
Chapter 3
A Review of Nonlinear Boussinesq-Type
Models for Coastal Ocean Modeling

Clint Dawson and Ali Samii

Abstract We review some of the key developments in wave models used in the
coastal oceanography. To this end,wefirst recall thewell-known shallowness, nonlin-
earity, and topography parameters, which are used to describe the dominant features
in our problem. Next, we compare different wave models based on their assumptions
on the magnitude of these parameters or based on the highest power of each param-
eter included in the model. We then choose a recent version of the Green–Naghdi
equation and explain its derivation. Finally, we show some numerical results for this
model, which were obtained using a hybridized discontinuous Galerkin solver.

3.1 Introduction

Coastal ocean models are used in a variety of applications; examples include pre-
dicting tidal cycles in coastal regions, operations of ports and military installations,
modeling environmental conditions in bays and estuaries, and natural hazards such
as hurricane storm surges and tsunamis. Flow in coastal regions, and even in deeper
water, separates into long-wave and short-wave components (Holthuijsen 2007).
Long-wave phenomena can be modeled using the standard shallow water equations.
Short-waves require more complex mathematical treatment. Short-wave models are
further categorized into phase-resolving and non-phase resolvingmodels. Non-phase
resolving models are typically used over large coastal and oceanic regions, since it
is impossible to model each individual wave in the ocean. In the nearshore, where
solitary waves are present, phase resolving models should be used. We focus on such
models in this paper.
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Fig. 3.1 Domain of the problem, employed notations, and the length scales

The numerical simulation of water waves near the coast requires a mathemati-
cal model which can include the highly nonlinear and dispersive properties of the
wave regime in these areas. Although, the wave motion in such regions is a three
dimensional process, the Boussinesq wave theory considers a polynomial distribu-
tion for the velocity field in the vertical direction and reduces the problem to a two
dimensional description (Boussinesq 1872). In fact, Boussinesq’s core assumption
is the linear variation of the velocity field from zero at the bottom to a maximum
value at the water surface. The conditions for validity of this assumption were not
completely understood at the time, but it is now realized that if the fluid flow belongs
to the shallow water regime, the polynomial variation of the velocity field can be
well justified (Lannes 2013).

In order to identify the shallow water regime, we define three dimensionless
parameters based on the typical length scales in our problem. As shown in Fig. 3.1,
we consider a typical horizontal length scale (l0), a typical water depth scale (h0), a
typical wave amplitude (a0), and a typical topography scale (b0). According to these
scales, we define the nonlinearity parameter (ε = a0/h0), topography parameter
(β = b0/h0), and the shallowness parameter (μ = h0/ l0). As can be inferred from
its name, ε signifies the amount of nonlinear behavior in our problem. Meanwhile,
the main assumption in the shallow water regime is μ � 1, and if this assumption is
in place, we can use the Boussinesq’s technique to formulate a 2D problem from the
original 3D setup. Hence, we do not need any special assumption on ε or β to develop
the shallow water regime equations. However, in practice, in order to simplify the
equations, one can assume that ε = O(μ2) to get the weakly nonlinear equations.
In this context, Peregrine (1967) was among the first ones to assume a quadratic
variation for the vertical velocity and let ε = O(μ2) to form what is now known as
the classical Boussinesq equation. In this derivation, the terms of order μ4 (such as
εμ2) were ignored to simplify the equations. In general, if we neglect the terms of
order μN or higher in an approximate model, we call that model O(μN )-consistent
with the original water wave problem (or simply O(μN ) model).
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The O(μ4)model of Peregrine has some limitations, the most important of which
are its weak dispersive and nonlinear properties. In other words, it is not applicable
to problems with relatively large μ’s, and since its nonlinear properties are tuned to
match its dispersion, it also does not performwell formoderately nonlinearwaves.As
a result, the phase velocities computed using this model are only valid for long waves
with kh0 < 0.75 (k being thewavenumber) (Madsen 2003).Among the studieswhich
have tried to fix this issue (Nwogu 1993; Madsen et al. 2002; Barthélemy 2004),
Witting pioneered the use of Padé approximation to obtain a good fit for the linear
phase speed of the Stokes waves (Witting 1984). This approach was later pursued by
Madsen et al. (1991), where they incorporated a spatial derivative of thewater surface
elevation to substitute a temporal derivative of the horizontal velocity. On a separate
path, Nwogu (1993) proposed a new formulation based on the velocity at an arbitrary
depth, instead of the velocity at the still water elevation, and obtained an improved
matching for the linear celerity. The resulting dispersion relation was similar to the
one obtained in Madsen et al. (1991). This techniques was later improved by others
(Wei and Kirby 1995; Madsen and Sørensen 1992), and resulted in models with
linear dispersion relations, which are valid up to kh0 = 6. However, the issue of
weak nonlinearity was still unresolved. An effort to relax the assumption on the
nonlinearity parameter was to take ε = O(μ) and β = O(μ2), and obtain O(μ6)-
consistent equations, i.e. keeping terms such as ε2μ2, ε3μ2, and εμ4 in the equations
(Madsen and Schäffer 1998). In general, fixing both nonlinear and dispersive effects
in the above coupled setting makes the equations very complicated, and designing
numerical methods for them is not straightforward. One of the examples of such
efforts was proposed in Gobbi et al. (2000), where the equation is O(μ6)-consistent
with the original water wave problem, and contains up to fifth order derivatives. This
results in a valid linear dispersion relation up to kh0 = 6, and acceptable nonlinear
properties up to kh0 = 3.

In all of the above techniques, there is a coupling between the nonlinearity and
shallowness assumption in the problem. As a result, they have inconsistent linear
and nonlinear dispersion properties. However, if we can decouple these two features,
we can inherit the nonlinear dispersive properties from the linear case. In one of
the first efforts towards this goal (Agnon et al. 1999), the shoaling and dispersion
are included in the model by solving the Laplace’s equation with the kinematic
boundary conditions, while the nonlinearity is treated using Euler’s equation, based
on Zakharov’s methodology (Zakharov 1968). Based on this approach, other models
were developed, which are shown to be valid for a wide range of wavenumbers up to
kh0 = 25 (Madsen et al. 2002; Madsen 2003). In order to enhance the dispersive
behavior of these models for high bathymetry gradients, a newmodel was developed
in Madsen et al. (2006).

