
Chapter 5
Variational Water-Wave Modeling: From
Deep Water to Beaches

Onno Bokhove

Abstract The mathematical and numerical modelling of free-surface water waves
is considered from the viewpoint of variational principles combined with finite-
element discretisations. Luke’s classical variational principle (VP) is derived first, as
opposed to Luke’s (ingenious) positing of his VP, and forms the basis for three geo-
metric or compatible finite-element water-wave models, two of which are validated
against laboratory measurements and compared. Potential-flow wave dynamics in
intermediate-depth water is coupled variationally to shallow-water beach dynamics,
the latter modelling breaking waves, and illustrative numerics is shown to highlight
the interactions between deeper water and shallow-water waves. Throughout, pho-
tographs of intricate wave interactions are used as illustrations.

5.1 Introduction

Water waves are ubiquitous on Earth, propagating on the free surface or interface
between water and air, under the restoring influence of gravity. Water waves emerge
when a (flat) water surface at rest is disturbed, e.g., when a stone is thrown in a
quiescent pond, and the restoring force of gravity leads to wave propagation, the
axisymmetric ripples with wave crests and throughs emanating after the stone has
perturbed the water surface. When the acceleration vector due to gravity is locally
(nearly) constant and unidirectional, the surface at rest will be (nearly) flat, while on
larger planetary scales the free surface at rest will be curved, normal to the accelera-
tion vector of gravity.Wewill consider water waves on smaller scales, on the order of
centimetres to a fewkilometres, thereby focussing on the scales ofwater-wavemotion
in laboratory channels, on ponds and lakes, near the shore and on fully-developed
seas (cf. the photos in Figs. 5.1, 5.2, 5.3 and 5.4). The mathematical modelling of
water waves, considered here, has a long history in fluid dynamics.

Predictive models for water-wave propagation started to emerge after the incom-
pressibleEuler orNavier-Stokes equationswere formulated. Typically, for both linear
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Fig. 5.1 a Rendering of a
breaking wave in a vertical
Hele-Shaw cell with water
and air: it is a 2 mm–narrow
cell with overall dimensions
0.7 × 0.002 × 0.24 m3 in
which wave frequencies are
used of circa 1 Hz (image
courtesy: Wout Zweers, see
also Bokhove et al. 2014;
Thornton et al. 2014).
Displayed is the time
evolution of the overturning
and splashing waterline as
function of x and t . b A
series of solitary water waves
generated by lifting a sluice
gate between different water
levels is shown in a channel
with approximate
dimensions 45 × 2 × 1.2 m3,
initially at rest, cf. Bokhove
et al. (2011), Bokhove and
Kalogirou (2016)

and nonlinear water-wave motion, the inviscid Navier-Stokes or Euler equations for
an incompressible liquid (water) with a free surface and either an active or a passive
gas (air) are considered to model water waves. Modelling of water waves focussed
first mainly on linear wave propagation. We will, however, almost exclusively con-
sider nonlinear water-wave dynamics even though we have used linear, exact solu-
tions to verify our nonlinear numerical models in their small-amplitude limits. One
of the first nonlinear models studied was the Korteweg-De-Vries (or KdV) equa-
tion (Drazin and Johnson 1989). It is an asymptotic subset of the three-dimensional
potential-flowwater-wave equations. These latter equations are, in turn, an exact sub-
set of the incompressible Euler equations with a free surface, for the restricted case
in which the three-dimensional velocity u = ∇φ is expressed in terms of a velocity
potential φ. Here, both the velocity u and the velocity potential φ depend on the hori-
zontal coordinates x and y, the vertical coordinate z, aligned in the opposite direction
of the acceleration vector of gravity g = (0, 0,−g)T , and time t , with g = 9.81 m/s2

the value near the Earth’s surface. This nonlinear KdV–equation was derived in 1895
together with its famous solitary-wave or soliton solution, the famous sech–soliton
by Korteweg and De Vries (Drazin and Johnson 1989). Both the KdV–equation and
the potential-flow water-wave equations are inviscid and have a rich mathematical
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Fig. 5.2 Crossing waves near shorelines often show wave amplification with Mach stems, which
may lead to localised wave breaking (as occurred for the cross-wave/Mach-stem in the foreground).
Such shallow-water waves can be modelled approximately with the Kadomtsev-Petviashvili equa-
tion (Kadomtsev and Petviashvili 1970; Kodema 2010) or “two-dimensional KdV-equation”, see
also Ablowitz and Curtis (2013), Gidel et al. (2017). Photo courtesy V. Zwart

Fig. 5.3 Nonlinear
unbroken waves start to shoal
and break on the beach south
of Newcastle. Photo O.B

and geometric structure intimately related to conservation laws and the phase-space
dynamics of these systems (Drazin and Johnson 1989).

The geometric structure of such water-wave equations is the continuum or field
extension of the geometric structure in classical mechanics; the latter mechanics was
developed by Euler, Lagrange and Hamilton in the 17 and 18th centuries (Lanczos
1970; Marsden and Ratiu 1994). Classical mechanics concerns interacting mechani-
cal or particle systems and results in a finite number of ordinary differential equations
with functions of time. In contrast, the degrees-of-freedom (dofs) in space are infi-
nite for fields, such as the velocity potential φ = φ(x, y, z, t) and the water depth
h = h(x, y, t), and the dynamics are governed by partial differential equations. Here
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Fig. 5.4 Photograph of the Severn Bore, with a crest that is partially an unbroken solitary
wave/undular bore in deep water and partially a spilling breaker along the shallow river bank,
by the late D. Howell Peregrine, some of whose photographs and slides O.B. inherited. This photo
was used as basis for one of the “Posters in the London Underground”, i.e., for the “maths makes
waves” poster

z = h(x, y, t) is the nonoverturning free surface above the flat-bottom topography
located at z = 0. We will use h(x, y, t) later.

To introduce Hamilton’s equations, consider the basic dynamics of a particle with
mass m moving in one spatial dimension with position q(t) and momentum p(t) in
an external potential V (q). It is succinctly captured in the variational principle (VP)

0 = lim
ε→0

∫ T

0

L(q + εδq, p + εδp) − L(q, p)

ε
dt = δ

∫ T

0
L(q, p) dt (5.1a)

≡ δ

∫ T

0
pq̇ − H(p, q) dt ≡ δ

∫ T

0
pq̇ − 1

2
p2/m − V (q) dt (5.1b)

=
∫ T

0
(q̇ − p/m)δp − ( ṗ + ∂V (q)/∂q) δq dt + (pδq)|t=T

t=0 (5.1c)

with Lagrangian L(q, p), Hamiltonian H(p, q) and final time T . Note that we also
defined the functional derivative of the functional

∫ T
0 L(q, p) dt and used integration

by parts in time. Given the arbitrariness of the variations δq and δp and by using end-
point conditions δq(0) = δq(T ) = 0, the two contributions in the integrand (5.1c)
at t = 0 and t = T are pointwise zero (in time). From (5.1c), we therefore obtain
Hamilton’s equations of motion (Lanczos 1970; Marsden and Ratiu 1994) as a first-
order system in time:

q̇ = ∂H

∂p
= p/m and ṗ = F(q) ≡ −∂H

∂q
= −∂V

∂q
(5.2)
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with the central force F(q) derived as the negative derivative of the potential V (q).
Combining (5.2) yields Newton’s law of motion for a single particle in an external
and central force, i.e.:mq̈ = F(q) = −V ′(q). Hamilton’s or Hamiltonian dynamics
extends to more general mechanical and multi-particle systems in higher dimensions
in which generalised coordinates q(t) and generalised momenta p(t) emerge for
finite-dimensional systems, cf. Lanczos (1970), Marsden and Ratiu (1994). The rea-
son to highlight such a straightforward example is that for infinite-dimensional sys-
tems such aswater-wave hydrodynamics, these generalised coordinates andmomenta
will be replaced by fields. Despite this additional complexity, such an intrinsic struc-
ture of the variational principle (5.1) will be shown to be similar, and to remain
recognisable, to that one for water-wave dynamics. For water-wave dynamics, the
development of geometric and Hamiltonian dynamics took off with the works of
Benney and Luke (1964), Luke (1967), Zakharov (1968) and Miles (1977) in the
1960 and 1970s. The work by Luke (1967) will be our starting point for describing
water-wave dynamics.

A finite-dimensional example that is more closely related to the “pre-Luke” VP
that we will present shortly in Sect. 5.2 is the following. Consider two nonlinear
oscillators/springs moving in one dimension, denoted by x = qi (for i = 1, 2), with
spatial coordinates q1 = q1(t), y1 = 0 and q2 = q2(t), y2 = L or q = (q1, q2)T with
generalised momenta p = (p1, p2)T and lateral y-direction, coupled together such
that their separation is fixed by

√
(q1 − q2)2 + L2 = R with R > L > 0 constant.

