
Chapter 1
Basic Equations of Marine Flows

Knut Klingbeil, Eric Deleersnijder, Oliver Fringer, and Lars Umlauf

Abstract Themodeling of ocean basins, coastal seas, estuaries, and lagoons requires
an adequate mathematical description of the state of the fluid in these systems. The
state can be characterised by a set of macroscopic variables including density, veloc-
ity, temperature, concentrations of salt and other dissolved substances. The evolution
of these state variables is governed by partial differential equations derived from
physical laws. In this chapter the basic mathematical concepts for formulating the
governing equations are summarized and the final set of governing equations is given.

1.1 Mathematical Description of Fluids

1.1.1 Fluids as Continuous Media

A fluid consists of an extremely large number of ions and molecules. However, it is
usually not the microscopic information about all molecules (e.g. position, velocity,
interaction), but a finite number of macroscopically averaged quantities that is of
interest for the description of a fluid and its motion. Important macroscopic state
variables are density ρ, velocity v = (u, v, w), temperature Θ , concentrations of
salt S and suspended sediment c. As long as the mean free path of water molecules is
smaller than the smallest scales overwhich gradients in thefluid occur, the fluid can be
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approximated as a continuousmedium.Given that themean free path of liquidwater is
O(10−10 m) and the smallest flow or density gradients in marine environments occur
over scales ofO(10−3 m), see e.g. Olbers et al. (2012), the continuum assumption is
an extremely good approximation for all motions of interest. Therefore, the resulting
state variables can be treated as continuous time-dependent field functions ψ (x, t),
with the spatial coordinate x = (x, y, z) and time coordinate t .

1.1.2 Integral and Differential Formulations

Volume integration of continuous state variable functions introduced in Sect. 1.1.1
allows for the calculation of physical quantities like mass, momentum, angular
momentum and energy. The first principles of classical mechanics and thermody-
namics describe the evolution of mass, momentum and energy of a material volume
of fluid.Material volumes consist of a fixed set of fluid elements bounded bymaterial
surfaces that follow the fluid and hence ensure that there is no flow into or out of
the material volume. The temporal derivative with respect to the material volume
is referred to as the material derivative, denoted by D/Dt . The evolution of a state
variable ψ is prescribed by a corresponding source term R, such that the prototype
integral budget equation is given by D

Dt

∫
ψ dV = ∫

R dV . Governing equations for
integral flow quantities can be re-formulated in differential form with the help of the
Leibniz integral rule. For an arbitrary continuous function ψ the resulting Reynolds
transport theorem (Aris 1989) reads

D

Dt

∫
ψ dV =

∫
∂tψdV +

∮
ψ

Dx
Dt︸︷︷︸
=v

· dA, (1.1a)

=
∫

[∂tψ + ∇ · (vψ)] dV . (1.1b)

In (1.1a), because the material surface moves with the fluid velocity, the material
derivative of points on the material surface is equal to the fluid velocity v = Dx/Dt .
Assuming (1.1b) is satisfied for any material volume, including one that is infinites-
imally small, the prototype budget equation in differential form reads

∂tψ + ∇ · (vψ) = R. (1.2)

Formulating the budget equations for mass, momentum and energy in differential
form yields a set of coupled nonlinear partial differential equations for the state
variables introduced in Sect. 1.1.1.
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1.1.3 Averaging of Turbulent Flows

Coupled nonlinear differential equations can exhibit chaotic behaviour with solu-
tions that are very sensitive to disturbances (Lorenz 1963). These solutions describe
turbulent flows and exhibit strong fluctuations over a broad range of spatio-temporal
scales (Foias et al. 2001). Solving the dynamics of the physical quantities on all
scales, i.e. including the turbulent stirring down to the viscous scales, requires an
impractical high spatio-temporal resolution. Furthermore, it is usually not one indi-
vidual turbulent solution that is of interest, but properties of the mean flow. Mean
flow quantities can be obtained by the application of a linear averaging operator
〈·〉, commonly over space, time or ensemble realisations. If the operator commutes
with the temporal and spatial derivatives, averaging of the prototype Eq. (1.2) yields
an equation of identical form for the mean flow quantities, except for an additional
turbulent flux τ (v, ψ) originating from the nonlinearity in the original equation:

∂t 〈ψ〉 + ∇ · (〈v〉 〈ψ〉) = 〈R〉 − ∇ · (〈vψ〉 − 〈v〉 〈ψ〉)
︸ ︷︷ ︸

=τ (v,ψ)

. (1.3)

If the averaging operator is also idempotent, i.e. 〈〈·〉〉 = 〈·〉, it is called a Reynolds
average. Only for a Reynolds average, e.g. the ensemble mean, the turbulent flux is
represented by the correlation of fluctuations (second moments), i.e.