Another group of methods for deriving the nonlinear dispersive wave equations,
is based on using the so-called Dirichlet-Neumann (DN) operator. This operator was
formulated by Craig et al. (1992), Craig and Sulem (1993), and its application to
highly variable bathymetry was carried out in Artiles and Nachbin (2004a), Artiles
and Nacbin (2004b). In the last decade, multiple works have been carried out to
construct Serre-Green-Naghdi models (Serre 1953; Green and Naghdi 1976), which
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Table 3.1 Orders of precision of different models and the corresponding nonlinearity (ε) and
topography (β) parameters

Model Precision ε β

(Saint-Venant) NSWE O(μ2) O(1) O(1)

KdV (Korteweg and
De Vries 1895)

O(μ4) O(μ2) 0

Boussinesq-Peregrine
(Peregrine 1967)

O(μ4) O(μ2) O(μ2)

Green–Naghdi (Serre
1953; Green and
Naghdi 1976; Lannes
and Bonneton 2009)

O(μ4) O(1) O(1)

Madsen and Schäffer
(1998)

O(μ6) O(μ) O(μ2)

Agnon et al. (1999) O(μ8) O(μ) O(μ2)

are O(μ4)-consistent, and are suitable for fully nonlinear (ε = O(1)) problems on
arbitrary bathymetry (β = O(1)) (Lannes and Bonneton 2009; Bonneton et al. 2011;
Lannes and Marche 2015). The main advantage in all of these works is their rela-
tively straightforward computational implementation, due to their maximum order of
spatial derivatives being three. It has been shown that by using different techniques
such as introducing new tuning parameters, one can achieve a very good approxima-
tion to the dispersion relation using these O(μ4) models (Chazel et al. 2009, 2011).
Moreover, by dropping the assumption of water being irrotational, another group
of models has been devised (Zhang et al. 2013, 2014; Castro and Lannes 2014).
In Table3.1 we have summarized the main features of a number of shallow water
models based on the considered range of the dimensionless parameters.

In this article, we review the derivation of the irrotational O(μ4)-consistent equa-
tion for the fully nonlinear waves on an arbitrary bathymetry. We then show a set
of numerical results based on a hybridized discontinuous Galerkin solver for this
equation.

3.2 The Water Wave Problem

At a given time t , let Dt denote the subset ofRd+1, which is filled with water (refer to
Fig. 3.1). At a given point (x, z) ∈ Dt , let U(t, x, z) ∈ R

d+1 denote the velocity of a
fluid particle. Meanwhile u(t, x, z) ∈ R

d and w(t, X, z) ∈ R are the horizontal and
vertical components of the velocity. At this point, p(t, x, z) denotes the pressure. The
acceleration of gravity, which acts in the vertical direction (−gez), is taken constant
everywhere. Moreover, we use ∇ to denote the gradient in the horizontal direction
and ∇ to denote (∇, ∂z)

T . Similarly, we use Δ, and Δ to denote ∇2, and ∇2 + ∂2
z ,
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respectively. Assuming the water to be inviscid, incompressible, and uniform, with
irrotational motion, its flow is governed by the following equations:

∂tU + (U · ∇)U = − 1
ρ
∇p − gez in Dt , (3.1a)

∇ · U = 0 in Dt , (3.1b)

∇ × U = 0 in Dt . (3.1c)

Meanwhile, the particles on the top boundary (z = ζ(t, x)) and the bottom boundary
(z = b(x)) should not cross ΓT and ΓB :

U · n = 0 on ΓB, (3.1d)

∂tζ + ∇ζ · u − w = 0 on ΓT . (3.1e)

Referring to Fig. 3.1, one can obtain the normal vector on ΓT by taking the
gradient of the equation: z − ζ(t, x) = 0 (which describes ΓT ) and get: n|ΓT =
(−∇ζ, 1)/

√
1 + |∇ζ |2. Hence, it is possible to write (3.1e) in the following form,

as well:
∂tζ −

√
1 + |∇ζ |2 U · n = 0, on ΓT . (3.1e*)

Due to (3.1c), we can find a velocity potential function (Φ), such that ∇Φ = U.
Substituting this into (3.1a), and assuming pressure at the water surface to be patm,
(3.1a) becomes:

∂tΦ + 1
2 |∇Φ|2 + gz = − 1

ρ
(p − patm). (3.2)

Next, we define ψ as the trace of Φ on the water surface, i.e. Φ|z=ζ(x) = ψ . Accord-
ingly,we can express (3.1b–d), in terms of the velocity potential, and get the following
boundary value problem:

ΔΦ = 0 in Dt , Φ = ψ on ΓT , ∇Φ · n = 0 on ΓB . (3.3)

Under proper regularity assumptions, the solution to the above system depends on
ψ , and the parametrization of ΓT , ΓB using ζ, b. Hence, we identify the Dirichlet-
Neumann operator (G[ζ, b]), which solves the above system for a given ψ and maps
it as follows:

G[ζ, b] : ψ �→
√
1 + |∇ζ |2 ∂nΦ|ΓT (3.4)

or, equivalently (compare (3.1e) and (3.1e*)):

G[ζ, b] : ψ �→ −∇ζ · ∇Φ|ΓT + ∂zΦ|ΓT (3.4*)

For a rigorous definition of this operator over its functional settings, we refer the
interested reader to Lannes (2013). We use G to write (3.1e) in terms of the d-
dimensional coordinates and unknowns, in the form:
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∂tζ − G[ζ, b]ψ = 0. (3.5)

Next, wewant to express (3.3) independent of the vertical coordinate. Hence,we need
to removeΦ, and its derivatives from this equation. Since,ψ(t, x) = Φ(t, x, ζ(t, x)),
we use the chain rule to get:

∂tΦ = ∂tψ − ∂zΦ ∂tζ on ΓT , (3.6a)

∇Φ = ∇ψ − ∂zΦ ∇ζ on ΓT . (3.6b)

For ∂zΦ, we start from (3.1e) and use (3.6) and the above relations to get:

∂zΦ = G[ζ, b]ψ + ∇ζ · ∇ψ

1 + |∇ζ |2 on ΓT . (3.6c)

It will be fruitful if we can find a relationship between the DN operator and the
depth averaged velocity. To this end, we can start from the definition of the average
velocity, to get the following relation for the average momentum:

(hū)(t, x) =
∫ ζ

−h0+b
∇Φ(t, x, z) dz.