Based on specific initial conditions, we take q1 = q2 + A with A = √
R2 − L2. By

again using suitable endpoint conditions, an example of a constrained VP and its
variations is

0 =δ

∫ T

0
p1q̇1 + p2q̇2 − 1

2
p21/m1 − 1

2
p22/m2 − 1

3
k1|q1|3 − 1

3
k2|q2|3

+ P(q1 − q2 − A) dt (5.3a)

=
∫ T

0
(q̇1 − p1/m1)δp1 + (q̇2 − p2/m2)δp2 − ( ṗ1 + k1q1|q1| − P)δq1

− ( ṗ2 + k2q2|q2| + P)δq2 + (q1 − q2 − A)δP dt (5.3b)

with a Lagrange multiplier or “pressure” P = P(t) (Lanczos 1970; Marsden and
Ratiu 1994) imposing the constraint q1 − q2 − A = 0, spring constants k1,2 > 0 and
masses m1,2. The resulting equations of motion follow directly from (5.3) using the
arbitrariness of the variations δq, δp as

δq1 : ṗ1 + k1q1|q1| − P = 0, δq2 : ṗ2 + k2q2|q2| + P = 0, (5.4a)

δp1 : q̇1 = p1/m1, δp2 : q̇2 = p2/m2, δP : q1 − q2 − A = 0. (5.4b)

The multiplier P is determined by taking twice the time derivative of the con-
straint yielding, first, that p1/m1 − p2/m2 = 0 and, second, that P = (m1 +
m2)(k1q1|q1|/m1 − k2q2|q2|/m2)/(m1m2). This model is readily tested numerically
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by using a sympletic integrator (Leimkühler andReich 2009),with a forward timestep
for p and a backward timestep for q, that uses the update of p after first calcu-
lating the multiplier P . Initial conditions need to satisfy the constraint as well as
p1/m1 = p2/m2. The timestepping described maintains these constraints exactly,
which can be readily verified.

Taking Luke’s variational principle as starting point may be a surprise since Luke
states himself that “No satisfactory solution seems known for the general problem
of finding suitable Lagrangian functions. For the water wave problem, in particular,
the pressure function used in (1) is more productive than the traditional form of the
Lagrangian,L∗, equal to kinetic minus potential energy” (Luke 1967). Luke found
his variational principle presumably by insight. Cotter and Bokhove (2010) have,
in contrast, shown that one can derive Luke’s variational principle systematically
from a Hamilton’s action principle consisting of kinetic minus potential energy,
with pairs of generalised field coordinates and conjugate momenta. There are several
advantages for using such geometric formulations of hydrodynamics for water waves
and, in particular, for coupling deep or intermediate water-wave dynamics to either
moving structures such as elastic beams, buoys or ships or different, shallow-water
hydrodynamic models. These advantages are based on the following “principles”:

• The first principle is that, when damping and wave breaking are absent, the appro-
priate (coupled) models should contain a conservative limit.

• The second principle is that conservative, coupled wave-structure or coupled deep-
and shallow-water systems should in a relatively straightforward manner consist
of the sum of the variational principles of the separate systems. As a consequence
the combined system remains consistent without spurious energy losses or gains.

• The third principle is that we directly discretise these (nonlinear and/or coupled)
systems consistently in space and time, to obtain a space-time discrete algebraic
variational (finite-element) system. Its variation then “semi-automatically” yields
a stable and robust numerical scheme for advanced water-wave modelling.

We will employ finite-element methods (FEM) because the weak formulation inher-
ent in FEM closely matches the weak formulation of variational principles. It is
therefore a relatively small step—involving the finite-element expansion of the vari-
ables involved, their substitution and integration—to turn the relevant variational
principle for continuum water-wave dynamics into a spatially discrete or space-time
discrete variational principle. Variation of the latter algebraic principle then yields
the final discretisation to be implemented. To facilitate the development of such vari-
ational discretisations, we have employed Firedrake “…an automated system for the
portable solution of partial differential equations using the finite element method”
to implement our numerical discretisations in an efficient manner (Rathgeber et al.
2016).

The beauty of water-wave dynamics lies in part in the abundance of water-wave
phenomena surrounding us. We can, and most likely do, all observe water-wave
motion on a daily basis. In what follows, we will both show photographs of water-
wave phenomena (as in Figs. 5.1, 5.2, 5.3 and 5.4 using images fromO.B.’s laboratory
experiments and photographs from other people) as well as a range of numerical sim-
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ulations from numerical models obtained following the above “principles”, including
simulation results fromBokhove andKalogirou (2016) ,Gagarina et al. (2014, 2016),
Gidel et al. (2017), Gidel (2018).

This chapter has the following outline. Luke’sVP is derived, as opposed to posited,
in Sect. 5.2. In Sect. 5.3, Luke’s VP is transformed from a time-dependent domain
with a free surface and wavemaker to a fixed reference domain, resulting in Miles’
VP in a transformed domain. Miles’ VP then forms the basis to discuss three com-
patible numerical discretisations, directly based on the VP. Numerical results of
two of the methods are compared and validated against wavetank experiments in
Sect. 5.3.2, before we consider a novel discretisation of a third method in detail.
A novel derivation of the variational coupling between a potential-flow water-wave
model and a shallow-water model on the beach is investigated in Sect. 5.4, with
illustrative numerical results. We conclude in Sect. 5.5 and finish with some future
research directions.

5.2 Derivation of Luke’s Variational Principle

In Cotter and Bokhove (2010), the starting point is a Lagrangian density Lincr con-
sisting of the kinetic energy minus potential energy of a compressible fluid weakly
constrained to be incompressible:

Lincr = 1

2
D|u|2 − gD(z − H0) + P(1 − D) (5.5)

with scaled density D = D(x, y, z, t) such that density ρ = ρ0Dwith constant water
density ρ0 and scaled pressure P = p/ρ0 enforcing the constraint 1 − D = 0. To
instill dynamics, “Lin” constraints (named after C.C. Lin) were imposed on the
space-time integral of Lincr , i.e., the continuity equation ∂t D + ∇ · (Du) = 0 was
enforcedwith aLagrangemultiplierφ and the kinematic condition for a single-valued
free-surface was enforced by another Lagrange multiplier. By taking variations with
respect to the velocity u it turns out that potential flow becomes a consequence, i.e.
one derives that u = ∇φ. After subsequent substitution of this relation u = ∇φ back
into this Lin-constrained variational principle, the following “pre-Luke” variational
principle (Cotter and Bokhove 2010) is shown to emerge:

0 =δ

∫ T

0
Lp[φ, φ̃, D, h] dt (5.6a)

=δ

∫ T

0

∫
ΩH

∫ h

0
D∂tφ + 1

2
D|∇φ|2 + gD(z − H0) + P(D − 1) dz dx dy dt

(5.6b)
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with φ̃(x, y, t) = φ (x, y, h(x, y, t), t) in a domain with a flat bottom at z = 0,
vertical channel walls (for the moment), horizontal extent ΩH and vertical extent
z ∈ [0, h], and a free surface at rest residing at z = H0. Similar to the basic example
with Hamilton’s equations (5.2), variation of (5.6) yields Hamilton’s equations,

δP : D = 1 (5.7a)

δD : ∂tφ + 1

2
|∇φ|2 + g(z − H0) = −P (5.7b)

δφ : ∂t D + ∇ · (D∇φ) = 0 (5.7c)

δh : ∂tφ + 1

2
|∇φ|2 + g(h − H0) = 0 at z = h (5.7d)

δφ̃ : ∂t h + ∇φ · ∇h = ∂zφ at z = h, (5.7e)

in which we have used the constraint D = 1 at the free surface already, integration
by parts in time with end-point conditions δφ(x, y, z, 0) = δφ(x, y, z, T ) = 0 (see
Appendix 1), Gauss’ law with n̂ · ∇φ = 0 at solid walls with the relevant outward
normal n̂, andwith outward normal n̂ = (−∇h, 1)T /

√
(1 + |∇h|2) at the free surface

located at z = h(x, y, t).
The structure of (5.6) and (5.7) is the same as in (5.1) and (5.2), or as in (5.3) and

(5.4), with the fields {φ, φ̃} playing the role of generalised coordinates q and fields
{D, h} playing the role of generalised momenta p. Pre-Luke’s variational principle
(5.6) does, however, have an additional constraint D − 1 = 0 relative to (5.1), but
this is akin to the constraint q1 − q2 − A = 0 and Lagrange multiplier P in (5.3).
After applying the constraint D = 1, Hamilton’s equations (5.7) reduce to the well-
known potential-flow water-wave equations with Laplacian ∇2φ = 0 from (5.7c),
dynamic boundary condition (5.7d) and kinematic boundary condition (5.7e), but we
have an additional equation defining the fluid pressure P via (5.7b). By imposing
constraint D = 1 directly onto pre-Luke’s variational principle (5.6), we find Luke’s
variational principle

0 =δ

∫ T

0
L[φ, φ̃, h] dt = δ

∫ T

0

∫
ΩH

∫ h

0
∂tφ + 1

2
|∇φ|2 + g(z − H0) dz dx dy dt

(5.8)

with, as Luke (1967) stressed in his remark quoted in the introduction, the (negative
and scaled) pressure as integrand. The disadvantage of (5.8) in contrast to (5.6) is
that it does not provide an explicit expression for the pressure P . For fluid-structure
interactions involving water waves coupled to dynamic structures, this implies that
there is no explicit mathematical expression for the value of the pressure on either
the structure or at the waterline.
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5.3 Transformed Luke’s/Miles’ Variational Principles
with Wavemaker

In these more complex situations with fluids and structures as well as for numerical
purposes, it is advantageous to transform the time-dependent domain to new coor-
dinates in a fixed domain. Such a transformation is considered next and, to simplify
the exposition, only within a two-dimensional domain (x, z) ∈ Ω .

