
Chapter 2
Water Waves in Isotropic
and Anisotropic Media: A comparison

Leo R. M. Maas

Abstract Restoring forces as gravity, Coriolis force or their combination, endow
geo and astrophysical fluids with an anisotropy direction. Breaking the underlying
hydrostatic or cyclostrophic force balances in fluids that are stratified in density or
angular momentum results in obliquely-propagating internal waves. These waves
differ in nearly every conceivable aspect from external, surface gravity and capil-
lary waves. Differences between linear internal and external waves stem to a large
part from the complementary way in which their frequency depends on the wave
vector. While these differences may be hiding in symmetrically-shaped basins, these
become fully apparent when the boundary shape breaks the symmetry imposed by
the anisotropy. These underlying force balances also constrain anywave-drivenmean
flows. Interestingly, the lack of a clear force balance in a homogeneous, non-rotating
fluid that is stratified in linear momentum, renders waves, perturbations on these
shear flows, ‘problematic’.

2.1 Introduction

Waves in isotropic media, like familiar sound and electromagnetic waves in three-
dimensional space, or gravity waves in the two-dimensional plane of the water sur-
face, behave quite differently from waves in anisotropic media. Inside fluids, the
directions of gravity and/or background rotation provide the fluid with an anisotropy
which strongly influences wave propagation inside stratified and/or rotating fluids.
Gravity, rotation and a nontrivial shape of the fluid domain are important ingredients
in the fields of geophysical and astrophysical fluid dynamics. This warrants consid-
eration of the specific consequences of these properties, and a comparison between
isotropic external and anisotropic internal waves. The aim of this paper is to juxta-
pose well-known properties of isotropic surface water waves with those exhibited by
anisotropic waves in stratified/rotating fluids.
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In Sect. 2.2.1, we start by considering external waves: isotropic gravity waves
propagating on the surface of homogeneous-density fluids. This deals with the spe-
cific nature of their dispersion relation, its implications for wave ray divergence and
wave ray chaos, and the modifying influence of background rotation on long surface
gravity waves. This leads to a brief discussion of Sverdrup, Poincaré and Kelvin
waves (see also Chap. 4 of this book), as well as to amplitude and phase patterns
displaying amphidromic points, phase-singularities where phase is multi-valued and
vertical displacement vanishes.

Section2.2.2 discusses two types of heterogeneousfluids that are density-stratified,
supporting internal waves. The first type consists in layers of fluid that differ in den-
sity. Two-layer fluids allow for interfacial gravity waves that propagate horizontally
along the average position of the interface, the pycnocline, which acts as a wave
guide. These interfacial waves behave similar to surface waves because layers of
uniform average depth inherit isotropy. The second type of internal gravity waves,
found in continuously-stratified and particularly in uniformly-stratified fluids, obey
another type of dispersion relation. Internal gravity waves propagate as beams, along
paths that are inclined relative to the direction of gravity. A uniform water depth may
again render the fluid superficially isotropic—up and downward propagating beams
combine into vertically-standing, horizontally-propagating internal wave modes—
but variations inwater-depth reveal the true underlying anisotropic nature of stratified
fluids. Upon reflection from sloping bottoms and side walls, internal wave beams
lead to wave convergence and wave attractors.

Homogeneous-density fluids can still stratify, namely in linear momentum—
known as shear flows—or in angular momentum, known as swirling flows. Both
types of stratification support waves, although, as discussed in Sect. 2.3.1, those in the
latter case are easier to observe. Solidly rotating fluids, for which the angular velocity
is spatially uniform and constant, offer an important special case of swirling flows.
When containermotion produces this state the shear flow is deceptively simple. Upon
passing through a viscous spin-up phase, observed from a co-rotating frame of refer-
ence, the flow recedes to a quiescent equilibrium state which obscures the underlying
force balance. However, once this balance is perturbed it provides restoring Coriolis
forces. Solid-body rotation invites a consideration of perturbations, called inertial
waves, from within the co-rotating frame of reference, especially when the isotropy
of the fluid domain is broken, discussed in Sect. 2.3.2.

The paper ends briefly discussing the effects of these waves on mean flows,
Sect. 2.4, and gives some conclusions in the final Sect. 2.5.

2.2 Gravity Waves

Gravity waves arise both at free boundaries of fluid layers as external waves, as well
as in their interiors as internal waves when the fluid is stratified in density.We discuss
the far-reaching differences between these two types of waves, both with respect to
their dispersion relations, reflection laws, as well as their regularity.

http://dx.doi.org/10.1007/978-3-031-09559-7_4
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2.2.1 Surface Gravity Waves in Homogeneous Fluids

An inviscid, incompressible, non-rotating, quiescent uniform-density fluid does not
support any hydrodynamic waves unless its surface is free and subject to gravity or
capillary forces. These waves are external (boundary) waves as they propagate along
the boundary of the fluid body. They are surface-trapped as wave-induced motions
decay exponentially below the surface. These perturbations to the state of rest can
be described by the linearised Euler equations. When vorticity is initially absent, the
fluid will stay irrotational as vorticity is either created by friction at boundaries—a
viscous process—or by baroclinic torques, due to misalignment of density and pres-
sure gradients, excluded in a homogeneous-density fluid. Together with incompress-
ibility this guarantees that the waves can be described by a scalar velocity potential,
φ, that obeys a Laplace equation, ∇2φ = 0, where ∇2 = ∂xx + ∂yy + ∂zz denotes
the Laplacian operator. This elliptic equation, a sum of second-order spatial deriva-
tives, determines the spatial structure of the waves in a Cartesian (x, y, z) frame of
reference. Their temporal behaviour follows from boundary conditions describing
continuity of pressure across the surface, and by requiring fluid parcels that sit at the
surface to remain at the surface. Linear, constant-coefficient equations can be solved
by complex space-time exponentials. The physical content of a particular wave is
contained in its dispersion relation, ω(k), that describes how wave frequency, ω,
depends on wavevector k’s magnitude and direction.

Wave Dispersion in Isotropic Media

As for plane monochromatic acoustic and electromagnetic waves in isotropic three-
dimensional space, gravity and capillary waves that propagate horizontally along the
free surface have frequencies that depend only on wave vector magnitude κ ≡ |k| (or
wavelength λ = 2π/κ), not on its direction. Restricting ourselves to gravity waves,
the vertical structure of these external waves varies from exponentially-decaying,
for short waves (κH � 1), to vertically-uniform, for long waves (κH � 1). Here
H denotes uniform fluid depth. In these regimes, frequency ω varies from ω = √

gκ
to ω = √

gHκ , and the waves change from dispersive to dispersionless respectively.
Here g denotes the acceleration of gravity. For any function, ω(κ), its restricted
dependence on thewave vector immediately implies the familiar property that a wave
group propagates its energy, related to that of its envelope, into the same direction
as its individual crests and troughs. Energy is transported with the group velocity
(the wave vector gradient of the wave frequency, cg = ∇kω = k κ−1∂κω), while
crests and troughs—two particular phases of the wave—propagate at phase velocity,
c = ωk/κ2, also pointing parallel to the wave vector k. This alignment happens even
when, due to a nonlinear dependence of wave frequency on wave vector magnitude,
thewaves constituting the grouppropagate at different speed, leading them todisperse
and the wave group to spread. This type of dispersion relation obviously provides
a constraint on the wavelength, which is fixed by the wave’s frequency. Because of
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this tight relationship between wave frequency and wavelength, in electromagnetism
these are described by the single term ‘color’.

Diverging External Waves and Wave Ray Chaos

Regardless of the horizontal shape of a container’s vertical side-walls, a surface wave
cannot change its frequency when it reflects. The amount of waves that will reflect
off a wall is the same as the amount that are incident. The dependence of frequency
on wave vector magnitude implies that the wavelength does not change either during
reflection. Since the velocity vector produced by surface waves, u = ∇φ, is given by
the gradient of a velocity potential φ, it is parallel to the wave vector, u ‖ k. When
waves are incident on a vertical wall, vanishing of the normal velocity component
at the wall implies that normal wave vector components of incident and reflected
waves have to match in magnitude while differing in sign. Together with the fact that
wave vector magnitude cannot change during reflection this implies that the waves
reflect specularly. This expresses the Snell-Descartes law, stating that a wave’s angle
of reflection relative to the wall’s normal equals its angle of incidence.

While the presence of wave vector magnitude in the dispersion relation thus pro-
vides a constraint on the reflecting wave’s length, the absence of the wave vector
direction also has its significance: waves can adjust their propagation directionwhen-
ever there is reason to do so, for instance when they reflect from a curved vertical
boundary. Theywill then scatter intomultiple directions, at eachpoint of the boundary
reflecting specularly, see Fig. 2.1. This type of scattering reveals the natural tendency
of surface gravity wave rays to diverge.

