node
to a node on the next level. The tree is a full binary tree. Therefore, it has h
levels. Hence, the time complexity is O(h) = O(log d) because 2h−1 ≤ d ≤ 2h. ��

Update. Assume that we want to color a segment [l, r] in a color c, where
1 ≤ c ≤ Z , 1 ≤ l ≤ r ≤ 2h. Let us describe two specific cases. The first one is
the coloring of a prefix and the second one is the coloring of a suffix. Let us have
a segment tree with the root node root. Let us consider the general case, where
a segment [q, t] is associated with the node root.
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Firstly, assume that [l, r] is a prefix of [q, t], i.e. q = l and q ≤ r ≤ t. Let us
observe a node v and an associated segment [a, b]. If v is a leaf, then we assign
C(v) ← c and stop. Otherwise, we continue. We use a variable c′ for an existing
color. Initially c′ ← 0. If on some step C(v) ≥ 1 and c′ = 0, then we assign
c′ ← C(v). If c′ ≥ 1 or C(v) = 0, then we do not change c′ because we already
have a color for the segment from an ancestor.

Let u be the left child of v, and let w be the right child of v. We update
Max(v) ← max(Max(v), r), Min(v) ← Left(v) because [l, r] is a prefix. Then,
we do the following action.

• If r ∈ [a, (a+ b)/2], then we go to the left child u. Additionally, if c′ ≥ 1, then
we color C(w) ← c′ because a segment of w has no intersection with [l, r] and
keeps its color c′.

• If r ∈ [(a+ b)/2+1, b], then we go to the right child w. Additionally, we color
C(u) ← c and update Min(u) ← Left(u), Max(u) ← Right(u) because
[a, (a + b)/2] of u is a subsegment of [l, r]. Additionally, we update l ← (a +
b)/2 + 1 because the segment [a, (a + b)/2] is colored and the segment [(a +
b)/2 + 1, r] is left. The new segment is a prefix of the segment tree with the
root node w.

Let us call the procedure ColorUpdatePrefix and present it in
Appendix A.

Secondly, assume that [l, r] is a suffix of [q, t], i.e. t = r and q ≤ l ≤ t. This
function is similar to the previous one. The difference is the following. Let u
be the left child of v, and let w be the right child of v. We update Min(v) ←
min(Min(v), l), Max(v) ← Right(v) because [l, r] is a suffix. Then, we do the
following action.

• If l ∈ [(a+ b)/2+1, b], then we go to the right child w. Additionally, if c′ ≥ 1,
then we color C(u) ← c′ because a segment of u has no intersection with [l, r]
and we keep its color c′.

• If l ∈ [a, (a + b)/2], then we go to the left child u. Additionally, we color
C(w) ← c and update Min(w) ← Left(w), Max(w) ← Right(w) because
[(a + b)/2 + 1, b] of w is a subsegment of [l, r]. Additionally, we update r ←
(a + b)/2 because the segment [(a + b)/2 + 1, b] is colored and the segment
[l, (a + b)/2] is left. The new segment is a suffix of the segment tree with the
root node u.

Let us call this procedure ColorUpdateSuffix and present it in
Appendix A.

Finally, let us consider a general case for [l, r], i.e. q ≤ l ≤ r ≤ t. Assume
that we observe a node v and an associated segment [a, b]. If v is a leaf, then we
assign C(v) ← c and stop. Otherwise, we continue. We use a variable c′ for an
existing color. Initially c′ ← 0. If on some step C(v) ≥ 1 and c′ = 0, then we
assign c′ ← C(v). If c′ ≥ 1 or C(v) = 0, then we do not change c′. We update
Min(v) ← min(Min(v), l), Max(v) ← max(Max(v), r).
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• If (a + b)/2 + 1 ≤ l ≤ r ≤ b, then we go to the right child w. Additionally, if
c′ ≥ 1, then we color C(u) ← c′ because a segment of u has no intersection
with [l, r] and keeps its color c′.

• If a ≤ l ≤ r ≤ (a+ b)/2, then we go to the left child u. Additionally, if c′ ≥ 1,
then we color C(w) ← c′ because a segment of w has no intersection with
[l, r] and we keep its color c′.

• If a ≤ l ≤ (a+b)/2 ≤ r ≤ b, then we split our segment to [l, (a+b)/2] and [(a+
b)/2 + 1, r]. The segment [l, (a + b)/2] is a suffix of the segment tree with the
root u. For coloring it, we invoke ColorUpdateSuffix(l, (a + b)/2, c, c′, u).
The segment [(a + b)/2 + 1, r] is a prefix of the segment tree with the root w.
For coloring it, we invoke ColorUpdatePrefix((a + b)/2 + 1, r, c, c′, w).

Let us call the procedure ColorUpdate and present it in Appendix A.

Lemma 7. The update procedure ColorUpdate is correct and has O(log d)
time complexity.

Proof. If the segment tree stores correct colors for segments, then the correctness
of the algorithm follows from the description. The algorithm colors a required
segment and keeps the color of the rest part. Procedures ColorUpdatePrefix

and ColorUpdateSuffix on each step change a node to a node on the next
level. The tree is a full binary tree. Therefore, the tree has h levels. Hence, the
time complexity of these two algorithms is O(h) = O(log d) because 2h−1 ≤ d ≤
2h. The procedure ColorUpdate on each step changes a node to a node on the
next level, then, stops and invokes the procedure ColorUpdatePrefix and
the procedure ColorUpdateSuffix. Its time complexity is O(h) = O(log d)
also. We can say that procedures run consistently. Therefore, the total time
complexity is O(log d). ��

Request the Closest Colored Element. Assume that we want to get the
minimal index of a colored element from a segment [l, r], where 1 ≤ l ≤ r ≤ 2h.
Let [q, t] be a segment of the root of the segment tree. Let us describe two specific
cases that are requesting from a prefix of [q, t] and requesting from a suffix of
[q, t].

Firstly, assume that [l, r] is a prefix of [q, t], i.e. q = l and q ≤ r ≤ t. Assume
that we observe a node v and an associated segment [a, b]. Let u be the left child
of v, and let w be the right child of v. We do the following action.

• If r ≤ (a + b)/2, then we go to the left child u.
• If r > (a+ b)/2 and Min(u) is assigned (i.e. there are colored elements in the

left child u), then the result is Min(u) and we stop the process.
• If r > (a + b)/2 and Min(u) is not assigned (i.e. there is no colored element

in the left child u), then we go to the right child w.

If there is no colored elements in v, then the algorithm returns NULL. We
call the procedure GetClosestColorRightPrefix(l, r, root) and present it
in Appendix A.
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Secondly, assume that [l, r] is a suffix of [q, t], i.e. t = r and q ≤ l ≤ t. Assume
that we observe a node v and an associated segment [a, b]. Let u be the left child
of v, and let w be the right child of v. We do the following action.

• If l ≥ (a + b)/2 + 1, then we go to the right child w.
• If l ≤ (a+ b)/2 and Min(u) is assigned (i.e. there are colored elements in the

left child u), then we go to the left child u.
• If l ≤ (a + b)/2 and Min(u) is not assigned (i.e. there is no colored element

in the left child u), then the result is Min(w) and we stop the process.

If there is no colored elements in v, then the algorithm returns NULL. We
call the procedure GetClosestColorRightSuffix(l, r, root) and present it
in Appendix A.

Finally, let us consider the general case, i.e. q ≤ l ≤ r ≤ t. Assume that we
observe a node v and an associated segment [a, b]. Let u be the left child of v,
and let w be the right child of v. We do the following action.

• If (a + b)/2 + 1 ≤ l ≤ r ≤ b, then we go to the right child w.
• If a ≤ l ≤ r ≤ (a + b)/2, then we go to the left child u.
• If a ≤ l ≤ (a + b)/2 ≤ r ≤ b, then we split our segment to [l, (a + b)/2]

and [(a + b)/2 + 1, r]. The segment [l, (a + b)/2] is a suffix of the segment
tree with the root u. We invoke GetClosestColorRightSuffix(l, (a +
b)/2, u). If the result is not NULL, then there is a colored element in
the left child, and we return the result of the procedure. If the result is
NULL, then there is no colored element in the left children, and only
the right children can have the minimal colored element. So, we invoke
GetClosestColorRightPrefix((a+b)/2+1, r, u) and we return the result
of the procedure.

If there are no colored elements in v, then the algorithm returns NULL.
We call this function GetClosestColorRight(l, r, root). We can define

the function that returns the maximal index of a colored element symmetrically.
We call it GetClosestColorLeft(l, r, root).

Lemma 8. The request the closest colored element procedures GetClosest

ColorLeft and GetClosestColorRight are correct and have O(log d) time
complexity.

Proof. The proof is similar to the proof of Lemma 7. ��

5 Conclusion

We discuss the time-efficient implementation of online algorithms for the k-server
problem on trees. Here we present an algorithm with O(n) time complexity for
preprocessing and O(k(log n)2) time complexity for processing a query. It process
a query faster than existing implementations of [11] (the naive implementation
and [17]) in a case of ω

(
(log n)2

)
= k = o

(
n/(log n)2

)
. This case is reasonable in

practice. An open problem is an analysis of time complexity for the randomized
algorithm [5,6].
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A Algorithms for Coloration Problem on a Segment
Tree

Algorithm 5. ColorUpdatePrefix(l, r, c, c′, root). An operation of update
color of a prefix segment [l, r] by a color c. The operation is for a segment tree
with the root node as a root. c′ is a color for rest part of the segment of root. If
c′ is not assigned, then c′ = 0

v ← root
while v is not a leaf do

if c′ = 0 and C(v) ≥ 1 then
c′ ← C(v)

end if
Max(v) ← max(Max(v), r), Min(v) ← Left(v)
u ← LeftChild(v), w ← RightChild(v)
if r ≤ Right(u) then

if c′ ≥ 1 then
C(w) ← c′

end if
v ← u

else
C(u) ← c, Min(u) ← Left(u), Max(u) ← Right(u), v ← w

end if
end while
C(v) ← c, Min(v) ← Left(v), Max(v) ← Right(v)

Algorithm 6. ColorUpdateSuffix(l, r, c, c′, root). An operation of update
color of a suffix segment [l, r] by a color c. The operation is for a segment tree
with root node as a root. c′ is a color for rest part of the segment of root. If c′

is not assigned, then c′ = 0
v ← root
while v is not a leaf do

if c′ = 0 and C(v) ≥ 1 then
c′ ← C(v)

end if
Min(v) ← min(Min(v), l), Max(v) ← Right(v)
u ← LeftChild(v), w ← RightChild(v)
if l ≥ Left(w) then

if c′ ≥ 1 then
C(u) ← c′

end if
v ← w

else
C(w) ← c, Min(w) ← Left(w), Max(w) ← Right(w), v ← u

end if
end while
C(v) ← c, Min(v) ← Left(v), Max(v) ← Right(v)
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Algorithm 7. ColorUpdate(l, r, c, root). An operation of update color of a
segment [l, r] by a color c. The operation is for a segment tree with root node as
a root.

v ← root
c′ ← 0
Split ← False
while v is not a leaf and Split = False do

if c′ = 0 and C(v) ≥ 1 then
c′ ← C(v)

end if
Min(v) ← min(Min(v), l), Max(v) ← max(Max(v), r)
u ← LeftChild(v)
w ← RightChild(v)
if l ≥ Left(w) then

if c′ ≥ 1 then
C(u) ← c′

end if
v ← w

end if
if r ≤ Right(u) then

if c′ ≥ 1 then
C(w) ← c′

end if
v ← u

end if
if l ≤ Right(u) and r ≥ Left(w) then

Split ← True
ColorUpdateSuffix(l,Right(u), c, c′, u)
ColorUpdatePrfix(Left(w), r, c, c′, w)

end if
end while
if v is a leaf then

C(v) ← c
end if

Algorithm 8. GetClosestColorRightPrefix(l, r, root). A request for the
minimal index of a colored element of a prefix segment [l, r]. It returns NULL
if there is no such elements

v ← root, Result ← NULL
if Min(v) �= 2h + 1 then

Found ← False
while v is not a leaf and Found = False do

u ← LeftChild(v), w ← RightChild(v)
if r ≤ Right(u) then

v ← u
end if
if r ≥ Left(w) and Min(u) �= 2h + 1 then

Result ← Min(u), Found ← True
end if
if r ≥ Left(w) and Min(u) = 2h + 1 then

v ← w
end if

end while
if Found = False and Min(v) �= 2h + 1 then

Result = Min(v)
end if

end if
return Result
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Algorithm 9. GetClosestColorRightSuffix(l, r, root). A request for the
minimal index of a colored element of a suffix segment [l, r]. It returns NULL
if there is no such elements

v ← root, Result ← NULL
if Min(v) �= 2h + 1 then

Found ← False
while v is not a leaf and Found = False do

u ← LeftChild(v), w ← RightChild(v)
if l ≥ Left(w) then

v ← w
end if
if l ≤ Right(u) and Min(u) �= 2h + 1 then

v ← u
end if
if l ≤ Right(u) and Min(u) = 2h + 1 then

Result ← Min(w), Found ← True
end if

end while
if Found = False and Min(v) �= 2h + 1 then

Result = Min(v)
end if

end if
return Result
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Abstract. Infinite hierarchies of rational series realised by finitely
ambiguous and finitely sequential weighted automata over fields, clas-
sifying them according to the ambiguity or sequentiality degree of real-
ising automata, are examined. It is shown that both these hierarchies
are strict if and only if the field under consideration is not locally finite;
in that case, the hierarchies are strict already for series over a unary
alphabet. Relations between finitely ambiguous and finitely sequential
unary weighted automata are explored. It is also readily observed that
polynomially ambiguous weighted automata over a field of characteristic
zero are more powerful than finitely ambiguous weighted automata over
the same field, again already over a unary alphabet. On the other hand,
it is proved that unary alphabets are insufficient to separate the series
realised by polynomially and finitely ambiguous weighted automata over
algebraically closed fields of positive characteristic.

Keywords: Weighted automaton · Rational series · Degree
of ambiguity · Degree of sequentiality · Hierarchy

1 Introduction

Weighted automata of restricted ambiguity have recently attracted significant
research attention. This was often motivated by the idea that certain problems
undecidable – or not known to be decidable – for general weighted automata
might admit reasonable decision algorithms when their scope is restricted to, e.g.,
finitely or polynomially ambiguous automata. Such questions have been stud-
ied for tropical automata in connection to their determinisation [14–16], as well
as in the setting of probabilistic automata [4,12]. Unary weighted automata
of restricted ambiguity were also studied over the field of rational numbers [3],
with motivation coming from the research dealing with decision problems for lin-
ear recurrences such as the Skolem problem. Moreover, classes of weighted
automata with restricted ambiguity arise in connection with the weighted first-
order logic of M. Droste and P. Gastin [8].
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Various observations about the expressive power of weighted automata with
restricted ambiguity have recently crystallised into its more systematic study.
The so-called ambiguity hierarchy, composed by the classes of series realised
by the unambiguous, finitely ambiguous, polynomially ambiguous, and unre-
stricted weighted automata, is observed to be strict over tropical semirings
by A. Chattopadhyay et al. [6]. The same observation over the rational numbers
is due to C. Barloy et al. [3] and is established already over unary alphabets; some
of their results also follow, to some extent, from the findings of [8,21]. Moreover,
it is noted in [3] that the infinite hierarchy of series realised by k-ambiguous unary
weighted automata over the rationals, for k = 0, 1, 2, . . ., is strict.

Another restriction studied in the context of weighted finite automata is
that of finite sequentiality [2] or multisequentiality [7]. Both terms have been
used interchangeably, basically to describe deterministic weighted automata with
possibly more than one initial state. A normal form of such automata, given
by finite unions of deterministic automata, has been used as their definition
as well. Every finitely sequential automaton is finitely ambiguous, but a finitely
ambiguous automaton might not even admit a finitely sequential equivalent [2].

There has also been research on restricted ambiguity and finite sequentiality
in weighted tree automata [20,23–26].

The power of restricted ambiguity in weighted automata has thus mainly been
examined over tropical semirings.On the contrary, its study forweighted automata
over fields has so far been limited to the research dealing with the particular case
of automata over the rationals. This is relatively surprising, as weighted automata
over fields are particularly well explored and known for richness of their theory
and abundance of appealing properties [5,27]. The study of such automata has
a long history going back to M.-P. Schützenberger [29]. To the author’s knowl-
edge, finite sequentiality in weighted automata has been studied neither over fields
in general, nor over any specific field such as the rationals.

The aim of this article is to explore some of the basic relations between
classes of series realised by weighted automata with restricted ambiguity over
general fields, in hope of later leading to a full understanding of ambiguity
hierarchies over fields. In this respect, the article follows the same direction
as the manuscript [17] examining relations between polynomially ambiguous
and unrestricted weighted automata over fields. In particular, it is shown in [17]
that unrestricted weighted automata over fields of characteristic zero that are not
algebraically closed are more powerful than polynomially ambiguous weighted
automata over the same field – already over unary alphabets. On the contrary,
unary weighted automata over algebraically closed fields always admit polyno-
mially ambiguous equivalents, regardless of the field’s characteristic.

The questions asked in this article are in a sense complementary to those
considered in [17]. We mostly focus on finitely ambiguous weighted automata
over fields – we study the hierarchy of series realised by k-ambiguous automata
for k = 0, 1, 2, . . ., as well as the relations between finitely ambiguous and polyno-
mially ambiguous automata. In addition, we initiate the study of finitely sequen-
tial weighted automata over fields by examining the hierarchy of series realised by
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k-sequential automata for
k = 0, 1, 2, . . ., and observe some connections between finitely ambiguous and
finitely sequential unary weighted automata.

In particular, we first observe that finitely ambiguous unary weighted
automata over commutative semirings always admit finitely sequential equiva-
lents, while the sequentiality degree of an equivalent automaton is linked to a struc-
tural measure of the original finitely ambiguous automaton. We next prove that
the hierarchies of series realised by the k-ambiguous and k-sequential weighted
automata over a field F for k = 0, 1, 2, . . . are strict whenever F is not locally finite;
this also trivially is a necessary condition. Unary alphabets are sufficient to estab-
lish these results. Finally, we consider the relations between finitely and polyno-
mially ambiguous weighted automata over fields. While it is essentially trivial to
observe that already the unary polynomially ambiguous weighted automata over
fields of characteristic zero are strictly more powerful than their finitely ambigu-
ous counterparts, the case of a positive characteristic is far more interesting. We
show that polynomially ambiguous unary weighted automata over algebraically
closed fields of characteristic p > 0 always admit finitely ambiguous equivalents.
Unary alphabets are thus insufficient to separate the series realised by finitely and
polynomially ambiguous automata over such fields.

2 Preliminaries

Fields are understood to be commutative, and alphabets finite and nonempty.
We denote by N the set of all nonnegative integers and write [n] = {1, . . . , n}
for each n ∈ N. The set of all m × n matrices over a set S is denoted by Sm×n,
and the identity n × n matrix over any semiring by In. A field (a semiring) is
locally finite if its finitely generated subfields (subsemirings) are all finite. A field
is locally finite if and only if it is locally finite as a semiring.

Consult, e.g., [5,9,10,27,28] for a reference on weighted automata and formal
power series. We now briefly recall the most important concepts needed.

A (noncommutative) formal power series over a semiring S and alphabet Σ
is a mapping r : Σ∗ → S interpreted as follows: the value of r upon w ∈ Σ∗ is
denoted by (r, w) and called the coefficient of w in r; we then write

r =
∑

w∈Σ∗
(r, w)w.

The set of all formal power series over S and Σ is denoted by S⟪Σ∗⟫.
A weighted (finite) automaton over a semiring S and over an alphabet Σ is

a quadruple A = (Q,σ, ι, τ) with Q being a finite set of states, σ : Q×Σ×Q → S
a transition weighting function, ι : Q → S an initial weighting function, and
τ : Q → S a terminal weighting function.

A transition in the automaton A is a triple (p, c, q) ∈ Q × Σ × Q such
that σ(p, c, q) �= 0. A run of A is a word γ = q0c1q1c2q2 . . . qt−1ctqt ∈ (QΣ)∗Q
with q0, . . . , qt ∈ Q and c1, . . . , ct ∈ Σ such that (qk−1, ck, qk) is a transition
for k = 1, . . . , t. We also say that γ is a run on the word c1 . . . ct from q0 to qt.
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We say that γ is successful if ι(q0) �= 0 and τ(qt) �= 0. The pure value of γ is
the element σ(γ) = σ(q0, c1, q1)σ(q1, c2, q2) . . . σ(qt−1, ct, qt), and the complete
value of γ is given by σ(γ) = ι(q0)σ(γ)τ(qt). The length of γ is given by |γ| = t.
The set of all runs of A on w is denoted by R(A, w) and the set of all successful
runs of A on w by Rs(A, w). We then also write

R(A) =
⋃

w∈Σ∗
R(A, w) and Rs(A) =

⋃

w∈Σ∗
Rs(A, w).

The behaviour of a weighted automaton A = (Q,σ, ι, τ) over S and Σ is
a formal power series ‖A‖ ∈ S⟪Σ∗⟫ given by

(‖A‖, w) =
∑

γ∈Rs(A,w)

σ(γ) =
∑

γ∈R(A,w)

σ(γ)

for all w ∈ Σ∗, both sums being obviously finite. We also say that the series
‖A‖ is realised by A. A series r ∈ S⟪Σ∗⟫ is rational over S if it is realised
by a weighted finite automaton over S and Σ.

A weighted automaton A over S and Σ is said to be k-sequential for k ∈ N if
there are at most k distinct states q ∈ Q satisfying ι(q) �= 0, and if σ(p, c, q) �= 0
with σ(p, c, q′) �= 0 imply q = q′ for all p, q, q′ ∈ Q and c ∈ Σ. In particular,
1-sequential automata are typically termed deterministic or sequential [19].1

The automaton A is finitely sequential [2] if it is k-sequential for some k ∈ N.2

The ambiguity degree of A is given by a function ambA : Σ∗ → N count-
ing successful runs of A on words over Σ; that is, ambA(w) = |Rs(A, w)|
for all w ∈ Σ∗. The automaton A is said to be k-ambiguous for k ∈ N if
ambA(w) ≤ k for all w ∈ Σ∗, while 1-ambiguous automata are called unambigu-
ous. An automaton A is finitely ambiguous if it is k-ambiguous for some k ∈ N

and polynomially ambiguous if there exists a polynomial function p : N → N such
that ambA(w) ≤ p(|w|) for all w ∈ Σ∗.

A weighted automaton A = (Q,σ, ι, τ) over S and Σ is accessible if for each
q ∈ Q, there exists a run of A from some p with ι(p) �= 0 to q; coaccessible if
for each p ∈ Q, there exists a run of A from p to some q with τ(q) �= 0; and trim
if it is both accessible and coaccessible.

In what follows, we often without loss of generality confine ourselves to
automata with state sets [n] for n ∈ N – we then write A = (n, σ, ι, τ) instead
of A = ([n], σ, ι, τ). Moreover, we apply the standard graph-theoretic terminol-
ogy to weighted automata. This refers to a directed multigraph whose vertices
are states of the automaton, while for each pair of states p, q, the transitions
of the form (p, c, q) correspond bijectively to directed edges from p to q.

Weighted automata over a semiring S and alphabet Σ can also be viewed
as linear S-representations over Σ, i.e., quadruples P = (n, i, μ, f), where n ∈ N,
1 Some authors also call such automata subsequential, while they reserve

the term sequential for a more restricted class of automata. See S. Lombardy and
J. Sakarovitch [19] for more information.

2 Note that C. Allauzen and M. Mohri [1] use the term finitely subsequential transducer
in a completely different sense.
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i ∈ S1×n is a vector of initial weights, μ : (Σ∗, ·, ε) → (Sn×n, ·, In) is a monoid
homomorphism, and f ∈ Sn×1 is a vector of terminal weights. The series ‖P‖
realised by P is given by (‖P‖, w) = iμ(w)f for all w ∈ Σ∗. A series r ∈ S⟪Σ∗⟫
is recognisable over S if it is realised by a linear S-representation.

The classes of recognisable and rational series over words coincide by a well-
known classical result [27]. In fact, every weighted automaton A = (n, σ, ι, τ)
over S and Σ corresponds to a linear S-representation PA = (n, i, μ, f), where i =
(ι(1), . . . , ι(n)), the matrix μ(c) = (ci,j)n×n is given by ci,j = σ(i, c, j) for every
c ∈ Σ and i, j = 1, . . . , n, and f = (τ(1), . . . , τ(n))T . Clearly ‖PA‖ = ‖A‖.

Consider in addition a mapping ν : S → N given for all a ∈ S by

ν(a) =
{

1 if a �= 0,
0 if a = 0.

(1)

Applying this mapping componentwise to vectors and matrices, it is clear that
ambA(c1 . . . ct) = ν(i)ν(μ(c1)) . . . ν(μ(ct))ν(f) for all t ∈ N and c1, . . . , ct ∈ Σ.

We mostly work with linear representations over unary alphabets in what
follows. We usually write a linear representation P = (n, i, μ, f) over Σ = {c}
as P = (n, i, A, f), where A = μ(c) is the only matrix needed to specify the homo-
morphism μ. This means that given a weighted automaton A over a semiring S
and unary alphabet Σ = {c} with PA = (n, i, A, f),

(‖A‖, ct
)

= iAtf

holds for all t ∈ N. The automaton A can thus also be interpreted as an initial
value problem for the system of difference equations (i.e., recurrences)

xt+1 = Axt for all t ∈ N,

the initial conditions being given by x0 = f . When S = F is a field, the theory
of difference equations [11] allows us to express the components of xt, and thus also
(‖A‖, ct), in closed form over the algebraic closure F of F. Indeed, by similarity of A
to a matrix over F in the Jordan canonical form, it follows that for all t ∈ N,

(‖A‖, ct
)

=
∑

λ∈σ

α(λ)−1∑

j=0

aλ,j

(
t

j

)
λt−j , (2)

where σ denotes the spectrum of A over F, the algebraic multiplicity of each
eigenvalue λ of A is denoted by α(λ), and aλ,j ∈ F are constants for λ ∈ σ
and j = 0, . . . , α(λ) − 1. Recall that the spectrum σ contains precisely the roots
over F of the characteristic polynomial chA(x) = det(xIn − A) of A, and that
the algebraic multiplicity of λ ∈ σ is its multiplicity as a root of chA(x).

The constants aλ,j of (2) are always uniquely determined as a solution to
a linear system of equations given by (2) for t = 0, . . . , n − 1, in which they
are the only unknowns. In particular, every choice of initial values on the left-
hand sides uniquely determines the constants aλ,j and conversely, every choice
of the constants aλ,j gives different initial values [11]. This observation can be
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established, e.g., as a consequence of the fact that the matrix of the above-
mentioned linear system is the so-called Casorati matrix [11] of the functions(

t
j

)
λt−j for λ ∈ σ and j = 0, . . . , α(λ) − 1. This is a generalised Vandermonde

matrix [11,13], so it is necessarily invertible. The linear system thus always
has a unique solution. Moreover, any finite set of pairwise distinct functions
of the form

(
t
j

)
λt−j with λ ∈ F and j ∈ N is linearly independent.

Similarly, consider a weighted automaton A over any semiring S and unary
alphabet Σ = {c}, with PA = (n, i, A, f). Let ν : S → N be given by (1). Then

ambA(ct) = ν(i)ν(A)tν(f)

for all t ∈ N, so that ambA(ct) admits a closed form analogous to (2) over C:

ambA(ct) =
∑

λ∈σ′

α′(λ)−1∑

j=0

a′
λ,j

(
t

j

)
λt−j , (3)

where σ′ denotes the spectrum of ν(A), the algebraic multiplicity of an eigenvalue
λ of ν(A) is denoted by α′(λ), and a′

λ,j ∈ C for λ ∈ σ′ and j = 0, . . . , α′(λ) − 1.
We call ν(A) the enumeration matrix of A in what follows.

3 Finite Ambiguity and Sequentiality in Unary Automata

We now make some preliminary remarks on finitely ambiguous and finitely
sequential unary weighted automata. First, let us note that the ambiguity degree
of a weighted automaton does not at all depend on its weights. This means that
weights can be forgotten and the known criteria [30] for nondeterministic finite
automata without weights can be applied in order to determine whether a given
weighted automaton is, say, finitely or polynomially ambiguous.

q ww

(a) For polynomial ambiguity.

p qw w w

(b) For finite ambiguity.

Fig. 1. The “forbidden configurations” for polynomially and finitely ambiguous trim
finite automata, as identified by A. Weber and H. Seidl [30]. Distinct arrows represent
distinct runs, as opposed to transitions.

Let us recall these criteria, as described by A. Weber and H. Seidl [30].
A trim finite automaton A with state set Q over an alphabet Σ is polynomially
ambiguous if and only if there does not exist a state q with at least two distinct
runs from q to q upon some word w ∈ Σ∗. Moreover, A is finitely ambiguous
if and only if there is no pair of distinct states p, q such that for some w ∈ Σ∗,
there are runs upon w from p to p, from p to q, as well as from q to q. These
“forbidden configurations” for polynomially and finitely ambiguous automata
are schematically depicted in Fig. 1.

These criteria admit a particularly simple form for unary automata, which
we now make explicit.
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Theorem 1. Let S be a semiring and A a trim unary weighted automaton
over S and Σ = {c}. The automaton A is:

(i) Polynomially ambiguous if and only if its strongly connected components are
all either single vertices, or directed cycles.

(ii) Finitely ambiguous if and only if, in addition to (i), there is no run of A
passing through two distinct directed cycles.

The characterisations of Theorem 1 can also be obtained, for a unary weighted
automaton A with PA = (n, i, A, f), with a little help of the Perron-Frobenius
theory [22] applied to the enumeration matrix ν(A). Indeed, the condition (i) is
equivalent to all eigenvalues of ν(A) being of absolute value 0 or 1. If this is the case,
(3) reduces to a polynomial function and A is polynomially ambiguous. Otherwise,
the Perron-Frobenius theory gives us existence of an eigenvalue λ > 1 with at least
one nonzero coefficient a′

λ,j in (3) – the automaton A is not polynomially ambigu-
ous.Given (i), the equivalence of (ii)with finite ambiguity can be easily established
by noting that a possibility of passing through two different cycles in a single run
is equivalent to unboundedness of ambA.

Given these characterisations of polynomially and finitely ambiguous trim
unary weighted automata, the number of strongly connected components taking
the form of cycles becomes a natural measure of their structural complexity.

Definition 2. Let S be a semiring, A a trim polynomially ambiguous unary
weighted automaton over S and Σ = {c}, and k ∈ N. We say that A is a k-cycle
automaton if it contains at most k directed cycles.

It is easy to see thatA as above is a k-cycle automaton if and only if the algebraic
multiplicity of 1 as an eigenvalue of its enumeration matrix is at most k. We mostly
apply this measure to finitely ambiguous automata in what follows; nevertheless,
note that this measure is incomparable with the ambiguity degree in general.

We now note that every trim finitely ambiguous k-cycle automaton A over
a unary alphabet decomposes, for k ≥ 1, into k finitely ambiguous 1-cycle
automata. The construction is intuitively obvious: for each of the cycles, we
make use of the criterion (ii) of Theorem 1, and alter the original automaton
A in order to obtain a 1-cycle automaton, whose successful runs are exactly
the successful runs of A visiting at least one state on the cycle in question. Then
we only need to take care of the runs of A that do not visit any cycle – but these
can clearly be realised by a 0-cycle automaton, which may be “adjoined” to any
of the k automata without spoiling their 1-cycle property.

Proposition 3. Let S be a semiring, k ∈ N \ {0}, and A a trim finitely
ambiguous k-cycle automaton over S and Σ = {c}. Then there are trim 1-cycle
automata A1, . . . ,Ak over S and Σ such that Rs(A) = Rs(A1) ∪· . . . ∪· Rs(Ak),
the values of successful runs of A1, . . . ,Ak being the same as in the original
automaton A. This in particular implies that for all t ∈ N,

(‖A‖, ct
)

=
k∑

j=1

(‖Aj‖, ct
)



216 P. Kostolányi

and

ambA(ct) =
k∑

j=1

ambAj
(ct).

Proof. Without loss of generality, assume that A contains precisely k cycles.3 Let
A = (Q,σ, ι, τ) and let the k cycles of A correspond to state sets C1, . . . , Ck ⊆ Q,
respectively. Thus, denoting by Q0 ⊆ Q the set of states that do not belong to any
cycle, we obtain Q = Q0 ∪· C1 ∪· . . . ∪· Ck. For j = 1, . . . , k, denote by R(j)

s (A)
the set of all successful runs of A visiting at least one state of Cj , i.e.,

R(j)
s (A) = {γ ∈ Rs(A) | Q(γ) ∩ Cj �= ∅},

where Q(γ) is the set of states passed by γ, i.e., Q(γ) = {q0, . . . , qt} for each
γ = q0cq1cq2 . . . qt−1cqt ∈ R(A) with q0, . . . , qt ∈ Q. For

R(0)
s (A) = {γ ∈ Rs(A) | Q(γ) ∩ Cj = ∅ for j = 1, . . . , k},

we clearly obtain Rs(A) = R(0)
s (A) ∪· R(1)

s (A) ∪· . . . ∪· R(k)
s (A).

For j = 1, . . . , k, we may also decompose Q as Q = Q→ ∪· Cj ∪· Q← ∪· Q×,
where Q→ consists of all q ∈ Q\Cj from which there exists a run to a state in Cj ,
Q← consists of all q ∈ Q \ Cj to which there exists a run from some state in Cj ,
and Q× = Q \ (Q→ ∪ Cj ∪ Q←). Denote by Q′

0 the set of all states q ∈ Q0 such
that q ∈ Q(γ) for some run γ ∈ R(0)

s (A). Let Qj = Q′
0 ∪ Q→ ∪ Cj ∪ Q← if

j = 1 and Qj = Q→ ∪Cj ∪Q← otherwise. Let Aj = (Qj , ιj , σj , τj) be a weighted
automaton over S and Σ = {c} such that for all p, q ∈ Qj ,

ιj(q) =
{

ι(q) if q ∈ Q→ ∪ Cj or j = 1,
0 otherwise,

σj(p, c, q) =
{

σ(p, c, q) if p �∈ Q→, q �∈ Q←, or j = 1
0 otherwise,

τj(q) =
{

τ(q) if q ∈ Cj ∪ Q← or j = 1,
0 otherwise.

Then Aj is clearly a trim 1-cycle automaton for j = 1, . . . , k. Moreover, obviously
Rs(A1) = R(0)

s (A) ∪· R(1)
s (A) and Rs(Aj) = R(j)

s (A) for j = 2, . . . , k, so that
indeed Rs(A) = Rs(A1) ∪· . . . ∪· Rs(Ak), the values of these runs in A1, . . . ,Ak

being clearly the same as in A. �
Let us now turn our attention to unary weighted automata over commutative

semirings, for which we relate finite ambiguity with finite sequentiality.

3 If A contains � cycles with 1 ≤ � < k, then we obtain in this way a decomposition
into � automata A1, . . . , A�, and a decomposition into k automata follows by taking
A�+1, . . . , Ak empty. If � = 0, then A itself can be taken for a 1-cycle automaton A1,
while A2, . . . , Ak can be empty.
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Lemma 4. Let S be a commutative semiring, and A a trim finitely ambiguous
1-cycle automaton over S and unary alphabet Σ = {c}. Then there is a deter-
ministic weighted automaton B over S and Σ such that ‖B‖ = ‖A‖.
Proof. The observation is trivial when A contains no cycle. We may thus assume
that there is precisely one cycle in A = (Q,σ, ι, τ). Let � ∈ N \ {0} be its length,
and γC = q1cq2 . . . q�cq1, for some q1, . . . , q� ∈ Q, a run of A on c� that goes
around the cycle exactly once. Then there is t0 ∈ N such that for all t ≥ t0,
each run γ of A upon ct visits q1 and goes around the cycle from q1 to q1
at least �(t − t0)/�� times.4 Such γ first follows some run γ1 until it visits q1
for the first time, then goes �(t − t0)/�� times around γC , and finally follows
some run γ2 from q1 (the run γ2 may revisit q1). Setting M = σ(γC), we get
σ(γ) = (σ(γ1)σ(γ2)) M�(t−t0)/�	.

Now, |γ1| + |γ2| = t − ��(t − t0)/�� = t − ((t − t0) − s) = t0 + s, where
s ∈ {0, . . . , � − 1} is the remainder after dividing t − t0 by � – in other words,
we have t − t0 ≡ s (mod �). The set of all possible pairs (γ1, γ2) is thus finite
for all s ∈ {0, . . . , � − 1} and depends only on s. It thus follows that there are
b0, . . . , b�−1 ∈ S such that for s = 0, . . . , �−1 and all t ≥ t0 with t−t0 ≡ s (mod �),

(‖A‖, ct
)

= bsM
�(t−t0)/�	.

Moreover, for t = 0, . . . , t0 − 1, denote by at the value (‖A‖, ct).

Fig. 2. The equivalent deterministic weighted automaton B.

The automaton A is then obviously equivalent to the deterministic weighted
automaton B over S and Σ = {c} in Fig. 2. �
Theorem 5. Let S be a commutative semiring, k ∈ N\{0}, and A a trim finitely
ambiguous k-cycle automaton over S and unary alphabet Σ = {c}. Then there
is a k-sequential weighted automaton B over S and Σ such that ‖B‖ = ‖A‖.
4 One can take, e.g., t0 = |Q|.
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Proof. Decompose A into trim finitely ambiguous 1-cycle automata A1, . . . ,Ak

as in Proposition 3, so that Aj has a deterministic equivalent Bj = (Qj , σj , ιj , τj)
for j = 1, . . . , k by Lemma 4. Then ‖A‖ = ‖B‖ for B the union of B1, . . . ,Bk, i.e.,
a k-sequential automaton B = (Q,σ, ι, τ) with Q = (Q1×{1})∪ . . .∪ (Qk ×{k}),
ι(q, j) = ιj(q), σ((p, j), c, (q, j)) = σj(p, c, q), and τ(q, j) = τj(q) for all p, q ∈ Q,
j ∈ [k], and c ∈ Σ, while σ(p, c, q) = 0 for all other (p, c, q) ∈ Q × Σ × Q. �
Corollary 6. Every finitely ambiguous unary weighted automaton A over a com-
mutative semiring S admits a finitely sequential equivalent (and vice versa).

4 Infinite Hierarchies

We now consider weighted automata over fields and first focus on the infinite
hierarchies of formal power series realised, for k = 0, 1, 2, . . ., by the k-ambiguous
and k-sequential weighted automata. Our aim is to show that these hierarchies
are strict if and only if the underlying field is not locally finite, while unary
alphabets are sufficient to establish this observation. C. Barloy et al. [3] have
noted that the finite ambiguity hierarchy over the rationals is strict, describing
a counterexample witnessing this fact. We provide a similar counterexample that
works over all other than locally finite fields and note that strictness of the finite
sequentiality hierarchy is implied by this counterexample as well.

Lemma 7. Let F be a field that is not locally finite and k ∈ N. Then there exists
a series r ∈ F⟪c∗⟫ realised by a (k + 1)-sequential weighted automaton over F

and Σ = {c}, but by no k-ambiguous weighted automaton over F.

Proof. As F is not locally finite, there necessarily exists some α ∈ F of infinite
multiplicative order, i.e., α ∈ F such that αs = αt for s, t ∈ N implies s = t.
In fact, such α is known to exist in every other than locally finite commutative
semiring [18, Lemma 7.2]; for fields, its existence also follows by containment
of the rational numbers in fields of characteristic zero and by existence of ele-
ments transcendental over the Galois field Fp in other than locally finite fields
of characteristic p > 0.

Consider a series r ∈ F⟪c∗⟫ given for all t ∈ N by
(
r, ct

)
= αt + α2t + . . . + α(k+1)t. (4)

Then r is clearly realised by a (k + 1)-sequential weighted automaton.
Suppose for contradiction that r is realised by some k-ambiguous weighted

automaton A over F and Σ = {c}. Without loss of generality, assume A is trim;
moreover, let PA = (n, i, A, f). The spectrum of A then allows us to uniquely
express (r, ct), as a function of t ∈ N, in the form (2). It thus follows by (4),
together with the linear independence of pairwise distinct functions

(
t
j

)
λt−j with

λ ∈ F and j ∈ N, that α, α2, . . . , αk+1 are eigenvalues of A.5

5 Note that αdt =
(

t
0

) (
αd

)t−0
for d = 1, . . . , k + 1.
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As A is finitely ambiguous, Theorem 1 tells us that its strongly connected
components are all either directed cycles, or single vertices (without a loop).
Nonzero eigenvalues of A are thus precisely the roots of characteristic polynomi-
als of matrices corresponding to the directed cycles, each taking the form x� − b
for some � ∈ N \ {0} and b ∈ F \ {0}.

For each a ∈ F, let ξ(a) be the set of all multiples of a by roots of unity in F,
i.e., ξ(a) =

{
κa | κ ∈ F; ∃t ∈ N \ {0} : κt = 1

}
. The roots of each polynomial

x� − b are then contained in ξ(a) for any of its roots a ∈ F: indeed, if a, a′ ∈ F

are roots of x� − b, then they are both nonzero and
(

a′

a

)�

=
b

b
= 1,

so that

a′ =
(

a′

a

)
a ∈ ξ(a).

On the other hand, the sets ξ(α), ξ(α2), . . . , ξ(αk+1) are pairwise disjoint –
if this was not a case, there would exist x < y ∈ [k + 1] such that καx = ναy

for some roots of unity κ, ν ∈ F; this would imply that αy−x = κ/ν is a root
of unity, contradicting the infinite multiplicative order of α. In particular, none
of the polynomials x� − b can have two distinct roots among α, α2, . . . , αk+1.
It follows that A contains K ≥ k + 1 cycles.

Decompose the K-cycle automaton A into 1-cycle automata A1, . . . ,AK

as in Proposition 3. For j = 1, . . . ,K, let PAj
= (nj , ij , Aj , fj). Then, by what

has been said, [K] = J0 ∪· J1 ∪· . . . ∪· Jk+1, where Jd consists, for d = 1, . . . , k + 1,
of precisely all j ∈ [K] such that the eigenvalues of Aj are in ξ(αd) ∪ {0}, while
they are not all zero; the nonzero eigenvalues of Aj for j ∈ J0 do not belong
to any ξ(αd) with d ∈ [k + 1]. It thus follows by uniqueness of the form (2) that
there exists some t0 ∈ N such that for all t ≥ t0,

∑

j∈Jd

(‖Aj‖, ct
)

= αdt for d = 1, . . . , k + 1.

As these values are always nonzero, we find out that the set
⋃

j∈Jd
Rs(Aj , c

t) is
nonempty for d = 1, . . . , k + 1, the decomposition of Proposition 3 guaranteeing
that Rs(A, ct) = Rs(A1, c

t) ∪· . . . ∪· Rs(AK , ct). There are thus at least k + 1
successful runs of A on ct, so A cannot be k-ambiguous: a contradiction. �

For F a field, Σ an alphabet, and k ∈ N, let AMBk(F, Σ) and SEQk(F, Σ)
denote, respectively, the sets of series realised by the k-ambiguous and k-
sequential automata over F and Σ. The following theorem is obtained directly
by Lemma 7.

Theorem 8. Let F be a field and Σ an alphabet. If F is not locally finite, then
AMBk(F, Σ) � AMBk+1(F, Σ) and SEQk(F, Σ) � SEQk+1(F, Σ) for all k ∈ N.

As all weighted automata over locally finite semirings are determinisable [19],
both hierarchies collapse over locally finite fields: AMBk(F, Σ) = AMBk+1(F, Σ)
and SEQk(F, Σ) = SEQk+1(F, Σ) for F locally finite and k ≥ 1.
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5 Separation of Finite and Polynomial Ambiguity

We now examine the relations between finitely and polynomially ambiguous
weighted automata over fields. C. Barloy et al. [3] have proved that polynomially
ambiguous unary weighted automata over the rationals are more powerful than
their finitely ambiguous counterparts. Let us first observe that their observation
directly generalises to all fields of characteristic zero.

Theorem 9. Let F be a field of characteristic zero. Then there exists a series
r ∈ F⟪c∗⟫ realised by a polynomially ambiguous weighted automaton over F

and Σ = {c}, but by no finitely ambiguous weighted automaton over F.