Consider water waves modelled as incompressible potential flow. The domain
is bounded on the left side by a wavemaker at x = W (z, t), from below by a flat
bottom at z = 0, on the right side by a solid wall at x = Ls and from above by
a free surface parametrised as Xs = (X, Z). Here H0 is the position of the free
surface at rest for the case with the left boundary at x = W (z, t) = 0. The free
surface is allowed to overturn as long as domain Ω stays singly-connected during
the time interval t ∈ [0, T ] considered. The solenoidal velocity is now defined as
u = (u,w) = ∇φ ≡ (∂x , ∂z)φ(x, z, t). Starting from Luke’s variational principle
(5.8) restriced to a vertical plane, the water-wave dynamics then arises from

0 =δ

∫ T

0

∫∫
Ω

∂tφ + 1

2
|∇φ|2 + g(z − H0) dx dz dt. (5.9)

As in Bridges and Donaldson (2011), we transform the space-time domain with
(x, z) ∈ Ω and t ∈ [0, T ] to a cuboid ξ ∈ [0, Ls], η ∈ [0, H0], τ ∈ [0, T ]with τ = t ,
while we have added a wavemaker. The required transformations are

∂t =∂τ + J1
|J |∂ξ + J2

|J |∂η, ∂x = zη
|J |∂ξ − zξ

|J |∂η, ∂z = − xη
|J |∂ξ + xξ

|J |∂η, (5.10a)

in which the determinantal minors

|J | =xξ zη − xηzξ , J1 = xηzτ − xτ zη, J2 = xτ zξ − xξ zτ (5.10b)

arise from the three-dimensional space-time Jacobian

J =
⎛
⎝ xξ xη xτ

zξ zη zτ

0 0 1

⎞
⎠ . (5.10c)

Under transformations (5.10), Luke’s variational principle (5.9) becomes

0 =δ

∫ T

0

∫ Ls

0

∫ H0

0
(xξ zη − xηzξ )∂τ φ + (xηzτ − xτ zη)∂ξ φ + (xτ zξ − xξ zτ )∂ηφ

+ 1

2 J |
(
(x2η + z2η)|∂ξ φ|2 − 2(xξ xη + zξ zη)∂ξ φ∂ηφ + (x2ξ + z2ξ )|∂ηφ|2

)

+ |J |g(z − H0) dξ dη dτ. (5.11)
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Using (5.10b), it is straightforward to derive the geometric conservation law

∂τ |J | + ∂ξ J1 + ∂η J2 =0, (5.12)

whence, by combining (5.11) and (5.12), we obtain

0 =δ

∫ T

0

∫ Ls

0

∫ H0

0
∂τ (|J |φ) + ∂ξ (J1φ) + ∂η(J2φ)+

1

2 J |
(
(x2η + z2η)|∂ξφ|2 − 2(xξ xη + zξ zη)∂ξφ∂ηφ + (x2ξ + z2ξ )|∂ηφ|2)

+ |J |g(z − H0) dξ dη dτ. (5.13)

The above is the same as in Bridges and Donaldson (2011) but, due to the new
wavemaker condition x = W (z, τ ) at ξ = 0, new terms emerge when we integrate,
term-by-term, ∂τ (|J |φ) + ∂ξ (J1φ) + ∂η(J2φ) in the variational principle (5.13). This
demands that we adapt but also slightly extend the derivation given in Bridges and
Donaldson (2011). The first integral term in (5.13) can be manipulated to yield

δ

∫ H0

0

∫ Ls

0

∫ T

0
∂τ (|J |φ) dτ dξ dη =

∫ H0

0

∫ Ls

0
φ

(
(δx)ξ zη + xξ (δz)η

−(δx)ηzξ − xη(δz)ξ
) |τ=T

τ=0 + |J |δφ|τ=T
τ=0 dξ dη

=
∫ H0

0

∫ Ls

0

(
φ∂ξ (zηδx − xηδz) + φ∂η(xξ δz − zξ δx)

) |τ=T
τ=0 dξ dη = 0,

(5.14)

wherewe have used end-point conditions δφ|τ=0 = δφ|τ=T = 0, δx |τ=0 = δx |τ=T =
0 and δz|τ=0 = δz|τ=T = 0. The second integral term in (5.13) becomes

∫ Ls

0

∫ H0

0
∂ξ

(
(xηzτ − xτ zη)φ

)
dξ dη =

∫ H0

0
(xηzτ − xτ zη)φ|ξ=Ls

ξ=0 dη

=
∫ H0

0
zη∂τWφ|ξ=0 dη, (5.15)

since at ξ = Ls also x = Ls , and therefore xη|ξ=Ls = xτ |ξ=Ls = 0, while at ξ = 0
one has x = W (z, τ ) such that xη = ∂zW zη, xτ = ∂τW + ∂zW zτ and xηzτ − xτ zη =
−zη∂τW . The third integral term in (5.13) becomes

∫ Ls

0

∫ H0

0
∂η

(
(xτ zξ − xξ zτ )φ

)
dξ dη =

∫ Ls

0
(xτ zξ − xξ zτ )φ|η=H0

η=0 dξ

=
∫ Ls

0
(xτ zξ − xξ zτ )|η=H0 φ̃ dξ, (5.16)
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since z = 0 at η = 0 and thus zξ |η=0 = zτ |η=0 = 0. The outcome is therefore that
there are two surface contributions, underlined in (5.15) and (5.16), one at themoving
free surface η = H0 and one at the moving wavemaker ξ = 0. The gravitational
energy is also transformed as follows

∫ Ls

0

∫ H0

0
(xξ zη − xηzξ )g(z − H0) dξ dη

=
∫ Ls

0

∫ H0

0
∂η

(
xξ (

1

2
gz2 − gH0z)

)
− ∂ξ

(
xη(

1

2
gz2 − gH0z)

)
dξ dη

=
∫ Ls

0
xξ

1

2
gz2 − gH0z|η=H0

η=0 dξ −
∫ H0

0
xη

1

2
gz2 − gH0z|ξ=Ls

ξ=0 dη

=
∫ Ls

0
xξ g(

1

2
z2 − H0z)|η=H0 dξ +

∫ H0

0
xηg(

1

2
z2 − H0z)|ξ=0 dη, (5.17)

again using the conditions at ξ = Ls as well as z = 0 at η = 0.
Hence, for a domain with a flap-type wavemaker at ξ and a free surface at η =

H0, Luke’s variational principle in transformed coordinates (5.13) becomes Miles’
variational principle in transformed coordinates

0 =δ

∫ T

0

∫ Ls

0

(
xτ zξ − xξ zτ )φ̃ + xξ g(

1

2
z2 − H0z)

)
|η=H0 dξ

+
∫ H0

0

(
zη∂τWφ + xηg(

1

2
z2 − H0z)

)
|ξ=0 dη + K dτ

≡δ

∫ T

0

∫ Ls

0

(
xτ zξ − xξ zτ )φ̃ + xξ g(

1

2
z2 − H0z)

)
|η=H0 dξ

+
∫ H0

0

(
zη∂τWφ + xηg(

1

2
z2 − H0z)

)
|ξ=0 dη

+
∫ Ls

0

∫ H0

0

1

2 J |
(
(x2η + z2η)|∂ξ φ|2 − 2(xξ xη + zξ zη)∂ξ φ∂ηφ

+(x2ξ + z2ξ )|∂ηφ|2
)
dξ dη dτ (5.18)

with kinetic energy K.
The challenge in the variation of Miles’ variational principle (5.18) is that it

results in variations of the variables {φ, x, z}whereas {x, z} can only be independent
at the free surface and partially independent at the moving wavemaker. Bridges and
Donaldson (2011) provide an overview of models for the motion of x(ξ, η, τ ) and
z(ξ, η, τ ), including (nonlinear) elliptical solvers for {x, z} driven by the moving
boundaries. Variation of the (nonlinear) elliptic solvers will lead to linear equations,
for {δx, δz}, that relate the variations in the interior to the independent variations at
the moving boundaries, denoted by {X, Z}. It is shown in Bridges and Donaldson
(2011) that δK/δx = δK/δz = 0 in the interior, after oneuses the transformedelliptic
equation for φ in the interior. The motion of {x, z} can in certain cases be specified
and in other cases be imposed via Lagrange multipliers, the latter which has neither



114 O. Bokhove

been explored thoroughly in an analytical way nor in a numerical way. Consequently,
the entire variation of (5.18) will lead to variations of only the variables {φ, φ̃, X, Z}.
The numerical integration with finite-element methods (FEM) of (5.18) including
(regular) mesh motion was explored for the first time in Gagarina et al. (2012, 2014)
and Gidel (2018).