τ (v, ψ) = 〈
(v − 〈v〉) (ψ − 〈ψ〉)〉 = 〈v′ψ ′〉 for Reynolds averages. (1.4)

Since turbulent stirring enlarges local gradients and the interfaces where molecular
mixing can take place, the net effect of enhanced mixing in turbulent flows moti-
vates to parameterise an unknown turbulent flux as a diffusive flux in terms of an
eddy diffusivity and the known mean flow gradient (eddy viscosity assumption of
Boussinesq).

1.2 Governing Equations

The governing equations are derived from the physical laws for mass conservation
and the budget equations for linear and angular momentum, and energy. They are
formulated following the prototype Eq. (1.2). A detailed derivation of each equation
is beyond the scope of this book and the reader is referred to the excellent text books
by Batchelor (1967), Griffies (2004) and Olbers et al. (2012). In marine modelling,
several approximations are applied to simplify the set of equations. A very common
approximation is the Boussinesq approximation (not to be mistaken for the eddy
viscosity assumption of Boussinesq). As described by Young (2010), variations in
density are only considered for buoyancy effects in the vertical momentum balance.
In all other terms the density is replaced by a constant reference density ρ0. The
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buoyancy follows from a diagnostic equation of state which provides the density
depending on salinity S, temperature Θ , and in case of Boussinesq fluids on depth
instead of in-situ pressure (Roquet et al. 2015):

ρ = ρ(S,Θ, z). (1.5)

With the eddy viscosity assumption of Boussinesq, the set of governing equations for
the mean-flow quantities (without brackets for brevity) is presented in the following.
The emphasis of the vertical axis in geophysical applications motivates the assump-
tion of transverse isotropy and the use of different eddy viscosities and diffusivities
for vertical and horizontal turbulent fluxes.

1.2.1 Volume Conservation

Under the Boussinesq approximation it is not mass
∫

ρ dV anymore, but volume
that is conserved. The original prognostic equation for density degenerates to the
so-called incompressibility constraint,

∂xu + ∂yv + ∂zw = 0, (1.6)

enforcing a divergence-free flow.
Kinematic boundary conditions further constrain the flow at bounding surfaces by

prescribing the diasurface volume flux velocity (Griffies 2004). With the velocity of
the bounding surface vb the conditions at a single-valued free surface z = η(x, y, t)
and impermeable bottom z = −H(x, y, t) are given by

∇(z − η) · (v − vb) = (E − P) at z = η, (1.7a)

∇(z + H) · (v − vb) = 0 at z = −H. (1.7b)

In (1.7a) the volume flux velocity is prescribed in terms of evaporation E and
precipitation P . Alternative formulations are

∂tη + u∂xη + v∂yη − w = −(E − P) at z = η, (1.8a)

∂t H + u∂x H + v∂y H + w = 0 at z = −H. (1.8b)

Boundary condition (1.8a) is used to determine the evolution of the free surface. In
contrast, (1.8b) constrains the flow velocity at the bottom in terms of a prescribed bot-
tom topography. The morphological evolution of the bottom ∂t H is either neglected
or follows from a morphological model (see Chap. 10).
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1.2.2 Salt Conservation

Seawater is a mixture of freshwater and salt. The fluid velocity v is defined as the
center-of-mass (barycenter) velocity of the mixture. The mass fraction of salt in
seawater defines the salinity S. The budget equation for salt in differential form
reads

∂t S + ∂x (uS) + ∂y(vS) + ∂z(wS) = ∂x (K∂x S) + ∂y(K∂y S) + ∂z(ν
′
t∂z S). (1.9)

