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Preface

Coastal regions are strongly impacted by human interventions and climate change.
Sea level rise and increased storminess threaten coastal safety; changes in intensity
and duration of rainfall strongly impact intrusion of salt which may endanger the
availability of freshwater. Examples of human interventions are themeasures tomiti-
gate these adverse climate effects, but also interventions are driven by, for example,
economic (e.g., deepening of shipping channels, sand mining) and environmental
(e.g., construction of large-scale wind parks) reasons. Unfortunately, such interven-
tions may have unintended negative impacts due to the many conflicting interests in
these regions: for example, channel deepening may be an excellent choice from an
economic point of view, but it may result in a deterioration of the coastal safety and
ecological values of the system under consideration. To oversee the multi-faceted
impact of interventions and climate change, the dynamics of coastal seas, estuaries,
and tidal inlets have to be well-understood. Only with such understanding, coastal
managers can make well-balanced decisions that take all aspects into account. Math-
ematical modeling of marine systems becomes increasingly important to provide the
insights necessary for decision making.

Over the past few decades, the mathematical modeling cycle has become instru-
mental in understanding the dynamics of coastal seas, estuaries, and tidal inlet
systems. In this cycle, new mathematical models are developed or existing models
are improved upon, advanced solution techniques are developed and employed to
solve these highly complex nonlinear models, and the model outcomes are analyzed
using state-of-the-art mathematical techniques and, if possible, compared to field
and laboratory observations.

In this contribution, we focus on mathematical techniques available to study
various topics frommarine sciences in estuaries and coastal seas. Since only a limited
number of topics can be treated, we restrict ourselves to the discussion of mathe-
matical models on water motion and transport of pollutants and sediments by the
water motion. In the first chapter, the basic mathematical concepts to obtain the
governing equations are summarized and the final system of equations to model the
watermotion in coastal regions is given. In the next chapters, specific aspects of water
motion are discussed: water waves in isotropic and anisotropic media, (near-shore)
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vi Preface

waves, and barotropic tides. This is followed by a detailed review of 2D-turbulence
modeling and parameterization of turbulent dispersion. In the final chapters, river
plumes, mathematical techniques to model transport phenomena, morphodynamic
modeling of the bathymetry and geometry, and accurately model drying and flooding
are discussed.

The prerequisite mathematical knowledge varies, but most of the material should
be accessible to advanced graduate students and early-stage researchers. In most
chapters, there is a clear link with observations and practical challenges, allowing
professionals outside academia and decision-makers to get a good insight into the
various techniques underpinning the models often used and other methodologies
that can be employed to tackle their real-world problems. In each chapter, there is
an extensive list of references, ranging from general to highly specialized, allowing
the interested reader to further explore these topics independently.

Delft, The Netherlands
February, 2022

Eric Deleersnijder
Arnold Heemink

Henk Schuttelaars
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Chapter 1
Basic Equations of Marine Flows

Knut Klingbeil, Eric Deleersnijder, Oliver Fringer, and Lars Umlauf

Abstract Themodeling of ocean basins, coastal seas, estuaries, and lagoons requires
an adequate mathematical description of the state of the fluid in these systems. The
state can be characterised by a set of macroscopic variables including density, veloc-
ity, temperature, concentrations of salt and other dissolved substances. The evolution
of these state variables is governed by partial differential equations derived from
physical laws. In this chapter the basic mathematical concepts for formulating the
governing equations are summarized and the final set of governing equations is given.

1.1 Mathematical Description of Fluids

1.1.1 Fluids as Continuous Media

A fluid consists of an extremely large number of ions and molecules. However, it is
usually not the microscopic information about all molecules (e.g. position, velocity,
interaction), but a finite number of macroscopically averaged quantities that is of
interest for the description of a fluid and its motion. Important macroscopic state
variables are density ρ, velocity v = (u, v, w), temperature Θ , concentrations of
salt S and suspended sediment c. As long as the mean free path of water molecules is
smaller than the smallest scales overwhich gradients in thefluid occur, the fluid can be
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2 K. Klingbeil et al.

approximated as a continuousmedium.Given that themean free path of liquidwater is
O(10−10 m) and the smallest flow or density gradients in marine environments occur
over scales ofO(10−3 m), see e.g. Olbers et al. (2012), the continuum assumption is
an extremely good approximation for all motions of interest. Therefore, the resulting
state variables can be treated as continuous time-dependent field functions ψ (x, t),
with the spatial coordinate x = (x, y, z) and time coordinate t .

1.1.2 Integral and Differential Formulations

Volume integration of continuous state variable functions introduced in Sect. 1.1.1
allows for the calculation of physical quantities like mass, momentum, angular
momentum and energy. The first principles of classical mechanics and thermody-
namics describe the evolution of mass, momentum and energy of a material volume
of fluid.Material volumes consist of a fixed set of fluid elements bounded bymaterial
surfaces that follow the fluid and hence ensure that there is no flow into or out of
the material volume. The temporal derivative with respect to the material volume
is referred to as the material derivative, denoted by D/Dt . The evolution of a state
variable ψ is prescribed by a corresponding source term R, such that the prototype
integral budget equation is given by D

Dt

∫
ψ dV = ∫

R dV . Governing equations for
integral flow quantities can be re-formulated in differential form with the help of the
Leibniz integral rule. For an arbitrary continuous function ψ the resulting Reynolds
transport theorem (Aris 1989) reads

D

Dt

∫
ψ dV =

∫
∂tψdV +

∮
ψ

Dx
Dt︸︷︷︸
=v

· dA, (1.1a)

=
∫

[∂tψ + ∇ · (vψ)] dV . (1.1b)

In (1.1a), because the material surface moves with the fluid velocity, the material
derivative of points on the material surface is equal to the fluid velocity v = Dx/Dt .
Assuming (1.1b) is satisfied for any material volume, including one that is infinites-
imally small, the prototype budget equation in differential form reads

∂tψ + ∇ · (vψ) = R. (1.2)

Formulating the budget equations for mass, momentum and energy in differential
form yields a set of coupled nonlinear partial differential equations for the state
variables introduced in Sect. 1.1.1.
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1.1.3 Averaging of Turbulent Flows

Coupled nonlinear differential equations can exhibit chaotic behaviour with solu-
tions that are very sensitive to disturbances (Lorenz 1963). These solutions describe
turbulent flows and exhibit strong fluctuations over a broad range of spatio-temporal
scales (Foias et al. 2001). Solving the dynamics of the physical quantities on all
scales, i.e. including the turbulent stirring down to the viscous scales, requires an
impractical high spatio-temporal resolution. Furthermore, it is usually not one indi-
vidual turbulent solution that is of interest, but properties of the mean flow. Mean
flow quantities can be obtained by the application of a linear averaging operator
〈·〉, commonly over space, time or ensemble realisations. If the operator commutes
with the temporal and spatial derivatives, averaging of the prototype Eq. (1.2) yields
an equation of identical form for the mean flow quantities, except for an additional
turbulent flux τ (v, ψ) originating from the nonlinearity in the original equation:

∂t 〈ψ〉 + ∇ · (〈v〉 〈ψ〉) = 〈R〉 − ∇ · (〈vψ〉 − 〈v〉 〈ψ〉)
︸ ︷︷ ︸

=τ (v,ψ)

. (1.3)

If the averaging operator is also idempotent, i.e. 〈〈·〉〉 = 〈·〉, it is called a Reynolds
average. Only for a Reynolds average, e.g. the ensemble mean, the turbulent flux is
represented by the correlation of fluctuations (second moments), i.e.

τ (v, ψ) = 〈
(v − 〈v〉) (ψ − 〈ψ〉)〉 = 〈v′ψ ′〉 for Reynolds averages. (1.4)

Since turbulent stirring enlarges local gradients and the interfaces where molecular
mixing can take place, the net effect of enhanced mixing in turbulent flows moti-
vates to parameterise an unknown turbulent flux as a diffusive flux in terms of an
eddy diffusivity and the known mean flow gradient (eddy viscosity assumption of
Boussinesq).

1.2 Governing Equations

The governing equations are derived from the physical laws for mass conservation
and the budget equations for linear and angular momentum, and energy. They are
formulated following the prototype Eq. (1.2). A detailed derivation of each equation
is beyond the scope of this book and the reader is referred to the excellent text books
by Batchelor (1967), Griffies (2004) and Olbers et al. (2012). In marine modelling,
several approximations are applied to simplify the set of equations. A very common
approximation is the Boussinesq approximation (not to be mistaken for the eddy
viscosity assumption of Boussinesq). As described by Young (2010), variations in
density are only considered for buoyancy effects in the vertical momentum balance.
In all other terms the density is replaced by a constant reference density ρ0. The
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buoyancy follows from a diagnostic equation of state which provides the density
depending on salinity S, temperature Θ , and in case of Boussinesq fluids on depth
instead of in-situ pressure (Roquet et al. 2015):

ρ = ρ(S,Θ, z). (1.5)

With the eddy viscosity assumption of Boussinesq, the set of governing equations for
the mean-flow quantities (without brackets for brevity) is presented in the following.
The emphasis of the vertical axis in geophysical applications motivates the assump-
tion of transverse isotropy and the use of different eddy viscosities and diffusivities
for vertical and horizontal turbulent fluxes.

1.2.1 Volume Conservation

Under the Boussinesq approximation it is not mass
∫

ρ dV anymore, but volume
that is conserved. The original prognostic equation for density degenerates to the
so-called incompressibility constraint,

∂xu + ∂yv + ∂zw = 0, (1.6)

enforcing a divergence-free flow.
Kinematic boundary conditions further constrain the flow at bounding surfaces by

prescribing the diasurface volume flux velocity (Griffies 2004). With the velocity of
the bounding surface vb the conditions at a single-valued free surface z = η(x, y, t)
and impermeable bottom z = −H(x, y, t) are given by

∇(z − η) · (v − vb) = (E − P) at z = η, (1.7a)

∇(z + H) · (v − vb) = 0 at z = −H. (1.7b)

In (1.7a) the volume flux velocity is prescribed in terms of evaporation E and
precipitation P . Alternative formulations are

∂tη + u∂xη + v∂yη − w = −(E − P) at z = η, (1.8a)

∂t H + u∂x H + v∂y H + w = 0 at z = −H. (1.8b)

Boundary condition (1.8a) is used to determine the evolution of the free surface. In
contrast, (1.8b) constrains the flow velocity at the bottom in terms of a prescribed bot-
tom topography. The morphological evolution of the bottom ∂t H is either neglected
or follows from a morphological model (see Chap. 10).



1 Basic Equations of Marine Flows 5

1.2.2 Salt Conservation

Seawater is a mixture of freshwater and salt. The fluid velocity v is defined as the
center-of-mass (barycenter) velocity of the mixture. The mass fraction of salt in
seawater defines the salinity S. The budget equation for salt in differential form
reads

∂t S + ∂x (uS) + ∂y(vS) + ∂z(wS) = ∂x (K∂x S) + ∂y(K∂y S) + ∂z(ν
′
t∂z S). (1.9)

The diffusive salt flux jS = (−K∂x S,−K∂y S,−ν ′
t∂z S)on the right-hand side param-

eterizes the mean salt flux relative to the center-of-mass velocity (Beron-Vera et al.
1999; Nurser and Griffies 2019), with horizontal and vertical eddy diffusivities K
and ν ′

t . For salt there is a discontinuity at the surface and bottom boundaries, with
no salt flux through them. Therefore, the analytical boundary condition requires the
diffusive salt flux to compensate the advective one associated with (1.7a) and (1.7b):

∇(z − η) · jS = −(E − P)S at z = η, (1.10a)

∇(z + H) · jS = 0 at z = −H. (1.10b)

1.2.3 Heat Balance

An excellent representation of the heat of a seawater fluid element is the Conserva-
tive Temperature Θ (McDougall 2003). From the first law of thermodynamics the
corresponding prognostic equation can be derived as

∂tΘ + ∂x (uΘ) + ∂y(vΘ) + ∂z(wΘ) = ∂x (K∂xΘ) + ∂y(K∂yΘ) + ∂z(ν
′
t∂zΘ) + ∂z I

Cpρ0
,

(1.11)

with the specific heat capacity of water at constant pressure Cp and solar irra-
diance in I . The boundary condition for the diffusive temperature flux jΘ =
(−K∂xΘ,−K∂yΘ,−ν ′

t∂zΘ) with horizontal and vertical eddy diffusivities K and
ν ′
t reads as

∇(z − η) · jΘ = Qs

Cpρ0
at z = η, (1.12a)

∇(z + H) · jΘ = 0 at z = −H. (1.12b)

The surface heat flux Qs consists of sensible, latent and long-wave radiation contri-
butions.
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1.2.4 Momentum Balance

The momentum balance provides prognostic equations for the velocity components.
Considering Earth rotation and gravity these can be written as

∂t u + ∂x (uu) + ∂y(vu) + ∂z(wu) − f v + fcw

= ∂x T11 + ∂yT21 + ∂zT31 − ∂x Pnh − ∂x Phs,
(1.13a)

∂tv + ∂x (uv) + ∂y(vv) + ∂z(wv) + f u

= ∂x T12 + ∂yT22 + ∂zT32 − ∂y Pnh − ∂y Phs,
(1.13b)

∂tw + ∂x (uw) + ∂y(vw) + ∂z(ww) − fcu

= ∂x T13 + ∂yT23 + ∂zT33 − ∂z Pnh.
(1.13c)

In (1.13a)–(1.13c) f = 2Ω sin φ and fc = 2Ω cosφ denote the Coriolis param-
eters with the spin rate of the Earth Ω and latitude φ, and Ti j the components of the
turbulent stress tensor T. Formulations for the stress tensor are given in Sect. 1.2.5.
The dynamic pressure is already decomposed into hydrostatic and nonhydrostatic
contributions. The hydrostatic pressure contribution is defined by the weight of the
water column above,

ρ0Phs(z) = pa + ρ0g(η − z) +
η∫

z

(
ρ(z′) − ρ0

)
g dz′, (1.14)

with pa being atmospheric pressure at the surface and g the gravitational acceleration.
Dynamic boundary conditions prescribe momentum fluxes through the surface and
bottom,

∇(z − η) · T = τs at z = η, (1.15a)

∇(z + H) · T = τb at z = −H, (1.15b)

with τs and τb being surface and bottom stress vectors defined in opposite direction
to the associated momentum fluxes. The bottom stress is usually reconstructed from
a logarithmic velocity profile.
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1.2.5 Common Formulations and Closures

Depending on the application and the scales of interest, different forms of the turbu-
lent fluxes and different closures for the eddy viscosities and diffusivities have to be
used.

Nonhydrostatic LES Equations

The governing equations for Large eddy simulations (LES) can be obtained when
the averaging operator in (1.3) represents a sufficiently fine spatial filter such that
the mean flow quantities still resolve the large energy-containing eddies down to the
inertial subrange. Because the horizontal and vertical scales of motion are isotropic
within the inertial subrange, the full momentum balance must be solved, which
requires the solution of a three-dimensional elliptic Poisson equation for the nonhy-
drostatic pressure contribution.

In contrast to the large-scale eddies, which strongly depend on the geometry of
the domain and thus obey no universal spectrum, the unresolved small-scale eddies
are more likely to be homogeneous and isotropic and thus easier to model. The most
common approach to modeling the turbulent stress in LES is to assume 3D isotropy
for the eddy diffusivity A and its flow-dependent calculation following Smagorinsky
(1963):

Ti j = A(∂i u j + ∂ j ui ), (1.16a)

A = (CSΔ)2
(
1

2
(∂i u j + ∂ j ui )

1

2
(∂i u j + ∂ j ui )

)1/2

. (1.16b)

In (1.16b) summation is carried out over doubled indices, Δ is the filter width and
CS = O(0.1) is the Smagorinsky constant. Assuming 3D isotropy also implies equal
horizontal and vertical eddy diffusivities for tracers, i.e. K = ν ′

t in (1.9) and (1.11),
which can be calculated in terms of a prescribed turbulent Prandtl number Prt :

K = A/Prt. (1.17)

In LES the filter width Δ is a measure of the grid size, which must be of
O(0.1m) − O(1m) to resolve the energy-containing eddies in typical marine appli-
cations. Therefore, LES is reserved for small-scale, idealized studies, although its
application to real, field-scale problems continues to increase. For a more thorough
overview of LES modeling, the reader is encouraged to refer to the texts by Pope
(2000) and Rodi et al. (2013).
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Hydrostatic Shallow Water Equations

In most geophysical applications the vertical scales of motion are much smaller
than the horizontal ones. The flows usually take place in horizontal planes without
significant vertical acceleration. These considerations motivate the hydrostatic pres-
sure assumption, which degenerates the vertical momentum balance by neglecting
(1.13c) so that the prognostic integration of w in (1.13c) is replaced by a diag-
nostic calculation from (1.6), see e.g. Klingbeil and Burchard (2013). Furthermore,
the nonhydrostatic pressure contributions in (1.13a) and (1.13b) are neglected, i.e.
∂x Pnh = ∂y Pnh = 0. In addition, fcw is neglected in (1.13a) so that the Coriolis
force stays orthogonal to the velocity and does not alter the kinetic energy of a fluid
element.

The separation of horizontal and vertical scales also implies different viscosities
in the horizontal and vertical direction (A and νt , respectively). Under this transverse
isotropy two formulations of the stress tensor are common (Kamenkovich 1967;
Smagorinsky 1993):

[
T11 T21 T31
T12 T22 T32

]

=
[

2A∂xu A(∂xv + ∂yu) νt∂zu
A(∂xv + ∂yu) 2A∂yv νt∂zv

]

, (1.18a)

A = (CSΔ)2
(

(∂xu)2 + 1

2
(∂xv + ∂yu)2 + (∂yv)2

)1/2

, (1.18b)

or
[
T11 T21 T31
T12 T22 T32

]

=
[
A(∂xu − ∂yv) A(∂xv + ∂yu) νt∂zu
A(∂xv + ∂yu) −A(∂xu − ∂yv) νt∂zv

]

, (1.19a)

A = (CSΔ)2
(
1

2
(∂xu − ∂yv)2 + 1

2
(∂xv + ∂yu)2

)1/2

. (1.19b)

The horizontal eddy diffusivity of momentum A is either assumed to be constant,
or calculated by the Smagorinsky closures given in (1.18b) and (1.19b), respectively.
The horizontal eddy diffusivity for tracers K in (1.9) and (1.11) is usually derived
in terms of a prescribed turbulent Prandtl number according to (1.17). Following
Umlauf and Burchard (2005), the vertical turbulent diffusivities of momentum νt
and tracers ν ′

t can be obtained from a general algebraic second-moment closure in
terms of the turbulent kinetic energy (TKE) k and its dissipation rate ε.

1.3 Summary

In this chapter the governing equations for marine flows were presented. For many
applications the hydrostatic pressure assumption is valid. The resulting shallowwater
equations outlined in Sect. 1.2.5 form the basis for many studies and the remaining
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chapters. Further details about the numerics of hydrostatic coastal ocean models can
be found in Klingbeil et al. (2018).
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Chapter 2
Water Waves in Isotropic
and Anisotropic Media: A comparison

Leo R. M. Maas

Abstract Restoring forces as gravity, Coriolis force or their combination, endow
geo and astrophysical fluids with an anisotropy direction. Breaking the underlying
hydrostatic or cyclostrophic force balances in fluids that are stratified in density or
angular momentum results in obliquely-propagating internal waves. These waves
differ in nearly every conceivable aspect from external, surface gravity and capil-
lary waves. Differences between linear internal and external waves stem to a large
part from the complementary way in which their frequency depends on the wave
vector. While these differences may be hiding in symmetrically-shaped basins, these
become fully apparent when the boundary shape breaks the symmetry imposed by
the anisotropy. These underlying force balances also constrain anywave-drivenmean
flows. Interestingly, the lack of a clear force balance in a homogeneous, non-rotating
fluid that is stratified in linear momentum, renders waves, perturbations on these
shear flows, ‘problematic’.

2.1 Introduction

Waves in isotropic media, like familiar sound and electromagnetic waves in three-
dimensional space, or gravity waves in the two-dimensional plane of the water sur-
face, behave quite differently from waves in anisotropic media. Inside fluids, the
directions of gravity and/or background rotation provide the fluid with an anisotropy
which strongly influences wave propagation inside stratified and/or rotating fluids.
Gravity, rotation and a nontrivial shape of the fluid domain are important ingredients
in the fields of geophysical and astrophysical fluid dynamics. This warrants consid-
eration of the specific consequences of these properties, and a comparison between
isotropic external and anisotropic internal waves. The aim of this paper is to juxta-
pose well-known properties of isotropic surface water waves with those exhibited by
anisotropic waves in stratified/rotating fluids.
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In Sect. 2.2.1, we start by considering external waves: isotropic gravity waves
propagating on the surface of homogeneous-density fluids. This deals with the spe-
cific nature of their dispersion relation, its implications for wave ray divergence and
wave ray chaos, and the modifying influence of background rotation on long surface
gravity waves. This leads to a brief discussion of Sverdrup, Poincaré and Kelvin
waves (see also Chap. 4 of this book), as well as to amplitude and phase patterns
displaying amphidromic points, phase-singularities where phase is multi-valued and
vertical displacement vanishes.

Section2.2.2 discusses two types of heterogeneousfluids that are density-stratified,
supporting internal waves. The first type consists in layers of fluid that differ in den-
sity. Two-layer fluids allow for interfacial gravity waves that propagate horizontally
along the average position of the interface, the pycnocline, which acts as a wave
guide. These interfacial waves behave similar to surface waves because layers of
uniform average depth inherit isotropy. The second type of internal gravity waves,
found in continuously-stratified and particularly in uniformly-stratified fluids, obey
another type of dispersion relation. Internal gravity waves propagate as beams, along
paths that are inclined relative to the direction of gravity. A uniform water depth may
again render the fluid superficially isotropic—up and downward propagating beams
combine into vertically-standing, horizontally-propagating internal wave modes—
but variations inwater-depth reveal the true underlying anisotropic nature of stratified
fluids. Upon reflection from sloping bottoms and side walls, internal wave beams
lead to wave convergence and wave attractors.

Homogeneous-density fluids can still stratify, namely in linear momentum—
known as shear flows—or in angular momentum, known as swirling flows. Both
types of stratification support waves, although, as discussed in Sect. 2.3.1, those in the
latter case are easier to observe. Solidly rotating fluids, for which the angular velocity
is spatially uniform and constant, offer an important special case of swirling flows.
When containermotion produces this state the shear flow is deceptively simple. Upon
passing through a viscous spin-up phase, observed from a co-rotating frame of refer-
ence, the flow recedes to a quiescent equilibrium state which obscures the underlying
force balance. However, once this balance is perturbed it provides restoring Coriolis
forces. Solid-body rotation invites a consideration of perturbations, called inertial
waves, from within the co-rotating frame of reference, especially when the isotropy
of the fluid domain is broken, discussed in Sect. 2.3.2.

The paper ends briefly discussing the effects of these waves on mean flows,
Sect. 2.4, and gives some conclusions in the final Sect. 2.5.

2.2 Gravity Waves

Gravity waves arise both at free boundaries of fluid layers as external waves, as well
as in their interiors as internal waves when the fluid is stratified in density.We discuss
the far-reaching differences between these two types of waves, both with respect to
their dispersion relations, reflection laws, as well as their regularity.

http://dx.doi.org/10.1007/978-3-031-09559-7_4
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2.2.1 Surface Gravity Waves in Homogeneous Fluids

An inviscid, incompressible, non-rotating, quiescent uniform-density fluid does not
support any hydrodynamic waves unless its surface is free and subject to gravity or
capillary forces. These waves are external (boundary) waves as they propagate along
the boundary of the fluid body. They are surface-trapped as wave-induced motions
decay exponentially below the surface. These perturbations to the state of rest can
be described by the linearised Euler equations. When vorticity is initially absent, the
fluid will stay irrotational as vorticity is either created by friction at boundaries—a
viscous process—or by baroclinic torques, due to misalignment of density and pres-
sure gradients, excluded in a homogeneous-density fluid. Together with incompress-
ibility this guarantees that the waves can be described by a scalar velocity potential,
φ, that obeys a Laplace equation, ∇2φ = 0, where ∇2 = ∂xx + ∂yy + ∂zz denotes
the Laplacian operator. This elliptic equation, a sum of second-order spatial deriva-
tives, determines the spatial structure of the waves in a Cartesian (x, y, z) frame of
reference. Their temporal behaviour follows from boundary conditions describing
continuity of pressure across the surface, and by requiring fluid parcels that sit at the
surface to remain at the surface. Linear, constant-coefficient equations can be solved
by complex space-time exponentials. The physical content of a particular wave is
contained in its dispersion relation, ω(k), that describes how wave frequency, ω,
depends on wavevector k’s magnitude and direction.