In an irregularly-shaped cavity, the unknown frequency of an arbitrarily located
wave source can be extracted by measuring the wavelength (wave vector magni-
tude) over any part of the cavity. In an enclosed, but complex-shaped fluid basin,
multiple reflections then give rise to ‘wave ray chaos’ (Berry 1981). Interestingly,
surface waves still linger along a restricted set of periodic ray paths, where the rate of
divergence is smallest. These paths stand out as ‘scars’: locations where those waves
occur preferentially, see Fig. 2.2.

Rotational Modification of Long Surface Gravity Waves

When a homogeneous-density, free-surface fluid rotates, such as on Earth, the exter-
nal waves—and especially the long, plane surface gravity waves—are modified. In
a uniform-depth basin, rotating in an anticlockwise sense at rate Ω around an axis
normal to the equilibrium surface, long waves are governed by the Rotating Shallow-
Water Equations (RSWEs)

ut − v = −ζx ,

vt + u = −ζy,

ζt + ux + vy = 0.
(2.1)
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Fig. 2.1 Surface wave rays reflecting from curved vertical boundary

Fig. 2.2 Surface wave scars in a stadium showing large (yellow) and small (blue) amplitude dis-
turbances. Solid lines show an unstable periodic orbit. Figure adapted from Heller (1984)

Here we use subscript-derivative notation and dimensionless variables. Time t is
scaled with the Coriolis frequency f = 2Ω . For convenience we take its expression
as relevant in a laboratory model, instead of its geophysically-motivated expression
2Ω sin ϕ which in the traditional approximation would apply at latitude ϕ on a plane
tangent to the Earth (Gerkema et al. 2008). The vertical, z, and surface elevation,
ζ , are scaled with depth, H , horizontal (x, y)-coordinates with Rossby deformation
radius, R ≡ √

gH/ f , and velocities, (u, v), with, R f = √
gH . As is well-known

(see e.g. Gill (1982)), depending on geometric constraints, system rotation gives rise
to Sverdrup, Poincaré and Kelvin waves (see Chap. 4 of this book). Over a uniform-
depth sea, plane monochromatic Sverdrup waves ∝ ei(kx+ly−ωt) obey the dispersion
relation

http://dx.doi.org/10.1007/978-3-031-09559-7_4
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Fig. 2.3 Surface elevation ζ

(solid and dashed for positive
or negative displacements)
for a Poincaré wave (sum of
two Sverdrup waves)
propagating in a channel into
a direction indicated by the
red arrow. Notice that nodal
lines are displaced from the
middle axis towards the
coast that is on the right hand
side, as seen from its
propagation direction

ω2 = 1 + k2 + l2 = 1 + κ2, (2.2)

where k = (k, l) = κ(cosφ, sin φ), for waves propagating in direction φ relative to
a pre-chosen orientation of the x-axis. The first term on the right-hand side repre-
sents the dimensionlessCoriolis frequency, acting as low-frequency cut-off. Sverdrup
waves occur on the infinite plane (Sverdrup 1926) and (2.1a,b) imply that system rota-
tion induces elliptically-polarized currents. The presence of a vertical wall, at y = 0
say, requires a combination of incident and reflected Sverdrup waves—a Poincaré
wave—to satisfy the impermeability condition, u · n = v = 0, see Fig. 2.3 where n
denotes a unit vector normal to the boundary directed outwards.

Kelvin waves, also propagating along one such a wall, simplify the dispersion
relation to ω = k, by having its transverse wavenumber l = i . In that case a low-
frequency cut-off is absent. In order that the wave decays away from the wall as y →
∞, only the positive sign of

√
k2 is allowed. This implies propagation in positive x-

direction. Regardless of wave frequency, this transverse decay occurs dimensionally
always at the Rossby deformation scale, R.

External waves, such as short gravity waves, decaying exponentially below the
surface, can be interpreted as a boundary wave whose dimension is reduced by one.
Two-dimensionality of these waves is captured by integrating over the (vertical)
decay direction. As horizontal currents associated with long waves are independent
of the vertical coordinate, this decay is no longer visible. It occurs over a scale depth
much larger than the fluid depth. Formally, these waves still present a dimensionally-
reduced (surface trapped) wave feature. This can be treated as such by vertically
integrating the equations. In the same vein, a Kelvin wave provides a further dimen-
sional reduction, owing to its additional exponential decay, transverse to the coast.
Integrating also over the direction perpendicular to the coast it can be described as a
one-dimensional wave feature.
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Amphidromic Wave Systems

In partially, or fully-enclosed rotating water bodies, such as inland seas and lakes,
impermeability of its side walls requires a combination of Kelvin and Poincaré
waves (see Chap. 4 of this book). This gives rise to intricate structures called
amphidromes, see Fig. 2.4.Amphidromes are phase-singularities (pointswhere phase
is multi-valued) that coincide with nodal points: locations of zero elevation ampli-
tude. Attempting to understand the spatial pattern of simultaneously observed tidal
displacements along the North Sea’s perimeter, Whewell (1833) inferred the pres-
ence of such points. He postulated their existence in an attempt to construct tidal
co-phase lines—lines connecting points simultaneously reaching for instance high
or low water. Solutions of the RSWEs also display ‘spider-web like’ structures, as
found in (semi) rectangular and square basins of uniform depth (Proudman 1916;
Taylor 1922; Rao 1966), and more recently in basins of variable bottom depth and
boundary shape (Steinmoeller et al. 2019). These arise because rotationally-modified
surface gravity waves need to satisfy an impermeability condition at boundaries.
When cast in terms of the free surface elevation, ζ , this takes the form of an oblique-
derivative (Robin) boundary condition, aweighted combination ofDirichlet andNeu-
mann boundary conditions. Amphidromes already appear in straight, open channels,
where they form due to two counter-propagating Kelvin waves, see Fig. 2.5 (Krauss
1973). Section2.3.2 will discuss replicas of such structures in the interior inertial
wave field, interestingly arising in fully confined (rigid-lid), homogeneous-density
rotating fluids.

Fig. 2.4 Amplitude (dashed,
arbitrary units) and phase
lines (solid, each 30 ◦C) of
the surface elevation for the
computationally determined
lowest frequency,
rotationally-modified surface
gravity wave in a rotating
square basin. It displays a
cyclonic amphidromic point
in the centre where the
amplitude vanishes and
phase is multi-valued.
Figure from Rao (1966)

http://dx.doi.org/10.1007/978-3-031-09559-7_4
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Fig. 2.5 Amplitude lines
(dashed, arbitrary units) and
phase lines (solid, each 30
◦C) of the sea surface
elevation produced by two
counter-propagating Kelvin
waves (propagation direction
indicated by red arrows) of
equal amplitude displaying
amphidromic points (orange
dots) where the amplitude
vanishes and phase is
multi-valued

2.2.2 Gravity Waves in Heterogeneous Media

Interfacial Waves

In the foregoing we interpreted surface waves in isotropic fluids as external or bound-
ary waves. Alternatively, an external or boundary wave can be defined as a wave
whose maximum displacement (in vertical or horizontal direction) occurs at the
bounding surface. According to this definition, waves that have their maximum dis-
placements below the free surface should be interpreted as internal waves. From that
perspective, the waves that Franklin (1762) discovered at the interface between oil
and water—two immiscible fluids of different density—might well be interpreted as
internal waves, as their maximum displacements occur in the interior of the fluid.
However,we refrain from this interpretation aswaves still decay exponentially, below
aswell as above the interface. In that sense, these interfacial waves belong to the class
of boundary waves, being external to the two fluid bodies of homogeneous-density
that make up the two-layer fluid. Indeed, waves propagating at the interface between
twofluid layers of different density but uniform depths are very akin to surfacewaves.
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Apart from an additional, fluid-gas phase-transition, the free surface again separates
two liquids differing in density (albeit by a factor thousand bigger than that between
oil and water). Consequently, the dispersion relation satisfied by interfacial waves is
very similar to that of surface waves. In particular, the frequency is again independent
of wave vector direction, merely leading to a reduction of the acceleration of gravity
by a factor equalling the ratio of the density difference between the two layers to
their average density (Stokes 1847).