5.3.1 FEM and Mesh Motion

Hitherto, two numerical approaches have been developed and applied to evaluate
and discretise (5.18) for domains with a piston wavemaker such that the boundary
condition on the left-side of the channel becomes x = W (z, t) = R(t). In the first
approach, marked by I, two variations have been developed and employed. The
difference is that in variation I.A, a continuous Galerkin FEM is used with, e.g.,
quadrilateral elements in the vertical {x, z}–plane, while in variation I.B a Galerkin
FEM is used in the horizontal plane and higher-order Lagrange polynomials in one
element in the vertical, in the transformed space and in three dimensions.

Variation I.A uses a space-time finite-element discretisation of Miles’ variational
principle in a two-dimensional {x, z} ∈ [R, Ls] × [0, h]–plane, so without explicitly
transforming it to the fixed reference domain in (5.18). The nodes of the (quadri-
lateral) mesh are moved in a regular fashion. In {x, z} ∈ [R, Lw] × [0, h], with
Lw < Ls , the nodes are moved in the horizontal and vertical according to the method
of lines, and in a linear fashion, such that the horizontal nodal movement at Lw is
zero and is R(t) on the piston wavemaker and, similarly, zero at the bottom at z = 0
and h(x, t) at the non-overturning free surface. For x > Lw nodes are only moving
in the vertical. This prescription of the node movement implies that δx = 0 and that
δz is uniquely and in a linear manner determined in terms of δh. The variation of
the space-discrete variational principle then directly yields the discrete equations of
motion. The detailed methodology is described in Gagarina et al. (2014, 2016).

Variation I.B in essence uses (5.18) with explicit expressions for the motion of
x and z. We extend the description in Gidel (2018), where the wavemaker is a
piston W (z, t) = R(t), here to the general waveflap expression x = W (z, t). The
first transformation is from {x, z, t} to {χ, z̃ = z, t̃ = t} with χ ∈ [0, Lw] and

x = W (z̃, t̃)Lw + χ
(
Lw − W (z̃, t̃)

)
Lw

. (5.19)

The second transformation is from {χ = ξ, z̃, t̃ = τ } to {ξ = χ, η, τ } with

x(ξ, η, τ ) =ξ
(
Lw − W (ηh/H0, τ )

) + W (ηh/H0, τ )Lw

Lw
and z(ξ, η, τ ) = ηh

H0
,

(5.20)
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where h = h(ξ, τ ). Expressions (5.20) can be substituted into (5.18), with δx and δz
uniquely and in a linear manner determined in terms of δh. The next step differs from
variation I.A:first (Lagrange)polynomials areused in thevariationalprinciple toelim-
inate the verticalη–dependence by integration over these polynomials, leading to sev-
eral predeterminedmatrices and vectors. It results in a reduced variational principle in
termsof thehorizontal spatial dimensions and time.Even though in the abovewe illus-
trated the approach in one horizontal dimension,Gidel (2018) extended the derivation
tothreedimensionsandusesapriorianexplicitcoordinatetransformationinsteadofthe
generic one developed to arrive at (5.18). The results are, by default, the same. Subse-
quently, this variational principle in the horizontal plane, based on polynomial expan-
sions with one element in the vertical, is discretised using continuous Galerkin finite
elements, on, e.g., quadrilateral elements in the horizontal. The variation of the now
fully space-discrete variational principle then directly yields the space-discrete equa-
tions of motion. Both symplectic Euler and Störmer-Verlet time-stepping schemes,
extendedtoincludewave-forcingterms,havethenbeenusedtoarriveatspace-timedis-
crete equations of motion. Alternatively, one can use (dis)continuous Galerkin finite-
element methods in time (Bokhove and Kalogiro 2016; Gagarina et al. 2016) to first
discretise the space-discrete variational principle in time aswell, which variation sub-
sequently leads to the same space-time discrete equations of motion. Approach I.B
has been implemented in Firedrake (Rathgeber et al. 2016), such that the variations of
theVP are essentially directly implemented inweak form, cf. the actualmathematical
formulations. In Firedrake, details of the finite-element implementation are to a large
extent hidden from the user, including matrix definitions, matrix assembly, nonlinear
solvers, parallelisation (viaMPI) and preconditioning.

In the second approach, marked by II, Miles’ variational principle (5.18) is discre-
tised in spaceusing a continuousGalerkinFEMand twononlinear elliptic solvers, one
each for x and z, are used to determine {x(ξ, η, τ ), z(ξ, η, τ )}. These nonlinear ellip-
tic solvers and the gradients of x and z in (5.18) are discretised using finite-difference
approximations and solved with an iterative successive overrelation method. Dirich-
let boundary conditions for x and z are used at solid-wall boundaries and at the free
surface one sets x = X and z = Z . The variations of this finite-difference approxima-
tion of the nonlinear elliptic solvers for x and z are linear in δx and δz. This therefore
again relates all interior domain variations of δx, δz, as in the previous approach I.A
and I.B, in a linear fashion to the (free-)surface evariations δX, δZ . The equations for
the variables {X, Z} and φ(ξ, H0, τ ) (at the free surface) are then stepped forward as
conjugate variable pairs in time using a symplectic Störmer-Verlet time integrator,
cf. Gagarina et al. (2012).

The results of these two approaches are geometric space-time discretisations of the
potential-flowwater-wave equations.We appear to be the first to have developed such
an approach in a completely systematic and geometricmanner. The advantage of such
geometric space-time integrators above classical nongeometric ones is that there is no
artificalnumericaldamping.Forlong-timesimulations,wave-amplitudesaretherefore
preserved.Adisadvantagemaybe that onehas touseapartially implicit numerical dis-
cretisation,whichismorecostlytoimplement.Anotherdisadvantageis thatenergyand
motion cannot escape to smaller and smaller scales because there is no subgrid-scale
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parameterization integrated in the discretisation. It depends on the numerical applica-
tion at hand whether such a geometric approach is desirable or not.

Rogue waves are anomalously high waves, with at least twice the wave ampli-
tude of the ambient sea (Dysthe et al. 2008). Their occurrance at sea is rare and
difficult to predict, both statistically and deterministically. Understanding the occur-
rence of rogue waves is important because they have damaged or destroyed ships
as well as maritime and coastal structures, see Nikolkina and Didenkulova (2011)
for an overview of rogue-wave maritime disasters. Following our approach, we have
successfully simulated these rogue-wave interactions in long-time simulations, also
for a Benney-Luke approximation of the potential water-wave models, cf. Gagarina
et al. (2014), Bokhove & Kalogirou (2016), Gidel et al. (2017), Gidel (2018). Some
of these numerical results will be presented in Sect. 5.3.2.

5.3.2 Numerical Results: Comparison with Wave-Tank
Experiments

The first two numerical approaches are compared with data from wave-tank exper-
iments which have been collected at the Maritime Research Institute Netherlands
(MARIN). MARINs Case 202002 is considered, which is one case in the suite of
experimental test cases reported (Bunnik 2010). The wavetank at hand is 195.4 m
long with a piston wavemaker at x = R(t) and the water depth at rest is 1 m. The
set-up is symmetric such that the experiments are effectively two dimensional in a
vertical cross-section. Simulations are stopped before any wave reflections from the
end of the tank are having an effect. The wavemaker signal is such that a rogue wave
arises via wave focussing at circa t = 109.5 s and x = 50 m.

In approach I.A, using data from a probe around x = 50 m, the (finest) mesh
size and timestep are determined based on linear wave-dispersion estimates, and
are found to be Δx = 0.00385 m and Δt = 0.001 s. An exponential distribution of
20 mesh points is used in the vertical. In approach I.B, the numerical wave basin
is 120 m long with a uniform mesh. The mesh size Δx = 0.01 m and timestep
Δt = 0.001 s are again based on linear wave-dispersion estimates. Nine Lagrange
degrees-of-freedom are taken into account in the vertical. The comparison between
each simulation and the experimental data is shown as a time series in Figs. 5.5
and 5.6, while the corresponding Fourier spectra can be seen in Figs. 5.7 and 5.8,
respectively. Both simulation approaches compare favourably with the experimental
data and, hence, with another. The codes for Approach I.B have been parallised, a
nearly automatic feature within the Firedrake FEM environment.