Wave Dispersion in Isotropic Media

As for plane monochromatic acoustic and electromagnetic waves in isotropic three-
dimensional space, gravity and capillary waves that propagate horizontally along the
free surface have frequencies that depend only on wave vector magnitude κ ≡ |k| (or
wavelength λ = 2π/κ), not on its direction. Restricting ourselves to gravity waves,
the vertical structure of these external waves varies from exponentially-decaying,
for short waves (κH � 1), to vertically-uniform, for long waves (κH � 1). Here
H denotes uniform fluid depth. In these regimes, frequency ω varies from ω = √

gκ
to ω = √

gHκ , and the waves change from dispersive to dispersionless respectively.
Here g denotes the acceleration of gravity. For any function, ω(κ), its restricted
dependence on thewave vector immediately implies the familiar property that a wave
group propagates its energy, related to that of its envelope, into the same direction
as its individual crests and troughs. Energy is transported with the group velocity
(the wave vector gradient of the wave frequency, cg = ∇kω = k κ−1∂κω), while
crests and troughs—two particular phases of the wave—propagate at phase velocity,
c = ωk/κ2, also pointing parallel to the wave vector k. This alignment happens even
when, due to a nonlinear dependence of wave frequency on wave vector magnitude,
thewaves constituting the grouppropagate at different speed, leading them todisperse
and the wave group to spread. This type of dispersion relation obviously provides
a constraint on the wavelength, which is fixed by the wave’s frequency. Because of
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this tight relationship between wave frequency and wavelength, in electromagnetism
these are described by the single term ‘color’.

Diverging External Waves and Wave Ray Chaos

Regardless of the horizontal shape of a container’s vertical side-walls, a surface wave
cannot change its frequency when it reflects. The amount of waves that will reflect
off a wall is the same as the amount that are incident. The dependence of frequency
on wave vector magnitude implies that the wavelength does not change either during
reflection. Since the velocity vector produced by surface waves, u = ∇φ, is given by
the gradient of a velocity potential φ, it is parallel to the wave vector, u ‖ k. When
waves are incident on a vertical wall, vanishing of the normal velocity component
at the wall implies that normal wave vector components of incident and reflected
waves have to match in magnitude while differing in sign. Together with the fact that
wave vector magnitude cannot change during reflection this implies that the waves
reflect specularly. This expresses the Snell-Descartes law, stating that a wave’s angle
of reflection relative to the wall’s normal equals its angle of incidence.

While the presence of wave vector magnitude in the dispersion relation thus pro-
vides a constraint on the reflecting wave’s length, the absence of the wave vector
direction also has its significance: waves can adjust their propagation directionwhen-
ever there is reason to do so, for instance when they reflect from a curved vertical
boundary. Theywill then scatter intomultiple directions, at eachpoint of the boundary
reflecting specularly, see Fig. 2.1. This type of scattering reveals the natural tendency
of surface gravity wave rays to diverge.

In an irregularly-shaped cavity, the unknown frequency of an arbitrarily located
wave source can be extracted by measuring the wavelength (wave vector magni-
tude) over any part of the cavity. In an enclosed, but complex-shaped fluid basin,
multiple reflections then give rise to ‘wave ray chaos’ (Berry 1981). Interestingly,
surface waves still linger along a restricted set of periodic ray paths, where the rate of
divergence is smallest. These paths stand out as ‘scars’: locations where those waves
occur preferentially, see Fig. 2.2.

Rotational Modification of Long Surface Gravity Waves

When a homogeneous-density, free-surface fluid rotates, such as on Earth, the exter-
nal waves—and especially the long, plane surface gravity waves—are modified. In
a uniform-depth basin, rotating in an anticlockwise sense at rate Ω around an axis
normal to the equilibrium surface, long waves are governed by the Rotating Shallow-
Water Equations (RSWEs)

ut − v = −ζx ,

vt + u = −ζy,

ζt + ux + vy = 0.
(2.1)
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Fig. 2.1 Surface wave rays reflecting from curved vertical boundary

Fig. 2.2 Surface wave scars in a stadium showing large (yellow) and small (blue) amplitude dis-
turbances. Solid lines show an unstable periodic orbit. Figure adapted from Heller (1984)

Here we use subscript-derivative notation and dimensionless variables. Time t is
scaled with the Coriolis frequency f = 2Ω . For convenience we take its expression
as relevant in a laboratory model, instead of its geophysically-motivated expression
2Ω sin ϕ which in the traditional approximation would apply at latitude ϕ on a plane
tangent to the Earth (Gerkema et al. 2008). The vertical, z, and surface elevation,
ζ , are scaled with depth, H , horizontal (x, y)-coordinates with Rossby deformation
radius, R ≡ √

gH/ f , and velocities, (u, v), with, R f = √
gH . As is well-known

(see e.g. Gill (1982)), depending on geometric constraints, system rotation gives rise
to Sverdrup, Poincaré and Kelvin waves (see Chap. 4 of this book). Over a uniform-
depth sea, plane monochromatic Sverdrup waves ∝ ei(kx+ly−ωt) obey the dispersion
relation

http://dx.doi.org/10.1007/978-3-031-09559-7_4
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Fig. 2.3 Surface elevation ζ

(solid and dashed for positive
or negative displacements)
for a Poincaré wave (sum of
two Sverdrup waves)
propagating in a channel into
a direction indicated by the
red arrow. Notice that nodal
lines are displaced from the
middle axis towards the
coast that is on the right hand
side, as seen from its
propagation direction

ω2 = 1 + k2 + l2 = 1 + κ2, (2.2)

where k = (k, l) = κ(cosφ, sin φ), for waves propagating in direction φ relative to
a pre-chosen orientation of the x-axis. The first term on the right-hand side repre-
sents the dimensionlessCoriolis frequency, acting as low-frequency cut-off. Sverdrup
waves occur on the infinite plane (Sverdrup 1926) and (2.1a,b) imply that system rota-
tion induces elliptically-polarized currents. The presence of a vertical wall, at y = 0
say, requires a combination of incident and reflected Sverdrup waves—a Poincaré
wave—to satisfy the impermeability condition, u · n = v = 0, see Fig. 2.3 where n
denotes a unit vector normal to the boundary directed outwards.

Kelvin waves, also propagating along one such a wall, simplify the dispersion
relation to ω = k, by having its transverse wavenumber l = i . In that case a low-
frequency cut-off is absent. In order that the wave decays away from the wall as y →
∞, only the positive sign of

√
k2 is allowed. This implies propagation in positive x-

direction. Regardless of wave frequency, this transverse decay occurs dimensionally
always at the Rossby deformation scale, R.

External waves, such as short gravity waves, decaying exponentially below the
surface, can be interpreted as a boundary wave whose dimension is reduced by one.
Two-dimensionality of these waves is captured by integrating over the (vertical)
decay direction. As horizontal currents associated with long waves are independent
of the vertical coordinate, this decay is no longer visible. It occurs over a scale depth
much larger than the fluid depth. Formally, these waves still present a dimensionally-
reduced (surface trapped) wave feature. This can be treated as such by vertically
integrating the equations. In the same vein, a Kelvin wave provides a further dimen-
sional reduction, owing to its additional exponential decay, transverse to the coast.
Integrating also over the direction perpendicular to the coast it can be described as a
one-dimensional wave feature.
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Amphidromic Wave Systems

In partially, or fully-enclosed rotating water bodies, such as inland seas and lakes,
impermeability of its side walls requires a combination of Kelvin and Poincaré
waves (see Chap. 4 of this book). This gives rise to intricate structures called
amphidromes, see Fig. 2.4.Amphidromes are phase-singularities (pointswhere phase
is multi-valued) that coincide with nodal points: locations of zero elevation ampli-
tude. Attempting to understand the spatial pattern of simultaneously observed tidal
displacements along the North Sea’s perimeter, Whewell (1833) inferred the pres-
ence of such points. He postulated their existence in an attempt to construct tidal
co-phase lines—lines connecting points simultaneously reaching for instance high
or low water. Solutions of the RSWEs also display ‘spider-web like’ structures, as
found in (semi) rectangular and square basins of uniform depth (Proudman 1916;
Taylor 1922; Rao 1966), and more recently in basins of variable bottom depth and
boundary shape (Steinmoeller et al. 2019). These arise because rotationally-modified
surface gravity waves need to satisfy an impermeability condition at boundaries.
When cast in terms of the free surface elevation, ζ , this takes the form of an oblique-
derivative (Robin) boundary condition, aweighted combination ofDirichlet andNeu-
mann boundary conditions. Amphidromes already appear in straight, open channels,
where they form due to two counter-propagating Kelvin waves, see Fig. 2.5 (Krauss
1973). Section2.3.2 will discuss replicas of such structures in the interior inertial
wave field, interestingly arising in fully confined (rigid-lid), homogeneous-density
rotating fluids.

Fig. 2.4 Amplitude (dashed,
arbitrary units) and phase
lines (solid, each 30 ◦C) of
the surface elevation for the
computationally determined
lowest frequency,
rotationally-modified surface
gravity wave in a rotating
square basin. It displays a
cyclonic amphidromic point
in the centre where the
amplitude vanishes and
phase is multi-valued.
Figure from Rao (1966)

http://dx.doi.org/10.1007/978-3-031-09559-7_4
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Fig. 2.5 Amplitude lines
(dashed, arbitrary units) and
phase lines (solid, each 30
◦C) of the sea surface
elevation produced by two
counter-propagating Kelvin
waves (propagation direction
indicated by red arrows) of
equal amplitude displaying
amphidromic points (orange
dots) where the amplitude
vanishes and phase is
multi-valued

2.2.2 Gravity Waves in Heterogeneous Media

Interfacial Waves

In the foregoing we interpreted surface waves in isotropic fluids as external or bound-
ary waves. Alternatively, an external or boundary wave can be defined as a wave
whose maximum displacement (in vertical or horizontal direction) occurs at the
bounding surface. According to this definition, waves that have their maximum dis-
placements below the free surface should be interpreted as internal waves. From that
perspective, the waves that Franklin (1762) discovered at the interface between oil
and water—two immiscible fluids of different density—might well be interpreted as
internal waves, as their maximum displacements occur in the interior of the fluid.
However,we refrain from this interpretation aswaves still decay exponentially, below
aswell as above the interface. In that sense, these interfacial waves belong to the class
of boundary waves, being external to the two fluid bodies of homogeneous-density
that make up the two-layer fluid. Indeed, waves propagating at the interface between
twofluid layers of different density but uniform depths are very akin to surfacewaves.
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Apart from an additional, fluid-gas phase-transition, the free surface again separates
two liquids differing in density (albeit by a factor thousand bigger than that between
oil and water). Consequently, the dispersion relation satisfied by interfacial waves is
very similar to that of surface waves. In particular, the frequency is again independent
of wave vector direction, merely leading to a reduction of the acceleration of gravity
by a factor equalling the ratio of the density difference between the two layers to
their average density (Stokes 1847).

Two-layer stratification form one end member of the general class of density-
stratified fluids. These are quite common in natural conditions, and occur formiscible
fluids too. In shallow seas they form due to a combination of wind and tidal mixing
that stir warm surface and cold bottom layers respectively, leaving a density jump
at an interface in between. They also frequently occur near fjords, when fresh melt
water spreads out over salty ocean water. It is in the latter situation that the existence
and relevance of interfacial waves was first brought to light in an oceanographic
context. These waves helped demystify the dead-water phenomenon encountered by
Nansen at the end of the nineteenth century. Dead-water pertains to a sudden, sharp
drop of a boat’s speed when traversing a fjord (Nansen 1902). This loss of propulsion
appears to occur when a boat’s hull moves in the vicinity of an interface between
low density fresh and high density salt fluid layers. When its velocity matches the
interfacial wave speed it generates interfacial waves, leading the boat to suffer from
excessive interfacial wave drag (Ekman 1904).

Wave Modes Versus Beams in Heterogeneous Fluids

Theoreticians also considered waves in three-layer, multi-layer, continuous and uni-
form stratifications (Rayleigh 1883; Burnside 1888; Love 1890). For internal gravity
wave history, see the excellent review of Hinwood (1972). These waves are pertur-
bations of a hydrostatic equilibrium,

(ρ∗ + ρ(z))g = −dp

dz
, (2.3)

in which the downward-directed force of gravity, acting on fluid of local density
consisting of a large constant ρ∗ and a small depth-varying ρ0(z) part, balances the
upward-directed pressure gradient force. This leads to a hybrid ensemble of bound-
ary waves, propagating along interfaces, as well as, in the continuously-stratified
fluid, to what could be called ‘genuine internal waves’. The latter waves have their
maximum displacements in the fluid interior and are not trapped to any particular
interface. Initially, it was held expedient to assume the bottom to be parallel to the
free surface, and consider a uniform-depth fluid. The benefit of this was that separa-
tion of variables was still possible, such that horizontally-propagating internal waves
have a matching vertical structure. Approximating the surface as rigid, by requiring
the vertical velocity to vanish at surface and bottom, the vertical modes are quan-
tized by the finite depth. Indeed, this assumption on basin geometry and consequent
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separability allowed for the computation of vertical modal solutions, even when the
stratification was continuous yet non-uniform (Fjeldstad 1933; Groen 1948).

At the expense of a more fundamental, plane internal wave approach, that takes
the form of an obliquely-propagating internal wave beam, this ‘modal approach’ sub-
sequently dominated the interpretation and understanding of internal wave behaviour
in the ocean. To be sure, the modal and beam approaches are reconcilable in uniform-
depth, uniformly-stratified fluids, in which stability frequency N (z) is assumed con-
stant, a second end-member type of stratification. In Boussinesq approximation, the
square of the stability frequency, N 2 ≡ −gρ−1∗ dρ0(z)/dz, relates to the background
density gradient. The beam’s inclined orientation relative to gravity betrays that gen-
uine internal waves propagate under a particular, fixed angle α, determined by the
dispersion relation that perturbations satisfy:

ω/N = ± cosα. (2.4)

In this case, angle α measures the direction of phase and group velocity vectors
with respect to the horizontal and vertical, respectively. Assume the wave vec-
tor lies in the vertical (x,z)–plane in which the wave propagates, k = (k, 0,m) =
κ(cosα, 0, sin α), then c = ωk/κ2 = ωκ−2(k, 0,m) = ±N cos2 ακ−1(1, 0, tan α)

(phase velocity) is perpendicular to group velocity vector cg = ∇kω = ∂αω ∇kα,
which evaluates to cg = ±N sin ακ−2(m, 0,−k) = ±N sin2 ακ−1(1, 0,− cot α),
although both share the same horizontal propagation direction.

The internal wave dispersion relation (2.4) betrays that a uniformly-stratified fluid
is transparent to internal waves. ‘Transparency’ means that wave scattering occurs
only at the boundary. Transparency can be maintained for some special non-uniform
stratifications (Grimshaw et al. 2010). But to a good approximation it holds when-
ever the length scale over which the density gradient varies is large compared to
the wavelength of the internal wave, so that N = N (εz), where ε denotes a small
parameter and a WKB-approximation applies. For this situation, the inclination of a
fixed-frequency (ω = constant) wave can be obtained by a local application of the
dispersion relation (2.4) anddepthvariations in amplitude andbeam-inclinationoccur
adiabatically, without any partial reflection or trapping inside the fluid (Hazewinkel
et al. 2010b). This allows the vertical z-coordinate to be stretched, such that the equa-
tion describing the internal wave’s spatial structure takes its canonical, hyperbolic
form

ψxx − ψzz = 0. (2.5)

Streamfunction ψ(x, z) is introduced by virtue of two-dimensional incompressibil-
ity. Upon stretching the vertical, internal waves follow straight, inclined ray paths
again. By contrast, when the density gradient varies rapidly, internal waves might
also scatter inside the fluid on variations in the density gradient.
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Internal Gravity Waves in Uniformly-Stratified Fluids

Adhering to the uniformly-stratified fluid in a basin of uniform depth, up and down-
ward propagating beams of equal amplitude acquire a standing, sinusoidal vertical
structure. Together with a complex exponential dependence on horizontal coordinate
and time, these can obviously be interpreted as vertically-standing, horizontally-
propagating modes. They present a seemingly straightforward extension of an inter-
facial wave. This interpretation however meets its limitations. It acquires horizontal,
isotropic features due to depth-uniformity, which is lost in any real geophysical
setting where depth variations scatter the incident beam.

Since an internal wave reflecting from a sloping bottom or side wall preserves its
frequency, the dispersion relation implies that in this case the wave cannot change its
wave vector inclination. This leads to anomalous, non-specular reflection. A single-
frequency set of collinear waves differing in wave number magnitude and amplitude,
defines an incident, compact wave beam of particular fixed inclination. This beam
has a transverse width that will necessarily change when subject to (de)focusing
reflections at an inclined boundary. Thus, depth-changes lead to a change of the
wavelengths and amplitudes of the waves constituting the beam, see Fig. 2.6a. This
precludes the persistence of a vertically-standing structure, built by beams of equal
amplitude propagating in opposite vertical directions.

Converging Internal Waves and Wave Attractors

The ultimate fate of internalwaves, generated by an oscillating cylinder,may not have
been evident in the experiment shown in Fig. 2.6a. In confined basins, the focusing
which internal wave beams experience upon bouncing at its boundaries, dominates

Fig. 2.6 Vertical transect of a uniformly-stratified fluid showing internal waves generated (a)
by vertically-oscillating horizontal cylinder, located in the upper left (red circle) and b, c in a
horizontally oscillating tank. The trapezoidal basin has rigid walls, both along the sloping and
vertical side walls, as well as at top and bottom. (a) Arrows indicate the internal wave energy
propagation direction. Successively reflected internal wave beams are numbered in sequential order.
Courtesy of Frans-Peter Lam. b Amplitude (black: zero, white: most intense) and c phase (cyclic
colors), adapted from Hazewinkel et al. (2010b)
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over defocusing, leading to the formation ofwave attractors, see Figs. 2.6b, c and 2.7a.
Incident, focusingwave beams have larger scattering cross-sections than the reflected
beams and vice versa for defocusing waves. Here the scattering cross-section refers
to the width of the beam perpendicular to the energy propagation direction. The two
are equal only for reflections from horizontal or vertical boundaries, which are paral-
lel or perpendicular to the anisotropy direction. In that case the beam-width does not
change upon reflection. Exceptionally, a net change of beam-width is also absent for
special, nontrivially-shaped basins, when focusing of waves of particular frequencies
(hence propagation angles) during some boundary reflections is exactly balanced by
defocusing during other reflections. As a consequence, such basins possess a denu-
merable set of globally-resonant modes, see Fig. 2.7b. The latter property, exhibited
for instance by trapezoidal domains, relies on the existence of residual symmetries
(Maas and Lam 1995).

These situations can be interpreted geometrically by following individual charac-
teristics (internal wave rays). Launching a ray from an arbitrarily located boundary
point, upon reflection at any of the boundaries it will retain its inclination to the ver-
tical. For these exceptional geometries and frequencies, after a number of reflections
each ray path returns to its launching position and becomes part of a periodic orbit
of finite length, forming a globally-resonant mode, see Fig. 2.7b. However, for all
other frequencies in these basins—frequencies filling non-denumerable, continuous

Fig. 2.7 Side view of internal gravity waves of two different frequencies in a uniformly-stratified
fluid in a tilted square basin. Individual characteristics (lines) with which streamfunction field
(color) is geometrically constructed (Maas and Lam 1995) retain their inclination relative to grav-
ity, g, whose direction is indicated by an arrow. The generic response for arbitrary frequencies
is given by wave attractors (left) and exhibits focusing of characteristics onto an attractor; the
globally resonant modes (right) are exceptional, relying on periodicity of underlying individual
characteristics. Courtesy of Stefan Kopecz
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frequency bands—rays are non-periodic and infinitely long. Only a denumerable set
of finite-length periodic orbits remains. These orbits attract all non-periodic orbits,
see Fig. 2.7a where only one such attracting orbit exists.

For basins of generic shape that lack this residual symmetry, such as a parabolic
basin, the basin shape breaks this residual symmetry too. Therewill be no exceptional
frequencies, so no globally-resonant modes. Only a few periodic orbits remain, that
attract all waves of a particular frequency. These limit cycles, wave attractors, are
reached regardless of the wave’s source location.

2.3 Inertial Waves

We will consider the implications of wave attractors later on, after taking a look at
waves supported by shear flows, with, as important special case, thewaves in swirling
flows, and especially those in a solidly-rotating fluid. Owing to the anisotropy pro-
duced by rotation, combined with a symmetry-breaking basin shape, inertial waves
supported by homogeneous-density, rotating fluids also show the presence of wave
attractors.

2.3.1 Waves in Shear Flows

Homogeneous-density shear flows, u = (u, v, w) = (U (z), 0, 0), support waves
which are stable manifestations of shear-flow perturbations. These form the com-
plement of the much wider studied class of shear-flow instabilities (Drazin and Reid
1998; Carpenter et al. 2011). Since Squire’s theorem asserts that two-dimensional
perturbations turn unstable before three-dimensional disturbances do (Squire 1933)
we consider two-dimensional, monochromatic plane wave perturbations ∝ eik(x−ct),
governed by

ik(U − c)u + wU ′ + ikp = 0,
ik(U − c)w + p′ = 0,

iku + w′ = 0,
(2.6)

where a prime denotes a z-derivative. We describe these perturbations on a shear
flow in terms of a streamfunction, ψ = Ψ (z)eik(x−ct), that vanishes at the bot-
tom and surface, z = z1,2. Inserting perturbation velocities in these equations,
u = ∂ψ/∂z, w = −∂ψ/∂x = −ikψ , yields Rayleigh’s stability equation (Rayleigh
1879)

(U − c)

(
∂2Ψ

∂z2
− k2Ψ

)
−U ′′Ψ = 0. (2.7)

Infer the stability of the shear flow by assuming that the frequency and thus phase
speed is complex, c = cr + ici . The presence of a non-zero imaginary part, ci , signals
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instability. Dividing (2.7) by U − c, multiplying by the complex-conjugate, Ψ ∗,
integrating between bottom and (rigid) surface (using integration by parts for the
first term) and separating the real and imaginary parts, the latter is given by

ci

z2∫
z1

U ′′

|U − c|2 |Ψ |2 dz = 0.

Parallel shear flows are stable (ci = 0) when its background vorticity gradient U ′′
does not switch sign within the channel (Rayleigh’s stability criterion). We will see
an example shortly.

Waves in a Linear Shear Flow

Asimple type of shear flow, aCouette flow,U (z) = z, lacking any curvature,U ′′ = 0,
also supports waves propagating down a channel, −1 ≤ z ≤ 1, provided at some
depth within the channel, zc, the phase speed matches the background flow, c =
U (zc): a critical layer. In this case, (2.7) is written (Drazin and Reid 1998)

∂2Ψ

∂z2
− k2Ψ = δ(z − c), (2.8)

allowing for exponentially-decayingwaves on either side of the critical depth, zc = c,
and appropriately vanishing at the boundaries

Ψ (z) ∝ sinh k(c − 1) sinh k(z + 1), −1 ≤ z ≤ c
sinh k(c + 1) sinh k(z − 1), c ≤ z ≤ 1.

(2.9)

For any horizontal wave number, k, and any phase speed |c| < 1, this admits a
continuous spectrum of waves, all trapped to their respective critical-depth. In a
sense these all again belong to the class of isotropic boundary waves, as they decay
exponentially away from the critical layer and do not propagate into the transverse
z-direction.

