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Abstract When modelling transport processes in marine waters one might have to
solve the advection-diffusion equation or one can simulate the stochastic behaviour
of individual particles of the constituent under study. By using the well-established
theory of stochastic differential equations (SDEs) it is possible to derive for any
advection-diffusion model an underlying SDE governing the behaviour of one par-
ticle of the constituent. Using a numerical scheme for approximating this SDE a
particle model can then be obtained. In the present Chapter we first briefly describe
the results of the theory of SDEs that are relevant for marine transport modelling.
Then we derive a number of particle models for solving different types of transport
problems and formulate these particlemodels as SDEs. Finallywe discuss the numer-
ical treatment of SDEs and propose a number of numerical schemes for the particle
models. The performance of the methods is illustrated by a number of idealized test
cases of turbulent dispersion. The test cases considered are inspired by shallow-sea
dynamics and large-scale ocean transport processes.
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9.1 Introduction

There are two different approaches to model transport processes in oceanic or coastal
waters. Onemight adopt the Eulerian point of view and, hence, solve numerically the
associated advection-diffusion equations. Another option consists in having recourse
to Lagrangian models where the behaviour of individual particles of the constituent
is considered. By simulating the position of many particles using a random generator
the transport processes can be described (Dimou andAdams 1993;Hunter et al. 1993;
Visser 1997, 2008).

In most textbooks the relation between the Eulerian and Lagrangian approaches
is examined for the very simple case of a diffusion process with constant diffu-
sivity. More general problems are seldom addressed. However, by using the well-
established theory of SDEs it is possible to derive for any advection-diffusion model
an underlying SDE governing the behaviour of one particle of the constituent. Using
a numerical scheme for approximating the solution to this SDE a particle model can
then be obtained. The latter is consistent with the advection-diffusion equation under
consideration in the following sense: as the number of particles is increased and as
the time step is decreased, the results of the particle model converge to the exact
solution of the advection-diffusion equation.

The theory of SDEs and the numerical approximation thereof are not straightfor-
ward extensions of the deterministic case and, inmany respects, seem to be counterin-
tuitive. Most of the mathematical literature on these topics is difficult to comprehend
for non-mathematicians. However, we do believe that a sufficient command of SDE
theory would be very useful for those dealing with marine transport models. Eulerian
and Lagrangian models are respectively based on two different views of the same
transport processes. Knowledge on the relation between these two models increases
the insight into both types of models and into the question as to which approach
is optimal for a given problem. Moreover, if a Lagrangian model is formulated as
an SDE then the higher order numerical schemes developed for SDEs can be used
to obtain an accurate implementation of the particle model. As was clearly demon-
strated by Stijnen et al. (2006), Shah et al. (2011), Shah (2015), Gräwe et al. (2012),
just using the very simple Euler scheme is suboptimal in most cases. Therefore in
this chapter we would like to bridge the gap between the mathematical theory and
applications in oceanography. We do not present any new scientific results, but con-
centrate our efforts on explaining stochastic calculus and illustrating the theory with
practical applications. We do not strive for mathematical rigor or completeness, but
focus on the aspects that are relevant for marine transport problems. For a very good
introduction on the theory of SDEs the reader is referred to the classical work of
Jazwinski (1970) or, the more recent textbook of Oksendal (2003). Regarding the
numerical treatment of SDEs, a comprehensive presentation may be found in the
excellent book of Kloeden and Platen (1992).

In this chapter we first describe briefly the results of the theory of SDEs that are
relevant for ocean transport modelling. We derive a number of particle models for
solving different types of transport problems and formulate these particle models as
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SDEs. Then we discuss the numerical treatment of SDEs and propose a number of
numerical schemes for the particle models. We finally describe a number of relevant
transport test cases to illustrate the performance of the Lagrangian approach.

9.2 Stochastic Differential Equations

9.2.1 Introduction

The time varying behaviour of particles moving in a fluid in the absence of diffusive
effects can be described by deterministic ordinary differential equations. If we define
the state of the physical system as the particle position x(t) = (x(t), y(t), z(t)) we
have the following model:

dx
dt

= f(x, t), x (t0) = x0. (9.1)

In case diffusive effects become important, the particle behaviour can only be
described in terms of probability implying that a stochastic component needs to
be added. Therefore in this chapter we discuss a SDE as a model for a stochastic
process Xt . Here we first consider models of the following type:

dXt

dt
= f (Xt , t) + σ (Xt , t) Nt , Xt0 = X0, (9.2)

where we have introduced a stochastic process Nt to model uncertainties in the
underlying deterministic differential equation. The initial particle position X0 may
also be a random variable. The notations f and σ refer to deterministic functions
while the capital representations Xt and Nt are associated with stochastic processes.

Let us first consider the scalar case, Xt , of the stochastic model (9.2):

dXt

dt
= f (Xt , t) + σ (Xt , t) Nt , Xt0 = X0. (9.3)

An essential property of this model is that it should be Markovian. This implies
that information on the probability density of the state xt at time t is sufficient for
computing the future model state (times > t). If the model is not Markovian, then
the information on the system state for times< t would also be required. This would
make the model very impractical. The SDE (9.3) can be shown to be Markovian if
Nt is a continuous Gaussian white noise process with statistics:

E {Nt } = 0, E {Nt .Ns} = δ(t − s). (9.4)
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Here E{·} represents the expectation operator and δ(x) is the Dirac function. This
is one of the very few processes that guarantee the model (9.3) to be Markovian.
The importance of the white noise process lies in the fact that it has a very simple
correlation structure. Therefore it is a good candidate for generating another process
Xt with a certain probabilistic structure bymeans of the SDE (9.3). By generating this
process Xt using a white noise forcing, the correlation structure of Xt is completely
created by the SDE and not partly by the structure of the input Nt . Since we need to
be careful when working with delta functions we will rewrite the SDE (9.3) in terms
of a Wiener process.

A standardWiener processWt , t ≥ 0 is a process withW0 = 0 andwith stationary
independent increments such that for any 0 < s < t the increment Wt − Ws is a
Gaussian random variable with mean zero and variance equal to t − s. The formal
derivative of the Wiener process can be shown to be the Gaussian continuous white
noise process:

dWt

dt
= Nt , (9.5)

or:
dWt = Ntdt. (9.6)

It is now convenient to rewrite the SDE (9.3) in term of the Wiener process:

dXt

dt
= f (Xt , t) + σ (Xt , t)

dWt

dt
. (9.7)

This equation is usually rewritten as follows:

dXt = f (Xt , t) dt + σ (Xt , t) dWt , (9.8)

and can also be written as:

Xt = Xt0 +
t∫

t0

f (Xs, s) ds +
t∫

t0

σ (Xs, s) dWs . (9.9)

The second integral in (9.9) is a stochastic integral and in order to solve (9.9) the
stochastic integral needs to be defined precisely. Using the Wiener process as a
random driving force introduces somemathematical difficulties in defining and eval-
uating the stochastic integral in (9.9).

