
Chapter 6
Quasi-2D Turbulence in Shallow Fluid
Layers

Herman J. H. Clercx

Abstract Flows in thin fluid layers, like in the Earth’s atmosphere or oceans, tend to
behave as quasi-two-dimensional flows. Their dynamics is strikingly different from
three-dimensional flows, and main features of the flow dynamics can be understood
by considering two-dimensional (2D) fluid flows. Inviscid 2D flows are governed
by conservation of vorticity due to absence of vortex stretching and tilting. Together
with conservation of kinetic energy this results in the famous inverse energy cas-
cade and the emergence and persistence of large-scale vortices. This also occurs in
shallow fluid-layer flows even if they are neither purely inviscid nor perfectly two-
dimensional. Basic phenomena for understanding the dynamics of 2D flows will be
discussed and 2D flows on bounded domains, mainly dealing with the large-scale
phenomenology of the flow, will be addressed: the self-organization of 2D turbulence
in confined domains and the interaction of coherent structures with domain walls.
This will be complemented with some observations from recent experiments on
quasi-2D turbulence in shallow-fluid layers including the role and impact of bottom
friction and out-of-plane motion on the flow evolution.

6.1 Introduction

Large-scale geophysical flows in the oceans and in the atmosphere basically con-
sist of a relatively thin fluid layer (with typical thickness H) with a large horizontal
extent, where we denote the horizontal length scale with L � H. Flow phenomena
on horizontal scales much larger than the thickness of the fluid layer (typically a few
kilometers deep in the oceans or 10 kmhigh in the atmosphere) behave predominantly
as two-dimensional (2D) flows. The common justification is that a small vertical
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length scale implies small characteristic vertical velocities due to mass conservation.
In shallow coastal seas, estuaries or shallow lakes with depths in the range of 10–100
m and horizontal extents of tens or hundreds of kilometers one can assume, based
on similar arguments as above, quasi-2D behaviour of large-scale flows. Even on the
level of riverine flows, aspects of the dynamics of large-scale eddies can be analysed
invoking two-dimensionality, see Uijttewaal (2014) for a recent overview. Besides
the aspect ratio of vertical and horizontal length scales some other mechanisms may
contribute to the process of two-dimensionalization of the flow. It is known that
background rotation promotes two-dimensionality which is nicely illustrated by the
Taylor-Proudman theorem (Proudman 1916; Taylor 1917). This theorem basically
states that for steady inviscid rapidly rotating flows the fluid velocity will not change
in the direction parallel to the background rotation. In the oceans the rotation of the
Earth will contribute to two-dimensionalization of large-scale flows with character-
istic horizontal length scales larger than about 100 km at low latitudes, gradually
decreasing to about 20 km at high latitudes, and in the atmosphere for flow scales
with a horizontal extent larger than typically 1000 km. In shallow coastal seas, estu-
arine flows or lakes a stable density stratification (by salinity or temperature effects
or a combination of them) suppresses vertical motion as that would enhance potential
energy content of the flow. Such flows have also a tendency to move predominantly
in the horizontal plane, thus contributing to quasi-two-dimensionality of the flow.
Note, however, that the type of two-dimensional flow is different depending on the
mechanism enforcing it: shallow and stratified flows tend to be flat because of the
constraints in the vertical while background rotation forms tall vertically-invariant
columnar structures. This leads to competing effects when combining rotation with
either shallowness or stratification; see, for example, Liechtenstein et al. (2005),
Duran-Matute et al. (2012).

Also the presence of domain boundaries might be important. Consider, for exam-
ple, closed or semi-closed basins such as the Gulf of California, the Gulf of Aden,
or in the Mediterranean the Adriatic or Tyrrhenian Sea. They reveal the existence
of arrays of vortical structures. A nice illustration of the flow in the Gulf of Aden,
visualized by phytoplankton blooms, is shown in Fig. 6.1. We can indeed observe
relatively large flow structures, including vortices with size almost the same as the
width of the Gulf of Aden. Similar patterns have been observed for the Adriatic Sea,
as reported by Falco et al. (2000), and for the Tyrrhenian Sea a few years earlier
by Buffoni et al. (1997). The energy to drive such vortical flows is mostly supplied
by the wind. Of course, one will never observe a perfect array of vortices as the wind
varies, the coastal boundaries are irregular and the bottom topography affects the
flow. Nevertheless, the basic flow phenomena, including the formation of arrays of
domain-sized vortices is inherently related to the self-organization of 2D turbulent
flows in confined (rectangular) geometries.Moreover, such arrays of vortices interact
with domain boundaries, or are perturbed otherwise, inducing unsteady wiggling of
these vortices. Such processes can lead to efficient transport and mixing of passive
tracers (such as nutrients or salt) or inertial particles.

The quasi-two-dimensionality of many geophysical and environmental flows
inspired research on the behaviour of 2D flows, including vortex dynamics and 2D
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Fig. 6.1 A winter plankton bloom in the Gulf of Aden. In the image the swirling motion of the
phytoplankton bloom in the basin-wide vortical structures is clearly visible. The image is composed
of data acquired on February 12, 2018, by the MODIS on the Aqua Satellite of NASA. Credit
NASA image by Norman Kuring, NASAś Ocean Biology Processing Group. Photograph courtesy
of Joaquim Goes, Lamont Doherty Earth Observatory

turbulence. A few examples of studies motivated by environmental flows include
turbulent wakes, large-scale flow structures and mixing processes in shallow flows
(Chen and Jirka 1995; Uijttewaal and Booij 2000; Jirka 2001), grid-generated tur-
bulence in a shallow fluid layer by Uijttewaal and Jirka (2003), and the dynamical
behavior of monopolar and dipolar vortices in such shallow turbulent flows, see Lin
et al. (2003), Sous et al. (2004), Sous et al. (2005). It has also motivated studies of
themechanisms promoting two-dimensionality by, for example, background rotation
or density stratification. Regarding the fundamental aspects of (2D) turbulence, the
reduction of dimensionality already attracted a lot of attention from a wide variety
of scientists. These investigations have been of theoretical and numerical charac-
ter, where two-dimensionality facilitates analysis and computations significantly by
exploiting the reduction of dimensionality (2D instead of 3D computations, for some
recent reviews with regard to numerical studies, see Clercx and Van Heijst (2009),
Boffetta andEcke (2012)), but also laboratory experiments turned out to be extremely
worthwhile as such flows are easily accessible for flow diagnostics. The dynamics of
vortices can be studied in rotating or density-stratified fluids, see the review by Van
Heijst and Clercx (2009), and 2D turbulence can be studied experimentally in den-
sity stratified fluids, in shallow fluid layer experiments or in soap film experiments,
see Danilov and Gurarie (2000), Tabeling (2002), Kellay and Goldburg (2002), Van
Heijst et al. (2006), Van Heijst and Clercx (2009), Clercx and Van Heijst (2009).

In this chapter the focus will be on the large-scale flow phenomenology. It will
start with a brief overview of the basic mechanisms in unbounded 2D turbulence in
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Sect. 6.2 and the role of confinement on the dynamics of 2D turbulence in Sect. 6.3.
In Sect. 6.4, the main features of the interaction of 2D vortex structures with (no-slip)
walls will be discussed. In order to make a connection once again to shallow flows,
2D turbulence experiments in shallow fluids will briefly be reviewed in Sect. 6.5. We
conclude with a brief summary of the most important observations in Sect. 6.6.

6.2 Two-Dimensional Turbulence

One of the most striking phenomena of 2D turbulence is the self-organization of
the flow. This is clearly visualized in both laboratory experiments in rotating flu-
ids, see Colin de Verdière (1980), Hopfinger et al. (1982), and in stratified fluids,
see Boubnov et al. (1994), Yap and Van Atta (1993), Fincham et al. (1996), Maassen
et al. (1999), Maassen et al. (2002). It has also been observed in shallow fluid layer
and soap film experiments, see Couder (1984), Sommeria (1986), Tabeling et al.
(1991), Kellay et al. (1995), Rutgers (1998), Rivera and Ecke (2005, 2016), and
Akkermans et al. (2008a), and in many direct numerical simulations of either freely-
evolving or forced 2D turbulence. Examples are the studies by McWilliams (1984),
Legras et al. (1988), Santangelo et al. (1989), and Boffetta (2007). In the remaining
part of this section some of the essential ingredients to understand the dynamics of
2D turbulence will be introduced.