The diffusive salt flux jS = (−K∂x S,−K∂y S,−ν ′
t∂z S)on the right-hand side param-

eterizes the mean salt flux relative to the center-of-mass velocity (Beron-Vera et al.
1999; Nurser and Griffies 2019), with horizontal and vertical eddy diffusivities K
and ν ′

t . For salt there is a discontinuity at the surface and bottom boundaries, with
no salt flux through them. Therefore, the analytical boundary condition requires the
diffusive salt flux to compensate the advective one associated with (1.7a) and (1.7b):

∇(z − η) · jS = −(E − P)S at z = η, (1.10a)

∇(z + H) · jS = 0 at z = −H. (1.10b)

1.2.3 Heat Balance

An excellent representation of the heat of a seawater fluid element is the Conserva-
tive Temperature Θ (McDougall 2003). From the first law of thermodynamics the
corresponding prognostic equation can be derived as

∂tΘ + ∂x (uΘ) + ∂y(vΘ) + ∂z(wΘ) = ∂x (K∂xΘ) + ∂y(K∂yΘ) + ∂z(ν
′
t∂zΘ) + ∂z I

Cpρ0
,

(1.11)

with the specific heat capacity of water at constant pressure Cp and solar irra-
diance in I . The boundary condition for the diffusive temperature flux jΘ =
(−K∂xΘ,−K∂yΘ,−ν ′

t∂zΘ) with horizontal and vertical eddy diffusivities K and
ν ′
t reads as

∇(z − η) · jΘ = Qs

Cpρ0
at z = η, (1.12a)

∇(z + H) · jΘ = 0 at z = −H. (1.12b)

The surface heat flux Qs consists of sensible, latent and long-wave radiation contri-
butions.
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1.2.4 Momentum Balance

The momentum balance provides prognostic equations for the velocity components.
Considering Earth rotation and gravity these can be written as

∂t u + ∂x (uu) + ∂y(vu) + ∂z(wu) − f v + fcw

= ∂x T11 + ∂yT21 + ∂zT31 − ∂x Pnh − ∂x Phs,
(1.13a)

∂tv + ∂x (uv) + ∂y(vv) + ∂z(wv) + f u

= ∂x T12 + ∂yT22 + ∂zT32 − ∂y Pnh − ∂y Phs,
(1.13b)

∂tw + ∂x (uw) + ∂y(vw) + ∂z(ww) − fcu

= ∂x T13 + ∂yT23 + ∂zT33 − ∂z Pnh.
(1.13c)

In (1.13a)–(1.13c) f = 2Ω sin φ and fc = 2Ω cosφ denote the Coriolis param-
eters with the spin rate of the Earth Ω and latitude φ, and Ti j the components of the
turbulent stress tensor T. Formulations for the stress tensor are given in Sect. 1.2.5.
The dynamic pressure is already decomposed into hydrostatic and nonhydrostatic
contributions. The hydrostatic pressure contribution is defined by the weight of the
water column above,

ρ0Phs(z) = pa + ρ0g(η − z) +
η∫

z

(
ρ(z′) − ρ0

)
g dz′, (1.14)

with pa being atmospheric pressure at the surface and g the gravitational acceleration.
Dynamic boundary conditions prescribe momentum fluxes through the surface and
bottom,

∇(z − η) · T = τs at z = η, (1.15a)

∇(z + H) · T = τb at z = −H, (1.15b)

with τs and τb being surface and bottom stress vectors defined in opposite direction
to the associated momentum fluxes. The bottom stress is usually reconstructed from
a logarithmic velocity profile.
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1.2.5 Common Formulations and Closures

Depending on the application and the scales of interest, different forms of the turbu-
lent fluxes and different closures for the eddy viscosities and diffusivities have to be
used.

Nonhydrostatic LES Equations

The governing equations for Large eddy simulations (LES) can be obtained when
the averaging operator in (1.3) represents a sufficiently fine spatial filter such that
the mean flow quantities still resolve the large energy-containing eddies down to the
inertial subrange. Because the horizontal and vertical scales of motion are isotropic
within the inertial subrange, the full momentum balance must be solved, which
requires the solution of a three-dimensional elliptic Poisson equation for the nonhy-
drostatic pressure contribution.