We then take the divergence of this formula in the horizontal direction, apply Leibnitz
rule, employ ΔΦ = 0, and use the boundary conditions (3.1d, e), to get:

∇ · (hū) = −∂zΦ|ΓT + ∇ζ · ∇Φ|ΓT

Comparing this with (3.1e), one has:

G[ζ, b]ψ = −∇ · (hū) (3.7)

Consequently, we can substitute (3.6) into (3.2), and along with (3.5), we obtain the
following system of equations:

⎧
⎨

⎩

∂tζ + ∇ · (hū) = 0,

∂tψ + gζ + 1

2
|∇ψ |2 − (∇ζ · ∇ψ − ∇ · (hū))2

2(1 + |∇ζ |2) = 0.
(3.8)

3.2.1 Dispersive Properties of the Linear Waves

The dispersion relation corresponding to Eq. (3.8) can be obtained by writing this
equation in terms of the perturbations of velocity potential and water surface about
the rest state on a flat bathymetry, i.e. setting ζ = 0, b = 0. This requires solving the
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following BVP:

ΔΦ = 0 in Dt , Φ = ψ on ΓT , ∂zΦ = 0 on ΓB, (3.9)

along with the following linearized system of equations:

{
∂tζ − G[0, 0]ψ = 0,

∂tψ + gζ = 0.
(3.10)

Here, ΓB is parametrized as z = −h0. Now, we take the Fourier transform of (3.9)
with respect to x, to obtain the following problem in terms of the wave vector k:

∂2
z Φ̂(k, z) = 0 in Dt , Φ̂ = ψ̂ on ΓT , ∂zΦ̂ = 0 on ΓB . (3.11)

This results in the following solution:

Φ̂(k, z) = cosh[(z + h0)|k|]
cosh(h0|k|) ψ̂(k). (3.12)

Since, in the linearized case, n|ΓT = (0, 1), we can simply write
√
1 + |∇ζ |2 ∂nΦ as

∂zΦ. Therefore, in the wavenumber domain we have the following:

G[0, 0]ψ̂ = ∂zΦ̂ = |k| tanh(|k|h0)ψ̂(k).

By substituting this into (3.10), we get the following equation for ζ̂ :

∂2
t ζ̂ (k) + g|k| tanh(h0|k|)ζ̂ (k) = 0.

By taking the Fourier transform of this equation with respect to t , we get the well-
known dispersion relation of the linear water waves:

ω(k) = √
g|k| tanh(h0|k|),

and the phase speed of linear waves at different wavenumbers (k = |k|) can be
computed using:

c(kh0) = √
gh0

√
tanh(kh0)√

kh0
(3.13)

If k in the above relation correspond to the length scale in our problem, i.e. k = 2π/ l0,
then we obtain the typical celerity of gravity waves in our problem:

c0 = √
gh0ν , with ν = tanh(2πμ)

2πμ
,
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withμ being the shallowness parameter. One can clearly observe thatμ characterizes
the typical wavenumber in the problem. When we are dealing with very long waves
(μ � 1), we can assume that ν � 1. Thus the water waves are nondispersive in such
cases, that is all of the wavelengths travel with the same speed. On the other hand,
when we have intermediate values for μ, the longer waves travel faster than the
shorter waves and the water waves show dispersive properties.

3.2.2 Scaling of Variables and Operators

In order to obtain the nondimensional equations, we should know the typical scales
of coordinates, variable, and the corresponding operators. Here, we first introduce
the time scale as the ratio of l0 by c0 (phase speed of linear waves): t0 = l0/

√
gh0.

Accordingly, we can define the nondimensional space and time coordinates (denoted
with primes):

x′ = x/ l0, z′ = z/h0, t ′ = t/t0, (3.14)

and their corresponding differential operators:

∇′ = l0∇, ∇′ = l0(∇, μ ∂z)
T , Δ′ = l20(∇2 + μ2 ∂2

z ), ∂t ′ = t0∂t ,

∇ = 1
h0

(μ∇′, ∂z′)T , Δ = 1
h20

(μ2 ∇′2 + ∂2
z′).

(3.15)

The scaling of ζ , b, and h = ζ + h0 − b is straightforward:

ζ ′ = ζ

a0
, b′ = b

b0
, h′ = h

h0
. (3.16)

We also want to find a typical scale for Φ. To this end, we first refer to (3.9), which
states that Φ and ψ should have the same order of magnitude. Moreover, we look at
the second equation of (3.10), which gives us a typical magnitude for ψ :

1

t0
∂t ′ψ0ψ

′ + ga0ζ
′ = 0 =⇒ ψ0 = a0

h0
l0

√
gh0,

Φ = Φ

Φ0
, with Φ0 = ψ0.

(3.17)

We also define a typical length scale for the horizontal velocity based on u0 =
∇Φ0, or in terms of the nondimensional variables: u0u′ = (Φ0/ l0)∇′Φ ′. Thus, the
dimensionless horizontal velocity can be defined as:

u′ = 1

u0
u , with u0 = Φ0

l0
= ε

√
gh0. (3.18)
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Before obtaining the nondimensionalized forms of the equations, we consider scal-
ing the Dirichlet-Neumann operator. According to (3.4), we know that G[ζ, b]ψ =
∂zΦ − ∇Φ · ∇ζ on the water surface. By substituting the derivatives and variables
from (3.14)–(3.18), we have:

G[ζ, b]ψ = Φ0

h0
(∂z′Φ ′ − μ2∇′(εζ ′) · ∇Φ ′)|z′=εζ ′ .