For shear flowspossessing curvature, a similar type of externalwave exists at depth
zs where the shear flow has an inflection point,U ′′(zs) = 0. Waves that propagate at
a speed matching the local velocity at that depth, U (zs) = c, can again be trapped
at the critical layer z = zs . But, in addition to waves belonging to the continuous
spectrum, a discrete set of vertically-standing waves exists as we will see in the next
subsection.
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Waves in a Sinusoidal Shear Flow

Consider for example waves on a sinusoidal shear flow, U = sin z, in a channel
bounded by lines z = z1,2, having, z1 ≤ 0 ≤ z2. This flow has an inflection point at
z = zs = 0. Then, for c = 0, its second derivative matches the prefactor of the first
term in (2.7), and this equation factors into

sin z

(
∂2Ψ

∂z2
+ (1 − k2)Ψ

)
= 0. (2.10)

With the boundary conditions

Ψ = 0 at z = z1, z2, (2.11)

this equation has solutions

Ψs = sin

(
nπ

z − z1
z2 − z1

)
, k =

√
1 − n2π2

(z2 − z1)2
, (2.12)

which are unstable, growing spatially (k imaginary) for integer n > (z2 − z1)/π .
This shows that a finite number of neutral (wave) modes exist when z2 − z1 > π .
This provides a counter-example to Rayleigh’s criterion, showing that the presence
of an inflection point is a necessary but not sufficient condition for all modes being
unstable (Drazin and Howard 1962).

A channel lacking inflection points, U ′′(z) �= 0, z1 ≤ z ≤ z2, is thus neutrally
stable (i.e. c has zero imaginary part). It therefore still supports a discrete spectrum of
neutral waves whenU (z) is concave andU ′′/(U − c) < −k2 < 0. Concavity means
that for any z in any part (z−, z+) of the fluid domain, where z1 ≤ z− ≤ z ≤ z+ ≤ z2,
the average of the velocities at the end points of this interval is less than the velocity
at any intermediate position, |(U (z+) +U (z−))/2| < |U (z)|. In a frame of reference
moving with the waves, around the location where the phase speed matches the mean
flow, the combined shear flow and waves manifest themselves in the form of Kelvin’s
‘cat-eye’ flow pattern.

In these considerations, the effects of viscosity have sofar been left aside, the
reason being that intuition would assign to viscosity an additional ability to stabilize
wave motions. However, the contrary was proven to be true. As Darrigol (2005)
recalls, Prandtl suspected that viscous stressesmay induce a phase difference between
wall-parallel andwall-transverse velocity components. In that case, energy, conveyed
by the unperturbed mean flow U to the waves through Reynolds stress acting on
mean-flow shear, might exceed viscous damping, leading to their instability and
growth. This renders experimental study of stable waves on shear flows difficult
if not impossible. Attention has thus shifted to the nonlinear regime, where large-
amplitude waves may coexist with turbulence (Sun et al. 2015)), often in the form
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of a self–sustained interaction of shear-flow perturbations with stream wise rolls
(Waleffe 1997).

The geometry of the fluid basin receives little attention in these studies. In two-
dimensional (x, z) settings, the shear flow U (z) is compatible only with a uniform-
depth channel having its boundaries at z1,2 = constant.But a consideration of geom-
etry becomes pertinent when discussing waves on shear flows in three-dimensional
domains, for which the transverse channel shape, z = h(y), may become important.
Wewill discuss the relevance of transverse topography in the context of axisymmetric
shear flows in the next section.

Waves in Swirling Flows

In a non-rotating, cylindrical (r, θ, z) frame of reference, a special type of shear flow
develops: a swirling flow. This is characterized by an axisymmetric, azimuthal flow
of arbitrary radial dependence, uθ = V (r), which is in cyclostrophic balance:

− ρ
V 2

r
= −dp

dr
. (2.13)

The outward directed centrifugal force is balanced by an inward directed pressure gra-
dient force. Axisymmetric, monochromatic perturbations of this radially-dependent
azimuthal flow allow for the introduction of a Stokes streamfunction, ψ(r, z, t), as
incompressibility implies that radial and vertical velocities can be obtained from
ru = ∂ψ/∂z, rw = −∂ψ/∂r . At this point the underlying cyclostrophic equilib-
rium state, (2.13), is lost out of sight, not only because the perturbation pressure is
described by differences between the actual and the cyclostrophic pressure, but also
because this perturbation pressure itself has been eliminated when deriving a vor-
ticity equation by cross-differentiation and subtraction of the horizontal momentum
equations. However, its importance will be stressed in Sect. 2.4.3, when discussing
the implications that waves may have for mean flows.

The streamfunction’s spatial part, ψ = Ψ (r, z)e−iωt , is governed by

r
∂

∂r

(
1

r

∂

∂r

)
Ψ −

(
4
Ω2

l

ω2
− 1

)
∂2Ψ

∂z2
= 0, (2.14)

where Rayleigh’s discriminant,

4Ω2
l (r) ≡ 1

r3
d A2

dr
= 2

V

r

(
V

r
+ dV

dr

)
, (2.15)

is, unconventionally, expressed as the square of the local Coriolis frequency, 2Ωl(r).
This is twice the local rotation rate, Ωl , that reduces to the constant rotation rate, Ω ,
in the case of solid-body rotation, V = Ωr . Rayleigh’s stability criterion,Ω2

l (r) ≥ 0
for all r , implies that the square of the angular momentum, A ≡ rV (r), must increase



2 Water Waves in Isotropic and Anisotropic Media: A comparison 27

monotonically with increasing radius (Rayleigh 1917). The square on A in (2.15)
indicates that this criterion is insensitive to the direction of background rotation. For
waves of frequency |ω| < 2|Ωl |, the governing Eq. (2.14) has a negative sign in front
of the last second-order derivative,whichmakes it a hyperbolic equation. This implies
it supports a type of internal wave, called inertial or gyroscopic wave, discussed
further in the next section. Inertial waves are, for example, observed in the swirling
flow of liquid metal, when driven by a rotating and alternating electromagnetic field
(Vogt et al. 2014).

In general, the r -dependence of the Rayleigh-discriminant implies these inertial
waves are subject to scattering, trapping and tunnelling. The explicit, curvature-
related radial dependence of the first term of (2.14) leads to additional amplitude
variations. But an axisymmetric basin of maximum radius a and arbitrary axisym-
metric depth profile h(r) supports a cylindrically-rotating shear flow, described by

V = σ
r2

a
. (2.16)

This has local rotation rate

Ωl =
√
6σ

2

r

a
(2.17)

and is transparent to low-frequency waves if ω � √
6σ . Transformed dimension-

less radial, s = r2/2a2, and (stretched) vertical, Z = z/H , coordinates absorb the
amplitude-decrease due to radial spreading. Here

H = a
√
6σ

ω
.

This transforms (2.14) into the canonical equation governing the spatial structure of
monochromatic internal waves

∂2Ψ

∂s2
− ∂2Ψ

∂Z2
= 0. (2.18)

In basins of arbitrary radial shape, the method of characteristics can solve this equa-
tion (Maas and Lam 1995). It is prone to develop wave attractors for nearly all
boundary shapes, Z = h(s)/H .

2.3.2 Waves in Rotating Basins

To describe perturbations, azimuthal flows V (r) that possess arbitrary radial depen-
dency do not favour any particular rotating coordinate frame over the inertial frame.
However, when the flow is in solid-body rotation, Ω = constant , and the azimuthal
flow increases linearly with radius, V = Ωr , it makes sense to use a frame of ref-
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erence co-rotating with the flow. A transformed time-derivative then absorbs the
advective terms and, as mentioned before, the Rayleigh discriminant becomes con-
stant, 4Ω2

l = 4Ω2. In a cylindrical domain, this leads to separability of (2.14). A
sinusoidal vertical dependency ofΨ splits-off from its radial, Bessel function depen-
dence (Kelvin 1880). Requiring regularity at the origin, vanishing ofΨ at the cylinder
boundaries, and periodicity in the azimuthal direction, together with impermeabil-
ity constraints at top and bottom boundary, leads to a triple quantisation of these
radial-azimuthal-vertical modes.

Intermezzo: Viscous Effects

When an axisymmetric, closed cylindrical domain is put into steady rotation, a
solid-body rotating state is reached from the initial state of rest through a spin-up
process. In axisymmetric basins this involves viscous Ekman boundary layers that
transport momentum to the inviscid interior by means of a meridional circulation
(Greenspan and Howard 1963; Weidman 1976). In non-axisymmetric basins, such
as an eccentrically-positioned cylinder, or a basin of different shape, the fluid needs
to respond ‘instantaneously’ when set into rotation. This is caused by a pressure
torque which, in the incompressible description, transmits at once throughout the
fluid domain. This is an approximation employed when pressure waves, propagating
at the speed of sound, are much faster than any of the velocities involved. In this type
of basin, the fluid’s initial response is governed by vorticity conservation. The fluid
aims to retain its initial state of zero absolute vorticity (Van Heijst 1989; Van Heijst
et al. 1990)), so that, in the frame co-rotatingwith the container, it is initially described
by a vortex having uniform anticyclonic vorticity. At later stages the flow is subject
to viscous adjustment, due to friction at side-walls, bottom and top, occurring at the
Ekman time scale, E−1/2Ω−1, where Ekman number E ≡ ν/L2Ω � 1 is defined
in terms of kinematic molecular viscosity, ν, length scale, L , and time scale Ω−1.
During this phase, cyclonic vorticity develops.When the depth of the fluid is constant
these processes lead to an arrangement of nearly circular cyclonic and anticyclonic
cells that gradually decay on the still longer, diffusive timescale E−1Ω−1 = L2/ν.
When the container depth varies, however, these cells keep on moving in an irregular
fashion, and Ekman spin–up seems to be faster in the shallower parts of the fluid
domain (Van Heijst et al. 1994; Li et al. 2012).

Linearized Rotating Euler Equations

For any boundary shape of a rotating container, y = yb(x), and for any location of the
container relative to the rotation axis, solid-body rotation can be achieved (VanHeijst
et al. 1994; Li et al. 2012). Viewed from the rotating, axial frame of reference, after
spin-up, the fluid is in an apparent state of rest. In this steadily-rotating state, when
fluid and bounding containermove as a solid body, the effects of rotation and viscosity
may no longer be visible. Yet, at any point within the fluid domain, the apparently
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quiescent fluid retains a memory of the rotation. This is present in an exact balance of
radially-outward centrifugal and radially-inward pressure gradient forces. Perturbing
this quiescent state creates an imbalance which expresses itself in a combination of
restoring Coriolis and pressure gradient forces that support inertial waves. These are
the internal waves of a homogeneous-density, rotating fluid. They can be described
in a uniformly-rotating Cartesian frame by the constant-coefficient, inviscid rotating
linearized Euler equations

ut − f v = −px ,
vt + f u = −py,

wt = −pz,
∇ · u = 0.

(2.19)

Here we use Cartesian velocity vector u = (u, v, w) and Coriolis parameter, f =
2Ω , again assuming that the vertical z-direction aligns with the rotation axis. The
reducedpressure p, contains deviations of the true pressure from the combinedhydro-
static and cyclostrophic pressure, given by (2.3) and (2.13), respectively. Searching
for monochromatic plane-wave solutions, ∝ ei(kx+ly+mz−ωt), with polar represen-
tation of wave vector k = (k, l,m) = κ(cosα cosφ, cosα sin φ, sin α), yields the
inertial wave dispersion relation

ω = ±2Ω sin α, (2.20)

which, as for internal gravity waves, is independent of wave vector magnitude κ .
Indeed, this equation relates frequency to wave vector inclination relative to the
horizontal plane, α, only. This is the hall-mark of internal waves. It complements the
frequency—wave number, ω(κ), relationship typical for external waves.

The adjustment of fluids during spin-up or spin-down in basins of non-uniform
depth, referred to above, is partly expressed by the inertial waves, described by (2.19).
But, in fact, inertial waves arise under adjustment of the rotation rate in any container
(Greenspan and Howard 1963; Cederlöf 1988; Oruba et al. 2017), whether forced by
viscous or pressure forces. They especially occur when a container is deliberately
forced at a frequency less than the Coriolis frequency, for instance by libration—a
periodic modulation of the background rotation rate—or, as in nature, by tidal forces,
when these waves are sustained (Maas 2001;Manders andMaas 2003, 2004; Bewley
et al. 2007; Lamriben et al. 2011; Sibgatullin et al. 2017).

Inertial Waves in an Untilted Box

To solve (2.19) for free inertial waves in a rectangular box that has its sides either
perpendicular or parallel to the rotation axis, we use depth H and Coriolis frequency
f = 2Ω as length and inverse time scales (with velocity and reduced pressure scales
equaling H f and (H f )2, respectively). Note this implies that horizontal dimensions
of the box are now measured in terms of H . This leads to the same set (2.19), except
that now f = 1 and the bottom and surface of the rectangular box are at z = 0, 1,
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respectively. As the normal velocities at these boundaries vanish, w(0) = w(1) =
0, the vertical velocity is expressed as a sum of vertically-standing modes, w =∑∞

n=1 ∂ζn/∂t sin nπ z, with ζn the vertical displacement field of the nth verticalmode.
In turn, this implies (u, v, p) = ∑∞

n=1(Un, Vn, Pn) cos nπ z. The vertical momentum
equation then yields

Pn = 1

nπ

∂2ζn

∂t2
. (2.21)

Rescaling the horizontal coordinates (X,Y ) = nπ(x, y), the same set of equations
describes the horizontal structure of each of the modes, for which reason we suppress
mode-index, n. In subscript-derivative notation these read (Maas 2003):

Ut − V = −ζt t X ,

Vt +U = −ζt tY ,

ζt +UX + VY = 0.
(2.22)

This set resembles the RSWEs (2.1), except that acceleration of the inertial wave
vertical displacement field of mode n,

H

nπ

∂2ζn

∂t2
, (2.23)

replaces gravitational acceleration multiplying the free surface displacement, gζ ,
which represents the reduced pressure of external, long surface gravity waves, giving
due attention to the different meanings of ζ . Each mode obeys the same set of Eqs.
(2.22), but finds the box’s horizontal size to become larger as n increases. Clearly, as
the nth mode scales with the decreasing depth scale, 1/nπ , the box’s fixed horizontal
size, L , increases for this mode to Ln = nπL .

Inserting plane-monochromatic waves ∝ ei(kX+lY−ωt) into (2.22) yields the dis-
persion relation

ω2 = 1

1 + k2 + l2
= 1

1 + κ2
. (2.24)

Its right-hand side is the reciprocal of that for the RSWEs, (2.2). The Corio-
lis frequency now appears as high-frequency instead of low-frequency cut-off.
Vertically-standing inertial modes, again behave as external waves, as their fre-
quency now relates to wave vector magnitude of the horizontal wave vector, k =
(k, l) = κ(cosφ, sin φ), like the vertically-standing internal gravity wave modes in
a heterogeneous (especially, uniformly-stratified) fluid in a channel or box.As before,
however, this apparent external nature of standing internal waves is superficial, owing
to the particular orientation of the box, namely with its boundaries perpendicular or
parallel to the rotation axis. Before investigating the true nature of inertial waves,
which shows up when breaking this symmetry, we should mention how to determine
the horizontal structure of inertial waves of this ‘untilted’ box.
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Fig. 2.8 Top view of inertial waves in a cube for the lowest-vertical, lowest-horizontal mode (high-
est subinertial frequency) of nominal dimensionless frequency ω ≈ 2−1/2. Vertical displacement
field amplitude (dashed) and phase (solid) (left) and velocity field (right, anticyclonically rotating
current vector in blue; cyclonic in red; rectilinear, at walls, in green). For further explanation, see
Maas (2003)

Proudman (1916) solved the RSWEs governing the rotationally-modified surface
gravity waves in a box by using aHelmholtz decomposition of the horizontal velocity
field,

u = −∇φ + ez × ∇ψ. (2.25)

The velocity field is a sumof derivatives of a potential,φ, and streamfunction field,ψ .
The challenge is to meet impermeability constraints at the box’s vertical boundaries.
Two-dimensional internal gravity waves need Dirichlet (zero streamfunction) condi-
tions, and three-dimensional internal gravity waves Neumann (zero normal pressure
derivative) conditions. Instead, rotationally-modified surface gravity waves require
oblique-derivative boundary conditions. In this respect, inertial waves are more com-
plicated than internal gravity waves. The latter execute rectilinear particle motions
(within inclined beams), while, in linear approximation, the former follow inclined
circular paths. Obviously, in an inviscid description, a side wall can be inserted when
it is aligned with the internal gravity wave beam direction. But, circular particle
paths, present in an inertial wave beam, are incompatible with any kind of side wall.
Clearly, even in the inviscid approach, side walls must give rise to an adjustment of
the inertial wave beam’s velocity field, suggesting the presence of inviscid, ‘wavy’
boundary layers.

Proudman’s method can also be used to determine the horizontal velocity, (U, V ),
and vertical displacement, ζ , of the vertically-standing inertial wave field. It leads
to a generalized eigenvalue problem, which solves for eigenmodes of decreasing
frequency and increasing spatial complexity, see Fig. 2.8. Indeed, as for the RSWEs,
amphidromic systems are found (Maas 2003). This includes the fact that each phys-
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ical mode (each eigenfrequency) contains an infinite series of Fourier modes, that
is, an infinite set of scales, see in particular the corner regions in Fig. 2.8b. The fact
that inertial waves are scale-free is exploited. The dispersion relation does not con-
strain the wave number. The interesting difference with rotationally-modified surface
gravity waves is that, instead of just a single mode, inertial waves possess an infi-
nite set of vertical modes. This means we might suspect eigenfrequency degeneracy:
the eigenfrequency for mode n may be identical to that of another vertical mode
m (which perceives the same horizontal domain as being m instead of n times its
original horizontal size). The fundamental, beam-like nature of the inertialwaves sug-
gests degeneracy. The generalized eigenvalue problem has to be solved numerically.
Therefore, a proof that the very same eigenfrequencies will show up for different
vertical modes, true for two-dimensional anisotropic as well as for three-dimensional
internal gravity waves (Maas 2003), stays a conjecture. In the case of a rotating cube,
near-degeneracy is found for waves asymptoting at frequency 1/

√
2, but this is no

proof of finding the same eigenfrequencies (Wu et al. 2018) .

Inertial Waves in a Tilted Box

Adding an inclined sidewall (Maas 2001), tilting a rectangular box (Ogilvie 2005;
Maas 2007), or changing the orientation of boundaries relative to the rotation axis’
direction in otherways, implies that, as internal gravitywaves, inertial waveswill also
be subject to focusing and defocusing reflections. In confined, two-dimensional fluid
domains this leads to wave focusing dominance. Frequency-dependent orbits again
appear to attract waves, regardless where they originate from. Bretherton (1964)
inferred that inertial waves approach periodic orbits, giving a geometrical interpre-
tation to prior analytical results by Stern (1963). Stern (1963) described waves in a
homogeneous, rotating fluid confined to the equatorial region of a spherical shell,
neglecting the vertical acceleration but retaining nontraditional (horizontal) Coriolis
terms and noticing the presence ofwaves decaying polewards, seeMaas (2001),Maas
andHarlander (2007),Gerkema et al. (2008). Bretherton’s (Bretherton 1964) periodic
orbit is attracting (Stewartson 1971) and such wave attractors appear to form a broad-
band phenomenon (Israeli 1972): they exist in continuous frequency bands in which
wave attractors have the same topology, experiencing the same amount of reflections
at their boundaries. In such frequency windows, attractors have the same winding
number, the same average angular progression during a single winding around the
attractor (Manders et al. 2003). The winding number therefore acts as a topological
invariant (Delplace et al. 2017). Instead of fixing the geometry and changing the fre-
quency, this topological property can also be understood from a reverse perspective.
Take for example the attractor in the left panel of Fig. 2.7 and keep the frequency, and
therefore inclination fixed. Keeping also the attractor’s four reflection points at the
boundary fixed in space one can otherwise deform the remaining part of the boundary
in whatever way one likes, and the attractor will persist as a limit cycle (John 1941).
Different boundary deformations lead to differences in convergence rates (measured
by the Lyapunov exponent), not in winding number. However, rectangles that are not
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Fig. 2.9 Side view of inertial waves in a trapezoidal basin forced by the libration of a rotating tank.
The modulation frequency aims at hitting a square-shaped attractor (solid lines). Visualisation of
motions in a vertical sheet, a projection of the three-dimensional currents, is by means of Particle
Image Velocimetry. Shown are current amplitude (left) and the phases of the two counter-rotating
circular currents (middle and right) intowhich the current ellipses can be decomposed in the viewing
plane. Notice phase lines parallel to attractor branches, indicating transverse phase propagation. For
further explanation, see Manders and Maas (2003)

tilted remain exceptional. Ironically these are precisely the geometries favoured in
textbooks for being solvable by the method of separation of variables. Lacking the
generic appearance of wave attractors, these unfortunately give the completely false
suggestion of overall regularity.

The interaction of inertial waves with sloping boundaries was studied experimen-
tally in quasi two-dimensional, Cartesian settings, such as in trapezoidal rectangular
basins (Maas 2001; Manders and Maas 2003, 2004; Brunet et al. 2019), see Fig. 2.9,
in cylindrical settings such as a conical basin—a frustum—(Klein et al. 2014), and
in spherical shells (Koch et al. 2013; Hoff et al. 2016a, b). In all cases, inertial waves,
forced by libration of a tank, focus onto ‘low-period wave attractors’, attractors hav-
ing the shortest length. Numerical studies, usually of a viscous nature, address the
saturation of the amplitude-increase accompanying wave focusing. Saturation, both
of focused internal gravity as well as inertial waves, is either due to the appearance
of viscous, free boundary layers around the attractor (Rieutord and Valdettaro 1997;
Dintrans et al. 1999; Rieutord 2001; Hazewinkel et al. 2008), or to the transfer of
energy to other wave frequencies by nonlinear interactions when the fundamental
wave experiences Triadic Resonant Instabilities (TRI) (Dauxois et al. 2018).

2.3.3 Three-dimensional Effects

While most studies have concentrated on quasi two-dimensional settings, whether
in Cartesian, cylindrical or spherical geometries, inertial waves likely develop three-
dimensional fine structure. This is already evident in the horizontal cross-sectional
velocity field near the corners of the planar (untilted) box, see Fig. 2.8b. When basin
shapes additionally break the reflectional symmetry of the obliquely propagating
inertial waves, as in the tilted box or trapezoidal basin, it is a priori clear that wave
attractors, located in planes perpendicular to the sloping sides, must adapt to the
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Fig. 2.10 Top view of observed velocity amplitude (U ) and anticyclonic phase (θ−) patterns of
inertial waves in a homogeneous fluid contained in a trapezoidal basin. The tank has its sloping
side, z = x − 1, at the right, for 1 ≤ x ≤ 2. Shown are measurements at three heights: (z = 3/4,
left two panels; z = 1/2, middle two panels; z = 1/4, right two panels). Inertial waves are forced
by libration of the rotating tank. The libration frequency is such that in an infinitely-long trapezoidal
basin the inertial wave would approach a rectangular-shaped attractor that intersects these levels
at locations indicated by solid black lines. Velocities are dominated by anticyclonic motions. For
further explanation, see Manders and Maas (2004)

presence of front and end side-walls. To phrase this differently, while inviscid internal
gravity waves in a uniformly-stratified fluid are perfectly able to focus onto a set of
wave attractors, all oriented perpendicular to the sloping boundary of a trapezoidal
basin, so that their combined structure—the structure of a two-dimensional attracting
manifold—is invariant in the along-slope horizontal direction, see Pillet et al. (2018),
this is not possible for inertial waves in the same basin. The attracting manifold must
change its form, or even its presence, when approaching the front and end walls.
An experimental study, aimed at elucidating its structure, found the inertial wave
attractor to become more intense but also squeezed on approaching the end walls,
see Figs. 2.10 and 2.11. Moreover, wave energy slightly concentrated on the side of
the trapezoidal basin that would, from a topographic Rossby wave perspective and
given the presence of a sloping bottom, be associated with ‘West’.