Two-layer stratification form one end member of the general class of density-
stratified fluids. These are quite common in natural conditions, and occur formiscible
fluids too. In shallow seas they form due to a combination of wind and tidal mixing
that stir warm surface and cold bottom layers respectively, leaving a density jump
at an interface in between. They also frequently occur near fjords, when fresh melt
water spreads out over salty ocean water. It is in the latter situation that the existence
and relevance of interfacial waves was first brought to light in an oceanographic
context. These waves helped demystify the dead-water phenomenon encountered by
Nansen at the end of the nineteenth century. Dead-water pertains to a sudden, sharp
drop of a boat’s speed when traversing a fjord (Nansen 1902). This loss of propulsion
appears to occur when a boat’s hull moves in the vicinity of an interface between
low density fresh and high density salt fluid layers. When its velocity matches the
interfacial wave speed it generates interfacial waves, leading the boat to suffer from
excessive interfacial wave drag (Ekman 1904).

Wave Modes Versus Beams in Heterogeneous Fluids

Theoreticians also considered waves in three-layer, multi-layer, continuous and uni-
form stratifications (Rayleigh 1883; Burnside 1888; Love 1890). For internal gravity
wave history, see the excellent review of Hinwood (1972). These waves are pertur-
bations of a hydrostatic equilibrium,

(ρ∗ + ρ(z))g = −dp

dz
, (2.3)

in which the downward-directed force of gravity, acting on fluid of local density
consisting of a large constant ρ∗ and a small depth-varying ρ0(z) part, balances the
upward-directed pressure gradient force. This leads to a hybrid ensemble of bound-
ary waves, propagating along interfaces, as well as, in the continuously-stratified
fluid, to what could be called ‘genuine internal waves’. The latter waves have their
maximum displacements in the fluid interior and are not trapped to any particular
interface. Initially, it was held expedient to assume the bottom to be parallel to the
free surface, and consider a uniform-depth fluid. The benefit of this was that separa-
tion of variables was still possible, such that horizontally-propagating internal waves
have a matching vertical structure. Approximating the surface as rigid, by requiring
the vertical velocity to vanish at surface and bottom, the vertical modes are quan-
tized by the finite depth. Indeed, this assumption on basin geometry and consequent
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separability allowed for the computation of vertical modal solutions, even when the
stratification was continuous yet non-uniform (Fjeldstad 1933; Groen 1948).

At the expense of a more fundamental, plane internal wave approach, that takes
the form of an obliquely-propagating internal wave beam, this ‘modal approach’ sub-
sequently dominated the interpretation and understanding of internal wave behaviour
in the ocean. To be sure, the modal and beam approaches are reconcilable in uniform-
depth, uniformly-stratified fluids, in which stability frequency N (z) is assumed con-
stant, a second end-member type of stratification. In Boussinesq approximation, the
square of the stability frequency, N 2 ≡ −gρ−1∗ dρ0(z)/dz, relates to the background
density gradient. The beam’s inclined orientation relative to gravity betrays that gen-
uine internal waves propagate under a particular, fixed angle α, determined by the
dispersion relation that perturbations satisfy:

ω/N = ± cosα. (2.4)

In this case, angle α measures the direction of phase and group velocity vectors
with respect to the horizontal and vertical, respectively. Assume the wave vec-
tor lies in the vertical (x,z)–plane in which the wave propagates, k = (k, 0,m) =
κ(cosα, 0, sin α), then c = ωk/κ2 = ωκ−2(k, 0,m) = ±N cos2 ακ−1(1, 0, tan α)

(phase velocity) is perpendicular to group velocity vector cg = ∇kω = ∂αω ∇kα,
which evaluates to cg = ±N sin ακ−2(m, 0,−k) = ±N sin2 ακ−1(1, 0,− cot α),
although both share the same horizontal propagation direction.

The internal wave dispersion relation (2.4) betrays that a uniformly-stratified fluid
is transparent to internal waves. ‘Transparency’ means that wave scattering occurs
only at the boundary. Transparency can be maintained for some special non-uniform
stratifications (Grimshaw et al. 2010). But to a good approximation it holds when-
ever the length scale over which the density gradient varies is large compared to
the wavelength of the internal wave, so that N = N (εz), where ε denotes a small
parameter and a WKB-approximation applies. For this situation, the inclination of a
fixed-frequency (ω = constant) wave can be obtained by a local application of the
dispersion relation (2.4) anddepthvariations in amplitude andbeam-inclinationoccur
adiabatically, without any partial reflection or trapping inside the fluid (Hazewinkel
et al. 2010b). This allows the vertical z-coordinate to be stretched, such that the equa-
tion describing the internal wave’s spatial structure takes its canonical, hyperbolic
form

ψxx − ψzz = 0. (2.5)

Streamfunction ψ(x, z) is introduced by virtue of two-dimensional incompressibil-
ity. Upon stretching the vertical, internal waves follow straight, inclined ray paths
again. By contrast, when the density gradient varies rapidly, internal waves might
also scatter inside the fluid on variations in the density gradient.
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Internal Gravity Waves in Uniformly-Stratified Fluids

Adhering to the uniformly-stratified fluid in a basin of uniform depth, up and down-
ward propagating beams of equal amplitude acquire a standing, sinusoidal vertical
structure. Together with a complex exponential dependence on horizontal coordinate
and time, these can obviously be interpreted as vertically-standing, horizontally-
propagating modes. They present a seemingly straightforward extension of an inter-
facial wave. This interpretation however meets its limitations. It acquires horizontal,
isotropic features due to depth-uniformity, which is lost in any real geophysical
setting where depth variations scatter the incident beam.

Since an internal wave reflecting from a sloping bottom or side wall preserves its
frequency, the dispersion relation implies that in this case the wave cannot change its
wave vector inclination. This leads to anomalous, non-specular reflection. A single-
frequency set of collinear waves differing in wave number magnitude and amplitude,
defines an incident, compact wave beam of particular fixed inclination. This beam
has a transverse width that will necessarily change when subject to (de)focusing
reflections at an inclined boundary. Thus, depth-changes lead to a change of the
wavelengths and amplitudes of the waves constituting the beam, see Fig. 2.6a. This
precludes the persistence of a vertically-standing structure, built by beams of equal
amplitude propagating in opposite vertical directions.

Converging Internal Waves and Wave Attractors

The ultimate fate of internalwaves, generated by an oscillating cylinder,may not have
been evident in the experiment shown in Fig. 2.6a. In confined basins, the focusing
which internal wave beams experience upon bouncing at its boundaries, dominates

Fig. 2.6 Vertical transect of a uniformly-stratified fluid showing internal waves generated (a)
by vertically-oscillating horizontal cylinder, located in the upper left (red circle) and b, c in a
horizontally oscillating tank. The trapezoidal basin has rigid walls, both along the sloping and
vertical side walls, as well as at top and bottom. (a) Arrows indicate the internal wave energy
propagation direction. Successively reflected internal wave beams are numbered in sequential order.
Courtesy of Frans-Peter Lam. b Amplitude (black: zero, white: most intense) and c phase (cyclic
colors), adapted from Hazewinkel et al. (2010b)
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over defocusing, leading to the formation ofwave attractors, see Figs. 2.6b, c and 2.7a.
Incident, focusingwave beams have larger scattering cross-sections than the reflected
beams and vice versa for defocusing waves. Here the scattering cross-section refers
to the width of the beam perpendicular to the energy propagation direction. The two
are equal only for reflections from horizontal or vertical boundaries, which are paral-
lel or perpendicular to the anisotropy direction. In that case the beam-width does not
change upon reflection. Exceptionally, a net change of beam-width is also absent for
special, nontrivially-shaped basins, when focusing of waves of particular frequencies
(hence propagation angles) during some boundary reflections is exactly balanced by
defocusing during other reflections. As a consequence, such basins possess a denu-
merable set of globally-resonant modes, see Fig. 2.7b. The latter property, exhibited
for instance by trapezoidal domains, relies on the existence of residual symmetries
(Maas and Lam 1995).

These situations can be interpreted geometrically by following individual charac-
teristics (internal wave rays). Launching a ray from an arbitrarily located boundary
point, upon reflection at any of the boundaries it will retain its inclination to the ver-
tical. For these exceptional geometries and frequencies, after a number of reflections
each ray path returns to its launching position and becomes part of a periodic orbit
of finite length, forming a globally-resonant mode, see Fig. 2.7b. However, for all
other frequencies in these basins—frequencies filling non-denumerable, continuous

Fig. 2.7 Side view of internal gravity waves of two different frequencies in a uniformly-stratified
fluid in a tilted square basin. Individual characteristics (lines) with which streamfunction field
(color) is geometrically constructed (Maas and Lam 1995) retain their inclination relative to grav-
ity, g, whose direction is indicated by an arrow. The generic response for arbitrary frequencies
is given by wave attractors (left) and exhibits focusing of characteristics onto an attractor; the
globally resonant modes (right) are exceptional, relying on periodicity of underlying individual
characteristics. Courtesy of Stefan Kopecz
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frequency bands—rays are non-periodic and infinitely long. Only a denumerable set
of finite-length periodic orbits remains. These orbits attract all non-periodic orbits,
see Fig. 2.7a where only one such attracting orbit exists.