Thus we define:

G ′[εζ ′, βb′]ψ ′ := (∂z′Φ ′ − μ2∇′(εζ ′) · ∇Φ ′)|z′=εζ ′ , (3.19)

to get:

G[ζ, b]ψ = Φ0

h0
G ′[εζ ′, βb′]ψ ′ (3.20)

3.2.3 Nondimensionalization of Equations

Here, we first obtain the nondimensionalized version of the boundary value problem
(3.3). Using the definitions in the previous section, this equation takes the form:

μ2∇′2Φ ′ + ∂2
z′Φ

′ = 0 in − 1 + βb′ ≤ z′ ≤ εζ ′, (3.21a)

Φ ′ = ψ ′ on z′ = εζ ′, (3.21b)

∂z′Φ ′ − μ2∇′(βb′) · ∇′Φ ′ = 0 on z = −1 + βb′. (3.21c)

Itwill be useful towrite (3.7) in the dimensionless form.Thiswill be a straightforward
application of definitions for ∇′, Φ ′, h′, and u′:

G ′[εζ ′, βb′]ψ ′ = −μ2 ∇′ · (h′ū′)

Next, we substitute the above definitions of nondimensional variables and operators
to write Eqs. (3.8) in the nondimensionalized form:

⎧
⎪⎨

⎪⎩

∂t ′ζ
′ + ∇′ · (h′ū′) = 0,

∂t ′ψ
′ + ζ ′ + ε

2
|∇ψ ′|2 − εμ2

(∇′(εζ ′) · ∇′ψ ′ − ∇′ · (h′ū′)
)2

2(1 + ε2μ2|∇′ζ ′|2) = 0.
(3.22)

Now, we solve (3.21) exploiting the fact that μ � 1. To this end, let us consider
approximating the velocity potential based on the following asymptotic expansion:
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Φ ′(t, x, z) =
N∑

n=0

μ2n Φ ′
n(t, x, z) + O(μ2(N+1)) (3.23)

Hence, by including only the summation (
∑N

n=0 μ2n Φ ′
n(t, x, z)) in the right hand

side, we approximate Φ up to O(μ2(N+1)), and the corresponding model would be
O(μ2(N+1))–consistent with the original water wave problem. Although, the O(μ4)

model that we consider here will not have a very good precision for kh0 > 1.0, there
are techniques to improve its dispersive properties and increase its range of validity
up to kh0 = 4 (Chazel et al. 2009, 2011).

Now, if we substitute (3.23) to the boundary value problem (3.21), and arrange
the terms with the same power of μ, we get:

∂2
z′Φ

′
n =

{
0, for n = 0,

−(∇′)2Φ ′
n−1, otherwise.

(3.24)

Meanwhile, we let Φ ′
0 satisfy the boundary condition on the top and set the homo-

geneous boundary condition for other Φ ′
n’s. Thus the boundary conditions find the

form:

Φ ′
n =

{
ψ ′, for n = 0,

0, otherwise,
for z′ = εζ ′, (3.25)

∂z′Φ ′
n =

{
0, for n = 0,

β∇′b′ · ∇′Φ ′
n−1 otherwise,

for z′ = −1 + βb′. (3.26)

We have to solve a simple ODE to obtain the solution to Φ ′
0. Afterwards, the

solution toΦ ′
1 will be obtained by substitutingΦ ′

0 in the above equations and solving
anotherODE.Theprocess is straightforward, and canbe done using computer algebra
software. Thus, we will have:

Φ ′
0 = ψ ′ (3.27a)

Φ ′
1 = −∇′2ψ ′

2
z′2 + [

(−1 + βb′)∇′2ψ ′ + β∇b′ · ∇ψ
]
z

+ ∇′2ψ
2

[
h′2 − (1 − βb′)2

] − β(h′ − 1 + βb′)∇′b′ · ∇′ψ ′ (3.27b)

It isworthwhile noting that for an O(μ2)model, i.e.Φ ′ = Φ ′
0, the velocity potential is

constant in depth. This means, the velocity field does not depend on the z-coordinate
in the O(μ) models. An example of such models is the Saint-Venant equation, also
known as the nonlinear shallowwater equation (NSWE).Moreover, the vertical com-
ponent of the velocity, i.e. w′ = ∂z′Φ ′ vanishes in these models. On the other hand,
in O(μ4) models, such as Green–Naghdi equation, the velocity varies quadratically
in depth.
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Next, let us obtain the velocity variation corresponding to Φ ′
0 and Φ ′

1. In the
nondimensionalized coordinates we have:

ū′
n = 1

h′

∫ ζ ′

−1+βb′
∇Φ ′

n dz
′.

By substituting Φ ′
0 and Φ ′

1 from (3.27) into the above relation, and some algebraic
manipulation, we can obtain ū′

0 and ū′
1:

ū′
0 = ∇′ψ ′, (3.28)

ū′
1 = −μ2T ′[h′, b′]∇′ψ ′, (3.29)

where
T ′[h′, b′]w = R′

1[h′, b′](∇′ · w) + βR′
2[h, b′](∇b′ · w), (3.30)

and,

R′
1[h′, b′]w = − 1

3h′ ∇′(h′3w) − β
h′

2
w∇′b′, (3.31a)

R′
2[h′, b′]w = 1

2 h′ ∇′(h′2w) + βw∇′b′. (3.31b)

Now, we can write the following relation for average velocity (dropping [h′, b′] from
T ′):

ū′ = ∇′ψ ′ − μ2T ′∇′ψ ′ + O(μ4) (3.32)

Therefore, ∇′ψ ′ = ū′ + μ2T ′∇ψ ′ + O(μ4). Substituting ∇′ψ ′ from this relation
into itself will result in:

∇′ψ ′ =ū′ + μ2T ′ū′ + μ4T ′ (T ′∇′ψ ′) + O(μ4)

∴ ∇′ψ ′ = ū′ + μ2T ′ū′ + O(μ4). (3.33)

This relation is the last piece of machinery to derive the Green–Naghdi wave model.
As an example of deriving an asymptotic wave model, we can start from (3.22), take
the gradient of the second equation and drop all of the terms of order O(μ2) to obtain
the nonlinear shallow water equation (NSWE):

{
∂t ′ζ

′ + ∇′ · (h′ū′) = 0,

∂t ′ ū′ + ∇′ζ ′ + εū′ · ∇ ū′ = 0.

We usually prefer the equations to be in terms of the conserved variables, i.e. h, hū.
Hence, we use ∂t ′h′ = ε∂t ′ζ

′, and ∂t ′u′ = [∂t ′(h′ū′) + εū′∇′ · (h′ū′)]/h in the second
equation to obtain:
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⎧
⎨

⎩

∂t ′h′ + ε∇′ · (h′ū′) = 0,

∂t ′(h′ū′) + ε∇′ · (h′ū′ ⊗ ū′) + 1

ε
h′(∇′(h′ + βb′)) = 0.

Finally, we can write the equations with dimensions:

{
∂t h + ∇ · (hū) = 0,

∂t (hū) + ∇ · (hū ⊗ ū) + gh∇h + gh∇b = 0.