Other indications for nontrivial behaviour in three-dimensions comes from ray
patterns.While rays and characteristics are often considered identical, correct in two-
dimensional Cartesian settings, this is not true in three-dimensional or axisymmetric
(quasi two-dimensional) domains. For this reason, in contrast to the two-dimensional
case of a globally resonant mode, shown in Fig. 2.7b, in a spherical shell globally-
resonant modes are not associated with periodicity of all characteristics (Rieutord
et al. 2001). Curvature of the boundary implies that in the governing equation the
leading second-order operator’s characteristics are not identical to energy paths. Yet,
this identification works well on small scales where curvature effects are negligible.

The dynamics of internal and inertial wave rays is interesting. The non-specular
type of reflection experienced by rays propagating in a plane normal to a sloping bot-
tom or side wall, leading to their focusing or defocusing, also affects the reflection
of obliquely incident rays. By its elegance, Phillips’ derivation of the reflection pro-
cess of obliquely incident rays, formulated in an inclined plane defined by incident
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Fig. 2.11 Side views of velocity amplitude (U ) measured at six different transects, from left to
right at y/L = 0.12, 0.18, 0.24, 0.30, 0.36, 0.42 respectively. Notice the elongated character of the
attractor close to the side wall at y = 0. Picture adapted from Manders and Maas (2003)

and reflected rays (Phillips 1963), obscures somewhat the instantaneous refraction
accompanying focusing or defocusing reflections: a sudden change in horizontal
propagation direction. Describing wave reflection instead in a frame-of-reference
whose vertical axis is parallel to the anisotropy direction set by gravity or rota-
tion axis, refraction is seen to occur simultaneously (Maas 2005). Interestingly, in
three dimensions focusing of multiply-reflected wave rays onto a wave attractor in
a vertical trapping plane is accompanied by another phenomenon that resembles ray
behaviour in whispering galleries. Some rays avoid trapping onto a wave attractor by
experiencing a sequence of focusing reflections that are exactly balanced by defo-
cusing reflections. Reflection locations hug the line of critical depth, defined as the
line connecting depth locations where ray slope equals bottom slope, see Fig. 2.12
(Maas 2005; Rabitti and Maas 2013; Pillet et al. 2019).

2.4 Discussion

The isotropy or anisotropy of a fluid depends on (i) the presence of an anisotropic
restoring mechanism, such as gravity, system-rotation, or the presence of a magnetic
field, so far undiscussed, (ii) a stratification of the fluid, such as in density or angular
momentum, and (iii) the presence of inclined boundaries relative to the anisotropy
direction.

The third aspect turns out to be vital. For even when a fluid’s density is discretely-
stratified in layers, and one might expect interfaces separating the layers to act
as horizontal wave guides, see Sect. 2.2.2, or scatter obliquely incident waves into
reflected and transmitted oblique waves, experiment shows otherwise (Hazewinkel
et al. 2010a). In a fluid having twenty stratified layers of equal depth, differing incre-
mentally in density and confined to a trapezoidal basin, awave attractor of rectangular
shape still forms, see Fig. 2.13. It is very similar in shape to the one found in the
uniformly-stratified fluid, as visible in Fig. 2.6. The attractor shape becomes less
visible when the number of layers is for instance halved (not shown).

The presence of restoring mechanisms allows us to define equilibrium states,
in which a restoring force balances a pressure gradient force, such as the hydro-
static (2.3) and cyclostrophic (2.13) equilibria for density-stratified and rotating,
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Fig. 2.12 Perspective (a, b) and top (c, d) views of rays launched in a uniformly-stratified fluid,
confined to a paraboloidal container, either focusing onto a wave attractor (a,c) or propagating
around in a whispering-gallery type of motion (b,d). The dashed circles shows critical depths,
where bottom slope equals ray slope, determined by the ratio of wave and buoyancy (or Coriolis)
frequencies. Picture adapted from Maas (2005)

Fig. 2.13 Five subsequent snapshots of a video showing side views of a fluid that is discretely-
stratified and that is being oscillated sideways periodically. The fluid contains twenty layers that
are incrementally increasing in density downwards. Displacements of interfaces are visualized by
shadowgraph. Picture adapted from Hazewinkel et al. (2010a)

homogeneous-density fluids, respectively. In plasmas, the presence ofmagnetic fields
similarly invokes an equilibrium, described by the Grad-Shafranov equations (Goed-
bloed et al. 2019).
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2.4.1 The Linear Shear Flow as ‘Problematic’ Equilibrium

Notice that waves in shear flows stratified in linear momentum, differ from those
encountered in fluids stratified in density or angular momentum. Their existence
is somewhat of a mystery (Hof et al. 2004). Despite the fact that rectilinear shear
flows formally appear as stable solutions of the Euler equations, one cannot pin-
point an equilibrium state consisting in a similar balance of forces that, once dis-
rupted, provides a restoring mechanism. Indeed, regarding the Euler equations as
an asymptote of the Navier-Stokes equations in the limit that the Reynolds num-
ber R = UL/ν → ∞ approaches infinity (viscosity ν → 0), this limiting process,
viewed as a state undergoing a large number of bifurcations while increasing the
Reynolds number, generates more and more unstable solutions that should neces-
sarily end in turbulence. This relates to the fact that particular classes of waves in
shear flows are found in a very circumspect way. This is often done by viewing
the rectilinear shear flow either as the limit of a swirling flow inside an annulus,
whose cylinders, rotating at different speed, possess radii approaching infinity, or
as the limit of a stably-stratified fluid, in which the stratification rate decreases to
zero. Conspicuously these exactly correspond to the two previously mentioned cases
for which force balances can easily be defined. In practice, real viscous pipe flows
turn unstable and become turbulent at moderate speeds, generating longitudinal rolls,
interactingwith subsequently bifurcated transverse circulation cells (Hof et al. 2004).
Moreover, because waves that are trapped to a critical layer in a shear flow have a
wave frequency depending on wave vector magnitude, these best classify as isotropic
again, as the isotropy concept is synonymous with an absence of any wave frequency
dependence on wave vector direction.

2.4.2 Waves in Anisotropic Media

By contrast, in anisotropic media wave frequency depends on wave vector direc-
tion only, implying that perturbations of hydrostatic and cyclostrophic equilibria are
unproblematic. The differences between waves in isotropic and anisotropic media
have far-reaching implications. Isotropic water waves, such as surface gravity waves
or internal waves in uniform-depth fluids, exhibit focal points when reflecting from
convex vertical boundaries (such as a parabolic mirror). However, focusing occurs
temporarily. Upon passing a focal point, waves diverge. In confined fluid domains,
multiple side-wall reflections of such isotropic waves lead to wave ray chaos. It
explains why one can illuminate a cave with a single candle, or why in a popular
restaurant, conversations may be lost in a cacophony.

By contrast, anisotropic internal gravity and inertial waves almost always follow
an indefinite geometric focusing principle. This occurswhen they reflect from sloping
boundaries that are neither parallel nor perpendicular to the anisotropy direction.
As a consequence, despite the fact that linear equations govern these waves, the
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geometrically (Maas and Lam 1995) or analytically (Maas 2009) constructed wave
solutions exhibit self–similarity in real, Fourier and parameter spaces, features that
are normally associated with nonlinear dynamical systems. Also, while isotropic
waves in closed basins exhibit a discrete set of eigenfrequencies, the spectrum of
anisotropic waves becomes continuous. These and other complementary properties
of isotropic and anisotropicwaves are discussed inMaas (2005),Brouzet et al. (2017),
Sibgatullin and Ermanyuk (2019).

2.4.3 Mixing Due to Wave Focusing and Mean Flows

Let us look at one final aspect of these anisotropic media and their equilibria, namely
the impact of waves on the mean state. Perturbations to a balanced hydrodynamic
state—waves—may locally provoke mixing. Waves in anisotropic fluids focus onto
wave attractors for nearly every shape of the fluid basin. While focusing, along-
attractor velocity and shear amplify, and scales reduce. Attractors are therefore loca-
tionswheremixing of anisotropic fluids can be expected to occur preferentially, either
by immediately reaching down to the Kolmogorov scales, where viscous processes
can mix, by means of wave breaking due to secondary shear-flow instabilities, or via
triadic-wave interactions.

In this manner, local diapyncal (vertical) mixing of a density-stratified fluid leads
to horizontal density and pressure gradients that force a horizontal mean flow, so that
the mixed fluid will spread out along isopycnal surfaces. As rotating fluids contain
a huge amount of energy, stored in rotational motion, weak mechanical forcing can
similarly convey part of this large-scale intense flows (Le Bars et al. 2015). But
mixing of a homogeneous-density, rotating fluid must pertain to mixing of the ‘stuff’
the fluid is stratified with: angular momentum. The underlying equilibrium state is
thus relevant. The apparently quiescent initial state of a fluid that is in solid-body
rotation, i.e. in a frame co-rotating with the container, is radially-stratified in angular
momentum. Despite the fact that the (nonlinear) Euler equations are invariant with
respect to coordinate translation, they do depend on the rotation axis’ location. In
case the fluid has a free surface this is easily visualised. After the spin-up process, the
fluid is in solid-body rotation and the free surface shape will become paraboloidal;
to be more precise, a segment of a paraboloidal surface. A segment that may or may
not contain the paraboloid’s minimum, depending on whether or not the rotation
axis passes through the container. When that axis lies outside the container, the free
surface will have its minimum at the point closest to the rotation axis.

The presence of this paraboloidal surface resolves the chicken-and-egg question
whether, away from the rotation axis, the pressure is high because the free surface
level is raised in favour of a reversed causality: the free surface is high because the
pressure is high. To fully contain the fluid, imagine we use a rigid-lid instead of a
free surface. The pressure in this solidly rotating fluid must still increase radially-
outward, as fluid continues to be swept outwards by the centrifugal force, and the
cyclostrophic balancewill persist.While in a rotating, quiescent fluidwecanperfectly
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well describe perturbations as being governed by the linear, rotating Euler equations,
it transpires that, in the same way as we neglect viscous effects after the spin-up
phase in these equations, wemust also have been neglecting compressibility. Despite
liquids beingnearly incompressible, during spin-up compressibilitymust have played
a role in setting the higher pressure at larger radii, made visible by the free surface
displacement when taking away the rigid lid.

This is relevant towhat happenswhenmixingoccurs in a rotatingfluid, for instance
due to wave focusing. In analogy to the isopycnal spreading of fluid following mix-
ing of density-stratified fluids, mixing of fluids stratified in angular momentum will
lead to a mixture spreading out along iso-angular momentum surfaces. But, its sub-
sequent fate depends on the topology of these surfaces relative to the shape and
size of the basin. Obviously, axial cylindrical fluid domains—cylinders whose axes
coincide with the rotation axis—are special, as all iso-angular momentum surfaces
fully lie within the fluid domain. In the presence of a sloping bottom, any mixing
triggered by geometric focusing near a wave attractor can then drive a mean flow
along a cylindrical iso-angular momentum surface that sits in the container above
the attractor’s focusing location at the bottom. It is uninhibited by obstructing side
walls. Recent experiments on focusing inertial waves confirm the generation of such
an axisymmetric mean flow, which however turns unstable and produces a sequence
of barotropic cyclones (Boury et al. 2021). But non-axisymmetric boundaries are
obviously more generic. When cylindrical iso-angular momentum surfaces are not
or not completely contained within the cylinder these lead to regions where iso-
angular momentum surfaces are obstructed. This occurs, for instance, in the corners
outside the inscribed cylinder of rectangular axial containers. More pathologically
this occurs for basins that lie completely outside the rotation axis, as for instance an
eccentrically-positioned container on a large turn-table (Maas 2001). In that case, all
angular momentum surfaces intersect the boundary and closed angular momentum
surfaces are completely absent, see Fig. 2.14.

The notion of iso-angular momentum surfaces, and their potential blockage by
boundaries, is reminiscent of that of geostrophic contours (Rhines and Young 1982).
The latter are lines of equal potential vorticity, f/h, the ratio of planetary vorticity
f and fluid depth, h. In geophysical context these lines are typically oriented in
zonal direction because in the traditional approximation only the vertical component
of planetary vorticity is taken into account. Variations in bottom topography, or,
in a two-layer context, in equivalent depth, related to the interface depth, can force
these lines to develop closed contours.Within these contours, circulation can strongly
amplify and homogenise potential vorticity.We anticipate that the presence of closed
iso-angularmomentum surfacesmay similarly homogenise angularmomentum, even
in uniform-depth, rigid-lid containers where potential vorticity is constant.
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Fig. 2.14 Eulerian, vertically-uniform mean-flow observed by means of PIV in the top view of
a homogeneous-density, rotating fluid situated in an eccentrically-located tank that is subject to
libration. Observations extend over the right-half of the tank only. The angular momentum surfaces
are roughly aligned with the figure’s lower boundary. An attractor manifold develops (far from
the vertical wall, at the right) over the location where it reflects from the slope, indicated by the
red arrow. At the attractor, fluid differing in angular momentum is mixed, forcing this mean-flow.
Picture adapted from Maas (2001)

2.5 Conclusion

A fluid layer supports waves that find their maxima and minima either at its bound-
aries or in its interior: external and internal waves, respectively. The former class
encompasses capillary and surface and interfacial gravity waves, found in isotropic
media. They obey a dispersion relation that relates frequency to wave vector mag-
nitude. The latter class, encompassing internal gravity and inertial waves are found
in anisotropic media. By contrast, their dispersion relations relate frequency to wave
vector direction. The consequences of this difference in dispersion relation are mul-
tiple, best summarised by stating that the behaviour of internal waves is completely
opposite and complementary to that of external waves.

In a field of gravity, anisotropy can be due to a stratification (non-uniformity) of
the fluid’s density. In a rotating fluid, anisotropymay be due to a radial stratification in
angular momentum. These stratifications lend fluid parcels ‘a memory’, expressed
in the material conservation of their density or angular momentum, respectively.
Quiescent fluids that are stably stratified in density or angular momentum possess a
balance between two opposing forces. Perturbing these states gives rise to a restoring
mechanism, as one of the two forces will dominate.

Shear flows represent fluids that are stratified in linearmomentum.With the excep-
tion of linear or parabolic shear flows, as present in Couette and Poiseuille flows,
respectively, these flows do not themselves obey the Navier-Stokes equations. Under
some stability conditions, these flows also support waves but lack an underlying
balance of forces, making it harder to identify an internal restoring mechanism.
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Chapter 3
A Review of Nonlinear Boussinesq-Type
Models for Coastal Ocean Modeling

Clint Dawson and Ali Samii

Abstract We review some of the key developments in wave models used in the
coastal oceanography. To this end,wefirst recall thewell-known shallowness, nonlin-
earity, and topography parameters, which are used to describe the dominant features
in our problem. Next, we compare different wave models based on their assumptions
on the magnitude of these parameters or based on the highest power of each param-
eter included in the model. We then choose a recent version of the Green–Naghdi
equation and explain its derivation. Finally, we show some numerical results for this
model, which were obtained using a hybridized discontinuous Galerkin solver.

3.1 Introduction

Coastal ocean models are used in a variety of applications; examples include pre-
dicting tidal cycles in coastal regions, operations of ports and military installations,
modeling environmental conditions in bays and estuaries, and natural hazards such
as hurricane storm surges and tsunamis. Flow in coastal regions, and even in deeper
water, separates into long-wave and short-wave components (Holthuijsen 2007).
Long-wave phenomena can be modeled using the standard shallow water equations.
Short-waves require more complex mathematical treatment. Short-wave models are
further categorized into phase-resolving and non-phase resolvingmodels. Non-phase
resolving models are typically used over large coastal and oceanic regions, since it
is impossible to model each individual wave in the ocean. In the nearshore, where
solitary waves are present, phase resolving models should be used. We focus on such
models in this paper.
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Fig. 3.1 Domain of the problem, employed notations, and the length scales

The numerical simulation of water waves near the coast requires a mathemati-
cal model which can include the highly nonlinear and dispersive properties of the
wave regime in these areas. Although, the wave motion in such regions is a three
dimensional process, the Boussinesq wave theory considers a polynomial distribu-
tion for the velocity field in the vertical direction and reduces the problem to a two
dimensional description (Boussinesq 1872). In fact, Boussinesq’s core assumption
is the linear variation of the velocity field from zero at the bottom to a maximum
value at the water surface. The conditions for validity of this assumption were not
completely understood at the time, but it is now realized that if the fluid flow belongs
to the shallow water regime, the polynomial variation of the velocity field can be
well justified (Lannes 2013).

In order to identify the shallow water regime, we define three dimensionless
parameters based on the typical length scales in our problem. As shown in Fig. 3.1,
we consider a typical horizontal length scale (l0), a typical water depth scale (h0), a
typical wave amplitude (a0), and a typical topography scale (b0). According to these
scales, we define the nonlinearity parameter (ε = a0/h0), topography parameter
(β = b0/h0), and the shallowness parameter (μ = h0/ l0). As can be inferred from
its name, ε signifies the amount of nonlinear behavior in our problem. Meanwhile,
the main assumption in the shallow water regime is μ � 1, and if this assumption is
in place, we can use the Boussinesq’s technique to formulate a 2D problem from the
original 3D setup. Hence, we do not need any special assumption on ε or β to develop
the shallow water regime equations. However, in practice, in order to simplify the
equations, one can assume that ε = O(μ2) to get the weakly nonlinear equations.
In this context, Peregrine (1967) was among the first ones to assume a quadratic
variation for the vertical velocity and let ε = O(μ2) to form what is now known as
the classical Boussinesq equation. In this derivation, the terms of order μ4 (such as
εμ2) were ignored to simplify the equations. In general, if we neglect the terms of
order μN or higher in an approximate model, we call that model O(μN )-consistent
with the original water wave problem (or simply O(μN ) model).
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The O(μ4)model of Peregrine has some limitations, the most important of which
are its weak dispersive and nonlinear properties. In other words, it is not applicable
to problems with relatively large μ’s, and since its nonlinear properties are tuned to
match its dispersion, it also does not performwell formoderately nonlinearwaves.As
a result, the phase velocities computed using this model are only valid for long waves
with kh0 < 0.75 (k being thewavenumber) (Madsen 2003).Among the studieswhich
have tried to fix this issue (Nwogu 1993; Madsen et al. 2002; Barthélemy 2004),
Witting pioneered the use of Padé approximation to obtain a good fit for the linear
phase speed of the Stokes waves (Witting 1984). This approach was later pursued by
Madsen et al. (1991), where they incorporated a spatial derivative of thewater surface
elevation to substitute a temporal derivative of the horizontal velocity. On a separate
path, Nwogu (1993) proposed a new formulation based on the velocity at an arbitrary
depth, instead of the velocity at the still water elevation, and obtained an improved
matching for the linear celerity. The resulting dispersion relation was similar to the
one obtained in Madsen et al. (1991). This techniques was later improved by others
(Wei and Kirby 1995; Madsen and Sørensen 1992), and resulted in models with
linear dispersion relations, which are valid up to kh0 = 6. However, the issue of
weak nonlinearity was still unresolved. An effort to relax the assumption on the
nonlinearity parameter was to take ε = O(μ) and β = O(μ2), and obtain O(μ6)-
consistent equations, i.e. keeping terms such as ε2μ2, ε3μ2, and εμ4 in the equations
(Madsen and Schäffer 1998). In general, fixing both nonlinear and dispersive effects
in the above coupled setting makes the equations very complicated, and designing
numerical methods for them is not straightforward. One of the examples of such
efforts was proposed in Gobbi et al. (2000), where the equation is O(μ6)-consistent
with the original water wave problem, and contains up to fifth order derivatives. This
results in a valid linear dispersion relation up to kh0 = 6, and acceptable nonlinear
properties up to kh0 = 3.

In all of the above techniques, there is a coupling between the nonlinearity and
shallowness assumption in the problem. As a result, they have inconsistent linear
and nonlinear dispersion properties. However, if we can decouple these two features,
we can inherit the nonlinear dispersive properties from the linear case. In one of
the first efforts towards this goal (Agnon et al. 1999), the shoaling and dispersion
are included in the model by solving the Laplace’s equation with the kinematic
boundary conditions, while the nonlinearity is treated using Euler’s equation, based
on Zakharov’s methodology (Zakharov 1968). Based on this approach, other models
were developed, which are shown to be valid for a wide range of wavenumbers up to
kh0 = 25 (Madsen et al. 2002; Madsen 2003). In order to enhance the dispersive
behavior of these models for high bathymetry gradients, a newmodel was developed
in Madsen et al. (2006).

Another group of methods for deriving the nonlinear dispersive wave equations,
is based on using the so-called Dirichlet-Neumann (DN) operator. This operator was
formulated by Craig et al. (1992), Craig and Sulem (1993), and its application to
highly variable bathymetry was carried out in Artiles and Nachbin (2004a), Artiles
and Nacbin (2004b). In the last decade, multiple works have been carried out to
construct Serre-Green-Naghdi models (Serre 1953; Green and Naghdi 1976), which
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Table 3.1 Orders of precision of different models and the corresponding nonlinearity (ε) and
topography (β) parameters

Model Precision ε β

(Saint-Venant) NSWE O(μ2) O(1) O(1)

KdV (Korteweg and
De Vries 1895)

O(μ4) O(μ2) 0

Boussinesq-Peregrine
(Peregrine 1967)

O(μ4) O(μ2) O(μ2)

Green–Naghdi (Serre
1953; Green and
Naghdi 1976; Lannes
and Bonneton 2009)

O(μ4) O(1) O(1)

Madsen and Schäffer
(1998)

O(μ6) O(μ) O(μ2)

Agnon et al. (1999) O(μ8) O(μ) O(μ2)

are O(μ4)-consistent, and are suitable for fully nonlinear (ε = O(1)) problems on
arbitrary bathymetry (β = O(1)) (Lannes and Bonneton 2009; Bonneton et al. 2011;
Lannes and Marche 2015). The main advantage in all of these works is their rela-
tively straightforward computational implementation, due to their maximum order of
spatial derivatives being three. It has been shown that by using different techniques
such as introducing new tuning parameters, one can achieve a very good approxima-
tion to the dispersion relation using these O(μ4) models (Chazel et al. 2009, 2011).
Moreover, by dropping the assumption of water being irrotational, another group
of models has been devised (Zhang et al. 2013, 2014; Castro and Lannes 2014).
In Table3.1 we have summarized the main features of a number of shallow water
models based on the considered range of the dimensionless parameters.

In this article, we review the derivation of the irrotational O(μ4)-consistent equa-
tion for the fully nonlinear waves on an arbitrary bathymetry. We then show a set
of numerical results based on a hybridized discontinuous Galerkin solver for this
equation.