Proof. Let (r, ct) = t for all t ∈ N. Then r is clearly realised by a polynomially
ambiguous automaton. Suppose for contradiction that there is a finitely ambigu-
ous automaton realising r. Then it can be decomposed into 1-cycle automata
by Proposition 3. As F is of characteristic zero, all polynomials x� − b with
� ∈ N \ {0} and b ∈ F \ {0} are separable. The nonzero eigenvalues of A are thus
of algebraic multiplicity 1 for every 1-cycle automaton A with PA = (n, i, A, f).
By uniqueness of the expression (2) for (r, ct), it follows that it cannot contain
the term

(
t
1

)
1t−1, so that (r, ct) cannot equal t for all t ∈ N. �

The situation for fields of positive characteristic seems to be slightly different.
We make just a single step towards its understanding, by showing that polynomi-
ally and finitely ambiguous automata over algebraically closed fields of positive
characteristic are equally powerful when restricted to unary alphabets.

Theorem 10. Let F be an algebraically closed field of characteristic p > 0 and A
a polynomially ambiguous unary weighted automaton over F and Σ = {c}. Then
there is a finitely ambiguous weighted automaton B over F such that ‖B‖ = ‖A‖.
Proof. Without loss of generality, let us assume that A with PA = (n, i, A, f) is
trim. By Theorem 1, the strongly connected components of A are all directed
cycles or single vertices, so that

chA(x) = x�0

s∏

k=1

(
x�k − bk

)

for some �0, s ∈ N, �1, . . . , �s ∈ N \ {0}, and b1, . . . , bs ∈ F \ {0}. For k = 1, . . . , s,
let σk ⊆ F consist of all roots of x�k − bk that are not in σ1 ∪· . . . ∪· σk−1.6 Let
σ0 = {0} if 0 is a root of chA(x), and σ0 = ∅ otherwise. Moreover, given a root
λ ∈ F of chA(x), let α(λ) denote its multiplicity. Then (2) can be rewritten as

(‖A‖, ct
)

=
s∑

k=0

(
rk, ct

)
, (5)

6 The field F is algebraically closed, so all roots of chA(x) are indeed in F.
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where rk ∈ F⟪c∗⟫ is given, for k = 0, . . . , s and all t ∈ N, by

(
rk, ct

)
=

∑

λ∈σk

α(λ)−1∑

j=0

aλ,j

(
t

j

)
λt−j (6)

for some constants aλ,j ∈ F for λ ∈ σk and j = 0, . . . , α(λ) − 1.
Now, the series r0 can clearly be realised by a finitely ambiguous automaton.

For k = 1, . . . , s, let m ∈ N\{0} satisfy pm ≥ α(λ) for all λ ∈ σk. Let M = �kpm

and B = bpm

k , and let us consider a deterministic 1-cycle weighted automaton
Ak = (M,σ, ι, τ) with σ(t, c, t + 1) = 1 for t = 1, . . . ,M − 1, σ(M, c, 1) = B,
σ(t, c, t′) = 0 for all remaining (t, t′) ∈ [M ]2, ι(1) = 1, ι(t) = 0 for t = 2, . . . , M ,
and τ(t) = (rk, ct−1) for t = 1, . . . ,M . If PAk

= (M, ik, Ak, fk), then

chAk
(x) = xM − B =

(
x�k

)pm

− bpm

k =
(
x�k − bk

)pm

,

as F is of characteristic p. The eigenvalues of Ak thus form a superset of σk

and the algebraic multiplicity of every eigenvalue λ ∈ σk of Ak is at least α(λ).
The constants in the expression (2) for the series (‖Ak‖, ct) are uniquely deter-
mined by (‖Ak‖, ct) = (rk, ct) for t = 0, . . . ,M − 1. It follows that the expres-
sion (2) for (‖Ak‖, ct) is the same as in (6). In other words, ‖Ak‖ = rk.

Each of the series rk for k = 0, . . . , s is thus realised by a finitely ambiguous
automaton. Existence of B thus follows by (5). �

Note that the property that we have just established holds trivially –
and regardless of the alphabet considered – for weighted automata over finite
fields and their algebraic extensions, which are always locally finite. It would
thus be interesting to know whether there exists a field of positive characteristic,
over which the series realised by polynomially ambiguous and finitely ambigu-
ous weighted automata can be separated, and how the answer to this question
depends on the size of the alphabet.
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Abstract. In this paper, we continue a line of work on obtaining suc-
cinct population protocols for Presburger-definable predicates. We focus
on threshold predicates. These are predicates of the form n ≥ d, where
n is a free variable and d is a constant.

For every d, we establish a 1-aware population protocol for this predi-
cate with log2 d+min{e, z}+O(1) states, where e (resp., z) is the number
of 1’s (resp., 0’s) in the binary representation of d (resp., d − 1). This
improves upon an upper bound 4 log2 d + O(1) due to Blondin et al.
We also show that any 1-aware protocol for our problem must have at
least log2(d) states. This improves upon a lower bound log3 d due to
Blondin et al.

Keywords: Population protocols · Presburger arithmetic · Threshold
predicates

1 Introduction

Population protocols were initially introduced as a model of distributed compu-
tation in large networks of low-memory sensors [2]. There are also similarities
between population protocols and some models of social networks [10] and chem-
ical reactions [11], see a discussion in [5]. Perhaps, population protocols are most
known for their deep connection to logic, namely, to Presburger arithmetic. More
specifically, there is a theorem that a predicate over the set of natural numbers
is definable in Presburger arithmetic if and only if it can be computed by some
population protocol [4]. In this paper, we continue a line of work on the mini-
mization of population protocols [6–8]: given a Presburger-definable predicate,
what is the minimal size of a population protocol computing it? More specifically,
we obtain some new upper and lower bounds for threshold predicates.

We start by describing the model of population protocols in more detail.
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The Model. In this paper, we only consider population protocols for unary
predicates. On a high level, population protocols are a sort of finite-state dis-
tributed algorithms. A population protocol can have an arbitrary natural number
n on input. A population protocol computes a unary predicate R : Z

+ → {0, 1}
if for every n ∈ Z

+, having n on input, this protocol in some sense “converges”
to R(n).

In this framework, natural numbers are represented as populations of indistin-
guishable agents (or, in other words, as piles of indistinguishable items). Namely,
a natural number n corresponds to a population with n agents. It turns out that
this way of representing natural numbers is quite convenient for Presburger arith-
metic. Intuitively, this is because to add two numbers in this model, we just have
to join the corresponding piles.

A population protocol Π is specified by a finite set of states, a transition
function mapping pairs of states into pairs of states, and a partition of the set
of states into “0-states” and “1-states”. Having a population of n agents on
input, Π works as follows. First, it puts every agent into an initial state (which
is specified in the description of the protocol and is the same for all n). Then
agents start to encounter each other. We assume that the time is discrete and
that a single encounter of 2 agents happens in each unit of time. This process is
infinite and is not controlled by Π. However, when two agents meet, their states
are updated according to the transition function of Π (given a pair of their states
before the encounter, it gives a pair of their states after the encounter).

Recall that states of Π are partitioned into 1-states and 0-states. This par-
tition is responsible for the opinions of the agents on the value of a predicate.
Namely, agents in 1-states (resp., 0-states) “think” that n belongs to a predicate
(resp., does not belong to a predicate).

Finally, we clarify what does it mean that Π converges to 1 (resp., 0) on n.
We want all agents to be in 1-states (resp., in 0-states) forever after some finite
time. However, it is meaningless to require this for all possible infinite sequences
of encounters. For example, it might be that the same two agents meet each other
over and over again. There is no chance agents will learn anything about n in
this way. So will only consider sequences of encounters that form fair executions
of our protocol.

To define this, we first need a notion of a configuration. An n-size configu-
ration of Π is a function from the set of n agents to the set of states of Π. In
turn, an execution of Π is an infinite sequence of configurations such that (a) in
the first configuration all agents are in the initial state; (b) every configuration,
except the first one, is obtained from the previous one via some encounter. In
turn, an execution is fair if for any two configurations C1 and C2 the following
holds: if C1 appears infinitely often in our execution, and if C2 is reachable from
C1 via some finite sequence of encounters, then C2 also appears infinitely often
in our execution. Finally, we say that Π converges to 1 (resp., 0) on n if all
fair executions have this property: all but finitely many configurations of this
execution include only agents in 1-states (resp., 0-states).
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Threshold Predicates. In this paper, we are interested in threshold predicates,
that is, predicates of the form:

R(n) =

{
1 n ≥ d,

0 otherwise,

where d ∈ Z
+. For brevity, below we use the following notation for these predi-

cates: R(n) = I{n ≥ d}.
The problem of computing this family of predicates by population protocols

is called sometimes the flock-of-birds problem. This is because of the following
analogy due to Angluin et al. [2]. Imagine a flock of birds, where each bird is
equipped with a temperature sensor. Some birds are sick due to the elevated
temperature. Our sensors have very low action radius: two sensors can interact
with each other only if they are, say, at most 1 m apart. Let there be n sick
birds. From time to time, two sick birds approach each other sufficiently close
so that their sensors can interact. We want to know whether n (the number of
sick birds) is at least some threshold d. This turns into a problem of computing
the predicate R(n) = I{n ≥ d} by a population protocol.

The first population protocol computing this predicate was given in [2] (in
fact, this was the first population protocol ever considered in the literature). It
works as follows. Imagine that initially every agent has 1 coin. An agent can
hold up to d − 1 coins. Consider an arbitrary encounter of two agents. If two
agents meet and have less than d coins in total, one of them gets all the coins of
the other one. In turn, if they have at least d coins in total, they both become
“converted”. That is, they start to think to n ≥ d (initially everybody thinks that
n < d). Finally, any agent who meets a converted agent also becomes converted.

Let us see why this protocol computes the predicate R(n) = I{n ≥ d}.
First, assume that n < d. Then in the beginning we have less than d coins. The
total number of coins is preserved throughout the protocol. In particular, no two
agents can have at least d coins in total. Thus, everybody will always think that
n < d, as required.

Assume now that n ≥ d. After any sequence of encounters it is still possible
to reach a configuration in which everybody is converted. Indeed, go to a config-
uration with the least possible number of non-bankrupt agents (bankrupt agents
are agents with 0 coins). In this minimal configuration, any two non-bankrupt
agents must have at least d coins in total (otherwise, one could reduce the num-
ber of such agents). Thus, it is possible to convert somebody. It remains to pair
all the agents one by one with a converted agent.

To finish the argument, consider any fair execution with n ≥ d agents. Let C
be any configuration which appears infinitely often in this execution. There is a
configuration D which is reachable from C and in which everybody is converted.
Thus, D must belong to our execution in some place. Starting from this place,
everybody will always think that n ≥ d.

1-Awareness. The protocol which we just described has the following feature.
If n < d, then no agent will ever think that n ≥ d. In other words, to start
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thinking that n ≥ d, an agent must obtain some proof of this fact. In our case,
a proof is a physical presence of d coins.

Blondin et al. [7] call this kind of protocols 1-aware protocols. Formally,
they are defined as follows. Let R : Z

+ → {0, 1} be a predicate. We say that
a protocol computing this predicate is 1-aware if the following holds: for every
n with R(n) = 0, no execution of n agents ever contains an agent thinking that
R(n) = 1.

It is not hard to see that 1-aware protocols can only compute threshold
predicates and the all-zero predicate. Indeed, if it is possible to make one of n
agents think that R(n) = 1, then the same is possible for all populations with
more than n agents. Hence, any predicate R which can be computed by a 1-
aware population protocol is monotone: if R(n) = 1, then R(m) = 1 for every
m > n.

Thus, 1-aware population protocols are a quite natural model for computing
threshold predicates. In this paper, for every d we study the following ques-
tion: what is the minimal number of states in a 1-aware population protocol,
computing the predicate R(n) = I{n ≥ d}?

Our Results. Observe first that the protocol of Angluin et al., described above,
requires d + 1 states. Indeed, in this protocol, agents just memorize how many
coins they hold. This is a number from 0 to d − 1. We also need one more state
for converted agents.

This can be drastically improved when d is a power of 2. Consider the same
protocol, but forbid any “transfers” of coins unless two agents have the same
number of coins. Then an agent can hold either 0 coins or a power of 2 of them.
Thus, this modified protocol requires only about log2 d states.

When n ≥ d, it works for the same reasons as before – minimize the number
of non-bankrupt agents and observe that there must 2 of them holding at least
d coins (because otherwise they must hold different powers of 2 whose sum is
smaller than d). In fact, this protocol also works when d is the sum of two powers
of 2, but for other d it does not. A problem is that it might be impossible to get
two agents with d coins in total (for example, when there are d = 4 + 2 + 1 = 7
coins, two agents can hold at most 4 + 2 = 6 coins).

Nevertheless, for every d, Blondin et al. [7] have constructed a 1-aware pro-
tocol with O(log d) states, computing the predicate R(n) = I{n ≥ d}. Their
construction has two steps. First, they solve the problem with a protocol in
which encounters can involve not only 2 but up to log2 d agents. Second, they
show a general result, transforming any protocol with “crowded” encounters into
a standard protocol. The second part of their argument is rather technical. As
a result, they get a protocol with 4 log2 d + O(1) states. Our first result is the
following improvement of this upper bound.

Theorem 1. For any d ∈ Z
+ the following holds: there exists a deterministic

1-aware population protocol with log2 d + min{e, z} + O(1) states, computing the
predicate R(n) = I{n ≥ d}. Here e (resp., z) is the number of 1’s (resp., 0’s) in
the binary representation of d (resp., d − 1).
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This upper bound never exceeds 3
2 log2 d + O(1). Indeed, the number of 1’s

in the binary representation of d is larger at most by one than the number of 1’s
in the binary representation of d − 1. Hence, e + z does not exceed the length
of the binary representation of d − 1 plus one. This implies that min{e, z} ≤
1
2 log2 d + O(1).

In fact, we devise two different protocols for Theorem 1: one with log2 d +
e+O(1) states, and the other with log2 d+z +O(1) states. The first one is given
in Sect. 4 and the second one is given in Sect. 5. These two protocols require
different ideas. Unlike the construction of Blondin et al., our constructions are
direct.

Additionally, Blondin et al. in [7] show that any 1-aware protocol computing
R(n) = I{n ≥ d} must have at least log3 d states. Our second result is an
improvement of this lower bound.

Theorem 2. For any d ∈ Z
+ the following holds: any 1-aware population pro-

tocol computing the predicate R(n) = I{n ≥ d} has at least log2 d + 1 states.

Theorem 2 is proved in Sect. 3.

Other Related Works. In this paper we only deal with 1-aware protocols. For
general population protocols, the gap between upper and lower bounds is much
wider. A simple counting argument shows that for infinitely many d, the minimal
size of a population protocol computing R(n) = I{n ≥ d} is Ω(log1/4 d). We are
not aware of any explicit sequence of d’s on which this lower bound is attained.
Recently, Czerner and Esparza [8] have shown that for every d, the minimal size
of a population protocol computing R(n) = I{n ≥ d} is Ω(log log log d).

Similar questions have been studied for other predicates. Namely, Blondin
et al. [6] obtained the following general result. Assume that a predicate R is
definable in Presburger arithmetic via some quantifier-free formula of length l
(where all constants are written in binary; for example, the predicate R(n) =
I{n ≥ d} can be given by a formula of length log2 d + O(1)). Then there is a
population protocol with lO(1) states computing R.

Let us mention a related line of research which aims to minimize another
parameter of population protocols – the time of convergence [3]. It is defined as
the expected number of encounters until all agents stably have the right opinion
on the value of a predicate. We refer the reader to [1,9] for the recent results in
this area.

2 Preliminaries

We only consider population protocols for unary predicates. Moreover, we only
define 1-aware population protocols. For more detailed introduction to popula-
tion protocols, see [5].

Notation. By Z
+ we denote the set of positive integers. For n ∈ Z

+, we
write [n] = {1, 2, . . . , n}. We also write A = B � C for three sets A,B,C if
A = B ∪ C and B ∩ C = ∅. By 2A we mean the power set of a set A.
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Definition 1. A population protocol Π is a tuple 〈Q,Q0, Q1, qinit, δ〉, where
– Q is a finite set of states of Π;
– Q0, Q1 ⊆ Q are such that Q = Q0 � Q1.
– qinit ∈ Q is the initial state of Π;
– δ : Q2 → 2Q

2 \ {∅} is the transition function of Π.

We say that Π is deterministic if |δ(q1, q2)| = 1 for every q1, q2 ∈ Q.

Let Π = 〈Q,Q0, Q1, qinit, δ〉 be a population protocol. Consider any n ∈ Z
+.

An n-size configuration of Π is a function C : [n] → Q. Intuitively, elements of
[n] are agents, and the function C maps every agent to the state this agent in.
Define the initial n-size configuration as In : [n] → Q, In(i) = qinit for all i ∈ [n].
A pair of two n-size configurations (C1, C2) is called a transition if there exist
i, j ∈ [n], i �= j such that

(C2(i), C2(j)) ∈ δ
(
(C1(i), C1(j))

)
and C2(k) = C1(k) for all k ∈ [n] \ {i, j}.

That is, C2 must be obtained from C1 via an encounter of two distinct agents i
and j. These agents update their states according to δ, and other agents do not
change their states.

We stress that 2 agents participating in an encounter are ordered. It is con-
venient to imagine that one of the agents “initiates” the encounter and the other
agent “responds” to it. This is why δ is defined over ordered pairs of states and
not over 2-element subsets of Q.

Next, let C and D be two n-size configurations. We say that D is reachable
from C if for some k ≥ 1 and for some sequence C1, C2, . . . , Ck of configuration
we have:

– C1 = C,Ck = D;
– for every 1 ≤ i < k we have that (Ci, Ci+1) is a transition.

An execution is an infinite sequence {Ci}∞
i=1 of configurations such that C1 =

In for some n and (Ci, Ci+1) is a transition for every i ∈ Z
+. We call an execution

E = {Ci}∞
i=1 fair if for every two configurations C,D the following holds: if, first,

C occurs infinitely often in E, and second, D is reachable from C, then D also
occurs infinitely often in E.

Definition 2. Let R : Z
+ → {0, 1} be some predicate. We say that a population

protocol Π = 〈Q,Q0, Q1, qinit, δ〉 is a 1-aware population protocol computing R
if for any n ∈ Z

+ the following holds:

– if R(n) = 0, then for every configuration C which is reachable from In we
have C([n]) ⊆ Q0.

– if R(n) = 1, then for every fair execution {Ci}∞
i=1 which start from C1 = In

there exists i0 such that for every i ≥ i0 we have Ci([n]) ⊆ Q1.
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3 Proof of Theorem 2

Assume that Π = 〈Q,Q0, Q1qinit, δ〉 is a 1-aware population protocol computing
the predicate R(n) = I{n ≥ d}. Let C : [n] → Q be a configuration of Π and
q ∈ Q be a state. We say that q can occur from C if there exists a configuration
D of Π such that (a) D is reachable from C; (b) D(i) = q for some i ∈ [n].
Additionally, by a q-agent we mean an agent whose state is q.

For q ∈ Q, let f(q) denote the minimal n ∈ Z
+ such that q can occur from

In. If there is no such n at all, set f(q) = +∞. Obviously, |Q| ≥ |f(Q)|, so it is
sufficient to prove that |f(Q)| ≥ log2 d + 1.

Observe that 1 = f(qinit). Hence, 1 ∈ f(Q). By definition of 1-awareness,
there exists a state q ∈ Q1 which can occur from Id (just consider any fair
execution starting from Id). On the other hand, no state from Q1 can occur
from In for n < d. Hence, f(q) = d and d ∈ f(Q). It remains to establish the
following lemma.

Lemma 1. Let a < b be two consecutive elements of f(Q). Then b ≤ 2a.

Loosely speaking, this lemma asserts that f(Q) does not contain large gaps.
Since 1, d ∈ f(Q), it shows that between 1 and d there must be about log2(d)
elements of f(Q). In more detail, let 1 = i1 < i2 < . . . < ik = d be elements of
f(Q) up to d, in the increasing order. By Lemma 1, we have:

i2 ≤ 2i1, . . . , ik ≤ 2ik−1.

By taking the product of these inequalities, we obtain:

d = ik ≤ 2k−1 · i1 = 2k−1.

Hence, |f(Q)| ≥ k ≥ log2(d) + 1.

Proof (of Lemma 1). Consider the minimal k such that some q ∈ Q with f(q) = b
can occur from Ib after k encounters. Note that k ≥ 1. Indeed, if k = 0, then
q = qinit. However, f(q) = b > a ≥ 1, so q �= qinit.

Due to minimality of k, a q-agent occurs in the last of these k encounters.
Consider this agent and also the second agent participating in this encounter.
Let their states prior to the encounter be q1 and q2. We conclude that a q-agent
can occur whenever we have a q1-agent and a q2-agent in a population (these
agents have to be distinct, even when q1 = q2).

Since q1 and q2 can occur from Ib, we have that f(q1), f(q2) ≤ b. In turn, since
q1, q2 can occur from Ib in less than k encounters, we have f(q1) �= b and f(q2) �=
b, by minimality of k. Hence, f(q1), f(q2) ≤ a, because a is the predecessor of b
in f(Q). To finish the proof, it is sufficient to show that f(q) ≤ f(q1)+ f(q2). In
other words, we have to show that q can occur from If(q1)+f(q2). By definition, a
q1-agent can occur from If(q1) and a q2-agent can occur from If(q2). Hence, if we
have f(q1) + f(q2) agents in the initial state, the first f(q1) of them are able to
produce a q1-agent, while the last f(q2) of them are able to produce a q2-agent.
In turn, these two agents are able to produce a q-agent. ��
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4 Proof of Theorem 1: The First Protocol

In this section we establish a 1-aware population protocol with log2(d)+e+O(1)
states, computing the predicate R(n) = I{n ≥ d}. Here, e is the number of 1’s
in the binary representation of d.

Let i1 > i2 > . . . > ie be such that

d = 2i1 + 2i2 + . . . + 2ie .

Imagine that initially every agent holds 1 coin. During the protocol, some agents
may run out of coins; we will call these agents bankrupts. At each moment of time,
a non-bankrupt agent can hold 1, 2, 4, . . . , 2i1−1 or 2i1 coins. Additionally, every
bankrupt maintains a counter k ∈ {0, 1, . . . , e − 1}. Under some circumstances,
an agent can come into a special final state (informally, this happens when
this agent becomes convinced that n ≥ d). When an agent comes into the final
state, it forgets the number of coins it had (this will not be problematic because
everything will be decided at this point). So, some agents in the final state might
be bankrupt, while the others not. In total, besides the final state, we have
i1 + 1 ≤ log2(d) + 1 states for non-bankrupt agents and e states for bankrupt
agents; this is at most log2(d) + e + 2 states.

We now describe the transitions of our protocol. First, assume that two non-
bankrupt agents both having 2i coins meet. If i = i1, then both agents come into
the final state. If i < i1, then one of the agents gets all the coins of the other
one. That is, one of the agents is left with 2i+1 coins, and the other one becomes
a bankrupt with k = 0. Now, if an agent with 2i coins meets an agent with 2j

coins and j �= i, nothing happens.
Next, we describe transitions that involve bankrupts. If two bankrupts meet,

nothing happens. Now, assume that a bankrupt whose counter equals k meets
an agent with 2i coins. There are four cases:

1. if k < e − 1 and i = ik+1, then k increments by 1;
2. if k = e − 1 and i = ie, then the bankrupt comes into the final state;
3. if k > 0 and ik > i > ik+1, then the bankrupt comes into the final state;
4. in any other case, the bankrupt sets k = 0.

Finally, if an agent is already in the final state, then everybody this agent meets
also comes into the final state.

The description of the protocol is finished. To show that this protocol is a
1-aware protocol computing the predicate R(n) = I{n ≥ d}, it is sufficient to
show the following two things:

– (soundness) if n < d, then no agent can come into the final state;
– (completeness) if n ≥ d, then, after any finite sequence of encounters, it is

still possible to bring one of the agents into the final state.

Here n is the number of agents in a population. Indeed, soundness ensures that
our protocol satisfies the definition of 1-awareness for n < d. Now, consider any
n ≥ d. Take any fair execution E of n agents. We have to show that there exists
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a moment in E, starting from which all agents are always in the final state.
Let C be any configuration which occurs infinitely often in E. By definition
of an execution, C is reachable from In. Hence, by completeness, there is a
configuration D which is reachable from C and which has an agent in the final
state. Now, let this agent meet all the other agents. We obtain a configuration
D′ which is reachable from D and in which all agents are in the final state. By
definition of fairness, D′ occurs in E. Finally, note that once all agents are in
the final state, they will always be in this state.

We start by showing the soundness. Assume for contradiction that there are
n < d agents, but one of them came into the final state. First, it could happen if
two agents with 2i1 coins met. However, the total number of coins is preserved
throughout the protocol, and initially there are n < d = 2i1+2i2+. . .+2ie < 2·2i1
coins, contradiction.

Second, it might be that some bankrupt came into the final state. This can
happen after an encounter with a non-bankrupt agent. Assume that this non-
bankrupt agent held 2i coins. Then there are two options: if k was the value of
the counter of our bankrupt agent, then either k = e − 1 and i = ie or k > 0
and ik > i > ik+1. Note that in both cases we have 2i1 + . . . + 2ik + 2i ≥ d. We
will show that there must be at least 2i1 + . . . + 2ik + 2i distinct coins, and this
would be a contradiction.

Consider the counter of our bankrupt. Its current value is k. It cannot increase
by more than 1 at once. So the last k changes of the counter were as follows:
it became equal to 1, then it became equal to 2 and so on, up to a moment
when it reached its current value. At the moment when it became equal to 1,
our bankrupt saw an agent with 2i1 coins. After that, when it became equal to
2, our bankrupt saw an agent with 2i2 coins, and so on. In the end, when the
counter reached its current value, our bankrupt saw 2ik coins. Additionally, in
the very last encounter, it saw 2i coins. We claim these 2i1 + 2i2 + . . . + 2ik + 2i

are distinct. To see this, fix any coin. At each moment of time, it belongs to
some group of coins. A point it that the size of this group can only increase over
time. Now, recall that 2i1 > 2i2 > . . . > 2ik > 2i. Since our bankrupt first saw
a group of 2i1 coins, then a smaller group of 2i2 coins and so on, none of these
coins were seen twice. The soundness is proved.

We now show the completeness. Assume that there are n ≥ d agents. Consider
any configuration C which is reachable from the initial one. Let D be a config-
uration which is reachable from C and has the least number of non-bankrupt
agents. If in D there are two agents that both have 2i1 coins, then we can bring
them into the final state. Assume from now on that in D there is at most one
agent with 2i1 coins. Then no two non-bankrupt agents have the same number of
coins in D – otherwise, one could decrease the number of non-bankrupt agents.

Assume that in D there are t non-bankrupt agents, the first one with 2j1
coins, the second one with 2j2 coins, and so on. Here 0 ≤ j1, . . . , jt ≤ i1.
W.l.o.g. j1 > j2 > . . . > jt. Note that

n = 2j1 + 2j2 + . . . + 2jt ≥ d = 2i1 + 2i2 + . . . + 2ie .
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In particular, i1 = j1. Moreover, either t = e and j1 = i1, . . . je = ie, or there
exists 1 ≤ k < e such that j1 = i1, . . . jk = ik and ik > jk+1 > ik+1.

Now, take any bankrupt (there will be at least one bankrupt already after the
first transition). If its counter is not 0, we reset it to 0 by pairing our bankrupt
with the agent holding 2j1 = 2i1 coins. It is now easy to bring this bankrupt
into the final state. Indeed, if t = e and j1 = i1, . . . je = ie, pair our bankrupt
with the agent holding 2i1 coins, then with the agent holding 2i2 coins, and so
on, up to the agent holding 2ie coins. Now, if there exists 1 ≤ k < e, such that
j1 = i1, . . . jk = ik and ik > jk+1 > ik+1, pair our bankrupt with the agent
holding 2j1 = 2i1 coins, then with the agent holding 2j2 = 2i2 coins, and so on,
up to the agent holding 2jk+1 coins.

5 Proof of Theorem 1: The Second Protocol

In this section we establish a 1-aware population protocol with log2(d)+z+O(1)
states computing the predicate R(n) = I{n ≥ d}. Here, z is the number of 0’s
in the binary representation of d − 1.

As a warm-up, we first consider d = 2k+1−1. In this case, z = 1. The protocol
from the previous section requires about 2 log2 d states for such d. We present a
simple protocol which only needs log2 d + O(1) states for such d.

5.1 Warm-up: Case d = 2k+1 − 1

Again, initially each agent holds 1 coin. As before, we distinguish between
bankrupt and non-bankrupt agents. A non-bankrupt agent can hold 1, 2, . . . ,
2k−1 or 2k coins. Thus, there are k +1 possible states of non-bankrupt agents, 1
state indicating bankrupts, and also 1 final state – in total, k+3 = log2 d+O(1)
states.

We now describe the transitions of the protocol. Assume that two agents
both having 2i coins for some 0 ≤ i < k − 1 meet. Then, as in the previous
section, one of them gets 2i+1 coins and the other one becomes bankrupt. Now,
when two agents both having 2k−1 coins meet, one of them gets 2k coins and the
other one gets 1 coin “out of nowhere”. When two agents with 2k coins meet,
both of them come into the final state. Finally, if an agent is already in the final
state, then everybody this agent meets also comes into the final state. All the
other encounters do not change states of agents.

The rest of the argument has the same two parts – “soundness” and “com-
pleteness”. “Soundness” means that if n, the total number of agents, is smaller
than d, then no agent can come into the final state. “Completeness” means that
if n ≥ d, then, after any sequence of encounters, it is still possible to bring one
of the agents into the final state. Similarly to the argument from the previous
section, “soundness” and “completeness” imply that our protocol is a 1-aware
protocol computing R(n) = I{n ≥ d}.

Let us start with the soundness. Assume that n < d. We claim that an “out of
nowhere” coin may occur at most once. Indeed, consider the first time it occurs.
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At this moment, one of the agents gets 2k coins. Nothing happens with these 2k

coins unless we get one more agent with 2k coins. However, all the other agents
in total have (n − 2k) + 1 < (2k+1 − 1 − 2k) + 1 = 2k coins. Thus, from now on
it is impossible to get two agents with 2k−1 coins. In particular, it is impossible
to get a coin “out of nowhere”. This means that the total number of coins never
exceeds n + 1 < 2k+1. However, to bring somebody into the final state, we must
have at least 2k+1 coins. The soundness is proved.

Let us now show the completeness. Assume that n ≥ d. Let C be any con-
figuration, reachable from the initial configuration of n agents. Assume for con-
tradiction that no configuration with an agent in the final state is reachable
from C. Let D be a configuration which is reachable from C and has the most
coins in total (as any agent can hold up to 2k coins, the total number of coins
is bounded by n2k). Next, let D′ be a configuration which is reachable from D
and has the least number of non-bankrupts. We have at most 1 agent with 2k

coins in D′ – otherwise we could reach the final state. Also, in D′ there is at
most one agent with 2k−1 coins – otherwise we could increase the total number
of coins. Similarly, for every 0 ≤ i < k − 1, there is at most one agent with 2i

coins – otherwise one could decrease the number of non-bankrupts. Thus, we
have at most 1 + 2 + . . . + 2k = d coins in total. Initially, there are n ≥ d coins.
The total number of coins does not decrease in our protocol. Hence, in D′ there
must be exactly d = 1 + 2 + . . . + 2k coins. In particular, in D′ there must be
an agent with 2k coins. When an agent with 2k coins occurs, we also get a coin
“out of nowhere”. This means that in D′ the total number of coins is bigger
than in the initial configuration. That is, initially there were at most d−1 coins,
contradiction.

5.2 General Case

We assume that d is not a power of 2 (otherwise we could use the protocol from
Sect. 4). Let 2k be the largest power of 2 below d. Define a = 2k+1 − d. Observe
that:

2k+1 − 1 = 11 . . . 1︸ ︷︷ ︸
k+1

= (d − 1) + a

Since 2k < d < 2k+1, there are k + 1 digits in the binary representation of d − 1.
Hence, the number of 1’s in the binary representation of a equals the number of
0’s in the binary representation of d − 1 (that is, equals z).

Assume that
a = 2b1 + 2b2 + . . . + 2bz , (1)

where b1 > b2 > . . . > bz. Note that a = 2k+1 − d < 2k+1 − 2k = 2k. Hence,
b1 < k.

The protocol in the general is essentially the same as for the case d = 2k+1−1,
except that instead of just 1 coin “out of nowhere” we get a coins “out of
nowhere” every time two agents with 2k−1 coins meet. However, there will be
additional technical difficulties, as a might not be a power of 2.
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In more detail, a non-bankrupt agent may have

s ∈ {1, 2, . . . , 2k, 2b1 + 2b2 , 2b1 + 2b2 + 2b3 , . . . , 2b1 + 2b2 + . . . + 2bz = a} coins.

Thus, a non-bankrupt agent can be in one of the k + z states. Taking into
the account the state indicating bankrupts and the final state, in total we have
k+z+2 ≤ log2 d+z+O(1) states. We will call agents that hold 2b1 +2b2 +. . .+2bi
coins for some i > 1 non-standard.

Let us now describe transitions of the protocol. When two agents with 2i

coins meet, where 0 ≤ i < k − 1, one of them gets 2i+1 coins and the other one
becomes bankrupt. When two agents with 2k−1 coins meet, one of them gets 2k

coins and the other one gets a coins “out of nowhere”. When two agents with 2k

coins meet, both of them come into the final state. Now, when a non-standard
agent with 2b1 + . . . + 2bi meets a bankrupt, this bankrupt gets 2bi coins, and
the non-standard agent is left with 2b1 + . . . + 2bi−1 coins (if i = 2, the non-
standard agent becomes standard). Finally, if an agent is already in the final
state, then everybody this agent meets also comes into the final state. All the
other encounters do not change the states of agents.

Let us now show the soundness of our protocol. Assume that the number
of agents is n < d. We show that no agent can be brought into the final state.
For that, we first show that we can get a coins out of nowhere at most once.
Indeed, consider the first time this happened. We get one agent with 2k coins.
Other agents have n − 2k + a = n − 2k + (2k+1 − d) < 2k coins in total (the
inequality holds because n < d). Thus, we will never have two agents with 2k−1

coins again. Thus, in any execution, the total number of coins never exceeds
n + a = n + (2k+1 − d) < 2k+1. However, to bring somebody into the final state,
we must have two agents with 2k coins.

Let us now show the completeness of our protocol. Assume that n ≥ d. Let
C be any configuration, reachable from the initial one. Assume for contradiction
that no configuration with an agent in the final state is reachable from C. Let C1

be a configuration which is reachable from C and has the most coins in total (as
before, this number is bounded by n2k). Next, let C2 be a configuration which
is reachable from C1 and minimizes the following parameter:

p = the number of standard non-bankrupt agents
+ 3 × the number of coins belonging to non-standard agents.

In C2 there is at most one agent with 2k coins – otherwise, we could reach the
final state. There is also at most one agent with 2k−1 coins – otherwise, one
could increase the total number of coins. Similarly, for any 0 ≤ i < k − 1, there
is at most one agent in C2 with 2i coins (otherwise, by pairing two agents with
2i coins, one could decrease p).

If there is no agent with 2k coins in C2, then we never got a coins out of
nowhere on our path to C2. Indeed, when we get a coins out of nowhere, we get
an agent with 2k coins, and nothing happens with this agent unless the final state
is reached. So there are 0 non-standard agents in C2 (they are created only when
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we get coins out of nowhere). Hence, there are at most 1+2+. . .+2k−1 < 2k < d
coins in C2, contradiction.

Hence, in C2 there is exactly one agent with 2k coins. Clearly, this also
means that on our path to C2 we got a coins out of nowhere exactly once. This
is because the only transition creating an agent with 2k coins is the transition
creating a coins out of nowhere. Indeed, other transitions with standard agents
create smaller power of 2, and transitions with non-standard agents involve at
most a < 2k coins. We conclude that, first, in C2 there is exactly one agent with
2k coins, second, there are n + a coins in total, and third, there is at most 1
non-standard agent (it could be created only once, when we got a coins out of
nowhere).

Assume first that all agents in C2 are standard. Then n+a ≤ 1+2+. . .+2k =
2k+1 − 1. Hence, n ≤ 2k+1 − 1 − a = d − 1, contradiction.

Now, assume that in C2 there is exactly one non-standard agent who holds
2b1 + . . .+2bi coins, i > 1. Let us show that in C2 there exists a bankrupt agent.
Indeed, assume for contradiction that all agents in C2 are non-bankrupt. Now,
leave every agent with exactly one coin. There will be exactly n coins. That is,
exactly a coins were taken. However, from the agent with 2k coins we took 2k−1
coins. Additionally, we took at least 1 coin from the non-standard agent. Hence,
we took at least 2k coins. Since a < 2k, we obtain a contradiction.

Now, pair the non-standard agent with any bankrupt agent. We claim that
the parameter p will decrease (this will be a contradiction with the definition of
C2). Indeed, as a result, we get at most 2 new standard non-bankrupt agents.
However, the number of coins belonging to the non-standard agent decreases by
at least 1. Therefore, p decreases.
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Abstract. In the 1950’s, Ford and Fulkerson introduced dynamic flows
by incorporating the notion of time into the network flow model (Oper.
Res., 1958). In this paper, motivated by real-world applications includ-
ing route planning and evacuations, we extend the framework of multi-
commodity dynamic flows to the heterogeneous commodity setting by
allowing different transit times for different commodities along the same
edge.

We first show how to construct the time-expanded networks, a clas-
sical technique in dynamic flows, in the heterogeneous setting. Based
on this construction, we give a pseudopolynomial-time algorithm for the
quickest flow problem when there are two heterogeneous commodities.
We then present a fully polynomial-time approximation scheme when the
nodes have storage for any number of heterogeneous commodities. The
algorithm is based on the condensed time-expanded network technique
introduced by Fleischer and Skutella (SIAM J. Comput., 2007).

Keywords: Multi-Commodity Network Flow · Dynamic Flow

1 Introduction

Network flows form a well-studied and hugely successful area in optimisation,
with many deep theorems and efficient algorithms. Still, in some real-world appli-
cations, it is natural to augment the basic network flow model further. One such
example, described in [13], is to consider scheduling cars in a traffic network. In
this setting, it is clear that time is an essential factor to take into consideration.
Therefore, it is natural to associate each edge in the network a transit time, and
consider flows that can vary with time. It is not hard to come up with other
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examples in production systems, communication networks, and financial flows,
where time plays a key role in the corresponding network flow problems.

A formal study of network flows where flows vary with time was initiated
in the 1950’s by Ford and Fulkerson in their seminal works [7,8]. It has now
become a rather mature area with many basic questions answered. We refer the
reader to [15] for an excellent introduction. There are also several nice surveys
[1,2,13,14], and the thesis of Hoppe [11], where the reader can find an abundance
of information. In the literature, several names have been used for network flows
with flow transit times, including flows over time [5], dynamic flows [13], and
time-dependent flows [3]. In this paper we adopt flows over time, following works
of e.g. Fleischer and Skutella [5,15].

In this paper, we consider a further augmentation to the multi-commodity
network flows over time model. The key assumption is that various commodities
can have different speeds when traveling along the same edge. We shall call such
commodities as heterogeneous, as opposed to the homogeneous commodities in
previous models where commodities have the same speed along a fixed edge.

To see the motivation of doing so, consider the following setting. Suppose
a factory needs two types of raw materials, material A and material B, for
production. Each of the materials A and B needs to be transported by special
trucks in a common road network. When traveling along the same road, these two
types of trucks can have different speed limits. To make things more interesting,
it is possible that different roads have different speed limits for even the same
truck. It is also not hard to come up with other situations in say emergency
evacuation, where different commodities or agents have different speeds when
traveling along the same edge.

1.1 An Overview of the Heterogeneous Model and Our Results

In this subsection, we outline our model, review some results from literature,
and briefly introduce our results.

The Heterogeneous Model. The above discussions motivate us to study the multi-
commodity network flows over time problem with heterogeneous commodities.
Recall that, compared to the homogeneous commodities that have been studied
previously, heterogeneous commodities may have different speeds when traveling
along the same edge. This amounts to setting different transit times for different
commodities for each edge.

A key new feature of the heterogeneous model is that, because of the differ-
ences in speeds, it is possible for a faster commodity to catch up with a slower one
in the middle of an edge, therefore causing a violation of the capacity constraint.
We shall refer to such event as a collision, where flows of multiple commodi-
ties sent at different times meet at the same point within an edge. A concrete
example is shown in Fig. 1.
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Fig. 1. An example of an edge e = (s, t) of capacity 1, and two heterogeneous com-
modities A and B, where commodity A flows twice as fast as commodity B. Suppose
one unit of B flows into edge e in the time interval [0, 1), and one unit of B flows into
e in the time interval [1, 2). The two flow packets never overlap at point s. However,
because commodity A flows faster than B, its packet would catch up and collide with
the packet of B, hence causing a capacity violation in the middle of edge (s, t).

How to handle collisions will be the key technical problem in this model. To
the best of our knowledge, no studies on such collision issues have yet addressed
these issues adequately.

For network flows over time, the time can be either discrete or continuous,
and the nodes may have storage or cannot – if nodes have storage, then the flow
can be held at this node and only released later if needed. In this paper, we work
in the continuous-time model, and most of our results require node storage. For
a detailed description of the model, see Sect. 3.

In the Heterogeneous Multi-commodity Flows over Time problem (HeteroMFT
for short), we are given a network with capacities and transit times, a time
horizon, and for each commodity a source node, a sink node, and a demand.
The goal is to obtain a multi-commodity flow over time within the time horizon
satisfying the demands, if there exists one. For a formal definition of the problem,
see Definition 2. Clearly, HeteroMFT is closely related to the quickest version of
the heterogeneous multi-commodity flow over time problem, which asks to find
a multi-commodity flow that satisfies the demands of all commodities from their
sources to their respective destinations within the minimal time horizon.

Review of Some Works in the Homogeneous Setting. Since the heterogeneous
model is a generalisation of the homogeneous model, it is necessary to review
some results from the homogeneous multi-commodity dynamic network flow
problem (HomoMFT).

Using the classical technique of time-expanded networks [7], HomoMFT can
be solved in pseudo-polynomial time, i.e. polynomial in the time horizon. (A
true polynomial-time algorithm needs to run in time polynomial in the loga-
rithm of the time horizon.) From the perspective of approximation algorithms
for HomoMFT, a breakthrough result is a fully polynomial-time approximation
scheme (FPTAS) in the setting of bounded costs and with storage [5]. In [9],
the HomoMFT problem is shown to be weakly NP-hard for two or more com-
modities, and it is also NP-hard to design fully polynomial-time approximation
scheme (FPTAS) for the quickest HomoMFT with simple paths and without
storage.
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Since the HeteroMFT problem is a generalisation of the HomoMFT problem,
the NP-hardness results for HomoMFT apply to HeteroMFT as well. Therefore,
we focus on designing approximation algorithms for the HeteroMFT problem.

Our First Result: Time-Expanded Networks in the Heterogeneous Setting. We
first examine the classical time-expanded network technique. Briefly speaking, in
the homogeneous setting, given a network G = (V,E), a time-expanded network
G̃ with time horizon T is built by replicating T copies of V , with each copy called
a layer. Then for each edge in the original graph with transit time τ , connect
the corresponding nodes in ith layer and the (i + τ)th layer.

In the heterogeneous setting, the construction of time-expanded networks
is trickier. Suppose the number of commodities is k. As the transit times are
different for different commodities on a fixed arc in the heterogeneous setting, it
is natural to split an arc in the original network into k arcs in the time-expanded
network, one for each commodity. Figure 2 gives such an example.

Fig. 2. A dynamic network with two commodities and its corresponding time-expanded
network with time horizon T = 6.

Here, we come across the first difficulty caused by the heterogeneity regarding
the capacity constraints. First, note that the capacities of these k arcs starting
from the same layer need to be considered altogether as not to exceed the capac-
ity. However, this just suggests that the flows on this arc in the original network
do not exceed the capacity at the tail of the arc. In order to avoid collison, we
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also need to examine the capacities of several arcs starting from different lay-
ers. At first sight, this seems to involve enumerating every point in e, leading
to possibly exponentially many constraints. Fortunately, Proposition 1 indicates
that only a polynomial number of additional capacity constraints need to be
considered.