For basins of generic shape that lack this residual symmetry, such as a parabolic
basin, the basin shape breaks this residual symmetry too. Therewill be no exceptional
frequencies, so no globally-resonant modes. Only a few periodic orbits remain, that
attract all waves of a particular frequency. These limit cycles, wave attractors, are
reached regardless of the wave’s source location.

2.3 Inertial Waves

We will consider the implications of wave attractors later on, after taking a look at
waves supported by shear flows, with, as important special case, thewaves in swirling
flows, and especially those in a solidly-rotating fluid. Owing to the anisotropy pro-
duced by rotation, combined with a symmetry-breaking basin shape, inertial waves
supported by homogeneous-density, rotating fluids also show the presence of wave
attractors.

2.3.1 Waves in Shear Flows

Homogeneous-density shear flows, u = (u, v, w) = (U (z), 0, 0), support waves
which are stable manifestations of shear-flow perturbations. These form the com-
plement of the much wider studied class of shear-flow instabilities (Drazin and Reid
1998; Carpenter et al. 2011). Since Squire’s theorem asserts that two-dimensional
perturbations turn unstable before three-dimensional disturbances do (Squire 1933)
we consider two-dimensional, monochromatic plane wave perturbations ∝ eik(x−ct),
governed by

ik(U − c)u + wU ′ + ikp = 0,
ik(U − c)w + p′ = 0,

iku + w′ = 0,
(2.6)

where a prime denotes a z-derivative. We describe these perturbations on a shear
flow in terms of a streamfunction, ψ = Ψ (z)eik(x−ct), that vanishes at the bot-
tom and surface, z = z1,2. Inserting perturbation velocities in these equations,
u = ∂ψ/∂z, w = −∂ψ/∂x = −ikψ , yields Rayleigh’s stability equation (Rayleigh
1879)

(U − c)

(
∂2Ψ

∂z2
− k2Ψ

)
−U ′′Ψ = 0. (2.7)

Infer the stability of the shear flow by assuming that the frequency and thus phase
speed is complex, c = cr + ici . The presence of a non-zero imaginary part, ci , signals
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instability. Dividing (2.7) by U − c, multiplying by the complex-conjugate, Ψ ∗,
integrating between bottom and (rigid) surface (using integration by parts for the
first term) and separating the real and imaginary parts, the latter is given by

ci

z2∫
z1

U ′′

|U − c|2 |Ψ |2 dz = 0.

Parallel shear flows are stable (ci = 0) when its background vorticity gradient U ′′
does not switch sign within the channel (Rayleigh’s stability criterion). We will see
an example shortly.

Waves in a Linear Shear Flow

Asimple type of shear flow, aCouette flow,U (z) = z, lacking any curvature,U ′′ = 0,
also supports waves propagating down a channel, −1 ≤ z ≤ 1, provided at some
depth within the channel, zc, the phase speed matches the background flow, c =
U (zc): a critical layer. In this case, (2.7) is written (Drazin and Reid 1998)

∂2Ψ

∂z2
− k2Ψ = δ(z − c), (2.8)

allowing for exponentially-decayingwaves on either side of the critical depth, zc = c,
and appropriately vanishing at the boundaries

Ψ (z) ∝ sinh k(c − 1) sinh k(z + 1), −1 ≤ z ≤ c
sinh k(c + 1) sinh k(z − 1), c ≤ z ≤ 1.

(2.9)

For any horizontal wave number, k, and any phase speed |c| < 1, this admits a
continuous spectrum of waves, all trapped to their respective critical-depth. In a
sense these all again belong to the class of isotropic boundary waves, as they decay
exponentially away from the critical layer and do not propagate into the transverse
z-direction.

For shear flowspossessing curvature, a similar type of externalwave exists at depth
zs where the shear flow has an inflection point,U ′′(zs) = 0. Waves that propagate at
a speed matching the local velocity at that depth, U (zs) = c, can again be trapped
at the critical layer z = zs . But, in addition to waves belonging to the continuous
spectrum, a discrete set of vertically-standing waves exists as we will see in the next
subsection.
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Waves in a Sinusoidal Shear Flow

Consider for example waves on a sinusoidal shear flow, U = sin z, in a channel
bounded by lines z = z1,2, having, z1 ≤ 0 ≤ z2. This flow has an inflection point at
z = zs = 0. Then, for c = 0, its second derivative matches the prefactor of the first
term in (2.7), and this equation factors into

sin z

(
∂2Ψ

∂z2
+ (1 − k2)Ψ

)
= 0. (2.10)

With the boundary conditions

Ψ = 0 at z = z1, z2, (2.11)

this equation has solutions

Ψs = sin

(
nπ

z − z1
z2 − z1

)
, k =

√
1 − n2π2

(z2 − z1)2
, (2.12)

which are unstable, growing spatially (k imaginary) for integer n > (z2 − z1)/π .
This shows that a finite number of neutral (wave) modes exist when z2 − z1 > π .
This provides a counter-example to Rayleigh’s criterion, showing that the presence
of an inflection point is a necessary but not sufficient condition for all modes being
unstable (Drazin and Howard 1962).

A channel lacking inflection points, U ′′(z) �= 0, z1 ≤ z ≤ z2, is thus neutrally
stable (i.e. c has zero imaginary part). It therefore still supports a discrete spectrum of
neutral waves whenU (z) is concave andU ′′/(U − c) < −k2 < 0. Concavity means
that for any z in any part (z−, z+) of the fluid domain, where z1 ≤ z− ≤ z ≤ z+ ≤ z2,
the average of the velocities at the end points of this interval is less than the velocity
at any intermediate position, |(U (z+) +U (z−))/2| < |U (z)|. In a frame of reference
moving with the waves, around the location where the phase speed matches the mean
flow, the combined shear flow and waves manifest themselves in the form of Kelvin’s
‘cat-eye’ flow pattern.

In these considerations, the effects of viscosity have sofar been left aside, the
reason being that intuition would assign to viscosity an additional ability to stabilize
wave motions. However, the contrary was proven to be true. As Darrigol (2005)
recalls, Prandtl suspected that viscous stressesmay induce a phase difference between
wall-parallel andwall-transverse velocity components. In that case, energy, conveyed
by the unperturbed mean flow U to the waves through Reynolds stress acting on
mean-flow shear, might exceed viscous damping, leading to their instability and
growth. This renders experimental study of stable waves on shear flows difficult
if not impossible. Attention has thus shifted to the nonlinear regime, where large-
amplitude waves may coexist with turbulence (Sun et al. 2015)), often in the form
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of a self–sustained interaction of shear-flow perturbations with stream wise rolls
(Waleffe 1997).

The geometry of the fluid basin receives little attention in these studies. In two-
dimensional (x, z) settings, the shear flow U (z) is compatible only with a uniform-
depth channel having its boundaries at z1,2 = constant.But a consideration of geom-
etry becomes pertinent when discussing waves on shear flows in three-dimensional
domains, for which the transverse channel shape, z = h(y), may become important.
Wewill discuss the relevance of transverse topography in the context of axisymmetric
shear flows in the next section.

Waves in Swirling Flows

In a non-rotating, cylindrical (r, θ, z) frame of reference, a special type of shear flow
develops: a swirling flow. This is characterized by an axisymmetric, azimuthal flow
of arbitrary radial dependence, uθ = V (r), which is in cyclostrophic balance:

− ρ
V 2

r
= −dp

dr
. (2.13)

The outward directed centrifugal force is balanced by an inward directed pressure gra-
dient force. Axisymmetric, monochromatic perturbations of this radially-dependent
azimuthal flow allow for the introduction of a Stokes streamfunction, ψ(r, z, t), as
incompressibility implies that radial and vertical velocities can be obtained from
ru = ∂ψ/∂z, rw = −∂ψ/∂r . At this point the underlying cyclostrophic equilib-
rium state, (2.13), is lost out of sight, not only because the perturbation pressure is
described by differences between the actual and the cyclostrophic pressure, but also
because this perturbation pressure itself has been eliminated when deriving a vor-
ticity equation by cross-differentiation and subtraction of the horizontal momentum
equations. However, its importance will be stressed in Sect. 2.4.3, when discussing
the implications that waves may have for mean flows.