3.2 The Water Wave Problem

At a given time t , let Dt denote the subset ofRd+1, which is filled with water (refer to
Fig. 3.1). At a given point (x, z) ∈ Dt , let U(t, x, z) ∈ R

d+1 denote the velocity of a
fluid particle. Meanwhile u(t, x, z) ∈ R

d and w(t, X, z) ∈ R are the horizontal and
vertical components of the velocity. At this point, p(t, x, z) denotes the pressure. The
acceleration of gravity, which acts in the vertical direction (−gez), is taken constant
everywhere. Moreover, we use ∇ to denote the gradient in the horizontal direction
and ∇ to denote (∇, ∂z)

T . Similarly, we use Δ, and Δ to denote ∇2, and ∇2 + ∂2
z ,
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respectively. Assuming the water to be inviscid, incompressible, and uniform, with
irrotational motion, its flow is governed by the following equations:

∂tU + (U · ∇)U = − 1
ρ
∇p − gez in Dt , (3.1a)

∇ · U = 0 in Dt , (3.1b)

∇ × U = 0 in Dt . (3.1c)

Meanwhile, the particles on the top boundary (z = ζ(t, x)) and the bottom boundary
(z = b(x)) should not cross ΓT and ΓB :

U · n = 0 on ΓB, (3.1d)

∂tζ + ∇ζ · u − w = 0 on ΓT . (3.1e)

Referring to Fig. 3.1, one can obtain the normal vector on ΓT by taking the
gradient of the equation: z − ζ(t, x) = 0 (which describes ΓT ) and get: n|ΓT =
(−∇ζ, 1)/

√
1 + |∇ζ |2. Hence, it is possible to write (3.1e) in the following form,

as well:
∂tζ −

√
1 + |∇ζ |2 U · n = 0, on ΓT . (3.1e*)

Due to (3.1c), we can find a velocity potential function (Φ), such that ∇Φ = U.
Substituting this into (3.1a), and assuming pressure at the water surface to be patm,
(3.1a) becomes:

∂tΦ + 1
2 |∇Φ|2 + gz = − 1

ρ
(p − patm). (3.2)

Next, we define ψ as the trace of Φ on the water surface, i.e. Φ|z=ζ(x) = ψ . Accord-
ingly,we can express (3.1b–d), in terms of the velocity potential, and get the following
boundary value problem:

ΔΦ = 0 in Dt , Φ = ψ on ΓT , ∇Φ · n = 0 on ΓB . (3.3)

Under proper regularity assumptions, the solution to the above system depends on
ψ , and the parametrization of ΓT , ΓB using ζ, b. Hence, we identify the Dirichlet-
Neumann operator (G[ζ, b]), which solves the above system for a given ψ and maps
it as follows:

G[ζ, b] : ψ �→
√
1 + |∇ζ |2 ∂nΦ|ΓT (3.4)

or, equivalently (compare (3.1e) and (3.1e*)):

G[ζ, b] : ψ �→ −∇ζ · ∇Φ|ΓT + ∂zΦ|ΓT (3.4*)

For a rigorous definition of this operator over its functional settings, we refer the
interested reader to Lannes (2013). We use G to write (3.1e) in terms of the d-
dimensional coordinates and unknowns, in the form:
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∂tζ − G[ζ, b]ψ = 0. (3.5)

Next, wewant to express (3.3) independent of the vertical coordinate. Hence,we need
to removeΦ, and its derivatives from this equation. Since,ψ(t, x) = Φ(t, x, ζ(t, x)),
we use the chain rule to get:

∂tΦ = ∂tψ − ∂zΦ ∂tζ on ΓT , (3.6a)

∇Φ = ∇ψ − ∂zΦ ∇ζ on ΓT . (3.6b)

For ∂zΦ, we start from (3.1e) and use (3.6) and the above relations to get:

∂zΦ = G[ζ, b]ψ + ∇ζ · ∇ψ

1 + |∇ζ |2 on ΓT . (3.6c)

It will be fruitful if we can find a relationship between the DN operator and the
depth averaged velocity. To this end, we can start from the definition of the average
velocity, to get the following relation for the average momentum:

(hū)(t, x) =
∫ ζ

−h0+b
∇Φ(t, x, z) dz.

We then take the divergence of this formula in the horizontal direction, apply Leibnitz
rule, employ ΔΦ = 0, and use the boundary conditions (3.1d, e), to get:

∇ · (hū) = −∂zΦ|ΓT + ∇ζ · ∇Φ|ΓT

Comparing this with (3.1e), one has:

G[ζ, b]ψ = −∇ · (hū) (3.7)

Consequently, we can substitute (3.6) into (3.2), and along with (3.5), we obtain the
following system of equations:

⎧
⎨

⎩

∂tζ + ∇ · (hū) = 0,

∂tψ + gζ + 1

2
|∇ψ |2 − (∇ζ · ∇ψ − ∇ · (hū))2

2(1 + |∇ζ |2) = 0.
(3.8)

3.2.1 Dispersive Properties of the Linear Waves

The dispersion relation corresponding to Eq. (3.8) can be obtained by writing this
equation in terms of the perturbations of velocity potential and water surface about
the rest state on a flat bathymetry, i.e. setting ζ = 0, b = 0. This requires solving the
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following BVP:

ΔΦ = 0 in Dt , Φ = ψ on ΓT , ∂zΦ = 0 on ΓB, (3.9)

along with the following linearized system of equations:

{
∂tζ − G[0, 0]ψ = 0,

∂tψ + gζ = 0.
(3.10)

Here, ΓB is parametrized as z = −h0. Now, we take the Fourier transform of (3.9)
with respect to x, to obtain the following problem in terms of the wave vector k:

∂2
z Φ̂(k, z) = 0 in Dt , Φ̂ = ψ̂ on ΓT , ∂zΦ̂ = 0 on ΓB . (3.11)

This results in the following solution:

Φ̂(k, z) = cosh[(z + h0)|k|]
cosh(h0|k|) ψ̂(k). (3.12)

Since, in the linearized case, n|ΓT = (0, 1), we can simply write
√
1 + |∇ζ |2 ∂nΦ as

∂zΦ. Therefore, in the wavenumber domain we have the following:

G[0, 0]ψ̂ = ∂zΦ̂ = |k| tanh(|k|h0)ψ̂(k).

By substituting this into (3.10), we get the following equation for ζ̂ :

∂2
t ζ̂ (k) + g|k| tanh(h0|k|)ζ̂ (k) = 0.

By taking the Fourier transform of this equation with respect to t , we get the well-
known dispersion relation of the linear water waves:

ω(k) = √
g|k| tanh(h0|k|),

and the phase speed of linear waves at different wavenumbers (k = |k|) can be
computed using:

c(kh0) = √
gh0

√
tanh(kh0)√

kh0
(3.13)

If k in the above relation correspond to the length scale in our problem, i.e. k = 2π/ l0,
then we obtain the typical celerity of gravity waves in our problem:

c0 = √
gh0ν , with ν = tanh(2πμ)

2πμ
,
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withμ being the shallowness parameter. One can clearly observe thatμ characterizes
the typical wavenumber in the problem. When we are dealing with very long waves
(μ � 1), we can assume that ν � 1. Thus the water waves are nondispersive in such
cases, that is all of the wavelengths travel with the same speed. On the other hand,
when we have intermediate values for μ, the longer waves travel faster than the
shorter waves and the water waves show dispersive properties.

3.2.2 Scaling of Variables and Operators

In order to obtain the nondimensional equations, we should know the typical scales
of coordinates, variable, and the corresponding operators. Here, we first introduce
the time scale as the ratio of l0 by c0 (phase speed of linear waves): t0 = l0/

√
gh0.

Accordingly, we can define the nondimensional space and time coordinates (denoted
with primes):

x′ = x/ l0, z′ = z/h0, t ′ = t/t0, (3.14)

and their corresponding differential operators:

∇′ = l0∇, ∇′ = l0(∇, μ ∂z)
T , Δ′ = l20(∇2 + μ2 ∂2

z ), ∂t ′ = t0∂t ,

∇ = 1
h0

(μ∇′, ∂z′)T , Δ = 1
h20

(μ2 ∇′2 + ∂2
z′).

(3.15)

The scaling of ζ , b, and h = ζ + h0 − b is straightforward:

ζ ′ = ζ

a0
, b′ = b

b0
, h′ = h

h0
. (3.16)

We also want to find a typical scale for Φ. To this end, we first refer to (3.9), which
states that Φ and ψ should have the same order of magnitude. Moreover, we look at
the second equation of (3.10), which gives us a typical magnitude for ψ :

1

t0
∂t ′ψ0ψ

′ + ga0ζ
′ = 0 =⇒ ψ0 = a0

h0
l0

√
gh0,

Φ = Φ

Φ0
, with Φ0 = ψ0.

(3.17)

We also define a typical length scale for the horizontal velocity based on u0 =
∇Φ0, or in terms of the nondimensional variables: u0u′ = (Φ0/ l0)∇′Φ ′. Thus, the
dimensionless horizontal velocity can be defined as:

u′ = 1

u0
u , with u0 = Φ0

l0
= ε

√
gh0. (3.18)
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Before obtaining the nondimensionalized forms of the equations, we consider scal-
ing the Dirichlet-Neumann operator. According to (3.4), we know that G[ζ, b]ψ =
∂zΦ − ∇Φ · ∇ζ on the water surface. By substituting the derivatives and variables
from (3.14)–(3.18), we have:

G[ζ, b]ψ = Φ0

h0
(∂z′Φ ′ − μ2∇′(εζ ′) · ∇Φ ′)|z′=εζ ′ .

Thus we define:

G ′[εζ ′, βb′]ψ ′ := (∂z′Φ ′ − μ2∇′(εζ ′) · ∇Φ ′)|z′=εζ ′ , (3.19)

to get:

G[ζ, b]ψ = Φ0

h0
G ′[εζ ′, βb′]ψ ′ (3.20)

3.2.3 Nondimensionalization of Equations

Here, we first obtain the nondimensionalized version of the boundary value problem
(3.3). Using the definitions in the previous section, this equation takes the form:

μ2∇′2Φ ′ + ∂2
z′Φ

′ = 0 in − 1 + βb′ ≤ z′ ≤ εζ ′, (3.21a)

Φ ′ = ψ ′ on z′ = εζ ′, (3.21b)

∂z′Φ ′ − μ2∇′(βb′) · ∇′Φ ′ = 0 on z = −1 + βb′. (3.21c)

Itwill be useful towrite (3.7) in the dimensionless form.Thiswill be a straightforward
application of definitions for ∇′, Φ ′, h′, and u′:

G ′[εζ ′, βb′]ψ ′ = −μ2 ∇′ · (h′ū′)

Next, we substitute the above definitions of nondimensional variables and operators
to write Eqs. (3.8) in the nondimensionalized form:

⎧
⎪⎨

⎪⎩

∂t ′ζ
′ + ∇′ · (h′ū′) = 0,

∂t ′ψ
′ + ζ ′ + ε

2
|∇ψ ′|2 − εμ2

(∇′(εζ ′) · ∇′ψ ′ − ∇′ · (h′ū′)
)2

2(1 + ε2μ2|∇′ζ ′|2) = 0.
(3.22)

Now, we solve (3.21) exploiting the fact that μ � 1. To this end, let us consider
approximating the velocity potential based on the following asymptotic expansion:
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Φ ′(t, x, z) =
N∑

n=0

μ2n Φ ′
n(t, x, z) + O(μ2(N+1)) (3.23)

Hence, by including only the summation (
∑N

n=0 μ2n Φ ′
n(t, x, z)) in the right hand

side, we approximate Φ up to O(μ2(N+1)), and the corresponding model would be
O(μ2(N+1))–consistent with the original water wave problem. Although, the O(μ4)

model that we consider here will not have a very good precision for kh0 > 1.0, there
are techniques to improve its dispersive properties and increase its range of validity
up to kh0 = 4 (Chazel et al. 2009, 2011).

Now, if we substitute (3.23) to the boundary value problem (3.21), and arrange
the terms with the same power of μ, we get:

∂2
z′Φ

′
n =

{
0, for n = 0,

−(∇′)2Φ ′
n−1, otherwise.

(3.24)

Meanwhile, we let Φ ′
0 satisfy the boundary condition on the top and set the homo-

geneous boundary condition for other Φ ′
n’s. Thus the boundary conditions find the

form:

Φ ′
n =

{
ψ ′, for n = 0,

0, otherwise,
for z′ = εζ ′, (3.25)

∂z′Φ ′
n =

{
0, for n = 0,

β∇′b′ · ∇′Φ ′
n−1 otherwise,

for z′ = −1 + βb′. (3.26)

We have to solve a simple ODE to obtain the solution to Φ ′
0. Afterwards, the

solution toΦ ′
1 will be obtained by substitutingΦ ′

0 in the above equations and solving
anotherODE.Theprocess is straightforward, and canbe done using computer algebra
software. Thus, we will have:

Φ ′
0 = ψ ′ (3.27a)

Φ ′
1 = −∇′2ψ ′

2
z′2 + [

(−1 + βb′)∇′2ψ ′ + β∇b′ · ∇ψ
]
z

+ ∇′2ψ
2

[
h′2 − (1 − βb′)2

] − β(h′ − 1 + βb′)∇′b′ · ∇′ψ ′ (3.27b)

It isworthwhile noting that for an O(μ2)model, i.e.Φ ′ = Φ ′
0, the velocity potential is

constant in depth. This means, the velocity field does not depend on the z-coordinate
in the O(μ) models. An example of such models is the Saint-Venant equation, also
known as the nonlinear shallowwater equation (NSWE).Moreover, the vertical com-
ponent of the velocity, i.e. w′ = ∂z′Φ ′ vanishes in these models. On the other hand,
in O(μ4) models, such as Green–Naghdi equation, the velocity varies quadratically
in depth.
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Next, let us obtain the velocity variation corresponding to Φ ′
0 and Φ ′

1. In the
nondimensionalized coordinates we have:

ū′
n = 1

h′

∫ ζ ′

−1+βb′
∇Φ ′

n dz
′.

By substituting Φ ′
0 and Φ ′

1 from (3.27) into the above relation, and some algebraic
manipulation, we can obtain ū′

0 and ū′
1:

ū′
0 = ∇′ψ ′, (3.28)

ū′
1 = −μ2T ′[h′, b′]∇′ψ ′, (3.29)

where
T ′[h′, b′]w = R′

1[h′, b′](∇′ · w) + βR′
2[h, b′](∇b′ · w), (3.30)

and,

R′
1[h′, b′]w = − 1

3h′ ∇′(h′3w) − β
h′

2
w∇′b′, (3.31a)

R′
2[h′, b′]w = 1

2 h′ ∇′(h′2w) + βw∇′b′. (3.31b)

Now, we can write the following relation for average velocity (dropping [h′, b′] from
T ′):

ū′ = ∇′ψ ′ − μ2T ′∇′ψ ′ + O(μ4) (3.32)

Therefore, ∇′ψ ′ = ū′ + μ2T ′∇ψ ′ + O(μ4). Substituting ∇′ψ ′ from this relation
into itself will result in:

∇′ψ ′ =ū′ + μ2T ′ū′ + μ4T ′ (T ′∇′ψ ′) + O(μ4)

∴ ∇′ψ ′ = ū′ + μ2T ′ū′ + O(μ4). (3.33)

This relation is the last piece of machinery to derive the Green–Naghdi wave model.
As an example of deriving an asymptotic wave model, we can start from (3.22), take
the gradient of the second equation and drop all of the terms of order O(μ2) to obtain
the nonlinear shallow water equation (NSWE):

{
∂t ′ζ

′ + ∇′ · (h′ū′) = 0,

∂t ′ ū′ + ∇′ζ ′ + εū′ · ∇ ū′ = 0.

We usually prefer the equations to be in terms of the conserved variables, i.e. h, hū.
Hence, we use ∂t ′h′ = ε∂t ′ζ

′, and ∂t ′u′ = [∂t ′(h′ū′) + εū′∇′ · (h′ū′)]/h in the second
equation to obtain:
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⎧
⎨

⎩

∂t ′h′ + ε∇′ · (h′ū′) = 0,

∂t ′(h′ū′) + ε∇′ · (h′ū′ ⊗ ū′) + 1

ε
h′(∇′(h′ + βb′)) = 0.

Finally, we can write the equations with dimensions:

{
∂t h + ∇ · (hū) = 0,

∂t (hū) + ∇ · (hū ⊗ ū) + gh∇h + gh∇b = 0.

3.2.4 Green–Naghdi Equation

The process for obtaining Green-Naghdi equation is similar to what we explained
for NSWE; however, in the final step, instead of dropping all terms of order O(μ2N ),
with N ≥ 1, we drop the terms of order O(μ2N ), with N ≥ 2. We encourage the
interested readers to also consult the original materials, in which these equations
were introduced (Lannes andBonneton 2009;Lannes 2013).Now, let uswriteGreen–
Naghdi equation in terms of the dimensionless variables:

{
∂t ′ζ

′ + ∇′ · (h′ū′) = 0,

(I + μT ′)(∂t ′ ū′) + ∇′ζ ′ + ε(ū′ · ∇′)ū′ + εμQ′(ū′) = 0.
(3.34)

With, T ′ defined in (3.30), and Q′ is defined in terms of R′
1 and R′

2, which were
introduced in (3.31):

Q′(w) = R′
1

(∇′ · (w∇′ · w) − 2(∇′ · w)2
) + βR′

2

(
(w · ∇′)2b′) (3.35)

It is observed thatQ′ contains up to third order derivatives of the velocity field, which
we can avoid computing by introducing a new operator Q′

1 as follows:

Q′
1(w) = T ′ ((w · ∇)w) − Q′(w). (3.36)

Now, Q′
1 contains up to second derivatives, and has the form:

Q′
1(w) = −2R′

1

(
∂x ′w · ∂y′w⊥ + (∇′ · w)2

) + βR′
2

(
w · (w · ∇′)∇′b′) (3.37)

Here, w⊥ = (−w2, w1)
T ; meanwhile, ∂x ′ , and ∂y′ are the partial derivatives with

respect to x ′, and y′ respectively. Using this definition, the equation (3.34) becomes:

{
∂t ′ζ

′ + ∇′ · (h′ū′) = 0,

(I + μT ′)
(
∂t ′ ū′ + ε(ū′ · ∇′)ū′) + ∇′ζ ′ + εμQ′

1(ū
′) = 0.

(3.38)
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Similar to the previous section, we prefer the equations in terms of h′, h′ū′:
{

∂t ′h′ + ε∇′ · (h′ū′) = 0,
(
I + μh′T ′ 1

h′
) (

∂t ′(h′ū′) + ε∇′ · (h′ū′ ⊗ ū′)
) + h′∇′ζ ′ + εμh′Q′

1(ū
′) = 0.

(3.39)
If we apply the inverse operator

(
I + μh′T ′ 1

h

)−1
on the second equation, we can

simplify the numerical simulation of this equation. Afterwards, we go back to the
unknowns with dimensions and the above system becomes:

{
∂t h + ∇ · (hū) = 0,

∂t (hū) + ∇ · (hū ⊗ ū) + (
I + μhT 1

h

)−1
(gh∇ζ + hQ1(ū)) = 0.

(3.40)

The operators T and Q1 with dimensions are according to (3.30) and (3.37) with
β = 1, respectively. It is possible to modify this equation to get a set of equations
with better dispersive properties (Chazel et al. 2011; Bonneton et al. 2011), or make it
more suitable for large problems by avoiding the computation of the inverse operator(
I + μh′T ′ 1

h

)−1
at each time step (Lannes and Marche 2015).

3.3 A Finite Element Discretization of the Green-Naghdi
Equation

In this section, we give a very concise introduction to a hybridized discontinuous
Galerkin (HDG) discretization of Eq. (3.40). The details of the proposed method will
be reported in separate upcoming articles. In our numerical scheme, we use the well-
known Strange splitting technique (Strang 1968) to decompose equation (3.40) to a
hyperbolic (nonlinear shallow water equation) and a dispersive part. This splitting
is known to be second order accurate if each of its components are at least second
order accurate. Let us first consider S1 as the solution operator associated with the
hyperbolic part of (3.40):

{
∂t h + ∇ · (hu) = 0,

∂t (hu) + ∇( 12 gh
2) + ∇ · (hu ⊗ u) + gh∇b = 0.

(3.41)

Moreover, S2 is the solution operator for the dispersive part:

{
∂t h = 0,

∂t (hu) − gh∇ζ + (1 + hT 1h)−1 [gh∇ζ + hQ1(u)] = 0.
(3.42)

The Strang splitting suggests that the solution operator corresponding to system
(3.40) is: S(Δt) = S1(Δt/2)S2(Δt)S1(Δt/2). A graphical representation of the
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Fig. 3.2 The splitting
technique used to solve the
coupling between the
hyperbolic and dispersive
sub-problems. We start with
qh

∣∣
tn
, and obtain qh

∣∣
tn+1

at
the end of the time step

employed technique is shown in Fig. 3.2. qh in this figure stands for the unknown
state, i.e. qh = (hh, huh).

Although, Eq. (3.40) can be solved without the above splitting scheme, we prefer
this approach, because we can apply different time discretization techniques to the
hyperbolic and dispersive parts. For example, one can use an implicit time discretiza-
tion for (3.41), and an explicit time integration for (3.42).

3.3.1 Notation

Let us consider the d-dimensional domain Ω and Th = {K } as a finite collection of
disjoint elements partitioningΩ (refer to Fig. 3.3). Let ∂Th denote all of the faces of
the elements in Th (dashed lines in Fig. 3.3), and Eh be the set of faces in the mesh
(continuous lines in Fig. 3.3). It is worthwhile mentioning that, while in Eh , we count
the common faces between two elements only once, the same common face is counted
twicewhenwe form ∂Th . Now, assume e is a common face between two elements K+
and K−, i.e. e = ∂K+ ∩ ∂K−. We denote by n± the unit normals of K± at e and use
[[·]] to show the jump of the information across e, e.g. [[F · n]] = F+ · n+ + F− · n−,

Fig. 3.3 Domain Ω with the
discretization Th , the set of
element faces (∂Th), and the
set of faces in the mesh (Eh)
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with F± being the values of F corresponding to K±. For the faces on the boundary of
the domain, where e ∈ ∂Th ∩ ∂Ω , we define the jump based on the only contributing
face, i.e. [[F · n]] = F · n. Moreover, the average value of F at a common face is
defined by {{F}} = (F+ + F−)/2.

Throughout this section, we mainly use vector notation. However, for certain
relations, the index notation can provide a more clear description. In those cases, we
denote derivatives with respect to spatial coordinates with subscripts, i.e. qi, j denotes
the derivative of the i th component of q with respect to the j th spatial coordinate.
We also use (v,w)G to denote the inner product of functions v andw in G ⊂ R

d , i.e.
(v,w)G = ∫

G vw dG. Furthermore, 〈v,w〉Γ denotes
∫
Γ

vw dΓ , when Γ ⊂ R
d−1.

3.3.2 Functional Setting

For each element K ∈ Th and p ≥ 0, let Q p(K ) denote the space of polynomials
of degree at most p in each spatial direction. We choose our trial solution and test
spaces as the set of square integrable functions over Th , such that their restriction to
the domain of K belongs toQ p(K ); i.e.

Vp
h := {q ∈ (L2(Th))

d+1 : q|K ∈ (Q p(K ))d+1 ∀K ∈ Th}. (3.43a)

The approximation spaces over the mesh skeleton (Eh) are defined as:

Mp
h :={μ ∈ (L2(Eh))

d+1 : μ|e ∈ (Q p(e))d+1 ∀e ∈ Eh}, (3.43b)

M̄
p
h := {μ ∈ (

L2(Eh)
)d : μ|e ∈ (

Q p(e)
)d ∀e ∈ Eh}. (3.43c)

We also define the L2-projection operator Π∂ , which maps a given ξ ∈ (L2(Eh))
d+1

to the set of functions whose restriction to e ∈ Eh is in (Q p(e))d+1, and Π∂ satisfies:

〈Π∂ξ − ξ ,μ〉e = 0, ∀μ ∈ (Q p(e))d+1.

3.3.3 Variational Formulation and Solution Procedure

Before we give the variational formulation for the hyperbolic and dispersive sub-
problems, we write (3.41) in the familiar conservation form:

∂tq + ∇ · F(q) = L in Ω ⊂ R
d , (3.44)

with L being the source term, and
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q =
{
h
hu

}
, F(q) =

{
hu

hu ⊗ u + 1
2 gh

2I

}
. (3.45)

Next, let us rewrite Eq. (3.42) as:

{
∂t h = 0,

∂t (hu) − gh∇ζ + w1 = 0,
(3.46)

where w1 is obtained using:

(1 + hT 1

h
)w1 = gh∇ζ + hQ1(u). (3.47)

Using definition (3.30) with β = 1, the above equation finds the following form:

w1 + hT
(
1
hw1

) = w1 − 1

3
∇ (

h3∇ · (
1
hw1

)) − h2

2
∇ · (

1
hw1

) ∇b

+ 1

2
∇ (h∇b · w1) + ∇b · w1∇b. (3.48)

We also expand the operator Q1(u) in the right hand side of (3.47) as follows:

hQ1(u) =2

3
∇ (

h3∂xu · ∂yu⊥ + h3(∇ · u)2
) + 1

2
∇ (

h2u · (u · ∇)∇b
)

+ h2
(
∂xu · ∂yu⊥ + (∇ · u)2

) ∇b + h (u · (u · ∇)∇b) ∇b. (3.49)

Based on above relations, (3.47) can be written as a system of first order equations:
⎧
⎪⎨

⎪⎩

∇ · ( 1hw1) − h−3w2 = 0,
w1 − 1

3∇(w2) − 1
2hw2∇b + 1

2∇(h∇b · w1)

+ w1∇b ⊗ ∇b = gh∇ζ + hQ1(u).