While the above gives a proper definition of time-expanded networks in the
heterogeneous setting, there is a more serious problem which prevents it from
yielding a pseudo-polynomial time algorithm for the HeteroMFT problem. This
is because, the key observation for using time-expanded networks in the homo-
geneous setting is the following (see e.g. [15, Lemma 4.4]): A feasible flow over
time in G with time horizon T yields a feasible static flow in G̃ (by averaging
according to each time interval), and the inverse direction is also true (by a
straightforward construction). However, in the heterogeneous setting, while we
can still construct a feasible flow over time from a feasible static flow, the inverse
direction does not necessarily hold, as the averaging technique no longer works
due to the collision issue.

Despite the above difficulty, we show that by incorporating a further obser-
vation, the averaging technique still works for two commodities (Proposition 2),
giving a pseudopolynomial-time algorithm for this case.

Theorem 1. There exists a pseudopolynomial-time algorithm for the Het-
eroMFT problem when the number of commodities is 2.

The proof for Theorem 1 does not apply to more than two commodities; see
Remark 1 for some discussions. We leave designing a pseudo-polynomial time
algorithm for more than two commodities as an intriguing open problem.

Our Second Result: An FPTAS for HeteroMFT . Given the problems encountered
in the time-expanded network construction, it is perhaps rather surprising that
a fully polynomial-time approximation scheme (FPTAS) can still be achieved
for HeteroMFT, when the nodes are allowed to have storage. In Theorem 2, we
present such an FPTAS.

Theorem 2. For any ε > 0, a (1 + ε)-approximate solution to the HeteroMFT
problem can be found in time polynomial in the input size and 1

ε .

Note that by [9], unless P=NP, there is no FPTAS for the quickest multi-
commodity flow problem when node storage is prohibited and flows are only sent
on simple paths, even in the homogeneous setting. So allowing node storage is
unavoidable.

An FPTAS for the homogeneous version of the problem was given in [5], and
our algorithm builds upon and generalises that algorithm. More specifically, we
utilize the condensed time-expanded network technique introduced there, which
are time-expanded networks with longer time intervals. Figure 3 gives an illus-
tration of this idea, following the example in Fig. 2.
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Fig. 3. Δ-condensed time-expanded network GT /Δ with Δ = 2

Overcoming the difficulties brought by the heterogeneity of the commodities
requires some non-trivial technical works. Indeed, in the construction of time
expanded networks, we need to adjust existing constraints and introduce new
constraints on the static flow network to ensure that the solution corresponds to
a feasible flow over time, and that the static network problem is of polynomial
size. This means that the analysis in [5] cannot be directly applied to prove
the correctness of this algorithm. More specifically, the averaging step there no
longer yields a feasible flow in the time expanded network in the heterogeneous
setting. Our main technical contribution is to show that the feasibility is still
approximately preserved thanks to a previous flow smoothing step , which is a
key step for the FPTAS.

1.2 Structure of the Paper

In the following, we give a detailed account of our results. In Sect. 2, to prepare for
introducing our model, we review the static and homogeneous dynamic network
flow models. In Sect. 3, we formally define the heterogeneous multi-commodity
flow over time model. In Sect. 4, we describe the time-expanded network con-
struction in the heterogeneous setting. In Sect. 5, we present the FPTAS for the
HeteroMFT problem. Due to space constraints, some proofs are omitted and can
be found in the full version of this paper.

2 Review of Static and Homogeneous Flows over Time

In this section we review the classic static multi-commodity network flow model,
and the homogeneous multi-commodity network flow over time model.

Static Flows in Networks. In a static network flow problem, we are given a
network (directed graph) G = (V,E) with |V | = n nodes and |E| = m edges.
Each edge e ∈ E has a capacity ue : E → R≥0, which bounds the total amount
of flow allowed to go through this edge at any time. For each edge e = (v, w), we
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denote tail(e) = v and head(e) = w. We also let δ+v (resp. δ−
v ) to denote the set of

edges e ∈ E going out of v, i.e. tail(e) = v (resp. going into v, i.e. head(e) = v).
Our goal is to transport k types of commodities through the same network

G by sharing edges. More specifically, assume that each commodity i ∈ [k] :=
{1, 2, . . . , k} has a source node si ∈ N , a sink node ti ∈ N , and a demand di

that represents the amount of commodity i that needs to be transported from
si to ti.

A static flow x in network G allocates a flow value xi
e : E → R≥0 to each

edge e ∈ E and each commodity i ∈ [k] := {1, . . . , k}. A static flow is called
feasible if it satisfies the following constraints.

∀e ∈ E, 0 ≤
∑

i∈[k]

xi
e ≤ ue (capacity constraints)

(1)

∀i ∈ [k], v ∈ V \{si, ti},
∑

e∈δ−
v

xi
e −

∑

e∈δ+v

xi
e = 0 (flow conservation constraints)

(2)

∀i ∈ [k],
∑

e∈δ−
ti

xi
e −

∑

e∈δ+ti

xi
e = di (demand constraints)

(3)

Network Flows over Time. When taking time into consideration, we arrive at the
network flow over time problem. There are two main approaches to model time.
The first one is the discrete-time model, first studied by Ford and Fulkersen
[7,8]. The second one is the continuous model. Fleischer and Tardos showed
strong connections between these two models [6]. In this paper, we focus on a
continuous-time model, mostly following notations in [5,15].

Another feature of the flow over time model is that storing flows in the
intermediate nodes becomes possible. That is, we may assume that intermediate
nodes have storage that could hold inventory of (any amount of) flow before
sending it forward. Allowing storage is a common assumption in most previous
works on flows over time. On the other hand, to fit certain applications such as
telecommunications, one could also consider a model in which storage is limited,
or even no storage is allowed, at any intermediate node. Then the flow conserva-
tion constraints simply change the inequality condition to equality. Flows over
time with no storage or restricted storage were studied in several works [4,10–12].
In this paper we will adopt the model with intermediate storage.

For network flows over time, apart from capacity ue, every edge e ∈ E also
has a transit time τe ≥ 0 that specifies the time it takes for a unit of flow of a
commodity to travel from tail(e) to head(e). That is, the flow for a commodity
sent at time θ from tail(e) will reach head(e) at time θ + τe.

The following definition of dynamic flows (named flows over time in this
paper) is standard (cf. e.g. [15, Definition 2.1]).

Definition 1. A flow over time f with time horizon T ≥ 0 is a Lebesgue-
integrable function f i

e : R → R
≥0 for each edge e ∈ E and i ∈ [k].
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We will only consider flows that can arrive at its destination by time T , that
is, we require that f i

e(θ) = 0 for all θ ≥ T − τe or θ < 0.

That is, for any θ ∈ [0, T ) and any commodity i, f i
e(θ) denotes the flow rate of

commodity i going into the tail of edge e at time θ.
We now discuss on feasibility constraints for a multi-commodity flow over

time f = (f i
e) with time horizon T . Let G = (V,E) be the underlying directed

graph. Suppose that there are k types of commodities, and each commodity has
a source node si and a sink node ti.

– The capacity constraint is

∀e ∈ E, θ ∈ [0, T ), 0 ≤
k∑

i=1

f i
e(θ) ≤ ue. (4)

– Flow conservation constraints. Recall that storing flows in the intermediate
nodes may be allowed. This leads to the following weak flow conservation
constraints.

∀v ∈ V \{si, ti}, i ∈ [k], θ ∈ [0, T ],
∑

e∈δ−
v

∫ θ−τe

0

f i
e(ξ)dξ−

∑

e∈δ+
v

∫ θ

0

f i
e(ξ)dξ ≥ 0

(5)
In the above equation, when ≥ is replaced by =, the conservation constraint
is called strict.

– Demand constraints. Finally, demand constraints state that for each com-
modity i, the net flow that has reached sink ti by time T should equal its
demand di.

∀i ∈ [k],
∑

e∈δ−
ti

∫ T−τe

0

f i
e(ξ)dξ −

∑

e∈δ+
ti

∫ T

0

f i
e(ξ)dξ = di (6)

3 Our Model: Heterogeneous Multi-commodity Dynamic
Flow

In this paper, we generalise the above multi-commodity network flow over time
model by introducing speed heterogeneity among different commodities. In the
previous network flow over time model, on each edge all commodities are assumed
to have the same speed, i.e., the flows are homogeneous. We propose a model in
which commodities may have different speeds on the same edge, and we refer to
this as the heterogeneous multi-commodity flow over time model. This is achieved
by allowing an edge e to have k transit times {τ1

e , τ2
e , . . . , τk

e }, for which τ i
e is the

time needed for one unit of flow of commodity i to go through edge e. In this
paper, we also assume that the transit times τ i

e are integral, which is a realistic
assumption for most potential applications.
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Flow Feasibility. We now define the feasibility constraints of a heterogeneous
multi-commodity flow over time.

The flow conservation constraint 5 and the demand constraint 6 are defined
with regard to each commodity. So they carry over from homogeneous to het-
erogeneous setting, after changing τe to τ i

e, namely:

∀v ∈ V \ {si, ti}, i ∈ [k], θ ∈ [0, T ],
∑

e∈δ−
v

∫ θ−τ i
e

0

f i
e(ξ)dξ −

∑

e∈δ+
v

∫ θ

0

f i
e(ξ)dξ ≥ 0.

(7)

∀i ∈ [k],
∑

e∈δ−
ti

∫ T−τ i
e

0

f i
e(ξ)dξ −

∑

e∈δ+
ti

∫ T

0

f i
e(ξ)dξ = di,

(8)

We need to pay special attention to the capacity constraints. Because of the
heterogeneity of commodity speeds, it no longer suffices to only require capacity
constraints only at the entrance of each edge. That is, when k commodities move
in a common pipeline at various speeds, some fast commodity may catch up with
the slower commodities to create congestion in the middle of the edge. Figure 1
above shows a concrete example.

Therefore, we need to require that at any moment, at any point of any edge,
the sum of the rates of all flows together must not exceed the capacity of that
edge. The capacity constraint is then the following.

∀e ∈ E, θ ∈ [0, T ), α ∈ [0, 1] :
k∑

i=1

f i
e(θ − α · τ i

e) ≤ ue. (9)

The Heterogeneous Multi-commodity Flow over Time Problem. In this paper,
we focus on the problem of transporting each commodity to their respective
destinations within a pre-set time horizon.

Definition 2. An instance of the heterogeneous multi-commodity flow over
time problem, denoted by HeteroMFT, consists of the following.

Input: A network G = (V,E). For every edge e ∈ E, a capacity ue ≥ 0. There
are k commodities. For every commodity i ∈ [k], a source node si ∈ V , a sink
node ti ∈ V , and a demand di ≥ 0. For every e ∈ E and i ∈ [k], the transit
time of commodity i on e is τ i

e ≥ 0. A time horizon T ≥ 0.
Output: A feasible multi-commodity flow over time with time horizon T satis-

fying the given demands, if there exists one.

Correspondingly, the homogeneous multi-commodity flow over time Problem,
studied in e.g. [5,9], is denoted by HomoMFT.

Approximations. In Sect. 5, we will focus on FPTAS for HeteroMFT. Here, a
(1 + ε)-approximate solution to HeteroMFTmeans that the output is a feasible
multi-commodity flow over time with time horizon (1 + ε)T satisfying the given
demands.
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4 Time-Expanded Networks in the Heterogeneous Setting

4.1 Time-Expanded Networks: From Homogeneous
to Heterogeneous

As already mentioned in Sect. 1.1, a classical technique for tackling flows over
time problem is to construct time-expanded networks. The underlying principle
for using time-expanded networks lies in the conversions between feasible static
flows in the time-expanded network and feasible flows over time in the original
network. To convert feasible flows over time in the original network to feasible
static flows in the time-expanded network, we need the averaging technique. That
is, by averaging the flows in each time unit, we can start from any feasible flow
over time, to obtain a “stair-case” like flow which is also feasible and completes
within the same time horizon.

A surprising feature of the heterogeneous setting is that the averaging tech-
nique does not result in a feasible flow, when the number of commodities is
larger than 2. Even for the case of two commodities, some subtle argument is
needed. In the following, we first define time-expanded networks in the hetero-
geneous setting. As the readers will see, the time-expanded networks need to be
adjusted to accommodate different speeds, and the feasibility condition is also
more complicated due to the need to avoid collisions in the middle of the edges.

4.2 Heterogeneous Time-Expanded Networks

We now present a construction of time-expanded static networks in the hetero-
geneous setting. Let G = (V,E) be a network with capacities ui

e, transit times
τ i
e, and time horizon T . We assume T and τ i

e are integers.
First, we construct a static network GT = (NT , ET ) as follows.

– The set of nodes NT consists of T + 1 copies of the set of vertices N , labeled
from N0 to NT . For any v ∈ N and ζ = 0, 1, . . . , T , vζ in GT is the ζth copy
of node v.

– For every commodity i and every edge e = (v, w) ∈ E and ζ = 0, 1, . . . , T −τ i
e,

there is an edge ei
ζ = (vζ , wζ+τ i

e
) in ET .

– For each v ∈ N and ζ = 0, 1, . . . , T − 1, there is an edge (vζ , vζ+1). It is used
to model storage at the node.

– Finally, for each commodity i, its source node is si
0, and its sink node is tiT .

The following table summarizes the correspondences of the network structures.

Dynamic network Time-expanded network

Network G = (N, E)

GT = (NT , ET )
NT = N0 ∪ · · · ∪ Nζ ∪ · · · ∪ NT−1

ET =
⋃

e∈E{ei
0, . . . , ei

ζ , . . . , ei
T−τi

e
|i = 1, 2, . . . , k}

⋃
v∈N{(vζ , vζ+1)|ζ = 0, 1, . . . , T}

Nodes v ∈ N vi ∈ Ni

Edges e = (v, w) ∈ E ei
ζ = (vζ , wζ+τi

e
)



248 Y. Li et al.

See also Fig. 2 (a) and (b) for an instance of a dynamic network and its
corresponding time-expanded network.

Next, let us define flow feasibility in this situation. The constraints for feasi-
bility will be closely related to the construction of flows over time, so let us first
illustrate the desired static-to-dynamic conversion here.

Definition 3 (Static to flow over time conversion). Let x be a static flow
in GT in which xi(e) denotes the flow of commodity i on edge e. For ei

ζ =
(vζ , wζ+τ i

e
), we interpret the value of xi(ei

ζ) as the flow rate of commodity i
entering edge (v, w) in the time interval [ζ, ζ + 1). This gives a flow fx in the
original dynamic network.

Our goal now is to introduce appropriate constraints on the static flow in
the time-expanded network, so that the above procedure can convert it into a
feasible flow over time.

1. (Flow conservation.) This constraint is the same as for static network flows;
see Eq. 2.

2. (Each edge is exclusive to a specific commodity.) Note that for problem Het-
eroMFT, for vζ ∈ NT , every edge e = (v, w) in G is converted into k different
edges (vζ , vζ+τ i

e
) in ET , where k is the number of commodities. Since each

edge ei
ζ is GT is now catered only for the specific commodity i, we need to

add further constraints to the feasible static flow conditions to forbid other
commodities to travel along this edge.
We therefore add the following constraints

xi(ej
ζ) = 0 ∀ζ ∈ {0, 1, . . . , T − 1}, i �= j. (10)

3. (Capacity constraints at edge tails.) Again, since we split an edge e at time
ζ into k edges ei

ζ , we need to impose
∑

i∈[k]

xi(ei
ζ) ≤ ue.

4. (Capacity constraints along the edges.) The above capacity constraints at
edge tails, when interpreted in the context of the flow over time fx as defined
in Definition 3, only impose the flows not to exceed the edge capacity at the
entrance of each edge. However, the capacity constraints for a feasible flow
over time in G, as shown in Eq. 9, are defined not only at the entrance of each
edge, but also at every point along the edge; see Fig. 1 for an example where
collision happens in the middle of an edge.
To take care of that issue, let us first focus on the set of edges {ei

ζ : i ∈ [k], ζ ∈
{0, 1, . . . , T −1}} which are derived from the edge e ∈ E. To analyze collisions
happening in the middle of edges, we need to identify those (ζ1, . . . , ζk), ζi ∈
{0, 1, . . . , T}, such that there exist χi ∈ [ζi, ζi + 1), and the flows sending
commodity i at time χi arrive at the same point along the edge e at the same
time. For such (ζ1, . . . , ζk), we need to ensure that the sum of static flows
along ei

ζi
is within the capacity ue.
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At first sight, this seems to involve enumerating every point in e, leading to
infinitely many constraints. Fortunately, this can be reduced to finitely many
points in e. Thanks to the following Propostion 1, we can first compute, for
each pair of commodities j, j′ ∈ [k], every two time points ζj , ζj′ ∈ {0, . . . , T −
1}, and every edge e, whether flow of commodity j at time ζj meets with flow
of commodity j′ at time ζj′ , or catches up with commodity j′ at time ζj′ +1,
at some point α ∈ [0, 1] along e at time t. If so, for every i �= j, j′, compute
ζi such that [ζi, ζi + 1) covers α at time t. After computing such ζi’s, i ∈ [k],
we set up the constraint that

∑

i∈[k]

xi(ei
ζi

) ≤ ue. (11)

Proposition 1. Suppose flows only change rate at integral time steps. Given
α ∈ [0, 1] and time θ. For every commodity i ∈ [k], let χi be the point in time
such that χi + ατ i

e = θ, and let ζi = �χi	.
Then there exists another set of times {χ′

i ∈ [ζi, ζi +1]}, α′ ∈ [0, 1], and time
θ′, such that we have χ′

i + α′τ i
e = θ′ for each i ∈ [k], and one of the following

cases hold:

1. α′ = 0, and ∀i, j ∈ [k], ζi = ζj;
2. there exist 
 �= j ∈ [k], such that χ′

� = ζ�, χ′
j = ζj;

3. there exist 
 �= j ∈ [k], such that χ′
� = ζ�, χ′

j = ζj + 1 − ε for any small ε > 0.

Proof. If α = 0, then we have χi = χj for any i, j ∈ [k]. Since χi ∈ [ζi, ζi + 1),
we have ζi = �χi	 = �χj	 = ζj .

If α �= 0, then take 
 ∈ [k] such that χ� − ζ� is the minimum among χj − ζj ,
j ∈ [k]. For any j ∈ [k], let χ′

j = χj − (χ� − ζ�), so χ′
� = ζ�. Note that for any

i, j ∈ [k], we still have χ′
i + ατ i

e = χ′
j + ατ j

e .
If there exists j ∈ [k] and j �= 
, such that χ′

j = ζj , then case (b) holds.
Otherwise, we have χ′

j > ζj for any j �= 
.
For any δ > 0 and j ∈ [k], we have

ζ� + ατ �
e − δ = χ′

j + ατ j
e − δ.

Note that the left-hand side is ζ� + (α − δ/τ �
e )τ �

e , and the right-hand side is
χ′

j + τj
e −τ�

e

τ�
e

· δ + (α − δ/τ �
e )τ j

e , and we need to ensure that (1) α − δ/τ �
e > 0, (2)

for any j �= 
, ζj < χ′
j + τj

e −τ�
e

τ�
e

·δ, and (3) for any j �= 
, χ′
j + τj

e −τ�
e

τ�
e

·δ < ζj +1− ε

for arbitrarily small ε > 0. We now increase δ, and take χ′
j + τj

e −τ�
e

τ�
e

· δ to be the
new χ′

j for each j, until one of (1), (2), and (3) is violated.

– If (1) is violated, then we are back to the α = 0 setting.
– If (2) is violated, then we are in case (b). This means τ j

e < τ �
e , i.e. 
 is slower

than j.
– If (3) is violated, then we are in case (c). This means τ j

e > τ �
e , i.e. 
 is faster

than j.
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This concludes the proof.

After the above adjustments, we can ensure that any static flow in the time-
expanded network satisfying all the above constraints corresponds to a feasible
flow over time in the original network.

4.3 A Pseudo-Polynomial-Time Algorithm for Two Commodities

In the homogeneous setting, a well-known application of time-expanded networks
is a pseudo-polynomial-time algorithm to decide whether a feasible flow exists
with time horizon T (cf. e.g. [15, Theorem 4.2]). The key is to realise that a flow
over time can be converted to a static flow using the averaging technique, and a
static flow can be converted to a flow over time using the obvious transformation
in Definition 3.

However, it is not clear that the averaging technique can be applied to the
heterogeneous setting in general, due to the possible violations of the capacity
constraint due to heterogeneity. Interestingly, when the number of commodities
is 2, a simple argument ensures that the averaging technique still works. This
will also suggest why the averaging technique cannot work, at least not directly,
for three or more commodities.

Given an instance of the HeteroMFT problem, suppose f i, i = 1, 2, are feasible
flows over time with time horizon T . We also assume that all transit times are
integral. By averaging f i in [ζ, ζ +1) for ζ ∈ {0, 1, . . . , T − 1}, we obtain a static
flow xi on GT :

∀e ∈ E, x(ei
ζ) :=

∫ ζ+1

ζ

f i
e(ξ)dξ.

Proposition 2. Let f i and xi, i = 1, 2, be as above. Then xi’s form a feasible
flow on GT.

Proof. Note that feasible flows on GT correspond exactly to those feasible, stair-
case like, flows over time in the original network. So we need to show that the
flow over time fx corresponding to x as defined in Definition 3 form a feasible
flow over time. The flow conservation constraint clearly holds. We then examine
the capacity constraint. Fix an edge e, and suppose commodity 1 is faster than
commodity 2, i.e. τ1

e < τ2
e . Consider two flow intervals, f1

e in [ζ1, ζ1 + 1) and f2
e

in [ζ2, ζ2 + 1). Suppose the first interval catches up with the second. Then there
exists a time θ ∈ [0, T ], 0 ≤ α ≤ 1, and χ2 ∈ [ζ2, ζ2+1), such that θ−α ·τ1

e = ζ1,
and θ−α ·τ2

e = χ2. It follows that α = (ζ1−χ2)/(τ2
e −τ1

e ). Note that τ i
e, i = 1, 2,

and ζ1 are integers. So if χ2 is not an integer, α cannot be 1. We then also have
that (ζ1 − ζ2)/(τ2

e − τ1
e ) ≤ 1. Let α′ = (ζ1 − ζ2)/(τ2

e − τ1
e ). Because α′ ≤ 1, the

flow sent by f1
e at time ζ1 also catches up with the flow sent by f2

e at time ζ2 at
the α′ fraction of e. We can then use the capacity constraint 9 at the α′-fraction
of e to conclude that the averaged flows also satisfy the capacity constraint.

Proposition 2 immediately gives the following.
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Proof (Proof of Theorem 1). By a binary search, we can determine the optimal
time T ∗ for which there exists a solution to the given instance of HeteroMFT in
poly(T ∗) rounds. For each time T ′ guessed during this procedure, we construct
the time expanded network, solve the corresponding static flow problem in time
polynomial in the input size and T ′, and convert that static flow (if it is solvable)
to a dynamic one using the procedure in Definition 3. Proposition 2 ensures that
for T no less than the optimal value in the dynamic network, there exists a
feasible flow in GT . This concludes the proof.

Remark 1. When the number of commodities is more than 2, the argument to
prove Proposition 2 does not work, at least directly, due to the following. Suppose
the intervals of f i

e sent at [ζi, ζi + 1), i = 1, 2, 3, do overlap at some point. Then
we cannot ensure that the flows sent at time ζi meet at some time, which causes
difficulty as we then cannot use the dynamic capacity constraints.

5 An FPTAS for HeteroMFT

In [5], Fleischer and Skutella designed a fully polynomial-time approximation
scheme (FPTAS) for the HomoMFT problem. The key idea in their algorithm is
to convert the dynamic network into a static Δ-condensed time-expanded net-
work, whose definition we will discuss in detail later, and find a static flow in
that network to approximate the optimal flow over time.

In this section we design an FPTAS for the more general HeteroMFT prob-
lem and any number of commodities. The main ideas supporting our FPTAS
for HeteroMFT are drawn from [5]. However, because of the heterogeneity of the
commodity speeds and the possible failure of the averaging technique for more
than 2 commodities (see Sect. 4.3), it is not clear that any feasible flow over
time can be converted to a feasible static flow in the condensed time-expanded
network, which does hold in the homogeneous setting [5, Lemma 4.1]. There-
fore, though our techniques are mostly already in [5], new analyses are needed
to show that the best static flow produced by our algorithm is indeed a good
approximation to the optimal dynamic problem for HeteroMFT.

Below we first present some preliminaries that support our algorithm, and
then explain our algorithm and its analysis.

5.1 Preliminaries

Δ-Condensed T ime-Expanded Network. The size of the static time-expanded
network is linear in the value of time horizon T . Therefore, even though one
can find a static flow in that network in polynomial time, it will be polynomial
in T and therefore pseudo-polynomial in the input-size. To overcome this issue,
Fleischer and Skutella introduced in [5] the Δ-condensed time-expanded network.
More specifically, when the transit time of each commodity on each edge is always
a multiple of Δ > 0, then the time-expanded network GT can be rescaled to a
Δ-condensed time expanded network, denoted by GT /Δ, in which each unit time
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interval now has length Δ. The new network contains only T/Δ copies of N , as
depicted in Fig. 3. All capacities are also multiplied by Δ because each edge in
GT corresponds to a time interval of length Δ in GT /Δ.

Paths with Delays. In the static flow setting, the well-known flow decomposition
theorem states that a flow can be decomposed into a sum of path and cycle flows.
In the flow over time setting, such a nice decomposition may not exist in general.
Still, every infinitesimal unit of flow can be viewed as following a particular
path. Since we allow node storage, we also need to record how long it stays at
each node. This leads to the notion of paths with delays from [5, Sec. 4.6]. Let
P = (v0, . . . , v�) be a path in G, and let ι = (ι1, . . . , ι�), ιi ∈ R

≥0, be a sequence
of non-negative numbers. A path with delays P ι is understood as indicating that
a flow along P needs to stop at vj for exactly ιj time, j ∈ {1, . . . , 
}. The flow
for commodity i along P ι is then denoted by f i

P ι .
Given this notion, a flow over time f with time horizon T can be decomposed

into (possibly infinitely many) flows over time fP ι along paths with delays. In
particular, the total flow of commodity i entering e = (vj , vj+1) at time θ is

f i
e(θ) =

∑

P ι:e∈P

f i
P ι(θ − τ(P ι, e)),

where

τ(P ι, e) :=
j∑

s=1

(τ i
(vs−1,vs)

+ ιs) (12)

for e = (vj , vj+1). In addition, one can assume without loss of generality that all
paths in the decomposition are simple. This is because the flow traveling along a
cycle that visits some node v twice can also just wait at node v. Conversely, any
flow over time given in the form of fP ι along paths with delays corresponds to
a flow over time f defined on edges. Throughout the remainder of this section,
we will discuss a flow over time both in its paths with delays representation fP ι

and in its standard representation f .

5.2 Algorithm and Proof Outline

The idea of our approximation scheme is to first round up the transit times of
each commodity on each edge to the nearest multiple of Δ, for some carefully
selected Δ. Then we convert the dynamic network problem into a static Δ-
condensed time-expanded network, and solve the quickest static flow problem
on that network with the additional set of constraints 10 and 11. Finally we
convert the static flow to a feasible flow over time.

We restate Theorem 2 as below here.

Theorem 2. For any ε > 0, a (1 + ε)-approximate solution to the HeteroMFT
problem can be found in time polynomial in the input size and 1

ε .
The key to Theorem 2 is the following lemma.
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Lemma 1. For any constant ε > 0, let Δ = ε2

2nT . Let f be a heterogeneous
multi-commodity flow over time f in a dynamic network G with demand D =
(d1, . . . , dk) and time horizon T . Let T ′ = (1 + ε)4 · T .

Then there exists another dynamic network G′, obtained from G by modifying
transit and delay times, satisfying the following property: in the time-expanded
network G′T ′

/Δ, there exists a feasible static flow x such that the flow over time
fx constructed from x by Definition 3 is a feasible flow in G with time horizon
at most (1 + ε)4 · T .

Furthermore, the parameters of G′ can be computed in polynomial time.

The remaining of this section is devoted to the proof of Lemma 1.

5.3 Proof of Lemma 1

Let ε > 0, and set Δ = ε2

2nT . Starting from a flow over time f with time horizon
T in a network G, our goal is to devise a static flow x in the Δ-condensed
time-expanded network with time horizon (1+ ε) ·T . The construction of x goes
through the following four steps.

Step 1: Flow Smoothening. Briefly speaking, given any heterogeneous multi-
commodity flow over time f in network G with demand D and time horizon T ,
we can get a smoothened heterogeneous multi-commodity flow over time f̂ with
the same demand D within time horizon (1 + ε) · T and still obeys the capacity
constraints in G. Here, smooth means that the rate changes are not drastic. The
flow smoothening procedure applies to flows along paths with delays.

Definition 4. Let f be a flow over time in a network G with time horizon T ,
and fP ι be a path decomposition of f . Given ε > 0, the smoothed flow f̂ is
defined by

f̂ i
P ι(θ) =

1
εT

∫ θ

θ−εT

f i
P ι(ξ)dξ (13)

for all θ ∈ [0, (1 + ε)T ] and P ι appears in the path decomposition of f .

The smoothed flow f̂ enjoys the following property.

Proposition 3. Let f be a flow over time in a network G with time horizon T .
For any ε > 0, the smoothed flow f̂ is also a feasible flow over time with time
horizon (1 + ε)T , and for any θ ∈ [0, (1 + ε)T ], μ > 0 and commodity i,

|f̂ i
P ι(θ) − f̂ i

P ι(θ − μ)| ≤ μ

εT
uP

where uP = mine∈P ue.
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Step 2: Rounding up the Transit Times. After smoothing the flow, the
next step is to round up the transit time of each commodity on each edge to the
nearest multiple of Δ, such that the dynamic network can be feasibly converted
to a Δ-condensed time-expanded network. We need to ensure that this round-
ing procedure will not jeopardize the feasibility and optimality of the solution.
Fortunately this can be guaranteed by the smoothness property of the flow over
time.

Proposition 4. Let ε > 0 and Δ ≤ ε2

2nT . Let G̃ be the network where the transit
time of each commodity on each edge is rounded up to the nearest multiple of Δ.
We think of the smoothed flow f̂ from Definition 4 as a flow over time in G̃ with
the delay on each node also rounded up to the nearest multiple of Δ. Then this
flow satisfies the demand of each commodity and finishes with the time horizon
T̃ ≤ (1 + ε)2 · T , and the capacity constraint on each edge is violated by at most
a factor of (1 + ε).

Step 3: Construct a Condensed Time-Expanded Network. After Step
2, by averaging the flow over time f̃ over the time intervals [iΔ, (i + 1)Δ] in G̃,
we get a corresponding static flow x in the Δ-condensed time-expanded network
G̃T̃ /Δ. Because f̃ is constructed from f̂ which has been smoothened in Step 1,
this static flow x achieves demand D within time (1 + ε)2 · T , and exceeds the
capacity of edges by at most a factor of (1 + ε)2.

Proposition 5. The flow over time f̄ constructed by Definition 3 from the static
flow x in G̃T̃ /Δ achieves demand at least D = (d1, . . . , dk) with time horizon at
most (1 + ε)2 · T , and the capacity constraint on each edge is violated by at most
a factor of (1 + ε)2.

At this point, we have constructed a Δ-condensed time-expanded network
G̃T̃ /Δ and have found a static flow x in it, such that the flow over time fx

constructed from x by Definition 3 achieves demand at least D with time horizon
at most (1 + ε)2T , and the capacity constraint on each edge is violated by at
most a factor of (1 + ε)2.

Step 4: Remove the Capacity Violations. The last step is to remove the
capacity violations. To achieve this, we apply the following two procedures:

1. First if we keep the structure of the time-expanded network intact, but change
the unit time interval length from Δ to (1+ ε)2Δ, it will correspond to a new
dynamic network in which all transit times and the time horizon are increased
by a factor of (1 + ε)2. The static flow x still corresponds to a flow over time
fx in this new network with the supply and demand of each commodity also
increased by a factor of (1 + ε)2. That is, fx has time horizon (1 + ε)4T and
achieves demand (1 + ε)2D. But the capacity constraint on each edge is still
violated by at most a factor of (1 + ε)2.
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2. Next, we reduce the flow values of x on all edges by a factor of (1 + ε)2. The
resulting static flow x will achieve demand (1+ε)2D

(1+ε)2 = D, with all capacity
constraints strictly satisfied. The timespan of fx is still (1 + ε)4T .

The above four steps complete the proof of Lemma 1. 
�
With the help of Lemma 1, the proof of our main theorem becomes rather

straightforward.

Proof (Proof of Theorem 2). This proof follows the same structure of the proof
of Theorem 1. That is, we use binary search to find the smallest T , such that
in the Δ-condensed time-expanded network G′T ′

/Δ constructed from Lemma 1,
there exists a feasible static flow, which in turn implies the desired flow over
time in G.
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Abstract. A timed extension of input-driven pushdown automata (also
known as visibly pushdown automata and as nested word automata)
under the event-clock model was introduced by Nguyen and Ogawa
(“Event-clock visibly pushdown automata”, 2009), who showed that this
model can be determinized using the method of region construction.
This paper proposes a new, direct determinization procedure for these
automata: an n-state nondeterministic automaton with k different clock
constraints is transformed to a deterministic automaton with 2n2

states,

2n2+k stack symbols and the same clock constraints as in the original
automaton. The construction is shown to be asymptotically optimal with
respect to both the number of states and the number of stack symbols.

Keywords: Timed systems · input-driven pushdown automata ·
visibly pushdown automata · determinization · state complexity

1 Introduction

Timed automata (TA), introduced by Alur and Dill [2], are finite automata
operating in real time. These automata enjoy decidability of the emptiness
problem (equivalently, the state reachability problem) and are implemented as
UPPAAL [7] for safety checking. The decidability of emptiness holds under vari-
ous extensions of the model equipped with a pushdown store, such as the Dense-
Timed Pushdown Automata (DTPDA) of Abdulla et al. [1] with ages (represent-
ing local clocks), which are further analyzed by Clemente and Lasota [11].

Although the emptiness problem for timed automata is decidable, timed
automata are not closed under complementation, and their nondeterministic case
cannot generally be determinized. Their inclusion problem is decidable only in
the case of a single clock [18], and becomes undecidable for two clocks [2].

As an alternative timed device, the class of event-clock automata (ECA) was
introduced by Alur et al. [3] and further studied by Geeraerts et al. [12]: this
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class allows determinization and complementation, and hence it enjoys decidable
inclusion problem. An ECA is defined with a “prophecy clock” and a “history
clock” bound to each input symbol. The history clock ←−xa associated with an input
symbol a is always reset when a is read, and the prophecy clock −→xa predicts the
next occurrence of a.

In general, when a stack is introduced, this often destroys the decidability
of the inclusion problem, since asynchronous behavior of two stacks disrupts a
direct product of two devices. Even starting from finite automata, adding the
stack makes the inclusion undecidable.

To remedy this, a constraint on the synchronous behaviour of stacks is
imposed upon the model. The resulting input-driven pushdown automata [10,14]
(IDPDA), also known as visibly pushdown automata [5] and as nested word
automata [6], are defined over an alphabet split into three parts: left brack-
ets Σ+1, on which the automaton must push one stack symbol, right brackets
Σ−1, on which the automaton must pop one stack symbol, and neutral symbols
Σ0, on which the automaton ignores the stack. Unlike the standard pushdown
automata, IDPDA are closed under all Boolean operations, and they can be
determinized [10]. An extensive study of this model was initiated by Alur and
Madhusudan [5,6], who, in particular, established a lower bound on the deter-
minization complexity, accordingly starting a line of research on the succinctness
of description for this model [16], and also defined a Büchi-like extension for infi-
nite strings, which has also received further attention [13,17].

Event-clock visibly pushdown automata, which combine the ideas of input-
driven pushdown and event-clock automata, were proposed by Nguyen and
Ogawa [19], who proved that this model can be determinized. Their work was fol-
lowed and extended by Bhave et al. [8] and Bozzelli et al. [9]. This paper revisits
this model, with the aim to improve the determinization procedure. In addition,
the model is further extended by introducing special event clocks recording the
duration of the call/return relation. The resulting model is called event-clock
input-driven pushdown automata (ECIDPDA).

The proposed determinization procedure is direct, in the sense that it does
not rely on the classical discretization or “untime translation” method, and is
not based on the region construction, which handles the extension by the age of
a stack symbol in Bhave et al. [8]. Even though direct determization was once
used by Alur and Madhusudan [4] for determinizing event-clock finite automata
with only history clocks (←−xa), this idea, up to the authors’ knowledge, did not
receive any further development in the literature; in particular, all the existing
work on input-driven/visibly pushdown event-clock automata relies on more
sophisticated determinization constructions.

As per the proposed construction, presented in Sect. 3, any given n-state non-
deterministic automaton with k different clock constraints and with any number
of stack symbols is transformed to a deterministic automaton with 2n2

states,
2n2+k stack symbols and the same clock constraints as in the original automaton.
Furthermore, in Sect. 4, this construction is shown to be asymptotically optimal
both with respect to the number of states and with respect to the number of
stack symbols.
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2 Definitions

Event-clock automata operate on timed strings over an alphabet Σ, that is,
sequences of the form w = (a1, t1) . . . (an, tn), where a1 . . . an ∈ Σ∗ is a string,
and t1 < . . . < tn are real numbers indicating the time of the symbols’ appear-
ance.

For input-driven pushdown automata, the alphabet Σ is split into three dis-
joint classes: Σ = Σ+1∪Σ−1∪Σ0, where symbols in Σ+1 are called left brackets,
symbols in Σ−1 are right brackets, and Σ0 contains neutral symbols. An input-
driven pushdown automaton always pushes one stack symbol upon reading a
left bracket, pops one stack symbol upon reading a right bracket, and does not
access the stack on neutral symbols. Typically, a string over such an alphabet is
assumed to be well-nested with respect to its left and right brackets, but Alur
and Madhusudan [5] adapt the definition to handle ill-nested inputs.

The proposed event-clock input-driven pushdown automata (ECIDPDA)
operate on timed strings over an alphabet Σ = Σ+1∪Σ−1∪Σ0. These automata
operate like input-driven pushdown automata, and additionally can evaluate cer-
tain constraints upon reading each input symbol. These constraints refer to the
following clocks, each evaluating to a real number:

– a symbol history clock ←−xa, with a ∈ Σ, provides the time elapsed since the
symbol a was last encountered;

– a symbol prediction clock −→xa, with a ∈ Σ, foretells the time remaining until
the symbol a will be encountered next time;

– a stack history clock ←−−−xpush, defined on a right bracket, evaluates to the time
elapsed since the matching left bracket;

– a stack prediction clock −−→xpop, defined on a left bracket, foretells the time
remaining until the matching right bracket.

These values are formally defined as follows.

Definition 1. Let Σ = Σ+1∪Σ−1∪Σ0 be an alphabet. The set of clocks over Σ
is C(Σ) = {←−xa | a ∈ Σ }∪{−→xa | a ∈ Σ }∪{←−−−xpush,

−−→xpop}. Then the value of a clock
from C(Σ) on a timed string w = (a1, t1) . . . (an, tn) at position i ∈ {1, . . . , n} is
defined as follows.

←−xa = ti − tj , for greatest j < i with aj = a
−→xa = tj − ti, for least j > i with aj = a

←−−−xpush = ti − tj , if aj ∈ Σ+1 andai ∈ Σ−1 match each other
−−→xpop = tj − ti, if ai ∈ Σ+1 and aj ∈ Σ−1 match each other

In each case, if no such j exists, then the value of the clock is undefined.

The original model by Nguyen and Ogawa [19] used only symbol history
clocks ←−xa and symbol prediction clocks −→xa. Stack history clocks ←−−−xpush were first
introduced by Bhave et al. [8], who called them the age of stack symbols. As
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Fig. 1. Clock values for the string w = (0.1, c)(0.2, <)(0.4, <)(0.5, c)(0.7, >)(0.8, >)
(1, d), at the last right bracket, as in Example 1.

compared to the definition of Bhave et al. [8], another clock type, the stack
prediction clock −−→xpop, has been added to the model for symmetry.

A clock constraint is a logical formula that restricts the values of clocks at the
current position: clock values can be compared with constants, and any Boolean
combination of such conditions can be expressed.

Definition 2. Let Σ = Σ+1 ∪ Σ−1 ∪ Σ0 be an alphabet. The set of clock con-
straints over Σ, denoted by Φ(Σ), consists of the following formulae.

– For every clock C ∈ C(Σ) and for every non-negative constant τ ∈ R, the
following are atomic clock constraints: C � τ ; C � τ .

– If ϕ and ψ are clock constraints, then so are (ϕ ∨ ψ), (ϕ ∧ ψ) and ¬ϕ.

Let w = (a1, t1) . . . (an, tn) be a timed string, let i ∈ {1, . . . , n} be a position
therein. Each clock constraint can be either true or false on w at position i.

– C � τ is true if the value of C on w at position i is defined and is at most τ .
– C � τ is true if the value of C on w at i is defined and is at least τ .
– (ϕ ∨ ψ) is true on w at i, if so is ϕ or ψ;
– (ϕ ∧ ψ) is true on w at i, if so are both ϕ and ψ;
– ¬ϕ is true on w at i, if ϕ is not.

The following abbreviations are used: C = τ stands for (C � τ ∧ C � τ);
C < τ stands for (C � τ ∧ ¬(C � τ)); C > τ stands for (C � τ ∧ ¬(C � τ)).

Example 1. Let Σ = Σ+1 ∪ Σ−1 ∪ Σ0, with Σ+1 = {<}, Σ−1 = {>} and
Σ0 = {c, d}. Let w = (0.1, c)(0.2, <)(0.4, <)(0.5, c)(0.7, >)(0.8,>)(1, d) be a
well-nested timed string over Σ, illustrated in Fig. 1. Then, the values of the
clocks at position 6 (the last right bracket) are: ←−−−xpush = 0.8−0.2 = 0.6, ←−x< = 0.4,←−xc = 0.3, ←−x> = 0.1, −→xd = 1 − 0.8 = 0.2, and ←−xd, −→x<, −→xc, −→x>, −−→xpop are undefined.
Accordingly, the clock constraint ←−−−xpush > 0.1 ∨ −→xc � 0 is true, whereas ←−xc >
0.1 ∧ −→xd < 0.2 is false.
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An event-clock automaton is equipped with a finite set of such clock con-
straints. At each step of its computation, it knows the truth value of each of
them, and can use this information to determine its transition. The following
definition is based on Nguyen and Ogawa [19] and on Bhave et al. [8].

Definition 3. A nondeterministic event-clock input-driven pushdown automa-
ton (ECIDPDA) is an octuple A = (Σ+1, Σ0, Σ−1, Q,Q0, Γ, 〈δa〉a∈Σ , F ), where:

– Σ = Σ+1 ∪ Σ−1 ∪ Σ0 is an input alphabet split into three disjoint classes;
– Q is a finite set of states;
– Γ is the pushdown alphabet;
– Q0 ⊆ Q is the set of initial states;
– for each neutral symbol c ∈ Σ0, the state change is described by a partial

function δc : Q × Φ(Σ) → 2Q;
– the transition function by each left bracket symbol < ∈ Σ+1 is δ< : Q×Φ(Σ) →

2Q×Γ , which, for a given current state and the truth value of clock constraints,
provides zero or more transitions of the form (next state, symbol to be pushed);

– for every right bracket symbol > ∈ Σ−1, there is a partial function δ> : Q ×
(Γ ∪ {⊥}) × Φ(Σ) → 2Q specifying possible next states, assuming that the
given stack symbol is popped from the stack, or the stack is empty (⊥);

– F ⊆ Q is the set of accepting states.

The domain of the transition function by each symbol must be finite.
An accepting computation of A on a timed string w = (a1, t1) . . . (an, tn)

is any sequence (q0, α0), (q1, α1), . . . , (qn, αn), with q0, . . . , qn ∈ Q, and
α0, . . . , αn ∈ Γ ∗, that satisfies the following conditions.

– It begins in an initial state q0 ∈ Q0 with the empty stack, α0 = ε.
– For each i ∈ {1, . . . , n}, with ai = c ∈ Σ0, there exists a clock constraint ϕi

that is true on w at position i, with qi ∈ δc(qi−1, ϕi) and αi = αi−1.
– For each i ∈ {1, . . . , n}, with ai = < ∈ Σ+1, there exists a clock constraint ϕi

that is true on w at position i, with (qi, s) ∈ δ<(qi−1, ϕi) and αi = sαi−1 for
some s ∈ Γ .