6.2.1 Inertial Ranges in 2D Turbulence

One of the most striking differences between 2D and 3D turbulence concerns the
weakly dissipative and self-organizing character of 2D turbulent flow compared to
the highly dissipative character of 3D turbulence. Consider, for example, a simulation
of freely-evolving 2D turbulence, where the flow field is initialized with a random
vorticity field; see McWilliams (1984). This initial vorticity field does not contain
any coherent vortex structures. During the evolution of the flow field from this ini-
tial vorticity distribution, large and approximately axisymmetric vorticity patches
emerge as a result of subsequent vortex mergers. The typical lifetime of these vor-
tices turns out to be long compared with the typical flow advection time scale. This
self-organization process basically consists of transfer of kinetic energy from the
smaller scales of the flow towards larger scales (merging of like-signed vortices)
together with vorticity transport to the smaller scales. One can recognize the latter
process as the elongation of vorticity filaments in between larger coherent structures.
More recently, taking advantage of the increase in computing capabilities, (Boffetta
2007) illustrated this process with an extreme high-resolution simulation of forced
2D turbulence: the flowwas forced at some intermediate length scale, and the kinetic
energy supplied at the forcing length scale was transported almost completely to the
larger and even domain-size scales (a process known as the inverse energy cascade).
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Simultaneously, the enstrophy was transported downscale, in what we call the direct
enstrophy cascade, to the viscous dissipation range. This is in agreement with the
observation byMcWilliams (1984) and both cascade ranges where already predicted
by Kraichnan (1967, 1971).

From a phenomenological point of view the presence of an inverse energy cascade
and a direct enstrophy cascade can be illustrated in the following way. The motion
of an incompressible fluid with viscosity ν and density ρ in a plane is described by
the 2D velocity field v(r, t) = (u, v), with u and v its Cartesian components, and
r = (x, y). The velocity field should satisfy conservation of mass,

∇ · v = ∂u

∂x
+ ∂v

∂y
= 0 . (6.1)

Conservation of momentum is expressed by

∂v
∂t

+ (v · ∇)v = − 1

ρ
∇p + ν∇2v, (6.2)

where we assume that the flow is freely decaying (no injection of energy by external
forcing). With the vorticity ω defined as ω = ∂v

∂x − ∂u
∂y , we can reformulate Eq. (6.2)

into the vorticity equation

∂ω

∂t
+ (v · ∇)ω = ν∇2ω. (6.3)

Define the kinetic energy E of the 2D flow as

E = 1

2

∫
D

|v|2d A =
∫

E(k)dk, (6.4)

with D the flow domain of interest, d A an infinitesimal area element of D, E(k) the
energy spectrum and k the wave number. The enstrophy Ω is defined as

Ω = 1

2

∫
D

ω2d A =
∫

k2E(k)dk. (6.5)

For the inviscid regime (ν = 0), the kinetic energy is conserved (no dissipation), and
the vorticity of a fluid element is also conserved as the vorticity Eq. (6.3) reduces to
Dω
Dt = ∂ω

∂t + (v · ∇)ω = 0. The latter conservation law also means that any function
of the vorticity should be conserved too, thus also the enstrophy must be conserved
for inviscid 2D flows. Suppose initially a Gaussian shape of the energy spectrum
E(k) which should broaden in time. However, broadening of the energy spectrum
E(k) with satisfying both conservation of energy and enstrophy (see Eqs. (6.4) and
(6.5)), is only possible when the maximum of the spectrum shifts to lower wave
numbers, and energy accumulates in larger-scale structures.
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Fig. 6.2 Schematic representation of the inertial ranges in forced 3D turbulence with the direct
energy cascade (left), and forced 2D turbulence with both the inverse energy cascade and the direct
enstrophy cascade (right). The energy fluxes are denoted by ε (to large wave numbers in 3D and
small wave numbers in 2D turbulence) and the enstrophy flux is denoted by ζ (to large wave
numbers). The forcing wave number k f is at the largest scales for the 3D case, but at intermediate
scales for 2D turbulence; kd denotes the dissipation wave number

The processes described above are in strong contrast with our experiencewith cas-
cade processes in homogeneous and isotropic 3D turbulence. In 3D flows, processes
like vortex stretching and tilting are present, playing a crucial role in the transfer of
kinetic energy from large to small scales in the flow. In 2D flows, these two mecha-
nisms are absent as the vorticity vector is always perpendicular to the plane of flow.
In the 3D case, kinetic energy injected at a certain scale (mostly at large scales) is
thus transported downscale via the inertial range to the smallest (Kolmogorov) scales
where kinetic energy is dissipated.

Summarizing, in 2D turbulence kinetic energy is transported to and collected at
the large scales of the flow, the coherent vortex structures. Onsager (1949), Fjørtoft
(1953) already predicted on theoretical grounds the emergence of large-scale coher-
ent vortices in 2Dflows. In 3D turbulence kinetic energy is transported downscale and
is being dissipated, see a schematic sketch of these processes in Fig. 6.2. This differ-
ence is responsible for many exciting, and at first sight, somewhat counter-intuitive
phenomena that can be observed in large-scale quasi-2D flows.

6.2.2 2D Turbulence: The Early Years

Systematic investigations of homogeneous and isotropic 2D turbulence from a the-
oretical point of view, and also the first numerical attempts to simulate 2D turbu-
lence, started some 50 years ago by Kraichnan (1967), Leith (1968), and Batchelor
(1969). Kraichnan (1967) in his seminal contribution introduced a formal derivation
of the scaling of the energy spectrum E(k). He assumed conservation of energy
and enstrophy only (in the inviscid limit), and based on that, he proposed for 2D
forced turbulence the existence of a dual cascade which are known as the inverse
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energy cascade and the direct enstrophy cascade. For the inverse energy cascade,
assuming constant energy flux and no enstrophy flux, he found in the inertial range
E(k) ∼ ε2/3k−5/3. Here, ε is the constant rate of cascade of kinetic energy per unit
mass and the expression is valid for kL � k � k f with k f the wave number at which
forcing takes place (injection of energy) and kL a representative wave number for
the large-scale coherent structures. The proposed scaling looks very similar to the
Kolmogorov scaling of the energy spectrum in the inertial range of 3D turbulence,
but one should realize that the flux in the 3D case is in opposite direction, towards the
small dissipative scales. For the inertial range of the direct enstrophy cascade, assum-
ing a constant enstrophy flux and absence of an energy flux, he found a scaling of the
spectrum according to E(k) ∼ ζ 2/3k−3. In this case, ζ is the constant rate of cascade
of mean-square vorticity, and the expression is valid for k f � k � kζ with kζ the
enstrophy dissipation scale. See Kraichnan (1971) for a discussion of a logarithmic
correction to the energy spectrum in the direct enstrophy cascade range. Numerical
simulations of forced 2D turbulence have been carried out since the prediction of the
dual cascade, many providing supporting evidence for the dual cascade. As already
mentioned before, the extreme high-resolution simulation by Boffetta (2007) has
shown convincingly the existence of the dual cascade.