3.2.4 Green–Naghdi Equation

The process for obtaining Green-Naghdi equation is similar to what we explained
for NSWE; however, in the final step, instead of dropping all terms of order O(μ2N ),
with N ≥ 1, we drop the terms of order O(μ2N ), with N ≥ 2. We encourage the
interested readers to also consult the original materials, in which these equations
were introduced (Lannes andBonneton 2009;Lannes 2013).Now, let uswriteGreen–
Naghdi equation in terms of the dimensionless variables:

{
∂t ′ζ

′ + ∇′ · (h′ū′) = 0,

(I + μT ′)(∂t ′ ū′) + ∇′ζ ′ + ε(ū′ · ∇′)ū′ + εμQ′(ū′) = 0.
(3.34)

With, T ′ defined in (3.30), and Q′ is defined in terms of R′
1 and R′

2, which were
introduced in (3.31):

Q′(w) = R′
1

(∇′ · (w∇′ · w) − 2(∇′ · w)2
) + βR′

2

(
(w · ∇′)2b′) (3.35)

It is observed thatQ′ contains up to third order derivatives of the velocity field, which
we can avoid computing by introducing a new operator Q′

1 as follows:

Q′
1(w) = T ′ ((w · ∇)w) − Q′(w). (3.36)

Now, Q′
1 contains up to second derivatives, and has the form:

Q′
1(w) = −2R′

1

(
∂x ′w · ∂y′w⊥ + (∇′ · w)2

) + βR′
2

(
w · (w · ∇′)∇′b′) (3.37)

Here, w⊥ = (−w2, w1)
T ; meanwhile, ∂x ′ , and ∂y′ are the partial derivatives with

respect to x ′, and y′ respectively. Using this definition, the equation (3.34) becomes:

{
∂t ′ζ

′ + ∇′ · (h′ū′) = 0,

(I + μT ′)
(
∂t ′ ū′ + ε(ū′ · ∇′)ū′) + ∇′ζ ′ + εμQ′

1(ū
′) = 0.

(3.38)
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Similar to the previous section, we prefer the equations in terms of h′, h′ū′:
{

∂t ′h′ + ε∇′ · (h′ū′) = 0,
(
I + μh′T ′ 1

h′
) (

∂t ′(h′ū′) + ε∇′ · (h′ū′ ⊗ ū′)
) + h′∇′ζ ′ + εμh′Q′

1(ū
′) = 0.

(3.39)
If we apply the inverse operator

(
I + μh′T ′ 1

h

)−1
on the second equation, we can

simplify the numerical simulation of this equation. Afterwards, we go back to the
unknowns with dimensions and the above system becomes:

{
∂t h + ∇ · (hū) = 0,

∂t (hū) + ∇ · (hū ⊗ ū) + (
I + μhT 1

h

)−1
(gh∇ζ + hQ1(ū)) = 0.

(3.40)

The operators T and Q1 with dimensions are according to (3.30) and (3.37) with
β = 1, respectively. It is possible to modify this equation to get a set of equations
with better dispersive properties (Chazel et al. 2011; Bonneton et al. 2011), or make it
more suitable for large problems by avoiding the computation of the inverse operator(
I + μh′T ′ 1

h

)−1
at each time step (Lannes and Marche 2015).

3.3 A Finite Element Discretization of the Green-Naghdi
Equation

In this section, we give a very concise introduction to a hybridized discontinuous
Galerkin (HDG) discretization of Eq. (3.40). The details of the proposed method will
be reported in separate upcoming articles. In our numerical scheme, we use the well-
known Strange splitting technique (Strang 1968) to decompose equation (3.40) to a
hyperbolic (nonlinear shallow water equation) and a dispersive part. This splitting
is known to be second order accurate if each of its components are at least second
order accurate. Let us first consider S1 as the solution operator associated with the
hyperbolic part of (3.40):

{
∂t h + ∇ · (hu) = 0,

∂t (hu) + ∇( 12 gh
2) + ∇ · (hu ⊗ u) + gh∇b = 0.

(3.41)

Moreover, S2 is the solution operator for the dispersive part:

{
∂t h = 0,

∂t (hu) − gh∇ζ + (1 + hT 1h)−1 [gh∇ζ + hQ1(u)] = 0.
(3.42)

The Strang splitting suggests that the solution operator corresponding to system
(3.40) is: S(Δt) = S1(Δt/2)S2(Δt)S1(Δt/2). A graphical representation of the
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Fig. 3.2 The splitting
technique used to solve the
coupling between the
hyperbolic and dispersive
sub-problems. We start with
qh

∣∣
tn
, and obtain qh

∣∣
tn+1

at
the end of the time step

employed technique is shown in Fig. 3.2. qh in this figure stands for the unknown
state, i.e. qh = (hh, huh).

Although, Eq. (3.40) can be solved without the above splitting scheme, we prefer
this approach, because we can apply different time discretization techniques to the
hyperbolic and dispersive parts. For example, one can use an implicit time discretiza-
tion for (3.41), and an explicit time integration for (3.42).

3.3.1 Notation

Let us consider the d-dimensional domain Ω and Th = {K } as a finite collection of
disjoint elements partitioningΩ (refer to Fig. 3.3). Let ∂Th denote all of the faces of
the elements in Th (dashed lines in Fig. 3.3), and Eh be the set of faces in the mesh
(continuous lines in Fig. 3.3). It is worthwhile mentioning that, while in Eh , we count
the common faces between two elements only once, the same common face is counted
twicewhenwe form ∂Th . Now, assume e is a common face between two elements K+
and K−, i.e. e = ∂K+ ∩ ∂K−. We denote by n± the unit normals of K± at e and use
[[·]] to show the jump of the information across e, e.g. [[F · n]] = F+ · n+ + F− · n−,

Fig. 3.3 Domain Ω with the
discretization Th , the set of
element faces (∂Th), and the
set of faces in the mesh (Eh)



3 A Review of Nonlinear Boussinesq-Type Models for Coastal Ocean Modeling 59

with F± being the values of F corresponding to K±. For the faces on the boundary of
the domain, where e ∈ ∂Th ∩ ∂Ω , we define the jump based on the only contributing
face, i.e. [[F · n]] = F · n. Moreover, the average value of F at a common face is
defined by {{F}} = (F+ + F−)/2.