The streamfunction’s spatial part, ψ = Ψ (r, z)e−iωt , is governed by

r
∂

∂r

(
1

r

∂

∂r

)
Ψ −

(
4
Ω2

l

ω2
− 1

)
∂2Ψ

∂z2
= 0, (2.14)

where Rayleigh’s discriminant,

4Ω2
l (r) ≡ 1

r3
d A2

dr
= 2

V

r

(
V

r
+ dV

dr

)
, (2.15)

is, unconventionally, expressed as the square of the local Coriolis frequency, 2Ωl(r).
This is twice the local rotation rate, Ωl , that reduces to the constant rotation rate, Ω ,
in the case of solid-body rotation, V = Ωr . Rayleigh’s stability criterion,Ω2

l (r) ≥ 0
for all r , implies that the square of the angular momentum, A ≡ rV (r), must increase
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monotonically with increasing radius (Rayleigh 1917). The square on A in (2.15)
indicates that this criterion is insensitive to the direction of background rotation. For
waves of frequency |ω| < 2|Ωl |, the governing Eq. (2.14) has a negative sign in front
of the last second-order derivative,whichmakes it a hyperbolic equation. This implies
it supports a type of internal wave, called inertial or gyroscopic wave, discussed
further in the next section. Inertial waves are, for example, observed in the swirling
flow of liquid metal, when driven by a rotating and alternating electromagnetic field
(Vogt et al. 2014).

In general, the r -dependence of the Rayleigh-discriminant implies these inertial
waves are subject to scattering, trapping and tunnelling. The explicit, curvature-
related radial dependence of the first term of (2.14) leads to additional amplitude
variations. But an axisymmetric basin of maximum radius a and arbitrary axisym-
metric depth profile h(r) supports a cylindrically-rotating shear flow, described by

V = σ
r2

a
. (2.16)

This has local rotation rate

Ωl =
√
6σ

2

r

a
(2.17)

and is transparent to low-frequency waves if ω � √
6σ . Transformed dimension-

less radial, s = r2/2a2, and (stretched) vertical, Z = z/H , coordinates absorb the
amplitude-decrease due to radial spreading. Here

H = a
√
6σ

ω
.

This transforms (2.14) into the canonical equation governing the spatial structure of
monochromatic internal waves

∂2Ψ

∂s2
− ∂2Ψ

∂Z2
= 0. (2.18)

In basins of arbitrary radial shape, the method of characteristics can solve this equa-
tion (Maas and Lam 1995). It is prone to develop wave attractors for nearly all
boundary shapes, Z = h(s)/H .

2.3.2 Waves in Rotating Basins

To describe perturbations, azimuthal flows V (r) that possess arbitrary radial depen-
dency do not favour any particular rotating coordinate frame over the inertial frame.
However, when the flow is in solid-body rotation, Ω = constant , and the azimuthal
flow increases linearly with radius, V = Ωr , it makes sense to use a frame of ref-
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erence co-rotating with the flow. A transformed time-derivative then absorbs the
advective terms and, as mentioned before, the Rayleigh discriminant becomes con-
stant, 4Ω2

l = 4Ω2. In a cylindrical domain, this leads to separability of (2.14). A
sinusoidal vertical dependency ofΨ splits-off from its radial, Bessel function depen-
dence (Kelvin 1880). Requiring regularity at the origin, vanishing ofΨ at the cylinder
boundaries, and periodicity in the azimuthal direction, together with impermeabil-
ity constraints at top and bottom boundary, leads to a triple quantisation of these
radial-azimuthal-vertical modes.

Intermezzo: Viscous Effects

When an axisymmetric, closed cylindrical domain is put into steady rotation, a
solid-body rotating state is reached from the initial state of rest through a spin-up
process. In axisymmetric basins this involves viscous Ekman boundary layers that
transport momentum to the inviscid interior by means of a meridional circulation
(Greenspan and Howard 1963; Weidman 1976). In non-axisymmetric basins, such
as an eccentrically-positioned cylinder, or a basin of different shape, the fluid needs
to respond ‘instantaneously’ when set into rotation. This is caused by a pressure
torque which, in the incompressible description, transmits at once throughout the
fluid domain. This is an approximation employed when pressure waves, propagating
at the speed of sound, are much faster than any of the velocities involved. In this type
of basin, the fluid’s initial response is governed by vorticity conservation. The fluid
aims to retain its initial state of zero absolute vorticity (Van Heijst 1989; Van Heijst
et al. 1990)), so that, in the frame co-rotatingwith the container, it is initially described
by a vortex having uniform anticyclonic vorticity. At later stages the flow is subject
to viscous adjustment, due to friction at side-walls, bottom and top, occurring at the
Ekman time scale, E−1/2Ω−1, where Ekman number E ≡ ν/L2Ω � 1 is defined
in terms of kinematic molecular viscosity, ν, length scale, L , and time scale Ω−1.
During this phase, cyclonic vorticity develops.When the depth of the fluid is constant
these processes lead to an arrangement of nearly circular cyclonic and anticyclonic
cells that gradually decay on the still longer, diffusive timescale E−1Ω−1 = L2/ν.
When the container depth varies, however, these cells keep on moving in an irregular
fashion, and Ekman spin–up seems to be faster in the shallower parts of the fluid
domain (Van Heijst et al. 1994; Li et al. 2012).

Linearized Rotating Euler Equations

For any boundary shape of a rotating container, y = yb(x), and for any location of the
container relative to the rotation axis, solid-body rotation can be achieved (VanHeijst
et al. 1994; Li et al. 2012). Viewed from the rotating, axial frame of reference, after
spin-up, the fluid is in an apparent state of rest. In this steadily-rotating state, when
fluid and bounding containermove as a solid body, the effects of rotation and viscosity
may no longer be visible. Yet, at any point within the fluid domain, the apparently
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quiescent fluid retains a memory of the rotation. This is present in an exact balance of
radially-outward centrifugal and radially-inward pressure gradient forces. Perturbing
this quiescent state creates an imbalance which expresses itself in a combination of
restoring Coriolis and pressure gradient forces that support inertial waves. These are
the internal waves of a homogeneous-density, rotating fluid. They can be described
in a uniformly-rotating Cartesian frame by the constant-coefficient, inviscid rotating
linearized Euler equations

ut − f v = −px ,
vt + f u = −py,

wt = −pz,
∇ · u = 0.

(2.19)

Here we use Cartesian velocity vector u = (u, v, w) and Coriolis parameter, f =
2Ω , again assuming that the vertical z-direction aligns with the rotation axis. The
reducedpressure p, contains deviations of the true pressure from the combinedhydro-
static and cyclostrophic pressure, given by (2.3) and (2.13), respectively. Searching
for monochromatic plane-wave solutions, ∝ ei(kx+ly+mz−ωt), with polar represen-
tation of wave vector k = (k, l,m) = κ(cosα cosφ, cosα sin φ, sin α), yields the
inertial wave dispersion relation

ω = ±2Ω sin α, (2.20)

which, as for internal gravity waves, is independent of wave vector magnitude κ .
Indeed, this equation relates frequency to wave vector inclination relative to the
horizontal plane, α, only. This is the hall-mark of internal waves. It complements the
frequency—wave number, ω(κ), relationship typical for external waves.

The adjustment of fluids during spin-up or spin-down in basins of non-uniform
depth, referred to above, is partly expressed by the inertial waves, described by (2.19).
But, in fact, inertial waves arise under adjustment of the rotation rate in any container
(Greenspan and Howard 1963; Cederlöf 1988; Oruba et al. 2017), whether forced by
viscous or pressure forces. They especially occur when a container is deliberately
forced at a frequency less than the Coriolis frequency, for instance by libration—a
periodic modulation of the background rotation rate—or, as in nature, by tidal forces,
when these waves are sustained (Maas 2001;Manders andMaas 2003, 2004; Bewley
et al. 2007; Lamriben et al. 2011; Sibgatullin et al. 2017).