The analysis by Kraichnan (1967) concerned forced 2D turbulence. A few years
after Kraichnan’s contribution it was (Lilly 1971) who addressed 2D decaying (or
freely-developing) turbulence with numerical simulations. One of his motivations
was to confirm Kraichnan-Leith-Batchelor (KLB) theory, but also to test Batchelor’s
results on the time-dependent behavior of the kinetic energy E(t), enstrophyΩ(t) and
the palinstrophy P(t) = 1

2

∫
D |∇ω|2d A ≥ 0 for decaying flows. From the Navier-

Stokes equation for flows with finite viscosity ν one can rather straighforwardly
derive the following relations, valid for freely-evolving flows on an unbounded or
on a periodic domain:

dE(t)

dt
= −2νΩ(t) and

dΩ(t)

dt
= −2νP(t). (6.6)

Since the enstrophy and palinstrophy should always be positive (or zero), we can
directly conclude that both the energy E(t) and the enstrophy Ω(t) should decrease
in course of time for decaying 2D turbulence. We can also conjecture that the enstro-
phy is always bounded by its initial value as P(t) ≥ 0. In a natural way we then
see that dE(t)

dt → 0 for ν → 0. The study by Lilly (1971) indeed confirmed a few
results from KLB theory, such as the k−3 scaling of the direct enstrophy cascade
and the following asymptotic decay relations for t → ∞ predicted by Batchelor
(1969): E(t) ∝ t−1, Ω(t) ∝ t−2, and P(t) ∝ t−3. However, many numerical stud-
ies employing higher resolutions gave deeper insights into both the scaling of the
direct enstrophy cascade as the time behavior of energy, enstrophy, and palinstro-
phy. First of all, in the 1980s quite some evidence emerged about the presence of
quite persistent weakly dissipative coherent vortices and the existence of a kind of
quasi-steady equilibrium states, see, for example, Fornberg (1977), Matthaeus and
Montgomery (1980) and Basdevant et al. (1981), and the already mentioned study
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by McWilliams (1984). It was observed that the direct enstrophy cascade occurs as
a transient state and often the spectrum steepened considerably, typically showing a
k−5 scaling behavior (McWilliams 1984; Santangelo et al. 1989). Also a very-high
resolution (40962 grid points) simulation of decaying 2D turbulence by Bracco et al.
(2000) revealed a spectrum with a slope steeper than k−3. Prime suspect of this
behavior are the weakly dissipative coherent structures emerging during the decay
process (destroying scale invariance); see Santangelo et al. (1989).

6.2.3 Coherent Structures and 2D Turbulence

Keeping the observations with regard to the scaling of the energy spectrum in the
enstrophy cascade, and its possible cause, in mind several attempts have been under-
taken to analyse theoretically and numerically the temporal evolution of the hierar-
chy of coherent vortices in such 2D decaying turbulent flows (Carnevale et al. 1991,
1992; Weiss and McWilliams 1993). In the scaling theory proposed by Carnevale
et al. (1991), Carnevale et al. (1992) the time evolution of a few quantities have been
derived. The vortex density ρ(t) ∝ t−χ , the average vortex radius r(t) ∝ t−χ/4, the
average vortex separation d(t) ∝ t−χ/2 and the average enstrophy Ω(t) ∝ t−χ/2,
with χ undetermined. With numerical simulations the value χ ∼ 0.72 − 0.75 has
been found, see Carnevale et al. (1992) andWeiss andMcWilliams (1993). With this
value it turns out that Ω(t) ∝ t−0.36 and ρ(t) ∝ t−0.72. These scaling relations are
remarkably different compared to the predictions by Batchelor (1969) who obtained:
Ω(t) ∝ t−2 and ρ(t) ∝ t−2. The high-resolution simulation by Bracco et al. (2000)
confirmed the scaling relation for the enstrophy as predicted by the approach of
Carnevale and coworkers. They actually found the same exponent for the long-time
behavior of the enstropy:Ω(t) ∝ t−0.36. In recent decadesmanymore detailed studies
have been reported, see Clercx and VanHeijst (2009) for an overview and references.

From this overview it seems quite evident that the presence of coherent structures
in decaying 2D turbulence modifies the KLB-picture. In particular, scaling theories
for the vortex population do not support the scaling theory put forward by Batchelor
(1969) and the prediction of the scaling of the direct enstrophy cascade in decaying2D
turbulence (in contrast to forced 2D turbulence) is not always confirmed by numerical
studies. A final issue concerns the so-called quasi-equilibrium final states. The sea
of small-scale vortices will eventually evolve towards a final state by continuous
merging processes, see Matthaeus andMontgomery (1980) andMcWilliams (1984).
Several studies with very-long time integrations have shown that eventually one
large-scale dipolar quasi-equilibrium state will emerge (for decaying 2D Navier-
Stokes turbulence on a square periodic domain), see Matthaeus et al. (1991).
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6.3 2D Turbulence in Square, Rectangular and Circular
Domains

Three-dimensional homogeneous and isotropic turbulence is an extremely valuable
concept for studies of more general 3D turbulent flows. Although homogeneity and
isotropy can be broken by the presence of the boundaries or by the forcing, they
are quickly restored when going to smaller length scales. It is this assumption that
underlies the Kolmogorov scaling of the energy spectrum in the inertial range. This
means that for many fundamental studies, for example on turbulent mixing and
inertial particle dispersion on length scales compatible with the inertial range, it may
be sufficient to consider the relatively clean case of homogeneous and isotropic 3D
turbulence.With the presence of an inverse energy cascade in 2D turbulence, without
an energy sink at scales smaller than the domain size, energy is fed into the largest
accessible scale. This implies direct interaction of energy-rich eddieswith the domain
walls, and in the case of no-slip boundary conditions these walls serve as a source of
vorticity, even in the freely evolving case (without forcing). This is in strong contrast
with 2D freely evolving unbounded (homogeneous and isotropic) turbulence. In that
case the enstrophy is necessarily bounded by its initial value, see Batchelor (1969),
and no vorticity sources are present.

One of the most striking differences between freely decaying 2D turbulence on a
periodic domain and a similar decay process on a 2D confined domain is the shape
of the quasi-steady final state. As already mentioned, this quasi-stationary final state
on a periodic domain is basically a dipolar vortex, a structure with a patch of positive
and a patch of negative vorticity (although under certain conditions exceptions may
occur but are quite exceptional). For a square domain with walls, either free-slip (in
case of inviscid flows), no-slip or stress-free (the latter two for flows with viscous
effects included; the stress-free casewill not be discussed here), the quasi-steady final
state is different and are generally not a dipolar structure. A variety of statistical-
mechanical approaches have been used for the analysis of final states of inviscid flows
on confined domains; see Montgomery and Joyce (1974), Pointin and Lundgren
(1976), and Chavanis and Sommeria (1996). Typical final states are a monopolar
vortex on a square domain (Pointin and Lundgren 1976), a symmetric dipole, an
asymmetric dipole or a monopole on a circular domain (depending on the control
parameter Λ = Γ/

√
2E , with Γ the circulation and E the energy; see Chavanis and

Sommeria (1996) for details), and a large ellipsoidal or two counter rotating vortices
in a rectangular domain with length-to-width ratio of two (with a similar control
parameter; see Chavanis and Sommeria (1996)).
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6.3.1 Simulations of 2D Turbulence in Domains with No-Slip
Walls

From now on, we will consider decaying 2D Navier-Stokes turbulence on confined
domains with no-slip walls, which was the natural next step towards flows with
realistic boundary conditions and, moreover, experimentally accessible flow config-
urations (Li andMontgomery 1996; Li et al. 1997; Maassen et al. 1999, 2002, 2003;
Clercx et al. 1998, 1999, 2001; Schneider and Farge 2005, 2008; Keetels et al. 2010;
Fang and Ouellette 2017).

We first focus on the quasi-steady final states. Here, some care is needed as
the final state is always cessation of any flow. However, at an earlier stage during
the decay process small-scale features are dissolved due to merging processes and
sometimes disappear due to viscous dissipation. At a later stage, one final structure
remains and is rather persistent for a very long time. This is what we call the quasi-
steady final state. Some observations from both laboratory experiments of decaying
quasi-2D turbulence in stratified fluids (Maassen et al. 1999, 2002, 2003) and direct
numerical simulations (Clercx et al. 1998, 1999, 2001) with regard to the so-called
quasi-steady final states are the following. In square containers, we found mostly a
monopolar final state, and when the initial flow was more energetic, a tripolar state
is found. The latter state is basically the result of the interaction of a rapidly rotating
monopolar vortex that generates strong boundary layers at the no-slip wall. These
boundary layers detach, roll up and form the satellite vortices. The minority of the
end states in the numerical simulations had a dipolar-like character. Maybe the most
remarkable result has been the phenomenon of spontaneous spin-up of the flow that
initially had no angular momentum (Clercx et al. 1998). The higher the Reynolds
number the more likely is spin-up to occur, with about 50% of the runs having a final
state with clockwise rotation and the rest having counter-clockwise rotation (Keetels
et al. 2010).