As pointed out above theWiener process is a very attractive driving noise process
in the stochasticmodel (9.9). There are only a very fewalternatives that also guarantee
that Xt is Markovian. Among them the Poisson jump process and the Lévy process
are the most popular ones (Gardiner 1985). The Wiener process is often used for
modelling physical processes, while the other two processes are very popular in
finance. More recently the Lévy process (Hanert 2012; Vallaeys et al. 2017) has also
been introduced for transport modelling.
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9.2.2 Îto Stochastic Integrals

Dealing with stochastic model (9.9) requires the evaluation of a stochastic integral
of the following type:

t∫

t0

σsdWs, (9.10)

where σs is a general stochastic process andWs is a Wiener process. To illustrate the
mathematical difficulties associated with stochastic integrals, let us first consider for
example the deterministic integral:

t∫

t0

sds. (9.11)

The classical Riemann-Stieltjes definition for this integral is:

t∫

t0

sds = lim
Δt→0

∑
t∗i (ti+1 − ti ) = t2

2
− t20

2
, (9.12)

where the interval [t0, t] is divided into many small sub intervals [ti , ti+1] of length
Δt and the point t∗i is chosen somewhere in this interval. Let us now consider the
stochastic integral:

t∫

t0

WsdWs, (9.13)

where Ws is a Wiener process. Inspired by the deterministic case (9.12) an obvious
definition for this stochastic integral would be:

t∫

t0

WsdWs = l. i.m.Δt→0

∑
Wt∗i

(
Wti+1 − Wti

)
, (9.14)

where again the interval [t0, t] is divided into many small sub intervals [ti , ti+1] of
length Δt and choose the point t∗i somewhere in this interval. The “l.i.m.” (limit in
mean square sense) refers to a stochastic extension of a limit, i.e. a series of stochastic
variables Xn is said to converge in the mean square sense to a limit X if

lim
n→∞ E

{
(Xn − X)2

} = 0, (9.15)

which is denoted by:
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l. i.m.n→∞ Xn = X. (9.16)

This definition states that the variance of the stochastic variable defined as the dif-
ference between Xn and X will approach zero for large values of n. This implies that
the probability that Xn will be significantly different from X will become very small
in the limit n → ∞.

Using the definition of the limit in mean square sense and the properties of the
Wiener process it is possible to derive (after some clever algebra, Jazwinski (1970))
the stochastic limit of (9.14):

t∫

t0

WsdWs = W 2
t

2
− W 2

t0

2
− (t − t0)

2
+

∑
i

(
t∗i − ti

)
. (9.17)

From this result we see that unlike in the deterministic case shown in (9.12) this
stochastic limit is not uniquely defined. The choice of t∗i is important for the final
result of the integral. Therefore we need another definition for a stochastic integral.

The Japanese mathematician Îto proposed the first and the most well-known def-
inition of a stochastic integral. The Îto integral is defined as:

t∫

t0

σsdWs = l. i.m.Δt→0

∑
Δt→0

σti

(
Wti+1 − Wti

)
. (9.18)

Using the Îto definition the evaluation point is always chosen at the beginning of the
interval. Interpreting the integral (9.17) in Îto sense results in:

t∫

t0

WsdWs = W 2
t

2
− W 2

t0

2
− (t − t0)

2
. (9.19)

This answer is not what we intuitively would expect. Compared to the corresponding
deterministic result an additional term (t−t0)

2 is obtained.

9.2.3 Îto Stochastic Differential Equations

Having defined the Îto stochastic integral we are now able to define the SDE (9.8)–
(9.9) as an Îto SDE:

dXt = f (Xt , t) dt + σ (Xt , t) dWt , (9.20)

or:
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Xt = Xt0 +
t∫

t0

f (Xs, s) ds +
t∫

t0

σ (Xs, s) dWs, (9.21)

where the stochastic integral has to be interpreted in the Îto sense. Using the definition
of the Îto stochastic integral it is possible to derive a simple numerical scheme for
solving an Îto SDE (9.20)–(9.21). For a small time step we have:

Xt+Δt = Xt +
t+Δt∫

t

f (Xs, s) ds +
t+Δt∫

t

σ (Xs, s) dWs

≈ Xt +
t+Δt∫

t

f (Xt , t) ds +
t+Δt∫

t

σ (Xt , t) dWs

= Xt + f (Xt , t)Δt + σ (Xt , t) (Wt+Δt − Wt )

= Xt + f (Xt , t)Δt + σ (Xt , t) ΔW,

(9.22)

where the Wiener increment ΔW is a random variable with mean zero and variance
Δt . This approximation is called the Euler-Maruyama scheme. This scheme is con-
sistent with the Îto definition of the stochastic integral and can only be used for an
Îto SDE. By using a random number generator realizations of theWiener increments
can easily be obtained.

From the Euler approximation we can also see that Xt is a Markov process.
Additional information about Xs for s < t will not help us to obtain more accurate
predictions at t + Δt . The terms in the right hand side of (9.22) are exactly known
given the value of Xt . The remaining Wiener increment is independent of previous
increments and thus of Xs for all times s < t . As a result, information on Xs will not
be useful to determine predictions ofΔW . Note that if theWiener process would not
have independent increments the process Xt would not be Markovian.

9.2.4 Îto’s Differentiation Rule

Having defined the Îto integral we can now discuss Îto’s differentiation rule. Consider
the process Xt described by the Îto SDE:

dXt = f (Xt , t) dt + σ (Xt , t) dWt . (9.23)

Let g(x, t) be a sufficiently smooth deterministic function. Then the SDE for gt is:

dgt = ∂g

∂t
dt + ∂g

∂x
dXt + 1

2
σ 2 ∂2g

∂x2
dt. (9.24)
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Clearly, from this equation we can see that this result is not what one would expect
from classical analysis.

To illustrate the use of Îto’s rule let us first consider a deterministic function
g(t) = ebt , where b is a constant. It is easy to see by differentiation that g(t) is the
solution of the deterministic differential equation:

dg

dt
= bg, g(0) = 1. (9.25)

Now suppose we have aWiener processWt and let us derive the SDE for the process
g (Wt , t) = ebWt . The application of the Îto differential rule for x = w, σ = 1 and
for g(w, t) = ebw results in:

∂g

∂t
= 0,

∂g

∂x
= bg,

∂2g

∂x2
= b2g. (9.26)

Substituting these results in (9.24) provides the SDE for gt :

dgt = b2

2
gtdt + bgtdWt . (9.27)

Note that this Îto SDE for gt has an extra dt term compared to the deterministic
result.

9.2.5 Stratonovich Stochastic Differential Equations

The Îto definition is not the onlyway to define stochastic integral (9.10). Stratonovich
has introduced another definition:

t∫

t0

σsdWs = l. i.mΔt→0

∑ σti+1+ti

2

(
Wti+1 − Wti

)
. (9.28)

In the Stratonovich definition the evaluation point is chosen in the middle of the
interval. Interpreting the integral (9.17) in Stratonovich sense results in:

t∫

t0

WsdWs = W 2
t

2
− W 2

t0

2
. (9.29)

This shows that the Stratonovich calculus is in agreement with the corresponding
deterministic results. A SDE can also be defined in Stratonovich sense using the
Stratonovich integral definition. The relation between the Îto and Stratonovich SDE
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is given below without proof. If a physical process Xt can be described by the Îto
equation:

dXt = f (Xt , t) dt + σ (Xt , t) dWt , (9.30)

then the same process can also be described by the Stratonovich equation:

dXt = f (Xt , t) dt − 1

2
σ (Xt , t)

∂σ

∂x
(Xt , t) dt + σ (Xt , t) dWt . (9.31)

On the other hand if a physical process Xt can be described by the Stratonovich
equation:

dXt = f (Xt , t) dt + σ (Xt , t) dWt , (9.32)

then the same process can also be described by the Îto SDE:

dXt = f (Xt , t) dt + 1

2
σ (Xt , t)

∂σ

∂x
(Xt , t) dt + σ (Xt , t) dWt . (9.33)

If σ does not depend on Xt the Îto and Stratonovich interpretations will both produce
the same results.

For example, let gt be again the solution of Îto (9.27):

dgt = b2

2
gtdt + bgtdWt . (9.34)

Now from relation (9.31) we can establish that the same process is also the solution
of the Stratonovich equation:

dgt = bgtdWt . (9.35)

From this example we see that the same process can be modelled by an Îto equation
or by a Stratonovich equation. The equations are different but their solutions are
similar since Îto and Stratonovich equations have to be solved using different rules.
Physically, there is no difference between the Îto approach and the Stratonovich one.
We can choose the definition we prefer as long as we use the calculation rules that are
consistent with this definition. This includes the use of the correct numerical scheme
for approximating the SDE.