(3.50)

In the next two sections, we solve Eqs. (3.44) and (3.50).

Hyperbolic Part

We are looking for a piecewise polynomial solution qh ∈ Vp
h which satisfies Eq.

(3.44) in the variational sense. Hence, for all p ∈ Vp
h and every K ∈ Th , we want

qh to satisfy:

(∂tqh, p)K + 〈F∗
h, p〉∂K − (F(qh),∇ p)K − Lh( p) = 0. (3.51)

Here, F∗
h is the numerical flux, an approximation to F(q) · n over the faces of the

element K . Similar to the finite volumemethod,we can obtain a stable and convergent
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solution by a proper choice of F∗
h . In the hybridizable DG formulation, the numerical

flux is defined through the numerical trace (̂qh), which is an approximation to q on
the skeleton space (Eh). Here, we consider the following form for F∗

h :

F∗
h = F(̂qh) · n + τ (qh − q̂h), (3.52)

where τ is the stabilization parameter and its choice is important for obtaining a
convergent and stable method. Here, we use the Lax-Friedrichs flux for this purpose
(Samii et al. 2019). It is also worth mentioning that q̂h is assumed to be single-valued
on any given face in Eh .

Next, we want to satisfy the flux conservation condition across the element faces.
Since, the numerical flux is the only means of communication between elements, in
all of the internal faces, we require that the projection of the jump of F∗

h onto Mp
h

vanishes, i.e. Π∂

[[F∗
h

]] = 0. On the other hand, over the domain boundary (∂Ω), we
apply the boundary condition through the boundary operator Bh . Hence, ∀μ ∈ Mp

h ,
we want to have:

〈F∗
h,μ〉∂T h\∂Ω + 〈Bh,μ〉∂T h∩∂Ω = 0 (3.53)

Here, Bh is the boundary operator, and should be defined according to the applied
conditions on ∂Ω . The details of the employed boundary conditions can be found in
other references (Samii et al. 2019).

We should solve Eqs. (3.51) and (3.53) to obtain the unknowns of the problem.We
can substitute F∗

h from (3.52) into these two equations, and assemble (3.51) over all
of the elements. Thus, the problem may be summarized as finding the approximate
solution (qh, q̂h) ∈ Vp

h × Mp
h , such that, for all ( p,μ) ∈ Vp

h × Mp
h :

(∂tqh, p)T h − (F(qh),∇ p)T h + 〈τqh, p〉∂T h

+ 〈F(̂qh) · n, p〉∂T h − 〈τ q̂h, p〉∂T h − Lh( p) = 0, (3.54a)

〈F(̂qh) · n,μ〉∂T h\∂Ω + 〈τqh,μ〉∂T h\∂Ω

− 〈τ q̂h,μ〉∂T h\∂Ω + 〈Bh,μ〉∂T h∩∂Ω = 0. (3.54b)

Considering Eq. (3.54), we use Newton-Raphson method to form a linearized equa-
tion in terms of the increments of qh and q̂h . For the simplicity of the presentation,
we consider backward Euler technique as the time integrator, with Δt being the cur-
rent time step. Hence, denoting by qn−1

h the values of qh in the previous time level,
and (q̄h, ¯̂qh) ∈ Vp

h × Mp
h the corresponding values in the current iteration, we seek

(δqh, δq̂h) ∈ Vp
h × Mp

h such that for all ( p,μ) ∈ Vp
h × Mp

h , we have:

a1(δqh, p) + c1(δq̂h, p) + f1( p) = 0, (3.55a)

cT2 (δqh,μ) + cT3 (δqh,μ) + e1(δq̂h,μ)
+ e2(δq̂h,μ) + f2(μ) + f3(μ) = 0. (3.55b)

with the bilinear forms and functionals defined as below:
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a1(δq j , pi ) = 1

Δt
(δq j , δi j pi )Th −

(
∂Fik
∂q j

δq j , pi,k

)

Th

+ 〈
τi jδq j , pi

〉
∂Th

,

c1(δq̂ j , pi ) =
〈(

∂ F̂ik
∂q̂ j

nk + ∂τik

∂q̂ j
q̄k − ∂τik

∂q̂ j

¯̂qk − τi j

)

δq̂ j , pi

〉

∂Th

,

f1(pi ) = 1

Δt
(q̄i − qn−1

i , pi )Th−〈F̂i j n j , pi 〉∂Th + 〈τi j q̄ j , pi 〉∂Th

− 〈τi j ¯̂q j , pi 〉∂Th − (Fi j , ∂ j pi )Th − Li (pi ),

cT2 (δq j , μi ) = 〈
τi jδq j , μi

〉
∂T \∂Ω

, cT3 (δqh,μ) =
〈
∂Bh

∂qh
δqh,μ

〉

∂Ω

,

e1(δq̂i , μi ) =
〈(

∂ F̂ik
∂q̂ j

nk + ∂τik

∂ q̂ j
q̄k − ∂τik

∂ q̂ j

¯̂qk − τi j

)

δq̂ j , μi

〉

∂T \∂Ω

,

e2(δq̂h,μ) =
〈
∂Bh

∂ q̂h
δq̂h,μ

〉

∂Ω

,

f2(μi ) =
〈
F̂i j n j + τi j q̄ j − τi j ¯̂q j , μi

〉

∂T \∂Ω
; f3(μ) = 〈Bh,μ〉∂Ω

(3.56)
In the above definitions, Fi j , F̂i j , and τi j denote the element at i th row and j th column
of F(q̄h), F( ¯̂qh), and τ ( ¯̂qh), respectively. Meanwhile, δi j denotes the Kronecker
delta.

Dispersive Part

Now, we consider solving Eq. (3.50). To this end, we find (w1h, w2h) ∈ Vp
h , and

ŵ1h ∈ M̄
p
h such that:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(h−3 w2h, p2) − 〈ĥ−1 ŵ1h · n, p2〉 + (
h−1 w1h,∇ p2

) = 0.
(w1h,p1) − 1

3 〈w∗
2h · n,p1〉 + 1

3 (w2h,∇ · p1) − 1
2

(
1
h∇bw2h,p1

)

+ 1
2 〈ĥ∇b · ŵ1h,p1 · n〉 − 1

2 (h∇b · w1h,∇ · p1)
+ (∇b ⊗ ∇bw1h,p1) = l01(p1),

(3.57)

for all (p1, p2) ∈ Vp
h . Here, the definition of l01(p1) can be inferred by comparing

the above system with (3.50); moreover, the numerical flux w∗
2h · n is defined as:

w∗
2h · n = w2hI · n + τ

(
w1h − ŵ1h

)
, (3.58)

where, I is the d × d identity matrix, and τ is the stabilization parameter matrix. We
will use a constant and uniform diagonal matrix for this purpose.

Next, we define the following bilinear forms and functionals:
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a02(w2h, p2) = (h−3w2h, p2); bT01(w1h, p2) = (h−1w1h,∇ p2);
c01(ŵ1, p2) = 〈ĥ−1ŵ1h · n, p2〉; b02(w2h,p1) = (∇w2h,p1);

a01(w1h,p1) = (w1h,p1) + (∇b ⊗ ∇bw1h,p1) ;
d01(w1h,p1) = 〈τw1h,p1〉; bT03(w1h,p1) = (h∇b · w1h,∇ · p1)

a03(w2h,p1) = (
1h∇bw2h,p1

) ;
c02(ŵ1h,p1) = 〈τ ŵ1h,p1〉 + 3

2
〈ĥ∇b · ŵ1h,p1 · n〉.

(3.59)

We are now able to write Eq. (3.57) as:

{
A02w2h + BT

01w1h − C01ŵ1h = 0
(
A01 − 1

2 B
T
03 − 1

3D01
)
w1h − (

1
2 A03 + 1

3 B02
)
w2h + 1

3C02ŵ1h = L01
(3.60a)

Finally, we also require that the numerical flux be conserved across element edges.
In other words, we have:

〈w∗
2h · n, μ〉∂Th\∂Ω + 〈Bh, μ〉∂Th∩∂Ω = 0, (3.60b)

for all μ ∈ M̄
p
h . Here Bh is the boundary operator, which can be defined based on

the applied boundary conditions.
As a final remark, one should note that solving equation (3.47) involves compu-

tation of the 1st and 2nd order derivatives of the velocity vector. Among all other
terms, we need to compute the term∇ (

h3∂xu · ∂yu⊥ + h3(∇ · u)2
)
in each element.

If this computation is performed in a local manner in each element independent of
the others, we lose a significant order of accuracy. It can be easily checked that by
computing this term locally, our solution will not converge for elements with first
order polynomial approximation. On the other hand, since we use this term in our
weak formulation, one might consider using the integration by parts technique to
transfer the gradient of the parentheses to the test function, and replace the flux
of the terms in parentheses with a proper numerical flux. However, finding such a
flux formulation for the extremely nonlinear terms like (∇ · u)2 or ∂xu · ∂yu⊥ is not
straightforward. Therefore, in this study we use a local discontinuous Galerkin tech-
nique to obtain approximations to ∇u and ∇∇u. It is worthwhile to note that, ∇u is
a 2-tensor and ∇∇u is a 3-tensor; As a result, we switch to index notation for clarity.
We use ui to denote the components of u and define the tensors ri j (which contains
the components of ∇u), and si jk (containing the components of ∇∇u) as follows:

ri j − ∂ j ui = 0, (3.61a)

si jk − ∂kri j = 0. (3.61b)

Next, we write the variational formulations corresponding to these equations in an
element (K ∈ Th):
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Fig. 3.4 Schematic plot of
the domain of Example 1.
The stripe is 20m long and
0.2m wide

(
ri j , σi j

)
K = 〈ûi , σi j n j 〉∂K − (

ui , ∂ jσi j
)
K , (3.62a)

(
si jk, ηi jk

)
K = 〈r̂i j , ηi jknk〉∂K − (

ri j , ∂kηi jk
)
K . (3.62b)

In these equations, ûi and r̂i j are the numerical fluxes, which should be defined based
on the values of ui and ri j in the two neighboring elements. In this study we use the
centered fluxes (Bassi and Rebay 1997), i.e. ûi = {{ui }}, r̂i j = {{ri j }}.

By using this technique, we can compute the derivatives of u, and substitute
them in (3.49) to compute hQ1(u), and solve the system (3.60a) by an explicit time
integration method.

3.4 Numerical Results

In this section, we present two numerical examples, for verification and validation of
the presented technique. The purpose of the first example is to show the convergence
properties of the numerical approximation with respect to the element size (Δx) and
the polynomial order (p). In the second example we consider the amplifying effect
of the reflection from a solid wall on the amplitude of a solitary wave. This kind of
simulation is useful in the design of levees and dikes. We compare our numerical
results with experimental data from the literature. In both of the numerical tests pre-
sented here, we use backward difference formula of second order for the hyperbolic
part and the regular Runge-Kutta time integration technique for the dispersive part
of the operator splitting. To solve the problem, we use our software which has been
developed (Samii et al. 2016) using the libraries deal.II (Bangerth et al. 2016), PETSc
(Balay et al. 2015), and MUMPS.

Example 1 In this example we consider the exact solution to the nonlinear Green-
Naghdi equation on a flat bathymetry in one dimension. This solution, which is
derived by Serre (1953), should match our numerical results with b = −h0. This
analytical solution is given by:
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Fig. 3.5 The approximation errors and rates of convergence for differentmesh sizes and polynomial
orders a: a0/h0 = 0.2, b: a0/h0 = 0.4
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Fig. 3.6 The geometry of the numerical model of Example 2

h(t, x) = h0 + a0 sech
2 (κ(x − x0 − c0t)) , (3.63a)

hu(t, x) = c0h(t, x) − c0h0, (3.63b)

κ =
√
3a0

2h0
√
h0 + a0

, (3.63c)

c0 = √
g(h0 + a0) (3.63d)

Here, we consider h0 = 0.5, and two values for a0/h0, i.e. 0.05, 0.2. We solve the
problem in the domain shown in Fig. 3.4. The domain is a stripe with 20m length and
0.2mwidth, and is orientedwith an angle of 30◦ with respect to the x-axis. The reason
for choosing a rotated domain is to include as many nonzero terms as possible in Eq.
(3.47). Since we have rotated the domain, the x-coordinate in the analytical solution
(3.63) should be replaced by x1 (refer to Fig. 3.4). At all boundaries we consider solid
wall conditions. In our numerical scheme, we assign the initial conditions according
to the above h, hu at t = 0, x0 = −4, and let the solitary wave propagate in the
positive x1-direction.

We compute the errors of the numerical results at time t = 0.375 s in the L2-
norm, i.e. ‖q − qh‖L2 with q = (h, hu). Next, we compute the corresponding rates
of convergence on a set of successively refined meshes for polynomial orders p =
0, 1, 2, 3. The corresponding plots for a0/h0 = 0.2, 0.4 are shown in Fig. 3.5. We
can observe that for a0/h0 = 0.2, the convergence rates are very close to the optimal
rates, i.e. p + 1, for all orders of polynomial approximations. An important feature in
these plots is the convergence of the results for p = 0 with the order 0.85. The same
observation as above is also true for a0/h0 = 0.4, except the lower convergence rate
for p = 0. As a final remark, it should be noted that in this example, the analytical
solution of u is not exactly zero at the two ends of the domain i.e. x1 = ±10 m.
Hence, the error caused by applying the solid wall becomes the dominant error as we
decrease the discretization errors. As a result we cannot achieve errors lower than
10−6 in this example.

Example 2 In this example we validate our numerical results against experimental
data regarding the reflection of a solitary wave over a sloping beach (Dodd 1998;
Walkley and Berzins 1999). The geometry of this problem is shown in Fig. 3.6. The



3 A Review of Nonlinear Boussinesq-Type Models for Coastal Ocean Modeling 67

Fig. 3.7 The snapshots of the water surface (ζ ) in Example 2, at different times
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Fig. 3.8 Time history of the water surface at reading station (x = 37.75 m) in Example 2

incident wave does not break prior to touching the wall; however, after the reflection
its shape changes dramatically, which requires a fully nonlinear model to capture its
behavior.

The numerical model is 40m long, and the solid wall condition is applied at its
both ends. The initial water depth is h0 = 0.7m, and two values are used for the initial
wave amplitude, i.e. a0 = 7 cm, and a0 = 12 cm. The wave starts its propagation at
x = 10 m (refer to Fig. 3.6), and the beach with the slope 1:50, starts at x = 20 m.
The element size is 8cm and we use first order elements to discretize the domain.
The time history of water surface elevation at different locations in the domain is
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available in the literature (Walkley and Berzins 1999). Here, we present our results
for a reading station located at x = 37.75 m.

In Fig. 3.7, we show the snapshots of the water surface rise during the simulation
for the initial amplitudes a0 = 7 and 12cm. In Fig. 3.8 we show the time history of
the water surface elevation at the reading station with x = 37.75 m. The numerical
technique have been able to capture the peaks in the experimental data quite well;
however, as the reflected waves return from the wall, we can observe differences
between numerical and experimental results.

3.5 Conclusions

In this paper, we have discussed various Boussinesq-Green-Naghdi models for
approximating nearshore wave physics, and given some preliminary numerical
results using the hybrid discontinuous Galerkin method. Future work will explore
this methodology more fully for complex, two-dimensional domains, with adaptive
mesh and time-step control.

Acknowledgements The authors wish to acknowledge the support of National Science Foundation
grants ACI-1339801 and NSF-1854986.

References

Agnon,Y., P.A.Madsen, andH.A. Schäffer. 1999.Anewapproach to high-orderBoussinesqmodels.
Journal of Fluid Mechanics 399: 319–333.

Artiles,W., andA.Nachbin. 2004. Nonlinear evolution of surface gravitywaves over highly variable
depth. Physical Review Letters 93(23): 234501.

Artiles, W., and A. Nachbin. 2004. Asymptotic nonlinear wave modeling through the Dirichlet-to-
Neumann operator. Methods and Applications of Analysis 11(4): 475–492.

Balay, S., S. Abhyankar, M.F. Adams, J. Brown, P. Brune, K. Buschelman, L. Dalcin, V. Eijkhout,
W.D. Gropp, D. Kaushik, M.G. Knepley, L. Curfman McInnes, K. Rupp, B.F. Smith, S. Zampini
and H. Zhang. 2015. PETSc users manual. Technical Report ANL-95/11 - Revision 3.6, Argonne
National Laboratory.

Bangerth,W.,D.Davydov, T.Heister, L.Heltai, G.Kanschat,M.Kronbichler,M.Maier, B. Turcksin
and D. Wells. 2016. The deal.II library, version 8.4. Journal of Numerical Mathematics 24(3):
135–141.

Barthélemy, E. 2004. Nonlinear shallow water theories for coastal waves. Surveys in Geophysics
25 (3–4): 315–337.

Bassi, F., and S. Rebay. 1997. A high-order accurate discontinuous finite element method for
the numerical solution of the compressible Navier-Stokes equations. Journal of Computational
Physics 131(2): 267–279.

Bonneton, P., F. Chazel, D. Lannes, F. Marche, and M. Tissier. 2011. A splitting approach for the
fully nonlinear and weakly dispersive Green-Naghdi model. Journal of Computational Physics
230: 1479–2498.



70 C. Dawson and A. Samii

Boussinesq, J. 1872. Théorie des ondes et des remous qui se propagent le long d’un canal rectan-
gulaire horizontal. en communiquant au liquide contenu dans ce canal des vitesses sensiblement
pareilles de la surface au fond. Journal de Mathematiques Pures et Appliquees 55–108.

Castro, A., and D. Lannes. 2014. Fully nonlinear long-wave models in the presence of vorticity.
Journal of Fluid Mechanics 759: 642–675.

Chazel, F., M. Benoit, A. Ern, and S. Piperno. 2009. A double-layer Boussinesq-type model for
highly nonlinear and dispersive waves. Proceedings of the Royal Society A 465: 2319–2346.

Chazel, F., D. Lannes, and F. Marche. 2011. Numerical simulation of strongly nonlinear and dis-
persive waves using a Green-Naghdi model. Journal of Scientific Computing 48(1–3): 105–116.

Craig, W., C. Sulem, and P.-L. Sulem. 1992. Nonlinear modulation of gravity waves: a rigorous
approach. Nonlinearity 5(2): 497–552.

Craig, W., and C. Sulem. 1993. Numerical simulation of gravity waves. Journal of Computational
Physics 108(1): 73–83.

Dodd, N. 1998. Numerical model of wave run-up, overtopping, and regeneration. Journal of Water-
way, Port, Coastal, and Ocean Engineering 124(2): 73–81.

Gobbi, M.F., J.T. Kirby, and G. Wei. 2000. A fully nonlinear Boussinesq model for surface waves.
Part 2. Extension to Journal of Fluid Mechanics 405: 181–210.

Green, A.E. and P.M. Naghdi,. 1976. A derivation of equations for wave propagation in water of
variable depth. Journal of Fluid Mechanics 78(2): 237–246.

Holthuijsen, L.H. 2007. Waves in oceanic and coastal waters. Cambridge Press.
Korteweg, D.J. and G. De Vries. 1895. XLI. On the change of form of long waves advancing in
a rectangular canal, and on a new type of long stationary waves. The London, Edinburgh, and
Dublin Philosophical Magazine and Journal of Science 39(240): 422–443.

Lannes, D., and P. Bonneton. 2009. Derivation of asymptotic two-dimensional time-dependent
equations for surface water wave propagation. Physics of Fluids 21(1): 016601.

Lannes, D. 2013. The water waves problem—mathematical analysis and asymptotics. American
Mathematical Society.

Lannes,D., andF.Marche. 2015.Anewclass of fully nonlinear andweakly dispersiveGreen-Naghdi
models for efficient 2D simulations. Journal of Computational Physics 282: 238–268.

Madsen, P.A., R. Murray, and O.R. Sørensen. 1991. A new form of the Boussinesq equations with
improved linear dispersion characteristics. Coastal Engineering 15(4): 371–388.

Madsen, P.A. andO.R.Sørensen. 1992.Anew formof the boussinesq equationswith improved linear
dispersion characteristics. Part 2. A slowly–varying bathymetry. Coastal Engineering 18(3–4):
183–204.

Madsen, P.A., and H.A. Schäffer. 1998. Higher-order boussinesq-type equations for surface gravity
waves: derivation and analysis. Proceedings: Mathematical, Physical and Engineering Sciences
356 (1749): 3123–3181.

Madsen, P.A., H.B. Bingham, and H. Liu. 2002. A new Boussinesq method for fully nonlinear
waves from shallow to deep water. Journal of Fluid Mechanics 462: 1–30.

Madsen, P.A., H.B. Bingham, and H.A. Schäffer. 2003. Boussinesq-type formulations for fully
nonlinear and extremely dispersive water waves: Derivation and analysis. Proceedings: Mathe-
matical, Physical and Engineering Sciences 459(2033): 1075–1104.

Madsen, P.A., D.R. Fuhrman, and B. Wang. 2006. A Boussinesq-type method for fully nonlinear
waves interacting with a rapidly varying bathymetry. Coastal Engineering 53 (5): 487–504.

Nwogu,O. 1993.Alternative formofBoussinesq equations for nearshorewave propagation. Journal
of Waterway, Port, Coastal, and Ocean Engineering 119(6): 618–638.

Peregrine, D.H. 1967. Long waves on a beach. Journal of Fluid Mechanics 27(4): 815–827.
Samii, A., C. Michoski, and C. Dawson. 2016. A parallel and adaptive hybridized discontinu-
ous Galerkin method for anisotropic nonhomogeneous diffusion. Computer Methods in Applied
Mechanics and Engineering 304: 118–139.

Samii, A., K. Kazhyken, C. Michoski, and C. Dawson. 2019. A comparison of the explicit and
implicit hybridizable discontinuous galerkin methods for nonlinear shallow water equations.
Journal of Scientific Computing 80 (3): 1936–1956.



3 A Review of Nonlinear Boussinesq-Type Models for Coastal Ocean Modeling 71

Serre, F. 1953. Contribution à l’étude des écoulements permanents et variables dans les canaux. La
Houille Blanche 39(6): 830–872.

Strang, G. 1968. On the construction and comparison of difference schemes. SIAM Journal on
Numerical Analysis 5 (3): 506–517.

Walkley, M., and M. Berzins. 1999. A finite element method for the one-dimensional extended
Boussinesq equations. International Journal for Numerical Methods in Fluids 29(2): 143–157.

Wei, G., and J.T. Kirby. 1995. A fully nonlinear boussinesq model for surface waves. Part 1. Highly
nonlinear unsteady waves. Journal of Fluid Mechanics 294: 71–92.

Witting, J.M. 1984. A unified model for the evolution nonlinear water waves. Journal of Computa-
tional Physics 56(2): 203–236.

Zakarhov, V.E. 1968. Stability of periodic waves of finite amplitude on the surface of a deep fluid.
Journal of Applied Mechanics and Technical Physics 9(2): 190–194.

Zhang, Y., A.B. Kennedy, N. Panda, C. Dawson, and J.J. Westerink. 2013. Boussinesq-Green-
Naghdi rotational water wave theory. Coastal Engineering 73: 13–27.

Zhang, Y., A.B. Kennedy, A.S. Donahue, J.J.Westerink, N. Panda, and C. Dawson. 2014. Rotational
surf zone modeling for O(μ4) Boussinesq-green-naghdi systems. Ocean Modelling 79: 43–53.