Third Approach

The third and novel geometrical approach to discretise (5.18) is developed next. It
concerns the second principle stated in the introduction: that the variational principle
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Fig. 5.5 Free surface h(x, t)
at various locations x as
function of time t for
numerical simulations using
approach I.A (Störmer-Verlet
scheme, denoted by SV:
solid black lines) versus six
experimental-probe
measurements (red solid
lines) in MARIN’s wave tank
a)-to-f) at x =
(10, 20, 40, 49.5, 50, 54) m.
Figure11, taken from
Gagarina et al. (2014) taken
with permission
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Fig. 5.6 Free surface h(x, t) at various locations x as function of time t for numerical simulations
using approach I.B (Symplectic Euler, denoted by SE: solid blue lines; SV: green dashed line)
versus six experimental-probe measurements (black solid lines) in MARIN’s wave tank at x =
(10, 20, 40, 49.5, 50, 54) m as indicated. Figure3.20 from Gidel (2018) used with permission

of coupled models is the sum of the two variational principles. The first variational
principle involved will be Miles’ VP but, for simplicity, limited to the case with
no variations in δx , and the second variational principle concerns the motion of z,
renamed to z̄, with the interior motion driven by the free-surface motion.

Rather than imposing the relation between {δx, δz} and δh or {δX, δZ} explic-
itly, as in the first two numerical approaches summarised above, additional equa-
tions for x and z will be imposed using Lagrange multipliers. We illustrate the
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Fig. 5.7 Time spectra at probes 2, 3 and 5 at x = (20, 40, 50) m for simulation approach I.A
(blue lines) and the experiments (red lines) displayed as amplitude versus frequency (Fig. 13, from
Gagarina et al. (2014), used with permission)

approach for a simplified version of (5.18), i.e., one without wavemaker such that
W (z, t) = 0, andwith x = ξ such that δx = 0 and ξ ∈ [0, Ls]. One can either impose
the constraint solution z(ξ, η, τ ) − ηZ(ξ, τ )/H0 = 0, cf. (5.20), directly using a
Lagrange multiplier λ = λ(ξ, η, t), or one can impose the constraint differential
equation z̄ηη = 0 with boundary condition z̄(ξ, 0, τ ) = 0 by adding additional inte-
rior integrals 1

2 (z̄η)
2 + λ(z − z̄) and a boundary integral λ0(Z − z), thus indirectly

imposing the “Dirichlet” boundary condition z̄|η=H0 = Z . Consequently, we take
δz̄(ξ, 0, τ ) = δz̄(ξ, H0, τ ) = 0. The latter second-order equation has, of course, the
first constraint as solution: i.e., z̄(ξ, η, τ ) = ηZ(ξ, τ )/H0. In essence what we do, is
glueing two different variational principles together, one for the dynamics given in
(5.18) and one for the z̄–movement i.e. 0 = δ

∫ H0

0
1
2 (z̄

2
η) dη. The approach in Bridges

and Donaldson (2011) suggests to impose partial differential equations for z via a
Lagrange multiplier λ, but the determination of the boundary conditions for λ has
proven cumbersome and was left unresolved. Via the method outlined above, essen-
tially renaming z into z̄ before weakly equating them as shown in detail below, we
avoid the issues surrounding the definition of boundary conditions for λ because we
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Fig. 5.8 Time spectra at probes 1-to-6 simulation for approach I.A. for the experiments, and
simulations with SE and SV, as indicated. After Fig. 3.21 from Gidel (2018), used with permission

impose the (numerical) solution for z̄. Before stating the augmented VP, we give a
brief example of the idea and why it can work numerically.

Consider the second variational principle in isolation

0 = δ
(∫ H0

0

1

2
(z̄η)

2 + λ(z − z̄) dη + λ0(z − a)|η=H0

)
(5.21a)

=
∫ H0

0
z̄ηδz̄η − λδz̄ + (z − z̄)δλ + λδz dη + (

λ0δz + (z − a)δλ0
)|η=H0

(5.21b)

=
∫ H0

0
−(z̄ηη + λ)δz̄ + (z − z̄)δλ + λδz dη

+ (
z̄ηδz̄ + λ0δz + (z − a)δλ0

)|η=H0 − (z̄ηδz̄)|η=0, (5.21c)

with test function δz̄|η=0,H0 = 0, z̄(η = 0) = 0 and a a constant, yielding

z̄ηη + λ = 0, λ = 0, z = z̄, δλ0: z|η=H0 = a, δz|η=H0: λ0 = 0. (5.21d)

For illustrative purposes, to discretise (5.21), we use continuous Galerkin finite-
element expansions with piecewise linear basis functions wi (η), e.g. z̄ ≈ wi z̄i and
z ≈ wi zi for indices i, j = 1, . . . , N , with i, j = 1 at η = 0, i, j = N at η = H0 and
i ′, j ′ = 2, . . . , N − 1, while using the Einstein summation convention for repeated
indices. The variables and their variations belong to the following function spaces
δz̄ ∈ W 1

0,H0
, {z̄, δz, z} ∈ W 1

0 andλ ∈ W 1 withW 1 the standardSobolev space H 1(η ∈
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[0, H0]) and with the subscripts on W 1 indicating where the variables belonging to
that space are zero. The weak form (5.21b) yields that λ = 0 and z = z̄ and thus is
seen to be equivalent to theweak form

∫ H0

0 zηδzη dη = 0, and its boundary conditions,
as intended by design. The finite-element spaces follow by restriction to the space
of first-order polynomials on each element (here rods) with C0–continuity. More
explicitly, by direct substitution of the above expansions into the weak formulation
(5.21b), and after defining mass and “Laplacian” matrices Mi j = ∫

wi (η)w j (η) dη
and Ai j = ∫

w′
i (η)w′

j (η) dη, we find that

Ai ′ j z̄ j − Mi ′ jλ j = 0, Mi jλ j = 0 =⇒ Mi ′ jλ j = 0,

Mi j (z̄ j − z j ) = 0 =⇒ z j = z̄ j , z̄N = a, (5.22)

yielding that
∑N−1

j ′=2 Ai ′ j ′ z̄ j ′ = −Ai ′Na, which is exactly what a direct continuous
Galerkinfinite-element discretisationwith piecewise linear basis functions of z̄ηη = 0
with Dirichlet conditions z̄ = 0 and z̄ = a at η = 0, H0 would yield. The example
shows that it is required to introduce different variables z̄ and z because variations
δz̄ and δz obey different conditions at η = H0, but results are what one obtains in a
classic FEM.

Similarly, we add the weak formulation of a differential equation for z̄, the interior
link λ(z − z̄) and the free-boundary link λ0(Z − z) to the water-wave variational
principle with Lagrange multipliers λ(ξ, η, τ ) and λ0(ξ, τ ). At the free surface,
define φ̃ ≡ φ(ξ, H0, τ ). Variations of a simplified yet extended version of (5.18)
become

0 =δ

∫ T

0

∫ Ls

0

(
−Zτ φ̃ + g(

1

2
Z2 − H0Z) + λ0(Z − z)

)∣∣
η=H0

dξ

+
∫ Ls

0

∫ H0

0

1

2

(
zη|∂ξφ|2 − 2zξ ∂ξφ∂ηφ + (1 + z2ξ )

zη

|∂ηφ|2)

+ 1

2
(z̄η)

2 + λ(z − z̄) dξ dη dτ (5.23a)

=
∫ T

0

∫ Ls

0

(
(∂τ φ̃ + g(Z − H0) + λ0)δZ − Zτ δφ̃ − λ0δz + (Z − z)δλ0

)∣∣
η=H0

dξ

+
∫ Ls

0

∫ H0

0
zη∂ξφ∂ξ δφ − zξ (∂ξφ∂ηδφ + ∂ηφ∂ξ δφ) + (1 + z2ξ )

zη

∂ηφ∂ηδφ

+ 1

2
|∂ξφ|2δzη − ∂ξφ∂ηφδzξ + zξ δzξ

zη

|∂ηφ|2 − 1

2

(1 + z2ξ )δzη

z2η
|∂ηφ|2

+ z̄ηδz̄η + λ(δz − δz̄) + (z − z̄)δλ dξ dη dτ (5.23b)



122 O. Bokhove

=
∫ T

0

∫ Ls

0

((
∂t φ̃ + g(Z − H0) + λ0

)
δZ + (Z − z)|η=H0δλ0

+ (1
2
|∂ξφ|2 − 1

2

(1 + z2ξ )

z2η
|∂ηφ|2 − λ0

)|η=H0δz

− (
Zτ + ∂ξφzξ − (1 + z2ξ )

zη

∂ηφ
)
δφ

)∣∣
η=H0

dξ

+
∫ Ls

0

∫ H0

0

(
−∂ξ (zη∂ξφ) + ∂ξ (zξ ∂ηφ) + ∂η(zξφ∂ξφ) − ∂η

( (1 + z2ξ )

zη

∂ηφ
))