Both Îto and Stratonovich calculus have their advantages and disadvantages. Îto is
more convenient for the analysis of an SDE,while the Stratonovich results aremore in
agreement with our physical intuition. The Stratonovich SDE is also very important
for the development of numerical approximations, since many popular schemes for
solving deterministic differential equations can only be used for approximating a
Stratonovich SDE.

More recently, another interpretation of the stochastic integral (9.10) called the
Îto-backward was introduced:
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t∫

t0

σsdWs = l. i.m.Δt→0

∑
σti+1

(
Wti+1 − Wti

)
. (9.36)

Using this definition the evaluation point is chosen at the end of the interval. This
stochastic integral is rarely used, but it has been shown by LaBolle et al. (2000)
and Spivakovskaya et al. (2007b) that it is attractive for transport problems with
diffusivity that strongly varies in space. If a physical process Xt can be described
by the Îto SDE (9.30) it is also possible to transform this SDE into an Îto-backward
SDE:

dXt = f (Xt , t) dt − σ (Xt , t)
∂σ

∂x
(Xt , t) dt + σ (Xt , t) dWt . (9.37)

The process Xt can also be described by this backward Îto equation.

9.2.6 Fokker-Planck Equation

Consider now the vector case of the Îto SDE (9.23). Togain insight into the probability
density of the particle position Xt which is related to the particle concentration we
need to know the probability density function of Xt . Without proof we state that this
function can be obtained by solving the Fokker-Planck equation also known as the
Kolmogorov forward equation:

∂p

∂t
= −

d∑
i=1

∂ ( fi p)

∂xi
+

d∑
i=1

d∑
j=1

∂2
(
ki j p

)
∂xi∂x j

. (9.38)

The initial condition for (9.38) could be:

p(x, t) = δ (x − x0) , (9.39)

implying that all particles were released at one point. The differential operator in
(9.38) consists of the drift vector f = fi as well as diffusion term given by a matrix
K = ki j . This diffusivity matrix K is symmetric and semi-positive definite and is
related to the matrix σ in the following way:

ki j = 1

2

(
σσ�)

i j
. (9.40)

Notice that thematrixσ is not uniquely determined by the symmetricmatrix K = ki j .
Twopossible choices ofσ are the symmetric square root of ki j and the lower triangular
matrix given by the Cholesky decomposition of K = ki j . All the choices of σ that
are consistent with (9.40) give statistically identical diffusion processes.
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The probability distribution p(x, t) of the Fokker-Planck equation can be approx-
imated by applying a numerical method to solve deterministic partial differential
equation, but on the other hand the distribution p(x, t) can also be approximated by
generating the trajectories of the following Îto SDE:

dXt = f (Xt , t) dt + σ (Xt , t) dWt , Xt0 = X0. (9.41)

Theprobability distributionof the Îto stochastic process (9.41)will satisfy theFokker-
Planck (9.38).

9.3 Particle Models for Marine Transport Problems

The Fokker-Planck equation describes the evolution in time of the particle concentra-
tion for a givenSDE.Butwe can also use the theory the otherway round.Although the
Fokker-Planck equation models the distribution resulting from advection diffusion
processes, it is not exactly equivalent to the classical advection diffusion equation.
Therefore it is also possible to start from an advection diffusion equation that is often
used for solving transport problems in oceans or coastal waters. By interpreting this
transport model as a Fokker-Planck equation it is possible to derive the underlying
SDE for the behaviour of the individual particles. In this way the particle model
obtained can be considered as a Lagrangian solver for the original transport model.

Let us consider the following 3D advection diffusion equation written:

∂C

∂t
= −∂ (uiC)

∂xi
+ ∂

∂xi

(
ki j

∂C

∂x j

)
, t0 ≤ t ≤ T, (9.42)

with positive-definite diffusivity tensor K with elements ki j and the velocity field
u = ui . The above equation (9.42) can be rewritten in the form

∂C

∂t
= − ∂

∂xi
(uiC) − ∂

∂xi

(
C

∂ki j
∂x j

)
+ ∂

∂xi

(
ki j

∂C

∂x j
+ C

∂ki j
∂x j

)

⇒∂C

∂t
= − ∂

∂xi

[(
ui + ∂ki j

∂x j

)
C

]
+ ∂2

(
ki jC

)
∂xi∂x j

.

If we set fi = ui + ∂ki j
∂x j

and C = p, the above equation will take the form of the

Fokker-Planck equation (9.38). Thus the Îto stochastic model corresponding to
(9.42) is obtained with this choice of f and with matrix σ as defined by (9.40)
(Spivakovskaya et al. 2007a; Shah et al. 2011):

dXt = f (Xt , t) dt + σ (Xt , t) dWt , Xt0 = X0. (9.43)
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It is also possible to include additional properties of the particle as an additional
variable. Consider for example the particle model (9.43) with as additional parameter
the age At of this particle, i.e. the time elapsed since this particle enters a specified
domain:

d At = dt. (9.44)

As long as the particle is in the specified domain At increases with time. The corre-
sponding Eulerian model can be derived in this case again from the Fokker-Planck
(9.38) for the probability p(x, y, z, a, t)to find a particle at location (x, y, z) with
age a:

∂p

∂t
= −∂p

∂a
+ ∇ · (K · ∇ p). (9.45)

This equation is equivalent to the one derived by Delhez et al. (1999).

9.4 Numerical Approximation of Stochastic Differential
Equations

Consider first the scalar deterministic equation:

dx

dt
= f (x, t), x (t0) = x0. (9.46)

We can approximate this equation numerically with the Euler scheme:

xn+1 = xn + f (xn, tn)Δt, (9.47)

where Δt is the time step. Recall that the order of convergence of a numerical
scheme for a deterministic differential equation is defined as follows: The order of
convergence is γ if there exists a positive constant c and a timestep Δ such that for
fixed T = NΔt :

|x(T ) − xN | ≤ c(Δt)γ , (9.48)

for all 0 < Δt < Δ.
Now consider the Îto SDE:

dXt = f (Xt , t) dt + σ (Xt , t) dWt , (9.49)

with the Euler scheme introduced in Sect. 9.2.3:

xt+Δt = xt + f (xt , t) Δt + σ (xt , t) (Wt+Δt − Wt ) , (9.50)

or with tn = nΔt :
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xn+1 = xn + f (xn, tn)Δt + σ (xn, tn)ΔWn. (9.51)

First we have to generalize the definition of the order of convergence to the stochastic
case: The strong order of convergence is γ if there exists a positive constant c and a
Δ such that for fixed T = NΔt :

E {|XT − XN |} ≤ c(Δt)γ , (9.52)

for 0 < Δt < Δ.
Convergence in the strong sense is a track wise approach. The exact particle track

Xt is approximated as accurately as possible by a numerical track Xn . However for
many practical particle simulation problems we are not interested in very accurate
individual tracks. This is for instance the case if we want to compute the particle
concentration or only the position variance of a particle. For these problems we can
use a weaker form of convergence: The weak order of convergence is α if there exists
a positive constant c and a Δ such that for fixed T = NΔt :

|E {h (XT , T )} − E {h (XN , NΔt)}| ≤ c(Δt)α, (9.53)

for all 0 < Δt < Δ and for all functions h(x, t) with polynomial growth.
If we take h(x, t) = x the definition of weak order convergence reduces to:

|E {XT } − E {XN }| ≤ c(Δt)α. (9.54)

In this case we use the realizations of Xt only to determine the mean at time T , and
we evaluate the accuracy of the numerical scheme by computing this quantity. We
do not evaluate the accuracy of the underlying tracks. If h(x, t) = x2 we have:

∣∣E {
(XT )2

} − E
{
(XN )2

}∣∣ ≤ c(Δt)α, (9.55)

and we evaluate the accuracy of the numerical scheme only by computing the second
moment.