Chapter 4
Tides in Coastal Seas. Influence
of Topography and Bottom Friction

Pieter C. Roos and Huib E. de Swart

Abstract Tides are important in various ways, e.g., by affecting navigation and
coastal safety and by acting as a driver for sediment transport and seabed dynamics.
To explain spatial patterns of tidal phase and range, observed in coastal seas around
the world, we present an idealised process-based model. It solves the depth-averaged
linearised shallow water equations, including the Coriolis effect and bottom friction,
on schematised geometries with rectilinear coastlines and stepwise topographic vari-
ations. Based on an extended Klein-Gordon equation (accounting for bottom fric-
tion), Kelvin and Poincaré modes are identified as the fundamental wave solutions in
a channel of uniformwidth and depth.We analyse their spatial structures and dynamic
properties, addressing the roles of bottom friction and transverse topographic steps.
The solution for a semi-enclosed basin, including topographic steps, is then obtained
as a superposition of these wave modes, by applying a collocation technique. As an
example, we present solutions that grossly explain the amphidromic system of the
Gulf of California. Finally, we discuss the modelling approach and address the links
with morphodynamics and climate change.

4.1 Introduction

Tides are the periodic water oscillations driven by the gravitational attraction of the
moon and the sun. They constitute a fascinating phenomenon of both academic and
practical interest.

To clarify this, it is useful to distinguish between ‘vertical’ and ‘horizontal’ tides.
The vertical tide concerns the rise and fall of the free surface, with the difference
between high and low water known as tidal range H . Figure 4.1 shows an example
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Fig. 4.1 Tidal record at Dover, UK, showing observed surface elevation versus time for April
2017. Mean elevation over this period used as vertical datum. Data from British Oceanographic
Data Centre

of a tidal record at Dover, UK, with H ∼ 3 − 6 m. It is dominated by a semi-diurnal
cycle and further subject to other variations (spring-neap cycle, daily inequality) and
weather effects. Thesewater levels are important for coastal safety and for navigation,
with so-called tidal windows allowing ship access to channels and harbours.

The horizontal tide refers to the oscillatory currents that are dynamically coupled
to the vertical tide. In the North Sea, such currents are in the order of 0.1 − 1 m s−1

(Davies and Kwong 2000). Apart from directly affecting navigation, tidal currents
also have indirect implications. By eroding and transporting sand, they shape the
seabed, thereby creating bed forms such as tidal sandbanks (De Swart and Yuan
2019) and sand waves (Besio et al. 2008). Also, by transporting other matter (mud,
salt and nutrients), tidal currents affect turbidity, salt intrusion and the residence time
of nutrients, which is important for water quality and ecology.

Let us now turn to tidal observations in more detail, particularly their temporal
and spatial structure. Harmonic analysis enables decomposition of the tidal signal
into different constituents. For the free surface elevation η as a function of time t ,
we may thus write

η =
N∑

n=1

1
2Hcn cos(σcn t − ϕcn ), (4.1)

thereby distinguishing N constituents cn , each with an individual tidal range Hcn ,
angular frequency σcn and phase ϕcn . Similar expressions hold for the components
of the tidal current. The constituents include those directly following from celestial
mechanics and those indirectly resulting from their nonlinear interaction (Parker
1993). Instead of a detailed derivation involving the tidal potential (Platzman 1982;
Gerkema 2019), here we simply consider them as given (e.g., M2, S2, K1, O1; see
Table 4.1) and mostly focus on the dominant one.

Observations from coastal seas around the world reveal intriguing spatial varia-
tions in tidal range and phase, so

Hcn = Hcn (x, y), ϕcn = ϕcn (x, y), (4.2)
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Table 4.1 Overview of the tidal constituents addressed in this chapter

Name Description Period Angular frequency

cn T (h) σ (rad s−1) σ/σM2 (-)a

M2 Principal lunar
semi-diurnal
component

12.42 1.405×10−4 1

S2 Principal solar
semi-diurnal
component

12.00 1.454×10−4 1.035

K1 Luni-solar diurnal
component

23.93 7.293×10−5 0.519

O1 Principal lunar
diurnal component

25.82 6.759×10−5 0.481

aRelative to the angular frequency of the M2-tide

where we have introduced horizontal coordinates x and y. These patterns are visu-
alised in so–called amphidromic charts, showing co-range and co-phase lines for a
given constituent (Figs. 4.2 and 4.3). From the examples shown, we highlight the
following features.

• Behaviour as a progressive wave along the coast, with a wavelength in the order
of hundreds of kilometres. At the UK East Coast, for example, co-range lines are
roughly parallel and co-phase lines perpendicular to the coastline.

• Cross-shore decay of tidal range with a typical length scale of about hundred
kilometres in the North Sea.

• Cyclonic rotation1 around locations with vanishing tidal range, known as (eleva-
tion) amphidromic points. These points can be real (inside basin) or virtual (outside
basin, as in the Gulf of California).2

• In some cases, significant amplification of tidal range towards the shallow region
at the head of the basin, such as in the Gulf of California.

• Local flow structure showing ellipses near closed end and bidirectional flow further
away.

The goal of this chapter is to provide a generic process-based explanation of
the amphidromic patterns observed in coastal seas as presented above. To position
our work, we focus on barotropic tides3 in basins that, from a dynamical point of
view, can be termed both shallow and wide. These properties, to be quantified in the
subsequent analysis, have implications for wave speed (‘shallow’) and emphasize

1 Cyclonic means counterclockwise in the Northern Hemisphere and clockwise in the Southern
Hemisphere.
2 Next to these elevation amphidromic points, there are also current amphidromic points, i.e. loca-
tions where the tidal current ellipse reduces to a circle (Zongwan et al. 1995).
3 Barotropic tides are associated with motion that is driven by gradients in sea level only; they are
not affected by pressure gradient forces that result from density stratification. In the absence of
friction, barotropic motion has no vertical structure.
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Fig. 4.2 Amphidromic chart of the semi-diurnal lunar tide (M2) in the North Sea, showing co-
amplitude lines (half the tidal range) in m and co-phase lines in degrees. Colours in the background
indicate water depth (Reynaud and Dalrymple 2012, after Sinha and Pingree 1997). Reprinted
by permission from Springer: Springer, Principles of Tidal Sedimentology by R.A. Davis Jr. and
R.W. Dalrymple, copyright (2012). The white squares along the UK East Coast denote the two tide
stations Helmsdale (top) and Hunstanton (bottom) referred to in Sect. 4.3.2

the roles of bottom friction (‘shallow’) and the Coriolis effect (‘wide’). As a result,
we exclude narrow estuaries and tidal channels (or networks), for which lateral
uniformity permits a cross-sectionally averaged approach (Friedrichs 2010; Talke
and Jay 2020). Furthermore, as the basins are much smaller than the wavelength of
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Fig. 4.3 Examples of amphidromic patterns from coastal seas around the world. Left: M2-tide in
the Gulf of California, Mexico (Salas-de León et al. 2003), with co-phase in degrees (solid) and
co-range in cm (dashed). Reprinted with permission from theAmericanGeophysical Union.Middle
and right: M2 and K1/P1 tides in the Adriatic Sea, with phase in degrees and range in cm, according
to Polli (1960)

the directly forced tide (typically half the earth’s circumference), they effectively
co-oscillate with the tides in the adjacent larger oceans.

To achieve our goal, we adopt a so-called idealised process-based modelling
approach, in which model geometry and the physical laws of water motion are both
schematised, enabling analytical solutions that provide maximum insight. Specifi-
cally, we shall consider the linearised depth-averaged shallow water equations on
the f plane, including bottom friction, in water bodies with rectilinear coastlines
and step-wise topographic variations. Co-oscillation implies that the tidal potential
can be neglected, so the system is forced only by elevations and/or currents at the
open boundaries. Mathematically speaking, nonhomogeneities appear in the (open)
boundary conditions rather than in the differential equations. In comparison to other
texts on this topic (Pedlosky 1987;Gerkema 2019), the combined inclusion of bottom
friction and topographic variations is the main innovation.

This chapter is organised as follows. Section 4.2 presents the model formulation,
including the underlying assumptions and geometry. Then, in Sect. 4.3, we derive
Kelvin and Poincaré modes as fundamental wave solutions in a channel section of
uniform width and depth. Section4.4 then demonstrates how superposition of these
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Fig. 4.4 Definition sketch of model geometry (top view), showing a semi-enclosed basin of length
� and width b. Along-basin and cross-basin topographic steps are denoted with dashed lines at
x = xs and y = ys, compartment depths with h j and h′

j . In this example, we thus identify a section
of uniform depth ( j = 1) and a section with a single cross-basin step ( j = 2). The open boundary
at x = � is represented by a dotted line

modes explains the amphidromic patterns occurring in large-scale basins with a
specific topography. Section 4.5 contains a discussion of physical processes, impli-
cations (morphodynamics, climate change) and the model approach. Finally, we
present our conclusions in Sect. 4.6.

4.2 Model Formulation

In our idealised process-based model, we consider a semi-enclosed rectangular basin
of uniform width b and length � (Fig. 4.4). Introducing along-basin and cross-basin
coordinates x and y, the closed boundaries are located at y = 0, b and x = 0. The
depth h is spatially uniform, except across topographic steps, which are allowed
parallel to either the x or y-direction.

Let us now turn to the description of the flow. We assume that the density ρ is
constant, which makes the free surface elevation η, defined with zero spatial average,
the primary variable of interest. As the horizontal scales of interest (tens to hundreds
of km) are much larger than the vertical ones (tens to hundreds of m), we assume
shallow water flow by which pressure gradients are proportional to gradients of the
free surface elevation. Furthermore, we will not consider the vertical structure of
the tide. We let u and v denote the depth-averaged velocity components in x and
y-direction, respectively.
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Next, we make the following assumptions about the relevant processes. First, to
account for the Coriolis effect, the f plane approximation is adopted, with a Coriolis
parameter that is set to a constant value

f = 2Ω sin θ. (4.3)

Here,Ω = 7.292 × 10−5 rad s−1 is the angular frequency of the earth’s rotation and
θ is latitude. Second, we consider linearised dynamics because the Froude number
Fr = U/(gh)1/2 is small (with velocity scale U and gravitational acceleration g =
9.81 m s−2). This implies that the nonlinear advective terms can be neglected, as
well as the contribution of the free surface displacement to the total water depth,
i.e. h + η ≈ h. Furthermore, we include bottom friction with the bed shear stress
parameterised in a linear way (Prandle 1982). Finally, co-oscillation implies that the
direct tidal forcing from the tidal potential is neglected.

With the above assumptions, the momentum and continuity equations are given
by

∂u

∂t
+ ru

h︸ ︷︷ ︸
Lu

− f v = −g
∂η

∂x
, (4.4a)

∂v

∂t
+ rv

h︸ ︷︷ ︸
Lv

+ f u = −g
∂η

∂y
, (4.4b)

∂η

∂t
+ h

(
∂u

∂x
+ ∂v

∂y

)
= 0. (4.4c)

Here, r is a linear friction coefficient (Prandle 1982), f the Coriolis parameter spec-
ified in Eq. (4.3) and g the gravitational acceleration. To facilitate the subsequent
analysis, we have introduced the differential operator L = ∂

∂t + r
h , which combines

inertial and frictional terms in the momentum equations.
At closed boundaries, the normal velocities must vanish. For the geometries under

consideration, this boils down to

v = 0 at y = 0, b, (4.5a)

u = 0 at x = 0. (4.5b)

Our model is forced at its open boundary. For a given constituent with angular
frequency σ , we prescribe the cross-basin profiles of tidal range H and phase ϕ:

η = 1
2H(y) cos (σ t − ϕ(y)) at x = �. (4.6)
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Across topographic steps, we require continuity of elevation and normal transport.
Depending on the type of step (longitudinal at x = xs or lateral at y = ys), this is
written as

lim
x↑xs

(η, hu) = lim
x↓xs

(η, hu), (4.7a)

lim
y↑ys

(η, hv) = lim
y↓ys

(η, hv). (4.7b)

Keeping the regular nature of tides in mind, we seek time-periodic solutions in
dynamic equilibrium with the boundary forcing in Eq. (4.6). This means that the
transient motion generated by starting from a certain initial condition has damped
out due to bottom friction.

4.3 Fundamental Wave Solutions

In this section, we seek wave solutions in a channel section of uniform width. Our
derivation, which involves the Klein-Gordon equation (Sect. 4.3.1), leads to the iden-
tification of the Kelvin wave (Sect. 4.3.2) and Poincaré waves (Sect. 4.3.3). The anal-
ysis is presented for a channel with uniform depth; the case with a single transverse
step is treated separately in Sect. 4.3.4 (Roos and Schuttelaars 2009). We closely
follow Pedlosky (1987), but extend it to account for bottom friction and a transverse
topographic step.

4.3.1 Derivation with Klein-Gordon Equation

Let φ = (η, u, v) symbolically denote the state of the system. For a given frequency
σ , we write

φ = Re
{
φ̃(y) exp(i[kx − σ t]

}
, (4.8)

with complex amplitudes φ̃(y) = (η̃(y), ũ(y), ṽ(y)) that are functions of the cross-
channel coordinate y, andRe{·}denoting the real part. Thewave number k = kr + iki,
also complex, is to be determined from the analysis below. The boundary conditions
are as in Eq. (4.5a); they imply ṽ(0) = ṽ(b) = 0.

Before proceeding, we first derive an important general result.
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We start by deriving the so-called polarisation equations, which relate the
individual velocity components to the free surface elevation:

(L2 + f 2
)
u = −gL∂η

∂x
− f g

∂η

∂y
, (4.9a)

(L2 + f 2
)
v = −gL∂η

∂y
+ f g

∂η

∂x
. (4.9b)

They follow from eliminating either v or u from the momentum equa-
tions (4.4a)–(4.4b).

Then, multiplying Eqs. (4.9) with h, taking their divergence and applying
the continuity equation (4.4c) leads to a single equation for η only. This is the
‘extended’ Klein-Gordon equation:

(L2 + f 2
) ∂η

∂t
− ghL

(
∂2η

∂x2
+ ∂2η

∂y2

)
= 0, (4.10)

here, unlike its classical formulation, accounting for bottom friction. It serves
as the governing equation for the wave solutions derived in this section.
To arrive at Eq. (4.10), it is essential that h and r are spatially uniform.
In the case without bottom friction (r = 0, so L = ∂

∂t ), time integration of
Eq. (4.10), while assuming wave-like solutions, recovers the regular Klein-
Gordon equation (Pedlosky 1987). If also the Coriolis effect were neglected
( f = 0), thiswould further reduce to the classical shallow-waterwave equation
∂2η

∂t2 − gh
(

∂2η

∂x2 + ∂2η

∂y2

)
= 0. As can be shown, also the flow velocity compo-

nents must satisfy the extended Klein-Gordon equation, so in Eq. (4.10) one
may freely replace η with either u or v.

The next step is to substitute our solution (4.8) into the extended Klein-Gordon
equation (4.10). Upon defining the complex frictional correction factor

γ = √1 + iμ, with μ = r

σh
, (4.11)

implying γ = 1 in the absence of friction, it follows that L = −iγ 2σ and we find

∂2η̃

∂y2
+ α2η̃ = 0, with α2 = γ 2σ 2 − γ −2 f 2

gh
− k2. (4.12)

The general solution to this differential equation reads

η̃(y) = A cosαy + B sin αy, (4.13)



82 P. C. Roos and H. E. de Swart

with constants A and B that follow from the boundary conditions in Eq. (4.5a). With
the aid of the polarisation equation (4.9b), these are written in matrix form according
to
[

f k αγ 2σ

f k cosαb − αγ 2σ sin αb αγ 2σ cosαb + f k sin αb

] [
A
B

]
=
[
0
0

]
. (4.14)

This system has non-trivial solutions only if the determinant of the coefficient matrix
vanishes.With the definition of the parameterα in Eq. (4.12), we obtain the following
condition:

([γ 2σ ]2 − f 2
) (

k2 − γ 2σ 2

gh

)
sin αb = 0. (4.15)

This equation contains three roots. The second and third are associated with Kelvin
and Poincaré waves, to be analysed in the following subsections. In doing so we will
adopt parameter values, inspired by the coastal seas of Sect. 4.1 and further aimed at
exposing the key properties (Table 4.2). The first only exists without bottom friction;
in that case it has been shown to add no information to the Kelvin wave (Pedlosky
1987).

4.3.2 Kelvin Wave

The second root in Eq. (4.15) corresponds to the so-called Kelvin wave. It permits
two values of the wave number, i.e.

k = k⊕
0 = +γ K , k = k�

0 = −γ K , with K = σ√
gh

, (4.16)

corresponding to a progressive wave travelling in either the positive or negative x-
direction. The wave number equals that of a shallow water wave (±K ), modified
by the frictional correction factor γ defined in Eq. (4.11). A subscript ‘0’ has been
added, because, as we shall see in Sect. 4.3.3, the Kelvin wave serves as the lowest
mode in a family of wave solutions.

Using Eq. (4.16), the coefficient in Eq. (4.12) reduces to α = ±iγ −1 f (gh)−1/2.
The elevation and velocity amplitudes, as defined in Eq. (4.8), are given by

φ̃⊕
0 = (

η̃⊕
0 , ũ⊕

0 , ṽ⊕
0

) = (Z ,U, 0) exp

( − f y

γ
√
gh

)
, with U = Z

γ

√
g

h
, (4.17a)

φ̃�
0 = (

η̃�
0 , ũ�

0 , ṽ�
0

) = (Z ,−U, 0) exp

(− f [b − y]
γ
√
gh

)
. (4.17b)
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Table 4.2 Overview of model parameters and values (as used in Figs. 4.5, 4.7, 4.8, 4.9 and 4.10)

Symbol Description Value Unit(s)

h Water depth∗ 20 m

θ Latitude 50 ◦N
σ Angular frequency 1.405 × 10−4 rad s−1

r Friction coefficient 5.0 × 10−4 m s−1

b Channel/basin width 300Fig. 4.5, 700Figs. 4.7,4.8,
200Figs. 4.9,4.10

km

� Basin lengthFig. 4.10 600 km

xs Position of along-basin
stepFig. 4.10

150 km

f Coriolis parameter,
Eq. (4.3)

1.12 × 10−4 rad s−1

μ Dimensionless friction
coefficient, Eq. (4.11)

0.18 −

K Shallow water wave
number, Eq. (4.16)

1.00 × 10−5 rad m−1

R Rossby deformation
radius, Eq. (4.18)

125 km

bcrit Critical channel width,
Eq. (4.23)

519 km

λ0 Kelvin wavelength 626†Figs. 4.5a,4.9a,
624Figs. 4.5b,4.9b

km

λ1 Wavelength of 1st Poincaré
mode†‡Fig. 4.7a

1584 km

L2 Decay length of 2nd
Poincaré mode†‡Fig. 4.7b

149 km

L3 Decay length of 3rd
Poincaré mode†‡

83 km

∗N.B.: in Fig. 4.10 we use a reference depth of h = 40 m and a shallow region of h = 20 m),
†Without bottom friction, ‡For channel width b = 700 km.

In these expressions, Z represents the coastal elevation amplitude4 at (x, y) = (0, 0)
and (0, b), respectively, and U is the coastal velocity amplitude.

Let us nowhighlight the key properties of theKelvinwave (Fig. 4.5, using parame-
ter values from Table 4.2), first for the case without bottom friction (r = 0, so γ = 1,
Fig. 4.5a):

• Nondispersive progressive shallow water wave with wave speed (gh)1/2 and the
along-channel velocity in phase with the free surface elevation.

• Exponential decay in the cross-channel direction with the so-called Rossby defor-
mation radius

4 For f > 0, Z is themaximum elevation amplitude of the Kelvin wave as it decreases whenmoving
to the other coast. Conversely, for f < 0, Z is the minimum coastal amplitude.
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blue = co-range
red = co-phase

a Kelvin wave (without friction)

blue = low tide
red = high tide

blue = co-range
red = co-phase

b Kelvin wave (with friction)

blue = low tide
red = high tide

Fig. 4.5 Visualisation of Kelvin wave in a channel section of uniform width and depth in the
Northern Hemisphere, propagating from right to left: a without friction, b with friction. The top
panels show a three-dimensional snapshot of the surface elevation (coloured contours, high tide in
red and low tide in blue). The middle panels show the corresponding instantaneous depth-averaged
velocity (grey arrows). The bottom panels show the co-range lines (blue) and co-phase lines (red).
Parameter values as in Table 4.2, with the frictional case chosen such that amplitude decay in the
direction of propagation is already visible over one wavelength

R =
√
gh

| f | (4.18)

as e-folding length scale. This enables us to quantify the ‘wide’ basins mentioned
in the Introduction as basins with b = O(R) (or larger). For b � R, the cross-
channel structures in Eq. (4.17) are nearly uniform, indicating that the Coriolis
effect only marginally affects the solution.

• Facing the direction of propagation, the Kelvin wave ‘hugs’ the coast on its right
(Northern Hemisphere, Fig. 4.5a) or on its left (Southern Hemisphere).

• Vanishing cross-channel velocity, i.e. v = 0, in the entire domain. This implies
that the presence of the opposite coastline is not essential: the Kelvin wave in
Eq. (4.17a) also exists as a wave solution in a semi-infinite water domain bounded
by a single straight coastline at y = 0.

• Shore-parallel co-range lines, along which η̃(y) is constant, and shore-normal
co-phase lines, along which exp(ikx) is constant (bottom panel of Fig. 4.5a).

• Dynamics of a progressive shallow water wave in the along-coast direction and
geostrophy in the shore-normal direction. The latter implies a balance between the
cross-shore pressure-gradient acceleration −g ∂η

∂y and the Coriolis acceleration f u
of the alongshore flow (see Eq. (4.4b) and recall that v = 0).

Bottom friction (r > 0, so γ 
= 1) distorts the above picture (Fig. 4.5b). The along-
channel velocity has a phase lead with respect to the surface elevation. The wave
number k = kr + iki is complex, implying exponential amplitude decay in the direc-
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tion of propagation as well as a reduced wave speed

c = σ

kr
= ±√gh

[
1

2
+ 1

2

√
1 +

( r

σh

)2
]−1/2

, (4.19)

and, hence, a shorter wavelength λ = 2π/kr. The dependency of wave speed on tidal
frequency demonstrates that bottom friction makes the wave dispersive. Also cross-
channel decay is affected, but the absence of cross-channel flow (v = 0) continues to
hold in the entire domain. The above is reflected in the co-range and co-phase lines,
which become skewed and no longer perpendicular (bottom panel of Fig. 4.5a).

To illustrate these Kelvin wave properties in a more quantitative sense, let
us turn to the UK East Coast. The shore-parallel co-range lines and shore-
normal co-phase lines in Fig. 4.2 suggest a near-perfect Kelvin wave propagat-
ing southward.Herewe shall combine coastal data from theUKAdmiraltyTide
Tables (Admiralty 2009)withKelvinwave theory to estimate tidal wavelength,
water depth, Rossby deformation radius and coastal velocity amplitudes.

From the tidal phases as observed at coastal tide stations between Helms-
dale and Hunstanton (Fig. 4.6) and using k = dϕ

dx with phase ϕ as introduced
in Eq. (4.2), we thus find a wavelength estimate of λM2 = 1.05 × 103 km.
Assuming a frictionless Kelvin wave speed of c = λ/T = (gh)1/2, this corre-
sponds to an ‘effective’ water depth of 57 m. In turn, with θ ∼ 55◦N as typical
latitude, we obtain a Rossby deformation radius of R ∼ 197 km. This suggests
that the tidal range is halved roughly at a distance of R ln 2 ≈ 137 km from
the coast. As shown by Table 4.3, redoing this for the other constituents (S2,
K1, O1) leads to roughly similar values of h and R.