– For each i ∈ {1, . . . , n}, with ai = > ∈ Σ−1, if αi−1 = sβ for some s ∈ Γ and
β ∈ Γ ∗, then there exists a clock constraint ϕi that is true on w at position
i, with qi ∈ δ>(qi−1, s, ϕi) and αi = β

– For each i ∈ {1, . . . , n}, with ai = > ∈ Σ−1, if αi−1 = ε, then there exists a
clock constraint ϕi that is true on w at position i, with qi ∈ δ>(qi−1,⊥, ϕi)
and αi = ε.

– The computation ends in an accepting state qn ∈ F with any stack contents.

The language recognized by A, denoted by L(A), is the set of all timed strings,
on which A has at least one accepting computation.

Definition 4. A nondeterministic event-clock input-driven pushdown automa-
ton A = (Σ+1, Σ0, Σ−1, Q,Q0, Γ, 〈δa〉a∈Σ , F ) is said to be deterministic if the
following conditions hold.
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1. There is a unique initial state: |Q0| = 1.
2. Every transition function δa, with a ∈ Σ0 ∪ Σ+1, satisfies |δa(q, ϕ)| � 1 for

all q ∈ Q and ϕ ∈ Φ(Σ), and whenever δa(q, ϕ) and δa(q, ϕ′), with ϕ �= ϕ′,
are both non-empty, the clock constraints ϕ and ϕ′ cannot both be true at the
same position of the same string.

3. Similarly, every transition function δ>, with > ∈ Σ−1, satisfies |δ>(q, s, ϕ)| �
1 for all q ∈ Q, s ∈ Γ ∪ {⊥} and ϕ ∈ Φ(Σ), and whenever δc(q, s, ϕ) and
δ(q, s, ϕ′), with ϕ �= ϕ′, are both non-empty, the clock constraints ϕ and ϕ′

cannot both be true at the same position of the same string.

The first result of this paper is that nondeterministic event-clock input-driven
pushdown automata can be determinized. Determinization results for a very sim-
ilar model were earlier given by Nguyen and Ogawa [19] and by Bhave et al. [8].
However, their constructions relied on the method of region construction, in
which the space of clock values is discretized. On the other hand, the construc-
tion in the present paper has the benefit of being direct, in the sense that the
transition function for a deterministic automaton directly simulates the transi-
tions of a nondeterministic automaton. Later it will be proved that this easier
construction is also optimal with respect to the number of states and stack sym-
bols. The proposed construction is not much more difficult than the construction
for standard input-driven pushdown automata, without time.

3 Direct Determinization of Event-Clock IDPDA

The classical construction for determinizing a standard (untimed) input-driven
pushdown automaton [6,10], is based upon considering a nondeterministic
automaton’s behaviour on a left bracket and on a matching right bracket at
the same time, while reading the right bracket. This is achieved by computing
a behaviour relation R ⊆ Q × Q of the original automaton inside brackets, and
then using it to simulate these two moments in the computation at once. In this
way, the stack symbol pushed while reading the left bracket is matched to the
symbol popped while reading the right bracket, and all possible computations
of this kind can be considered at once.

In the event-clock case, the nondeterministic decisions made on a left bracket
are based upon the clock values at that time, and if the simulation of these deci-
sions were deferred until reading the matching right bracket, then those clock
values would no longer be available. Since event-clock automata cannot manip-
ulate clock values explicitly, they, in particular, cannot push the clock values
onto the stack for later use. What can be done is to test all elementary clock
constraints while reading the left bracket, store their truth values in the stack,
and later, upon reading the right bracket, use this information to simulate the
behaviour of the original automaton on the left bracket. This idea is implemented
in the following construction, which uses the same set of states as the classical
construction [6,10], but requires more complicated stack symbols.
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Theorem 1. Let A = (Σ+1, Σ0, Σ−1, Q,Q0, Γ, 〈δa〉a∈Σ , F ) be a nondetermin-
istic event-clock input-driven pushdown automaton. Let Ψ be the set of atomic
constraints used in its transitions. Then there exists a deterministic event-clock
input-driven pushdown automaton with the set of states Q′ = 2Q×Q, and with
the pushdown alphabet Γ ′ = 2Q×Q × Σ+1 × 2Ψ , which recognizes the same set of
timed strings as A.

Proof. States of the deterministic automaton B are sets of pairs (p, q) ∈ Q × Q,
with each pair meaning that there is a computation of the original automaton
A on the longest well-nested suffix of the input that begins in the state p and
ends in the state q. The initial state of B is q′

0 = { (q0, q0) | q0 ∈ Q0 }.
For a neutral symbol c ∈ Σ0 and a state P ∈ Q′, the transition δ′

c(P )
advances all current computations traced in P by the next symbol c. Each com-
putation continues by its own transition, which requires a certain clock con-
straint to be true. Whether each clock constraint ϕ ∈ Φ(Σ) is true or false, can
be deduced from the truth assignment to the atomic constraints. For every set of
atomic constraints S ⊆ Ψ , let ξS =

∧
C∈S C ∧ ∧

C∈Ψ\S ¬C be a clock constraint
asserting that among all atomic constraints, exactly those belonging to S are
true. Then, for every set S, the new automaton has the following transition.

δc(P, ξS) = { (p, q′) | ∃(p, q) ∈ P, ∃ϕ ∈ Φ(Σ) : q′ ∈ δc(q, ϕ), ϕ is true under S }
On a left bracket < ∈ Σ+1, the transition of B in a state P ∈ Q′ pushes the

current context of the simulation onto the stack, and starts the simulation afresh
at the next level of brackets, where it will trace the computations beginning
in different states p′ ∈ Q. A computation in a state p′ is started only if any
computations of A actually reach that state. In addition, B pushes the current
left bracket (<), as well as the truth value of all atomic constraints at the present
moment, S ⊆ Ψ . This is done in the following transitions, defined for all S ⊆ Ψ .

δ′
<(P, ξS) =

({
(p′, p′)

∣
∣ ∃(p, q) ∈ P, ∃ϕ ∈ Φ(Σ) : ϕ is true under S,

p′ ∈ δ<(q, ϕ)
}
, (P,<, S)

)

If a matching right bracket (>) is eventually read, then B shall pop (P,<, S)
from the stack and reconstruct what has happened to each of the computations
of A in P at this point and further on. On the other hand, if this left bracket
(<) is unmatched, then the acceptance shall be determined on the basis of the
computations traced on the inner level of brackets.

When B encounters a matched right bracket > ∈ Σ−1 in a state P ′ ⊆
Q × Q, it pops a stack symbol (P,<, S) ∈ Γ ′ containing the matching left
bracket (< ∈ Σ+1), the data on all computations on the current level of brackets
simulated up to that bracket (P ⊆ Q × Q), and the truth value of all atomic
clock constraints at the moment of reading that bracket (S ⊆ Ψ).

Then, each computation in P is continued by simulating the transition by
the left bracket (<), the behaviour inside the brackets stored in P ′, and the
transition by the right bracket (>), all at once. Let u<v> be the longest well-
nested suffix of the string read so far. Every computation of A on u, which begins
in a state p and ends in a state q, is represented by a pair (p, q). Upon reading
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Fig. 2. (left) A computation of a nondeterministic event-clock IDPDA; (right) Its sim-
ulation by a deterministic event-clock IDPDA.

the left bracket (<), the automaton A makes a transition to a state p′, pushing
a stack symbol s, along with checking a clock constraint ϕ. The automaton B
can now check the same clock constraint by using the set S of atomic clock
constraints that held true at the earlier left bracket (<). For every set of atomic
constraints S′ ⊆ Ψ ′, the following transition is defined (Fig. 2).

δ′
>(P ′, (P,<, S), ξS′) =

{
(p, q′′)

∣
∣

∃(p, q) ∈ P,∃(p′, q′) ∈ P ′,∃s ∈ Γ,∃ϕ,ϕ′ ∈ Φ(Σ) : ϕ is true under S,

(p′, s) ∈ δ<(q, ϕ), ϕ′ is true under S′, q′′ ∈ δ>(q′, s, ϕ′)
}

When B reads an unmatched right bracket > ∈ Σ−1 while in a state
P ⊆ Q × Q, it continues the existing computations on the new bottom level of
brackets.

δ>(P,⊥, ξS) = { (p′, p′) | ∃(p, q) ∈ P, ∃ϕ : p′ ∈ δ>(q,⊥, ϕ), ϕ is true under S }

The set of accepting states reflects all computations of A ending in an
accepting state.

F ′ = {P ⊆ Q × Q | there is a pair (p, q) in P, with q ∈ F }

A formal correctness claim for this construction reads as follows.

Claim. Let uvw be a timed string, where v is the longest well-nested suffix of
uv, and let P ⊆ Q×Q be the state reached by B on uvw after reading uv. Then
a pair (p, q) is in P if and only if there is a computation of A on uvw that passes
through the state p right after reading u, and later, after reading the following
v, enters the state q.

The claim can be proved by induction on the bracket structure of an input
string.

Applying the claim to the whole input string shows that B accepts this string
if and only if one of the computations of A on the same input string is accepting.

��
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It is interesting to note that the above determinization construction does not
rely on the exact form of clock constraints: the resulting deterministic automaton
checks only the constraints used by the original nondeterministic automaton,
and only communicates the results through the stack in the form of Boolean
values. Therefore, the same construction would apply verbatim for any kind of
constraints on the pair (input string, current position) expressible in the model.
In particular, the extended model of Bozzelli et al. [9] can be determinized in
the same way.

Another thing worth mentioning is that for the particular set of clock con-
staints assumed in this paper, the determinization construction in Theorem 1
can be improved to eliminate all references to the stack prediction clock (−−→xpop),
at the expense of using more states. This construction shall be presented in the
upcoming full version of this paper.

4 A Lower Bound on the Determinization Complexity

The timed determinization construction in Theorem 1 produces 2n2
states and

2n2+k stack symbols, where n is the number of states in the nondeterministic
automaton and k is the number of atomic clock constraints. It shall now be
proved that this construction is asymptotically optimal. The following theorem,
proved in the rest of this section, is a timed extension of a result by Okhotin,
Piao and Salomaa [15, Thm. 3.2].

Theorem 2. For every n and for every k, there is an O(n)-state nondetermin-
istic ECIDPDA over an alphabet of size k + O(1), with nk stack symbols and k
atomic constraints referring only to symbol history clocks, such that every deter-
ministic ECIDPDA recognizing the same timed language must have at least 2n2

states and at least 2n2−O(n)+k stack symbols.

The automaton is defined over the following alphabet: Σ+1 = {<},
Σ−1 = {>}, Σ0 = {a, b, c,#} ∪ { ei | 1 � i � k }. For a set of pairs R =
{(i1, j1), . . . , (i�, j�)} ⊆ {1, . . . , n}2, let uR ∈ {a, b,#}∗ be the string that lists
all pairs in R in the lexicographical order, under the following encoding.

uR = #ab#ai1bj1 #ai2bj2 . . . #ai�bj�#ab

For every set of symbols X = {ei1 , . . . , ei�
} ⊆ {e1, . . . , ek}, let vX =

e1 . . . ekei1 . . . ei�
be the string that first lists all the symbols in {e1, . . . , ek},

and then only the symbols in X.
Now, let m � 1 be the number of levels in the string to be constructed,

let s1, . . . , sm, sm+1 ∈ {1, . . . , n} be numbers, let R1, . . . , Rm ⊆ {1, . . . , n}2 be
relations, and let X1, Y1, . . . , Xm, Ym ⊆ {e1, . . . , ek} be 2m sets of symbols. This
information is encoded in the following string.

w = vX1<uR1vX2<uR2 . . . vXm
<uRm︸ ︷︷ ︸

w1

csm+1vYm
>csm . . . vY2>cs2vY1>cs1

︸ ︷︷ ︸
w2
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Fig. 3. A nondeterministic event-clock IDPDA checking the validity of a well-formed
string.

The string is made timed by saying that the duration of each named substring
is 1 time unit, and in each substring vXi

, its first k symbols occur more than 0.5
time units earlier than the subsequent left bracket (<), whereas its remaining
symbols representing the elements of Xi occur less than 0.5 time units earlier
than the left bracket. Similarly, in each string vYi

, its first k symbols occur more
than 0.5 time units earlier than the next right bracket (>), while its remaining
symbols occur less than 0.5 time units earlier than the bracket. This allows an
event-clock automaton to see the set Xi using clock constraints while reading
the left bracket (<), and to see Yi while at the right bracket (>). For the clock
constraints not to see anything else, the first k symbols of vX , and the first and
the last three symbols uR, occur at predefined time independent of X and R.

A timed string is said to be well-formed if it is defined as above, for some m,
si, Ri, Xi and Yi. A well-formed string is valid, if (si, si+1) ∈ Ri and Xi ∩Yi �= ∅

for each i.

Lemma 1. For every n and k, there exists a nondeterministic ECIDPDA using
O(n) states, nk stack symbols and k clock constraints, which accepts every valid
well-formed string and does not accept any invalid well-formed string.

Proof (a sketch). The automaton operates as in Fig. 3. At the left bracket fol-
lowing each vXi

, it guesses si and ei, using a clock constraint ←−xei
< 1 to check

that ei ∈ Xi, pushes the pair (si, ei) and remembers si in its state. While reading
uRi

, it guesses any si+1 with (si, si+1) ∈ Ri and remembers si+1 in its state.
On each csi+1 , the automaton checks that the current state is si+1 and forgets
its value. On the following right bracket, the automaton pops the pair (si, ei),
verifies that ei ∈ Yi using a constraint ←−xei

< 1, and keeps si in its current state.
��

Lemma 2. For every n and k, every deterministic ECIDPDA that accepts every
valid well-formed string and does not accept any invalid well-formed string must
have at least 2n2

states.

Although the bound is the same as in the untimed case [15], an event-clock
automaton could potentially use its clocks to reduce the number of states. Still,
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it is proved that on a string v{e1}<uRctv{e1}>cs, after reading uR, a determin-
istic automaton must remember the entire relation R in its internal state, for
otherwise it would not be able to check whether the pair (s, t) is in R, as no
information on R could be obtained using any clock constraints.

Lemma 3. For every n and k, every deterministic ECIDPDA that accepts every
valid well-formed string and does not accept any invalid well-formed string must
have at least 2n2−o(1)+k stack symbols.

Proof. The proof is modelled on the proof by Okhotin, Piao and Salomaa [15,
Lemma 3.4], with the clock constraints added. The argument uses binary rela-
tions that are both left-total and right-total: that is, relations R ⊆ {1, . . . , n}2
in which, for every x ∈ {1, . . . , n}, there is an element y with (x, y) ∈ R, and,
symmetrically, for every y, there is an element x with (x, y) ∈ R. There are at
least 2n2 − 2n · 2n(n−1) = 2n2−O(n) such relations.

Fix the number of levels m � 1, let R1, . . . , Rm ⊆ {1, . . . , n}2 be left- and
right-total relations, and let X1, . . . , Xm ⊆ {e1, . . . , ek} be non-empty sets of
symbols. These parameters define the first part w1 of a well-formed string. It is
claimed that, after reading w1, a deterministic automaton somehow has to store
all relations R1, . . . , Rm and all sets X1, . . . , Xm in the available memory: that
is, in m stack symbols and in one internal state.

Suppose that, for some R1, . . . , Rm, R′
1, . . . , R

′
m ⊆ {1, . . . , n}2 and

X1, . . . , Xm,X ′
1, . . . , X

′
m ⊆ {e1, . . . , ek}, with (R1, . . . , Rm,X1, . . . , Xm) �=

(R′
1, . . . , R

′
m,X ′

1, . . . , X
′
m), the automaton, after reading the corresponding first

parts w1 and w′
1, comes to the same state with the same stack contents.

w1 = vX1<uR1vX2<uR2 . . . vXm
<uRm

w′
1 = vX′

1
<uR′

1
vX′

2
<uR′

2
. . . vX′

m
<uR′

m

First, as in the argument by Okhotin, Piao and Salomaa [15, Lemma 3.4],
assume that these parameters differ in an i-th relation, with (s, t) ∈ Ri \R′

i. Let
si = s. Since all relations Ri−1, . . . , R1 are right-total, there exists a sequence
of numbers si−1, . . . , s1, with (sj , sj+1) ∈ Rj for all j ∈ {1, . . . , i − 1}. Similarly,
let si+1 = t. Since the relations Ri+1, . . . , Rm are left-total, there is a sequence
si+2, . . . , sm+1, with (sj , sj+1) ∈ Rj for all j ∈ {i + 1, . . . , m}. Construct the
following continuation for w1 and w′

1.

w2 = csm+1vXm
>csm . . . vX2>cs2vX1>cs1

The concatenation w1w2 is then well-formed and valid, whereas the concatena-
tion w′

1w2 is well-formed and invalid, because (si, si+1) /∈ R′
i. But, while reading

w2, the automaton cannot tell w1 from w′
1 using history clocks, and thus the

automaton either accepts both concatenations or rejects both of them, which is
a contradiction.

Now assume that the prefixes w1 and w′
1 use the same relations R1, . . . , Rm

and differ in an i-th set, with e ∈ Xi \ X ′
i. Since all relations are left-total, there

exists a sequence of numbers s1, . . . , sm, sm+1, with (sj , sj+1) ∈ Rj = R′
j for all
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j ∈ {1, . . . , m}. This time, the continuation includes the sequence of numbers
and takes all sets Xj from w1, except for Xi, which is replaced by {e}.

w2 = csm+1vXm
>csm . . . vXi+1>csi+1v{e}>csivXi−1>csi−1 . . . vX1>cs1

Then, both concatenations w1w2 and w′
1w2 are well-formed. However, the con-

catenation w1w2 is valid, whereas w′
1w2 is invalid, because X ′

i ∩ {e} = ∅. Hence
the automaton again either accepts or rejects both strings, and a contradiction
is obtained.

This shows that, for each m � 1, the automaton must be able to reach at
least (2n2 −2n ·2n(n−1))m(2k −1)m distinct configurations after reading different
strings of the given form. Then, |Γ |m · |Q| cannot be less than this number, and
for m large enough this inequality holds only if |Γ | � 2n2−o(1)+k. ��

The proof of Theorem 2 follows from Lemmata 1–3. It implies that the
determinization construction in Theorem 1 is asymptotically optimal both with
respect to the number of states and to the number of stack symbols.

Acknowledgement. The authors are grateful to the anonymous reviewers for point-
ing out numerous shortcomings of the original submission.
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over Simple Mean-Payoff Games
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Abstract. We study the algorithm of Gurvich, Karzanov and
Khachyian (GKK algorithm) when it is ran over mean-payoff games with
no simple cycle of weight zero. We propose a new symmetric analysis,
lowering the O(n2N) upper-bound of Pisaruk on the number of itera-
tions down to N + E+ + E− ≤ nN , where n is the number of vertices,
N is the largest absolute value of a weight, and E+ and E− are respec-
tively the largest finite energy and dual-energy values of the game. Since
each iteration is computed in O(m), this improves on the state of the art
pseudopolynomial O(mnN) runtime bound of Brim, Chaloupka, Doyen,
Gentilini and Raskin, by taking into account the structure of the game
graph. We complement our result by showing that the analysis of Dorf-
man, Kaplan and Zwick also applies to the GKK algorithm, which is
thus also subject to the state of the art combinatorial runtime bound of
O(m2n/2).

Keywords: Mean-payoff games · Symmetric algorithm · GKK
algorithm · Pseudopolynomial

1 Introduction

Mean-Payoff and Energy Games. In the games under study, two players,
Min and Max, take turns in moving a token over a sinkless finite directed graph
whose edges are labelled by (potentially negative) integers, interpreted as payoffs
from Min to Max. In a mean-payoff game, the players aim to optimise the average
payoff in the long run. When playing an energy game, Min and Max optimise
the profile upper-bound which takes values in [0,+∞]; in a dual-energy game,
the profile lower-bound in [−∞, 0] comes under scrutiny.

These three games are determined [12]: for each initial vertex v, there is a
value x such that starting from v, the minimiser can ensure an outcome ≤ x
whereas the maximiser can ensure a least x. They are moreover uniformly posi-
tionally determined [2,7] which means that the players can achieve the optimal
values from every vertex even when restricted to a single strategy with no mem-
ory. We refer to Fig. 1 for a complete example.

In this paper, we are interested in solving the threshold problem for mean-
payoff games: given a game and an initial vertex, decide whether its value is ≤ 0.
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Fig. 1. Example of a game; circles and squares represent vertices which respectively
belong to Min and Max. Mean-payoff values from left to right are −2, −2, − 1

2
, − 1

2
, 1

and 1, and mean-payoff-optimal positional strategies for both players are identified in
bold. Energy values are 0, 2, 9, 0, ∞ and ∞, and energy-optimal strategies are given
by arrows with double heads. Dual energy values are −∞, −∞, −∞, −∞, 0 and 0; the
bold strategy also gives an optimal strategy in the dual-energy game.

As a consequence of positional determinacy, the mean-payoff value of a vertex
is non-positive if and only if the energy value is finite [3]. In fact, all state of
the art algorithms [1,3,6] for the threshold problem – further discussed below –
actually go through computing the energy values. The best algorithms for the
more general problems of computing the exact values or synthesising optimal
strategies in the mean-payoff game also rely on solving many auxiliary energy
games [5].

Positional strategies achieving positive or non-positive values can be checked
in polynomial time, and therefore the problem belongs to NP ∩ coNP. Despite
numerous efforts, no polynomial algorithm is known. Mean-payoff games are
known [15] to be more general than parity games [8,13] which enjoy a simi-
lar complexity status but were recently shown to be solvable in quasipolyno-
mial time [4]. It is however unlikely that algorithms for solving parity games in
quasipolynomial time generalise to mean-payoff games [9].

We use n for the number of vertices, m ≥ n for the number of edges, and N
for the maximal absolute value of a weight. We will say that a runtime bound
(or an algorithm) is combinatorial if it does not depend on N , and that it is
pseudopolynomial if it is polynomial in n and N .

Although such a terminology was not introduced at that time, the first algo-
rithm for solving energy games is due to Gurvich, Karzanov and Khachyian [11].
They used such an algorithm, which we will call the GKK algorithm, as a sub-
routine in a dichotomy for computing the values in the mean-payoff game. The
GKK algorithm is based on iterating potential transformations, each of which
require O(m) operations. From their proof of termination, one can immediately
extract an upper bound of O(n2n) on the number of iterations, which is easily
improved to O(2n) with a slightly refined analysis. The results of Pisaruk [14] in
a more general setting imply a pseudopolynomial bound of O(n2N) on the num-
ber of iterations of the GKK algorithm, aligning its worst case runtime bound
with that of Zwick and Paterson [17].
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The current state-of-the-art combinatorial algorithm is the randomised strat-
egy improvement algorithm of Björklund and Vorobiov [1] which has runtime
min(O(mn2N), 2O(

√
n log n)). The pseudopolynomial bound was later improved

by Brim, Chaloupka, Doyen, Gentilini and Raskin [3] by reduction to energy
games to O(mnN) with a deterministic value iteration algorithm. This tech-
nique was recently refined by Dorfman, Kaplan and Zwick [6] who proposed an
acceleration of the algorithm which runs in time O(min(mnN,m2n/2)). Cur-
rently, this is the best known deterministic algorithm for the threshold problem,
both in terms of combinatorial and pseudopolynomial bounds; in particular, no
deterministic subexponential algorithm is known to this day.

Our Contribution. We propose to analyse the GKK algorithm when it is
ran over a simple mean-payoff game, meaning, one which has no simple cycle
of weight zero. Simple mean-payoff games arise directly when translating from
parity games; moreover one can reduce in general to a simple game with a multi-
plicative blow-up of n on the largest weight N . We give a completely symmetric
presentation of the GKK algorithm in this case, and a novel symmetric analysis
based on energy and dual-energy values.

Our main result is a novel bound of N +E++E− on the number of iterations
of the GKK algorithm over simple games, where E+ and E− are respectively
the maximal finite energy and dual-energy values among vertices. This quantity
is always smaller than1 nN , and therefore the GKK algorithm is at least as
efficient in this case as the state of the art value iteration algorithms [3,6].

In practice however, N+E++E− may be much smaller than nN ; for instance
in the game of Fig. 1, we have N + E+ + E− = 8 + 9 + 0 = 17 whereas nN =
48. It is very easy to forge examples where the difference is much higher; we
believe that for many natural classes of games it holds that N + E+ + E− =
o(nN). Moreover, the value iteration algorithms rely on using nN as a threshold
beyond which energy values are considered to be infinite, and therefore they
often display runtime Ω(nN) when there are vertices with positive mean-payoff
value. Our result indicates that the GKK algorithm avoids this drawback, all
the while retaining (and often improving, as explained above) the state of the
art pseudopolynomial runtime bound, at least for simple games.

We complement our main bound by showing that the analysis of [6] can
also be applied to the GKK algorithm, establishing a combinatorial O(2n/2)
bound on the number of iterations. Hence the GKK algorithm also matches the
combinatorial state of the art for deterministic algorithms (here, the fact that
simple arenas are used is not a restriction, since the reduction only blows up the
size of the weights). We also believe that the analysis of Dorfman, Kaplan and
Zwick is conceptually simpler (and completely symmetric) when instantiated to
the GKK algorithm.
1 To achieve this bound, let n+ and n− be respectively the number of vertices with

positive and negative mean-payoff value (in a simple game, there is no vertex with
value 0). It is a standard fact (see also Corollary 1) that E+ ≤ (n+ − 1)N , and
likewise E− ≤ (n− − 1)N ; the bound follows.
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In Sect. 2, we formally introduce the necessary definitions and concepts.
Section 3 presents the GKK algorithm over simple games, and Sect. 4 pro-
vides the novel pseudopolynomial bound. In Sect. 5, the combinatorial bound
is derived.

2 Preliminaries

In this preliminary section, we introduce mean-payoff and energy games, poten-
tial reductions, and discuss simple games.

Mean-Payoff and Energy Games. In this paper, a game is a tuple G =
(G,w, VMin, VMax), where G = (V,E) is a finite directed graph with no sink,
w : E → Z is a labelling of its edges by integer weights, and VMin, VMax is
a partition of V . As in the introduction, we use n,m and N respectively for
|V |, |E| and maxe |w(e)|; we say that vertices in VMin belong to Min while those
in VMax belong to Max. We now fix a game G = (G,w, VMin, VMax).

A path is a (possibly empty, possibly infinite) sequence of edges π = e0e1 . . .
with matching endpoints: if ei+1 = vi+1vi+2 is defined then its first component
vi+1 matches the second component of ei. For convenience, we often write v0 →
v1 → v2 → . . . for the path e0e1 · · · = (v0v1)(v1v2) . . . . Given a finite or infinite
path π = e0e1 . . . we let w(π) = w(e0)w(e1) . . . denote the sequence of weights
appearing on π. The sum of a finite path π is the sum of the weights appearing
on it, we denote it by sum(π).

Given a finite or infinite path π = e0e1 · · · = v0 → v1 → . . . and an integer
k ≥ 0, we let π<k = e0e1 . . . ek−1 = v0 → v1 → . . . → vk, and we let π≤k =
π<k+1. Note that π<0 is the empty path, and that π<k has length k in general:
it belongs to Ek. We say that π starts in v0, and when it is finite and of length k
that it ends in vk. By convention, the empty path starts and ends in all vertices.
A cycle is a finite path which starts and ends in the same vertex. A finite path
v0 → v1 → . . . → vk is simple if there is no repetition in v0, v1, . . . , vk−1; note
that a cycle may be simple. We let Πω

v denote the set of infinite paths starting
in v.

We use R
±∞ and Z

±∞ to denote respectively R ∪ {−∞,+∞} and Z ∪
{−∞,∞}. A valuation is a map val : Z

ω → R
±∞ which assigns a potentially infi-

nite real number to infinite sequences of weights. The three valuations which are
studied in this paper are the mean-payoff, energy, and dual-energy valuations,
respectively given by

MP(w0w1 . . . ) = lim supk
1
k

∑k−1
i=0 wi ∈ R

En+(w0w1 . . . ) = supk

∑k−1
i=0 wi ∈ [0,∞]

En−(w0w1 . . . ) = infk

∑k−1
i=0 wi ∈ [−∞, 0].

A strategy for Min is a map σ : VMin → E such that for all v ∈ VMin, it holds
that σ(v) is an edge outgoing from v. We say that a (finite or infinite) path
π = e0e1 · · · = v0 → v1 → . . . is consistent with σ if whenever ei = vivi+1
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is defined and such that vi ∈ VMin, it holds that ei = σ(vi). We write in this
case π |= σ. Strategies for Max are defined similarly and written τ : VMax → E.
Paths consistent with Max strategies are defined analogously and also denoted
by π |= τ .

Theorem 1 ([2,7]). For each val ∈ {MP,En+,En−}, there exist strategies σ0

for Min and τ0 for Max such that for all v ∈ V we have

sup
π|=σ0

val(w(π)) = inf
σ

sup
π|=σ

val(w(π)) = sup
τ

inf
π|=τ

val(w(π)) = inf
π|=τ0

val(w(π)),

where σ, τ and π respectively range over strategies for Min, strategies for Max,
and infinite paths from v.

The quantity defined by the equilibrium above is called the value of v in
the val game, and we denote it by valG(v) ∈ R

±∞; the strategies σ0 and τ0
are called val-optimal, note that they do not depend on v. The following result
relates the values in the mean-payoff and energy games; this direct consequence
of Theorem 1 was first stated in [3].

Corollary 1 ([3]). For all v ∈ V it holds that

MPG(v) ≤ 0 ⇐⇒ En+
G (v) < ∞ ⇐⇒ En+

G (v) ≤ (n − 1)N,

and likewise,

MPG(v) ≥ 0 ⇐⇒ En−
G (v) > −∞ ⇐⇒ En−

G (v) ≥ −(n − 1)N.

Therefore computing En+ values of the games is harder than the threshold
problem. As explained in the introduction, all state-of-the-art algorithms for the
threshold problem actually compute En+ values, and so does the GKK algorithm
(in fact, it even computes En− values, while algorithms of [1,3,6] do not). This
shifts our focus from mean-payoff to energy games.

Potential Reductions. Fix a game G = (G = (V,E), w, VMin, VMax). A poten-
tial is a map φ : V → Z. Potentials are partially ordered coordinatewise. Given
an edge e = vv′ ∈ E, we define its φ-modified weight to be

wφ(e) = w(e) + φ(v′) − φ(v).

The φ-modified game Gφ is simply the game (G,wφ, VMin, VMax); informally, all
weights are replaced by the modified weights. Note that the underlying graph
does not change, in particular paths in G and Gφ are the same. Observe that for
a finite path π = v0 → v1 → . . . → vk, its sum in Gφ is given by

sumφ(v) = sum(π) + φ(vk) − phi(v0).

We let 0 denote the constant zero potential; note that G0 = G. For convenience,
we use valφ to denote valGφ

for val ∈ {MP,En+,En−}. Since G is always fixed,
we thus write val0 for valG .
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Moving from G to Gφ for a given potential φ is called a potential reduction;
these were introduced by Gallai [10] for studying network related problems such
as shortest-paths problems. In the context of mean-payoff or energy games, they
were introduced in [11] and later rediscovered numerous times. The result below
describes the effect of potential reductions over mean-payoff and energy values.

Theorem 2. – For any potential φ we have MP0 = MPφ over V .
– If φ satisfies 0 ≤ φ ≤ En+

0 , then it holds that En+
0 = φ + En+

φ over V .
– If φ satisfies En−

0 ≤ φ ≤ 0, then it holds that En−
0 = φ + En−

φ over V .

The first item in the Theorem follows directly from the fact that the mean-
payoffs of any infinite path are the same in G and in Gφ. We focus on proving
the second item, illustrated in Fig. 2; the third one follows by symmetry.

Fig. 2. An illustration of the second item in Theorem 2. For vertices on the right,
energy values in both games are ∞.

Towards proving the second item in Theorem 2, we first establish a technical
result.

Lemma 1. Let σ0 be an En+-optimal Min strategy in G and π = v0 → v1 →
. . . → vk be a finite path consistent with σ0 such that En+

0 (vk) < ∞. Then we
have sum(π) ≤ En+

0 (v0) − En+
0 (vk).

Proof. Let π′ be an infinite path from vk consistent with σ0 and such that
En+

0 (vk) = En+(w(π′)). Then ππ′ is consistent with σ0 and therefore En+
0 (v0) ≥

En+(w(ππ′)). We thus obtain

En+(v0) ≥ En+(w(ππ′)) = supk′≥0(sum((ππ′)<k′)

≥ supk′≥k(sum((ππ′)<k′)

= sum(π) + supk′≥0 sum(π′
<k′)

= sum(π) + En+(w(π′)) = sum(π) + En+
0 (vk),

concluding the proof.
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We now derive the second item of Theorem 2.

Proof. Let φ : V → Z be a potential such that 0 ≤ φ ≤ En+
0 ; we aim to prove

that En+
0 = φ + En+

φ over V . Over vertices with mean-payoff value > 0 (which
coincide over both games by the first item), both terms are infinite thanks to
Corollary 1. Let v be such a vertex with mean-payoff value ≤ 0 (or equivalently,
finite energy value).

Consider an En+-optimal Min strategy σ0 : VMin → E in G and let π = v0 →
v1 → . . . be an infinite path consistent with σ0. Note that for any k ≥ 0, vk has
finite energy value, and thus we obtain thanks to Lemma 1

sumφ(π<k) = sum(π<k) + φ(vk) − φ(v0)

≤ En+
0 (v0)−En+

0 (vk) + φ(vk)
︸ ︷︷ ︸

≤0

−φ(v0) ≤ En+
0 (v0) − φ(v0),

hence En+
φ (v0) ≤ supπ|=σ0

supk≥0 sumφ(φ<k) ≤ En+
0 (v0) − φ(v0).

For the other inequality, consider an optimal Min strategy σφ in Gφ, and take
π |= σφ. By applying Lemma 1 in Gφ we now get

sum(π<k) = sumφ(π<k) − φ(vk) + φ(v0)

≤ En+
φ (v0) − En+

φ (vk)
︸ ︷︷ ︸

≥0

−φ(vk)
︸ ︷︷ ︸

≥0

+φ(v0) ≤ En+
φ (v0) + φ(v0),

and again the wanted result follows by taking a supremum.

We say that a potential φ is positively safe if it satisfies the hypothesis of the
second item, 0 ≤ φ ≤ En+

0 .
Note that potential reductions are invariant under shifts: we have Gφ = Gφ+c

if c is a constant potential. For convenience, we prefer to work with non-negative
potentials, even though our approach will be completely symmetric; one could
also work with equivalence classes of potentials up to shifts.

To apply the third item in Theorem 2, given a potential φ we define

φ− = φ − max φ ≤ 0,

and we say that φ is negatively safe if φ− satisfies the hypothesis of the third
item, En−

0 ≤ φ− ≤ 0. We say that φ is bi-safe if it is both positively and
negatively safe.

Observe that (Gφ)φ′ = Gφ+φ′ : sequential applications of potential reductions
correspond to reducing with respect to the sum of the potentials. The following
is easily derived as a consequence of Theorem 2; the proof is detailed below for
completeness.

Lemma 2. If φ is positively (or negatively, or bi-) safe for G, and φ′ is positively
(or negatively, or bi-) safe for Gφ, then φ+φ′ is positively (or negatively, or bi-)
safe for G.
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Proof. We first show the result for positively safe. Clearly φ+φ′ is non-negative
since both are. Now Theorem 2 gives

En+
0 = En+

φ + φ ≥ φ′ + φ,

the sought inequality.
For negatively safe, again non-positivity of (φ+φ′)− is direct. Using the fact

that max(φ + φ′) ≤ max(φ) + max(φ′) in general we obtain similarly

(φ + φ′)− = φ + φ′ − max(φ + φ′) ≥ φ − max φ + φ′ − max φ′

= φ− + φ
′− = En−

0 − En−
φ− + φ

′− ≥ En−
0 .

This also gives compositionality of bi-safe potentials by conjunction.

Simple and Reduced Games. The lemma above justifies the following app-
roach for computing En+

0 : apply successive positively safe potential reductions
φ0, φ1, . . . until reaching a game whose energy values are only 0 and ∞; then
by Theorem 2 it holds that En+

0 = φ0 + φ1 + . . . . We will present the GKK
algorithm as one iterating potential reductions that are actually bi-safe. For this
to hold however, we need to restrict to simple games.

A game is simple if all simple cycles have nonzero sum. The following result
is folklore and states that one may reduce to a simple game at the cost of a linear
blow up on N . It holds thanks to the fact that positive mean-payoff values are
≥ 1/n, which is a well-known consequence of Theorem 1.

Lemma 3. Let G = (G,w, VMin, VMax) be an arbitrary game. The game G′ =
(G, (n + 1)w − 1, VMin, VMax) is simple and has the same vertices of positive
mean-payoff values as G.

As another direct consequence of Theorem 1, it holds that in a simple game,
mean-payoff values of the vertices are �= 0. Energy and dual energy values in
such a game are depicted in Fig. 3. Moreover, sums of cycles are preserved by
potential reductions, and therefore if G is simple then so is Gφ, whatever the
potential φ.

We say that a simple game is reduced if the vertices are partitioned between
P ∗ and N∗ such that

– vertices in VMin ∩ N∗ have a non-positive edge towards N∗;
– all edges outgoing from vertices in VMax ∩ N∗ are non-positive and towards

N∗;
– vertices in VMax ∩ P ∗ have a non-negative edge towards P ∗; and
– all edges outgoing from vertices in VMin ∩ P ∗ are non-negative and towards

P ∗.

These requirements are illustrated in Fig. 4.
Intuitively, a reduced game is a simple one in which Min can ensure that

no positive edge is ever seen from any vertex of mean-payoff value < 0, and
vice-versa. We have the following easy result.
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Fig. 3. Representation of energy and dual energy values when no vertex has mean-
payoff value zero; this is always the case for simple arenas.

Lemma 4. In a reduced game, vertices in N∗ have mean-payoff value < 0 and
those in P ∗ have mean-payoff value > 0. Moreover, a simple game is reduced
if and only if energy values belong to {0,∞} and dual energy values belong to
{−∞, 0}.

3 The GKK Algorithm

Fix a simple game G = (G = (V,E), w, VMin, VMax). The GKK algorithm iterates
bi-safe potential reductions until a reduced arena is obtained. The runtime for
computing each reduction is O(m), therefore the overall runtime is O(m�), where
� is the number of iterations. In this section we present how the reduction is
performed, and prove that it is bi-safe. Upper bounds on � are the focus of
Sects. 4 and 5.

Each iteration relies on a bipartition of the set of vertices, which is completely
symmetric thanks to our simplicity assumption. Observe that since there are no
simple cycles of sum zero in G, any infinite path visits a non-zero weight. The
arena is therefore partitioned into the set of vertices N∗ from which Min can
ensure that the first visited non-zero weight is negative, and the set of vertices
P ∗ from which Max can ensure that the first visited non-zero weight is positive.

Note that the partition N∗, P ∗ depends only on the signs (and zeroness) of
the weights, and not on their precise values. It is computable in linear time; in
a standard terminology which is not formally introduced here, N∗ is the Min-
attractor to negative edges over non-positive edges. The GKK algorithm is in fact
akin to Zielonka’s algorithm for parity games [16]: both are based on computing
relevant attractors.
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Fig. 4. A reduced arena. Non-positive edges are represented in blue and non-negative
ones in red. (Color figure online)

We focus on the point of view of Min, and thus on N∗. By definition, from
N∗ Min is able to force that a negative edge is seen. The algorithm computes the
worst possible (maximal) negative value that Min can ensure from N∗, which
we now describe.

Consider a Max vertex v in N∗: any edge towards P ∗ is necessarily negative
otherwise v would belong to P ∗. Therefore Max may choose to switch to P ∗,
but at the cost of seeing a negative weight. We let

δ−
Max = max{w(e) | e ∈ E ∩ (N∗ ∩ VMax) × P ∗} < 0

denote the largest such weight that Max can achieve. It may be that there is no
such edge, in which case we have δ−

Max = max ∅ = −∞.
From a Min vertex v in N∗ if Min has a non-positive edge towards N∗ she

can follow this path and avoid to switch to P ∗. Otherwise all edges outgoing
from v towards N∗ are positive, and we let

SN = {v ∈ VMin ∩ N∗ | ∀v′ ∈ N∗, vv′ ∈ E =⇒ w(vv′) > 0}

be the set of Min vertices in N∗ from which she is forced to switch to P ∗ or see
a positive edge. Note that a vertex v ∈ SN necessarily has negative outgoing
edges, which must therefore point towards P ∗, otherwise v would not belong to
N∗. Therefore we let

δ−
Min = max

v∈SN
min{w(vv′) | vv′ ∈ E} < 0,

and we now put
δ− = max(δ−

Min, δ
−
Max) ∈ [−∞, 0).

The following result (and the dual one) is crucial for our pseudopolynomial
bound. We prove it now since it refers to the definitions just above.

Lemma 5. It holds that En−
0 takes values ≤ δ− over N∗.
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Fig. 5. An example of the partition of the vertices into N∗ and P ∗; for clarity, no
details are given with respect to P ∗ where the situation is symmetric. Blue, black and
red arrows respectively represent negative, zero, and positive edges. The layers depicted
in N∗ correspond to the Min-attractor over non-positive edges to negative ones. With
regards to the explanation below: here three edges participate to the maximum defining
δ−
Max namely e0, e1 and e2. Only e3 participates to the maximum defining δ−

Min; v′ has
a non-positive edge towards N∗ and thus does not belong to SN . (Color figure online)

Proof. Consider a positional strategy σ for Min which assigns to v ∈ (VMin ∩
N∗)\SN a non-positive edge towards N∗, and to v ∈ SN an edge of weight
≤ δ−

Min (which therefore necessarily leads to P ∗). Consider an infinite path π :
v0 → v1 → . . . from v0 ∈ N∗ which is consistent with σ.

If π remains in N∗ then all weights are non-positive, and since moreover
G is simple it must be that En−(π) = −∞. Otherwise, let i0 ≥ 0 be the first
index such that vi0+1 ∈ P ∗. If vi0 ∈ VMin then necessarily vi0 ∈ SN and thus
w(vi0vi0+1) ≤ δ−

Min ≤ δ−. If vi0 ∈ VMax then likewise w(vi0vi0+1) ≤ δ−
Max ≤ δ−.

Since moreover π<i0 remains in N∗ and is consistent with σ, it only sees non-
positive weights, and therefore En−(π) ≤ w(v0v1)+w(v1v2)+· · ·+w(vi0vi0+1) ≤
w(vi0vi0+1) ≤ δ−, the wanted result.

Symmetrically, one may define a relevant minimal positive weight for Max
from P ∗ by setting

δ+Min = min{w(e) | e ∈ E ∩ (P ∗ ∩ VMin) × N∗}, and

δ+Max = minv∈SP max{w(vv′) | vv′ ∈ E},

where SP = {v ∈ VMax ∩ P ∗ | ∀v′ ∈ P ∗, vv′ ∈ E =⇒ w(vv′) < 0}, and then

δ+ = min(δ+Min, δ
+
Max) ∈ (0,∞].

The symmetric version of Lemma 5 states that En+
0 takes values ≥ δ+ over P ∗.

We now finally let δ = min(−δ−, δ+) ∈ (0,∞]. If δ = +∞ then δ− = −∞
and δ+ = +∞ which implies that G is reduced and the iteration stops. Otherwise
we have 0 < δ < ∞ and we consider the non-negative potential given by
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φ(v) =

{
δ if v ∈ P ∗

0 if v ∈ N∗.

We call it the GKK potential associated to G. Note that it is symmetric up to
shifting by −δ/2, and therefore so is the corresponding potential reduction; it
adds δ to the weight of edges from N∗ to P ∗, removes δ to the weight of edges
from P ∗ to N∗, and leaves other edges unchanged. Lemma 5 and the symmetric
variant together yield the following result.

Corollary 2. The potential φ is bi-safe.

Without the simplicity assumption over G, one has to deal with vertices from
which neither player can attract to a weight of corresponding sign. In [11], such
vertices are put in N∗, and therefore the obtained potential φ remains positively-
safe, but it is no longer negatively safe. It is thus unclear how to generalise our
approach to non-simple games: as it will appear in the next section, bi-safety is
crucial to derive our novel upper bound.