For deterministic differential equations the Taylor series expansion is an important
method to evaluate the order of accuracy, however, for the stochastic case we can use
the stochastic version of the Taylor expansion (for more details the reader is referred
to Kloeden and Platen (1992)). By analysing the error terms in the stochastic Taylor
expansion the strong order of convergence of the Euler scheme can be determined:
O(Δt

1
2 ). For weak order convergence many realizations are generated and averaged

to determine an approximation of the particle concentration. Because of the averaging
procedure certain random error terms cancel out and vanish for increasing number
of realizations. This results in a weak order of convergence of the Euler scheme
of O(Δt). This implies that if we use the Euler scheme and generate many tracks
then the individual tracks are only half order accurate (strong convergence) while for
example the results on the mean and variance of the tracks are first order accurate
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(weak convergence). Certain stochastic errors in the track wise computations cancel
out when computing ensemble mean quantities like the mean or variance.

From the stochastic Taylor expansion, more accurate schemes can been obtained,
such as the following one:

xn+1 = xn + Δt f (xn, tn) + σ (xn, tn) ΔWn + 1

2
σ (xn, tn)

∂σ

∂x
(xn, tn)

(
ΔW 2

n − Δt
)
.

(9.56)
This scheme is called theMilstein scheme and isO(Δt) in the strong sense for scalar
equations. For vector systems it is generally of orderO(Δt

1
2 ) (except for very special

differential equations when its accuracy is as in the scalar case). In the weak sense
the Milstein scheme has the same order of convergence as the Euler scheme.

By including further terms of the stochastic Taylor expansion, the next higher
order scheme is of 1.5 order accuracy in the strong sense and 2.0 order in the weak
sense. The 1.5 order strong Taylor scheme is given as:

xn+1 = xn + Δt f Δt + σΔWn + 1

2
σ

∂σ

∂x

(
ΔW 2

n − Δt
) + ∂ f

∂x
σΔZn+

1

2

(
f
∂ f

∂x
+ 1

2
σ 2 ∂2 f

∂x2

)
(Δt)2 +

(
f
∂σ

∂x
+ 1

2
σ 2 ∂2σ

∂x2

)
(ΔWnΔt + ΔZn)

1

2
σ

(
σ

∂2σ

∂x2
+

(
∂σ

∂x

)3
)(

1

3
ΔW 2

n − Δt

)
ΔWn,

(9.57)
where all the functions are evaluated at x = xn and t = tn . In addition to the noise
increment ΔW a second random variable ΔZ is needed. ΔZ is also a Gaussian
random variable with the following properties: Mean 0, variance Δt

3 and covariance

E{ΔWΔZ} = Δt2

2 .
Weak approximation schemes can be simplified without losing accuracy. Instead

of the generation of Gaussian random numbers, numbers can be generated from any
probability distribution as long as the mean and variance are the same. The order 2.0
Milstein scheme is a one-step weak simplification of the previous scheme. Because
only a weak approximation is needed, some terms of the Taylor 1.5 scheme can be
skipped and there is no need for a second randomvariable. This schemewas proposed
by Milstein (1979) and is of 2.0 order accuracy in the weak sense:

xn+1 = xn + Δt f Δt + σΔWn + 1

2
σ

∂σ

∂x

(
ΔW 2

n − Δt
) + ∂ f

∂x
σΔZn+

1

2

(
f
∂ f

∂x
+ 1

2
σ 2 ∂2 f

∂x2

)
(Δt)2 + 1

2

(
∂ f σ

∂x
+ 1

2
σ 2 ∂2σ

∂x2

)
ΔWnΔt.

(9.58)

Similar to predictor-corrector schemes for ODEs, there exist equivalent methods for
SDEs. This class is often used due to their numerical stability, which they inherit from
the implicit counterparts of their corrector scheme. In addition, the differencebetween
the predicted and the corrected values at each time step provides an indication of the
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local error. Thus, they can be beneficial in (time) adaptive schemes (Charles et al.
2009).

The lowest order predictor-corrector scheme is as follows:

x p
n+1 = xn + f (xn, tn)Δt + σ (xn, tn)ΔWn

xn+1 = xn + 1

2

(
f
(
x p
n+1, tn+1

) + f (xn, tn)
)
Δt + σ (xn, tn)ΔWn.

(9.59)

This is a stochastic version of the trapezoidal method also known as Heun scheme.
Note that the predictor step is only applied to the deterministic part, the stochastic
part cannot be corrected to keep the numerical approximation consistent with the
original Îto SDE (Kloeden and Platen 1992). This Heun scheme is of orderO(Δt) in
the weak sense and of order O(Δt

1
2 ) in the strong sense. At this stage, the question

arises as to why another first order scheme is presented. In the limit of vanishing
diffusivity, the Euler scheme is equivalent to its deterministic counterpart and is
first order accurate. This is not the case for the Heun scheme. Due to the predictor-
corrector step, the scheme converges to a second order approximation of the ordinary
differential equation.

In case the stochastic term is also evaluated using the prediction step we obtain
the Heun scheme that can be used for approximating a Stratonovich SDEs:

x p
n+1 =xn + f (xn, tn)Δt + σ (xn, tn)ΔWn

xn+1 =xn + 1

2

(
f
(
x p
n+1, tn+1

) + f (xn, tn)
)
Δt

+ 1

2

(
σ

(
x p
n+1, tn+1

) + σ (xn, tn)
)
ΔWn.

(9.60)

For approximating a Stratonovich SDE this Heun scheme is first order accurate in
the strong sense and also first order accurate in the weak sense.

There are two complications in deriving strong higher order schemes. First the
number of error terms grows very rapidly, resulting in rather complicated numerical
schemes involving many terms. Secondly, most Wiener integrals appearing in the
expansion cannot be solved analytically like in the case of the Milstein scheme. As
a result special numerical schemes have to be implemented to approximate these
integrals too. For details the reader is referred to Kloeden and Platen (1992).

9.5 Test Cases for Marine Transport Problems

9.5.1 Simple Vertical Diffusion

Firstly, the numerical algorithms are applied to a simple diffusion problem in a
domain limited by two boundaries. This can be visualised as a one dimensional
water column that is bounded by the sea surface and the pycnocline. The model is
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discussed in detail inDeleersnijder et al. (2006) andSpivakovskaya et al. (2007a). The
governing partial differential equation for this test case is given by simple diffusion
equation:

∂C

∂t
= ∂

∂z

(
k(z)

∂C(z, t)

∂z

)
, t ≥ 0 and 0 ≤ z ≤ H, (9.61)

with a “no flux” boundary condition imposed at the boundaries domain and the initial
condition is a delta like concentration peak at z = z0:

k(z)
∂C

∂z

∣∣∣∣
z=0,H

= 0, (9.62)

C(z, 0) = δ (z − z0) . (9.63)

For the sake of generality, the above problem is normalized by introducing the dimen-
sionless variables:

t� = t

H 2/k
, z� = z

H
, k� = k

k̄
, (9.64)

where k̄ denotes the depth averaged diffusivity i.e.

k̄ = 1

H

H∫

0

k(z)dz. (9.65)

The parabolic profile is a good approximation of the diffusivity profile in the mixed
layer, but it is also a good description for a shallow, well-mixed, coastal region
(Burchard et al. 1998; Warner et al. 2005). Moreover, the parabolic profile is until
now the only realistic profile, for which analytical solutions exist (beside constant
diffusivity). Therefore, the dimensionless diffusivity k(z) = 6z(1 − z) is chosen to
be a parabolic function.