Throughout this section, we mainly use vector notation. However, for certain
relations, the index notation can provide a more clear description. In those cases, we
denote derivatives with respect to spatial coordinates with subscripts, i.e. qi, j denotes
the derivative of the i th component of q with respect to the j th spatial coordinate.
We also use (v,w)G to denote the inner product of functions v andw in G ⊂ R

d , i.e.
(v,w)G = ∫

G vw dG. Furthermore, 〈v,w〉Γ denotes
∫
Γ

vw dΓ , when Γ ⊂ R
d−1.

3.3.2 Functional Setting

For each element K ∈ Th and p ≥ 0, let Q p(K ) denote the space of polynomials
of degree at most p in each spatial direction. We choose our trial solution and test
spaces as the set of square integrable functions over Th , such that their restriction to
the domain of K belongs toQ p(K ); i.e.

Vp
h := {q ∈ (L2(Th))

d+1 : q|K ∈ (Q p(K ))d+1 ∀K ∈ Th}. (3.43a)

The approximation spaces over the mesh skeleton (Eh) are defined as:

Mp
h :={μ ∈ (L2(Eh))

d+1 : μ|e ∈ (Q p(e))d+1 ∀e ∈ Eh}, (3.43b)

M̄
p
h := {μ ∈ (

L2(Eh)
)d : μ|e ∈ (

Q p(e)
)d ∀e ∈ Eh}. (3.43c)

We also define the L2-projection operator Π∂ , which maps a given ξ ∈ (L2(Eh))
d+1

to the set of functions whose restriction to e ∈ Eh is in (Q p(e))d+1, and Π∂ satisfies:

〈Π∂ξ − ξ ,μ〉e = 0, ∀μ ∈ (Q p(e))d+1.

3.3.3 Variational Formulation and Solution Procedure

Before we give the variational formulation for the hyperbolic and dispersive sub-
problems, we write (3.41) in the familiar conservation form:

∂tq + ∇ · F(q) = L in Ω ⊂ R
d , (3.44)

with L being the source term, and
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q =
{
h
hu

}
, F(q) =

{
hu

hu ⊗ u + 1
2 gh

2I

}
. (3.45)

Next, let us rewrite Eq. (3.42) as:

{
∂t h = 0,

∂t (hu) − gh∇ζ + w1 = 0,
(3.46)

where w1 is obtained using:

(1 + hT 1

h
)w1 = gh∇ζ + hQ1(u). (3.47)

Using definition (3.30) with β = 1, the above equation finds the following form:

w1 + hT
(
1
hw1

) = w1 − 1

3
∇ (

h3∇ · (
1
hw1

)) − h2

2
∇ · (

1
hw1

) ∇b

+ 1

2
∇ (h∇b · w1) + ∇b · w1∇b. (3.48)

We also expand the operator Q1(u) in the right hand side of (3.47) as follows:

hQ1(u) =2

3
∇ (

h3∂xu · ∂yu⊥ + h3(∇ · u)2
) + 1

2
∇ (

h2u · (u · ∇)∇b
)

+ h2
(
∂xu · ∂yu⊥ + (∇ · u)2

) ∇b + h (u · (u · ∇)∇b) ∇b. (3.49)

Based on above relations, (3.47) can be written as a system of first order equations:
⎧
⎪⎨

⎪⎩

∇ · ( 1hw1) − h−3w2 = 0,
w1 − 1

3∇(w2) − 1
2hw2∇b + 1

2∇(h∇b · w1)

+ w1∇b ⊗ ∇b = gh∇ζ + hQ1(u).

(3.50)

In the next two sections, we solve Eqs. (3.44) and (3.50).

Hyperbolic Part

We are looking for a piecewise polynomial solution qh ∈ Vp
h which satisfies Eq.

(3.44) in the variational sense. Hence, for all p ∈ Vp
h and every K ∈ Th , we want

qh to satisfy:

(∂tqh, p)K + 〈F∗
h, p〉∂K − (F(qh),∇ p)K − Lh( p) = 0. (3.51)

Here, F∗
h is the numerical flux, an approximation to F(q) · n over the faces of the

element K . Similar to the finite volumemethod,we can obtain a stable and convergent
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solution by a proper choice of F∗
h . In the hybridizable DG formulation, the numerical

flux is defined through the numerical trace (̂qh), which is an approximation to q on
the skeleton space (Eh). Here, we consider the following form for F∗

h :

F∗
h = F(̂qh) · n + τ (qh − q̂h), (3.52)

where τ is the stabilization parameter and its choice is important for obtaining a
convergent and stable method. Here, we use the Lax-Friedrichs flux for this purpose
(Samii et al. 2019). It is also worth mentioning that q̂h is assumed to be single-valued
on any given face in Eh .

Next, we want to satisfy the flux conservation condition across the element faces.
Since, the numerical flux is the only means of communication between elements, in
all of the internal faces, we require that the projection of the jump of F∗

h onto Mp
h

vanishes, i.e. Π∂

[[F∗
h

]] = 0. On the other hand, over the domain boundary (∂Ω), we
apply the boundary condition through the boundary operator Bh . Hence, ∀μ ∈ Mp

h ,
we want to have:

〈F∗
h,μ〉∂T h\∂Ω + 〈Bh,μ〉∂T h∩∂Ω = 0 (3.53)

Here, Bh is the boundary operator, and should be defined according to the applied
conditions on ∂Ω . The details of the employed boundary conditions can be found in
other references (Samii et al. 2019).