Spontaneous spin-up can be quantified by measuring the time evolution of the
angular momentum L(t) contained by the flow. The angular momentum is defined
as

L(t) =
∫
D
ẑ · (r × v(r, t))d A, (6.7)

with ẑ the unit vector normal to the plane of flow, the origin of the coordinate system
(x, y) in the center of the container, and r the position vector. In the numerical
experimentsmentioned above, the angularmomentum at t = 0was negligible, L(t =
0) = L0 = 0. The rate of change of angular momentum can straightforwardly be
determined by taking the time derivative of Eq. (6.7) and substituting the Navier
Stokes Eq. (6.2) into the resulting expression for dL

dt . It yields the following integral
(in dimensionless form) over the boundary ∂D of the domain,

dL

dt
=

∫
∂D

p(r, t)r · ds + 1

Re

∫
∂D

ω(r, t)(r · n̂)ds. (6.8)
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Here, n̂ is a unit vector normal to the boundary, ds is an infinitesimal boundary
element (tangential to the boundary) and ds its magnitude. This relation clearly
shows that angular momentum production is due to a pressure contribution (inviscid)
and a viscous contribution proportional to the vorticity generated at the boundary.
The pressure contribution turns out to be the dominant term in the range of Reynolds
numbers considered in the experiments and simulations. More extensive discussions
on this phenomenon can be found in (Clercx et al. 1998; Clercx and Van Heijst 2009;
Keetels et al. 2010).

In the experiments mentioned above and inmost of the numerical studies, the inte-
gral scale Reynolds number Re = Urms L/ν (based on the initial root-mean-square
velocity Urms , the size of the container L , and the fluid kinematic viscosity ν) is
relatively low. In the experiments, 1000 � Re � 2000, and in the numerical simula-
tions, we typically have 1000 � Re � 5000, with a very few cases with Re = 104 or
2 × 104. Themore recent numerical simulations by Keetels et al. (2010) were carried
out with significantly higher initial large-scale Reynolds number, up to Re = 105. In
Fig. 6.3, we show a typical evolution of decaying 2D turbulence on a square domain
with no-slip rigid walls. The initial flow field consisted of an almost regular array of
10 × 10 Gaussian vortices. The positions of these vortices are all slightly disturbed
to give the evolution a kick-start towards a fully turbulent flow. The quasi-steady final
state that emerges after about 400 initial eddy turnover times is basically a relatively
strong, but also relatively small monopolar vortex embedded in a large-scale swirling
flow. Also several smaller vortices are embedded in this swirling background flow,
and these vortices are mostly the result of detachment and roll up of boundary layers
containing high-amplitude vorticity.

During the decay process the impact of the no-slip walls is large: many relatively
small or even tiny vortices can be observed in each of the panels of Fig. 6.3. These
small vortices are almost all generated at the no-slip walls, signifying a crucial
difference between 2D decaying spatially unbounded turbulence and 2D decaying
confined turbulence. It affects the vortex statistics, which is discussed in more detail
in (Clercx and Van Heijst 2009), and also the enstrophy production and decay rate
significantly. To illustrate the different decay scenarios, we show in Fig. 6.4 two
snapshots from simulations starting with exactly the same initial conditions. The left
panel shows the result with no-slip walls and the right panel those with periodic
boundary conditions (Keetels et al. 2010).

6.3.2 Quasi-Steady Final States: Laboratory Experiments

Quasi-steady final states can also be explored in laboratory experiments. Here, and
as a typical illustration, the decay scenarios of quasi-2D turbulence in laboratory
experiments, carried out in a two-layer stratified fluid in circular containers (for
experimental details, see Maassen et al. (1999)), are briefly discussed. See also Yap
and Van Atta (1993) and Fincham et al. (1996) for similar experiments a few years
earlier. Two sets of experiments in cylindrical containers have been carried out by
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Fig. 6.3 A few vorticity snapshots showing the process of spontaneous spin-up. The Reynolds
number of the simulation is Re = 5 × 104. The snapshots are taken at τ = 8, 24, 100 and 400 eddy
turnover times (with τ = 1 corresponding to the initial eddy turnover of the initial vortices). The
initial flow field consisted of an array of 10 × 10 vortices with positions slightly distorted to enhance
the rapid evolution towards an irregular turbulent flow field. For computational details, see Keetels
et al. (2010)

Maassen and collaborators, all in the spirit of (Li and Montgomery 1996; Chavanis
and Sommeria 1996): a set with initially hardly any swirl (L0 ≈ 0) and a set with
an initial condition with considerable swirl (L0 �= 0). The initial flow was generated
by dragging a rake through the stratified fluid. At a large enough towing speed the
wake behind each bar becomes turbulent, thus generating a turbulent initial flow
field. Symmetric rakes result in L0 ≈ 0, and asymmetric rakes result in L0 �= 0,
see Maassen et al. (1999) for details. The Reynolds number of the (initial) flow,
now defined as Re = Urms R/ν with R the radius of the container, is Re ≈ 4000.
The experiments with L0 ≈ 0 show the classical decay process. The small vortices,
generated by initializing the flow, start the merge quickly with like-sign counterparts
and the flow evolves towards a quadrupolar state. This evolution is due to a permanent
interaction of the flow with the rigid circular no-slip walls. Finally, a more or less
quasi-steady dipolar final state appears. The other set of experiments, with L0 �=
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Fig. 6.4 Vorticity snapshots, taken at dimensionless time τ = 15, from a simulation with no-slip
rigid walls (left panel) and a simulation with periodic boundary conditions (right panel). The initial
conditions were exactly the same for both numerical experiments and in both cases: Re = 105. Dark
and light grey represent positive and negative vorticity, respectively. Courtesy Keetels et al. (2010)

0, show basically a similar initial decay stage, but due to the swirl, a large-scale
monopolar vortex forms instead of a quadrupolar or dipolar state. This monopolar
vortex easily slides along the circular rigid walls, and less boundary-layer vorticity
is produced in this case (compared to the square container). The experimental results
are in very good agreement with the numerical simulations by Li et al. (1997).
The experimentally observed quasi-steady states agree remarkably well with the
predictions byChavanis andSommeria (1996) for inviscid flows in confineddomains:
a dipole when initially the circulation is zero, and a monopole when the initial
condition contains circulation.

These experiments of decaying 2D turbulence in circular domains show that for
L0 ≈ 0 the quasi-steady final state is a quadrupolar or dipolar structure, thus no spon-
taneous spin-up. Absence of spontaneous spin-up on circular domains was confirmed
later on in numerical studies by Schneider and Farge (2005). This can be understood
using Eq. (6.8). In circular domains, the pressure contribution to the production of
angular momentum vanishes as (r · n̂) = 0, thus the dominant term vanishes for this
particular geometry. The domain shape is thus relevant in determining the quasi-
steady final state by flow-wall interaction.

In a similar spirit, laboratory experiments in two-layer density stratified fluids and
numerical simulations have been carried out to explore the quasi-steady final states
of 2D decaying turbulence in rectangular containers with aspect ratios δ = L/W ,
with L the length and W the width of the container, varying from δ = 2 to δ = 5
(Maassen et al. 2003). The number of vortices N f in the final quasi-steady cell pattern
is in most experiments either N f = δ or N f = δ ± 1. This is not fully surprising,
and is consistent with observations as shown in Fig. 6.1 for the gyres in the Gulf of
Aden and the number of vortices observed in the Adriatic Sea. Another observation
concerned the comparison of the present results, for the case δ = 2, with results
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of the quasi-steady final states in inviscid flows in domains with the same aspect
ratio; see Pointin and Lundgren (1976) and Chavanis and Sommeria (1996). A clear
discrepancy was reported which most likely is due to the role of the boundary layers
present in the experiments but absent in the case of inviscid flows.