The Îto SDE for the particle position Zt is the 1D version of the case described
in Sect. 9.3 and takes the following form:

dZt = ∂k

∂z
dt + √

2k(z)dWt , Zt0 = Z0. (9.66)

Using this setup, an analytical solution for the dispersion of the initial concentra-
tion C(z, 0) = δ(z − z0) is known (Spivakovskaya et al. 2007a):

C(z, t) = 1 +
∞∑
n=1

(2n + 1)Pn(2z − 1)Pn (2z0 − 1) e(−6n(n+1)t), (9.67)
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Fig. 9.1 Analytical solution of the 1D diffusion equation at different times

where Pn(z) denotes the nth order Legendre polynomial. Figure9.1 presents the
analytical solution for z0 = 0.5 and for various times t .

We will now use various numerical schemes for the Îto SDEs introduced in
Sect. 9.4 to compute the particle concentration and will compare the results with
the analytical solution. Table9.1 summarises the numerical schemes used for this
test case.

The results for z0 = 0.5 are shown in Fig. 9.2. The results clearly indicate that
all schemes converge to the true solution according to the designed order of accu-
racy. Hence, by decreasing the time step, all schemes behave as expected and scale
according to their designed convergence order.

By increasing the number of particles N , see Fig. 9.2b, the error also becomes
smaller. Nevertheless, no differences in the scaling are visible, except fromdeviations
in the offset. This is due to the intrinsic nature of random processes. The results
include statistical errors proportional to N

1
2 . Therefore, to increase the accuracy, the

“brute-force-method” (using an excessively large number of particles) is an option,
but due to the slow convergence, having recourse to a more accurate numerical
scheme ismuchmore rewarding. It is important to note that both the chosen numerical
schemes and the use of a finite number of particles introduce errors. Preferably both
type of errors should be of the same order of magnitude. Therefore, it makes no sense
to use the fastest and most simple numerical scheme and a huge amount of particles.
But it also makes no sense to use a very accurate scheme and only a limited amount
of particles.

Comparing the efficiency, see Fig. 9.2c, it is visible, that the E1 scheme is the
fastest, but the M1 and M2 schemes show a better overall scaling. Thus, with mod-
erate time steps, these two schemes provide a higher accuracy at the same runtime.
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Fig. 9.2 Error of the dispersion test for a variation of the time step Δt , b variation of the number
of particles N , and c comparison of the efficiency (accuracy vs. runtime)

Table 9.1 Summary of the numerical schemes used

Scheme Short name Strong order Weak order

Euler E1 0.5 1

Milstein M1 1 1

Taylor 1.5 S1.5 1.5 2

Milstein 2.0 M2 1 2

Heun-Îto PC1 0.5 1

Therefore, these schemes should be preferred. From the efficiency plot, one can also
see the additional overhead of the predictor-corrector scheme PC1. Since a predictor
steps is needed, the efficiency is clearly lower than for the M1 scheme. Although the
S1.5 scheme offers the highest accuracy, it is less efficient due to the high computa-
tional demand.
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9.5.2 One Dimensional Water Column Including
a Pycnocline

The starting point is the test case of Stijnen et al. (2006). The authors performed
Lagrangian simulations in the shallow the coastal zone of the Netherlands. They
were facedwith the challenge of representing inhibition ofmixing due to stratification
associated with salinity contrasts, caused by river runoff. The stratification, which is
associated with a rather thin pycnocline, is a quasi-impermeable barrier to vertical
diffusive or turbulent motions. In Stijnen et al. (2006) it is showed that this is easily
taken into account by Eulerianmodels, while obtaining a similar result in Lagrangian
simulations is far from trivial. They could show that the pycnoclinewas no significant
barrier to diffusion when the Euler scheme was used. However, when using a higher-
order particle tracking scheme, the pycnocline remained almost impermeable to
diffusive fluxes—as it is supposed to be.

To construct a possible test case we use the diffusivity profile of Stijnen et al.
(2006) as a blueprint. We assume without any loss of generality that the pycnocline
is located in the middle of the water column. Accordingly, it is suggested that the
idealised vertical eddy diffusivity can be approximated by:

k(z) =2(1 + a)(1 + 2a)

a2H 1+ 1
a

z(H − 2z)
1
a , 0 ≤ z ≤ H

2

=k̄
2(1 + a)(1 + 2a)

a2H 1+ 1
a

(H − z)(2z − 1)
1
a ,

H

2
≤ z ≤ H,

(9.68)

where a is a constant that is larger than or equal to unity, z is the distance to the
seabed, which is located at z = 0, while the sea surface is at z = H . For more details
the interested reader is referred to Gräwe (2011).

The important tuning parameter that controls the sharpness of the pycnocline is
a. The dependence of the sharpness of the pycnocline on a is shown in Fig. 9.3.
The important feature of this analytical eddy diffusivity is that it vanishes at the
pycnocline and is small in the vicinity of the latter. The parameter a controls the
steepness of the diffusivity profile. The larger the value of a, the larger the vertical
diffusivity gradient near the pycnocline. Note, that setting a = 1 will produce a
double parabolic diffusivity profile.

For this test case, we have considered a pure diffusion problem so the SDE for
the particle position Zt is again described by (9.61). The boundaries are treated
again as “no flux” boundaries and the initial release is also in this test case a Dirac
function. For an analytical solution of the posed problem in the special case of a = 1,
the interested reader is referred to Gräwe (2011). The intention of this test case is
however not to reproduce the analytical solution. Our aim is to assess the ability of
different numerical schemes to treat the pycnocline as the requested impermeable
barrier. Thus, if we release particles in the upper half of the water column, a “perfect”
scheme is characterised by zero concentration in the lower half of thewater column at
any instant of time. This is easily done in Eulerian-type numerical model. Lagrangian
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Fig. 9.3 Diffusivity profile K = k
k̄
for different values of the parameter a

simulations, however, do show some crossings of the particles through pycnocline,
thereby causing simulation errors that have to be assessed. To quantify to what extent
the pycnocline is actually a barrier to vertical diffusion, we released N particles in the
upper half of the water column. Since the number of particles has to remain constant,
we constructed an error measure in such away that ε = 0, if no particles have crossed
the pycnocline, and ε = 1 if the particles are uniformly distributed in the whole water
column. Clearly, the lower ε the better the scheme under consideration.

An important point to mention is that although we are looking for the time evo-
lution of a particle distribution and thus weak convergence (9.53), the crossing of
the pycnocline tests for strong convergence (9.52). This is related to the fact that the
individual particle path in the vicinity of the pycnocline is important and therefore a
strong error measure is appropriate.

In Fig. 9.4 we show the time evolution of a point release of particles at z0 = 0.75.
Wehave used again all the schemes presented inTable9.1. The results clearly indicate
that for the E1 scheme the pycnocline is not at all a barrier. This is even true for
small values of a. The M2 scheme shows for a = 1 no crossing of particles of the
pycnocline. For a = 4 (Fig. 9.4d) there is a leakage of particles into the lower half of
the water column. Hence, by simple visual inspection, it is obvious that the results
obtained with the Euler scheme are completely wrong. Furthermore, variations of
the time step would not reveal this failure as we are already using a very small time
step for this problem (see Visser (1997)).

To visualise the impact for different values of a, we show in Fig. 9.5 the conver-
gence of the error for variations of the pycnocline sharpness. For moderate time steps
and small values of a the M1, M2 and S1.5 schemes can treat the pycnocline as a
barrier (Fig. 9.5a). However, for values of a larger then 7 all schemes fail this test.
Only by decreasing the time step the M1, M2 and S1.5 schemes show a scaling of
the error over the whole range of variations of a (Fig. 9.5b). Clearly, the S1.5 scheme
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Fig. 9.4 Dispersion of a particle cloud initially located at z0 = 0.75 for two different schemes and
for two values of a. Color coded is the particle concentration for a E1 scheme with a = 1, b E1
scheme with a = 4, c M2 scheme with a = 1, d M2 scheme with a = 4. The time step is 10−6

Fig. 9.5 Variation of the error ε for the different numerical schemes and a a time step of 7 · 10−6 b
a time step of 10−6. On the x-axis we show the pycnocline sharpness parameter a and on the y-axis
the error ε

shows the best performance. Again the E1 scheme and PC1 scheme do not treat the
pycnocline correctly for all values of a.