δφ

+
(

−∂η

(1
2
|∂ξφ|2) + ∂ξ (∂ξφ∂ηφ) − ∂ξ

( zξ

zη

|∂ηφ|2)

+∂η

(1
2

(1 + z2ξ )

z2η
|∂ηφ|2) + λ

)
δz − (z̄ηη + λ)δz̄ + (z − z̄)δλ dξ dη dτ, (5.23c)

in which we used the end-point conditions δz̄(ξ, η, 0) = δz̄(ξ, η, T ) = 0 and
δz̄(ξ, 0, t) = δz̄(ξ, H0, t) = 0, and solid-wall boundary conditions at ξ = 0, Ls . The
resulting equations of motion then follow via (5.23c) from the arbitrariness of the
respective variations:

δZ : ∂τ φ̃ + g(Z − H0) + λ0 = 0 at η = H0 (5.24a)

δz|η=H0 : λ0 = 1

2
|∂ξφ|2 − 1

2

(1 + z2ξ )

z2η
|∂ηφ|2 at η = H0 (5.24b)

δφ̃ : Zτ + ∂ξφzξ = (1 + z2ξ )

zη

∂ηφ at η = H0 (5.24c)

δφ : ∂ξ (zη∂ξφ) − ∂ξ (zξ ∂ηφ) − ∂η(zξ ∂ξφ) + ∂η

( (1 + z2ξ )

zη

∂ηφ
) = 0 (5.24d)

δz : λ = ∂η

(1
2
|∂ξφ|2) − ∂ξ (∂ξφ∂ηφ) + ∂ξ

( zξ

zη

|∂ηφ|2)

− ∂η

(1
2

(1 + z2ξ )

z2η
|∂ηφ|2) = 0 (5.24e)

δz̄ : z̄ηη + λ = 0 (5.24f)

δλ : z̄ = z (5.24g)

δλ0 : z = Z at η = H0. (5.24h)

Using the elliptic equation (5.24d) for φ into (5.24e) one derives, as noted, that
λ = 0. The solution of z̄ηη = 0 stated earlier is readily found using z̄η=H0 = Z and
z̄(ξ, 0, t) = 0. It is helpful to figure out a consistent time integration by first discretis-
ing time for (5.24). We leave that to the reader and instead directly give a complete
space-time discretisation.
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Time discretisation andweak formulation:To establish a time discretisation and in
addition a suitable weak formulation, one starts from the second expression (5.23b),
by discretising time using a first-order symplectic Euler scheme. The velocity poten-
tial is partitioned as follows: φ = φ1 + ϕ with φ1(ξ, η, τ ) = φ̃(ξ, τ )ϕ̃(η) such that
ϕ̃1(H0) = 1, ϕ̃1(0) = 0 and ϕ(ξ, H0, t) = 0 such that ϕ is clearly the interior contri-
bution. This partitioning of the velocity potential is similar to the partitioning used
in Kristina et al. (2014) for a different variational coupling problem. The function
spaces of the variables are the following:

{φ̃(ξ, τ ), Z(ξ, τ ), λ0(ξ, τ )} ∈ W 1(η = H0) ∩ Xk
h,

{φ1(ξ, η, τ ), ϕ(ξ, η, τ ), z(ξ, η, τ ), z̄(ξ, η, τ ), λ(ξ, η, τ )} ∈ W 1(Ω) ∩ Xk
h (5.25)

withW 1(Ω) the space of test functions and Xk
h the polynomials of order k on each ele-

ment of a triangulation Th = {K }. This space W 1(Ω) is the standard Sobolev space
H 1 with test functionw ∈ H 1, and in the two-dimensional case ||w||η=c = 0 at the
appropriate Dirichlet boundary with c = 0 or c = H0 and || · ||η=c is the L2(η = c)–
norm at η = c. All functions are C0–continuous, thus comprising a classical con-
tinuous Galerkin finite-element discretisation. In the implicit, predictor step, based
on all arbitrary variations as test functions, except the one for δZ , the unknowns
Zn+1 = z∗|η=H0 , λ0 and z̄∗, z∗, ϕ∗, λ are jointly determined from

0 =
∫ T

0

∫ Ls

0

(− (Zn+1 − Zn)

Δτ
δφ1 − λ0δz + (Zn+1 − z∗)δλ0

)|η=H0 dξ

+
∫ Ls

0

∫ H0

0
z∗
η∂ξφ∂ξ δϕ − z∗

ξ (∂ξ (ϕ
∗ + φn

1 )∂ηδϕ + ∂η(ϕ
∗ + φn

1 )∂ξ δϕ)

+ (1 + (z∗
ξ )

2)

z∗
η

∂η(ϕ
∗ + φn

1 )∂ηδϕ dη dξ

+
∫ Ls

0

∫ H0

0
z∗
η∂ξ (ϕ

∗ + φn
1 )∂ξ δφ1 − z∗

ξ (∂ξ (ϕ
∗ + φn

1 )∂ηδφ + ∂η(ϕ
∗ + φn

1 )∂ξ δφ1)

+ (1 + (z∗
ξ )

2)

z∗
η

∂η(ϕ
∗ + φn

1 )∂ηδφ1

+ 1

2
|∂ξ (ϕ

∗ + φn
1 )|2δzη − ∂ξ (ϕ

∗ + φn
1 )∂η(ϕ

∗ + φn
1 )δzξ

+ z∗
ξ δzξ

z∗
η

|∂η(ϕ
∗ + φn

1 )|2 − 1

2

(1 + (z∗
ξ )

2)δzη

(z∗
η)

2
|∂η(ϕ

∗ + φn
1 )|2

+ z̄∗
ηδz̄η + λ(δz − δz̄) + (z∗ − z̄∗)δλ dξ dη dτ. (5.26a)

Note that φn
1 is evaluated at the known, current time tn and that z∗, z̄∗, λ, λ0 and

ϕ∗ are all aid variables. The latter highlights that the (discretised) elliptic equation
for ϕ is rephrased as a Poisson problem with ϕ = 0 at the free surface rather than
phrased as a (discretised) Laplace equation for φ. Similarly, z̄∗ is solved weakly
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via an elliptic equation, with Dirichlet boundary conditions, with the one at the free
surface enforced via both Lagrange multipliers λ0 and λ. In the corrector step, based
on the arbitrary variations δZ as test functions, φ̃n+1 (underlined below) is solved
using

0 =
∫ T

0

∫ Ls

0

(( (φ̃n+1 − φ̃n)

Δτ
+ g(Zn+1 − H0) + λ0

)
δZ

)∣∣
η=H0

dξ dτ, (5.26b)

while again using the current value of the free-surface potential, i.e. ϕ̃n , as well as
the updates of variable ZN+1, λ0 and the aid variables ϕ∗, λ and z∗, which were
all solved in the previous, implicit predictor step. It is clear that the predictor step
contains the nonlinearities while the corrector step is linear in the unknowns. The
above set-up for the time integration is in essence similar to the one in Gidel (2018)
(cf. her expression (3.55)). The extension to mesh motion in two dimensions can
proceed along similar lines of reasoning.

5.4 Coupling Water Waves to Shallow-Water Beach
Hydraulics

In this section, the second principle stated in the introduction will be explored in a
more physically motivated example for a model in which Miles’ VP holds in a deep
or intermediate water-depth region and a shallow-water model is used in a beach
region (in which waves can break), cf. Figs. 5.3 and 5.4. It turns out that in Eule-
rian coordinates the only VP for shallow-water dynamics is one involving Clebsch
variables. In one spatial dimension, shallow-water dynamics involves two fields: the
water depth h = h(x, t) and the horizontal velocity u = u(x, t). In two dimensions, it
involves three fields h = h(x, y, t), u = u(x, y, t) and an additional lateral velocity
field v = v(x, y, t). A description in terms of Clebsch variables involves four fields
because the velocity is in that description rewritten as u = ∂x φ̃ + π∂x l with parcel
label l = l(x, t) and its conjugate hπ with π = π(x, t), as well as h and its conjugate
φ̃. These take over the role of q and p in the examples in the introduction. In two
spatial dimensions, the derivative ∂x (·) is replaced by a two-dimensional gradient.

Rather than using Miles’ VP, we use an extension of the potential-flow model in
Cotter and Bokhove (2010), which contains both the three-dimensional potential-
flow limit as well as the (horizontally) two-dimensional, depth-averaged shallow-
water limit with surface velocities u and v. Hence, this new model contains the
vertical component of the vorticity, ∂xv − ∂yu, while the other vortical components
are, by construction, absent. We will consider a symmetric version of this model
with no y–derivatives, except that the label reads l(x, t) + y, such that v(x, t) =
∂yφ(x, z, t) + π(x, t)∂y (l(x, t) + y) = π(x, t). The vorticity then becomes ∂xv.