Inertial Waves in an Untilted Box

To solve (2.19) for free inertial waves in a rectangular box that has its sides either
perpendicular or parallel to the rotation axis, we use depth H and Coriolis frequency
f = 2Ω as length and inverse time scales (with velocity and reduced pressure scales
equaling H f and (H f )2, respectively). Note this implies that horizontal dimensions
of the box are now measured in terms of H . This leads to the same set (2.19), except
that now f = 1 and the bottom and surface of the rectangular box are at z = 0, 1,
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respectively. As the normal velocities at these boundaries vanish, w(0) = w(1) =
0, the vertical velocity is expressed as a sum of vertically-standing modes, w =∑∞

n=1 ∂ζn/∂t sin nπ z, with ζn the vertical displacement field of the nth verticalmode.
In turn, this implies (u, v, p) = ∑∞

n=1(Un, Vn, Pn) cos nπ z. The vertical momentum
equation then yields

Pn = 1

nπ

∂2ζn

∂t2
. (2.21)

Rescaling the horizontal coordinates (X,Y ) = nπ(x, y), the same set of equations
describes the horizontal structure of each of the modes, for which reason we suppress
mode-index, n. In subscript-derivative notation these read (Maas 2003):

Ut − V = −ζt t X ,

Vt +U = −ζt tY ,

ζt +UX + VY = 0.
(2.22)

This set resembles the RSWEs (2.1), except that acceleration of the inertial wave
vertical displacement field of mode n,

H

nπ

∂2ζn

∂t2
, (2.23)

replaces gravitational acceleration multiplying the free surface displacement, gζ ,
which represents the reduced pressure of external, long surface gravity waves, giving
due attention to the different meanings of ζ . Each mode obeys the same set of Eqs.
(2.22), but finds the box’s horizontal size to become larger as n increases. Clearly, as
the nth mode scales with the decreasing depth scale, 1/nπ , the box’s fixed horizontal
size, L , increases for this mode to Ln = nπL .

Inserting plane-monochromatic waves ∝ ei(kX+lY−ωt) into (2.22) yields the dis-
persion relation

ω2 = 1

1 + k2 + l2
= 1

1 + κ2
. (2.24)

Its right-hand side is the reciprocal of that for the RSWEs, (2.2). The Corio-
lis frequency now appears as high-frequency instead of low-frequency cut-off.
Vertically-standing inertial modes, again behave as external waves, as their fre-
quency now relates to wave vector magnitude of the horizontal wave vector, k =
(k, l) = κ(cosφ, sin φ), like the vertically-standing internal gravity wave modes in
a heterogeneous (especially, uniformly-stratified) fluid in a channel or box.As before,
however, this apparent external nature of standing internal waves is superficial, owing
to the particular orientation of the box, namely with its boundaries perpendicular or
parallel to the rotation axis. Before investigating the true nature of inertial waves,
which shows up when breaking this symmetry, we should mention how to determine
the horizontal structure of inertial waves of this ‘untilted’ box.
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Fig. 2.8 Top view of inertial waves in a cube for the lowest-vertical, lowest-horizontal mode (high-
est subinertial frequency) of nominal dimensionless frequency ω ≈ 2−1/2. Vertical displacement
field amplitude (dashed) and phase (solid) (left) and velocity field (right, anticyclonically rotating
current vector in blue; cyclonic in red; rectilinear, at walls, in green). For further explanation, see
Maas (2003)

Proudman (1916) solved the RSWEs governing the rotationally-modified surface
gravity waves in a box by using aHelmholtz decomposition of the horizontal velocity
field,

u = −∇φ + ez × ∇ψ. (2.25)

The velocity field is a sumof derivatives of a potential,φ, and streamfunction field,ψ .
The challenge is to meet impermeability constraints at the box’s vertical boundaries.
Two-dimensional internal gravity waves need Dirichlet (zero streamfunction) condi-
tions, and three-dimensional internal gravity waves Neumann (zero normal pressure
derivative) conditions. Instead, rotationally-modified surface gravity waves require
oblique-derivative boundary conditions. In this respect, inertial waves are more com-
plicated than internal gravity waves. The latter execute rectilinear particle motions
(within inclined beams), while, in linear approximation, the former follow inclined
circular paths. Obviously, in an inviscid description, a side wall can be inserted when
it is aligned with the internal gravity wave beam direction. But, circular particle
paths, present in an inertial wave beam, are incompatible with any kind of side wall.
Clearly, even in the inviscid approach, side walls must give rise to an adjustment of
the inertial wave beam’s velocity field, suggesting the presence of inviscid, ‘wavy’
boundary layers.

Proudman’s method can also be used to determine the horizontal velocity, (U, V ),
and vertical displacement, ζ , of the vertically-standing inertial wave field. It leads
to a generalized eigenvalue problem, which solves for eigenmodes of decreasing
frequency and increasing spatial complexity, see Fig. 2.8. Indeed, as for the RSWEs,
amphidromic systems are found (Maas 2003). This includes the fact that each phys-
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ical mode (each eigenfrequency) contains an infinite series of Fourier modes, that
is, an infinite set of scales, see in particular the corner regions in Fig. 2.8b. The fact
that inertial waves are scale-free is exploited. The dispersion relation does not con-
strain the wave number. The interesting difference with rotationally-modified surface
gravity waves is that, instead of just a single mode, inertial waves possess an infi-
nite set of vertical modes. This means we might suspect eigenfrequency degeneracy:
the eigenfrequency for mode n may be identical to that of another vertical mode
m (which perceives the same horizontal domain as being m instead of n times its
original horizontal size). The fundamental, beam-like nature of the inertialwaves sug-
gests degeneracy. The generalized eigenvalue problem has to be solved numerically.
Therefore, a proof that the very same eigenfrequencies will show up for different
vertical modes, true for two-dimensional anisotropic as well as for three-dimensional
internal gravity waves (Maas 2003), stays a conjecture. In the case of a rotating cube,
near-degeneracy is found for waves asymptoting at frequency 1/

√
2, but this is no

proof of finding the same eigenfrequencies (Wu et al. 2018) .

Inertial Waves in a Tilted Box

Adding an inclined sidewall (Maas 2001), tilting a rectangular box (Ogilvie 2005;
Maas 2007), or changing the orientation of boundaries relative to the rotation axis’
direction in otherways, implies that, as internal gravitywaves, inertial waveswill also
be subject to focusing and defocusing reflections. In confined, two-dimensional fluid
domains this leads to wave focusing dominance. Frequency-dependent orbits again
appear to attract waves, regardless where they originate from. Bretherton (1964)
inferred that inertial waves approach periodic orbits, giving a geometrical interpre-
tation to prior analytical results by Stern (1963). Stern (1963) described waves in a
homogeneous, rotating fluid confined to the equatorial region of a spherical shell,
neglecting the vertical acceleration but retaining nontraditional (horizontal) Coriolis
terms and noticing the presence ofwaves decaying polewards, seeMaas (2001),Maas
andHarlander (2007),Gerkema et al. (2008). Bretherton’s (Bretherton 1964) periodic
orbit is attracting (Stewartson 1971) and such wave attractors appear to form a broad-
band phenomenon (Israeli 1972): they exist in continuous frequency bands in which
wave attractors have the same topology, experiencing the same amount of reflections
at their boundaries. In such frequency windows, attractors have the same winding
number, the same average angular progression during a single winding around the
attractor (Manders et al. 2003). The winding number therefore acts as a topological
invariant (Delplace et al. 2017). Instead of fixing the geometry and changing the fre-
quency, this topological property can also be understood from a reverse perspective.
Take for example the attractor in the left panel of Fig. 2.7 and keep the frequency, and
therefore inclination fixed. Keeping also the attractor’s four reflection points at the
boundary fixed in space one can otherwise deform the remaining part of the boundary
in whatever way one likes, and the attractor will persist as a limit cycle (John 1941).
Different boundary deformations lead to differences in convergence rates (measured
by the Lyapunov exponent), not in winding number. However, rectangles that are not
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Fig. 2.9 Side view of inertial waves in a trapezoidal basin forced by the libration of a rotating tank.
The modulation frequency aims at hitting a square-shaped attractor (solid lines). Visualisation of
motions in a vertical sheet, a projection of the three-dimensional currents, is by means of Particle
Image Velocimetry. Shown are current amplitude (left) and the phases of the two counter-rotating
circular currents (middle and right) intowhich the current ellipses can be decomposed in the viewing
plane. Notice phase lines parallel to attractor branches, indicating transverse phase propagation. For
further explanation, see Manders and Maas (2003)

tilted remain exceptional. Ironically these are precisely the geometries favoured in
textbooks for being solvable by the method of separation of variables. Lacking the
generic appearance of wave attractors, these unfortunately give the completely false
suggestion of overall regularity.

The interaction of inertial waves with sloping boundaries was studied experimen-
tally in quasi two-dimensional, Cartesian settings, such as in trapezoidal rectangular
basins (Maas 2001; Manders and Maas 2003, 2004; Brunet et al. 2019), see Fig. 2.9,
in cylindrical settings such as a conical basin—a frustum—(Klein et al. 2014), and
in spherical shells (Koch et al. 2013; Hoff et al. 2016a, b). In all cases, inertial waves,
forced by libration of a tank, focus onto ‘low-period wave attractors’, attractors hav-
ing the shortest length. Numerical studies, usually of a viscous nature, address the
saturation of the amplitude-increase accompanying wave focusing. Saturation, both
of focused internal gravity as well as inertial waves, is either due to the appearance
of viscous, free boundary layers around the attractor (Rieutord and Valdettaro 1997;
Dintrans et al. 1999; Rieutord 2001; Hazewinkel et al. 2008), or to the transfer of
energy to other wave frequencies by nonlinear interactions when the fundamental
wave experiences Triadic Resonant Instabilities (TRI) (Dauxois et al. 2018).