9.5.3 Multidimensional Diffusion in an Unbounded Domain

Large-scale diffusion processes in the oceans occur mostly along isopycnal surfaces,
i.e. surfaces of equal density. Diapycnal diffusion associated with a diffusion flux
orthogonal to isopycnal surfaces is usually very small. The diapycnal and isopycnal
diffusion fluxes are commonly parameterised á la Fourier-Fick (Redi 1982).
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The natural coordinates for representing diffusive processes in oceans are diapy-
cnal and isopycnal. The slope of the isopycnal surfaces, though generally small,
contains significant information about the dynamics of the ocean and its interaction
with the atmosphere. Most ocean models do not use iso and diapycnal coordinates.
Instead they rely on the horizontal-vertical coordinates, in which the Redi diffusiv-
ity tensor is resorted to in order to model diapycnal and isopycnal diffusion. This
diffusivity tensor contains off-diagonal terms.

The Eulerian discretisations of isopycnal diffusion terms yield discrete operators
that are not monotonic (Beckers et al. 1998, 2000), occasionally producing spuri-
ous oscillations and over- or under-shootings in tracer concentration fields, which
obviously are unrealistic (Mathieu and Deleersnijder 1998; Mathieu et al. 1999). To
overcome these shortcomings Lagrangian numerical schemes can be used. In this
Section, idealized test cases are constructed to assess Lagrangian methods for the
iso- and diapycnal diffusion problems. For more details see Spivakovskaya et al.
(2007a), Shah et al. (2011), Shah (2015).

Iso and Diapycnal Diffusion Along Flat Isopycnal Surfaces

If only large scales of motions are actually resolved, the unresolved motions com-
prise much more that those giving rise to the molecular diffusion. The unresolved
phenomena are usually parameterised as non-isotropic diffusion. Such a formulation
resorts to two diffusivity coefficients, K I and Kd , which are the isopycnal diffusiv-
ity and the diapycnal diffusivity, respectively. In the principal axes, the associated
diffusivity tensor reads:

K =
⎛
⎝ K I 0 0

0 K I 0
0 0 Kd

⎞
⎠ . (9.69)

The z-principal axes is perpendicular to the isopycnal plane. To rotate the coordinate
system associated with the isopycnal surface into the geodesic coordinate system we
need two angles θ and γ (Redi 1982) and the diffusivity tensor takes the form:

K =

⎛
⎜⎜⎜⎝
K I cos2 θ + sin2 θ

(
Kl sin2 γ + Kd cos2 γ

)

− cos γ sin γ sin2 θ
(
K I − Kd

)

cos γ sin θ cos θ
(
Kl − Kd

)

− cos γ sin γ sin2 θ
(
K I − Kd

)
cos γ sin θ cos θ

(
K I − Kd

)

K I cos2 θ + sin2 θ
(
Kl cos2 γ + Kd sin2 γ

)
sin γ sin θ cos θ

(
K I − Kd

)

sin γ sin θ cos θ
(
K I − Kd

)
Kl sin2 θ + Kd cos2 θ

⎞
⎟⎟⎟⎠ .

(9.70)

As a test case, it is assumed that the isopycnal surfaces are flat and equally spaced.
Furthermore, we assume that the velocity field is zero and that the iso and diapycnal
diffusivity are constant. As in Sect. 9.3 we consider the following partial differential
problem in an infinite domain:
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∂C

∂t
= ∇ · (K · ∇C), −∞ < x < ∞, C (x, t0) = δ(x − 0), (9.71)

where δ denotes a Dirac function. The exact solution of problem (9.71) can be shown
to be:

C(x, t) =
exp

(
− x�·K−1·x

4t

)

(4π t)
n
2
√
det(K )

. (9.72)

Here det(K ) is the determinant of the constant diffusion matrix K while n is the
number of space dimensions considered. Introducing the dimensionless quantities
for space and time:

t∗ = t

T
, x∗ = x

Lh
, y∗ = y

Lh
and z∗ = z

Lv

, (9.73)

where T , Lh and Lv represent the appropriate timescale, horizontal and vertical
length scale, respectively. It is also convenient to define:

T = L2
h

K I
= L2

h

K I
, α = Lh

Lv

and C∗ = C

1/L2
h Lv

. (9.74)

The ratio to the vertical to horizontal length is given byα and the scaled concentration
is represented byC∗. Using these quantities (9.73) and (9.74) into (9.70) and dropping
the asterisk notation the diffusion tensor takes the following form:

K =
⎛
⎝cos2 θ + sin2 θ

(
sin2 γ + α2 cos2 γ

)
− cos γ sin γ sin2 θ

(
1 − α2

)
cos γ sin θ cos θ

(
α−1 − α

)
− cos γ sin γ sin2 θ

(
1 − α2

)
cos γ sin θ cos θ

(
α−1 − α

)
cos2 θ + sin2 θ

(
cos2 γ + α2 sin2 γ

)
sin γ sin θ cos θ

(
α−1 − α

)
sin γ sin θ cos θ

(
α−1 − α

)
sin2 θ + α−2 cos2 θ

⎞
⎠ ,

(9.75)
and the exact solution (9.68) can be rewritten in the form:

C(x, y, z, t) = 1
(4π t)3/2

exp

[
− 1

4t

(
z cos θ − α−1(y sin θ sin γ + x sin θ cos γ )

)2]×
exp

[
− 1

4t (zα cos θ + x cosα cos γ + y cos θ sin γ )2
]

× exp
[
− 1

4t (x sin γ − y cos γ )2
]
.

(9.76)

The values of the parameters θ ≈ α ≈ 10−3 are reasonable. The corresponding Îto
SDE for the particle position whose probability distribution satisfies the diffusion
problem (9.71) reads (see also Sect. 9.3):

dX t = σ (Xt , t) dW(t), X t0 = X0. (9.77)
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Fig. 9.6 Comparison between the particle model and the exact solution of the diffusion (9.69).
This implies the Lagrangian model is indeed consistent with the concentration field of the diffu-
sion equation. a–c shows the exact solution along the xy-, xz- and yz- plane and, d–f shows the
probability distribution of 105 Lagrangian particle initially released at origin

Since, the matrix K is symmetric and positive definite it may be decomposed using
Cholesky decomposition in following form of σ :

σ =
⎛
⎝σxx 0 0

σyx σyy 0
σzx σzy σzz

⎞
⎠ , (9.78)

with

σxx = √
2kxx , σyx =

√
2kyx√
kxx

, σzx =
√
2kzx√
kxx

, σyy =
√

2(kxx kyy−k2xy)
kxx

σzy =
√
2(kxx kyz−kxykzx)√
kxx(kxx kyy−k2xy)

, σzz =
√

2(kxx kyykzz+2kxykxzkyz−k2xzkyy−k2yzkxx−k2xykzz)
kxx kyy−k2xy

.
(9.79)

Themain idea of the Lagrangian model is to simulate the trajectory of many different
particles using an appropriate numerical scheme of the SDEs and then construct the
probability distribution function which is in this case equal to the particle concentra-
tion using non-parametric statistical methods. In our experiment the trajectories of
the SDE (9.77) are simulated using the Euler scheme described in Sect. 9.4. In order
to obtain the concentration from the particle trajectories a kernel estimator (Silver-
man 1986; Spivakovskaya et al. 2007a) is used. Here we used the Gaussian kernel
and the comparison between the Eulerian and Lagrangian is depicted in Fig. 9.6.