The VP of the symmetric and coupled systems consists of the sum of the two
VPs for the separate systems, with the extended potential-flow motion residing in
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x ∈ [0, Lc] with topography z = b(x), and the shallow-water motion residing in
x ∈ [Lc, xw(t)] with xw = xw(t) the dynamic waterline point on the beach with
fixed bottom topography z = b(x). This “coupled VP” in Eulerian coordinates, with
now φ(x, z, t) = ϕ(x, z, t) + φ̃(x, t) and ϕ (x, z = h(x, t), t) = 0, thus reads

0 = δ

∫ T

0
L[ϕ, φ̃, h, l, π ] dt ≡ δ

∫ T

0

∫ Lc

0
φ̃∂t h + l∂t (hπ) − 1

2
g(h + b)2 + ghH0 dx

−
∫ b(x)+h(x,t)

b(x)

1

2
|∇ϕ + (u, v, 0)T |2 dz dx

+
∫ xw(t)

Lc

φ̃∂t h + l∂t (hπ) − 1

2
h(u2 + v2) − 1

2
g(h + b)2 + ghH0 dx dt (5.27a)

=
∫ T

0

∫ Lc

0
(∂t h + ∂x (hū)) δφ̃ − (∂t φ̃ + π∂t l + 1

2
|∇ϕ + u|2 + g(h + b − H0))|z=b+hδh

− h(∂t l + ū∂x l + v)δπ + (∂t (hπ) + ∂x (hūπ)) δl

+ (∂xb(∂xϕ + u) − ∂zϕ)|z=bδϕ|z=b −
∫ b(x)+h(x,t)

b(x)
(∂xxϕ + ∂zzϕ + ∂xu)δϕ dz dx

−
(
(hū)(δφ̃ + πδl)

)
|x=L−

c
+

(
(hu)(δφ̃ + πδl)

)
|x=L+

c

−
∫ b(x)+h(x,t)

b(x)
(∂xϕ + u)δϕ dz |x→L−

c
+

∫ xw

Lc

(∂t h + ∂x (hu)) δφ̃ − (∂t φ̃ + π∂t l + B)δh

− h(∂t l + u∂x l + v)δπ + (∂t (hπ) + ∂x (huπ)) δl dx dt (5.27b)

with u = ∂x φ̃ + π∂x l and v = π for x ∈ [0, xw], Bernoulli function B = (u2 +
v2)/2 + g(h + b − H0), (surface) velocity u = u(x, t) = (u, v, 0)T for x ∈ [0, xw],
depth-averaged zonal flux hū = ∫ b(x)+h(x,t)

b(x) ∂xϕ + u dz for x ∈ [0, Lc], and by using
end-point conditions δh(x, 0) = δh(x, T ) = δ(hπ)(x, 0) = δ(hπ)(x, T ) = 0 and
h(xw, t) = 0 at the moving waterline xw(t). The resulting equations of motion in
terms of the Clebsch variables, following directly from the arbitrariness of variations
in (5.27b), are:

δφ̃ : ∂t h + ∂x (hū) = 0,

δh : ∂t φ̃ + π∂t l + 1

2
|∇ϕ + u|2 + g(h + b − H0) = 0,

δπ : ∂t l + ū∂x l + v = 0,

δl : ∂t (hπ) + ∂x (hūπ) = 0,

δϕ : ∂xxϕ + ∂zzϕ + ∂xu = 0 (5.28)
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in deep water for x ∈ [0, Lc], with no normal flow ∂xb(∂xϕ + u) − ∂zϕ = 0 at the
bottom z = b, and

δφ̃ : ∂t h + ∂x (hu) =0, δh : ∂t φ̃ + π∂t l + B = 0,

δπ : ∂t l + u∂x l + v =0, δl : ∂t (hπ) + ∂x (huπ) = 0 (5.29)

in shallow water for x ∈ [Lc, xw]. Using the latter equation set and the definitions
of u and v = π , and then by differentiating the Bernoulli equation with respect to
x , it is straightforward to verify that the usual (symmetric) momentum equations
emerge, i.e., ∂t u − v∂xv + ∂x B = 0 and ∂tv + u∂xv = 0. Hence, this is a reduction
from the four equations and variables in (5.29) to three equations for three variables.
Likewise, the deep-water system (5.28) can be reduced to the variables {h, u, v, ϕ},
for details see Cotter and Bokhove (2010), Gagarina et al. (2013). The coupling
between the two systems is contained in the underlined terms in (5.27), concerning
fluxes at x = Lc that need to balance:

lim
x→L+

c

(hu) δφ̃ = lim
x→L−

c

(∫ b(x)+h(x,t)

b(x)
(∂xϕ + u)δϕ dz + hū δφ̃

)
,

lim
x→L+

c

(hu)π δl = lim
x→L−

c

hūπ δl. (5.30)

Coupling between a full, deep-to-intermediate-depth water-wave model to a
shallow-water model is only meaningful when the depth-dependence of the full
water-wave model has become sufficiently small or negligible. Hence, we assume
that at x = Lc the variations are asymptotically close such that

δl|x→L+
c

= δl|x→L+
c
, δφ̃|x→L+

c
= 1

h

∫ b+h

b
δϕ + δφ̃ dz|x→L−

c
. (5.31)

By using (5.31) in (5.30), we find that the deep-water flux is depth-independent

lim
x→L−

c

h(∂xϕ + u) = lim
x→L+

c

(hu) as well as lim
x→L+

c

(huπ) = lim
x→L−

c

(hūπ) (5.32)

Vice versa, δϕ|x=L−
c

= 0 in (5.30) leads to the shallow-water flux

hu|x=L+
c

= hū|x=L−
c
. (5.33)

These links between subsystems will be considered in the numerical coupling next.
Two different numerical techniques will be used for the two subsystems. The

extended potential-flow water-wave model will be discretised using the spatially
second-order variational technique established so far (Gidel 2018), while a classical
first-order finite-volume method will be used in shallow water, cf. Audusse et al.
(2004), Bokhove (2005). This finite-volume method can deal with breaking waves
on the beach in the form of classic hydraulic bores (Whitham 1974). The finite-
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volume method progresses the mean values of water depth and momentum forward
in time on finite elements (or rods in one dimension). Communication between the
elements is reached via a numerical flux vector F(UL ,UR)withU ≡ (h, hu, hv)T at
each face (or node in one dimension), in whichUL ,R are the limits of the mean values
to the left and right of each face. At the coupling point x = Lc, this numerical flux
needs to be determined by defining an appropriateUL based on the values of variables
in the potential-flow domain at x = L−

c , while in the finite-element potential-flow
domain, values from the shallow-water domain, i.e. UR at x = L+

c , will be used.
The finite-element weak formulation for the potential-flow is established, as in

Sect. 5.3.1, by taking variationswithout integration by parts in space, while temporar-
ily considering the shallow-water system to be continuous in space. For simplicity,
we will set l = π = v = 0 in x ∈ [0, Lc] and δl = 0 at x = L+

c in the shallow-water
domain. The weak formulation we obtain is then as follows

0 =
∫ T

0

∫ Lc

0
∂t h δφ̃ +

∫ b(x)+h(x,t)

b(x)
(∇ϕ + ∇φ̃) dz · ∇δφ̃

− δh ∂t φ̃ + (
1

2
|∇ϕ + φ̃|2 + g(h + b − H0))|z=b(x)+h(x,t)δh dx

+
∫ b(x)+h(x,t)

b(x)
(∇ϕ + ∇φ̃) · ∇δϕ dz dx +

(
(hu)δφ̃

)
|x=L+

c

+
∫ xw

Lc

(∂t h + ∂x (hu)) δφ̃ − (∂t φ̃ + π∂t l + B)δh

− h(∂t l + u∂x l + v)δπ + (∂t (hπ) + ∂x (huπ)) δl dx dt. (5.34)