2.3.3 Three-dimensional Effects

While most studies have concentrated on quasi two-dimensional settings, whether
in Cartesian, cylindrical or spherical geometries, inertial waves likely develop three-
dimensional fine structure. This is already evident in the horizontal cross-sectional
velocity field near the corners of the planar (untilted) box, see Fig. 2.8b. When basin
shapes additionally break the reflectional symmetry of the obliquely propagating
inertial waves, as in the tilted box or trapezoidal basin, it is a priori clear that wave
attractors, located in planes perpendicular to the sloping sides, must adapt to the
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Fig. 2.10 Top view of observed velocity amplitude (U ) and anticyclonic phase (θ−) patterns of
inertial waves in a homogeneous fluid contained in a trapezoidal basin. The tank has its sloping
side, z = x − 1, at the right, for 1 ≤ x ≤ 2. Shown are measurements at three heights: (z = 3/4,
left two panels; z = 1/2, middle two panels; z = 1/4, right two panels). Inertial waves are forced
by libration of the rotating tank. The libration frequency is such that in an infinitely-long trapezoidal
basin the inertial wave would approach a rectangular-shaped attractor that intersects these levels
at locations indicated by solid black lines. Velocities are dominated by anticyclonic motions. For
further explanation, see Manders and Maas (2004)

presence of front and end side-walls. To phrase this differently, while inviscid internal
gravity waves in a uniformly-stratified fluid are perfectly able to focus onto a set of
wave attractors, all oriented perpendicular to the sloping boundary of a trapezoidal
basin, so that their combined structure—the structure of a two-dimensional attracting
manifold—is invariant in the along-slope horizontal direction, see Pillet et al. (2018),
this is not possible for inertial waves in the same basin. The attracting manifold must
change its form, or even its presence, when approaching the front and end walls.
An experimental study, aimed at elucidating its structure, found the inertial wave
attractor to become more intense but also squeezed on approaching the end walls,
see Figs. 2.10 and 2.11. Moreover, wave energy slightly concentrated on the side of
the trapezoidal basin that would, from a topographic Rossby wave perspective and
given the presence of a sloping bottom, be associated with ‘West’.

Other indications for nontrivial behaviour in three-dimensions comes from ray
patterns.While rays and characteristics are often considered identical, correct in two-
dimensional Cartesian settings, this is not true in three-dimensional or axisymmetric
(quasi two-dimensional) domains. For this reason, in contrast to the two-dimensional
case of a globally resonant mode, shown in Fig. 2.7b, in a spherical shell globally-
resonant modes are not associated with periodicity of all characteristics (Rieutord
et al. 2001). Curvature of the boundary implies that in the governing equation the
leading second-order operator’s characteristics are not identical to energy paths. Yet,
this identification works well on small scales where curvature effects are negligible.

The dynamics of internal and inertial wave rays is interesting. The non-specular
type of reflection experienced by rays propagating in a plane normal to a sloping bot-
tom or side wall, leading to their focusing or defocusing, also affects the reflection
of obliquely incident rays. By its elegance, Phillips’ derivation of the reflection pro-
cess of obliquely incident rays, formulated in an inclined plane defined by incident
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Fig. 2.11 Side views of velocity amplitude (U ) measured at six different transects, from left to
right at y/L = 0.12, 0.18, 0.24, 0.30, 0.36, 0.42 respectively. Notice the elongated character of the
attractor close to the side wall at y = 0. Picture adapted from Manders and Maas (2003)

and reflected rays (Phillips 1963), obscures somewhat the instantaneous refraction
accompanying focusing or defocusing reflections: a sudden change in horizontal
propagation direction. Describing wave reflection instead in a frame-of-reference
whose vertical axis is parallel to the anisotropy direction set by gravity or rota-
tion axis, refraction is seen to occur simultaneously (Maas 2005). Interestingly, in
three dimensions focusing of multiply-reflected wave rays onto a wave attractor in
a vertical trapping plane is accompanied by another phenomenon that resembles ray
behaviour in whispering galleries. Some rays avoid trapping onto a wave attractor by
experiencing a sequence of focusing reflections that are exactly balanced by defo-
cusing reflections. Reflection locations hug the line of critical depth, defined as the
line connecting depth locations where ray slope equals bottom slope, see Fig. 2.12
(Maas 2005; Rabitti and Maas 2013; Pillet et al. 2019).

2.4 Discussion

The isotropy or anisotropy of a fluid depends on (i) the presence of an anisotropic
restoring mechanism, such as gravity, system-rotation, or the presence of a magnetic
field, so far undiscussed, (ii) a stratification of the fluid, such as in density or angular
momentum, and (iii) the presence of inclined boundaries relative to the anisotropy
direction.

The third aspect turns out to be vital. For even when a fluid’s density is discretely-
stratified in layers, and one might expect interfaces separating the layers to act
as horizontal wave guides, see Sect. 2.2.2, or scatter obliquely incident waves into
reflected and transmitted oblique waves, experiment shows otherwise (Hazewinkel
et al. 2010a). In a fluid having twenty stratified layers of equal depth, differing incre-
mentally in density and confined to a trapezoidal basin, awave attractor of rectangular
shape still forms, see Fig. 2.13. It is very similar in shape to the one found in the
uniformly-stratified fluid, as visible in Fig. 2.6. The attractor shape becomes less
visible when the number of layers is for instance halved (not shown).

The presence of restoring mechanisms allows us to define equilibrium states,
in which a restoring force balances a pressure gradient force, such as the hydro-
static (2.3) and cyclostrophic (2.13) equilibria for density-stratified and rotating,
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Fig. 2.12 Perspective (a, b) and top (c, d) views of rays launched in a uniformly-stratified fluid,
confined to a paraboloidal container, either focusing onto a wave attractor (a,c) or propagating
around in a whispering-gallery type of motion (b,d). The dashed circles shows critical depths,
where bottom slope equals ray slope, determined by the ratio of wave and buoyancy (or Coriolis)
frequencies. Picture adapted from Maas (2005)

Fig. 2.13 Five subsequent snapshots of a video showing side views of a fluid that is discretely-
stratified and that is being oscillated sideways periodically. The fluid contains twenty layers that
are incrementally increasing in density downwards. Displacements of interfaces are visualized by
shadowgraph. Picture adapted from Hazewinkel et al. (2010a)

homogeneous-density fluids, respectively. In plasmas, the presence ofmagnetic fields
similarly invokes an equilibrium, described by the Grad-Shafranov equations (Goed-
bloed et al. 2019).
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2.4.1 The Linear Shear Flow as ‘Problematic’ Equilibrium

Notice that waves in shear flows stratified in linear momentum, differ from those
encountered in fluids stratified in density or angular momentum. Their existence
is somewhat of a mystery (Hof et al. 2004). Despite the fact that rectilinear shear
flows formally appear as stable solutions of the Euler equations, one cannot pin-
point an equilibrium state consisting in a similar balance of forces that, once dis-
rupted, provides a restoring mechanism. Indeed, regarding the Euler equations as
an asymptote of the Navier-Stokes equations in the limit that the Reynolds num-
ber R = UL/ν → ∞ approaches infinity (viscosity ν → 0), this limiting process,
viewed as a state undergoing a large number of bifurcations while increasing the
Reynolds number, generates more and more unstable solutions that should neces-
sarily end in turbulence. This relates to the fact that particular classes of waves in
shear flows are found in a very circumspect way. This is often done by viewing
the rectilinear shear flow either as the limit of a swirling flow inside an annulus,
whose cylinders, rotating at different speed, possess radii approaching infinity, or
as the limit of a stably-stratified fluid, in which the stratification rate decreases to
zero. Conspicuously these exactly correspond to the two previously mentioned cases
for which force balances can easily be defined. In practice, real viscous pipe flows
turn unstable and become turbulent at moderate speeds, generating longitudinal rolls,
interactingwith subsequently bifurcated transverse circulation cells (Hof et al. 2004).
Moreover, because waves that are trapped to a critical layer in a shear flow have a
wave frequency depending on wave vector magnitude, these best classify as isotropic
again, as the isotropy concept is synonymous with an absence of any wave frequency
dependence on wave vector direction.