6.3.3 Forced 2D Turbulence on Confined Domains

The discussion above focuses solely on decaying 2D turbulence. However, the for-
mation of domain-size monopolar vortices has also been observed in forced 2D
turbulence in square domains. Both in experiments, see Sommeria (1986) and Paret
and Tabeling (1998), and in numerical studies, see Molenaar et al. (2004) and Van
Heijst et al. (2006). In particular the experimental study by Sommeria (1986) and
numerical results reported by Van Heijst et al. (2006) revealed reversals of the swirl
of the large-scale monopolar vortex. The time between reversals is orders of magni-
tude longer than the time scale needed for a reversal to occur, which is of the order
of a few large-scale eddy turnover times. The initialization of these reversals was
attributed to destabilizing disturbances such as small strong eddies (Sommeria 1986)
but their origin was not entirely clear. In numerical studies of forced 2D turbulence
in square domains with rigid no-slip sidewalls, with similar forcing length scale as
the experiments by Sommeria, it became clear that the disturbances originate from
formation and detachment of the boundary layers at the sidewall and subsequent
roll up of the boundary-layer filaments into small strong vortices (Van Heijst et al.
2006). When strong enough, they may destabilize and potentially disintegrate the
large-scale monopolar vortex. A new large-scale vortex will quickly build up after
this event, with same or opposite rotation sense. As an illustration of this process
three consecutive snapshots of the vorticity field from a forced 2D turbulence sim-
ulation in a square confined domain with no-slip sidewalls, provided by Molenaar
et al. (2004), are shown in Fig. 6.5. The integral-scale Reynolds number of this sim-
ulation was approximately 3000. The snapshots are taken just before the collapse,
during the collapse stage and just after it, when once again a domain-filling monopo-
lar vortex has formed (with opposite sign vorticity in this case). The lower panel
shows the normalized angular momentum computed according to Eq. (6.7) of the
same run. It clearly shows the existence of domain-filling monopolar vortices over
many turnover times and the collapse stages of relative short duration. Note that the
vorticity snapshots in Fig. 6.5 are taken at t = 800, 900 and 1000, respectively. This
kind of phenomena is a clear manifestation of the impact of rigid no-slip sidewalls
on the dynamics of 2D turbulence.
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L n
(t)

t →

Fig. 6.5 Snapshots of the vorticity evolution from a forced 2D turbulence simulation in a square
domain with no-slip walls. The snapshots are taken just before (left panel, t = 800) and just after
(right panel, t = 1000) the sign reversal of a large monopolar vortex. The panel in the middle
(t = 900) is taken during the collapse stage. Large negative values of vorticity are indicated with
black, and white indicates large positive values of vorticity. The lower panel shows the normalized
angular momentum of the flow in the square box, showing distinct phases of spin-up with collapse
stages in between. Normalization is done with the angular momentum of uniform rotation with the
same energy content E(t) as the actual flow field. Courtesy Molenaar et al. (2004)

6.4 Interaction of Vortices with Walls

In the previous section, we have discussed the large-scale flow structures emerging
during the decay of 2D turbulence in confined domains. There was a clear impact
of the presence of rigid walls and the domain geometry on the quasi-stationary final
states. However, we could also observe during the decay process the formation of
many small-scale vortices containing high values of vorticity; see Figs. 6.3 and 6.4.
The production of these small-scale vortices by detaching boundary layers also has
a strong impact on the vortex statistics and the time evolution of the vortex density,
vortex separation and the enstrophy is strongly affected when rigid no-slip walls are
present. See for a further discussion of this particular aspect (Clercx and Van Heijst
2009). Such small-scale vortices might also be the cause of reversals of large-scale
vortical structures in 2D forced turbulence in confined domains.

6.4.1 No-Slip Walls as Vorticity Sources

The formation of small-scale vortices near rigid no-slip walls indicate that flow-wall
interactions are relevant for 2D turbulence in confined domains. It is expected that
the larger and stronger the vortices, the larger their impact on the evolution of 2D
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t = 0.2 t = 0 .3 t = 0 .3278

t = 0.4 t = 0 .5 t = 0 .6

t = 0.7 t = 0 .8 t = 1 .0

Fig. 6.6 Sequence of vorticity contour plots showing the flow evolution of a dipole-like vortex
colliding with a rigid no-slip wall. The integral-scale Reynolds number, based on the initial speed
and radius of the dipole, is Re = 2500. Courtesy Kramer et al. (2007)

turbulence. This is, in particular, due to the production of more intense boundary
layers, that once again detach and create new strong vortices that travel to the inte-
rior. In other words, the rigid walls serve as a source of enstrophy, and this also
implies enhanced dissipation of kinetic energy. One of the open questions here is
what happens in the limit of vanishing viscosity, or in other words: what will happen
when Re → ∞? Will there be a finite dissipation in the inviscid limit for 2D flows
in confined geometries?

A variety of approaches can be used to tackle this problem. One of these is the
dipole-wall collision experiment, see Fig. 6.6, which has recently been reviewed
by Clercx and Van Heijst (2017). In particular, one can explore how vorticity pro-
duction during a vortex-wall collision is enhanced and how this affects the dissipation
of kinetic energy. For this purpose we need to introduce a slightly revised version
of the evolution equation of the enstrophy, which was introduced in Sect. 6.2 for the
unbounded or periodic domain. For domains bounded with no-slip walls we need to
add an additional term, a boundary integral, yielding
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dΩ(t)

dt
= − 2

Re
P(t) + 1

Re

∫
∂D

ω
∂ω

∂n
ds, (6.9)

with ∂
∂n the wall-normal derivative and ds an infinitesimal element of the boundary

∂D. The time rate of change of the enstrophy is expressed in dimensionless form.
The boundary integral may substantially increase the enstrophy at some instants of
time, in such a way, that as a net effect, enstrophy is produced during vortex-wall
collisions. Although the time rate of change of the kinetic energy will keep the same
form, here in dimensionless quantities written as

dE(t)

dt
= − 2

Re
Ω(t), (6.10)

the persistence of enstrophy, or even the increase of enstrophy, will automatically
imply stronger decay of the kinetic energy of the flow. Note that for 2D decay-
ing flows on periodic domains the enstrophy is always bounded by its initial value
(Batchelor 1969), thus the dissipation will reduce to zero in the inviscid limit, or:
dE(t)
dt ∝ Re−1 → 0 for Re → ∞. The question to be answered is whether the enstro-

phy production scales with the Reynolds number, which might be expected as the
boundary layers generated during the vigorous vortex-wall collisions contains large
amount of vorticity. Suppose that Ω ∝ Reα for Re → ∞. This would imply

dE

dt
= − 2

Re
Ω ∝ Reα−1 . (6.11)

Obviously, when the enstrophy does not scale with the Reynolds number, or α = 0,
the original result is retrieved: dEdt → 0whenRe → ∞. In the case thatα = 1, orΩ ∝
Re for Re → ∞, we end up with constant energy dissipation in the inviscid limit,
reminiscent to 3D turbulence. Some recent works have indeed indicated that α �= 0,
but debate exists about its precise value and its potential implications; see Clercx and
Van Heijst (2002, 2017), Sutherland et al. (2013), and Nguyen van yen et al. (2011,
2018), and values for α are found in the range 0.5–1.0.

6.4.2 Vorticity Production by Dipole-Wall Collisions

Exploration of vorticity production at walls is based on numerical experiments of
dipole-wall collisions with a rigid flat wall (with no-slip boundary conditions), as
for the first time investigated by Orlandi (1990). The original motivation of this kind
of studies were related to the problem of trailing vortices from aircraft, which will
interact with the ground during landing and take-off resulting in vortex rebounds.
Later on, the mechanism for inviscid dipole-vortex rebounds became also a topic of
interest in the geophysical flow community. There, vorticity production by stretching
of vortex tubes in the presence of a sloping bottom in the coastal zone could be
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Re=5000

Re=10000

t = 0.4 t =0 .5 t =0 .6 t =0 .7

Fig. 6.7 Sequence of vorticity contour plots illustrating the flow evolution during a dipole-wall
collision for Re = 5 × 103 (top panel) and Re = 104 (bottom panel). The plots only show the right-
hand side part of the domain as the dipole-wall collision is symmetric with regard to the dipole axis,
see also Fig. 6.6. Courtesy Kramer et al. (2007)

used to parameterize aspects of 3D vortex dynamics for a 2D description of the
inviscid rebound process (Carnevale et al. 1997). The complexity of dipole-wall
collisions, with vortex rebounds already for relatively low Reynolds numbers, is
nicely illustrated in Fig. 6.7. A brief review with regard to dipole-wall collisions is
provided by Clercx and Van Heijst (2017).