The GKK algorithm iterates the potential reduction corresponding with the
GKK potential φ, until the obtained game is reduced (or equivalently, δ = ∞),
with partition P ∗, N∗. Let Φ denote the sum of all GKK potentials computed
throughout the iteration. Energy values over N∗ in the original game then coin-
cide with Φ, while energy values over P ∗ are infinite. Likewise, dual energy values
over P ∗ are given by Φ−, and are −∞ over N∗.

4 Improved Pseudopolynomial Bound

Following [11], we say that extremal edges of a vertex v are those with minimal
weight if v ∈ VMin and of maximal weight if v ∈ VMax. The extremal weight of
v is the weight of its extremal edges. We say that a vertex is negative, zero, or
positive according to the sign of its extremal weight, and let2 N,Z and P denote
the corresponding subsets of vertices. Note that N ⊆ N∗ and P ⊆ P ∗, while
Z is split between both. The following was already observed in [11], we give a
proof for completeness.

Lemma 6 ([11]). Let G′ = Gφ where φ is the GKK potential associated to G,
and let N ′ and P ′ respectively denote the sets of negative and positive vertices
in G′. We have N ′ ⊆ N and P ′ ⊆ P .

Proof. We let ext(v), ext′(v) ∈ Z denote the extremal weights of v in G and G′.
We prove that

∀v ∈ N∗, ext(v) ≤ ext′(v) ≤ 0
∀v ∈ P ∗, ext(v) ≥ ext′(v) ≥ 0.

2 We apologise for the clash in notations with our notation N for the maximal absolute
value of a weight; it is easily resolved thanks to context.
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This implies the lemma: if ext′(v) < 0 then necessarily ext(v) < 0 so v, therefore
N ′ ⊆ N ; likewise, P ′ ⊆ P . We only prove the first line since the second follows
by symmetry.

For the left inequality it suffices to observe that the weight of edges outgoing
from N∗ can only increase: edges pointing to N∗ keep the same weight while
those pointing towards P ∗ are increased by δ. For the inequality on the right we
make a quick case disjunction.

– Let v ∈ N∗ ∩VMax. Then all extremal edges are non-positive, and those which
point towards P ∗ are even ≤ −δ by definition of δ hence they all remain non-
positive.

– Let v ∈ N∗ ∩VMin. The result follows directly if v has a non-positive outgoing
edge towards N∗ since it is left unchanged. Otherwise v ∈ SN hence v has
an outgoing edge of weight ≤ −δ which therefore remains non-positive.

This concludes the proof.

We now let G = G0,G1,G2, . . . denote the sequence of games encountered
throughout the iteration, inductively defined by Gj+1 = Gj

φj , where φj is the
GKK potential associated to Gj (if it is defined). We use obvious notations such
as N j , P ∗,j or δj ; in particular, Gj+1 is defined if and only if δj < ∞. Given j
such that Gj is defined we moreover let Δj =

∑j
j′=0 δj′

and Φj =
∑j

j′=0 φj′
.

Note that we have Gj+1 = G0
Φj for all j ≥ 0. The following is a direct consequence

of Lemma 6.

Corollary 3. For all j ≥ 0, it holds that Φj takes value 0 over N j and Δj over
P j.

Proof. Thanks to Lemma 6 we have N0 ⊇ N1 ⊇ · · · ⊇ N j , therefore if v ∈ N j

then for all j′ ≤ j, v belongs to N j′ ⊆ N∗,j′
and thus φj′

(v) = 0; the first result
follows. Likewise, if v ∈ P j then for all j′ ≤ j we have φj′

(v) = δj′
therefore

Φj(v) = Δj .

With this in hands we are ready to prove the announced result.

Theorem 3. The iteration terminates in at most N +E++E− +1 steps, where
E+ is the maximal finite energy value in G, and E− is minus the minimal finite
dual energy value.

The proof is illustrated in Fig. 6.

Proof. We let N∞,∗ and P∞,∗ respectively denote the sets of vertices with neg-
ative and positive mean-payoff values, which partition V . Since Φj is positively
safe by Corollary 2 and Lemma 2 (and the quantities below are finite), we have
thanks to Theorem 2 for all j that over v ∈ N∞,∗,

Φj(v) = En+
G (v) − En+

Gj (v) ≤ E+.
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Fig. 6. An illustration for the proof of Theorem 3, where j = N + E+ + E−. Since Φj

it is positively safe, vertices with finite En+ value (denoted N∞,∗) must be mapped
to the blue region, and symmetrically; by our choice of j, this implies that edges from
N∞,∗ to P ∞,∗ are positive, and those from P ∞,∗ to N∞,∗ are negative, which is key
to the proof. (Color figure online)

Likewise, over v ∈ P∞,∗ we obtain (Φj)−(v) = En−
G (v)−En+

Gj (v) ≥ −E−, which
rewrites as

Φj(v) ≥ Δj − E−.

We now assume that the j = N + E+ + E−-th iteration is defined, and for
contradiction that δj < ∞. Note that Δj ≥ j + 1 as a sum of j + 1 positive
integers. Note that N j (and symmetrically, P j) is non-empty: if N j = ∅ then
P j = V therefore δj = ∞. (Intuitively, Max could then ensure that no negative
weight is ever seen.)

By Corollary 3, Φj takes value 0 over N j therefore N j ⊆ N∞,∗ thanks to the
above since 0 < Δj − E− (see Fig. 6; vertices of value zero cannot belong to the
red zone). Likewise, we have P j ⊆ P∞,∗ since Δj > E+.

Note that any edge vv′ from N∞,∗ to P∞,∗ has weight

wΦj (vv′) = w(vv′) + Φj(v′) − Φj(v) ≥ −N + Δj − E− − E+ ≥ 1

in Gj . Likewise, any edge from P∞,∗ to N∞,∗ has weight < 0 in Gj , therefore
zero edges cannot lead from N∞,∗ to P∞,∗ or vice-versa.

Now observe that by definition vertices in N j,∗ have a path to N j ⊆ N∞,∗

comprised only of zero weights in Gj , and therefore it must be that N j,∗ ⊆ N∞,∗.
Similarly, we have P j,∗ ⊆ P∞,∗ and thus the two partitions are equal:

N j,∗ = N∞,∗ and P j,∗ = P∞,∗.

Since all edges from N j,∗ to P j,∗ are positive, we have δ− = −∞. Likewise
δ+ = ∞ and therefore δ = ∞, a contradiction.
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5 Combinatorial Bound

We now concentrate on establishing the following result.

Theorem 4. The number of iterations of the GKK algorithm is O(2n/2).

It implies that the GKK algorithm also matches the state of the art combina-
torial bound of [6]; we actually believe that the two algorithms are very similar
in essence. Note that the simplicity assumption can be lifted without loss of
generality here: there is no combinatorial blow up in the reduction stated in
Lemma 3. The algorithm of [6] has the advantage of benefiting in general from
the O(nmN) upper bound inherited from that of [3], regardless of simplicity.
Inversely, it is not clear whether our improved pseudopolynomial bound holds
for the algorithm of [6], even when it is ran over simple arenas.

Our proof of Theorem 4 is directly based on that of [6], which we break into
two steps. First, we partition N∗ into non-empty layers A1, A2, . . . and prove
that the sequence −|A1|, |A2|,−|A3|, |A4|, . . . strictly grows lexicographically.
Establishing lexicographical growth of the sequence turns out to be quite tech-
nical, already in [6]; we believe that our argumentation is essentially the same,
although conceptually simpler (and symmetrical) for the GKK algorithm. The
second step is an ingenious encoding into integers which exploits the symmetry
to lower the obtained upper bound from the naive 2n to 2n/2.

Step one relies on so-called alternating layers, which are defined with respect
to minimal number of alternations between VMin and VMax for zero paths in
N∗ towards N . A similar result is derived in [11] directly for the attracting
layers, with a simpler proof. It is required however for the second step to apply
that nonzero integers appearing in the sequence alternate between positive and
negative, which is not the case for attracting layers in general. Assuming that the
game is bipartite however (this incurs no loss of generality), one may combine the
result of [11] with the encoding of [6] and obtain the same result; here, we prefer
to follow the two steps of [6] which allows to establish Theorem 4 in general.

Step One: Layers and Their Dynamics. Again, we focus on N∗, but will
later use the main result together with its dual to obtain the wanted bound.
Given a finite path π : v0 → v1 → . . . → vk in G we define its number of
alternations (towards N) alt(π) ∈ [0,∞] to be the minimal � such that there
exist a decreasing sequence of � + 1 indices k ≥ i0 ≥ i1 ≥ · · · ≥ i� such that

– vi0 , . . . , vk ∈ N ,
– for all j ∈ [1, �], vij

, . . . , vij−1−1 all belong to VMax if j is odd and to VMin if
j is even.

In particular a path has finite alternation number if and only if it ends in
N and it has alternation number 0 if and only if it is contained in N . Moreover
note that a path from v /∈ N towards N has even alternation number if and
only if v ∈ VMin. The choice of the first layer being comprised of Max vertices is
arbitrary, the proof below also goes through with the inverse convention.
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We say that a path is zero if it visits only zero edges. We define the alternation
depth alt(v) over vertices in N∗ by

alt(v) = min{alt(π) | π is a zero path from v to N which remains in N∗}.

An example is given in Fig. 7. We say that a path from v ∈ N∗ is optimal
if it is a zero path from v to N which remains in N∗ and achieves the above
minimum. Note that by definition of N∗, vertices in N∗ have a simple zero path
towards N hence alt(v) is finite and bounded by n.

Fig. 7. The alternating layers, indicated by the green numbers, in the example of
Fig. 5. Notice that alternating layers (green numbers) and attractor layers (in blue) are
completely different; however – and quite surprisingly – a close variant of Theorem 5
holds for attractor layers (see [11] for details). (Color figure online)

We will study the dynamics of the sets

Ai = {v ∈ N∗ | alt(v) = i}.

We assume that the iteration is not over, δ < ∞. We use the notation G′ for Gφ,
where φ is the GKK potential and use primes for sets and quantities relative to
G′. The following is the main result for the first step.

Theorem 5. If N = N ′ and P = P ′, then the sequence

−|A1|, |A2|,−|A3|, |A4|, . . .
strictly grows lexicographically.

Towards proving the theorem, we define two relevant indices iD and iA which
we respectively call the departure index and arrival index. As their names suggest
the first is relevant to vertices which leave N∗, that is, those in N∗ ∩ P

′∗, while
the second is relevant to arriving vertices, those in P ∗ ∩ N

′∗. We let

iD = min{alt(v) | v ∈ VMax ∩ N∗ and v ∈ P
′∗},

iA = min{alt(e0π1) | e0 ∈ E ∩ [(P ∗ ∩ VMin) × N∗], w(e0) = δ,

and π1 is optimal from v1 in G}
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Note that if finite, iD is odd and iA is even. We now provide a sequence of
incremental results that eventually give the theorem.

Lemma 7. Assume that N ′ = N and P ′ = P .

(i) For all v ∈ N∗, if alt(v) < iD then v ∈ N
′∗ and alt′(v) ≤ alt(v).

(ii) For any path π′ which is optimal in G′ but is not zero in G, it holds that
alt′(π′) ≥ iA.

(iii) For all v ∈ P ∗ ∩ N
′∗ it holds that alt′(v) ≥ iA.

(iv) For all i ≤ min(iD −1, iA) we have Ai ⊆ A′
i and for all i ≤ min(iD, iA −1)

we have A′
i ⊆ Ai.

(v) If iA < iD then |A′
iA

| > |AiA
|.

(vi) We have δ−
E < −δ and likewise δ+A > δ.

(vii) If iA = ∞ then iD < ∞.
(viii) Theorem 5 holds.

Items (i), (ii) and (iii) build towards item (iv) which is the main intermediate
result. Items (v) and (vii) have a similar proof (although (vii) also relies on (vi))
and build up to the conclusion.

Proof. (i) We prove the claim by induction on the length k of the smallest
optimal path π = v0 → . . . → vk from v0 = v. Note that π is zero in G
and remains in N∗ hence it is also zero in G′. If π has length zero then
v ∈ N = N ′ hence v ∈ N

′∗ and alt′(v) = 0 ≤ alt(v), so we now assume
k > 0 and that the result is known for vertices with an optimal path of
length ≤ k − 1.
It holds by induction that v1, v2, . . . , vk ∈ N

′∗ hence it suffices to prove
that v ∈ N

′∗ since it implies that π is a zero path in G′ which remains
in N

′∗. If v ∈ VMin then v has a zero edge in G′ towards v′ ∈ N
′∗ hence

v ∈ N
′∗. Otherwise it holds that v ∈ N

′∗ because v ∈ P
′∗ would contradict

that alt(v) < iD.
(ii) Let π′ : v0 → . . . → vk be such a path. It cannot be that π′ is included

in N∗ otherwise it would be zero in G, and we let i0 be the largest index
such that vi0 ∈ P ∗. Since w′(vi0vi0+1) = 0 we have w(vi0vi0+1) = δ > 0
hence it must be that vi0 ∈ VMin otherwise we would have vi0 ∈ P = P ′

which contradicts that vi0 ∈ N
′∗. We now let π be an optimal path from

vi0+1. Then we have alt(π′) ≥ alt((vi0vi0+1)π) ≥ iA.
(iii) Let v ∈ P ∗ ∩ N

′∗ and let π′ : v0 → . . . → vk be an optimal path from
v = v0 in G′. We assume for contradiction that alt′(v) < iA, which thanks
to the previous item implies that π′ is zero in G. Since vk ∈ N ′ = N and
v = v0 ∈ P ∗ there is an index i0 such that vi0 ∈ P ∗ and vi0+1 ∈ N∗. This
contradicts the fact that w(vi0vi0+1) = w′(vi0vi0+1) = 0.

(iv) We prove the two results together by induction on i. For i = 0 we have
A0 = N = N ′ = A′

0 hence we let i ≥ 1 and assume that both results hence
the equality are known for smaller values.
By item (i) if i < iD and v ∈ Ai then v ∈ N

′∗ and alt′(v) ≤ i, but our
induction hypothesis tells us that alt′(v) cannot be < i hence Ai ⊆ A′

i.
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Conversely let v ∈ A′
i, assume i < iA, let π : v0 → . . . → vk be an optimal

path from v0 = v in G′, and let j0 > 0 be the smallest index such that
vj0 /∈ A′

i. We assume that π is chosen such that vj0 is minimal, and prove
the result by an inner induction on j0. Since alt′(v) = i < iA we know by
item (iii) that v ∈ N∗.
If j0 = 1, that is if v1 ∈ A′

i−1, then thanks to the (outer) induction
hypothesis for all j ≥ 1 we have vj ∈ A′

kj
= Akj

for some kj < i, hence
for all j ≥ 0 we have vj ∈ N∗. Hence π′ remains in N∗ and is zero in G′

thus it is also zero in G and alt(v) ≤ alt(π) = i. We conclude thanks to
the (outer) induction that alt(v) = i.
If j0 ≥ 2 then the inner induction hypothesis gives vj ∈ N∗ for j ∈ [1, j0]
and the outer induction hypothesis gives vj ∈ N∗ for j ∈ [j0 + 1, k], and
we repeat the same argument.

(v) Assume that iA < iD. By item (iv) it holds that AiA
⊆ A′

iA
hence it

suffices to find v0 ∈ A′
iA

\AiA
and we take v0 given by the definition of iA:

v0 ∈ P ∗ ∩ VMin is such that there is v1 ∈ N∗ with v0v1 ∈ E, w(v0v1) = δ
(which implies w′(v0v1) = 0) and alt(v1) ≤ iA.
Again by (iv) it holds that v1 ∈ N

′∗ and alt′(v1) ≤ alt(v1), thus v0 ∈ VMin

has a zero edge in G′ towards a vertex of N
′∗ and therefore v0 ∈ N

′∗. Now
alt′(v0) ≤ alt((v0v1)π′

1), where π′
1 is an optimal path from v1 in G′ and

hence alt′(v0) ≤ iA. Yet again thanks to (iv) it cannot be that alt′(v0) < iA
since A′

i ⊆ Ai for i < iA and v0 ∈ P ∗, therefore we conclude that v0 ∈ A′
i.

(vi) Assume for contradiction that δN,2 = −δ. Then there is v ∈ SN such that
ext(v) = −δ, hence ext′(v) = 0 which contradicts N ′ = N . The proof of
the second statement is symmetric.

(vii) If iA = ∞ then there is no edge with weight δ in G from P ∗ ∩ VMin to N∗

hence δP,1 > δ therefore it must be by item (vi) that δ = −δ−
A . We let

e0 = v0v1 be an edge with weight −δ from v0 ∈ VMax ∩ N∗ to v1 ∈ P ∗.
We claim that P

′∗ ⊇ P ∗ which proves the result since then v0 ∈ VMax has
an edge e0 which is zero (hence non-negative) in G′ towards P

′∗, hence
v0 ∈ P

′∗ and iD ≤ alt(v0).
This follows from a quick induction over attractor-layers towards P =
P ′ over zero edges in G: a vertex v ∈ VMax ∩ (P ∗\P ) has a zero edge,
which remains zero, in G towards a vertex in the previous layer, and by
assumption vertices v ∈ VMin ∩ (P ∗\P ) have all their edges towards N∗

which are ≥ δP,1 > δ hence remain positive.
(viii) By item (vii) m = min(iD, iA) is finite, and by item (iv) we have Ai = A′

i

for all i < m. If m = iA ≤ iD−1 then moreover Am ⊆ A′
m and the inclusion

is strict by item (v), which concludes. Otherwise m = iD ≤ iA − 1 hence
Am ⊇ A′

m and the inclusion is strict by definition of iD.

Even broken in elementary steps the proof above remains very tedious, we
are not aware unfortunately of simplifications that could be made.

Step Two: Encoding into Integers. We now present the second step for
the proof of Theorem 4, due to [6]. We let k denote |P | + |N |, which can only
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decrease throughout the iteration thanks to Lemma 6. Note that there exists
r ∈ [1, n − k] such that the layers A1, . . . , Ar are non-empty and Ar+1, Ar+2, . . .
are empty. We let sr = 1 if r is even and 0 otherwise.

The argument relies on the following n − k + 1-bit integer

α− = 0 . . . 0︸ ︷︷ ︸
|A1|

1 . . . 1︸ ︷︷ ︸
|A2|

0 . . . 0︸ ︷︷ ︸
|A3|

. . . sr . . . sr︸ ︷︷ ︸
|Ar|

1 0 . . . 0︸ ︷︷ ︸
|P ∗|−|P |

,

and its symmetric counterpart α+, which is defined in exactly the same way
with respect to layers in P ∗.

Lemma 8. If k = k′ then α
′− > α− + 2|P ∗|−|P | and likewise α

′+ > α+ +
2|N∗|−|N |.

Proof. By Theorem 5 the leftmost bit to switch from α− to α
′− switches from

0 to 1, and occurs before the rightmost block of the form 10 . . . 0 with |P ∗|− |P |
zeros, hence the result.

We are finally ready to prove the announced O(2n/2) bound.

Proof. Consider α = α− +α+, which is ≤ 2n−k+2. Note that |N∗|− |N |+ |P ∗|−
|P | = n − k, hence max(|N∗| − |N |, |P ∗| − |P |) ≥ n−k

2 . By the above lemma, if
k′ = k then

α′ > 2max(|N∗|−|N |,|P ∗|−|P |) ≥ 2
n−k

2 .

Hence, there are at most 2n−k+2/2
n−k

2 = 4 ·2n−k
2 consecutive iterations with the

same k. The bound follows since

n−1∑

k=0

4 · 2
n−k

2 = O(2n/2).
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Abstract. In the Partial Vertex Cover (PVC) problem, we are
given an n-vertex graph G and a positive integer k, and the objective
is to find a vertex subset S of size k maximizing the number of edges
with at least one end-point in S. This problem is W[1]-hard on general
graphs, but admits a parameterized subexponential time algorithm with

running time 2O(
√
k)nO(1) on planar and apex-minor free graphs [Fomin

et al. (FSTTCS 2009, IPL 2011)], and a kO(k)nO(1) time algorithm on
bounded degeneracy graphs [Amini et al. (FSTTCS 2009, JCSS 2011)].
Graphs of bounded degeneracy contain many sparse graph classes like
planar graphs, H-minor free graphs, and bounded tree-width graphs (see
Fig. 1). In this work, we prove the following results:

– There are algorithms for PVC on graphs of degeneracy d with run-
ning time 2O(dk)nO(1) and (e + ed)k 2o(k)nO(1) which are improve-
ments on the previous kO(k)nO(1) time algorithm by Amini et al. [2]

– PVC admits a polynomial compression on graphs of bounded degen-
eracy, resolving an open problem posed by Amini et al. [2].

Keywords: Parameterized Algorithms · Partial Vertex Cover ·
Bounded Degeneracy · Planar Graphs

1 Introduction

In a covering problem, we are given a family F of subsets of a universe U , and the
objective is to find a minimum size subfamily of F covering all the elements in U .
Well known examples of covering problems are Set Cover, Vertex Cover,
Dominating Set, Facility Location, k-Median, k-Center, etc. Covering
problems are fundamental in combinatorial optimization and they are very well
studied in all areas of algorithms and complexity.

Another variant of covering problems is partial covering problems. In a partial
covering problem, the input is a family F of subsets of a universe U and a positive
integer k. The objective is to find a k size subset of F that covers the maximum
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number of elements in U . Two prominent examples of partial covering problems
on graphs are Partial Vertex Cover (PVC) and Partial Dominating

Set (PDS), which has got considerable attention in the field of parameterized
complexity1.

Partial Vertex Cover (PVC) Parameter: k
Input: An undirected graph G and a positive integer k
Objective: Find a vertex subset S of size k such that the number of edges
with at least one end-point in S is maximized

Partial Dominating Set (PDS) Parameter: k
Input: An undirected graph G and a positive integer k
Objective: Find a vertex subset S of size k such that the size of the closed
neighborhood of S is maximized

Even though there are many works on PVC and PDS in the realm of param-
eterized complexity, there are still some open questions about these problems.
It is previously known that PVC is W[1]-hard [10] and PDS, as a more general
problem of Dominating Set, is W[2]-hard. Amini et al. [2] proved that PVC

can be solved in time kO(k)nO(1) in bipartite graphs, triangle free graphs, planar
graphs, H-minor free graphs (for a fixed H), and bounded degeneracy graphs.
On planar graphs, they gave faster algorithms with running time 2O(k)nO(1) for
PVC and PDS. Later, Fomin et al. [5] gave parameterized subexponential time
algorithms with running time 2O(

√
k)nO(1) for PVC and PDS on planar graphs

and apex-minor free graphs. Also, unlike Dominating Set, which is known to
be FPT [1] on bounded degeneracy graphs, PDS is W[1]-hard [9] in this class.

Bounded Tree-Width

H-Minor Free

H-Topological Minor Free

Bounded Expansion

Bounded Degeneracy

Planar

Bounded Genus

Fig. 1. Inclusion relation between various sparse graph classes.

1 For basic definitions related to parameterized algorithms and complexity we refer to
Sect. 2.1.
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In this work, we give a parameterized single exponential time algorithm for
PVC on d-degenerate graphs. Our algorithm also works for the more general
weighted version of the problem.

Theorem 1.1. Given G = (V,E), a d-degenerate graph with edge weights
w : E → IR+, and an integer k > 0, there is an algorithm that runs in time
2kd+k(kd)O(log(kd))nO(1) and finds a subset S ⊆ V of size k, with maximum
possible EG(S), i.e., the total weight of edges with at least one end-point in S.

It is also possible to apply a slight change in the algorithm of Theorem 1.1 to
get a faster running time.

Theorem 1.2. Given G = (V,E), a d-degenerate graph with edge weights
w : E → IR+, and an integer k > 0, there is an algorithm that runs in time
(e + ed)k 2o(k)nO(1) and finds a subset S ⊆ V of size k, with maximum possible
EG(S), i.e., the total weight of edges with at least one end-point in S.

In [2], Amini et al. asked whether PVC and PDS admit polynomial kernels
on planar graphs. We prove that PVC admits a polynomial compression on d-
degenerate graphs, a more general class of sparse graphs. To get a better size
bound for planar graphs, we prove the following general theorem.

Theorem 1.3. Given a d-degenerate graph G = (V,E) that does not contain
any Kp,p as a subgraph, and an integer k > 0, there is a polynomial-time algo-
rithm that outputs a subgraph H = (V ′ ⊆ V,E′ ⊆ E) of G with O(pd2(2dk)p)
vertices and a weight function ρ : V ′ → {0, . . . , 2dk} on the vertex set V ′ with
the following properties.

– For any vertex subset S′ ⊆ V ′ ⊆ V , EG(S′) is equal to EH(S′)+
∑

v∈S′ ρ(v).
– Let S be a partial vertex cover of size k in G covering at least t edges. Then

there is a vertex set S′ ⊆ V ′ of size k such that EH(S′) +
∑

v∈S′ ρ(v) is at
least t.

Since planar graphs are 5-degenerate and do not contain K3,3 as a subgraph,
we get the following corollary from Theorem 1.3.

Corollary 1.3.1. There is a polynomial compression for PVC on planar
graphs. Here, the compressed instance is a graph H with O(k3) vertices and
a weight function on the vertex set of H where the weight of each vertex can be
encoded using O(k) bits.

Because no d-degenerate graph contains Kd+1,d+1 as a subgraph, we also
have the following corollary.

Corollary 1.3.2. There is a polynomial compression for PVC on d-degenerate
graphs. Here, the compressed instance is a graph H with O(kd+1) vertices and a
weight function on the vertex set of H, where the weight of each vertex can be
encoded using at most kd bits.

Independent of our work, Koana et al. [12] recently showed that PVC on
d-degenerate graphs admits a kernel of size kO(d) and unless coNP ⊆ NP\poly,
it does not admit any kernel of size O(kd−2−ε).
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Our Methods. First, we explain the overview of our FPT algorithm mentioned
in Theorem 1.1, which is based on the following randomized process. Notice that
for a d-degenerate graph, there is a sequence of vertices such that for any vertex
v, the number of v’s neighbors at the right of it in the sequence is at most d.
Let S be a solution for PVC and let S′ be the set of vertices that are not in S,
but they are a “right neighbor” of a vertex in S. Clearly, |S ∪ S′| ≤ k + kd. If
we color each vertex red or blue uniformly at random, with probability at least

1
2k+kd , all the vertices in S would get red, and all the vertices in S′ would get
blue. Now we assign a value val(v) to any vertex v, which is |NG(v)| minus the
number of red “right neighbors” of v. This assignment of values ensures that
each edge incident on a red vertex contributes to the value of exactly one red
vertex. Observing that for every vertex in S all of its red “right neighbors” are
also in S, the solution will be the k most valuable red vertices, and the number
of edges covered by them will be the sum of their values. This algorithm can
be derandomized using universal sets. In Sect. 3, we present the deterministic
version of the algorithm.

Next, we give a high-level idea of our polynomial compression algorithm. We
prove that a “large” d-degenerate graph without any Kp,p as a subgraph, has an
independent set I of size k + 1 and a vertex subset C such that for any distinct
x, y ∈ I, NG(x) ∩ NG(y) = C. Then, we prove that there is a solution that does
not contain the least degree vertex of I. This leads to a simple reduction rule as
long as the number of vertices is not polynomially bounded in k. This algorithm
is explained in Sect. 4.

Other Related Works. In [16] some generalization of vertex cover (e.g. PVC)
parameterizing by tree-width is studied. Also, PVC parameterized by the num-
ber of covered edges is studied in [11]. There are also extensive works on the
approximability of PVC on general graphs [13–15]. For example, Manurangsi
in [14] presents a simple FPT approximation scheme that runs in (1/ε)O(k)nO(1)

as well as an approximation kernelization scheme of O(k/ε) vertices for weighted
PVC.

2 Preliminaries

For a graph G = (V,E), we denote the number of vertices and edges by n and
m, respectively. For a vertex v ∈ V we denote the set of neighbors of v by NG(v)
and the degree of v by |NG(v)|. For A ⊆ V , we use EG(A) to denote the total
number (weight) of edges with at least one end-point in A. We denote a complete
bipartite graph with partitions of size p and q by Kp,q. We use [n] to denote the
set {1, 2, . . . , n}.
Definition 2.1 (d-degenerate graph). An undirected graph G is said to be
d-degenerate if every subgraph of G contains a vertex of degree at most d. The
degeneracy of a graph is the smallest value of d for which it is d-degenerate.

We use the following proposition to derive Corollary 1.3.1 from Theorem 1.3.
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Proposition 1. Planar graphs are 5-degenerate.

Proof. By Euler’s formula, we know m ≤ 3n − 6 for all n ≥ 3. Therefore,∑
v∈V |NG(v)| ≤ 6n − 12, and there is a vertex of a degree at most 5 in any

planar graph. Since every subgraph of a planar graph is also planar, planar
graphs are 5-degenerate. 	


For a graph G = (V,E), let λ be an ordering of vertices of G; i.e. λ : [n] → V
is a bijective function. We say λ is d-posterior, if λ(i) has at most d neighbors
among λ(i + 1), λ(i + 2), . . . , λ(n). Also, for v = λ(i), we call NG(v) ∩ {λ(i +
1), λ(i + 2), . . . , λ(n)} posterior neighbors of v and we denote them by PNλ(v).
Note that since λ is a d-posterior ordering, we have PNλ(v) ≤ d for all v ∈ V .
Next, we will state some useful propositions about d-degenerate graphs.

Proposition 2. There exists a d-posterior ordering for vertices of any d-
degenerate graph G.

Proof. Let G1 = G, and for 2 ≤ i ≤ n construct Gi by removing the minimum
degree vertex from Gi−1. Set λ(i) to be a minimum degree vertex in Gi. 	

Proposition 3. For a d-degenerate graph G = (V,E), we have m ≤ nd.

Proof. Consider a d-posterior ordering λ and note that m =
∑

v∈V PNλ(v) ≤ nd
because PNλ(v) ≤ d for any v ∈ V . 	

Proposition 4. Let G = (V,E) be a d-degenerate graph. Then, there is a (d+1)-
coloring for V such that for any (u, v) ∈ E, u and v get different colors; i.e.,
f : V → [d + 1] such that f(u) �= f(v) for all (u, v) ∈ E. Furthermore, one can
construct this coloring in time nO(1).

Proof. Let λ be a d-posterior ordering of V and for each i from n to 1, choose a
color for λ(i) which does not occur in PNλ(λ(i)). 	


2.1 Parameterized Complexity

We state the following definitions slightly modified from the Kernelization
book [8].

Definition 2.2 (FPT optimization problem). A parameterized optimiza-
tion problem Π is fixed parameter tractable (FPT) if there is an algorithm (called
FPT algorithm) that solves Π, such that the running time of the algorithm on
instances of size n with parameter k is upper bounded by f(k) · nO(1) for a com-
putable function f .

Definition 2.3 (Polynomial-time preprocessing algorithm). A poly-
nomial-time preprocessing algorithm A for a parameterized optimization problem
Π is a pair of polynomial-time algorithms. The first one is called the reduc-
tion algorithm, and given an instance (I, k) of Π, the reduction algorithm
outputs an instance (I ′, k′) = RA(I, k) of a problem Π ′. The second algorithm
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is called the solution lifting algorithm. This algorithm takes an instance (I, k)
of Π, the output instance (I ′, k′) of the reduction algorithm, and a solution s′

to the instance (I ′, k′). The solution lifting algorithm works in time polynomial
in |I|, k, |I ′|, k′ and |s′|, and outputs a solution s to (I, k) such that if s′ is an
optimal solution to (I ′, k′) then s is an optimal solution to (I, k).

Definition 2.4 (Compression, Kernelization). A polynomial time prepro-
cessing algorithm A is called a compression, if sizeA is upper bounded by a com-
putable function g : N → N where sizeA is defined as follows:

sizeA(k) = sup{|I ′| + k′ : (I ′, k′) = RA(I, k) for any instance (I, k) of the problem}

If the upper bound g(.) is a polynomial function of k, we say A is a polynomial
compression. A compression (polynomial compression) is called a kernelization
(polynomial kernelization) if the input and output of the reduction algorithm are
instances of the same problem, i.e., Π = Π ′.

3 FPT Algorithm for Weighted Partial Vertex Cover

In this section, we show that PVC can be solved in parameterized single expo-
nential time on d-degenerate weighted graphs. That is, we prove Theorem 1.1.

We will use a universal set in our algorithm defined as follows (see also
section 5.6.1 of [4]).

Definition 3.1 ((n, l)-universal set). An (n, l)-universal set is a family U of
subsets of [n] such that for any A ⊆ [n] of size l, the family {U ∩ A : U ∈ U}
contains all 2l subsets of A.

Lemma 3.1 (Naor et al. [17]). For any n, l ≥ 1, one can construct an (n, l)-
universal set of size 2llO(log l) log n in time 2llO(log l)n log n.

We now describe our FPT algorithm for solving PVC in the given d-
degenerate weighted graph G = (V,E). To give a better intuition, we first state
the algorithm informally. Consider a d-posterior ordering for the vertices. Sup-
pose we have an oracle that paints the vertices with blue and red, such that all
vertices in the solution get red, all vertices that are not in the solution but are
a posterior neighbor of a vertex in the solution get blue, and other vertices get
either red or blue. Observe that the solution is a subset of red vertices such that
for any vertex in the solution, its red posterior neighbors are also in the solution.
Then we will assign a value to each vertex, such that the solution will be the set
of k most valuable red vertices. In the algorithm, we use a universal set instead
of the oracle. The following is the exact description of the algorithm.

Let λ be a d-posterior ordering of V and l = min(n, k+kd). First, we construct
an (n, l)-universal set U of subsets of V , and for each U ∈ U with size ≥ k and
v ∈ V , we define the value of v with respect to U as:

valU (v) =
∑

u∈NG(v)\(PNλ(v)∩U)

w(u, v)
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And we define sol(U) ⊆ U as the set of k most valuable vertices in U , and we
set the value of U to be val(U) =

∑
v∈sol(U) valU (v). Finally, we return sol(U)

for the most valuable U .
To prove Theorem 1.1, first we show the following lemmas.

Lemma 3.2. For any U ∈ U and A ⊆ U , we have
∑

v∈A valU (v) ≤ EG(A).

Proof. Recall that EG(A) is the total weight of edges with at least one end-point
in A.

Any edge e = (u, v) with exactly one end-point, say v, in A is counted at most
once in valU (v) and since u /∈ A, it is also counted at most once in

∑
v∈A valU (v).

For an edge e′ = (u′, v′) with both end-points in A, without loss of generality,
suppose u′ is later than v′ in the ordering λ, i.e., λ−1(u′) > λ−1(v′). Therefore,
u′ ∈ PNλ(v′) and since A ⊆ U , u′ ∈ PNλ(v′)∩U and e is not counted in valU (v′).
On the other hand, v′ /∈ PNλ(u′), and e is counted in valU (u′). Therefore, e is
counted exactly once in

∑
v∈A valU (v).

Since the weights of edges are positive and all edges counted exactly once
in EG(A) are counted at most once in

∑
v∈A valU (v), we have

∑
v∈A valU (v) ≤

EG(A). 	

Now, let S be a hypothetical solution, and define S̃ = S ∪ (⋃

v∈S PNλ(v)
)
.

Note that:

|S̃| ≤ |S| +
∣
∣
∣
∣
∣

⋃

v∈S

PNλ(v)

∣
∣
∣
∣
∣
≤ k + k.d (since |S| = k and PNλ(v) ≤ d)

Therefore we have |S̃| ≤ l. Consider a subset T ⊆ V with size l such that S̃ ⊆ T .
According to Definition 3.1, there is a set Ũ ∈ U such that S = Ũ ∩T . Note that
since |S| = k, size of Ũ is ≥ k, and valŨ and sol(Ũ) are defined.

Lemma 3.3. EG(S) =
∑

v∈S valŨ (v).

Proof. It is enough to show that each edge with at least one end-point in S is
counted exactly once in

∑
v∈S valŨ (v).

Consider any e = (u, v) with exactly one end-point, say v, in S. Note that
u /∈ S and (

PNλ(v) ∩ Ũ
)

⊆ (S̃ ∩ Ũ) ⊆ (T ∩ Ũ) = S

Therefore, u /∈
(
PNλ(v) ∩ Ũ

)
and e is counted in valŨ (v). Since u /∈ S, e is

counted in
∑

v∈S valŨ (v) exactly once. For edges with two end-points in S, the
proof is the same as the proof of Lemma 3.2. 	


We finally prove Theorem 1.1. For convenience, we restate the theorem here.

Theorem 1.1. Given G = (V,E), a d-degenerate graph with edge weights
w : E → IR+, and an integer k > 0, there is an algorithm that runs in time
2kd+k(kd)O(log(kd))nO(1) and finds a subset S ⊆ V of size k, with maximum
possible EG(S), i.e., the total weight of edges with at least one end-point in S.
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Proof. By Lemma 3.2 and optimality of S, val(U) =
∑

v∈sol(U) valU (v) ≤
EG(sol(U)) ≤ EG(S) for all U ∈ U with size ≥ k. Also, note:

val(Ũ) =
∑

v∈sol(Ũ)

valŨ (v) (definition of val(Ũ))

≥
∑

v∈S

valŨ (v) (definition of sol(Ũ) and since S ⊆ Ũ)

= EG(S) (Lemma 3.3)

Therefore, for the most valuable U , val(U) = EG(S). Since val(U) ≤
EG(sol(U)) ≤ EG(S), sol(U) is also a solution and EG(sol(U)) = val(U). This
implies the algorithm’s correctness and shows that the weight of the edges cov-
ered by the solution is equal to val(U).

Finally, the running time of constructing the family U is

2kd+k(kd + k)O(log(kd+k))nO(1).

Moreover, we only have a polynomial process for each U ∈ U . Since, the size of
U is 2kd+k(kd + k)O(log(kd+k)) log n, the total running time is

2kd+k(kd + k)O(log(kd+k))nO(1).

	


3.1 Improved Running Time Using Lopsided Universal Sets

One can use lopsided universal sets instead of universal sets in the above algo-
rithm to get the running time (e + ed)k 2o(k)nO(1). In the following we briefly
introduce lopsided universal sets.

Definition 3.2 ((n, p, q)-lopsided universal set). An (n, p, q)-lopsided uni-
versal set is a family U of subsets of [n] such that for any A ⊆ [n] of size p and
B ⊆ [n]\A of size q, there is a U ∈ U that A ⊆ U and B ∩ U = ∅.
Lemma 3.4 (Fomin et al. [6]). There is an algorithm that given n, p and q
constructs an (n, p, q)-lopsided universal set U of size

(
p+q

p

) ·2o(p+q) log n in time

O
((

p+q
p

) · 2o(p+q)n log n
)
.

Now, let p = k and q = min(n − k, kd) and follow the same steps as the
aforementioned algorithm using an (n, p, q)-lopsided universal set U instead of
an (n, l)-universal set. The proof of the correctness is also the same, except that
for Lemma 3.3, Ũ ∈ U should be such that S ⊆ Ũ and

(
S̃\S

)
∩ Ũ = ∅. Finally,

for the running time, we have the following:

Proposition 5. For any r and n such that 1 ≤ r ≤ n we have
(
n
r

) ≤ (
en
r

)r.

Using the same analysis as the first algorithm, the running time of
this algorithm would be

(
k+kd

k

) · 2o(k)nO(1) which by the Proposition 5 is
(e + ed)k 2o(k)nO(1). This proves Theorem 1.2.
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4 Polynomial Compression for Partial Vertex Cover

In this section, we present a polynomial compression for PVC in families of
graphs with bounded degeneracy. That is, we prove Theorem 1.3.

For convenience we will allow self-loops for this part, but not parallel edges.
For a vertex v with self-loops, we will not count v in NG(v) so v /∈ NG(v), and
we will use LG(v) to denote the number of self-loops of v. Therefore, the given
graph G = (V,E) is undirected, unweighted and any v ∈ V might have several
self-loops. Also, G does not contain Kp,p and without considering self-loops, it
is d-degenerate.

We say a subset U ⊆ V of size k + 1 is nice if U is an independent set and
there is a subset C ⊆ V such that for any u, u′ ∈ U , NG(u) ∩ NG(u′) = C. For
each u ∈ U , we call NG(u)\C private neighbors of u with respect to U , and we
denote it by PVU (u). Figure 2 shows a nice subset.

C

u1

uk+1

u2

u3

uk

PV U (u1)

PV U (u2)

PV U (u3)

PV U (uk)

PV U (uk+1)

Fig. 2. A nice subset U = {u1, u2, . . . , uk+1}

Lemma 4.1. Let G = (V,E) be an undirected graph with possible self-loops. For
integers h, p ≥ 1, suppose I ⊆ V is an independent set of size t > p · (hk)p, such
that |NG(v)| ≤ h for all v ∈ I. Then either there is a nice U ⊆ I or G contains
a Kp,p. Furthermore, having G and I, we can find a nice subset or a Kp,p in
polynomial time.

Proof. First, we show by induction that for each 0 ≤ i ≤ p, either (a) there is
a nice subset U ⊆ I, or (b) there is a Ui ⊆ I of size ti > p · (hk)p−i such that
Qi =

⋂
u∈Ui

NG(u) has size ≥ i.
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For i = 0, clearly U0 = I. If i ≥ 1, by induction we know one of (a) or
(b) is true for i − 1. If (a) is true, then we are done. So there is a Ui−1 ⊆ I
with conditions as mentioned earlier. If there was a vertex v ∈ V \Qi−1 with
> p · (hk)p−i neighbors in Ui−1, let Ui be Ui−1 ∩ NG(v) and (b) will be true for
i. Otherwise, all vertices in V \Qi−1 have ≤ p · (hk)p−i neighbors in Ui−1, and
we do the following:

As long as there is an unmarked vertex in Ui−1, we pick an unmarked vertex
u ∈ Ui−1 and mark all vertices in Ui−1 that have a neighbor in NG(u)\Qi−1.

Since NG(u) ≤ h and each vertex in V \Qi−1 has ≤ p ·(hk)p−i neighbors in Ui−1,
at most php−i+1kp−i vertices would get marked after picking u. Therefore, we
would pick at least |Ui−1|

php−i+1kp−i > p·(hk)p−i+1

php−i+1kp−i = k vertices. Since these vertices
are independent, their number is at least k +1, they are neighbors of Qi−1, and
they do not have common neighbors out of Qi−1, each of their subsets of size
k + 1 forms a nice subset and (a) will be true.

If i = p, the above proposition implies that either there is a nice subset
U ⊆ I or a Kp,p. In the same way as the induction, we also can construct Ui

and Qi using Ui−1 and Qi−1. This is easily doable by checking all vertices in
V \Qi−1 to see whether they have > p · (hk)p−i neighbors in Ui−1. If we could
not find such a vertex, then we can find a nice subset like the induction by
marking vertices. If we could construct all Uis, then we can easily find a Kp,p in
the induced subgraph of (Up ∪ Qp). 	

Lemma 4.2. Let G = (V,E) be a d-degenerate graph with possible self-loops.
Then there are ≥ n

2d+1 vertices v with |NG(v)| ≤ 2d.

Proof. Note
∑

v∈V |NG(v)| = 2(m − ∑
v∈V LG(v)) ≤ 2nd that the inequality is

by Proposition 3. Suppose number of vertices like v with |NG(v)| > 2d is t. Then
we have:

t(2d + 1) ≤
∑

v∈V

|NG(v)| ≤ 2nd

This implies that

t ≤ 2nd

2d + 1
, and

n − t ≥ n

2d + 1

This completes the proof of the lemma. 	

Lemma 4.3. Any d-degenerate graph G = (V,E) with possible self-loops has an
independent set I with size ≥ n

(d+1)(2d+1) such that |NG(v)| ≤ 2d for all v ∈ I

and one can find such an independent set in time (n + m)O(1).

Proof. First, construct a (d+1)-coloring for V in nO(1) using Proposition 4. By
Lemma 4.2 there are ≥ n

(2d+1) vertices with |NG| ≤ 2d and therefore, there are
≥ n

(2d+1)(d+1) vertices with |NG| ≤ 2d and the same color, which means they
form an independent set. 	
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Now, we are ready to describe the kernel. As long as, n > p(d + 1)(2d +
1)(2dk)p, we apply the following reduction rule.

Reduction PVC 1. Use Lemma 4.3 to find an independent set I of size ≥
n

(d+1)(2d+1) > p · (2dk)p such that |NG(v)| ≤ 2d for all v ∈ I. Then, since the
given graph G does not contain any Kp,p, by setting h = 2d and using Lemma 4.1,
find a nice subset U ⊆ I. Then remove u ∈ U that minimizes |NG(u)| + LG(u)
and add a self-loop to each vertex of NG(u).