9 Lagrangian Modelling of Transport Phenomena Using Stochastic … 237

Isopycnal Diffusion Along Non-flat Isopycnal Surfaces

In case the isopycnal surfaces are flat, the Lagrangian simulation reveals that a first
order Euler scheme is accurate enough to attain the desired accuracy. If the diapycnal
diffusion is zero, the particles should remain on the isopycnal surface they are released
on, even if a simple time stepping is used. By contrast, if the isopycnal surfaces are
assumed to be not flat, particles tend to leave the isopycnal surface they are released
on. In such cases, the first order Lagrangian schemes might fail due to numerical
errors and higher order Lagrangian schemes might reduce these errors. This is why
assessing different numerical schemes for isopycnal diffusion on a non-flat isopycnal
surfaces is important.

The objective here is to simulate diffusion processes along non-flat isopycnal
surfaces in the absence of diapycnal diffusion (Shah et al. 2011; Shah 2015; van
Sebille et al. 2018). Here, it is more important to accurately reproduce the individual
trajectories of the particles rather than the time evolution of a distribution. For approx-
imating particle tracks, higher order strong, in lieu of weak, schemes should be used.
A three dimensional idealised test case is constructed for purely isopycnal diffusion
along non-flat isopycnal surfaces. Moreover, to validate, numerically, the equiva-
lence between the Îto, Stratonovich and Îto-backward models the Îto, Stratonovich
and Îto-backward Lagrangian models for transport along non-flat isopycnal are all
considered.

Let x and y denote the horizontal coordinates, while z denotes the vertical coor-
dinate (increasing upward). If ρ is the density, then the isopycnal tensor (Redi 1982)
reads:

K = K I

ρ2
x + ρ2

y + ρ2
z

⎛
⎝ρ2

y + ρ2
z −ρxρy −ρxρz

−ρxρy ρ2
x + ρ2

z −ρzρy

−ρxρz −ρzρy ρ2
x + ρ2

y

⎞
⎠ . (9.80)

Density decreases as z increases, so lighter water lies on the top of heavier water.
We consider the following three dimensional density field:

ρ(x, y, z) = ρ0

[
1 − N 2z

g
+ αx sin (κx x) + αx sin

(
κy y

)]
, (9.81)

where αx , αy , κx and κy are constants. The following values of these parameters seem
to be a reasonable choice:

αξ = 10−3 and κξ = 10−6, ξ = x, y.

Note that the vertical density gradient is assumed to be constant, but the horizontal
one is not, so that the isopycnal surfaces are not flat. The horizontal and vertical
density gradients are

ρx = ρ0αxκx cos (κx x) , ρx = ρ0αyκy cos
(
κy y

)
and ρz = −ρ0N 2

g
, (9.82)
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and the corresponding isopycnal surface may be represented as follows:

z = g

N 2

(
1 − ρ∗

ρ0

)
+ gαx

N 2
sin (κx x) + gαy

N 2
sin

(
κy y

)
. (9.83)

Substituting the density gradients (9.82) into (9.80) yields the actual expressions
of the components of the diffusion tensor and substituting the resulting components
(9.78) of σ into (9.43), lead to the following system of Îto SDEs for non-flat isopycnal
diffusion:

dXt = f (Xt , t) dt + σ (Xt , t) dWt Xt0 = X0. (9.84)

Here the components of the drift vector a are given by:

fx = ∂kxx
∂x

+ ∂kxy
∂y

, fy = ∂kyx
∂x

+ ∂kyy
∂y

and fz = ∂kzx
∂x

+ ∂kzy
∂y

. (9.85)

The components of σ are given in (9.78)-(9.79). This system of SDEs is again
consistent with diffusion equation:

∂C

∂t
= ∇ · (K · ∇C), −∞ < x < ∞, C (x, t0) = δ (x − x0) . (9.86)

For the numerical simulations the particles are all released at the origin (x, y, z) =
(0, 0, 0). This point belongs to the isopycnal surface whose equation reads:

z = gαx

N 2
sin (κx x) + gαy

N 2
sin

(
κy y

)
. (9.87)

The position (xi (t), yi (t), zi (t)), j = 1, 2, . . . , J of the particles is updated bymeans
of Lagrangian schemes. Since the diapycnal diffusion is zero the particles should
not leave the isopycnal surface (9.83), but numerical errors are unavoidable. Their
magnitude may be estimated by means of the following error measure:

μ(t) =
√√√√ 1

J

J∑
j=1

[
z j (t) − z = gαx

N 2
sin

(
κx x j (t)

) + gαy

N 2
sin

(
κy y j (t)

)]2
. (9.88)

This expression is approximately equal to the standard deviation of the distance of
the particles to the isopycnal surface on which they should remain. Clearly, the better
a Lagrangian scheme is, the slower the rate of increase of standard deviation μ(t)
will be.

In order to depict the equivalence between the Îto, Stratonovich and Îto-backward
stochastic models. The Îto SDEs (9.80)(80) is transformed into Stratonovich and
Îto-backward SDEs. The drift coefficients in (9.80) is modified by using the transfor-
mations described in Sect. 9.3. The resulting Stratonovich and Îto-backward SDEs
are then used to simulate the trajectories of the particles on the non-flat isopycnal



9 Lagrangian Modelling of Transport Phenomena Using Stochastic … 239

Fig. 9.7 Comparison of the performance of the numerical schemes for different time steps

surface. Note that careful attention is required to implement Lagrangian schemes for
Îto, Stratonovich and Îto-backward models (Kloeden and Platen 1992). It is impor-
tant to recall here that, assessing the pathwise strong approximations for Lagrangian
model interpreted in Îto, Stratonovich and Ito-backward sense is a main goal here,
that is why attention is not paid to the probability distribution.

The comparison between the accuracy and efficiency of the Lagrangian schemes
is shown in Fig. 9.7a, b. The standard deviation μ against the different time steps
Δt is shown in Fig. 9.7a, while Fig. 9.7b depicts the CPU time of the Lagrangian
schemes. The results reveals that Îto Euler and Îto-backward Euler converges with
order 0.5 and Îto and Stratonovich Milstein schemes converges with the order 1.0. It
is quite clear from these experiments that the higher order schemes produce better
pathwise approximations. Another way of assessing the numerical schemes under
consideration consists in estimating the spurious diapycnal diffusion

(
K D

)
they are

associated with. The related spurious diapycnal diffusivity is of the order μ2(t)
2t . The

spurious diapycnal diffusivity of each Lagrangian scheme is determined and the
results are displayed in Fig. 9.7c. The spurious diapycnal diffusivity of the Euler and
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Milstein schemes differs approximately by a factor of 10−4. This shows the spurious
diffusivity in the Milstein scheme is negligible compared with the Euler scheme.

Moreover, it is can also be observed in Fig. 9.7 that the Îto-backwardEuler solution
converges to the Îto Euler and the Stratonovich Milstein solution converges to the
Îto Milstein solution. This implies that if the SDE is interpreted in Îto sense then one
can switch to Stratonovich and Îto-backward models by using the transformations
described in Sect. 9.3 and one will reach to the same solution. The idealised test
case for purely isopycnal diffusion on non-flat isopycnal surfaces was considered to
evaluate the performance of the Lagrangian schemes. The idealised test case shows
that the Euler approximation is not an appropriate option to simulate the movement
of the particle on non-flat isopycnals. The implementation of the Milstein scheme
shows that a relatively limited additional computational effort (Fig. 9.7) is required
to obtain a good accuracy. The assessment of Lagrangian schemes suggests that one
may not obtain satisfactory results with the Euler scheme, while the Milstein scheme
is a more accurate and more reliable approximation for simulating the particle paths.
Turning to the higher order strong Lagrangian schemes leads to a very significant
improvement.