First numerical observations of Reynolds-number dependency of enstrophy pro-
duction during dipole-wall collisions were reported by Clercx and Van Heijst (2002).
They revealed that Ω ∝ Re0.8 for Re � 2 × 104 and Ω ∝ Re0.5 for Re � 2 × 104,
with the Reynolds number based on the radius of the dipole Rd , and its self-
induced traveling speed Ud . The scaling of the enstrophy implies dE

dt ∝ Re−0.2 and
dE
dt ∝ Re−0.5 for the respective regimes. This scaling behavior turned out to be inde-
pendent of the collision angle of the dipole with the rigid wall. A simple scaling
analysis for the large-Reynolds number regime (where Ω ∝ Re0.5) is based on the
following balance at the flat rigidwall (chosen parallel with the x− axis of a reference
frame),

− ν
∂ω

∂y
|wall = 1

ρ

∂p

∂x
|wall, (6.12)

which can directly be obtained from the Navier-Stokes equation. In the following,
we assume that the boundary layer remains laminar (but unsteady), an assumption
that eventually may break down at much higher Reynolds number values. When we
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assume that the pressure distribution along the boundary is finite, we may imme-
diately conclude from Eq. (6.12) that ∂ω

∂y |wall = O(Re) for large Reynolds number
values. The boundary-layer thickness δ scales according to Prandtl’s prediction:
δ ∝ Re−1/2. This immediately implies, using the predicted scaling of the vorticity
gradient normal to the wall, that ω|wall ∝ √

Re. Provided that the Reynolds num-
ber is large enough (here Re ≥ 2 × 104), we can expect that the total enstrophy
and palinstrophy in the flow will be dominated by the vorticity and vorticity gra-
dient values in the boundary layer itself. We can then easily derive the following
estimates: Ω ∝ Rdδω

2|wall ∼ Rd

√
Re. For the palinstrophy we can derive in a sim-

ilar way: P ∝ Rdδ(
∂ω
∂y )2|wall ∼ RdRe

√
Re. This is consistent with the scaling of the

palinstrophy reported by Clercx and Van Heijst (2002): P ∝ Re1.5 for Re � 2 × 104

and P ∝ Re2.25 for Re � 2 × 104. It is interesting to note that a scaling analysis for
Re � 104 by Keetels et al. (2011) provided similar scaling exponents, Ω ∝ Re3/4

and P ∝ Re9/4 (compared to Re0.8 and Re2.25, respectively, found by Clercx and Van
Heijst (2002)).

In recent years, a few more studies emerged addressing the possible existence of
extremely thin dissipation layers near the rigid wall, including the possible presence
of a slip-velocity at the rigidwall (Nguyen van yen et al. 2011, 2018; Sutherland et al.
2013). Nguyen van yen et al. (2011) did a first attempt, based on a similar dipole-
wall collision experiment as discussed above, to explore a possible Re-independent
energy dissipation rate. In other words, they explored the possibility of the exis-
tence of dE

dt → χ for Re → ∞ with χ < 0 and constant. Such behavior would be
in sharp contrast with the standard result for 2D decaying turbulence in unbounded
(or periodic) domains. In their analysis they complemented Prandtl’s boundary layer
argument with some theorems put forward by Kato (1984) on the dissipation rate in
the vanishing viscosity limit and showed two scaling regimes for the enstrophy. For
the early stage and initial collision stage they found Ω ∝ Re0.5 and during the colli-
sion stage (and boundary-layer detachment) they found Ω ∝ Re. The latter regime
implies indeed finite kinetic energy dissipation at ever larger Reynolds numbers.
These results were subsequently critically examined by Sutherland et al. (2013) who
provided supporting evidence of the earlier predicted scaling relation: dE

dt ∝ Re−0.5.
We should however emphasize that the studies by Nguyen van yen et al. (2011)
and Sutherland et al. (2013) do not actually extend the range of Reynolds numbers
compared to (Clercx and Van Heijst 2002; Keetels et al. 2011). Therefore, we should
still be careful to come to strong conclusions applicable for the vanishing viscosity
limit.

The discussion on the dissipation rate in the vanishing viscosity limit is still
ongoing; see Nguyen van yen et al. (2018). Moreover, the analysis presented so
far are based on laminar Prandtl boundary layer theory and possible implications
of boundary-layer detachment, but no deeper analysis is available for the case the
boundary layers become fully turbulent, a scenario that is expected to become impor-
tant when Re is further increased.
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6.5 Review of 2D Turbulence Experiments in Shallow
Fluids

In environmental flows, such as in estuaries and rivers (Uijttewaal 2014), suppression
of vertical motion and subsequent quasi-two-dimensionalization occurs predomi-
nantly by the shallowness of the flow domain. Planetary rotation is almost irrelevant
on these scales and density stratification is mostly not important (but not excluded
in certain cases). For this reason shallow flow experiments have been used to study
aspects of quasi-2D turbulence (Chen and Jirka 1995; Uijttewaal and Jirka 2003) and
dynamics of coherent structures in shallow flows, including secondary out-of-plane
motion (Jirka 2001; Lin et al. 2003; Sous et al. 2004, 2005; Akkermans et al. 2008a,
2010; Kelley andOuellette 2011; Duran-Matute et al. 2010, 2011; Tithof et al. 2018).

This overview of shallow fluid layer experiments will focus on the larger scale
flow phenomena such as the dynamics of vortices, the evolution of global integral
quantities like energy and enstropy, and the eventual presence of 3D secondary flows.
Quasi-steady final states belong to this class of phenomena but have already been
discussed in Sect. 6.3. For an extensive discussion of the statistical properties of the
velocity and vorticity field and the Lagrangian dispersion of tracers, also experimen-
tally explored bymeans of shallow fluid layer and soap film experiments, the reviews
by Tabeling (2002), Kellay and Goldburg (2002), Clercx and Van Heijst (2009), and
Boffetta and Ecke (2012) can be consulted.

In the preceding section, we have discussed the implications of the lateral bound-
aries in 2D confined turbulence and their impact on a variety of physical processes,
including coherent structure formation, vorticity production at rigid walls, and dissi-
pation of kinetic energy. Shallowflows, both in geophysical systems and in laboratory
experiments, need to be supported by a bottom, which implies an additional damping
mechanism affecting the flow, thus an additional source of dissipation. Furthermore,
the bottom will contribute to the emergence of 3D secondary flows. This damping
mechanism and the weak 3D recirculation flows in these systems, are not represented
in 2D (confined) turbulence. Their impact needs to be known for better understanding
of the quasi-2D behavior of environmental and geophysical flows.

Since the mid-1980s the first experiments have been reported addressing a vari-
ety of aspects of 2D turbulence. In particular, several of the exciting theoretical and
numerical findings based on KLB theory were put to a test, such as the inverse energy
and direct enstrophy cascade, the associated energy and enstrophy fluxes, statistical
quantities with regard to the fluctuating velocity and vorticity fields, vortex statis-
tics of freely evolving 2D turbulence, Lagrangian dispersion properties of passive
tracers (including pair dispersion), and last but not least, the emergence of so-called
condensation phenomena (Smith and Yakhot 1993). The last phenomenon is a clear
result of the inverse energy cascade as energy injected at some intermediate scale
is transferred upwards to the largest scales, and eventually this inverse cascade is
arrested by the finiteness of the container, a manifestation of confinement (see also
the brief discussion in the last paragraph of Sect. 6.3).



6 Quasi-2D Turbulence in Shallow Fluid Layers 155

Laboratory experiments can be carried out with a variety of generation mecha-
nisms for quasi-2D flows. One could think of rapidly rotating homogeneous fluids,
see, for example, the pioneering works by Colin de Verdière (1980) and Hopfin-
ger et al. (1982), or in homogeneous density-stratified (or two-layer) fluids, see, for
example, Yap and Van Atta (1993), Boubnov et al. (1994), Fincham et al. (1996),
and Maassen et al. (1999). We will not further discuss this kind of experiments (but
see Sect. 6.3 for some results on quasi-steady final states). We will focus on a discus-
sion of experiments in shallow fluid layers where two-dimensionality is enforced by
geometrical confinement only (and this will mostly exclude soap film experiments
for which the interested reader is referred to Kellay and Goldburg (2002)).