We should solve Eqs. (3.51) and (3.53) to obtain the unknowns of the problem.We
can substitute F∗

h from (3.52) into these two equations, and assemble (3.51) over all
of the elements. Thus, the problem may be summarized as finding the approximate
solution (qh, q̂h) ∈ Vp

h × Mp
h , such that, for all ( p,μ) ∈ Vp

h × Mp
h :

(∂tqh, p)T h − (F(qh),∇ p)T h + 〈τqh, p〉∂T h

+ 〈F(̂qh) · n, p〉∂T h − 〈τ q̂h, p〉∂T h − Lh( p) = 0, (3.54a)

〈F(̂qh) · n,μ〉∂T h\∂Ω + 〈τqh,μ〉∂T h\∂Ω

− 〈τ q̂h,μ〉∂T h\∂Ω + 〈Bh,μ〉∂T h∩∂Ω = 0. (3.54b)

Considering Eq. (3.54), we use Newton-Raphson method to form a linearized equa-
tion in terms of the increments of qh and q̂h . For the simplicity of the presentation,
we consider backward Euler technique as the time integrator, with Δt being the cur-
rent time step. Hence, denoting by qn−1

h the values of qh in the previous time level,
and (q̄h, ¯̂qh) ∈ Vp

h × Mp
h the corresponding values in the current iteration, we seek

(δqh, δq̂h) ∈ Vp
h × Mp

h such that for all ( p,μ) ∈ Vp
h × Mp

h , we have:

a1(δqh, p) + c1(δq̂h, p) + f1( p) = 0, (3.55a)

cT2 (δqh,μ) + cT3 (δqh,μ) + e1(δq̂h,μ)
+ e2(δq̂h,μ) + f2(μ) + f3(μ) = 0. (3.55b)

with the bilinear forms and functionals defined as below:
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a1(δq j , pi ) = 1

Δt
(δq j , δi j pi )Th −

(
∂Fik
∂q j

δq j , pi,k

)

Th

+ 〈
τi jδq j , pi

〉
∂Th

,

c1(δq̂ j , pi ) =
〈(

∂ F̂ik
∂q̂ j

nk + ∂τik

∂q̂ j
q̄k − ∂τik

∂q̂ j

¯̂qk − τi j

)

δq̂ j , pi

〉

∂Th

,

f1(pi ) = 1

Δt
(q̄i − qn−1

i , pi )Th−〈F̂i j n j , pi 〉∂Th + 〈τi j q̄ j , pi 〉∂Th

− 〈τi j ¯̂q j , pi 〉∂Th − (Fi j , ∂ j pi )Th − Li (pi ),

cT2 (δq j , μi ) = 〈
τi jδq j , μi

〉
∂T \∂Ω

, cT3 (δqh,μ) =
〈
∂Bh

∂qh
δqh,μ

〉

∂Ω

,

e1(δq̂i , μi ) =
〈(

∂ F̂ik
∂q̂ j

nk + ∂τik

∂ q̂ j
q̄k − ∂τik

∂ q̂ j

¯̂qk − τi j

)

δq̂ j , μi

〉

∂T \∂Ω

,

e2(δq̂h,μ) =
〈
∂Bh

∂ q̂h
δq̂h,μ

〉

∂Ω

,

f2(μi ) =
〈
F̂i j n j + τi j q̄ j − τi j ¯̂q j , μi

〉

∂T \∂Ω
; f3(μ) = 〈Bh,μ〉∂Ω

(3.56)
In the above definitions, Fi j , F̂i j , and τi j denote the element at i th row and j th column
of F(q̄h), F( ¯̂qh), and τ ( ¯̂qh), respectively. Meanwhile, δi j denotes the Kronecker
delta.

Dispersive Part

Now, we consider solving Eq. (3.50). To this end, we find (w1h, w2h) ∈ Vp
h , and

ŵ1h ∈ M̄
p
h such that:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(h−3 w2h, p2) − 〈ĥ−1 ŵ1h · n, p2〉 + (
h−1 w1h,∇ p2

) = 0.
(w1h,p1) − 1

3 〈w∗
2h · n,p1〉 + 1

3 (w2h,∇ · p1) − 1
2

(
1
h∇bw2h,p1

)

+ 1
2 〈ĥ∇b · ŵ1h,p1 · n〉 − 1

2 (h∇b · w1h,∇ · p1)
+ (∇b ⊗ ∇bw1h,p1) = l01(p1),

(3.57)

for all (p1, p2) ∈ Vp
h . Here, the definition of l01(p1) can be inferred by comparing

the above system with (3.50); moreover, the numerical flux w∗
2h · n is defined as:

w∗
2h · n = w2hI · n + τ

(
w1h − ŵ1h

)
, (3.58)

where, I is the d × d identity matrix, and τ is the stabilization parameter matrix. We
will use a constant and uniform diagonal matrix for this purpose.

Next, we define the following bilinear forms and functionals:
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a02(w2h, p2) = (h−3w2h, p2); bT01(w1h, p2) = (h−1w1h,∇ p2);
c01(ŵ1, p2) = 〈ĥ−1ŵ1h · n, p2〉; b02(w2h,p1) = (∇w2h,p1);

a01(w1h,p1) = (w1h,p1) + (∇b ⊗ ∇bw1h,p1) ;
d01(w1h,p1) = 〈τw1h,p1〉; bT03(w1h,p1) = (h∇b · w1h,∇ · p1)

a03(w2h,p1) = (
1h∇bw2h,p1

) ;
c02(ŵ1h,p1) = 〈τ ŵ1h,p1〉 + 3

2
〈ĥ∇b · ŵ1h,p1 · n〉.

(3.59)

We are now able to write Eq. (3.57) as:

{
A02w2h + BT

01w1h − C01ŵ1h = 0
(
A01 − 1

2 B
T
03 − 1

3D01
)
w1h − (

1
2 A03 + 1

3 B02
)
w2h + 1

3C02ŵ1h = L01
(3.60a)

Finally, we also require that the numerical flux be conserved across element edges.
In other words, we have:

〈w∗
2h · n, μ〉∂Th\∂Ω + 〈Bh, μ〉∂Th∩∂Ω = 0, (3.60b)

for all μ ∈ M̄
p
h . Here Bh is the boundary operator, which can be defined based on

the applied boundary conditions.
As a final remark, one should note that solving equation (3.47) involves compu-

tation of the 1st and 2nd order derivatives of the velocity vector. Among all other
terms, we need to compute the term∇ (

h3∂xu · ∂yu⊥ + h3(∇ · u)2
)
in each element.