Based on the arbitrariness of variations, we can take δh = δϕ = 0 and δφ̃ �= 0, such
that only the underlined terms in (5.34) remain. Coupling to the shallow-water flux
(hu)x=Lc+ is then established in the continuity equation of the potential-flow model,

cf. (5.32). Vice versa, we take UL = (
h,

∫ b+h
b ∂x (ϕ + φ̃) dz

)T |x=L−
c
in the numeri-

cal flux for the shallow-water model. The well-known HLL-approximation to the
Godunov flux is used as the numerical flux F(UL ,UR) (Bokhove 2005; LeVeque
1990). Briefly, theHLL-flux orGodunov flux uses (an approximation of) the shallow-
water characteristics u ± √

gh to establish whether information is (partially) enter-
ing or leaving the domain. Hence, providing the limiting values UL |x=L−

c
from the

potential-flowmodel does not imply a priori that these values are used. That depends
on whether the characteristic uL − √

ghL > 0 is bigger than zero, such that informa-
tion is estimated to enter the domain, or not, with hLuL = ∫ b+h

b ∂x (ϕ + φ̃)x=L−
c
dz

and hL = h|x=L−
c
, cf. (5.33). A consistent time discretisation is the partially implicit,

first-order symplectic Euler time-stepping scheme, in which the continuity equation
will be updated using a scheme implicit in the waterdepth, followed by an explicit
step in φ̃, in which the latter, explicit step the already updated value of h is used.
For details, we refer to Gidel (2018) who simplified the timestepping in the shallow-
water domain by only taking one explicit iterate of the symplectic Euler scheme into
account and with good results. In addition, the dynamic waterline at x = xw(t) is
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discretised using the technique of Audusse et al. (2004), in which the fixed numerical
shallow-water domain x ∈ [Lc, L] is extended to include an essentially dry part of
the domain, i.e. for x ∈ [xw(t), L] as long as xw < L . Only the potential-flowmodel
is then partially solved in an implicit manner. Numerical results of waves generated
by a wavemaker in the deep-water domain and dissipating by wave breaking on the
beach will be presented in the next section. For further details on the implementation
and numerical results presented next, we refer to Gidel (2018). The derivation of the
variational coupling presented here is novel and an integrated version of the ones
found in Klaver (2009), Kristina et al. (2014), Gidel (2018), for linear potential flow,
a linear Boussinesq model and a nonlinear potential-flow model coupled to non-
linear shallow-water model, respectively. Note that Gidel (2018) contains an extra,
stabilising, yet dissipative, coupling term.

5.4.1 Numerical Results: Damping of Waves on the Beach

Two simulations will be shown and interpreted in order to demonstrate the ability of
the numerical coupling strategy derived earlier.

A first simulation is shown in Fig. 5.9 for a domain with potential flow in x ∈
[0, Lc] and a shallow-water model on the beach beyond x ∈ [Lc, L] with Lc = 11
m and L = 12 m. The beach starts at x = 3 m and a piston wavemaker, oscillating
at x = R(t) with a period of T = 1.339 s, generates the waves for a finite time.
Based on linear dispersion of potential-flow water waves, the expected wave-length
is λ ≈ 2 m, as observed in Fig. 5.9. In that figure, a comparison is made between a
simulation with a solid wall at x = Lc and one with a transparant two-way boundary
with a shallow-water model allowing for energy dissipation in hydraulic bores. In the
simulation without wave breaking, standing waves occur due to the wave reflection,
while in the simulation with the beach, wave reflection is minimal and nearly only
unidirectional wave propagation occurs, towards the beach.

A long-time simulation is analysed next, involving three time intervals with wave
generation, wave equilibration and wave damping respectively. The energy balance
between the deep-water and shallow-water models as well as the total energy is dis-
played in Fig. 5.10. The wavemaker is switched on from t ∈ [0, 68.03] s. The energy
increases initially and starts to equilibrate, on average, after wave breaking com-
mences on the beach around t = 16 s. Total energy dissipation for short-wavemotion
rapidly sets in after the wavemaker is switched off. Some long-wave motion remains,
unaffacted by energy damping in the hydraulic bores, explaining why some of the
energy remains. Due to the dissipative nature of the finite-volume shallow-water
numerics, even in the absence of hydraulic bores, energy will eventually dissipate to
zero, relative to the potential energy present in the system at rest.
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Fig. 5.9 The difference between simulations with a vertical wall at x = Lc (top panel at a given
time instance) and a shallow-water model over a beach (bottom panel) where wavebreaking will
occur for x ∈ [Lc, xw(t)] is shown in three snapshots at t = (2.86, 13.86, 36.74) s. The dynamic
domain shape, topography and the free-surface are shown as well as the zonal velocity. At the
coupling point, the potential-flow model is observed to be nearly depth-independent, a posteriori
justifying the choice of the coupling at x = Lc. Figure4.4 from Gidel (2018) used with permission

5.5 Summary and Conclusions

The central theme of this chapter has been the use of classical variational principles
(VPs) for themodelling of water-waves in compatible and geometric numerical mod-
elling of these free-surface waves. Both classical water-wave modelling in a two- or
three-dimensional domain with fixed bottom and side walls as well as extensions to
problems with wavemakers and coupling to shallow-water beaches with wave break-
ing have been considered. We started with a derivation of Luke’s VP and linked the
structure of a pre-Luke VP to the standard structure of a VP in classical mechanics.
Subsequently, the domain with its moving free surface was transformed to a fixed
reference domain in which the original coordinates become time-dependent vari-
ables, essentially describing the continuous form of the mesh motion required in the
numerical modelling of water waves. We thus followed the first and third principles
stated in the introduction: that the overal dynamics satisfies a VP in the conservative
limit and that a space-time discretisation can follow “directly” from a discretisation
of this VP for the continuum dynamics. Three types ofmeshmotionwere considered,
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Fig. 5.10 The energy partitioning between the subsystems is considered: the wavemaker operates
between t ∈ [0, 68.03] s after which time it is switched off. The wavemaker initially leads to a
(net) energy increase till wavebreaking at the beach starts to dissipate energy and the energy input
and energy loss reach a (net) balance around t = 35 s. Figure4.5 from Gidel (2018) used with
permission

including a novel version for which we derived a VP coupling water-wave dynamics
and mesh motion as the sum of the two separate VPs, cf. the second principle stated
in our introduction, stating that coupled systems can be modelled by “straightfor-
wardly” using the sum of the separate VPs. Another example of the second and third
principles concerned the coupling and discretisation of VPs for potential-flow water
waves in deep-to-intermediate-depth water coupled to breaking-wave dynamics on
a shallow-water beach.

In summary, the key reasons to adopt a variational approach have been twofold:
first, to ensure the stability, accuracy and speed of numerical discretisations by staying
close to the variational structure of the original continuum dynamics and, second, to
systematically formulate the dynamics of the coupled systems. We therefore finish
by outlining a few future directions in the area of coupled variational fluid-structure
systems, for which our variational approach has already shown to be fruitful:

• Variational and numerical coupling of water waves with wave-energy and ship
dynamics is undertaken in Kalogirou et al. (2017), Bokhove et al. (2019). Rigid
buoys and ships have been considered with translational and rotational degrees of
freedom of the solid structures.
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Fig. 5.11 Time sequence of a plunging breaker at (relative) times t = (0.0, 0.011, 0.022, 0.033,
0.044, 0.055) s. Courtesy Olivier Kimmoun, Institut de Recherche sur les Phénomènes Hors Equili-
bre (IRPHE); images taken during the laboratory tour at IRPHE, at theworkshop “BreakingWaves”,
on June 1st 2018 in Marseille, France

• Water waves have been coupled variationally to a nonlinear elastic beam repre-
senting a windturbine mast. Both this nonlinear formulation and stable variational
numerics of the linearised problem have been established (Salwa et al. 2017).

• Thevariationally coupledwave-beach dynamics has been validated inGidel (2018)
and will be analysed further in Gidel et al. (2021). A further challenge is to find a
suitable numerical discretisation of the unified potential-flow and shallow-water
model derived in Cotter and Bokhove (2010), Gagarina et al. (2013), because
the coupling point x = Lc chosen a priori in Sect. 5.4, between breaking and
nonbreaking waves, is intrinsically defined in this unified model.

• Wave slamming by breaking waves is an active topic of research but requires the
introduction of dissipative effects in the wave breaking. Plunging breakers lead
to changes in domain topology with droplets and bubbles, as seen in Fig. 5.11.
Mixed variational and dissipative approaches have been explored, using models
with (pseudo-)compressible effects, see, e.g. Salwa (2018).
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Appendix 1: Variations in Pre-Luke’s VP

While analysing the variations in (5.6), note furthermore that

∫ T

0

∫
ΩH

∫ h

0
D∂tδφ dz dx dy dt =

∫ T

0

∫
ΩH

∫ h

0
−δφ∂t D + ∂t (Dδφ) dz dx dy dt

(5.35a)

= −
∫ T

0

∫
ΩH

∫ h

0
δφ∂t D dz dx dy dt +

∫ T

0

d

dt

∫
Ωh

∫ h

0
Dδφ dz dx dy dt

−
∫ T

0

∫
ΩH

D∂t hδφ dx dy dt (5.35b)

= −
∫ T

0

∫
ΩH

∫ h

0
δφ∂t D dz dx dy dt −

∫ T

0

∫
ΩH

D∂t hδφ dx dy dt, (5.35c)

in which the volumetric contribution at t = 0 and t = T cancels, since
δφ(x, y, z, 0) = δφ(x, y, z, T ) = 0, and by assuming for the moment that Ωh is
time-independent. If Ωh is time-dependent, for example in the presence of a wave-
maker, then an extra term will emerge.
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