2.4.2 Waves in Anisotropic Media

By contrast, in anisotropic media wave frequency depends on wave vector direc-
tion only, implying that perturbations of hydrostatic and cyclostrophic equilibria are
unproblematic. The differences between waves in isotropic and anisotropic media
have far-reaching implications. Isotropic water waves, such as surface gravity waves
or internal waves in uniform-depth fluids, exhibit focal points when reflecting from
convex vertical boundaries (such as a parabolic mirror). However, focusing occurs
temporarily. Upon passing a focal point, waves diverge. In confined fluid domains,
multiple side-wall reflections of such isotropic waves lead to wave ray chaos. It
explains why one can illuminate a cave with a single candle, or why in a popular
restaurant, conversations may be lost in a cacophony.

By contrast, anisotropic internal gravity and inertial waves almost always follow
an indefinite geometric focusing principle. This occurswhen they reflect from sloping
boundaries that are neither parallel nor perpendicular to the anisotropy direction.
As a consequence, despite the fact that linear equations govern these waves, the
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geometrically (Maas and Lam 1995) or analytically (Maas 2009) constructed wave
solutions exhibit self–similarity in real, Fourier and parameter spaces, features that
are normally associated with nonlinear dynamical systems. Also, while isotropic
waves in closed basins exhibit a discrete set of eigenfrequencies, the spectrum of
anisotropic waves becomes continuous. These and other complementary properties
of isotropic and anisotropicwaves are discussed inMaas (2005),Brouzet et al. (2017),
Sibgatullin and Ermanyuk (2019).

2.4.3 Mixing Due to Wave Focusing and Mean Flows

Let us look at one final aspect of these anisotropic media and their equilibria, namely
the impact of waves on the mean state. Perturbations to a balanced hydrodynamic
state—waves—may locally provoke mixing. Waves in anisotropic fluids focus onto
wave attractors for nearly every shape of the fluid basin. While focusing, along-
attractor velocity and shear amplify, and scales reduce. Attractors are therefore loca-
tionswheremixing of anisotropic fluids can be expected to occur preferentially, either
by immediately reaching down to the Kolmogorov scales, where viscous processes
can mix, by means of wave breaking due to secondary shear-flow instabilities, or via
triadic-wave interactions.

In this manner, local diapyncal (vertical) mixing of a density-stratified fluid leads
to horizontal density and pressure gradients that force a horizontal mean flow, so that
the mixed fluid will spread out along isopycnal surfaces. As rotating fluids contain
a huge amount of energy, stored in rotational motion, weak mechanical forcing can
similarly convey part of this large-scale intense flows (Le Bars et al. 2015). But
mixing of a homogeneous-density, rotating fluid must pertain to mixing of the ‘stuff’
the fluid is stratified with: angular momentum. The underlying equilibrium state is
thus relevant. The apparently quiescent initial state of a fluid that is in solid-body
rotation, i.e. in a frame co-rotating with the container, is radially-stratified in angular
momentum. Despite the fact that the (nonlinear) Euler equations are invariant with
respect to coordinate translation, they do depend on the rotation axis’ location. In
case the fluid has a free surface this is easily visualised. After the spin-up process, the
fluid is in solid-body rotation and the free surface shape will become paraboloidal;
to be more precise, a segment of a paraboloidal surface. A segment that may or may
not contain the paraboloid’s minimum, depending on whether or not the rotation
axis passes through the container. When that axis lies outside the container, the free
surface will have its minimum at the point closest to the rotation axis.

The presence of this paraboloidal surface resolves the chicken-and-egg question
whether, away from the rotation axis, the pressure is high because the free surface
level is raised in favour of a reversed causality: the free surface is high because the
pressure is high. To fully contain the fluid, imagine we use a rigid-lid instead of a
free surface. The pressure in this solidly rotating fluid must still increase radially-
outward, as fluid continues to be swept outwards by the centrifugal force, and the
cyclostrophic balancewill persist.While in a rotating, quiescent fluidwecanperfectly
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well describe perturbations as being governed by the linear, rotating Euler equations,
it transpires that, in the same way as we neglect viscous effects after the spin-up
phase in these equations, wemust also have been neglecting compressibility. Despite
liquids beingnearly incompressible, during spin-up compressibilitymust have played
a role in setting the higher pressure at larger radii, made visible by the free surface
displacement when taking away the rigid lid.

This is relevant towhat happenswhenmixingoccurs in a rotatingfluid, for instance
due to wave focusing. In analogy to the isopycnal spreading of fluid following mix-
ing of density-stratified fluids, mixing of fluids stratified in angular momentum will
lead to a mixture spreading out along iso-angular momentum surfaces. But, its sub-
sequent fate depends on the topology of these surfaces relative to the shape and
size of the basin. Obviously, axial cylindrical fluid domains—cylinders whose axes
coincide with the rotation axis—are special, as all iso-angular momentum surfaces
fully lie within the fluid domain. In the presence of a sloping bottom, any mixing
triggered by geometric focusing near a wave attractor can then drive a mean flow
along a cylindrical iso-angular momentum surface that sits in the container above
the attractor’s focusing location at the bottom. It is uninhibited by obstructing side
walls. Recent experiments on focusing inertial waves confirm the generation of such
an axisymmetric mean flow, which however turns unstable and produces a sequence
of barotropic cyclones (Boury et al. 2021). But non-axisymmetric boundaries are
obviously more generic. When cylindrical iso-angular momentum surfaces are not
or not completely contained within the cylinder these lead to regions where iso-
angular momentum surfaces are obstructed. This occurs, for instance, in the corners
outside the inscribed cylinder of rectangular axial containers. More pathologically
this occurs for basins that lie completely outside the rotation axis, as for instance an
eccentrically-positioned container on a large turn-table (Maas 2001). In that case, all
angular momentum surfaces intersect the boundary and closed angular momentum
surfaces are completely absent, see Fig. 2.14.

The notion of iso-angular momentum surfaces, and their potential blockage by
boundaries, is reminiscent of that of geostrophic contours (Rhines and Young 1982).
The latter are lines of equal potential vorticity, f/h, the ratio of planetary vorticity
f and fluid depth, h. In geophysical context these lines are typically oriented in
zonal direction because in the traditional approximation only the vertical component
of planetary vorticity is taken into account. Variations in bottom topography, or,
in a two-layer context, in equivalent depth, related to the interface depth, can force
these lines to develop closed contours.Within these contours, circulation can strongly
amplify and homogenise potential vorticity.We anticipate that the presence of closed
iso-angularmomentum surfacesmay similarly homogenise angularmomentum, even
in uniform-depth, rigid-lid containers where potential vorticity is constant.
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Fig. 2.14 Eulerian, vertically-uniform mean-flow observed by means of PIV in the top view of
a homogeneous-density, rotating fluid situated in an eccentrically-located tank that is subject to
libration. Observations extend over the right-half of the tank only. The angular momentum surfaces
are roughly aligned with the figure’s lower boundary. An attractor manifold develops (far from
the vertical wall, at the right) over the location where it reflects from the slope, indicated by the
red arrow. At the attractor, fluid differing in angular momentum is mixed, forcing this mean-flow.
Picture adapted from Maas (2001)

2.5 Conclusion

A fluid layer supports waves that find their maxima and minima either at its bound-
aries or in its interior: external and internal waves, respectively. The former class
encompasses capillary and surface and interfacial gravity waves, found in isotropic
media. They obey a dispersion relation that relates frequency to wave vector mag-
nitude. The latter class, encompassing internal gravity and inertial waves are found
in anisotropic media. By contrast, their dispersion relations relate frequency to wave
vector direction. The consequences of this difference in dispersion relation are mul-
tiple, best summarised by stating that the behaviour of internal waves is completely
opposite and complementary to that of external waves.

In a field of gravity, anisotropy can be due to a stratification (non-uniformity) of
the fluid’s density. In a rotating fluid, anisotropymay be due to a radial stratification in
angular momentum. These stratifications lend fluid parcels ‘a memory’, expressed
in the material conservation of their density or angular momentum, respectively.
Quiescent fluids that are stably stratified in density or angular momentum possess a
balance between two opposing forces. Perturbing these states gives rise to a restoring
mechanism, as one of the two forces will dominate.

Shear flows represent fluids that are stratified in linearmomentum.With the excep-
tion of linear or parabolic shear flows, as present in Couette and Poiseuille flows,
respectively, these flows do not themselves obey the Navier-Stokes equations. Under
some stability conditions, these flows also support waves but lack an underlying
balance of forces, making it harder to identify an internal restoring mechanism.
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