To show the soundness of the reduction rule, we prove the following lemma.

Lemma 4.4. Suppose G = (V,E) is a graph with possible self-loops, and U ⊆ V
is nice. Then, for any u ∈ U with the minimum |NG(u)| + LG(u), there is a
solution for PVC which does not contain u.

Proof. Consider any solution S containing u. Since |S| = k, there is a u′ ∈ U
such that (i) ({u′} ∪ PVU (u′)) ∩ S = ∅. Therefore, we have:

EG(S\{u} ∪ {u′}) ≥ EG(S) − (|NG(u)| + LG(u)) + (|NG(u′)| + LG(u′))
(by (i))

≥ EG(S) (since |NG(u)| + LG(u) ≤ |NG(u′)| + LG(u′))

This implies that S\{u} ∪ {u′} is a solution that does not contain u. 	

We finally prove Theorem 1.3. For convenience, we restate the theorem here.

Theorem 1.3. Given a d-degenerate graph G = (V,E) that does not contain
any Kp,p as a subgraph, and an integer k > 0, there is a polynomial-time algo-
rithm that outputs a subgraph H = (V ′ ⊆ V,E′ ⊆ E) of G with O(pd2(2dk)p)
vertices and a weight function ρ : V ′ → {0, . . . , 2dk} on the vertex set V ′ with
the following properties.

– For any vertex subset S′ ⊆ V ′ ⊆ V , EG(S′) is equal to EH(S′)+
∑

v∈S′ ρ(v).
– Let S be a partial vertex cover of size k in G covering at least t edges. Then

there is a vertex set S′ ⊆ V ′ of size k such that EH(S′) +
∑

v∈S′ ρ(v) is at
least t.

Proof. The running time of the described algorithm is polynomial by Lemma
4.1 and 4.3, and the reduction rule is safe by Lemma 4.4. The number of vertices
in the kernel is ≤ p(d + 1)(2d + 1)(2dk)p, which is O(pd2(2dk)p). Although the
number of self-loops may be large, notice that the number of self-loops on a
vertex will be at most n. We may remove the self-loops and add it as a weight
on the vertex. Thus, each weight can be represented using at most log n bits.
Since we have an algorithm for the problem with running time 2O(kd)nO(1),
i.e., Theorem 1.1, when kd ≤ log n the algorithm runs in polynomial time and
thereby, it would be a compression itself. Otherwise, we have that logn ≤ kd
that guarantees the weight function ρ mentioned in the theorem statement. 	
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5 Conclusion

In this work we gave a single exponential parameterized algorithm and a polyno-
mial compression for PVC on graphs of bounded degeneracy that include many
sparse graph classes like planar graphs and H-minor free graphs. Is it possible
to get similar results on biclique free graphs, a superclass of bounded degener-
acy graphs? Notice that there is a linear kernel for Dominating Set on planar
graphs, H-minor free graphs, and apex-minor free graphs [3,7]. Can we get a
linear kernel or compression for PVC on planar graphs?
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Abstract. In combinatorics on words, repetition thresholds are the num-
bers separating avoidable and unavoidable repetitions of a given type
in a given class of words. For example, the meaning of the “classical”
repetition threshold RT(k) is “every infinite k-ary word contains an α-
power of a nonempty word for some α ≥ RT(k) but some infinite k-ary
words contain no such α-powers with α > RT(k)”. It is well known that
RT(k) = k

k−1
with the exceptions for k = 3, 4.

For Abelian repetition threshold ART(k), avoidance of fractional
Abelian powers of words is considered. The exact values of ART(k) are
unknown; the lower bound ART(2) ≥ 11

3
, ART(3) ≥ 2, ART(4) ≥ 9

5
,

ART(k) ≥ k−2
k−3

for all k ≥ 5 was proved by Samsonov and Shur in 2012
and conjectured to be tight. We present a method of study of Abelian
power-free languages using random walks in prefix trees and some exper-
imental results obtained by this method. On the base of these results, we
suggest that the lower bounds for ART(k) by Samsonov and Shur are not
tight for all k except k = 5. We prove ART(k) > k−2

k−3
for k = 6, 7, 8, 9, 10

and state a new conjecture on the Abelian repetition threshold.

Keywords: Abelian-power-free language · repetition threshold · prefix
tree · random walk

1 Introduction

Two words are Abelian equivalent (A-equivalent) if they have the same multiset
of letters; in other terms, if they are anagrams of each other, like English words
knee and keen. Abelian repetition (A-repetition) is a pair of A-equivalent factors
in a word. The study of A-repetitions originated from the question of Erdős
[11]: does there exist an infinite finitary word having no consecutive pair of A-
equivalent factors? The factors of the form uu′, where u and u′ are A-equivalent,
are now called Abelian squares (A-squares). In modern terms, Erdős’s question
can be phrased as “are A-squares avoidable over some finite alphabet?” This
question was answered in the affirmative by Evdokimov [12]; the smallest possible
alphabet has cardinality 4, as was proved by Keränen [14]. In a similar way,
kth A-powers are defined for arbitrary k ≥ 2. Dekking [9] constructed infinite
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ternary words without A-cubes and infinite binary words without 4th A-powers.
The results by Dekking and Keränen form an Abelian analog of the seminal
result by Thue [23]: there exist an infinite ternary word containing no squares
(factors of the form uu) and an infinite binary word containing no cubes (factors
of the form uuu).

Thue’s result is considered as the origin of combinatorics on words and,
in particular, of avoidability theory. Later this result was strengthened using
fractional powers of a word: given a word u of length n, take a length-m prefix v
of the infinite word uuu · · · ; then v is the (m

n )th power of u (m > n is assumed).
Usually, v is referred to as an (m

n )-power. A word is said to be α-free if it
contains no (m

n )-powers with m
n ≥ α. Fractional powers gave rise to the notion

of repetition threshold which is the function

RT(k) = inf{α : there exists an infinite k-ary α-free word}.

The value RT(2) = 2 is due to Thue [24]. Dejean [8] showed that RT(3) = 7/4
and conjectured the remaining values RT(4) = 7/5 (proved by Pansiot [16]) and
RT(k) = k

k−1 for k ≥ 5 (proved by efforts of many authors [1,3,15,20]). Since
the proof of Dejean’s conjecture, a number of related results appeared, conjec-
turing and establishing similar thresholds for stronger or weaker restrictions on
repetitions [4,6,25], for restricted classes of words [7,10,19,22], and for different
models of words [5,13].

An extension of the notions of fractional power and repetition threshold to the
case of A-powers was proposed by Cassaigne and Currie [2] for the case m < 2n
and by Samsonov and Shur [21] for the general case. Integral A-powers can be
generalized to fractional ones in several ways; however, for the case m < 2n,
one definition of an (m

n )-A-power is preferable due to its symmetric nature.
According to this definition, a word vuv′ is an (m

n )th A-power of the word vu if
|vu| = n, |vuv′| = m, and v′ is A-equivalent to v (in [21], such A-powers were
called strong). Note that the reversal of an (m

n )-A-power is also an (m
n )-A-power.

In this paper, we consider only strong A-powers; see Sect. 2 for the definition
in the case m > 2n. Given the definition of fractional A-powers, one naturally
defines α-A-free words and Abelian repetition threshold

ART(k) = inf{α : there exists an infinite k-ary α-A-free word}.

In [2], it was shown that for any ε > 0 there exists a (1 + ε)-A-free word
over an alphabet of size 2poly(ε

−1). This bound is very loose but proves that
limk→∞ ART(k) = 1. In [21], the lower bound ART(k) ≥ k−2

k−3 for k ≥ 5 was
proved and conjectured to be tight; in full, this conjecture is as follows.

Conjecture 1 ([21]). ART(2) = 11/3; ART(3) = 2; ART(4) = 9/5; ART(k) =
k−2
k−3 for k ≥ 5.

No exact values of ART(k) are known, and no new bounds have appeared
since [21]. One reason for the lack of progress in estimating ART(k) is the fact
that the language AF(k, α) of all k-ary α-A-free words can be finite but so huge
that it cannot be enumerated by exhaustive search.
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In the present study, we propose the following approach. The language
AF(k, α) is viewed as the prefix tree Tk,α: the elements of AF(k, α) are nodes
of the tree and u is an ancestor of v in the tree iff u is a prefix of w. In the
same way we treat the languages AF(k, α+) =

⋂
β>α AF(k, β). Hence it suffices

to decide the (in)finiteness of Tk,α and Tk,α+ to compare α to ART(k). We con-
struct random walks in such trees, using random depth-first search from the root
(empty word). Analysing the statistics of such walks, we conjecture (in)finiteness
of the studied trees. Our contribution can be summarized as follows:

– to speed up the search in prefix trees, we developed several algorithms to
decide whether a word ua is α-A-free for a given α-A-free word u and a letter
a; for all algorithms, we proved correctness and complexity guarantees;

– we ran multiple experiments for each of about 20 languages with unknown
finiteness status and gathered the statistics;

– depending on statistics of constructed random walks, we classified most of
the studied languages either as “finite-like” or as “infinite-like”;

– we proved by an optimized exhaustive search that the finite-like languages
AF(k, k−2

k−3

+
) for k = 6, 7, 8, 9, 10 are finite, thus disproving Conjecture 1;

– we replaced Conjecture 1 with the following conjecture:

Conjecture 2. ART(2) > 11/3; 2 < ART(3) ≤ 5/2; ART(4) > 9/5; ART(5) =
3/2; 4/3 < ART(6) < 3/2; ART(k) = k−3

k−4 for k ≥ 7.

2 Definitions and Notation

We study finite words over finite alphabets, using the standard notation Σ for a
(linearly ordered) alphabet, σ for its size, Σ∗ for the set of all finite words over
Σ, including the empty word λ. For a length-n word u ∈ Σ∗ we write u = u[1..n];
the elements of the range [1..n] are positions in u, and the length of u is denoted
by |u|. A word w is a factor of u if u = vwz for some (possibly empty) words v
and z; the condition v = λ (resp., z = λ) means that w is a prefix (resp., suffix )
of u. Any factor w of u can be represented as w = u[i..j] for some i and j (j < i
means w = λ). A factor w of u can have several such representations; we say
that u[i..j] specifies the occurrence of w at position i.

A k-power of a word u is the concatenation of k copies of u, denoted by uk.
This notion can be extended to α-powers for an arbitrary rational α > 1. The
α-power of u is the word uα = u · · · uu′ such that |uα| = α|u| and u′ is a prefix
of u. A word is α-free (resp., α+-free) if no one of its factors is a β-power with
β ≥ α (resp., β > α).

The Parikh vector Ψ(u) of a word u ∈ Σ∗ is an integer vector of length
σ whose coordinates are the numbers of occurrences of the letters from Σ in
u. Thus, the word acabac over the alphabet Σ = {a < b < c < d} has
the Parikh vector (3, 1, 2, 0). Two words u and v are A-equivalent (denoted
by u ∼ v) iff Ψ(u) = Ψ(v). The reversal of a word u = u[1..n] is the word
uR = u[n]u[n−1] · · · u[1]. Clearly, u ∼ uR. A nonempty word u is a (k-A-power)
if u = w1 · · · wk, where wi ∼ wj for all indices i, j. A 2-A-power is an A-square,
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and a 3-A-power is an A-cube. Thus, k-A-powers generalize k-powers by relaxing
the equality of factors to their A-equivalence. However, there are many ways to
generalize the notion of an α-power to the Abelian case, and all of them have
certain drawbacks. The reason is that u ∼ v implies u[i..j] ∼ v[i..j] for no pair
of proper factors of u and v. If 1 < α ≤ 2, we define an α-A-power as a word
vuv′ such that |vuv′|

|vu| = α and v ∼ v′. The advantage of this definition is that
the reversal of an α-A-power is an α-A-power as well. For α > 2 the situation is
worse: no natural definition compatible with the definition of k-A-power is sym-
metric with respect to reversals (see [21] for more details). So we give a definition
which is compatible with the case α ≤ 2: an α-A-power is a word u1 · · · uku′ such
that |u1···uku′|

|u1| = α, k = �α�, u1 ∼ · · · ∼ uk, and u′ is A-equivalent to a prefix
of u1. In [21], such words are called strong α-A-powers. For a given α, α-A-free
and α+-A-free words are defined in the same way as α-free (α+-free) words. It
is convenient to extend the set of rationals with “numbers” of the form α+,
postulating the equivalence of the inequalities β > α and β ≥ α+.

A language is any subset of Σ∗. The reversal LR of a language L consists of
the reversals of all words in L. The α-A-free language over Σ (where α belongs
to extended rationals) consists of all α-A-free words over Σ and is denoted by
AF(σ, α). These languages are the main objects of the studies aimed at finding
the Abelian repetition threshold ART(k) = inf{α : AF(k, α) is infinite}. The
languages AF(k, α) are closed under permutations of the alphabet: if π is a
permutation of Σ, then the words u, π(u) ∈ Σ∗ are α-A-free for exactly the
same values of α. Hence the words in a language AF(σ, α) can be enumerated
by considering only lexicographically minimal (lexmin) words: a word u ∈ Σ∗ is
lexmin if u < π(u) for any permutation π of Σ.

Suppose that a language L is factorial (i.e., closed under taking factors of
its words); for example, all languages AF(k, α) are factorial. Then L can be
represented by its prefix tree TL, which is a rooted labeled tree whose nodes are
elements of L and edges have the form u

a−→ ua, where a is a letter. Thus u is
an ancestor of v iff u is a prefix of v. We study the languages AF(σ, α) through
different types of search in their prefix trees.

3 Algorithms

In this section we present the algorithms we develop for use in experiments.
First we describe the random depth-first search in the prefix tree T = TL of
an arbitrary factorial language L. Given a number N , the algorithm visits N
distinct nodes of T following the depth-first order and returns the maximum
level of a visited node. The search can be easily augmented to return the word
corresponding to the node of maximum level, or to log the sequence of levels of
visited nodes. Algorithm 1 below describes one iteration of the search. In the
algorithm, u = u[1..n] is the word corresponding to the current node; Set[u] is
the set of all letters a such that the search has not tried the node ua yet; ml is
the maximum level reached so far; count is the number of visited nodes; L(u) is
the predicate returning true if u ∈ L and false otherwise. The lines 3 and 8 refer
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to the updates of data structures used to compute L(u). The search starts with
u = λ, ml = 0, count = 1. A variant of this search algorithm was used in [17] to
numerically estimate the entropy of some α-free and α-A-free languages.

Algorithm 1. Random depth-first search in TL: one iteration
1: if count = N then break � search finished
2: if Set[u] = ∅ then � all children of u were visited
3: [update data structures]
4: u ← u[1..|u|−1] � return to the parent of u
5: else
6: a ← random(Set[u]); Set[u] ← Set[u] − a � take random unused letter
7: if L(ua) then � the node ua is in T (L)
8: [update data structures]
9: u ← ua; Set[u] ← Σ; count ← count + 1 � visit ua next

10: if |u| > ml then ml ← |u| � update the maximum level

The key to an efficient search is a fast algorithm computing the predicate
L(ua) (line 7); note that L(u) = true as the search reached u. In the rest of the
section we present such algorithms for L = AF(σ, α). The summary of the algo-
rithms is given in Table 1. As the search calls L() at least N times, the expected
query time (computed for the uniformly random word u) is more informative
than the worst-case time. Throughout the paper, we treat σ as a constant.

Table 1. Time and space usage of the algorithms detecting A-powers. Update time
refers to a single data structure update (line 3 or 8 of Algorithm 1), query time refers
to the computation of L (line 7 of Algorithm 1); n is the length of the processed word.

Algorithm Powers Update time Expected query time Space

Algorithm 2 α < 2 O(1) O(n3/2) O(n)

Algorithm 3 α ≤ 3/2 O(n) O(n) O(n2)

Algorithm 4 α > 2 O(1) O(n3/2) O(n)

Algorithm 5 α > 2, dual O(1) O(n1/2) O(n)

3.1 Avoiding Small Powers

Let α < 2 and u be a word of length n such that all proper prefixes of u are
α-A-free. To prove u to be α-A-free, it is necessary and sufficient to show that

(
) no suffix of u can be written as xyz such that |z| > 0, x ∼ z, and |xyz|
|xy| ≥ α.

Remark 1. Since A-equivalence is not closed under taking any sort of factors of
words, the ratio |xyz|

|xy| in (
) can significantly exceed α. For example, all proper
prefixes, and even all proper factors, of the word u = abcde bdaec are 3

2 -A-free,
while u is an A-square. Hence for each suffix z of u one should check multiple
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candidates for the factor x in (
). The number of such candidates can be as big
as Θ(n); in total, Θ(n2) candidates for the pair (x, z) should be analysed.

Remark 1 suggests a simple algorithm with O(n2) query time, which stores
Parikh vectors of all prefixes of u and checks each candidate pair (x, z) directly.
Let us describe a more efficient procedure. We store two length-n arrays for each
letter a ∈ Σ: ca[i] = Ψ(u[1..i])(a) is the number of occurrences of a in u[1..i]
and da[i] is the position of ith from the left letter a in the word u. The arrays
are updated (lines 3,8 of Algorithm 1) as follows: in line 3, we delete Ψ(u) from
c-arrays and delete the last element of du[|u|]; in line 8, we add Ψ(ua) to c-arrays
and add a new element |ua| to da. Hence each update takes O(1) time. We use
two auxiliary functions: Parikh(i, j) returns Ψ(u[i..j]); cover(�P , j) returns the
biggest number i such that Ψ(u[i..j]) ≥ �P or zero if no such number exists.

Lemma 1. Functions Parikh(i, j) and cover(�P , j) are computable in O(1) time.

Proof. Coordinates of Parikh(i, j) are the differences ca[j] − ca[i − 1]. Further, if
ca[j] < �P [a] holds for some letter a, then Ψ(u[1..j]) 	≥ �P and cover(�P , j) = 0; if
all these inequalities fail, then i = mina∈Σ{da[ca[j] − �P [a] + 1]}. 
�

Algorithm 2. A-powers detection (case α < 2)
1: function alphafree(u) � u=word; n = |u|
2: free ← true � α-A-freeness flag
3: for i = n downto 1+�n/2� do � z = u[i..n]
4: right ← i − 1
5: len ← n − i + 1; �P ← Parikh(i, n) � length and Parikh vector of z
6: left ← cover(�P , right) � v = u[left ..right], Ψ(v) ≥ Ψ(z)
7: if left = 0 then break � Ψ(u[1..right]) �≥ Ψ(z)

8: while left ≥ max{1, �αi−1−n
α−1

�} do � guarantees |xyz|
|xy| ≥ α

9: if right − left + 1 = len then � x = u[left ..right] ∼ z
10: free ← false; break
11: else � shift right leftwards, skip redundant comparisons
12: right ← left + len − 1

13: left ← cover(�P , right)

14: if free = false then break

15: return free � the answer to “is u α-A-free?”

Proposition 1. Let α be a number such that 1 < α < 2 and u be a word all
proper prefixes of which are α-A-free. Then Algorithm 2 correctly detects whether
u is α-A-free.

Proof. Let us show that Algorithm 2 verifies the condition (
). The outer cycle of
the algorithm fixes the first position i of the suffix z of u; the suffixes are analysed
in the order of increased length len = |z|. If a forbidden suffix xyz is detected
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len len len

v(1)v(2)v(3)

zu =
αi−1−n

α−1 len len len

v(1)v(2)v(3)

x zu =
αi−1−n

α−1

Fig. 1. Illustrating the proof of Proposition 1. Processing the suffix z, Algorithm 2
successively finds three words v satisfying Ψ(v) ≥ Ψ(z). On the left picture, the position
left of v(3) is smaller than the bound in line 8, so the verification of (�) for z is finished.
On the right picture, |v(3)| = |z|, so a forbidden suffix, starting with v(3), is detected.

during the iteration, then the algorithm breaks the outer cycle in line 14 and
returns false. Thus at the current iteration of the outer cycle the condition (
) is
already verified for all shorter suffixes. The iteration uses a simple observation:
if x ∼ z, then every word v, containing x, satisfies Ψ(v) ≥ Ψ(z). Respectively,
we fix the rightmost position right where a factor x satisfying x ∼ z can end.
Initially right = i − 1 as x can immediately precede z (see Remark 1). Then
we compute the shortest factor v = u[left ..right] such that Ψ(v) ≥ Ψ(z). If
v = x, the suffix xz of u violates (
). Otherwise x cannot begin later than at
the position left by the construction of v. Hence we decrease right by setting
right = left + |z| − 1 and repeat the above procedure in a loop. The verification
of (
) for z ends successfully either if v does not exist (i.e., Ψ(u[1..right]) 	≥ Ψ(z)
for the current value of right) or left is too small (i.e., xyz = u[left ..n] with
|x| = |z| means |xyz|

|xy| < α). The described process is illustrated by Fig. 1.
Details are as follows. In lines 4–6 the algorithm calls Parikh to compute

Ψ(z) and cover to find v = u[left ..right] for right = i − 1. If left = 0, then
Ψ(u[1..i−1]) 	≥ Ψ(u[i..n]) and hence no suffix xyz of u satisfies x ∼ z. Moreover,
one has Ψ(u[1..j−1]) 	≥ Ψ(u[j..n]) for each j < i which immediately verifies (
)
for all longer suffixes of u. Hence in this case the verification of (
) is finished;
respectively, the algorithm breaks the outer cycle in line 7 and returns true. If
no break happened, the algorithm enters the inner cycle, checks whether v = x
(line 9) and breaks with the output false if this condition holds. If it does not,
the algorithm decreases right as described above (line 12) and computes the new
factor v (line 13). If v does not exist, left gets 0, which results in the immediate
exit from the inner cycle. If v is computed but its position is too small, then the
cycle is also exited. The exit means the end of the ith iteration.

Thus, Algorithm 2 returns false only if it finds a suffix xyz of u which violates
(
). For the other direction, let xyz = u[j..n] violate (
) such that |z| is minimal
over all suffixes violating it. Then Algorithm 2 cannot stop before the iteration
which checks z. During this iteration, left cannot become smaller than j by
the definition of the factor v. As right decreases at each iteration of the inner
cycle, eventually x will be found. Thus the algorithm indeed verifies (
) and thus
detects the α-A-freeness of u. 
�

Remark 2. By Lemma 1, Algorithm 2 processes a length-n word u in O(K + n)
time, where K is the number of the inner cycle iterations during the course of
the algorithm. Clearly, K = O(n2). If u is random, the expected length of a word
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v built by Algorithm 2 when processing a suffix z is |z| + Ω(
√

|z|), as follows
from a technical Lemma 2 below. This means K = O(n3/2) on expectation, and
this is exactly what we have seen in the experiments.

Lemma 2. Suppose that finite word z and an infinite word w are chosen uni-
formly at random over a finite alphabet Σ, and v is the shortest prefix of w such
that Ψ(v) ≥ Ψ(z). Then the expected length of v is |z| + Ω(

√
|z|).

Proof. Let � = |z|, δ = |v|−|z|. First consider Σ = {0, 1}. Then the process is as
follows: z is generated by � tosses of a fair coin; another � tosses generate some
prefix x of v; then tosses are made one by one until the result Ψ(v) ≥ Ψ(z) is
reached after δ tosses. The Parikh vector of a binary word is determined by its
length and the number of 1’s. Hence Ψ(z) and Ψ(x) are random variables ξ, η
with the binomial distribution bin(�, 1

2 ). The vector Ψ(z) − Ψ(x) has the form
(−m,m) for some integer m. To obtain v, we should make |m| “successful” tosses
with the probability of success being 1/2; hence the expectation of δ equals 2|m|.
Thus it remains to find the expectation of |m| = |ξ − η|. Since E(ξ − η) = 0, we
see that E(|ξ − η|) is the standard deviation of ξ − η by definition.

By symmetry, η and � − η have the same distribution. Hence we can replace
ξ − η by ξ + η − �. The random variable ξ + η has the distribution bin(2�, 1

2 ), so
its standard deviation is

√
�/2. Thus E(δ) = 2E(|ξ − η|) =

√
2� = Ω(

√
�).

Over larger alphabets the expectation of δ can only increase. The easiest way
to see this is to split Σ arbitrarily into two subsets K1 and K2 of equal size.
Then x with respect to z has a deficiency of letters from one of these subsets, say,
K1. By the argument for the binary alphabet,

√
2� additional letters is needed,

on expectation, to cover this deficiency. This is a necessary (but not sufficient)
condition to obtain the word v. Hence E(δ) = Ω(

√
�). 
�

For the case α ≤ 3/2 we present a much faster dictionary-based Algorithm 3.
Recall that a dictionary contains a set of pairs (key, value), where all keys are
unique, and supports fast lookup, addition and deletion by key (O(1) expected
time per operation with the help of hash tables). For the dictionary dict used
in Algorithm 3, the keys are Parikh vectors and the values are lists of positions,
in the increasing order, of the factors having this Parikh vector. The algorithm
accesses only the last (maximal) element of the list. The updates of the dictionary
(lines 3,8 of Algorithm 1) are as follows. At line 3, we delete all suffixes of u from
the dictionary. For a suffix z, this means the deletion of the last element from
the list dict[Ψ(z)]; if the list becomes empty, the entry for Ψ(z) is also deleted.
At line 8, all suffixes of ua are added to the dictionary. For a suffix z, if Ψ(z)
was not in the dictionary, an entry is created; then the position |ua| − |z| + 1
is added to the end of the list dict[Ψ(z)]. Thus when answering the query for
u = u[1..n], Algorithm 3 has in the dictionary all factors of u[1..n−1] up to the
A-equivalence, at the expense of O(n) update time and O(n2) space.

Proposition 2. Let α be a number such that 1 < α ≤ 3/2 and u be a word all
proper prefixes of which are α-A-free. Then Algorithm 3 correctly detects whether
u is α-A-free.
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Algorithm 3. Dictionary-based A-powers detection (α ≤ 3/2)
1: function alphafreedict(u) � u=word; n = |u|
2: free ← true � α-A-freeness flag
3: �P ← �0
4: for i = n downto 1+�n/2� do � z = u[i..n]
5: len ← n − i + 1 � length of z
6: �P [u[i]] ← P [u[i]] + 1 � get Ψ(z) from Ψ(u[i+1..n])
7: pos ← dict[�P ].last � position of last occurrence of some x ∼ z, if exists
8: if pos ≤ i − len and pos ≥ �αi−1−n

α−1
� then � xyz is forbidden

9: free ← false; break

10: return free � the answer to “is u α-A-free?”

Proof. Let us show that Algorithm 3 verifies (
). First suppose that the algorithm
returned false. Then it broke from the for cycle (line 9); let z be the last suffix
processed. The lookup by the key Ψ(z) returned the position pos of a factor
x ∼ z, and the condition in line 8 was true. The first inequality in line means
that x and z do not overlap in u; the second inequality is equivalent to |xyz|

|xy| ≥ α.
Therefore, the suffix xyz = u[pos..n] violates (
).

Now suppose that the algorithm returned true. Aiming at a contradiction,
assume that u has a suffix violating (
). Let xyz (x ∼ z) be the shortest such
suffix. Consider the iteration of the for cycle where z was processed. The key
Ψ(z) was present in the dictionary because x ∼ z. If pos (line 7) corresponded
to the x from our “bad” suffix, i.e., xyz = u[pos..n], then both inequalities in
line 8 held because x and z do not overlap in u and |xyz|

|xy| ≥ α. But then the
algorithm would have returned false, contradicting our assumption. Hence pos
was the position of some other x′ ∼ z which occurs in u later than x. By the
choice of the suffix xyz, u cannot have shorter suffix x′y′z with x′ ∼ z. This
means that the occurrences of x′ and z overlap (see Fig. 2).

x1 x2 y x3 z1

x x′ z

u =

Fig. 2. Location of Abelian equivalent factors (Proposition 2).

Note that x′ and x also overlap. Otherwise, xyz has a prefix of the form xŷx′

and |xŷx′|
|x′ŷ| ≥ |xyz|

|xy| ≥ α, contradicting the condition that all proper prefixes of
u are α-A-free. Then x = x1x2, x′ = x2yx3, z = x3z1, as shown in Fig. 2, and
x1, x2, x3, z1 are nonempty. We observe that x ∼ x′ ∼ z imply x1 ∼ yx3 and
x2y ∼ z1. By the condition on the prefixes of u, |x1x2yx3|

|x1x2| < α ≤ 3/2. Hence

|yx3| < |x2| and then |x3| < |x2y| = |z1|. Therefore |x2yx3z1|
|x2yx3| > 3/2 ≥ α, so

the suffix x′z1 = x2yx3z1 of u violates (
). But |x′z1| < |xyz|, contradicting the
choice of xyz. This contradiction proves that u satisfies (
). 
�

As Algorithm 3 consists of a single cycle, the next statement is immediate.



Abelian Repetition Threshold Revisited 311

Proposition 3. For a word of length n, Algorithm 3 performs O(n) operations,
including dictionary operations.

Remark 3. A slight modification of Algorithm 3 allows one to process the impor-
tant case α = (3/2)+ within the same complexity bound. The argument from
the proof of Proposition 2 remains valid for α = (3/2)+ except for one specific
situation: in Fig. 2 it is possible that y is empty and |x1| = |x2| = |x3| = |x4|.
Here Algorithm 3 misses the A-square xz. To fix this, we add a patch after line 7:

7.5: if pos = i − len/2 then pos ← pos.next

As an example, consider u = abcdbadc. Processing the suffix z = badc, Algo-
rithm 3 retrieves pos = 3 from the dictionary by the key Ψ(z). The correspond-
ing factor x′ = cdba overlaps z and the condition in line 8 would fail for pos.
However, pos satisfies the condition in the inserted line 7.5 and thus the factor
x = abcd at pos = 1 will be reached. The condition in line 8 holds for pos = 1
and the A-square is detected.

Remark 4. Algorithm 3 can be further modified to work for all α < 2. If we
replace the patch from Remark 3 with the following one:

7.5: while pos > i − len do pos ← pos.next

the algorithm will find the closest factor x ∼ z which does not overlap with z.
This new patch introduces an inner cycle and thus affects the time complexity
but the algorithm remains faster in practice than Algorithm 2.

3.2 Avoiding Big Powers

Let α > 2. The case 2 < α < 3 for ternary words and the case 3 < α < 4
for binary words are relevant to the studies of Abelian repetition threshold. We
provide here the algorithms for the first case; the algorithms for the second case
are very similar (the only difference is that one should check for A-cubes instead
of A-squares). A β-A-power with α ≤ β ≤ 3 has the form ZZ ′z, where Z ∼ Z ′,
z is equivalent to a prefix of Z, and |ZZ′z|

|Z| ≥ α. We write the A-square ZZ ′ as
xy where |x| ≤ |y| and x ∼ z. Consequently, if all proper prefixes of a word u
are α-A-free, then u is α-A-free iff the following analog of (
) holds:

(∗) no suffix of u can be written as xyz such that |y| ≥ |x| > 0, x ∼ z, 2|xyz|
|xy| ≥ α,

and xy is an Abelian square.

Verifying (∗) for u, we process its suffix z as follows. Within the range determined
by α, we search for all factors x = u[left ..right] such that x ∼ z (see Fig. 1).
For each x we consider the corresponding suffix xyz of u and check whether
xy is an Abelian square. If yes, xyz violates (∗). Algorithm 4 below, as well as
the next Algorithm 5, uses the same data structure and auxiliary functions as
Algorithm 2 and thus has O(1) update time and use O(n) space.

Proposition 4. Let α be a number such that 2 < α < 3 and u be a word all
proper prefixes of which are α-A-free. Then Algorithm 4 correctly detects whether
u is α-A-free.
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Algorithm 4. A-powers detection (case 2 < α < 3)
1: function ALPHAfree(u) � u=word; n = |u|
2: free ← true � α-A-freeness flag
3: for i = n downto 1+�2n/3� do � z = u[i..n]
4: right ← i − 1
5: len ← n − i + 1; �P ← Parikh(i, n) � length and Parikh vector of z
6: left ← cover(�P , right)
7: if left = 0 then break � Ψ(u[1..right]) �≥ Ψ(z)

8: while left ≥ max{1, �αi−1−2n
α−2

�} do � guarantees 2|xyz|
|xy| ≥ α

9: if left + len − 1 = right then � x = u[left ..right] ∼ z
10: if 2 | (i− left) and

∑
a∈Σ

∣
∣ca[i−1]+ca[left−1]−2ca[ i+left

2
−1]

∣
∣ = 0 then

11: free ← false; break � xy = u[left ..i−1] is an Abelian square
12: else
13: right ← right − 1 � right bound for the next search
14: else
15: right ← left + len − 1 � right bound for the next search

16: left ← cover(�P , right)
17: if free = false then break
18: return free � the answer to “is u α-A-free?”

Proof. Algorithm 4 is similar to Algorithm 2, so we focus on their difference.
If some suffix xyz violates (∗), then |z| ≤ |xyz|/3 ≤ n/3; hence the range for
the outer cycle in line 3. For a fixed z we repeatedly seek for the shortest factor
v = u[left ..right] with the given right bound and the property Ψ(v) ≥ Ψ(z). If
|v| = |z| (condition in line 9 holds), then v is a candidate for x in the suffix xyz
violating (∗). The initial value for right (line 4) is set to ensure |x| ≤ |y|. The
candidate found in line 9 is checked in line 10 for the remaining condition: xy
is an Abelian square. Namely, we check that |xy| is even and its left and right
halves have the same Parikh vector. If this condition holds, the algorithm breaks
both inner and outer cycles and returns false. If the condition fails, we decrease
right by 1 and compute the factor v for this new right bound. The rest is the
same as in Algorithm 2. So we can conclude that Algorithm 4 verifies (∗). 
�

Remark 5. As Algorithm 4 shares the structure with Algorithm 2, it has the
same time complexity O(K + n); see Remark 2 for details.

Algorithm 4 is rather slow. But it appears that the reversals of A-powers can
be detected by a much faster Algorithm 5 below. We call u a dual α-A-power
if uR is an α-A-power; then dual α-A-free words are exactly the reversals of
α-A-free words. As a language and its reversal have equal numbers of words of
each length, we use Algorithm 5 in the studies of Abelian repetition threshold
instead of Algorithm 4.

Assume that all proper prefixes of a word u are dual α-A-free, where 2 <
α < 3. Then u is dual α-A-free iff the following analog of (∗) holds:

(†) no suffix of u can be written as xyz such that y ∼ z, |xyz|
|z| ≥ α, and x is

equivalent to a suffix of z.



Abelian Repetition Threshold Revisited 313

Algorithm 5. Dual A-powers detection (2 < α < 3)
1: function dualALPHAfree(u) � u=word; n = |u|
2: free ← true � α-A-freeness flag
3: i ← n
4: while i ≥ 1 + �α−1

α
n� do � z = u[i..n]

5: len ← n − i + 1; �P ← Parikh(i, n) � length and Parikh vector of z
6: left ← cover(�P , i − 1) � computing v
7: if left + len = i then � |v| = |z| ⇒ v = y ∼ z
8: j = �(α − 2) · len� � minimal length of x
9: while j ≤ len do � possible lengths of x

10: �P1 ← Parikh(n−j+1, n) � Parikh vector of the length-j suffix of z
11: left1 ← cover(�P1, left − 1) � computing v1 for x
12: if left1 + j = left then � x is found
13: free ← false; break
14: else
15: j ← left − left1
16: i ← i − 1
17: else
18: i ← �(n + left)/2�
19: if free = false then break
20: return free � the answer to “is u dual α-A-free?”

Proposition 5. Let α be a number such that 2 < α < 3 and u be a word all
proper prefixes of which are dual α-A-free. Then Algorithm 5 correctly detects
whether u is dual α-A-free.

Proof. If some suffix xyz violates (†), then |z| ≤ |xyz|/α ≤ n/α; hence the range
for the outer cycle in line 3. The general scheme is as follows. For each processed
suffix z, the algorithm first checks if u ends with an Abelian square yz (y ∼ z);
if yes, it checks whether yz is preceded by some x which is equivalent to a suffix
of z. If such an x is found, the algorithm detects a violation of (†) and stops. If
either x or y is not found, the algorithm moves to the next appropriate suffix.

Let us consider the details. In line 6, the shortest v = u[left ..i−1] such that
vz is a suffix of u and Ψ(v) ≥ Ψ(z) is computed. If |v| = |z| (the condition in
line 7), then y = v is found and we enter the inner cycle to find x. If |v| > |x|,
the suffixes of u of lengths between 2|z| and |vz| − 1 cannot be A-squares; then
the next suffix to be considered has the length

⌈ |vz|
2

⌉
, as is set in line 18. In the

inner cycle, a similar idea is implemented: for each processed suffix z1 of z the
algorithm finds the shortest word v1 = u[left1..left−1] satisfying Ψ(v1) ≥ Ψ(z1)
(line 11). If |v1| = |z1| (line 12), then x is found; consequently, the algorithm
returns false. Otherwise, the next suffix of z to be checked is of length |v1| (line
15). The inner cycle breaks if this length exceeds the length of z. If the algorithm
finishes the check of the suffix z without breaking or skips this suffix at all, then
u has no suffix xyz, violating (†). Therefore, the algorithm verifies (†). 
�

Algorithm 5 is extremely fast compared to other algorithms of this section.
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Proposition 6. For a word u picked up uniformly at random from the set Σn,
Algorithm 5 works in Θ(

√
n) expected time.

Proof. By Lemma 2, the expected length of the word v found in line 6 is
|z| + Ω(

√
|z|) and thus, on expectation, the assignment in line 18 leads to skip-

ping Ω(
√

|z|) suffixes of u. Hence the expected total number of processed suffixes
of u is O(

√
n). By the same argument, the inner cycle for a suffix z runs, on

expectation, O(
√

|z|) iterations, so its expected time complexity is O(
√

|z|).
Thus, processing the suffix of length �, Algorithm 5 performs O(1) + p� · O(

√
�)

operations, where p� is the probability to enter the inner cycle, i.e., the prob-
ability that two random ternary words of length � are Abelian equivalent. One
has

p� ≤ max
k1,k2,...,kσ

(
�

k1, k2, . . . , kσ

)/
σ�,

dividing the maximum number of A-equivalent words of length � over Σ by the
total number of such words. This maximum, is Θ(σ�/�(σ−1)/2) by the Stirling
formula. Thus p� = O(1/�(σ−1)/2). Then Algorithm 5 performs, on expectation,
O(1) operations per iteration of the outer cycle. The result now follows. 
�

4 Experimental Results

We ran a big series of experiments for α-A-free languages over the alphabets
of size 2, 3, . . . , 10. Each of the experiments is a set of random walks in the
prefix tree of a given language. Each walk follows the random depth-first search
(Algorithm 1), with the number N of visited nodes being of order 105 to 107.
The ultimate aim of every experiment was to make a well-grounded conjecture
about the (in)finiteness of the studied language. Our initial expectation was that
random walks will demonstrate two easily distinguishable types of behaviour:

– infinite-like: the level of the current node is (almost) proportional to the
number of nodes visited, or

– finite-like: from some point, the level of the current node oscillates near the
maximum reached earlier.

However, the situation is more tricky: very long oscillations of level were detected
during random walks even in some languages which are known to be infinite;
for example, in the binary 4-A-free language. To overcome such an unwanted
behaviour, we endowed Algorithm 1 with a “forced backtrack” rule:

– let ml = k be the maximum level of a node reached so far; if f(k) nodes were
visited since the last update of ml or since the last forced backtrack, then
make a forced backtrack: from the current node, move g(k) edges up the tree
and continue the search from the node reached.

Here f(k) and g(k) are some heuristically chosen monotone functions; we used
f(k) = �k3/2� and g(k) = �k1/2�. Forced backtracking deletes the last g(k)
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letters of the current word in order to get out of a “trap”: a very big finite
subtree the search was supposed to traverse. The use of forced backtrack allowed
us to classify the walks in almost all studied languages either as infinite-like or
as finite-like. The results presented below are grouped by the alphabets.

4.1 Alphabets with 6, 7, 8, 9, and 10 Letters

In [21], it was proved (Theorem 3.1) that ART(k) ≥ k−2
k−3 for all k ≥ 5 and con-

jectured that the equality holds in all cases. However, the random search reveals
a different picture. For each of the languages AF(k, k−2

k−3

+
), k = 6, 7, 8, 9, 10, we

ran random search with forced backtrack, using Algorithm 3 to decide the mem-
bership in the language; the search terminated when N nodes were visited. We
repeated the search 100 times with with N = 106 and another 100 times with
N = 2 · 106. The results, presented in columns 3–8 of Table 2, clearly demon-
strate finite-like behaviour of random walks. Moreover, the results suggest that
neither of these languages contains a word much longer than 100 symbols.

Theorem 1. One has ART(k) > k−2
k−3 for k = 6, 7, 8, 9, 10.

A length-n word is called n-permutation if all its letters are pairwise distinct.
Observing that a k−2

k−3

+
-A-free word of length k−1 contains a (k−2)-permutation,

one can easily prove Lemma 3 below. Reducing the search space with the help
of Lemma 3, we were able to prove Theorem 1 by exhaustive search.

Lemma 3. Let k ≥ 6, α = k−2
k−3

+
, and let L1, L2, and L3 be subsets of L =

AF(k, α) defined as follows:

– L1 = {w ∈ L | w has the prefix 01 · · · (k−3) and no (k−1)-permutations};
– L2 = {w ∈ L | w has the prefix 01 · · · (k−2) and no k-permutations};
– L3 = {w ∈ L | w has the prefix 01 · · · (k−1)}.

Then L is finite iff each of L1, L2, and L3 is finite.

Table 2. Maximum levels ml reached by random walks in some Abelian power-free
languages. Columns 3–5 (resp. 6–8) show the maximum, average, and median values of
ml among 100 random walks visiting N = 106 (resp., N = 2·106) nodes each. Column 9
shows the length of a longest word in the language, found by exhaustive search.

Alphabet Avoided N = 106 N = 2 · 106 Maximum

size power mlmax mlav mlmed mlmax mlav mlmed length

6 (4/3)+ 112 98.9 98 114 101.1 101 116

7 (5/4)+ 116 100.3 100 124 103.9 102 125

8 (6/5)+ 103 94.8 95 102 96.2 96 105

9 (7/6)+ 108 95.6 96 107 98.8 99 117

10 (8/7)+ 121 107.7 108 128 111.6 111 148*
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Remark 6. The number of nodes visited during the optimized exhaustive search
proving Theorem 1 ranged from 0.43 billions for k = 8 to 615 billions for k = 10;
the search required over 2500 h of single-core processing time by an ordinary
laptop (Algorithm 3 was used to detect A-powers). For each k = 6, 7, 8, 9 we
have also run a single search enumerating all lexmin words in the language
AF(k, k−2

k−3

+
). Thus we found the maximum length of a word in each language

(the last column of Table 2) and the distribution of words by their length. For
k = 10, such a single search would require too much resources; here the value in
Table 2 is the length of the longest word found by the search based on Lemma 3.

As the next step after Theorem 1, we ran experiments for the languages
AF(k, k−3

k−4 ). The results for k = 7, 8, 9, 10 are presented in Table 3; random
walks in these languages clearly demonstrate finite-type behaviour, while prov-
ing finiteness by exhaustive search looks impossible. On the contrary, the walks
in the 6-ary language AF(6, 3

2 ) demonstrate an infinite-like behaviour: the aver-
age value of ml for our experiments with N = 105 is greater than 5 · 104. We
note that the obtained words are too long for Algorithm 3, so we had to use
slower Algorithm 2. Finally, we constructed random walks for the languages
AF(k, k−3

k−4

+
) (k = 7, 8, 9, 10). They also demonstrate infinite-like behaviour. The

obtained experimental results allow us to state the part of Conjecture 2 for the
alphabets with 6 and more letters.

Table 3. Maximum levels ml reached by random walks in some Abelian power-free
languages. Columns 3–5 (resp. 6–8) show the maximum, average, and median values
of ml among 100 random walks visiting N = 106 (resp., N = 2 · 106) nodes each.

Alphabet Avoided N = 106 N = 2 · 106

size power mlmax mlav mlmed mlmax mlav mlmed

7 4/3 510 374.5 371 510 397.5 394

8 5/4 211 179.7 179 223 185.0 184

9 6/5 192 157.2 156 191 162.3 161

10 7/6 175 154.0 154 187 159.7 158

4.2 Alphabets with 2, 3, 4, and 5 Letters

Random walks in the prefix tree of the language AF(5, 3
2

+) demonstrate the
infinite-like behaviour; Fig. 3 shows an example of dependence of the level of
the current node on the number of nodes visited. The obtained results give us
sufficient evidence to support Conjecture 1 for k = 5.