In contrast to the large-scale eddies, which strongly depend on the geometry of
the domain and thus obey no universal spectrum, the unresolved small-scale eddies
are more likely to be homogeneous and isotropic and thus easier to model. The most
common approach to modeling the turbulent stress in LES is to assume 3D isotropy
for the eddy diffusivity A and its flow-dependent calculation following Smagorinsky
(1963):

Ti j = A(∂i u j + ∂ j ui ), (1.16a)

A = (CSΔ)2
(
1

2
(∂i u j + ∂ j ui )

1

2
(∂i u j + ∂ j ui )

)1/2

. (1.16b)

In (1.16b) summation is carried out over doubled indices, Δ is the filter width and
CS = O(0.1) is the Smagorinsky constant. Assuming 3D isotropy also implies equal
horizontal and vertical eddy diffusivities for tracers, i.e. K = ν ′

t in (1.9) and (1.11),
which can be calculated in terms of a prescribed turbulent Prandtl number Prt :

K = A/Prt. (1.17)

In LES the filter width Δ is a measure of the grid size, which must be of
O(0.1m) − O(1m) to resolve the energy-containing eddies in typical marine appli-
cations. Therefore, LES is reserved for small-scale, idealized studies, although its
application to real, field-scale problems continues to increase. For a more thorough
overview of LES modeling, the reader is encouraged to refer to the texts by Pope
(2000) and Rodi et al. (2013).
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Hydrostatic Shallow Water Equations

In most geophysical applications the vertical scales of motion are much smaller
than the horizontal ones. The flows usually take place in horizontal planes without
significant vertical acceleration. These considerations motivate the hydrostatic pres-
sure assumption, which degenerates the vertical momentum balance by neglecting
(1.13c) so that the prognostic integration of w in (1.13c) is replaced by a diag-
nostic calculation from (1.6), see e.g. Klingbeil and Burchard (2013). Furthermore,
the nonhydrostatic pressure contributions in (1.13a) and (1.13b) are neglected, i.e.
∂x Pnh = ∂y Pnh = 0. In addition, fcw is neglected in (1.13a) so that the Coriolis
force stays orthogonal to the velocity and does not alter the kinetic energy of a fluid
element.

The separation of horizontal and vertical scales also implies different viscosities
in the horizontal and vertical direction (A and νt , respectively). Under this transverse
isotropy two formulations of the stress tensor are common (Kamenkovich 1967;
Smagorinsky 1993):

[
T11 T21 T31
T12 T22 T32

]

=
[

2A∂xu A(∂xv + ∂yu) νt∂zu
A(∂xv + ∂yu) 2A∂yv νt∂zv

]

, (1.18a)

A = (CSΔ)2
(

(∂xu)2 + 1

2
(∂xv + ∂yu)2 + (∂yv)2

)1/2

, (1.18b)

or
[
T11 T21 T31
T12 T22 T32

]

=
[
A(∂xu − ∂yv) A(∂xv + ∂yu) νt∂zu
A(∂xv + ∂yu) −A(∂xu − ∂yv) νt∂zv

]

, (1.19a)

A = (CSΔ)2
(
1

2
(∂xu − ∂yv)2 + 1

2
(∂xv + ∂yu)2

)1/2

. (1.19b)

The horizontal eddy diffusivity of momentum A is either assumed to be constant,
or calculated by the Smagorinsky closures given in (1.18b) and (1.19b), respectively.
The horizontal eddy diffusivity for tracers K in (1.9) and (1.11) is usually derived
in terms of a prescribed turbulent Prandtl number according to (1.17). Following
Umlauf and Burchard (2005), the vertical turbulent diffusivities of momentum νt
and tracers ν ′

t can be obtained from a general algebraic second-moment closure in
terms of the turbulent kinetic energy (TKE) k and its dissipation rate ε.

1.3 Summary

In this chapter the governing equations for marine flows were presented. For many
applications the hydrostatic pressure assumption is valid. The resulting shallowwater
equations outlined in Sect. 1.2.5 form the basis for many studies and the remaining
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chapters. Further details about the numerics of hydrostatic coastal ocean models can
be found in Klingbeil et al. (2018).
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