If this computation is performed in a local manner in each element independent of
the others, we lose a significant order of accuracy. It can be easily checked that by
computing this term locally, our solution will not converge for elements with first
order polynomial approximation. On the other hand, since we use this term in our
weak formulation, one might consider using the integration by parts technique to
transfer the gradient of the parentheses to the test function, and replace the flux
of the terms in parentheses with a proper numerical flux. However, finding such a
flux formulation for the extremely nonlinear terms like (∇ · u)2 or ∂xu · ∂yu⊥ is not
straightforward. Therefore, in this study we use a local discontinuous Galerkin tech-
nique to obtain approximations to ∇u and ∇∇u. It is worthwhile to note that, ∇u is
a 2-tensor and ∇∇u is a 3-tensor; As a result, we switch to index notation for clarity.
We use ui to denote the components of u and define the tensors ri j (which contains
the components of ∇u), and si jk (containing the components of ∇∇u) as follows:

ri j − ∂ j ui = 0, (3.61a)

si jk − ∂kri j = 0. (3.61b)

Next, we write the variational formulations corresponding to these equations in an
element (K ∈ Th):
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Fig. 3.4 Schematic plot of
the domain of Example 1.
The stripe is 20m long and
0.2m wide

(
ri j , σi j

)
K = 〈ûi , σi j n j 〉∂K − (

ui , ∂ jσi j
)
K , (3.62a)

(
si jk, ηi jk

)
K = 〈r̂i j , ηi jknk〉∂K − (

ri j , ∂kηi jk
)
K . (3.62b)

In these equations, ûi and r̂i j are the numerical fluxes, which should be defined based
on the values of ui and ri j in the two neighboring elements. In this study we use the
centered fluxes (Bassi and Rebay 1997), i.e. ûi = {{ui }}, r̂i j = {{ri j }}.

By using this technique, we can compute the derivatives of u, and substitute
them in (3.49) to compute hQ1(u), and solve the system (3.60a) by an explicit time
integration method.

3.4 Numerical Results

In this section, we present two numerical examples, for verification and validation of
the presented technique. The purpose of the first example is to show the convergence
properties of the numerical approximation with respect to the element size (Δx) and
the polynomial order (p). In the second example we consider the amplifying effect
of the reflection from a solid wall on the amplitude of a solitary wave. This kind of
simulation is useful in the design of levees and dikes. We compare our numerical
results with experimental data from the literature. In both of the numerical tests pre-
sented here, we use backward difference formula of second order for the hyperbolic
part and the regular Runge-Kutta time integration technique for the dispersive part
of the operator splitting. To solve the problem, we use our software which has been
developed (Samii et al. 2016) using the libraries deal.II (Bangerth et al. 2016), PETSc
(Balay et al. 2015), and MUMPS.

Example 1 In this example we consider the exact solution to the nonlinear Green-
Naghdi equation on a flat bathymetry in one dimension. This solution, which is
derived by Serre (1953), should match our numerical results with b = −h0. This
analytical solution is given by:
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Fig. 3.5 The approximation errors and rates of convergence for differentmesh sizes and polynomial
orders a: a0/h0 = 0.2, b: a0/h0 = 0.4
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Fig. 3.6 The geometry of the numerical model of Example 2

h(t, x) = h0 + a0 sech
2 (κ(x − x0 − c0t)) , (3.63a)

hu(t, x) = c0h(t, x) − c0h0, (3.63b)

κ =
√
3a0

2h0
√
h0 + a0

, (3.63c)

c0 = √
g(h0 + a0) (3.63d)

Here, we consider h0 = 0.5, and two values for a0/h0, i.e. 0.05, 0.2. We solve the
problem in the domain shown in Fig. 3.4. The domain is a stripe with 20m length and
0.2mwidth, and is orientedwith an angle of 30◦ with respect to the x-axis. The reason
for choosing a rotated domain is to include as many nonzero terms as possible in Eq.
(3.47). Since we have rotated the domain, the x-coordinate in the analytical solution
(3.63) should be replaced by x1 (refer to Fig. 3.4). At all boundaries we consider solid
wall conditions. In our numerical scheme, we assign the initial conditions according
to the above h, hu at t = 0, x0 = −4, and let the solitary wave propagate in the
positive x1-direction.

We compute the errors of the numerical results at time t = 0.375 s in the L2-
norm, i.e. ‖q − qh‖L2 with q = (h, hu). Next, we compute the corresponding rates
of convergence on a set of successively refined meshes for polynomial orders p =
0, 1, 2, 3. The corresponding plots for a0/h0 = 0.2, 0.4 are shown in Fig. 3.5. We
can observe that for a0/h0 = 0.2, the convergence rates are very close to the optimal
rates, i.e. p + 1, for all orders of polynomial approximations. An important feature in
these plots is the convergence of the results for p = 0 with the order 0.85. The same
observation as above is also true for a0/h0 = 0.4, except the lower convergence rate
for p = 0. As a final remark, it should be noted that in this example, the analytical
solution of u is not exactly zero at the two ends of the domain i.e. x1 = ±10 m.
Hence, the error caused by applying the solid wall becomes the dominant error as we
decrease the discretization errors. As a result we cannot achieve errors lower than
10−6 in this example.

Example 2 In this example we validate our numerical results against experimental
data regarding the reflection of a solitary wave over a sloping beach (Dodd 1998;
Walkley and Berzins 1999). The geometry of this problem is shown in Fig. 3.6. The
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Fig. 3.7 The snapshots of the water surface (ζ ) in Example 2, at different times
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Fig. 3.8 Time history of the water surface at reading station (x = 37.75 m) in Example 2

incident wave does not break prior to touching the wall; however, after the reflection
its shape changes dramatically, which requires a fully nonlinear model to capture its
behavior.

The numerical model is 40m long, and the solid wall condition is applied at its
both ends. The initial water depth is h0 = 0.7m, and two values are used for the initial
wave amplitude, i.e. a0 = 7 cm, and a0 = 12 cm. The wave starts its propagation at
x = 10 m (refer to Fig. 3.6), and the beach with the slope 1:50, starts at x = 20 m.
The element size is 8cm and we use first order elements to discretize the domain.
The time history of water surface elevation at different locations in the domain is
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available in the literature (Walkley and Berzins 1999). Here, we present our results
for a reading station located at x = 37.75 m.

In Fig. 3.7, we show the snapshots of the water surface rise during the simulation
for the initial amplitudes a0 = 7 and 12cm. In Fig. 3.8 we show the time history of
the water surface elevation at the reading station with x = 37.75 m. The numerical
technique have been able to capture the peaks in the experimental data quite well;
however, as the reflected waves return from the wall, we can observe differences
between numerical and experimental results.

3.5 Conclusions

In this paper, we have discussed various Boussinesq-Green-Naghdi models for
approximating nearshore wave physics, and given some preliminary numerical
results using the hybrid discontinuous Galerkin method. Future work will explore
this methodology more fully for complex, two-dimensional domains, with adaptive
mesh and time-step control.
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