Remark 7. As the language AF(5, 3
2

+) is probably infinite, it is interesting to
estimate its growth. Based on the technique described in [17], we estimate the
number of words of length n in AF(5, 3

2

+) as growing exponentially with n at
the rate close to 1.5. The upper bound 2.335 [21] on this rate is thus very loose.



Abelian Repetition Threshold Revisited 317

Fig. 3. An infinite-like random walk in the language AF(5, 3
2

+
): a point (n, m) of the

graph means that the nth node visited by the walk has depth m.

Further, we studied the languages AF(4, 9
5

+), AF(3, 2+), and AF(2, 11
3

+), indi-
cated by Conjecture 1 as infinite; we replaced the last two languages with their
reversals to benefit from the fast detection of A-powers by Algorithm 5 and its
version for α > 3. Random walks in each of three languages show the finite-like
behaviour; see Table 4 and the example in Fig. 4 (multiple forced backtracks
provide slightly better average results for longer searches). So the experimental
results justify lower bounds from Conjecture 2 for k = 2, 3, 4. To get the upper
bound for the ternary alphabet, we ran random walks for the language AF(3, 5

2

+)
with the results similar to those obtained for AF(5, 3

2

+): all walks demonstrate
the infinite-like behaviour; the level ml = 105 is reached within minutes.

Overall, the conducted experiments justify the formulation of Conjecture 2.

Table 4. Maximum levels ml reached by random walks in some A-power-free languages.
Columns 3–5 (resp. 6–8, 9–11) show the maximum, average, and median values of ml
among 100 random walks visiting N = 106 (resp., N = 2 · 106, N = 107) nodes each.

Alphabet Avoided N = 106 N = 2 · 106 N = 107

size power mlmax mlav mlmed mlmax mlav mlmed mlmax mlav mlmed

2 (11/3)+ 775 435.8 416 706 477.0 453 759 589.7 588

3 2+ 3344 1700.0 1671 5363 2228.8 2140 5449 3078.1 3148

4 (9/5)+ 1367 861.2 835 1734 986.8 956 2453 1414.7 1369

5 Future Work

Clearly, the main challenge in the topic is to find the exact values of the Abelian
repetition threshold. Even finding one such value would be a great progress.
Choosing the case to start with, we would suggest proving ART(5) = 3/2 because
in this case the lower bound is already checked by exhaustive search in [21].
For all other alphabets, the proof of lower bounds suggested in Conjecture 2 is
already a challenging task which cannot be solved by brute force.
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Fig. 4. A finite-like random walk in the language AF(4, 9
5

+
): a point (n, m) of the graph

means that the nth node visited by the walk has depth m.

Another piece of work is to refine Conjecture 2 by suggesting the precise
values of ART(2), ART(3), ART(4), and ART(6). For bigger k, random walks
demonstrate an obvious “phase transition” at the point k−3

k−4 : the behaviour of

a walk switches from finite-like for AF(k, k−3
k−4 ) to infinite-like for AF(k, k−3

k−4

+
).

However, the situation with small alphabets can be trickier. We tried 11/6 as the
next natural candidate for ART(4). For the random walks in AF(4, 11

6

+), with
N = 106 and forced backtracks, the range of obtained maximum levels in our
experiments varied from 3000 to 20000; such big lengths show that there is no
hope to see a clear-cut phase transition in the experiments with random walks.

Third, we want to draw attention to the following fact. The quaternary 2-
A-free word constructed by Keränen [14] contains arbitrarily long factors of
the form xax′, where a is a letter and x ∼ x′; thus it is not α-A-free for any
α < 2. Similarly, the word constructed by Dekking [9] for the ternary (resp.,
binary) alphabet is not α-A-free for any α < 3 (resp., α < 4). Hence some new
constructions are necessary to improve upper bounds for ART.

The algorithmic part of this work also rises some questions. As established by
Radoszewski et al. [18], the commonly believed 3-SUM conjecture implies that
it is impossible to decide in O(n2−ε) time whether a word contains an A-square
(and thus decide in O(n1−ε) time whether a word contains an A-square as a
suffix). So, what are the lower bounds for detecting fractional A-powers?
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Abstract. We investigate two operators on classes of regular languages:
polynomial closure (Pol) and Boolean closure (Bool). We apply these
operators to classes of group languages G and to their well-suited exten-
sions G+, which is the least Boolean algebra containing G and {ε}. This
yields the classes Bool(Pol(G)) and Bool(Pol(G+)). These classes form
the first level in important classifications of classes of regular languages,
called concatenation hierarchies, which admit natural logical characteri-
zations. We present generic algebraic characterizations of these classes.
They imply that one may decide whether a regular language belongs
to such a class, provided that a more general problem called separation
is decidable for the input class G. The proofs are constructive and rely
exclusively on notions from language and automata theory.

Keywords: Regular languages · Group languages · Concatenation
hierarchies · Membership

1 Introduction

An active line of research in automata theory is to investigate natural subclasses
of regular languages. We are particularly interested in classes associated to frag-
ments of standard pieces of syntax used to define the regular languages (e.g., reg-
ular expressions or monadic second-order logic). Given a fragment, we consider
the class of all languages that can be defined by an expression of this fragment.
For each such class C, a standard approach for its investigation is to look for a
C-membership algorithm: given a regular language L as input, decide whether
L ∈ C. Getting such an algorithm requires a solid understanding of C. We are
not only interested in a yes/no answer on the decidability of C-membership but
also in the techniques and proof arguments involved for obtaining this answer.

We look at classifications called concatenation hierarchies. A concatenation
hierarchy is built from an input class of languages, called its basis, using two oper-
ators. The polynomial closure of a class C, written Pol(C), consists in all finite
unions of languages L0a1L1 · · · anLn where a1, . . . , an are letters and L0, . . . , Ln
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are languages in C. The Boolean closure of C, denoted by Bool(C), is the least
class containing C and closed under Boolean operations. We investigate level one
of concatenation hierarchies: the classes Bool(Pol(C)) (abbreviated BPol(C)).
Moreover, we consider special bases C. The group languages are those recognized
by a finite group, or equivalently by a permutation automaton (i.e., a complete,
deterministic and co-deterministic automaton). We only consider bases that are
either a class G containing only group languages, or its well-suited extension G+

(roughly, G+ is the least Boolean algebra containing G and the singleton {ε}).
The motivation for using such bases stems from the logical characterizations of
concatenation hierarchies [12,22]. A word can be viewed as a logical structure
consisting of a sequence of labeled positions. Therefore, we may use first-order
sentences to define languages. It turns out that BPol(G) and BPol(G+) corre-
spond to the logical classes BΣ1(<,PG) and BΣ1(<,+1,PG) where BΣ1 is the
fragment of first-order logic containing only the Boolean combinations of purely
existential formulas. Here, the predicates “<” and “+1” are interpreted as the
linear order and the successor relation. Moreover, PG is a set of predicates built
from G: for each language L ∈ G, it contains a unary predicate that checks
whether the prefix preceding a given position belongs to L.

In the paper, we present generic algebraic characterizations of BPol(G)
and BPol(G+). They apply to all classes of group languages G satisfying mild
hypotheses (namely, G must be closed under Boolean operations and quotients).
Moreover, they imply that membership is decidable for BPol(G) and BPol(G+)
provided that a more general problem, separation, is decidable for G. Separation
takes two input regular languages L0, L1 and asks whether there exists K ∈ G
such that L0 ⊆ K and L1 ∩ K = ∅. From the decidability point of view, the
results are not entirely new. In particular, for BPol(G), it is even known [14]
that separation is decidable for BPol(G) when it is already decidable for G (on
the other hand, this is open for BPol(G+)). Hence, our main contribution con-
sists in the characterizations themselves and the techniques that we use to prove
them. In particular, the proof arguments are constructive. For example, given
a language L satisfying the characterization of BPol(G), we prove directly that
L belongs to BPol(G) by explicitly building a description of L as a Boolean
combination of products L0a1L1 · · · anLn where L0, . . . , Ln ∈ G.

With these characterizations, we generalize a number of known results for
particular classes of group languages G. Let us first consider the case when G
is the trivial Boolean algebra, which we denote by ST: we have ST = {∅, A∗}
and ST+ = {∅, {ε}, A+, A∗} (where A is the alphabet). In this case, we obtain
two well-known classes: BPol(ST) = BΣ1(<) defines the piecewise testable lan-
guages and BPol(ST+) = BΣ1(<,+1) the languages of dot-depth one. The
famous algebraic characterizations of these classes by Simon [17] and Knast [6]
are simple corollaries of our generic results. Another key example is the class
MOD of modulo languages: membership of a word in such a language depends
only on its length modulo some fixed integer. In this case, the logical coun-
terparts of BPol(MOD) and BPol(MOD+) are the classes BΣ1(<,MOD) and
BΣ1(<,+1,MOD) where “MOD” denotes the set of modular predicates. It is
again possible to use our results to reprove the known characterizations of these
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classes by Chaubard, Pin and Straubing [4] and Maciel, Péladeau and Thérien [7].
Our result also applies to the important case when G is the class GR of all
group languages [8]. In particular, there exists a specialized characterization of
BPol(GR) by Henckell, Margolis, Pin and Rhodes [5], independent from GR-
separation. While it is also possible to reprove this result as a corollary of our
characterization, this requires a bit of technical work as well as knowledge of the
GR-separation algorithm [2] which is a difficult result. Finally, another generic
characterization of the classes BPol(G) follows from an algebraic theorem of
Steinberg [18] (though it only applies under more restrictive hypotheses on G).

Our techniques differ from those used in the aforementioned specialized papers.
Historically, classes of the form BPol(G) or BPol(G+) are often approached via
alternate definitions based on an algebraic construction called “wreath product”.
Indeed, it turns out that all classes of this kind can be built from the piecewise
testable languages (i.e., the class BPol(ST)) using this product [9,20]. The argu-
ments developed in [4,5,7,8,18] build exclusively on this construction.The paper is
completely independent from these techniques: we work directly with the language
theoretic definition of our classes based on the operator BPol. This matches our
original motivation: investigating classes of regular languages.

We introduce the needed terminology in Sect. 2, look at classes of the form
BPol(G) in Sect. 3, and devote Sect. 4 to classes of the form BPol(G+). Due to
space limitations, several proofs are postponed to the full version of the paper [16].

2 Preliminaries

We present the objects that we investigate and the terminology that we require
to manipulate them. The proofs are available in the full version of the paper.

2.1 Words, Regular Languages and Classes

We fix a finite alphabet A for the whole paper. As usual, A∗ denotes the set of
all finite words over A, including the empty word ε. We let A+ = A∗ \ {ε}. For
u, v ∈ A∗, we let uv be the word obtained by concatenating u and v. Additionally,
given w ∈ A∗, we write |w| ∈ N for the length of w. A language is a subset of A∗.
We denote the singleton language {u} by u. We lift concatenation to languages:
for K,L ⊆ A∗, we let KL = {uv | u ∈ K and v ∈ L}. We shall consider marked
products: given languages L0, . . . , Ln ⊆ A∗, a marked product of L0, . . . , Ln is a
product of the form L0a1L1 · · · anLn where a1, . . . , an ∈ A (note that “L0” is a
marked product: this is the case n = 0).

Regular Languages. All languages considered in the paper are regular. These
are the languages that can be equivalently defined by a regular expression, an
automaton or a morphism into a finite monoid. We work with the latter defini-
tion. A monoid is a set M equipped with a binary operation s, t �→ st (called
multiplication) which is associative and has a neutral element denoted by “1M”.
Recall that an idempotent of a monoid M is an element e ∈ M such that ee = e.
For all S ⊆ M , we write E(S) for the set of all idempotents in S. It is standard
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that when M is finite, there exists ω(M) ∈ N (written ω when M is understood)
such that sω is idempotent for every s ∈ M .

An ordered monoid is a pair (M,≤) where M is a monoid and ≤ is a partial
order on M which is compatible with multiplication: for every s, t, s′, t′ ∈ M , if
s ≤ t and s′ ≤ t′, then ss′ ≤ tt′. An upper set of M (for ≤) is a set S ⊆ M which
is upward closed for ≤: for every s, t ∈ M such that s ≤ t, we have s ∈ S ⇒ t ∈ S.
For every s ∈ M , we write ↑s for the least upper set of M containing s (i.e.,
↑s consists of all t ∈ M such that s ≤ t). We may view arbitrary monoids as
being ordered, as follows: we view any monoid M with no ordering specified as
the ordered monoid (M,=): we use equality as the ordering. In this special case,
all subsets of M are upper sets.

Clearly, A∗ is a monoid for concatenation as the multiplication (ε is neutral).
Given an ordered monoid (M,≤), we may consider morphisms α : A∗ → (M,≤).
We say that a language L ⊆ A∗ is recognized by such a morphism α when there
exists an upper set F ⊆ M such that L = α−1(F ) (the definition depends on
the ordering ≤, since F must be an upper set). Note that this also defines the
languages recognized by a morphism η : A∗ → N into an unordered monoid N
since we view N as the ordered monoid (N,=). It is well-known that a language
is regular if and only if it can be recognized by a morphism into a finite monoid.

Remark 1. The only infinite monoid that we consider is A∗. From now, we implic-
itly assume that every other monoid M,N, . . . that we consider is finite.

Classes of Languages. A class of languages C is a set of languages. A lattice is
a class closed under both union and intersection, and containing the languages
∅ and A∗. Moreover, a Boolean algebra is a lattice closed under complement.
Finally, a class C is quotient-closed when for all L ∈ C and u, v ∈ A∗, the
language {w ∈ A∗ | uwv ∈ L} belongs to C as well. We say that a class C is
a positive prevariety (resp. prevariety) to indicate that it is a quotient-closed
lattice (resp. Boolean algebra) containing only regular languages.

We rely on a decision problem called membership as a means to investigate
classes of languages. Given a class C, the C-membership problem takes as input
a regular language L and asks whether L ∈ C. Intuitively, obtaining a procedure
for C-membership requires a solid understanding of C. We also look at more
involved problem called separation. Given a class C, and two languages L0 and
L1, we say that L0 is C-separable from L1 if and only if there exists K ∈ C
such that L0 ⊆ K and L1 ∩ K = ∅. The C-separation problem takes two regular
languages L0 and L1 as input and asks whether L0 is C-separable from L1. Let
us point out that we do not present separation algorithms in this paper. We
shall need this problem as an intermediary in our investigation of membership.

Group Languages. A group is a monoid G such that every element g ∈ G has
an inverse g−1 ∈ G, i.e., such that gg−1 = g−1g = 1G. We call “group language”
a language recognized by a morphism into a finite group. We consider classes G
that are group prevarieties (i.e., containing group languages only).

We let GR be the class of all group languages. Another important example
is the class AMT of alphabet modulo testable languages. For every w ∈ A∗ and
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every a ∈ A, we write #a(w) ∈ N for the number of occurrences of “a” in w. The
class AMT consists of all finite Boolean combinations of languages {w ∈ A∗ |
#a(w) ≡ k mod m} where a ∈ A and k,m ∈ N such that k < m. One may verify
that these are exactly the languages recognized by commutative groups. We also
consider the class MOD, which consists of all finite Boolean combinations of
languages {w ∈ A∗ | |w| ≡ k mod m} with k,m ∈ N such that k < m. Finally,
we write ST for the trivial class ST = {∅, A∗}. One may verify that GR, AMT,
MOD and ST are all group prevarieties.

It follows from the definition that {ε} and A+ are not group languages.
This motivates the next definition: for a class C, the well-suited extension of C,
denoted by C+, consists of all languages of the form L ∩ A+ or L ∪ {ε} where
L ∈ C. The next lemma follows from the definition.

Lemma 2. Let C be a prevariety. Then, C+ is a prevariety containing the lan-
guages {ε} and A+.

2.2 Polynomial and Boolean Closure

In the paper, we look at classes built using two standard operators. Consider a
class C. The Boolean closure of C, denoted by Bool(C) is the least Boolean algebra
that contains C. Moreover, the polynomial closure of C, denoted by Pol(C), con-
tains all finite unions of marked products L0a1L1 · · · anLn where L0, . . . , Ln ∈ C.
Finally, we write BPol(C) for Bool(Pol(C)). It is known that when C is a pre-
variety, Pol(C) is a positive prevariety and BPol(C) is a prevariety. This is not
immediate (proving that Pol(C) is closed under intersection is difficult). This
was first shown by Arfi [1], see also [10,12] for more recent proofs.

Theorem 3. Let C be a prevariety. Then Pol(C) is a positive prevariety and
BPol(C) is a prevariety.

In the literature, these operators are used to define classifications called con-
catenation hierarchies. Given a prevariety C, the concatenation hierarchy of basis
C is built from C by iteratively applying Pol and Bool to C. In the paper, we only
look at the classes Pol(C) and BPol(C). These are the levels 1/2 and one in the
concatenation hierarchy of basis C. Moreover, we look at bases that are either
a group prevariety G or its well-suited extension G+. Most of the prominent
concatenation hierarchies in the literature use bases of this kind.

The hierarchy of basis ST = {∅, A∗} is called the Straubing-Thérien hier-
archy [19,21]. In particular, BPol(ST) is the class of piecewise testable lan-
guages [17]. Another prominent example is the basis ST+ = {∅, {ε}, A+, A∗}
which yields the dot-depth hierarchy [3]. Non-trivial group prevarieties also yield
important hierarchies. For example, the group hierarchy, whose basis is GR was
first investigated in [8]. The hierarchies of bases MOD and MOD+ are also
prominent (see for example [4,7]). These hierarchies are also interesting for their
logical counterparts, which were first discovered by Thomas [22]. Let us briefly
recall them (see [12,14] for more details).
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Consider a word w = a1 · · · a|w| ∈ A∗. We view w as a linearly ordered set of
|w|+2 positions {0, 1, . . . , |w|, |w|+1} such that each position 1 ≤ i ≤ |w| carries
the label ai ∈ A (on the other hand, 0 and |w|+1 are artificial unlabeled leftmost
and rightmost positions). We use first-order logic to describe properties of words:
a sentence can quantify over the positions of a word and use a predetermined set
of predicates to test properties of these positions. We also allow two constants
“min” and “max”, which we interpret as the artificial unlabeled positions 0 and
|w|+1 in a given word w. Each first-order sentence ϕ defines the language of all
words satisfying the property stated by ϕ. Let us present the predicates that we
use. For each a ∈ A, we associate a unary predicate (also denoted by a), which
selects the positions labeled by “a”. We also consider two binary predicates: the
(strict) linear order “<” and the successor relation “+1”.

Example 4. The sentence “∃x∃y (x < y) ∧ a(x) ∧ b(y)” defines the language
A∗aA∗bA∗. The sentence “∃x∃y a(x) ∧ c(y) ∧ (y + 1 = max)” defines A∗aA∗c.

We associate a (possibly infinite) set of predicates PG to every group preva-
riety G. For every language L ∈ G, PG contains a unary predicate PL which is
interpreted as follows. Let w = a1 · · · a|w| ∈ A∗. The unary predicate PL selects
all positions i ∈ {0, . . . , |w| + 1} such that i �= 0 and a1 · · · ai−1 ∈ L. It is stan-
dard to write “BΣ1” for the fragment of first-order logic, containing exactly the
Boolean combinations of existential first-order sentences. We let BΣ1(<,PG) be
the class of all languages defined by a sentence of BΣ1 using only the label predi-
cates, the linear order “<” and those in PG . Moreover, we let BΣ1(<,+1,PG) be
the class of all languages defined by a sentence of BΣ1, which additionally allows
the successor predicate “+1”. The following proposition follows from the generic
logical characterization of concatenation hierarchies presented in [12] and the
properties of group languages.

Proposition 5. For every group prevariety G, we have BPol(G) = BΣ1(<,PG)
and BPol(G+) = BΣ1(<,+1,PG).

Remark 6. When G = ST, all predicates in PST are trivial. Hence, we get the
classes BΣ1(<) and BΣ1(<,+1). When G = MOD, one may verify that we obtain
the classes BΣ1(<,MOD) and BΣ1(<,+1,MOD) where “MOD” is the set of
modular predicates (for all r, q ∈ N such that r < q, it contains a unary predicate
Mr,q selecting the positions i such that i ≡ r mod q). When G = AMT, one
may verify that we obtain the classes BΣ1(<,AMOD) and BΣ1(<,+1, AMOD)
where “AMOD” is the set of alphabetic modular predicates (for all a ∈ A and
r, q ∈ N such that r < q, it contains a unary predicate Ma

r,q selecting the positions
i such the that number of positions j < i with label a is congruent to r modulo q).

2.3 C-morphisms

We now introduce a key tool, which we shall use to formulate our results. Let C
be a positive prevariety. A C-morphism is a surjective morphism η : A∗ → (N,≤)
into a finite ordered monoid such that every language recognized by η belongs
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to C. Let us make a key remark: when C is a prevariety, it suffices to consider
unordered monoids (we view them as monoids ordered by equality).

Lemma 7. Let C be a prevariety and η : A∗ → (N,≤) a morphism. Then, η is
a C-morphism if and only if η : A∗ → (N,=) is a C-morphism.

While simple, this notion is a key tool in the paper. First, it is involved in
the membership problem. It is well-known that for every regular language L,
there exists a canonical morphism αL : A∗ → (ML,≤L) into a finite ordered
monoid recognizing L and called the syntactic morphism of L (we do not recall
the definition as we shall not use it, see [11] for example). It can be computed
from any representation of L and we have the following standard property.

Proposition 8. Let C be a positive prevariety. A regular language L belongs to C
if and only if its syntactic morphism αL : A∗ → (ML,≤L) is a C-morphism.

In view of Proposition 8, getting an algorithm for C-membership boils down
to finding a procedure to decide whether an input morphism α : A∗ → (M,≤) is
a C-morphism. This is how we approach the question in the paper. We shall also
use C-morphisms as mathematical tools in proof arguments. In this context, we
shall need the following simple corollary of Proposition 8.

Proposition 9. Let C be a positive prevariety and consider finitely many lan-
guages L1, . . . , Lk ∈ C. There exists a C-morphism η : A∗ → (N,≤) such that
L1, . . . , Lk are recognized by η.

Finally, we state the following simple lemma, which considers group languages.

Lemma 10. Let G be a group prevariety and let η : A∗ → G be a G-morphism.
Then, G is a group.

2.4 C-pairs
Given a positive prevariety C and a morphism α : A∗ → M , we associate a
relation on M . The definition is taken from [12], where it is used to characterize
all classes of the form Pol(C) for an arbitrary positive prevariety C (we recall
this characterization below). We say that (s, t) ∈ M2 is a C-pair (for α) if and
only if α−1(s) is not C-separable from α−1(t). The C-pair relation is not robust.
One may verify that it is reflexive when α is surjective and symmetric when C is
closed under complement. However, it is not transitive in general. We shall use
the following lemma, which connects this notion to C-morphisms.

Lemma 11. Let C be a positive prevariety and let α : A∗ → M be a morphism
into a finite monoid. The two following properties hold:

– for every C-morphism η : A∗ → (N,≤) and every C-pair (s, t) ∈ M2 for α,
there exist u, v ∈ A∗ such that η(u) ≤ η(v), α(u) = s and α(v) = t.

– there exists a C-morphism η : A∗ → (N,≤) such that for all u, v ∈ A∗, if
η(u) ≤ η(v), then (α(u), α(v)) is a C-pair for α.
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Application to Polynomial Closure. We now recall the characterization of
Pol(C) from [12].

Theorem 12. Let C be a positive prevariety and α : A∗ → (M,≤) a surjective
morphism. Then, α is a Pol(C)-morphism if and only if the following condi-
tion holds:

sω+1 ≤ sωtsω for every C-pair (s, t) ∈ M2. (1)

By definition, one can compute all C-pairs associated to a morphism provided
that C-separation is decidable. Hence, in view of Proposition 8, it follows from
Theorem 12 that when C is a positive prevariety with decidable separation,
membership is decidable for Pol(C).

An interesting point is that Theorem 12 can be simplified in the special case
when C is a group prevariety G or its well-suited extension G+. This will be useful
later when dealing with BPol(G) and BPol(G+). We first present a specialized
characterization of the Pol(G)-morphisms.

Theorem 13. Let G be a group prevariety and α : A∗ → (M,≤) a surjective
morphism. Then, α is a Pol(G)-morphism if and only if the following condition
holds:

1M ≤ s for every s ∈ M such that (1M , s) is a G-pair. (2)

Finally, we present a similar statement for classes of the form Pol(G+).

Theorem 14. Let G be a group prevariety, α : A∗ → (M,≤) a surjective mor-
phism and S = α(A+). Then, α is a Pol(G+)-morphism if and only if the fol-
lowing condition holds:

e ≤ ese for every e ∈ E(S) and s ∈ M such that (1M , s) is a G-pair. (3)

3 Group Languages

In this section, we look at classes of the form BPol(G) when G is a group pre-
variety. We present a generic algebraic characterization of such classes, which
implies that BPol(G)-membership is decidable when this is already the case for
G-separation.

3.1 Preliminaries

We present two key results that we use to build languages of BPol(G) in the
proof. The first one is a concatenation principle for the classes BPol(C) (where C
is an arbitrary prevariety) which is proved in [15, Lemma 3.6]. It is based on the
notion of “cover”. Given a language L, a cover of L is a finite set K of languages
satisfying L ⊆ ⋃

K∈K K. If D is a class, we say that K is a D-cover of L, if K is
a cover of L such that K ∈ D for every K ∈ K.
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Proposition 15. Let C be a prevariety, and let n ∈ N, L0, . . . , Ln ∈ Pol(C) and
a1, . . . , an ∈ A. For every i ≤ n, let Hi be a BPol(C)-cover of Li. There exists
a BPol(C)-cover K of L0a1L1 · · · anLn such that for every K ∈ K, there exists
Hi ∈ Hi for each i ≤ n satisfying K ⊆ H0a1H1 · · · anHn.

Using Proposition 15 requires building a language L0a1L1 · · · anLn where
L0, . . . , Ln ∈ Pol(C). We do this with an independent result which is tailored
to the special case that we investigate in the section: C is a group prevariety G.
Let L ⊆ A∗ be a language. For every word w ∈ A∗, we associate a language
↑Lw ⊆ A∗. Let a1, . . . , an ∈ A be the letters such that w = a1 · · · an. We define
↑Lw = La1L · · · anL ⊆ A∗ (in particular, ↑Lε = L). The next proposition is
proved in the full version of the paper (the proof is based on Higman’s lemma).

Proposition 16. Let H ⊆ A∗ be an arbitrary language and let L ⊆ A∗ be a
group language such that ε ∈ L. There exists a cover K of H such that every
K ∈ K is of the form K = ↑Lw for some word w ∈ H.

3.2 Characterization of BPol(G)
We are ready to present the characterization. As announced, we actually char-
acterize the BPol(G)-morphisms. Recall that since BPol(G) is a prevariety, it
suffices to consider unordered monoids by Lemma 7.

Theorem 17. Let G be a group prevariety and α : A∗ → M a surjective mor-
phism. Then, α is a BPol(G)-morphism if and only if the following property
holds:

(qr)ω(st)ω+1 = (qr)ωqt(st)ω

for every q, r, s, t ∈ M such that (q, s) is a G-pair.
(4)

Computing the G-pairs associated to a morphism boils down to G-separation.
Hence, in view of Proposition 8, Theorem 17 implies that if separation is decid-
able for a group prevariety G, then membership is decidable for BPol(G).

Remark 18. The decidability result itself is not new. In fact, it is even known [14]
that separation is decidable for BPol(G) when this is already the case for G. Our
main contribution is the algebraic characterization and its proof, which relies on
self-contained language theoretic arguments.

We may use Theorem 17 to reprove well-known results for specific classes G.
For example, since ST = {∅, A∗}, every pair (s, t) ∈ M2 is an ST-pair. Hence,
using Theorem 17, one may verify that a surjective morphism α : A∗ → M is a
BPol(ST)-morphism if and only if the equation (st)ωs = (st)ω = t(st)ω holds for
all s, t ∈ M . This is exactly the characterization of the class BPol(ST) = BΣ1(<)
of piecewise testable languages by Simon [17]. We also get a characterization of
the class BPol(MOD) = BΣ1(<,MOD). Though the statement does not really
simplify in this case, it is easily shown to be equivalent to the one presented
in [4]. Finally, there exists a simple characterization of BPol(GR) presented
in [5]: a surjective morphism α : A∗ → M is a BPol(GR)-morphism if and only
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if (ef)ω = (fe)ω for all idempotents e, f ∈ E(M). This is also a corollary of
Theorem 17. Yet, this requires a bit of technical work as well as a knowledge of
the GR-separation algorithm [2] (needed to describe the GR-pairs).

Proof (of Theorem 17). We first assume that α is a BPol(G)-morphism and prove
that it satisfies (4). There exists a finite set H of languages in Pol(G) such that for
every s ∈ M , the language α−1(s) is a Boolean combination of languages in H.
Since Pol(G) is a positive prevariety, Proposition 9 yields a Pol(G)-morphism
η : A∗ → (N,≤) recognizing every H ∈ H. Moreover, Lemma 11 yields a G-
morphism β : A∗ → G such that for every u, v ∈ A∗, if β(u) = β(v), then
(η(u), η(v)) ∈ N2 is a G-pair for η. We know that G is a group by Lemma 10.
We let n = ω(M) × ω(N) × ω(G).

We may now prove that (4) holds. Let q, r, s, t ∈ M such that (q, s) is a
G-pair. We prove that (qr)ω(st)ω+1 = (qr)ωqt(st)ω. Since β : A∗ → G is a
G-morphism and (q, s) is a G-pair, Lemma 11 yields two words u, x ∈ A∗ and
g ∈ G such that β(u) = β(x) = g, α(u) = q and α(x) = s. Since α is
surjective, we get v, y ∈ A∗ such that α(v) = r and α(y) = t. Moreover,
since G is a group, we have β((uv)n) = β((xy)n) = 1G by definition of n.
Let v′ = v(uv)n−1 and y′ = y(xy)n−1. Since β(u) = β(x) = g, we also get
β(v′) = β(y′) = g−1, β(uy′) = 1G and β(v′x) = 1G. Hence, by definition
of β, (1N , η(uy′)) and (1N , η(v′x)) are G-pairs. Since η is a Pol(G)-morphism by
definition, it follows from Theorem 13 that 1N ≤ η(uy′) and 1N ≤ η(v′x). We
may now multiply to obtain that η((uv)n(xy)n+1) ≤ η((uv)nuy′(xy)n+1) and
η((uv)nuy(xy)n) ≤ η((uv)nuv′xy(xy)n). By definition of n, y′ and v′, one may
verify that this yields the inequalities η((uv)n(xy)n+1) ≤ η((uv)nuy(xy)n) and
η((uv)nuy(xy)n) ≤ η((uv)n(xy)n+1). Since η recognizes all H ∈ H by defini-
tion, it follows that (uv)n(xy)n+1 ∈ H ⇔ (uv)nuy(xy)n ∈ H for every H ∈ H.
Since all languages recognized by α are Boolean combination of languages in H,
we get α((uv)n(xy)n+1) = α((uv)nuy(xy)n). By definition, this exactly says that
(qr)ω(st)ω+1 = (qr)ωqt(st)ω as desired.

We turn to the converse implication. Assume that α satisfies (4). We prove
that α is a BPol(G)-morphism. Lemma 11 yields a G-morphism β : A∗ → G such
that for every u, v ∈ A∗, if β(u) = β(v), then (α(u), α(v)) is a G-pair. We write
L = β−1(1G) ∈ G. By hypothesis on G, L is a group language. Moreover, we have
ε ∈ L by definition. Given a finite set of languages K, and s, t ∈ M , we say that
K is (s, t)-safe if for every K ∈ K and w,w′ ∈ K, we have sα(w)t = sα(w′)t.
The argument is based on the following lemma.

Lemma 19. Let s, t ∈ M . There exists a BPol(G)-cover of L which is (s, t)-safe.

Before proving Lemma 19 we first use it to prove that every language rec-
ognized by α belongs to BPol(G), thus concluding the argument. We apply
Lemma 19 with s = t = 1M . This yields a BPol(G)-cover KL of L which is
(1M , 1M )-safe. We use it to build a BPol(G)-cover K of A∗ which is (1M , 1M )-
safe. Since L ∈ G and ε ∈ L, Proposition 16 yields a cover P of A∗ such that
every P ∈ P, there exist n ∈ N and a1, . . . , an ∈ A such that P = La1L · · · anL.
We cover each P ∈ P independently. Consider a language P ∈ P. By definition,
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P = La1L · · · anL for a1, . . . , an ∈ A. Since L ∈ G and KL is a BPol(G)-cover of
L, Proposition 15 yields a BPol(G)-cover KP of P = La1L · · · anL such that for
every K ∈ KP , there exist K0, . . . ,Kn ∈ KL satisfying K ⊆ K0a1K1 · · · anKn.
Since KL is (1M , 1M )-safe, it is immediate that KP is (1M , 1M )-safe as well.
Finally, since P is a cover of A∗, it is now immediate that K =

⋃
P∈P KP is a

(1M , 1M )-safe BPol(G)-cover of A∗. Since K is (1M , 1M )-safe, we know that for
every K ∈ K, there exists s ∈ M such that K ⊆ α−1(s). Hence, since K is a cover
of A∗, it is immediate that for every F ⊆ M , the language α−1(F ) is a union
of languages in K. By closure under union, it follows that α−1(F ) ∈ BPol(G).
This exactly says that all languages recognized by α belong to BPol(G).

It remains to prove Lemma 19. We define a preorder on M2 that we shall
use as an induction parameter. Consider (s, t), (s′, t′) ∈ M2. We write (s, t) �L

(s′, t′) if there exist x, y ∈ A∗ such that xy ∈ L, s′ = sα(x) and t′ = α(y)t.
It is immediate that �L is reflexive since we have ε = εε ∈ L. Let us verify
that �L is transitive. Let (s, t), (s′, t′), (s′′, t′′) ∈ M2 such that (s, t) �L (s′, t′)
and (s′, t′) �L (s′′, t′′). We show that (s, t) �L (s′′, t′′). By definition, we have
xy, x′y′ ∈ L such that s′ = sα(x), t′ = α(y)t, s′′ = s′α(x′) and t′′ = α(y′)t′.
Hence, s′′ = sα(xx′) and t′′ = α(y′y)t. Moreover, since L = β−1(1G), we have
β(xx′y′y) = β(xy) = 1G, which yields xx′y′y ∈ L. We conclude that (s, t) �L

(s′′, t′′), as desired.
We may now start the proof. Let s, t ∈ M . We construct a BPol(G)-cover K

of L which is (s, t)-safe. We proceed by descending induction on the number of
pairs (s′, t′) ∈ M2 such that (s, t) �L (s′, t′). We handle the base case and the
inductive step simultaneously. Consider a word w ∈ L. We say w stabilizes (s, t)
if there exist u, v ∈ A∗ such that uv ∈ ↑Lw, sα(u) = s and α(v)t = t. Observe
that by definition, ε stabilizes (s, t) since we have εε = ε ∈ L = ↑Lε. We let
H ⊆ L be the language of all words w ∈ L that do not stabilize (s, t). Note that
by definition ε �∈ H. We first use induction to build a BPol(G)-cover KH of H
and then complete it to build K. Let us point out that it may happen that H is
empty. This is the base case, it suffices to define KH = ∅.

Let P ⊆ M2 be the set of all pairs (s′, t′) ∈ M2 such that (s, t) �L (s′, t′)
and (s′, t′) ��L (s, t). We define 	 = |P | and write P = {(s′

1, t
′
1), . . . , (s

′
�, t

′
�)}.

For every i ≤ 	, we may apply induction in the proof of Lemma 19 to obtain a
BPol(G)-cover Ki of L which is (s′

i, t
′
i)-safe. We define KL as the finite set of

all languages L ∩ K1 ∩ · · · ∩ K� where Ki ∈ Ki for every i ≤ 	. Since L ∈ G,
it is immediate that KL is a BPol(G)-cover of L which is (s′, t′)-safe for every
(s′, t′) ∈ P . We use it to construct KH .

Lemma 20. There exists an (s, t)-safe BPol(G)-cover KH of H.

Proof. Since L is a group language such that ε ∈ L, Proposition 16 yields a cover
U of H such that for every U ∈ U, there exist n ≥ 1 and a1, . . . , an ∈ A such
that a1 · · · an ∈ H and U = La1L · · · anL (note that n ≥ 1 as ε �∈ H). For each
U ∈ U, we build an (s, t)-safe BPol(G)-cover KU of U . Since U is a cover of H,
it will then suffice to define KH as the union of all covers KU . We fix U ∈ U.

By definition, U = La1L · · · anL where a1 · · · an ∈ H. Since L ∈ G, ε ∈ L and
KL is a BPol(G)-cover of L, Proposition 15 yields a BPol(G)-cover KU of U such
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that for each K ∈ KU , we have K ⊆ K0a1K1 · · · anKn for K0, . . . ,Kn ∈ KL. It
remains to show that KU is (s, t)-safe. We fix K ∈ KU as described above and
w,w′ ∈ K. We show that sα(w)t = sα(w′)t. By definition, we have wi, w

′
i ∈ Ki

for all i ≤ n such that w = w0a1w1 · · · anwn and w′ = w′
0a1w

′
1 · · · anw′

n. We let
ui = w0a1 · · · wi−1ai and u′

i = w′
0a1 · · · w′

i−1ai for 0 ≤ i ≤ n (u0 = u′
0 = ε).

We also let vi = ai+1wi+1 · · · anwn and v′
i = ai+1w

′
i+1 · · · anw′

n (vn = v′
n = ε).

Note that uiw
′
iv

′
i = ui−1wi−1v

′
i−1 for 1 ≤ i ≤ n. Hence, it suffices to prove that

sα(uiwiv
′
i)t = sα(uiw

′
iv

′
i)t for 0 ≤ i ≤ n. By transitivity, it will then follow that

sα(unwnv′
n)t = sα(u0w

′
0v

′
0)t, i.e., sα(w)t = sα(w′)t as desired.

We fix i ≤ n and show that sα(uiwiv
′
i)t = sα(uiw

′
iv

′
i)t. By hypothesis,

wi, w
′
i ∈ Ki. Since Ki ∈ KL is (s′, t′)-safe for all (s′, t′) ∈ P , it suffices to prove

that (sα(ui), α(v′
i)t) ∈ P . There are two conditions to verify. First, we show

that (s, t) �L (sα(ui), α(v′
i)t). By definition of �L, this boils down to proving

that uiv
′
i ∈ L. By definition, wj , w

′
j ∈ Kj for every j ≤ n. Moreover, since

Kj ∈ KL, it follows that wj , w
′
j ∈ L for every j ≤ n by definition of KL. It

follows that β(wj) = β(w′
j) = 1G since L = β−1(1G). Therefore, by definition of

ui and v′
i, we obtain β(ui) = β(a1 · · · ai) and β(v′

i) = β(ai+1 · · · an). This yields
β(uiv

′
i) = β(a1 · · · an). Finally, since a1 · · · an ∈ H ⊆ L and L is recognized by β,

we get uiv
′
i ∈ L, as desired. It remains to prove that (sα(ui), α(v′

i)t) ��L (s, t). By
contradiction, assume that (sα(ui), α(v′

i)t) �L (s, t). This yields x, y ∈ A∗ such
that xy ∈ L and s = sα(uix) and t = α(yv′

i)t. Since xy ∈ L and wj , w
′
j ∈ L, it is

immediate by definition of ui and v′
i that uixyvi ∈ ↑L(a1 · · · an). Hence, a1 · · · an

stabilizes (s, t). This is a contradiction since a1 · · · an ∈ H. ��
We are ready to construct the desired (s, t)-safe BPol(G)-cover K of L.

Let KH be the BPol(G)-cover of H given by Lemma 20. We let K⊥ =
L \ (

⋃
K∈KH

K). Finally, we define K = {K⊥} ∪ KH . It is immediate that K is
a BPol(G)-cover of L since BPol(G) is a Boolean algebra (recall that L ∈ G). It
remains to verify that K is (s, t)-safe. Since we already know that KH is (s, t)-
safe, it suffices to prove that for every w,w′ ∈ K⊥, we have sα(w)t = sα(w′)t.
We actually show that sα(w)t = st for every w ∈ K⊥. Since this is immediate
when w = ε, we assume that w ∈ A+ and let a1, . . . , an ∈ A be the letters such
that w = a1 · · · an.

By definition of K⊥, we know that w �∈ K ′ for every K ′ ∈ KH . Since KH

is a cover of H, it follows that w �∈ H, which means that w stabilizes (s, t)
by definition of H. We get u′, v′ ∈ A∗ such that u′v′ ∈ ↑Lw, sα(u′) = s and
α(v′)t = t. Since u′v′ ∈ ↑Lw, there exist 0 ≤ i ≤ n and x0, . . . , xi, yi, . . . , yn ∈ A∗

which satisfy x0, . . . , xi−1, xiyi, yi+1, . . . , yn ∈ L, u′ = x0a1x1 · · · aixi and v′ =
yiai+1xi+1 · · · anxn. We write u = a1 · · · ai and v = ai+1 · · · an. By definition
w = uv. We show that s = sα(uxi) and t = α(yiv)t. Let us first assume that
this holds and explain why this implies st = sα(w)t.

Since uv = w and w ∈ K⊥ ⊆ L = β−1(1G), we have β(u)β(v) = 1G. Let
p = ω(G). We have 1G = β((yiv)p). Thus, since G is a group, it follows that
β(u) = β((yiv)p−1yi). By definition of β, it follows that (α(u), α((yiv)p−1yi)) is
a G-pair. Consequently, we obtain from (4) that,
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(α(uxi))ω(α((yiv)p−1yiv))ω+1 = (α(uxi))ωα(uv)(α((yiv)p−1yiv))ω.

We may now multiply by s on the left and t on the right. Since s = sα(uxi) and
t = α(yiv)t, this yields st = sα(uv)t. This concludes the proof since uv = w.

It remains to show that s = sα(uxi) and t = α(yiv)t. We prove the former
(the latter is symmetrical and left to the reader). For every j such that 0 ≤ j ≤ i,
we write zj = xjaj+1 · · · xi−1aixi (when i = j, we let zi = xi). We use induction
on i to prove that s = sα(a1 · · · ajzj) for 0 ≤ j ≤ i. Clearly, the case j = i
yields s = sα(a1 · · · aixi) which exactly says that s = sα(uxi). When j = 0, we
have z0 = x0a1x1 · · · aixi = u′ and sα(u′) = s by hypothesis. Assume now that
1 ≤ j ≤ i. Since xj−1 ∈ L and L = β−1(1G), we have β(xj−1) = β(ε) = 1G.
Hence, (α(xj−1), 1M ) is a G-pair by definition of β. Applying (4) with the values
α(xj−1), α(ajzja1 · · · aj−1), 1M , 1M yields that,

(α(xj−1ajzja1 · · · aj−1))ω = (α(xj−1ajzja1 · · · aj−1))ωα(xj−1). (5)

By induction hypothesis, we know that s = sα(a1 · · · aj−1zj−1). Since it is imme-
diate by definition that a1 · · · aj−1zj−1 = a1 · · · aj−1xj−1ajzj , we get,

s = sα(a1 · · · aj−1xj−1ajzj)
= s(α(a1 · · · aj−1xj−1ajzj))ω+1

= sα(a1 · · · aj−1)(α(xj−1ajzja1 · · · aj−1))ωα(xj−1)α(ajzj)
= sα(a1 · · · aj−1)(α(xj−1ajzja1 · · · aj−1))ωα(ajzj) by (5)
= s(α(a1 · · · aj−1xj−1ajzj))ωα(a1 · · · aj−1ajzj)
= sα(a1 · · · ajzj).

This concludes the proof. ��

4 Well-Suited Extensions

We turn to the classes BPol(G+) where G is an arbitrary group prevariety. Again,
we present a generic algebraic characterization, which implies that BPol(G+)-
membership is decidable when this is already the case for G-separation.

4.1 Preliminaries

In this case as well, we start with preliminary results that we use to build lan-
guages of BPol(G+). The first one is a simple corollary of Proposition 15 (the
concatenation principle for BPol(C)) which is more convenient to manipulate
when considering BPol(G+) (see the full version of the paper).