6.5.1 Laboratory Experiments in Shallow Fluid Layers

The first shallow flow experiment aimed at verifying aspects of KLB-theory was
reported by Sommeria (1986). His experiments were mostly focused on the mea-
surement of the 2D inverse energy cascade which he was able to confirm. For this
purpose he generated 2D turbulence in a shallow layer of mercury. By applying a
uniform magnetic field (with the field lines perpendicular to the shallow mercury
layer) 3D motions could be strongly suppressed. This approach resulted in a pretty
horizontal velocity field in a substantial part of the mercury layer. Near the bottom
plate a very thin viscous boundary layer is present which affects the flow in the core
in the form of a linear damping, i.e. proportional to the local horizontal fluid velocity
in the core. Larger coherent structures have larger velocities, and linear damping
particularly affects these larger scales and potentially can serve as a sink of energy
to arrest the inverse energy cascade at a certain scale.

As mercury has certain serious disadvantages, such as being inaccessible for
optical diagnostics to measure the fluid velocity inside the fluid layer, but also its
toxic properties (thus requiring quite some precautions to work safely) a different
kind of experiment was necessary. A new setup was proposed not many years later
by Tabeling et al. (1991) and Dolzhanskii et al. (1992), which initiated many lab-
oratory investigations on 2D turbulence worldwide. These experiments have been
carried out in a shallow layer of electrolyte and the forcing mechanism is based on
the interaction of a current density with a magnetic field inducing the Lorentz force
driving the fluid motion. For this purpose magnets are placed underneath the fluid
layer and two electrodes are placed on opposite sides of the container providing a
uniform electrical current that runs through the electrolyte to effectively force the
fluid motion. To achieve quasi-2D flow the horizontal scale of motion L must be
much larger than the fluid-layer thickness H . Under these conditions, it is usually
assumed that due to mass conservationw ≈ (H/L)U , withw andU the vertical and
horizontal velocity scale, respectively. At first sight, the two-dimensionality of the
flow can thus be tuned with the magnet size and fluid-layer thickness.

An important test for the shallow fluid layer setup was the comparison of exper-
imentally obtained vortex statistics data with theoretical and numerical results
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by Carnevale et al. (1991, 1992). Cardoso et al. (1994) found ρ(t) ∝ tχ with
χ = 0.44 ± 0.1, quite different compared to the value reported by Carnevale and
coworkers: χ ≈ 0.72 − 0.75. They also did not observe a rapid decrease of the area
occupied by the vortices as expected from the approach by Carnevale and coworkers.
Besides the fact that the integral-scale Reynolds number was of the order 1000–2000,
so that the flow is affected by viscous dissipation, bottom friction could explain this
deviation. Later, Akkermans et al. 2008b, a identified significant 3D recirculating
flows in shallow fluid layers uncovered by stereo-PIV measurements (and confirmed
in simulations) as another potential reason for deviations. Thus vertical confinement
and bottom friction might complicate the picture considerably.

6.5.2 2D Turbulence with Rayleigh Friction

For the analysis of bottom friction it is often assumed that the vertical profile of
the horizontal motion can be approximated by a Poiseuille profile (satisfying the
boundary conditions at the no-slip bottom and stress-free surface). This allows us
to reformulate the Navier Stokes Eq. (6.2) by replacing the viscous contribution
ν(∂2v/∂z2) by the term −λv. This linear damping term is known as Rayleigh fric-
tion and the bottom or Rayleigh friction coefficient takes the form λ = ν( π

2H )2. We
can now parameterize the quasi-2D flow in shallow fluid layers by the following
dimensionless equation:

∂v
∂t

+ (v · ∇)v = −∇p + 1

Re
∇2v − 1

Reλ

v + FL , (6.13)

with v representing the horizontal flow field only, satisfying 2D mass conservation,
Reλ the ratio of the bottom-friction time scale and the large-scale eddy turnover time
scale of the horizontal flow, and FL the Lorentz force to drive the flow. In these
shallow electrolyte solutions the typical integral scale Reynolds number is about
1000–2000.

Taking into account the presence of bottom friction an upgrade of this kind of
experiments has been proposed few years later to suppress the effects of bottom
friction (Marteau et al. 1995; Hansen et al. 1998). The new experiments consist of
two thin layers of electrolyte on top of each other, the bottom layer heavier than the
top layer, to reduce the impact of bottom friction (and to suppress vertical veloc-
ities). The flow is only effectively forced (in a similar way as described above) in
the bottom layer. Coupling with the top layer occurs via the stress boundary condi-
tion at their interface. They repeated the experiments by Cardoso et al. (1994) and
found the encouraging result χ ≈ 0.70 ± 0.1. The observed decay scenario of the
2D turbulent flow was quite similar as in the 2D simulations (with similar integral-
scale Reynolds number) reported by Clercx et al. (1999) and Wells and Afanasyev
(2004). Moreover, their vortex statistics scenario turned out to be quite similar to
those observed by Clercx and Nielsen (2000) and Clercx et al. (2003) for decaying
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2D turbulence in confined domains. These shallow fluid experiments provide strong
evidence that 2D turbulence decay scenarios follow those of 2D decaying and con-
fined turbulence and not the vortex statistics scenario by Carnevale and coworkers.
Quite remarkable, a similar stereo-PIV analysis by Akkermans et al. (2010) revealed
that also in stratified two-layer shallow flows 3D recirculating flows of similar mag-
nitude as in the single-layer experiments occur, implying that the two-layer solution
is not extremely effective in suppressing vertical velocities. This puts into question
the quasi-two-dimensionality of such flows. Although all these results are valuable
for understanding quasi-2D turbulence, any interpretation of experimental data is
still a delicate issue and should be done with care.

As laboratory experiments and confined 2D turbulence simulations appear to
provide similar decay scenarios it might be helpful to have a closer look at decaying
2D flow with Rayleigh friction. The discussion below is based on Eq. (6.13) without
forcing term. The dimensionless 2D vorticity equation is then

∂ω

∂t
+ (v · ∇)ω = 1

Re
∇2ω − 1

Reλ

ω. (6.14)

With the definitions of the kinetic energy and enstrophy of the flow, see Eqs. (6.4)
and (6.5), we can derive the following expression for the time rate of change of the
kinetic energy

dE(t)

dt
= − 2

Re
Ω(t) − 2

Reλ

E(t). (6.15)

By separatingRayleigh friction fromordinary 2Dflowdynamics the energy iswritten
as E(t) = E0(t)e−2t/Reλ and the enstrophy as Ω(t) = Ω0(t)e−2t/Reλ , with E0(t) and
Ω0(t) the compensated energy and the enstrophy, respectively, we simplify Eq. (6.15)
to

dE0(t)

dt
= − 2

Re
Ω0(t). (6.16)

This suggests that the 2D velocity field and the vorticity field can be written as
v(r, t) = v0(r, t)e−t/Reλ and ω(r, t) = ω0(r, t)e−t/Reλ , with r = (x, y) the dimen-
sionless horizontal coordinates and t a dimensionless time. Substituting these expres-
sions in Eq. (6.14), multiplying the full equation by et/Reλ and rescaling time to
t∗ = Reλ(1 − e−t/Reλ ) the following equation is obtained:

∂ω0

∂t∗
+ (v0 · ∇)ω0 = 1

Re∗
∇2ω0, (6.17)

with a renormalized Reynolds number, Re∗ = e−t/Reλ Re. Note that this renormal-
ized equation, first proposed by Hansen et al. (1998), is similar to the traditional
2D vorticity equation for t � Reλ as then t∗ ≈ t . Moreover, limλ→0 t∗ = t . With
this renormalization 2D decaying flows with bottom friction behave as purely 2D
decaying flows, but with a time-dependent Reynolds number, which can only evolve
for a finite time (as t∗ ≤ Reλ).
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Clercx et al. (2003) have tested the validity of the renormalized vorticity equation
for a range of Reλ in numerical simulations, and for a range of fluid-layer depths in
laboratory experiments. Numerical simulations with initial integral-scale Reynolds
numbers of 1000, 2000 and 5000 with Reλ ∈ {10, 20, 25, 33, 50, 100,∞} clearly
show bottom-friction independent time evolution of the compensated energy E0(t)
and for the compensated enstrophy Ω0(t). For each Re the curves for different Reλ

collapse on each other, thus have the same scaling exponents independent of Reλ.
The scaling exponents of the average vortex radius, the mean vortex separation, the
averaged normalized vorticity extremum, and the density of vortices, as obtained
in our numerical simulations (all key quantities in the analysis by Carnevale et al.
(1991), Carnevale et al. (1992)), turn out to be independent of bottom friction.