9.6 Conclusion

The Lagrangian random walk model which is dictated by the desired representation
of the turbulent diffusion is broadly discussed in this chapter. This chapter provides
the foundation to the useful concept to theory of SDEs and it numerical aspects
that are used to model diffusive transport processes in marine modelling problems.
Implementation of different Lagrangian schemes on various test cases has clearly
shown that the order of convergence of the Euler scheme is not sufficient to achieve
the desired result. However, the Milstein scheme shows that a relatively limited
additional computational effort is required to obtain a good accuracy. The results
obtained for the various higher order schemes has shown more accurate results than
that of the Milstein scheme. But such schemes are not computationally attractive.
Therefore, it is suggested that turning to the higher order strong Lagrangian schemes
leads to a very significant improvement.

References

Beckers, J.M., H. Burchard, J.M. Campin, E. Deleersnijder, and P.P. Mathieu. 1998. Another reason
why simple discretization of rotated diffusion operators cause problem in oceanmodels: comment
on “iso neutral diffusion in a z-coordinate ocean model. Journal of Physical Oceanography 28
(7): 1552–1559.

Beckers, J.M., H. Burchard, E. Deleersnijder, and P.P. Mathieu. 2000. Numerical discretization of
rotated diffusion operators in ocean model.Monthly Weather Review 128 (8): 2711–2733.



9 Lagrangian Modelling of Transport Phenomena Using Stochastic … 241

Burchard, H., O. Petersen, and T.P. Rippeth. 1998. Comparing the performance of the k- and the
mellor-yamada two-equation turbulence models. Journal of Geophysical Research: Oceans 103:
10543–10554.

Campin, J.M., E.J.M. Delhez, A.C. Hirst, and E. Deleersnijder. 1999. Towards a general theory of
the age in ocean modelling. Ocean Modelling 1: 17–27.

Charles,W.M., E. van den Berg, H.X. Lin, and A.W. Heemink. 2009. Adaptive stochastic numerical
scheme in parallel random walk models for transport problems in shallow water. Mathematical
and Computer Modelling 50 (7–8): 1177–1187.

Deleersnijder, E., J.M. Beckers, and E.J.M. Delhez. 2006. The residence time of settling particles
in the surface mixed layer. Environmental Fluid Mechanics 6 (1): 25–42.

Dimou, K.D., and E.E. Adams. 1993. A random-walk, particle tracking model for well-mixed
estuaries and coastal waters. Estuarine, Coastal and Shelf Science 37: 99–110.

Gardiner, C.W. 1985. Stochastic methods. New York: Springer.
Gräwe,U. 2011. Implementation of higher-order particle tracking schemes in awater columnmodel.
Ocean Modelling 36 (1–2): 80–89.

Gräwe, U., E. Deleersnijder, S.H.A.M. Shah, and A.W. Heemink. 2012. Why the euler-scheme
in particle-tracking is not enough: The shallow-sea pycnocline test case. Ocean Dynamics 62:
501–514.

Hanert, E. 2012. Front dynamics in a two-species competitionmodel driven by Lévy flights. Journal
of Theoretical Biology 300: 134–142.

Hunter, J.R., P.D. Craig, and H.E. Phillips. 1993. On the use of random walk models with spatially
variable diffusivity. Journal of Computational Physics 106: 366–376.

Jazwinski, A.H. 1970. Stochastic processes and filtering theory. New York: Academic Press.
Kloeden, P., and E. Platen. 1992.Numerical solution of stochastic differential equations (Stochastic
Modelling and Applied Probability). Berlin: Springer.

LaBolle, E.M., J. Quastel, G.E. Fogg, and J. Granver. 2000. Diffusion processes in composite
porous media and their numerical integration by randomwalk: Generalised stochastic differential
equations with discontinuous coefficients. Water Resources Research 36 (3): 651–662.

Mathieu, P.P., and E. Deleersnijder. 1998. What is wrong with isopycnal diffusion in the world
ocean models? Applied Mathematical Modelling 22 (4–5): 367–378.

Mathieu, P.P., E. Deleersnijder, and J.M. Bechers. 1999. Accuracy and stability of the discretised
isopycnal-mixing equation. Applied Mathematics Letters 12 (4): 81–88.

Oksendal, B.K. 2003. Stochastic differential equations: An introduction with applications. Berlin:
Springer.

Redi, M.H. 1982. Oceanic isopycnal mixing by coordinate rotation. Journal of Physical Oceanog-
raphy 12 (10): 1154–1158.

Shah, S.H.A.M. 2015. Lagrangian modelling of transport processes in the ocean. PhD thesis, Delft
University of Technology.

Shah, S.H.A.M., A.W. Heemink, and E. Deleersnijder. 2011. Assessing Lagrangian schemes for
simulating diffusion on non-flat isopycnal surfaces. Ocean Modelling 39 (3–4): 351–361.

Silverman, B.W. 1986. Density estimation for statistics and data analysis. London: Chapman and
Hall.

Spivakovskaya, D., A.W. Heemink, and E. Deleersnijder. 2007. Lagrangian modelling of multi-
dimensional advection diffusion with space-varying diffusivities: theory and idealized test cases.
Ocean Dynamics 57 (3): 189–203.

Spivakovskaya, D., A.W. Heemink, and E. Deleersnijder. 2007. The backward Îto method for the
Lagrangian simulation of transport processes with large space variations of the diffusivity.Ocean
Science 3 (4): 525–535.

Stijnen, J.W., A.W. Heemink, and H.X. Lin. 2006. An efficient 3D particle transport model for use
in stratified flow. International Journal for Numerical Methods in Fluids 51 (3): 331–350.

Vallaeys, V., R.C. Tyson, W.D. Lane, E. Deleersnijder, and E. Hanert. 2017. A Levy-flight diffusion
model to predict transgenic pollen dispersal. Journal of the Royal Society Interface 14 (126):
20160889.



242 A. Heemink et al.

Van Sebille, E., S.M. Griffies, R. Abernathey, T.P. Adams, P. Berloff, A. Biastoch, B. Blanke, E.P.
Chassignet, Y. Cheng, C.J. Cotter, E. Deleersnijder, K. Döös, H.F. Drake, S. Drijfhout, S.F. Gary,
A.W. Heemink, J. Kjellsson, I.M. Koszalka, M. Lange, C. Lique, G.A. MacGilchrist, R. Marsh,
C.G. Mayorga Adame, R. McAdam, F. Nencioli, C.B. Paris, M.D. Piggott, J.A. Polton, S. Rühs,
S.H.A.M. Shah, M.D. Thomas, J. Wang, P.J. Wolfram, L. Zanna, and J.D. Zika. 2018. Lagrangian
ocean analysis: Fundamentals and practices. Ocean Modelling 121: 49–75.

Visser, A.W. 1997. Using random walk models to simulate the vertical distribution of particles in a
turbulent water column. Marine Ecology Progress Series 158: 275–281.

Visser, A.W. 2008. Lagrangian modelling of plankton motion: From deceptively simple random
walks to Fokker-Planck and back again. Journal of Marine Systems 70: 287–299.

Warner, J.C., C.R. Sherwood, H.G. Arango, and R.P. Signell. 2005. Performance of four turbulence
closure models implemented using a generic length scale method. Ocean Modelling 8 (1–2):
81–113.


	9 Lagrangian Modelling of Transport Phenomena Using Stochastic Differential Equations
	9.1 Introduction
	9.2 Stochastic Differential Equations
	9.2.1 Introduction
	9.2.2 Îto Stochastic Integrals
	9.2.3 Îto Stochastic Differential Equations
	9.2.4 Îto's Differentiation Rule
	9.2.5 Stratonovich Stochastic Differential Equations
	9.2.6 Fokker-Planck Equation

	9.3 Particle Models for Marine Transport Problems
	9.4 Numerical Approximation of Stochastic Differential Equations
	9.5 Test Cases for Marine Transport Problems
	9.5.1 Simple Vertical Diffusion
	9.5.2 One Dimensional Water Column Including a Pycnocline
	9.5.3 Multidimensional Diffusion in an Unbounded Domain

	9.6 Conclusion
	References