Corollary 21. Let C be a prevariety, L ∈ Pol(C+), H a BPol(C+)-cover of L,
n ∈ N and n+1 nonempty words w1, . . . , wn+1 ∈ A+. There exists a BPol(C+)-
cover K of w1L · · · wnLwn+1 such that for every language K ∈ K, we have
K ⊆ w1H1 · · · wnHnwn+1 for H1, . . . , Hn ∈ H.
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We complete Corollary 21 with a result that we use to build languages of the
form w1L · · · wnLwn+1 with L ∈ Pol(C+). It is tailored to the case considered
in the section: C is a group prevariety G. Consider a morphism α : A∗ → M
and a nonempty word w ∈ A+. An α-guarded decomposition of w is a tuple
(w1, . . . , wn+1) where n ∈ N and w1, . . . , wn+1 ∈ A+ are nonempty words such
that w = w1 · · · wn+1 and, if n ≥ 1, then for 1 ≤ i ≤ n, there exists an idempotent
ei ∈ α(A+) such that α(wi)ei = α(wi) and eiα(wi+1) = α(wi+1). The next result
is a corollary of Proposition 16. It is proved in the full version of the paper.

Proposition 22. Let H ⊆ A+ be a language, α : A∗ → M be a morphism and
L ⊆ A∗ be a group language such that ε ∈ L. There is a cover K of H such that
for all K ∈ K, there are w ∈ H and an α-guarded decomposition (w1, . . . , wn+1)
of w for some n ∈ N such that K = w1L · · · wnLwn+1 (if n = 0, then K = {w1}).

4.2 Characterization

We may now present the characterization. As we explained, we actually charac-
terize the BPol(G+)-morphisms. Recall that since BPol(G+) is a prevariety, it
suffices to consider unordered monoids by Lemma 7.

Theorem 23. Let G be a group prevariety, α : A∗ → M a surjective morphism
and S = α(A+). Then, α is a BPol(G+)-morphism if and only if the following
property holds:

(eqfre)ω(esfte)ω+1 = (eqfre)ωqft(esfte)ω

for all q, r, s, t ∈ M and e, f ∈ E(S) such that (q, s) is a G-pair.
(6)

Again, by Proposition 8, Theorem 23 implies that if separation is decidable
for a group prevariety G, then membership is decidable for BPol(G+).

Theorem 23 can also be used to reprove famous results for specific classes G.
As seen in Sect. 3, since ST = {∅, A∗}, every pair (s, t) ∈ M2 is an ST-pair. Thus,
one may verify from Theorem 23 that a surjective morphism α : A∗ → M is a
BPol(ST+)-morphism if and only if (eqfre)ω(esfte)ω = (eqfre)ωqft(esfte)ω

for every q, r, s, t ∈ S and e, f ∈ E(S) (where S = α(A+)). This is exactly the
well-known characterization of the languages of dot-depth one by Knast [6] (i.e.,
the class BPol(ST+) = BΣ1(<,+1)). Additionally, there exists a specialized
characterization of BPol(MOD+) = BΣ1(<,+1,MOD) in the literature [7].
It can also be reproved as a corollary of Theorem 23. Yet, this requires some
technical work involving the MOD-pairs.

Proof (of Theorem 23). Assuming that α satisfies (6), we prove that it is a
BPol(G+)-morphism. The converse implication is proved in the full version of
the paper (the argument is based on Theorem 23).

Lemma 11 yields a G-morphism β : A∗ → G such that for u, v ∈ A∗, if
β(u) = β(v), then (α(u), α(v)) is a G-pair. Let L = β−1(1G) ∈ G. By hypothesis
on G, L is a group language. Moreover, ε ∈ L by definition. Given a finite set of
languages K, and s, t ∈ M , we say that K is (s, t)-safe if for every K ∈ K and
w,w′ ∈ K, we have sα(w)t = sα(w′)t. The proof is based on the next lemma.
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Lemma 24. Let s, t ∈ M . There exists an (s, t)-safe BPol(G+)-cover of L.

We first apply Lemma 24 to prove that α is a BPol(G+)-morphism. We use
for s = t = 1M . This yields a BPol(G+)-cover KL of L which is (1M , 1M )-safe.
One may now apply Proposition 15 and Proposition 16 to build a BPol(G)-
cover K of A∗ which is (1M , 1M )-safe from KL (see the proof of Theorem 17 for
details). Hence, for every F ⊆ M , the language α−1(F ) is a union of languages
in K. By closure under union, it follows that α−1(F ) ∈ BPol(G+). This exactly
says that all languages recognized by α belong to BPol(G+).

It remains to prove Lemma 24. We define a preorder on M2 that we shall
use as an induction parameter. Let (s, t), (s′, t′) ∈ M2. We write (s, t) �+

L (s′, t′)
if either (s, t) = (s′, t′) or there exist x, y ∈ A∗ and e ∈ E(S) such that xy ∈ L,
α(x)e = α(x), eα(y) = α(y), s′ = sα(x) and t′ = α(y)t. One may verify that
�+

L is a preorder. We may now start the proof. Let s, t ∈ M . We construct a
BPol(G+)-cover K of L which is (s, t)-safe. We proceed by induction on the
number of pairs (s′, t′) ∈ M2 such that (s, t) �+

L (s′, t′). The base case and the
inductive step are handled simultaneously. First, we define a language H ⊆ L.
Let w ∈ L. We say w stabilizes (s, t) if w = ε or w ∈ A+ and there exists
n ≥ 1, an α-guarded decomposition (w1, . . . , wn+1) of w, an index 1 ≤ i ≤ n,
x1, . . . , xi, yi, . . . , yn ∈ A∗ and e ∈ E(S) which satisfy the following conditions:

– x1, . . . , xi−1, xiyi, yi+1, . . . , yn ∈ L, and,
– sα(w1x1 · · · wixi)e = s, and,
– eα(yiwi+1 · · · ynwn+1)t = t.

We let H ⊆ L be the language of all words w ∈ L which do not stabilize (s, t).
Observe that by definition, we have ε �∈ H. We first use induction to build
an (s, t)-safe BPol(G+)-cover of H. Then, we complete it to obtain the desired
BPol(G+)-cover of L. It may happen that H is empty. In this case, we do not
need induction: it suffices to use ∅ as this BPol(G+)-cover.

We let P ⊆ M2 be the set of all (s′, t′) ∈ M2 such that (s, t) �+
L (s′, t′)

and (s′, t′) ��+
L (s, t). We define 	 = |P | and write P = {(s′

1, t
′
1), . . . , (s

′
�, t

′
�)}.

For every i ≤ 	, we may apply induction in the proof of Lemma 24 to obtain a
BPol(G+)-cover Ki of L which is (s′

i, t
′
i)-safe. We met KL as the finite set of

all languages L ∩ K1 ∩ · · · ∩ K� where Ki ∈ Ki for every i ≤ 	. Since L ∈ G,
it is immediate that KL is a BPol(G+)-cover of L which is (s′, t′)-safe for all
(s′, t′) ∈ P . We use it to build KH .

Lemma 25. There exists an (s, t)-safe BPol(G+)-cover KH of H.

Proof. Since L is a group language such that ε ∈ L and ε �∈ H, Proposition 22
yields a cover U of H such that each U ∈ U is of the form U = w1L · · · wnLwn+1

where (w1, . . . , wn+1) is an α-guarded decomposition of a word w ∈ H. For each
U ∈ U, we build an (s, t)-safe BPol(G+)-cover KU of U . As U is a cover of H,
it will then suffice to define KH as the union of all covers KU . We fix U ∈ U.

By definition of U, U = w1L · · · wnLwn+1 where (w1, . . . , wn+1) is an α-
guarded decomposition of a word w ∈ H. Since L ∈ G, ε ∈ L and KL is
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a BPol(G+)-cover of L by hypothesis, Corollary 21 yields a BPol(G+)-cover
KU of U such that for each K ∈ KU , we have K ⊆ w1K1 · · · wnKiwn+1 for
K1, . . . ,Kn ∈ KL. Let us prove that KU is (s, t)-safe. We fix K ∈ KU as
described above. For u, u′ ∈ K, we show that sα(u)t = sα(u′)t. If n = 0, then
K ⊆ {w1}. Hence u = u′ = w1 and the result is immediate. Assume now that
n ≥ 1. We get ui, u

′
i ∈ Ki for 1 ≤ i ≤ n such that u = w1u1 · · · wnunwn+1 and

u′ = w1u
′
1 · · · wnu′

nwn+1. For 1 ≤ i ≤ n, we write xi = w1u1w2 · · · ui−1wi and
x′

i = w1u
′
1w2 · · · u′

i−1wi. Moreover, we let yi = wi+1ui+1 · · · wnunwn+1 and y′
i =

wi+1u
′
i+1 · · · wnu′

nwn+1. For 1 ≤ i ≤ n, we have xiu
′
iy

′
i = xi−1ui−1y

′
i−1. More-

over, one may use the hypotheses that w ∈ H and (w1, . . . , wn+1) is an α-guarded
decomposition of w to verify that (sα(xi), α(y′

i)t) ∈ P . Hence, since Ki ∈ KL

which is (s′, t′)-safe for every (s′, t′) ∈ P , we have sα(xiuiy
′
i)t = sα(xiu

′
iy

′
i)t for

1 ≤ i ≤ n. It is now immediate by transitivity that sα(xnuny′
n)t = sα(x1u

′
1y

′
1)t,

i.e. sα(u)t = sα(u′)t as desired. ��
We now define the desired (s, t)-safe BPol(G+)-cover K of L. Lemma 25

yields a BPol(G+)-cover KH of H. We let K⊥ = L \ (
⋃

K∈KH
K). Finally, we

let K = {K⊥} ∪ KH . Clearly, K is a BPol(G+)-cover of L since BPol(G+) is
a Boolean algebra (recall that L ∈ G). It remains to verify that K is (s, t)-safe.
Since we already know that KH is (s, t)-safe, it suffices to prove that for every
w,w′ ∈ K⊥, we have sα(w)t = sα(w′)t. We actually show that sα(w)t = st for
every w ∈ K⊥. Since this is immediate when w = ε, we assume that w ∈ A+.

By definition of K⊥, we have w �∈ K ′ for all K ′ ∈ KH . Since KH is a cover
of H, this yields w �∈ H, i.e. w stabilizes (s, t). Since w �= ε, we get an α-guarded
decomposition (w1, . . . , wn+1) of w, an index i ≤ n, x1, . . . , xi, yi, . . . , y1 ∈ A∗

and e∈E(S) such that x1, . . . , xi−1, xiyi, yi−1, . . . , yn ∈L, sα(w1x1 · · · wixi)e = s
and eα(yiwi+1 · · · ynwn)t = t. Let u = w1 · · · wi and v = wi+1 · · · wn+1. We show
that s = sα(uxi)e and t = eα(yiv)t (note that since e is an idempotent, this also
implies s = se and t = et) Let us first assume that this holds and explain why
this implies st = sα(w)t.

Since (w1, . . . , wn+1) is an α-guarded decomposition, there exist an idempo-
tent f ∈ E(S) such that α(wi)f = α(wi) and fα(wi+1) = α(wi+1). By definition
of u and v, we have α(u)f = α(u) and fα(v) = α(v). Clearly, we have uv = w.
Thus, since w ∈ L = β−1(1G), we have β(u)β(v) = 1G. Let p = ω(G). We have
1G = β((yiv)p). Thus, since G is a group, it follows that β(u) = β((yiv)p−1yi).
By definition of β, it follows that (α(u), α((ynv)p−1yi)) is a G-pair. Let q = α(u),
r = α(xi), q′ = α((ynv)p−1yi) and r′ = α(v). Since we just proved that (q, q′) is
a G-pair, we obtain from (6) that,

(eqfre)ω(eq′fr′e)ω+1 = (eqfre)ωqfr′(eq′fr′e)ω. (7)

Since α(u)f = α(u), we have eqfre = eα(uxi)e and qfr′ = α(uv) = α(w).
Moreover, since fα(v) = α(v), we have eq′fr′e = eα((yiv)p)e. Hence, since we
have s = sα(uxi)e = se and t = eα(yiv)t = et, it is immediate that seqfre = s
and eq′fr′et = t. We may now multiply by s on the left and t on the right in (7)
to obtain st = sqfr′t = sα(w)t as desired.
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It remains to prove that s = sα(uxi)e and t = eα(yiv)t. We concentrate on
s = sα(uxi)e (the other equality is symmetrical and left to the reader). For every
j such that 1 ≤ j ≤ i, we write rj = α(wjxj · · · wixi)e and uj = w1 · · · wj−1 (we
let u1 = ε). We use induction on j to prove that s = sα(uj)rj for 1 ≤ j ≤ i. This
concludes the argument: when j = i, we get s = sα(w1 · · · wi−1wixi)e. Since
u = w1 · · · wi, this exactly says that s = sα(uxi)e as desired. The case j = 1 is
immediate by definition: we have sα(w1x1 · · · wixi)e = s. Thus, we now assume
that 2 ≤ j ≤ i. Since (w1, . . . , wn+1) is an α-guarded decomposition, there exist
an idempotent f ∈ E(S) such that α(wj−1)f = α(wj−1) and fα(wj) = α(wj).
By definition of uj and rj , we have α(uj)f = α(uj) and frj = rj . Moreover,
since xj−1 ∈ L and L = β−1(1G), we have β(xj−1) = β(ε) = 1G. By definition
of β, it follows that (α(xj−1), 1M ) is a G-pair. Hence, we may apply (6) for
q = α(xj−1), r = rjα(uj) and s = t = 1M to obtain,

(fα(xj−1)frjα(uj)f)ω = (fα(xj−1)frjα(uj)f)ωα(xj−1)f. (8)

Induction yields that s = sα(uj−1)rj−1. Moreover, it is immediate from the def-
initions that α(uj−1)rj−1 = α(uj)α(xj−1)rj = α(uj)fα(xj−1)frj which yields,

s = sα(uj)fα(xj−1)frj

= s(α(uj)fα(xj−1)frj)ω+1

= sα(uj)(fα(xj−1)frjα(uj)f)ωα(xj−1)frj

= sα(uj)(fα(xj−1)frjα(uj)f)ωrj by (8)
= s(α(uj)fα(xj−1)frj)ωα(uj)frj

= sα(uj)frj .

This exactly says that q = sα(uj)rj which completes the proof. ��

5 Conclusion

We presented generic algebraic characterizations for classes of the form BPol(G)
and BPol(G+) when G is a group prevariety. They imply that membership
is decidable for these two classes as soon as separation is decidable for the
input class G. The most natural follow-up question is whether these charac-
terizations can be generalized to encompass all classes BPol(C) where C is an
arbitrary prevariety and obtain a characterization similar to the one provided
by Theorem 12 for Pol(C). This is a difficult question. In particular, it seems
unlikely that BPol(C)-membership boils down to C-separation in the general
case. Indeed, a specialized characterization for the class BPol(BPol(ST)) is
known [13]. Yet, deciding it involves looking at a more general question than
BPol(ST)-separation.
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Abstract. The Merlin-Arthur class of languages MA is included into
Arthur-Merlin class AM, and into PP. For a standard transformation
of a given MA protocol with Arthur’s message (= random string) of
length a and Merlin’s message of length m to a PP machine, the latter
needs O(ma) random bits. The same holds for simulating MA protocols
by AM protocols: in the resulting AM protocol the length of Arthur’s
message (= random string) is O(ma). And the same holds for simulating
heuristic MA protocols by heuristic AM protocols as well. In the paper
[A. Knop, Circuit Lower Bounds for Average-Case MA, CSR 2015] it
was conjectured that, in the transformation of heuristic MA protocols
to heuristic AM protocols, O(ma) can be replaced by a polynomial of a
only. A similar question can be asked for normal MA and AM protocols,
and for the simulation of MA protocols by PP machines. In the present
paper we show that, relative to an oracle, both latter questions answer
in the negative and Knop’s conjecture is false. Moreover, the same is
true for simulation of MA protocols by AM protocols in which the error
probability is not bounded away from 1/2, the so called PP·NP protocols.
The latter protocols generalize both AM protocols and PP machines.

Keywords: Arthur-Merlin protocol · Merlin-Arthur protocol ·
Derandomization · Oracles

1 Introduction

Let MA[m,a] denote the class of languages that have two-round Merlin-Arthur
protocols in which Merlin starts the communication, the lengths of messages are
m,a, respectively, and error probability is at most 1/3. In a similar way the class
AM[m,a] is defined, but now Arthur is the one starting the communication.

The class AM includes MA [Bab85], more specifically, it holds that
MA[m,a] ⊂ AM[m,O(ma)]. This can be proved via amplification: we first
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decrease the error probability from 1/3 to 2−m−1, at the expense of increasing
a to O(ma), as Arthur has to repeat his algorithm O(m) times and then make a
majority vote. Using derandomization via expanders [AFWZ95], we can replace
O(ma) by a+O(m) and hence prove the inclusion MA[m,a] ⊂ AM[m,a+O(m)].
In this paper we try to understand whether it is possible get rid of O(m) and
replace in this inclusion a + O(m) by a polynomial of a only.

Question 1. Is there a polynomial p such that MA[m,a] ⊂ AM[∗, p(a)] for all
polynomials m,a of the length of the input?

Here AM[∗, a] denotes the union of AM[m,a] over all polynomials m. This ques-
tion is motivated by the following conjecture from Knop’s paper [Kno15] about
heuristic analogs of MA and AM.

Conjecture 1 ([Kno15]). There is a polynomial p such that if there is a heuris-
tic Merlin-Arthur protocol for a language L that on inputs of length n and con-
fidence δ uses q(n/δ) random bits (q is a polynomial) then there is a heuristic
Arthur-Merlin protocol for L using p(q(n/δ)) random bits.

Roughly speaking, a language L has a heuristic Merlin-Arthur protocol if there
is an ordinary Merlin-Arthur protocol that errs only on a small fraction of inputs
(called its confidence). The heuristic analog of AM is defined in a similar way.

This conjecture is interesting, since it provides a way to transform lower
bounds for heuristic computations to lower bounds for normal computations.
More specifically, the following holds: if Conjecture 1 is true then for all k some
NP language has no Boolean circuits of size nk ([Kno15]). Thus it would be very
helpful to prove Conjecture 1.

A similar question arises for the inclusion MA ⊂ PP [Ver92], where PP stands
for the class of languages recognized by probabilistic polynomial time machines
with error probability less than 1/2. It is important that the error probability is
not bounded away from 1/2. This inclusion is also proved via amplification and
its more detailed version reads MA[m,a] ⊂ PP[O(ma)], where r in the notation
PP[r] denotes the number of random bits available to PP machines.

Question 2. Is there a polynomial p such that MA[m,a] ⊂ PP[p(a)] for all
polynomials m,a?

If MA = P or MA = NP, then in both above simulations randomness is not
needed at all, therefore both questions answer in positive. Hence to prove nega-
tive answers, we must show beforehand that MA �= P. The latter is equivalent
to P �= NP since MA ⊂ Πp

2 [BHZ87]. Thus we cannot hope to prove negative
answers to both Questions 1 and 2 unless we show that P �= NP. On the other
hand, positive answers seem implausible.

In such a situation, it is natural to ask whether one can answer Questions 1
and 2 using relativizable techniques. By the result of [BGS75] there is an oracle
under which P �= NP. Under that oracle MA = P, since the Polynomial Hierarchy
collapses. Hence under that oracle both questions answer in the positive and
Knop’s conjecture holds.



340 N. Vereshchagin

On the other hand, in the present paper we show that there are oracles
under which both questions answer in the negative and Knop’s conjecture does
not hold. More specifically, we show that there is an oracle under which for every
polynomial p the class MA[m,a] is not included in both classes AM[∗, p(a)] and
PP[p(a)] where a(n) = n, m(n) = p(n), and n stands for the length of the input.
In particular, under that oracle MA �= NP thus the “full derandomization” of
MA is impossible. Our result implies that we need a non-relativizable proof tech-
niques to fully derandomize MA and even to show that MA[m,a] ⊂ AM[∗, p(a)]
for some fixed polynomial p. It remains an open question whether we can
resolve both questions using algebrizable techniques in the sense of Aaronson
and Wigderson [AW09].

Actually, we prove a stronger separation. Let PP·NP[m,a] denote the class of
languages recognized by Arthur-Merlin protocols with error probability less than
1/2 but not bounded away from 1/2. This class obviously includes both classes
PP[a] and AM[m,a]. In the present paper we prove that under an oracle, for all
non-constant polynomials m,a there is a language L in MA[m,a] such that for
every PP·NP[m′, a′] protocol for L it holds a′(n) � m(n) + a(n) − O(log n) for
all n.

Using the same techniques, we then show that under an oracle Knop’s
conjecture is false, too. We also establish a similar theorem for MA proto-
cols, where Merlin never fails. More specifically, let MAP[m,a] denote the sub-
class of MA[m,a] consisting of languages possessing a protocol for which the
error probability is zero for all strings from the language. It is natural to ask
whether MAP[m,a] ⊂ AM[∗,poly(a)]. From the Sipser–Gács–Lautemann theo-
rem [Sip83,Lau83] about the inclusion BPP ⊂ Π2 it follows that MAP = MA,
more specifically,

MA[m,a] ⊂ MAP[O((m + a log a)a log a), O((a log a)2)].

Hence our theorem implies that under an oracle for all polynomials p there are
polynomials m,a with MAP[m,a] �⊂ AM[∗, p(a)]. In the present paper, we estab-
lish a more tight bound: relative to an oracle, for every non-constant polynomials
m,a there is a language L in MAP[m,a] such that for any PP·NP[∗, a′] protocol
for L we have a′(n) � max{m(n), a(n)} − O(log n) for almost all n. Compared
with simulating MA protocols, m(n) + a(n) is replaced by max{m(n), a(n)}.

Summarizing, we show that we cannot prove Conjecture 1 or positive answers
to Questions 1 and 2 using relativizable techniques.

2 Preliminaries

A language is a subset of the set {0, 1}∗ of all strings over the binary alphabet.
The length of the string x is denoted by |x|. When we speak on probability, we
always mean the uniform distribution.

A polynomial is a function p : N → N of the form p(n) = b(n + 1)c where
b, c are positive integers. Thus any polynomial is a non-constant function with
positive values. In the following definitions r,m, n, t denote some polynomials.
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Definition 1. A language L is in the class PP[r] if there is a Turing machine
V with input strings x, a, whose running time is bounded by some polynomial of
|x|, such that

x ∈ L ↔ Proba∈{0,1}r(|x|) [V (x, a) = 1] > 1/2

for all strings x.

Definition 2. A language L is in the class MA[m,a] if there is a Turing
machine V with input strings x, y, z, whose running time is bounded by some
polynomial of |x|, such that

x ∈ L → ∃y ∈ {0, 1}m(|x|)Probz∈{0,1}a(|x|) [V (x, y, z) = 1] > 2/3,

x /∈ L → ∀y ∈ {0, 1}m(|x|)Probz∈{0,1}a(|x|) [V (x, y, z) = 1] < 1/3.

for all strings x.

Definition 3. A language L is in the class MAP[m,a] if there is a Turing
machine V with input strings x, y, z, whose running time is bounded by some
polynomial of |x|, such that

x ∈ L → ∃y ∈ {0, 1}m(|x|)Probz∈{0,1}a(|x|) [V (x, y, z) = 1] = 1,

x /∈ L → ∀y ∈ {0, 1}m(|x|)Probz∈{0,1}a(|x|) [V (x, y, z) = 1] < 1/2.

for all strings x. Compared with the definition of MA, the number 2/3 is replaced
by 1, and the number 1/3 by 1/2 (the latter replacement is not important).

Definition 4. A language L is in the class AM[m,a] if there is a Turing
machine V with input strings x, y, z, whose running time is bounded by some
polynomial of |x|, such that

x ∈ L → Probz∈{0,1}a(|x|) [∃y ∈ {0, 1}m(|x|)V (x, y, z) = 1] > 2/3,

x /∈ L → Probz∈{0,1}a(|x|) [∃y ∈ {0, 1}m(|x|)V (x, y, z) = 1] < 1/3.

for all strings x.

Definition 5. A language L is in the class PP·NP[m,a, t] if there is a Turing
machine V with input strings x, y, z, whose running time is bounded by t(|x|),
such that

x ∈ L ↔ Probz∈{0,1}a(|x|) [∃y ∈ {0, 1}m(|x|)V (x, y, z) = 1] > 1/2. (1)

for all strings x. Triples of the form (m,a, V ) will be called PP ·NP protocols.
We say that a PP ·NP protocol is correct on input x if the equivalence (1) is
true. Otherwise we say that the protocol errs on x.

Definition 6. (Heuristic classes) We say that a language L is in Heur-PP ·
NP[m,a] if there is a Turing machine V with input strings x, y, z, δ, whose run-
ning time is bounded by a polynomial of |x|/δ, such that for all n the equivalence

x ∈ L ↔ Probz∈{0,1}a(|x|/δ) [∃y ∈ {0, 1}m(|x|/δ)V (x, y, z, δ) = 1] > 1/2. (2)

holds for all but δ fraction of strings x of length n.
In a similar way the classes Heur-MA[m,a] and Heur-AM[m,a] are defined.
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An oracle is a function A : {0, 1}∗ → {0, 1}. The classes MA,MAP,AM,PP·
NP, relativized by an oracle A are defined as follows: now the machine V has
an extra “oracle” tape. On that tape the machine can “query the oracle”. That
means that the machine can write any string u followed by a question mark on
that tape. Immediately after that, the word u is replaced by A(u) by “the oracle”,
which is counted as one step of computation. Complexity classes relativized by
an oracle A are denoted by MAA,MAPA,AMA,PP·NPA.

3 Constructing an Oracle Under Which Transformation
of MA to PP·NP Protocols Requires Many Random
Bits

The first result states that under some oracle some language in MA[m,a] has no
PP·NP[m′, a′, t′] protocols unless a′(n) � m(n) + a(n) − log2 t′(n) − O(1).

Theorem 1. There is an oracle A : {0, 1}∗ → {0, 1} with the following property.
For all polynomials m(n), a(n) there is a language in MAA[m,a] that is outside
any class PP ·NPA[m′, a′, t′] such that a′(n) < m(n) + a(n) − log2(3t′(n)) for
infinitely many n.

Proof. We first prove a weaker version of the theorem, assuming that the poly-
nomials m(n), a(n) are fixed.

The value of an oracle A on strings of length m(n) + a(n) can be viewed as
a Boolean matrix An with 2m(n) rows and 2a(n) columns. For the constructed
oracle A for all n the matrix An will have one of the following forms:

– either some row in the matrix has more than two thirds of ones,
– or less than one third of entries in every row are ones.

Matrices of the first type are called heavy, and matrices of the second type are
called light. We will call this property of A by Pm,a (see Fig. 1).

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 1 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 0 0
1 0 1 1 0 1 1
0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

0 1 1 0 0 0 0
1 0 1 0 0 0 0
0 0 0 0 0 0 1
0 0 0 1 0 0 1
0 0 0 0 0 0 0
0 0 0 0 0 1 1

⎞
⎟⎟⎟⎟⎟⎟⎠

Fig. 1. The matrix on the left is heavy, and the matrix on the right is light.

The language L = L(A) will consist of all strings 1n such that the matrix An

is heavy. The intuition is the following: the hidden heavy row is easy to guess in
one step but hard to amplify and find.
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The property Pm,a of A guarantees that L(A) ∈ MAA[m,a], since

1n ∈ L(A) → ∃y ∈ {0, 1}m(n)Probz∈{0,1}a(n) [A(yz) = 1] > 2/3,

1n /∈ L(A) → ∀y ∈ {0, 1}m(n)Probz∈{0,1}a(n) [A(yz) = 1] < 1/3

(the respective machine V on input (1n, y, z) outputs A(yz) by querying the
oracle once).

Now we will define an oracle A so that L(A) is outside PP ·NPA[m′, a′, t′]
provided a′(n) < m(n) + a(n) − log 3t′(n) for infinitely many n.

We first pick any PP ·NP protocol (m′, a′, V ) with a′(n) < m(n) + a(n) −
log 3tV (n) for infinitely many n. Here tV (n) stands for the polynomial that upper
bounds the running time of V . W.l.o.g. we may assume that the running time
of PP·NPA protocols does not depend on the oracle.

Then we prove that there is an oracle A such that this protocol does not
recognize L(A). To this end we will need the following

Lemma 1. Assume that a procedure P is given that on input (a Boolean matrix
M of size m×a, strings y, z) outputs a bit by querying at most q < 2a/3 elements
of the matrix M . Let a′ be a natural number with

2a′−1q < (2a/3 − q)2m,

and m′ any natural number. Then there is a heavy Boolean matrix M with

Probz∈{0,1}a′ [∃y ∈ {0, 1}m′
, P (M,y, z) = 1] � 1/2, (3)

or a light Boolean matrix M with

Probz∈{0,1}a′ [∃y ∈ {0, 1}m′
, P (M,y, z) = 1] > 1/2. (4)

Proof. For the sake of a contradiction assume that there is no such matrix. That
is, for every heavy M we have (4), and for every light M we have (3).

Let first M be all-zero matrix. We will derive a contradiction by flipping
certain M ’s entries in such a way that M is still light but there are 2a′−1 + 1
pairs (y, z) with pairwise different first components and with P (M,y, z) = 1. We
will find such pairs (y, z) one by one. For each new pair (y, z) we will freeze all
elements of M queried in the computation of P (M,y, z). This means that we will
not change those elements on further steps and thus the equality P (M,y, z) = 1
will remain valid. On each step we will freeze at most q entries and the assumed
inequality

2a′−1q < (2a/3 − q)2m

will guarantee that on each step it is possible to find a row with few frozen
entries. Flipping all non-frozen elements of that row we get a heavy matrix,
which will allow to find a new pair (y, z).

More specifically, we make 2a′−1 + 1 steps and on ith step we find one new
pair (yi, zi). On the first step we flip all the elements of the first row of M . We
obtain a heavy matrix. By assumption the inequality (4) holds. Hence there is
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z1 such that there is y1 with P (M,y1, z1) = 1. Fix such y1, z1. Then freeze all
elements of M queried in the computation of P (M,y1, z1). Then we again flip
all non-frozen elements of the first row and M becomes light. This follows from
the assumed inequality q < 2a/3, which implies that the number of ones in the
first row is less than one third.

After ith step the matrix M is light and at most iq its entries are frozen.
Besides that, there are distinct z1, . . . , zi and (not necessarily distinct) y1, . . . , yi

with P (M,y1, z1) = · · · = P (M,yi, zi) = 1. On (i + 1)st step we choose a row
with minimal number of frozen elements. That number is less than 2a/3 − q,
since at most iq � 2a′−1q < (2a/3 − q)2m entries of the matrix are frozen,
that is, on average less than 2a/3 − q per row. Then we make all non-frozen
elements in that row equal to 1. The resulting matrix is heavy, as it has more
than 2a − (2a/3 − q) > (2/3)2a ones. By the assumption we have (4). Since
i � 2a′−1, there is zi+1 that is different from z1, . . . , zi and there is yi+1 with
P (M,yi+1, zi+1) = 1. Pick such yi+1 and zi+1 and freeze all elements queried in
the computation of P (M,yi+1, zi+1). Then we make all non-frozen elements of
that row equal to 0. The total number of frozen elements in that row is less than
(2a/3 − q) + q = 2a/3, thus we again get a light matrix.

After 2a′−1 + 1 steps we derive a contradiction: the matrix M is light and
yet for more than half of z ∈ {0, 1}a′

there is y ∈ {0, 1}m′
with P (M,y, z) = 1.

Let us resume the proof of the theorem. Let us consider the procedure
P (M,y, z) that simulates the run of V A(1n, y, z). If V queries oracle’s value
on a string of length m(n) + a(n), then P queries the corresponding entry of
the input matrix M . If V queries oracle’s value on a string of length differ-
ent from m(n) + a(n), then P assumes that the oracle answer is 0. Note that
for all sufficiently large n the running time tV (n) of V on 1n, and hence the
number of oracle queries, is less than 2a(n)/6. Indeed, 2a(n) grows exponen-
tially and tV (n) is a polynomial. For such n’s, to meet the assumptions of the
lemma, it suffices to satisfy the inequality 2a′(n)−1t(n) < 2a(n)+m(n)/6, that is,
a′(n) < a(n) + m(n) − log 3t(n). By the assumption there are infinitely many n
satisfying this inequality. Thus there is n for which the conclusion of the lemma
holds. We pick any such n and define the value of the oracle A on strings of
length m(n) + a(n) so that the matrix M = An satisfy the conclusion of the
lemma. For all other strings u we let A(u) = 0. By construction the chosen
PP·NP protocol does not recognize L(A).

Now we have to fool all PP·NP protocols (m′, a′, V ), with a′(n) < m(n) +
a(n)− log 3tV (n) for infinitely many n. This can be done by a standard diagonal-
ization. We enumerate all PP·NP protocols with oracle which satisfy the inequal-
ity a′(n) < m(n) + a(n) − log 3tV (n) for infinitely many n. We first let A(u) = 0
for all u and then we perform infinitely many steps. On each step we freeze a
finite number of oracle values. On ith step we fool ith PP·NP protocol (m′, a′, V ).
To this end, we choose n such that no value of A on strings of length m(n)+a(n)
has been frozen yet, tV (n) < 2a(n)/6 and a′(n) < m(n)+a(n)− log 3t′(n). Using
the lemma, we change oracle values on strings of length m(n)+ a(n) so that the
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conclusion of the lemma holds. Then we freeze all oracle values queried by V in
the runs on inputs y, z of lengths m(n), a(n), respectively.

Finally, to construct an oracle A such that the statement of the theorem
holds for all polynomials m(n), a(n), we also enumerate all the pairs (m,a) of
polynomials: (m1, a1), (m2, a2), . . . and define

Li(A) = {1n | Ai,n is heavy}.

Here Ai,n is defined exactly as we defined An earlier for the pair (mi, ai) as
(m,a).

Then we enumerate all pairs (a natural number i, a PP · NP protocol
(m′, a′, V )) and for each such pair we make one step. On that step we fool
the protocol (m′, a′, V ) as a candidate protocol for Li(A). There is one obstacle
however. In order to place the language Li(A) in MAA[mi, ai], we need the prop-
erty Pmi,ai

hold for all i. When we change Ai,n to fool the protocol (m′, a′, V )
as a candidate protocol for Li(A), we can violate the property Pmj ,aj

for n′ with
mi(n) + ai(n) = mj(n′) + aj(n′).

To handle this problem, we will split the oracle A into countably many ora-
cles, one oracle for each pair (mi, ai) of polynomials. For each i we consider the
prefix encoding î of the number i. It is obtained by doubling each bit in the binary
representation of i and then appending 01 (for instance, 5̂ = 11001101). This
encoding ensures that for i �= j strings of the form îu and ĵv cannot coincide.

Then we change the definition of the matrix Ai,n: now it is built from oracle’s
values on strings of the form îu, where the length of u is mi(n)+ai(n). Changing
Ai,n does not affect any of the matrices Aj,n′ for j �= i. Therefore, when we
change Ai,n we cannot violate the property Pmj ,aj

for any j �= i.

4 Refuting Knop’s Conjecture Under an Oracle

Recall that Knop’s conjecture claims the existence of a polynomial p such for all
polynomials m,a, if L ∈ Heur-MA[m,a] then L ∈ Heur-AM[∗, p(a)].

Notice that if L ∈ Heur-AM[∗, a(n)] then there is a normal AM[∗, a(2n)]
protocol that is correct on at least half of inputs of each length and hence is
correct on at least one input of each length n. We will build an oracle A under
which Knop’s conjecture is false in a strong way. Under that oracle, for all
polynomials m,a there is a language in MA[m,a] (and hence in Heur-MA[m,a])
such that every PP ·NP[m′, a′, t′] protocol with a′(n) < m(n) + a(n) − n −
log2(6t′(n)) for infinitely many n errs on all inputs of length n for some n.

Let, for instance, a(n) = n and m(n) = p(n) + n, where p is an arbitrary
polynomial. We can see that all AMA[∗, a′(n)] protocols for a language in L ∈
MAA[m(n), n] that are correct on at least one input of each length require

a′(n) � m(n)+a(n)−n−O(log n) = (p(n)+n)+n−n−O(log n) 
 p(n) = p(a(n))

random bits for almost all n.
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Theorem 2. There is an oracle A : {0, 1}∗ → {0, 1} with the following property.
For all polynomials m(n), a(n) there is a language L ∈ MAA[m,a] such that any
PP·NPA[m′, a′, t′] protocol for L with a′(n) < m(n)+ a(n)−n− log2(6t′(n)) for
infinitely many n errs on all inputs x of some length n.

Proof (Sketch of proof). As before, we enumerate all pairs (a polynomial m, a
polynomial a). Then we define

Li(A) = {x | the matrix Ai,x is heavy},

where Ai,x is a Boolean matrix of size mi(n) × ai(n), n = |x|, defined by

Ai,x(u, v) = A(̂ix̂uv), |u| = mi(n), |v| = ai(n).

Note that this time the matrix Ai,x depends on the input x and not only on its
length n. The oracle construction will ensure that for all i, x the matrix Ai,x is
either heavy, or light. Thus for all i the language Li(A) is in MAA[mi, ai].

The construction of A will ensure that for all i and for all PP·NP protocols
(m′, a′, V ) with a′(n) < mi(n) + ai(n) − n − log 6tV (n) for infinitely many n,
there is n with the following property: for all x of length n,

either Ai,x is heavy and

Probz∈{0,1}ai(|x|) [∃y ∈ {0, 1}mi(|x|)V A(x, y, z) = 1] � 1/2.

or Ai,x is light and

Probz∈{0,1}ai(|x|) [∃y ∈ {0, 1}mi(|x|)V A(x, y, z) = 1] > 1/2.

This implies that the protocol (m′, a′, V ), as a candidate protocol for Li(A), errs
on all inputs x of a certain length n.

The construction of A proceeds in steps where on each step we fool some
protocol (m′, a′, V ) as a candidate protocol for some language Li(A). To this
end we use the following

Lemma 2. Assume that a procedure P is given that on input (a sequence
of Boolean matrices M = (M1, . . . ,M2n) of size m × a, strings y, z and
x ∈ {1, . . . , 2n}) outputs a bit by querying at most q < 2a/3 elements of the
given matrices in total. Let a′ be a natural number with

2a′ · q · 2n < (2a/3 − q)2m,

and m′ any natural number. Then there is a sequence of matrices M1, . . . ,M2n

such that for all x = 1, . . . , 2n either Mx is heavy and

Probz∈{0,1}a′ [∃y ∈ {0, 1}m′
, P (M,y, z, x) = 1] � 1/2, (5)

or Mx is light and

Probz∈{0,1}a′ [∃y ∈ {0, 1}m′
, P (M,y, z, x) = 1] > 1/2. (6)
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Proof. The proof is similar to that of Lemma 1 and thus we explain only what
is the difference. Now we make 2n stages and on each stage we make 2a′−1 + 1
steps. On stage x we flip only entries of Mx to ensure the requirement for that x.
However we need to freeze also entries of other matrices Mx′ in the case P queries
their entries in the computation on the input (M,yi, zi, x). Thus the total number
of frozen elements, in all the matrices, can now raise up to (2a′−1 + 1) · q · 2n �
2a′ · q · 2n. Since we assume that this number is still less than (2a/3 − q)2m, on
each step each matrix has a row with less than 2a/3 − q frozen entries. This we
can complete each step.

The rest of the proof is similar to that of Theorem 1. To fool a protocol
(m′, a′, V ) as a candidate protocol for the language Li(A), we apply Lemma 2
to the procedure P that simulates the run of V A(x, y, z). If V queries oracle’s
value on a string of the form îx̂uv where |u| = mi(n) and |v| = ai(n), then P
queries Mx(u, v). To fool the protocol (m′, a′, V ), we again choose n such that
no value of A on strings of length 2 log i + 2 + 2n + 2 + mi(n) + ai(n) has been
frozen yet, tV (n) < 2ai(n)/6 and a′(n) < mi(n) + ai(n) − n − log 6t′(n). Using
the lemma, we change oracle values so that the conclusion of the lemma holds.
Then we freeze all oracle values queried by V in the runs on inputs x, y, z of
lengths n,mi(n), ai(n), respectively.

5 Constructing an Oracle Under Which Transformation
of MAP to PP·NP Protocols Requires Many Random
Bits

Our third result states that under some oracle some language in MAP[m,a] has
PP·NP[m′, a′, t′] protocols only if a′(n) � max{m(n), a(n)} − log t′(n) − O(1).

Theorem 3. There is an oracle A : {0, 1}∗ → {0, 1} with the following property.
For all polynomials m(n), a(n) there is a language in MAPA[m,a] that is outside
any class PP·NPA[m′, a′, t′] such that a′(n) < max{m(n), a(n)}− log t′(n)−O(1)
for infinitely many n.

Proof. The proof of this theorem is similar to that of Theorem 1. However this
time heavy matrices are defined as those for which there is an all-one row, and
light matrices as those in which there are less than one half ones (Fig. 2). Instead
of Lemma 1 we use the following

Lemma 3. Assume that a procedure P is given that on input (a Boolean matrix
M of size m × a, strings y, z) outputs a bit by querying at most q < 2a−1

elements of the matrix M . Let a′ be a natural number with 2a′−1q < 2m or
(2a′−1 + 1)q < 2a−1 and m′ any natural number. Then there is a heavy matrix
M satisfying (3), or a light matrix M satisfying (4).

Proof. Assume first that 2a′−1q < 2m. For the sake of contradiction assume that
for every heavy matrix M it holds (4) and for every light matrix M it holds (3).
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⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 1 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 0 0
1 1 1 1 1 1 1
0 0 0 1 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

0 1 1 0 1 0 0
1 0 1 0 0 1 0
0 0 0 0 0 1 1
1 0 0 1 0 0 1
0 1 0 0 0 0 0
0 1 0 0 0 1 1

⎞
⎟⎟⎟⎟⎟⎟⎠

Fig. 2. The matrix on the left is heavy, and the matrix on the right is light.

Let M be all-zero matrix. Flip all bits of the first row. We get a heavy matrix.
By assumption we have (4). Choose any z1 such that there is a y1 ∈ {0, 1}m′

with P (M,y1, z1) = 1. Fix such y1, z1 and freeze all values of M queried in the
run P (M,y1, z1). Thus we guarantee that P (M,y1, z1) = 1. Then flip again all
non-frozen elements of the first row. As q < 2a−1, now the matrix M is light.

Then we make 2a′−1 similar steps. After ith step we have at most iq frozen
elements of M , distinct z1, . . . , zi and (not necessarily distinct) y1, . . . , yi with
P (M,y1, z1) = 1, . . . , P (M,yi, zi) = 1. On i + 1st step we choose a row with no
frozen entries (such a row does exist, since we assume that iq � 2a′−1q < 2m)
and flip all elements of that row. We get a heavy matrix and hence it satisfies (4).
Since i � 2a′−1, there is zi+1 that is different from z1, . . . , zi and there is yi+1

with P (M,yi+1, zi+1) = 1. Freeze all entries of M queried in this computation.
Then flip all non-frozen elements of the first row. As q < 2a−1, now the matrix
M is light.

After 2a′−1 + 1 we get a contradiction as the matrix M is light and for more
than half of z ∈ {0, 1}a′

there is y ∈ {0, 1}m′
with P (M,y, z) = 1.

Assume now that (2a′−1+1)q < 2a−1. In this case the arguments are simpler.
Again, for the sake of contradiction assume that for every heavy matrix M it
holds (4) and for every light matrix M it holds (3). Let M be all-one matrix
and hence it is heavy. By assumption we have (4). Fix 2a′−1 + 1 pairs (y, z)
with P (M,y, z) = 1 and with pair-wise distinct first components. Freeze at
most (2a′−1 + 1)q entries of M guaranteeing P (M,y, z) = 1 for all those pairs.
Flip all non-frozen elements of M . The inequality (2a′−1 + 1)q < 2a−1 implies
that less than half entries in each row are frozen. Hence we get a light matrix
satisfying (4), a contradiction.

The remaining part of the proof is similar to that of the proof of Theorem 1.

6 Open Questions

1. Is it true that for some polynomial p for all polynomials m,a it holds
MA[m,a] ⊂ AM[∗, p(a)]?

2. Can we prove the inclusion MA[m,a] ⊂ AM[∗, p(a)] by algebrizing techniques
(for some fixed polynomial p)?

3. Can we prove Conjecture 1 by algebrizing techniques?
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