The analysis of data from laboratory experiments in shallow fluid layers (Clercx
et al. 2003) reveals a more mixed picture. The experiments have been carried out in a
container of horizontal dimensions of 52 × 52 cm, the diameter of the magnets is 25
mm and the magnets are positioned on a 10 × 10 chess-board-like pattern (minimum
distance between the magnet centers is 50 mm). The fluid layer depth H is varied
between 4 and 12 mm. The value of the Rayleigh friction λ can be estimated by the
expressionλ = π2ν

4H 2 . In these experiments, it is found that global quantities like E0(t),
Ω0(t), the average length scale l in the flow estimated by l ≈ √

E0(t)/Ω0(t) and the
normalized vorticity extremum, ωext/

√
E(t) are virtually independent of the fluid

layer depth (and in agreement with an earlier experiment by Danilov et al. (2002)
which have been carried out with fluid layer depths of 2–6 mm). The experimental
data for the average vortex density ρ(t) and average vortex radius r(t) are less
conclusive. Power-law exponents are found for small fluid layer depths (H ≤ 8 mm)
that are in agreement with earlier reported results by Cardoso et al. (1994), but
significantly larger power-law exponents are measured in the experiments with fluid
layer depths between 8 and 12mm.Thiswould suggest that for integral quantities like
the (compensated) energy and enstrophy the model of 2D turbulence with Rayleigh
damping is a suitable model also implying that these integral quantities are not very
sensitive to secondary 3D flow structures in shallow fluid layers. However, for the
vortex statistics quantities like vortex density, vortex size and vortex separation the
2D flow model with Rayleigh damping does not provide a complete description.

6.5.3 Secondary Flows in Quasi-2D Turbulence in Thin
Fluid Layers

During the last decade more attention has been paid to the influence of secondary 3D
recirculations in shallow fluid layer experiments. The first detailed measurements
were conducted by Akkermans et al. (2008a, b, 2010). Based on stereoscopic PIV
and 3D numerical simulations, they analyzed the flow field within dipolar vortex
structures in shallow fluid layers, with emphasis on the out-of-plane (vertical) veloc-
ity component. These stereoscopic PIV measurements have shown the presence of
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Fig. 6.8 Instantaneous velocity fields of a dipolar vortex in a horizontal plane by stereoscopic PIV
measurements. The panels, from left to right, represent the flow near the bottom plate, at half height
in the fluid layer and near the free surface, respectively. Vectors represent the horizontal velocity
components (typically with a magnitude of a few cm/s in the vortex core) and the colors indicate the
magnitude of the vertical velocity (5–10 mm/s). Courtesy Rinie Akkermans and Fluid Dynamics
Laboratory, TU Eindhoven

significant, persistent (in time) and complex 3D flow structures, see the stereoscopic
PIV data shown in Fig. 6.8. Full 3D numerical simulations revealed flow patterns
with significant vertical motion largely consistent with the experimental data. Quite
surprisingly, the flow patterns and out-of-plane motion appear independent of the
applied boundary condition at the bottom, no-slip or stress-free. This might hint at
the fact that bottom friction is not solely responsible for the 3D secondary flows,
but it is basically vertical confinement and associated vertical gradients in the hor-
izontal velocity field due to the boundary conditions; see Akkermans et al. (2008a)
for an in-depth discussion. By measuring vertical slices of the horizontal motion in
the fluid layer it became clear that a Poiseuille-like profile for the vertical variation
of the horizontal velocity field is completely absent, both in experiments and in sim-
ulations. These conclusions are supported by the use of a global indicator of (lack
of) two-dimensionality: the normalized horizontal divergence measured at several
heights in the fluid layer,

Λ = H
∫
D |∇ · v|d A

L
∫
D |ωz|d A . (6.18)

Here, v is once again the horizontal velocity field (u, v), and∇ represent the horizon-
tal gradient operator. This measure clearly gives significant non-zero values (while
for 2D flows it should be zero). For further discussions, see Albagnac et al. (2011),
Duran-Matute et al. (2010, 2011, 2012).

The question is then if the degree of two-dimensionality can be improved through
the use of a two-fluid-layer configuration. The finding that the 3D secondary flows in
shallow fluid layers are due to vertical confinement and associated vertical gradients
in the horizontal velocity field immediately implies that application of a stratified
shallow two-layer system, aimed at reducing the effect of bottom friction, will not
suppress out-of-plane motions significantly. A different set of experiments and simu-
lations by Akkermans et al. (2010) has confirmed this conjecture. Two recent studies
came with further supporting evidence, see Kelley and Ouellette (2011) for two-
layer stratified shallow flows, and (Tithof et al. 2018). In this latter work the authors
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compared three kinds of shallow flow experiments: a single fluid layer, a miscible
two-layer system, and an immiscible two-layer system. They do not have access to
all three components of the velocity field but used instantaneous 2D (horizontal)
flow fields and quantified the out-of-plane motion using an approach from physical
oceanography. The horizontal flowfield is projected onto a stream function, boundary
and potential modes, see for details (Kelley and Ouellette 2011), providing an alter-
native global indicator for two-dimensionality. This global indicator and the one in
Eq. (6.18) resulted in similar conclusionswith regard to howwell two-dimensionality
is or is not satisfied. Their conclusion, in agreement with those by Akkermans et al.
(2008a, 2010), is basically that comparable levels of out-of-plane motion are mea-
sured for the single-layer case and the immiscible two-layer case, bringing strong
doubt into the standard assumption since the 1990s that stratification enhances two-
dimensionality.

6.5.4 Concluding Remarks

From this overview, it is important to realize that imposing a parameterization of
bottom friction provides good results with regard to several global quantities, like
the energy and enstrophy of the flow. However, they provide only a very qualitative
description of the influence of 3D secondary flows (and do not cover the sources of it).
Even a global measure as the averaged horizontal divergence is of limited value and
deeper insight into the flow dynamics itself is required, for example, to understand
what happens for flows in thin two-layer stratified fluids. This is still a matter of
research. Several critical aspects with regard to quasi-2D flows in (stratified) shallow
fluid layers need to be understood better. This kind of experiments nevertheless have
provided useful insights with regard to the dynamics of 2D turbulence in the last few
decades and we expect they continue to do so.

6.6 Summary

This chapter started with the observation that flows in thin fluid layers, like in the
atmosphere of the Earth or in the oceans or coastal seas tend to behave quasi-two-
dimensional under certain conditions. Several phenomena in such systems such as
the formation and evolution of large-scale coherent structures, interaction of the
flow with coastal boundaries, confinement effects, etc. can, at least partly, be com-
prehended with basic processes relevant in 2D fluid dynamics and, more specifically,
2D turbulence. In this chapter, the basic processes relevant for 2D turbulence have
been reviewed with emphasis on a phenomenological description of these processes.
With the applications in mind the role of horizontal confinement on flow organi-
zation is discussed and the role of lateral walls as vorticity source is highlighted.
It describes processes that finds its counterparts in the oceans and coastal seas, see
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Fig. 6.1 as one typical example. Finally, the use of laboratory set-ups to study such
flows has been discussed in Sects. 6.3.2 and 6.5. I believe that the huge amount of
knowledge collected in the last 50 years from fundamental 2D turbulence studies
in general, but also the impact of lateral and bottom boundaries on their dynamics,
and the quasi-2D behavior of such systems can contribute to our understanding of
large-scale geophysical flows. This is a good example how numerical simulations
and laboratory experiments of model systems can contribute to our understanding of
geophysical systems.
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