As an alternative (not carried out here), one may also estimate the Rossby
deformation radius directly from the co-range lines in Fig. 4.2 and use this
to compute the ‘effective’ water depth. Finally, using U = Z(g/h)1/2, the
observed coastal tidal range of HM2 ∼ 1.66 m corresponds to a coastal velocity
amplitude of UM2 ∼ 0.35 m s−1. The results for the other constituents are
shown in Table4.3.
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Table 4.3 Parameters used in Kelvin wave fit of UK East Coast (Fig. 4.6)

Symbol Description Value Unit(s)

M2 S2 K1 O1

k Wave
number

0.60 0.63 0.35 0.30 ×10−5 rad m−1

λ Wavelength 1.05 1.00 1.80 2.12 ×103 km

h ‘Effective’
water depth

57 54 44 53 m

R Rossby
deformation
radius

197 193 175 191 km

H Coastal
tidal range

1.66 0.55 0.12 0.14 m

U Coastal
velocity
amplitude

0.35 0.12 0.03 0.03 m s−1

0 100 200 300 400 500 600
0

0.5

1

1.5

2

2.5
a tidal range

0 100 200 300 400 500 600

0

90

180

270

360
b tidal phase

Fig. 4.6 Observations of M2 (blue circles), S2 (red), K1 (green) and O1 (grey) for coastal tide
stations between Helmsdale and Hunstanton (UK, see Fig. 4.2): a tidal range H , b tidal phase ϕ.
Data plotted as a function of the distance x on the straight line Helmsdale-Hunstanton, upon which
each tide station’s location has been projected (x = 0 corresponding to Helmsdale). The straight
solid lines represent the fits of mean tidal range (left) and dϕ

dx (right). Data from UK Admiralty
(Admiralty 2009)
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4.3.3 Poincaré Waves

The third root of Eq. (4.15) corresponds to the set of infinitely many wave solutions
known as Poincaré waves. As implied by the condition sin αb = 0, these modes are
characterised by transverse wave numbers

αn = nπ

b
, for n = 1, 2, 3, . . . . (4.20)

Substitution of Eq. (4.20) into Eq. (4.12) leads to expressions for the wave number:

k⊕
n =

√
γ 2K 2 − γ −2R−2 − α2

n, k�
n = −k⊕

n , (4.21)

which is the dispersion relationship for Poincaré waves. Here, γ , K and R are as
defined in Eqs. (4.11), (4.16) and (4.18).

On the basis of Eq. (4.21), we thus identify two sets of countably infinite modes,
labeled n = 1, 2, 3, . . . and characterised by wave numbers, the real and imaginary
parts of which are either positive (k⊕

n ) or negative (k
�
n ).

With the aid of the polarisation equations (4.9), the cross-channel structures of
the surface elevation and flow field are found to be

φ̃⊕
n =

⎛

⎝
η̃⊕
n

ũ⊕
n

ṽ⊕
n

⎞

⎠ =
⎛

⎝
Z

k⊕
n

γ K U
0

⎞

⎠ cosαn y +

⎛

⎜⎜⎝

− f k⊕
n

αnγ 2σ
Z

− f K
αnγ σ

U
iγ K
αn

[
1 − k⊕2

n
γ 2K 2

]
U

⎞

⎟⎟⎠ sin αn y. (4.22)

For the other family, replace ⊕ with �. As degree of freedom, we have chosen to
specify the elevation amplitude Z at (x, y) = (0, 0). The velocity scale U is as
defined in Eq. (4.17a).

Let us nowhighlight the key properties of Poincaréwaves, first for the casewithout
bottom friction (r = 0, so γ = 1, Figs. 4.7 and 4.8).

• Unlike frictionless Kelvin waves, Poincaré waves are dispersive. This is reflected
in the curved lines of σ versus k (Figs. 4.8a, c, d).

• Governed by the sinusoidal structure for the cross-channel flowvelocity amplitude,
the structures of elevation are also harmonic. The phase lag of 90◦ between u and
v implies that the end point of the depth-averaged velocity vector describes an
elliptical path during a tidal cycle.

• In the absence of bottom friction, Poincaré waves are either free (characterised
by a real wave number kn = kn,r) or evanescent (purely imaginary wave number
kn = ikn,i). This is seen from the filled dots in Figs. 4.8a, b. For evanescent waves,
the amplitude decays exponentially in the positive or negative x-direction with an
e-folding decay length that is given by Ln = |kn,i|−1.

• For any channel system, there is always a finite number n� of free modes (possibly
zero, 1 ≤ n ≤ n�) and an infinite number of evanescent modes (n > n�). For the
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blue = co-range
red = co-phase

a 1st Poincaré mode (free)

blue = low tide
red = high tide

blue = co-range
red = co-phase

b 2nd Poincaré mode (evanescent)

blue = low tide
red = high tide

Fig. 4.7 Visualisation of Poincaré waves, in a channel section of uniform width and depth in the
Northern Hemisphere (without bottom friction): a example of free mode propagating from right
to left (n = 1), b example of evanescent mode exponentially decaying from right to left (n = 2).
Analogous to Fig. 4.5, the sketch contains snapshots of surface elevation (top, with high tide in red
and low tide in blue) and depth-averaged velocity (middle), as well as co-range and co-phase lines
(blue and red in bottom panel, resp.). Parameter values as in Table 4.2, with channel width chosen
such that the first mode is free and the second evanescent

example in Fig. 4.8, it follows that n� = 1. For these evanescent modes, the decay
length Ln decreases with increasing n. In other words, the evanescent mode with
the lowest index has the largest decay length, namely Ln�+1.

• In particular, provided that σ > | f |, there is a critical channel width bcrit , given by

bcrit = π

√
gh

σ 2 − f 2
, (4.23)

such that all Poincarémodes are evanescent if b < bcrit . Conversely, a finite number
of free modes exist if b > bcrit . This follows from requiring the square root in
Eq. (4.21) to have a vanishing argument for n = 1. Equivalently, one may derive a
critical depth hcrit such that all Poincaré modes are evanescent if h > hcrit . Finally,
for σ ≤ | f |, all Poincaré modes are evanescent regardless width or depth.

Analogous to the Kelvin wave, the inclusion of bottom friction distorts the above
picture. The wave numbers experience a shift in the complex plane: the free modes
attain a nonzero imaginary part and the evanescent modes a nonzero real part (open
dots in Figs. 4.8a, b). Also, changes in phase of velocity with respect to elevation
take place.
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a dispersion relationships in
wave vector vs frequency-space

b,c,d 2D-sections
of 3D-plot on the left

-4 -2 0 2 4
-4

-2

0

2

4

-4 -2 0 2 4
-4

-2

0

2

4

-4 -2 0 2 4
-4

-2

0

2

4

Fig. 4.8 Dispersion relationships (4.16) and (4.21) of Kelvin and Poincaré modes presented in
dimensionless form. Plotted is the dimensionless frequency σ/ f versus the real and imaginary
parts (krR, kiR) of the dimensionless wave number (with Rossby deformation radius R): a Three-
dimensional visualisation in (krR, kiR, σ/ f )-space (without bottom friction). The filled dots on the
light-blue plane show the modes obtained for σ/ f = 1.25, with free modes along the real axis and
evanescentmodes along the imaginary axis. The indices at the bottom show theKelvinmode (n = 0)
and Poincaré modes (n = 1, 2, 3, . . . ). b Two-dimensional plot of these modes (σ/ f = 1.25) in the
complex (krR, kiR)-plane, with n = 0 denoting the Kelvin modes. The open dots in a,b show
how the modes shift when bottom friction is included (μ = r

σh = 0.18). c,d 2D-sections showing
σ/ f versus real part krR (blue, whenever kR is real) and imaginary part kiR (red, whenever
kR is imaginary). Parameter values in Table 4.2, corresponding to a dimensionless channel width
b/R = 5.6

4.3.4 Wave Solutions with a Transverse Topographic Step

Wave solutions in a channel section with a single cross-channel topographic step
(at y = ys, see Sect. 4.2 in Fig. 4.4) consist of a solution in the lower compartment
and one in the upper compartment (Roos and Schuttelaars 2009). We thus extend
Eq. (4.8) to

φ =
⎧
⎨

⎩
Re
{
φ̃(y) exp(i[kx − σ t]

}
for 0 ≤ y ≤ ys (‘lower’),

Re
{
φ̃′(y) exp(i[kx − σ t]

}
for ys ≤ y ≤ b (‘upper’),

(4.24)

with wave number k and cross-channel structures φ̃(y) = (η̃, ũ, ṽ) and φ̃′(y) =
(η̃′, ũ′, ṽ′). Quantities in the upper compartment are denoted with a prime, those
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in the lower compartment without a prime. Apart from different depths h 
= h′, we
also allow different friction coefficients r 
= r ′.

Sinceφ must be a solution to themodel equations (4.4), each componentmust also
satisfy the extended Klein-Gordon equation (4.10). Additionally, the solution must
satisfy the closed boundary condition (4.5a) and the matching conditions across the
topographic step in Eq. (4.7b). In fact, the latter force the wave number k in Eq. (4.24)
to be identical in both compartments.

For a given wave number k (to be determined below), the cross-channel structure
of the cross-channel velocity is written as

ṽ(y) = C sin αy

h sin αys
, ṽ′(y) = C sin α′y′

h′ sin α′y′
s

, with y′ = y − b, (4.25)

in which we have introduced the coefficients

α =
√

γ 2 K 2 − γ −2R2 − k2, α′ =
√

γ ′2 K ′2 − γ ′−2R′2 − k2. (4.26)

The solution in Eq. (4.25) has been constructed such that it automatically satisfies all
of the above conditions, except continuity of elevation across the topographic step,
i.e. except η̃(ys) = η̃′(ys). This last requirement serves as solvability condition for
the existence of non-trivial wave solutions. A numerical search routine, minimising
|ζ̃ (ys) − ζ̃ ′(ys)|, is then used to identify the wave numbers k, thus fixing the values of
the coefficients α and α′ according to Eq. (4.26). Expressions for the cross-channel
structures of surface elevation η̃ and η̃′ as well as along-channel velocity ũ and ũ′
are given in the Appendix.

The procedure outlined above identifies modified versions of each Kelvin and
Poincaré mode in the two families, characterised by a shift in wave number and a
deformed cross-channel structure. The presence of the two closed channel boundaries
prevents newmodes from arising here, e.g. the so-called doubleKelvinwave thatmay
propagate along a depth discontinuity in an infinite water domain (Longuet-Higgins
1968).

4.4 Amphidromic Patterns in Semi-enclosed Basins

In this section, we demonstrate how superpositions of the wave solutions derived in
Sect. 4.3 explain amphidromic patterns in semi-enclosed basins. As an important first
result, it is shown analytically that two Kelvin waves in a channel already produce an
amphidromic system (Sect. 4.4.1). Then, Taylor’s problem of Kelvin wave reflection
in a semi-enclosed basin is addressed, presenting the solution method (Sect. 4.4.2)
and properties of the solution (Sect. 4.4.3), the latter including application to the
Gulf of California. In fact, an extended version of Taylor’s problem is considered
here, as we include bottom friction (Rienecker and Teubner 1980) and topographic
steps (Roos and Schuttelaars 2009) (as well as a finite basin length). The Gulf of
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California serves as a typical example with an important role for both bottom friction
and topographic variations.

4.4.1 Superposition of Two Kelvin Waves

Consider the situation with two Kelvin waves, simultaneously travelling in opposite
directions along opposite coastlines of a channel section of uniformwidth and depth.
Following Eqs. (4.8) and (4.17), the surface elevation of this superposition is written
as

η = Re
{
Z⊕
0 exp (−δy) exp(i[k⊕

0 x − σ t])
+ Z�

0 exp (−δ[b − y]) exp(i[k�
0 x − σ t])}, (4.27)

with coastal amplitudes Z⊕
0 = |Z⊕

0 | exp(iϕ⊕
0 ) and Z�

0 = |Z�
0 | exp(iϕ�

0 ), wave num-
bers k⊕

0 = −k�
0 = kr + iki and complex coefficient δ = δr + iδi = γ −1 f/(gh)−1/2.

Equation (4.27) can be rewritten into real notation according to

η = Z
[
exp (−ψ) cos(ξ − χ) + exp (ψ) cos(ξ + χ)

]
, (4.28)

where we have introduced the short-hand notation

Z = |Z⊕
0 | exp(−δr y�), with y� = 1

2
b + 1

2
δ−1
r log(|Z⊕

0 |/|Z�
0 |), (4.29a)

ψ = kix + δr(y − y�), (4.29b)

ξ = krx − δi(y − 1
2b) + 1

2 [ϕ⊕
0 − ϕ�

0 ], (4.29c)

χ = σ t + 1
2δib − 1

2 [ϕ⊕
0 + ϕ�

0 ]. (4.29d)

Using trigonometric identities, we may now rewrite Eq. (4.28) into the form of
Eqs. (4.1)–(4.2), i.e.

η(x, y, t) = H(x, y) cos (σ t − ϕ(x, y)) , (4.30)

with analytical expressions for tidal range H and phase ϕ:

H(x, y) = 4Z
(
cosh2 ψ cos2 ξ + sinh2 ψ sin2 ξ

)
, (4.31a)

tan ϕ(x, y) = tanhψ tan ξ. (4.31b)

This result reveals the existence of amphidromic points, characterised by zero tidal
range (Fig. 4.9). The requirement H = 0 implies (i) ψ = 0 and (ii) ξ = (p + 1

2 )π

with integer p. The former condition defines a line through (x, y) = (0, y�) that is
either coast-parallel (in the case without bottom friction; Fig. 4.9a) or tilted (with
bottom friction; Fig. 4.9b). The latter condition locates the actual amphidromes on
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a without bottom friction
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b with bottom friction
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Fig. 4.9 Amphidromic chart (red=co-phase, blue=co-range) of the superposition of two Kelvin
waves in a channel section of uniform width and depth according to the analytical solution in
Eq. (4.31). a Without bottom friction, the amphidromic points are found on a coast-parallel line,
here located slightly off the centerline (due to different coastal amplitudes). bWith bottom friction,
the amphidromes are located on a tilted line, leading to real and virtual amphidromes. In both
examples, the point (x, y) = (0, y�) in Eq. (4.29a), where both amplitudes are equal, is denoted
with a black cross (here, y� = 160 km). Parameter values as in Table4.2

this line, which may be inside or outside the channel (real or virtual). The presence
of a transverse topographic step (as in Sect. 4.2 in Fig. 4.4) would distort the above
amphidromic pattern, since the two Kelvin waves will then have slightly different
wavelengths.

We conclude that the interference pattern of two Kelvin waves, propagating in
opposite directions, produces an amphidromic system. The cross-channel positions
of the amphidromic points depend on the relative amplitudes, which in turn is also
affected by bottom friction. However, the case of a basin with a closed end (Fig. 4.4a,
b) is not solved by any superposition of two Kelvin waves, as they cannot satisfy
the closed boundary condition in Eq. (4.5b). How to overcome this difficulty, often
referred to as Taylor’s problem, is tackled in the next subsection.

4.4.2 Solution to Extended Taylor Problem

Let us now turn to the so-called Taylor problem (Taylor 1922) of tidal motion in a
semi-enclosed basin of uniformwidth, with a closed boundary at x = 0. The classical
version of this problem concerns an infinitely long basin of uniform depth, forced
by an incoming Kelvin wave from +∞, in the absence of bottom friction. Here we
consider a different version of the problem: as before, we include bottom friction,
allow for topographic steps, and further we consider a basin of finite length � with
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specified elevation amplitude and phase according to Eq. (4.2) as the open bound-
ary condition at x = � (Fig. 4.4). In our description below, we shall first ignore the
topographic steps; how to include those is explained further below.

Different from the form of the individual wave solutions of Eq. (4.8) in Sect. 4.3,
the solution φ = (η, u, v) is now more generally written as

φ = Re
{
φ̂(x, y) exp(−iσ t)

}
, (4.32)

with complex amplitudes φ̂(x, y) = (η̂(x, y), û(x, y), v̂(x, y)) that depend on both
horizontal coordinates x and y.

The solution is then written as a (truncated) superposition of Kelvin and Poincaré
modes according to

φ̂(x, y) =
N∑

n=0

a⊕
n φ̃⊕

n (y) exp(ik⊕
n x) +

N∑

n=0

a�
n φ̃�

n (y) exp(ik�
n [x − �]), (4.33)

with nonzero5 truncation number N and involving 2(N + 1) dimensionless complex
coefficients a⊕

n and a�
n . By construction, the solution presented here automatically

satisfies the model equations (4.4) and the closed boundary conditions at y = 0, b in
Eq. (4.5a).

To satisfy also the two remaining conditions, i.e. the closed boundary condition
at x = 0 in Eq. (4.5b) and the prescribed elevation amplitude and phase at x = � in
Eq. (4.6), we apply a so-called collocation method (Brown 1973). To this end, we
define N + 1 lateral points yn = bn/N and we require that

û(0, yn) = 0, ζ̂ (�, yn) = 1
2H(yn)Re {exp(iϕ(yn))} for n = 0, 1, . . . , N ,

(4.34)
with tidal range H and phase ϕ taken from Eq. (4.6). This set of 2(N + 1) conditions
leads to a linear system for the 2(N + 1) coefficients a⊕

n and a�
n , which can be solved

using standard techniques. It should be noted that the final solution in Eqs. (4.32) and
(4.33) is independent of the value chosen for the elevation scale Z of the individual
wave solutions in Eqs. (4.17) and (4.22).

Finally, some remarks on the solution method are in order.

• Generally, taking a truncation number of N = O(10) already produces a qual-
itatively correct picture of the solution (see Sect. 4.4.3). Further increasing N
improves the accuracy of the solution mainly in the vicinity of the collocation
points. While orthogonality conditions for Kelvin and Poincaré waves have been
derived (Ripa and Zavala-Garay 1999), whether they actually form a complete set
remains an open mathematical problem.

5 Choosing N = 0 would effectively bring us back to the superposition of two Kelvin waves only,
as already analysed in Sect. 4.4.1.
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• Theaboveprocedure canbe easily adjusted to cover the classical versionofTaylor’s
problem. Instead of the second condition in Eq. (4.34), one should then choose
a nonzero value of a�

0 , force a
�
n = 0 for all n = 1, 2, . . . , N and solve the set of

N + 1 remaining equations resulting from the first condition in Eq. (4.34).
• Alternatively, the presence of an along-basin topographic step, at some x = xs, is
incorporated by defining separate expressions as in Eq. (4.33) for each compart-
ment (Roos and Schuttelaars 2009). The increase in number of coefficients is then
exactly balanced by the additional matching conditions across the step: one should
require Eq. (4.7a) to be satisfied at all points (xs, yn) for n = 0, 1, . . . , N .

• The presence of a cross-basin topographic step, at some y = ys poses no com-
plications either. One can readily take the modified wave solutions as derived in
Sect. 4.3.4. One should choose the truncation number N such that the transverse
position ys of the step does not coincide with any of the collocation points, since
the longitudinal velocity is not uniquely defined there.

4.4.3 Application to Basins Around the World

Athree-dimensional sketchof the solution to theTaylor problem is shown inFig. 4.10.
It shows a snapshot of the surface elevation (top) and the corresponding instantaneous
flow field (bottom). For simplicity, this pertains to the classical Taylor problem, i.e.
excluding bottom friction and imposing an incoming Kelvin wave rather than a
prescribed elevation profile at the open boundary.

As it turns out, near the basin’s closed end the depth-averaged flow velocity
vector describes ellipses (also shown in the bottom panel of Fig. 4.10). Physically,
this is due to the Coriolis effect: it effectively turns the reflection of the tidal wave
at the basin’s head into a cyclonic rotation of a Kelvin wave. Mathematically, this
is seen in the Poincaré modes generated to satisfy the closed boundary condition at
the basin’s head (x = 0). In this subcritical case (b < bcrit) all Poincaré modes are
evanescent, implying that further away the solution is effectively the superposition
of the incoming and reflected Kelvin waves, for which the flow aligns with the along-
basin direction. This alignment is actually visible because the decay length of the
first Poincaré mode is smaller than the basin length.

Next, the four examples in Fig. 4.11 show the solution to the extended Taylor
problem, restricting to the amphidromic charts. They particularly illustrate the (sep-
arate and combined) effects of including bottom friction and a shallow region near
the basin’s head. For this example with a subcritical basin width (b < bcrit , so all
Poincaré modes are evanescent6), we highlight the following properties.

6 As pointed in Sect. 4.3.3, this definition applies to the frictionless case.
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Fig. 4.10 Example of Taylor’s solution, showing snapshot of the surface elevation (top, high tide
in red, low tide in blue), as well as the corresponding depth-averaged flow vector (bottom), which
describes ellipses during the tidal cycle. The basin’s closed end is on the left-hand side, the open
boundary on the right-hand side

• Without bottom friction, the reflected Kelvin wave has the same amplitude as the
incoming Kelvin wave. As a result, amphidromic points are on the centerline of
the basin.7

• Bottom friction distorts the picture in a similar fashion as in the plain superposition
of two Kelvin waves (see Sect. 4.4.1 and Fig. 4.9). However, now the two Kelvin
waves are connected by the reflection process at the closed end, which involves
evanescent Poincaré modes bound to x = 0. As a result, amphidromic points shift
toward the lower coastline (y = 0).

• Including a shallow region near the basin’s head may lead to tidal amplification,
and thus to higher values of the tidal range.

• The combined effect of bottom friction and the shallow part may enhance the
shift of amphidromes away from the centerline (also see application to the Gulf
of California below).

7 For supercritical basins, i.e. basins with b > bcrit , this is not true since tidal wave energy is also
reflected in a free Poincaré mode. This leads to a more complex amphidromic pattern resulting from
the interference of these modes.
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Fig. 4.11 Four examples of amphidromic charts (red=co-phase, blue=co-range) showing the solu-
tion to the extended Taylor problem. a Reference case with uniform depth of 40 m, no bottom
friction. b Including a shallow zone near the basin’s head (20 m deep, grey shade), no friction.
c Uniform depth, now including friction. d Including both shallow zone and friction. Parameter
values as in Table 4.2. All solutions are forced by anM2-tide with a uniform tidal range of H = 1 m
at the open boundary (on the right). Contours are shown every 0.5 m

To apply and test our model, let us consider the Gulf of California (Hender-
shott and Speranza 1971; Carbajal and Backhaus 1998; Marinone 2000). This
elongated basin is characterised by mixed semi-diurnal tides and a large tidal
range in the northern part (spring tidal range close to 10m). Typical is the
virtual amphidromic point occurring for the semi-diurnal tides (Fig. 4.3).

Our procedure consists of the following four steps (Roos and Schuttelaars
2009).
1. We define a rectangular model geometry PQRS that provides a good fit

of the coastline. It has length � = 1223 km, width b = 166 km and an
orientation/positioning as shown in Fig. 4.12a.

2. We perform orthogonal projections of the available tide stations on the
model boundary (Fig. 4.12a). This enables us to plot observed ranges and
phases (Carbajal and Backhaus 1998) as a function of a single coordinate:
the distance along the perimeter PQRS.

3. Based on bathymetry (Fig. 4.12), we choose a division in two compart-
ments, separated by a single longitudinal topographic step at xs = 350 km:
a shallow compartment with h1 = 100 m near the basin’s head and a deep
compartment with h2 = 1200 m.

4. Using a representative latitude θ = 27.5◦N, we performmodel simulations
varying both amplitude and phase of the incoming Kelvin wave. Note that
this implies a different open boundary condition than in Eq. (4.2).
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Results for the M2, S2, K1 and O1-tides are shown in Figs. 4.12c-f. In par-
ticular, the non-monotonous curve of the semi-diurnal phases ϕM2 and ϕS2

along the basin perimeter indicates the presence of a virtual amphidromic
point (see Sect. 4.1 and Fig. 4.3). Such a pattern occurs when the amplitude
of the reflected Kelvin wave is much weaker than that of the incoming Kelvin
wave. Physically, this is caused by the enhanced dissipation due to bottom fric-
tion of the (locally amplified) tide in the shallow zone near the basin’s head.
This mechanism is also illustrated by the example in Fig. 4.10, although in that
example the dissipation is too weak for the amphidrome to become virtual.

We conclude that our extended Taylor model, in spite of its strong schema-
tisations, can adequately reproduce the patterns of tidal range and phase, as
observed along the Gulf of California’s coastline.

In other examples, the amphidromic patterns in basins with other length, widths,
water depth and tidal ranges can be notably different. For example, the Adriatic
Sea also has a shallow zone near the head, but tides and hence tidal dissipation are
relatively weak, such that the amphidromes are still real and not virtual (Hendershott
and Speranza 1971; Roos and Schuttelaars 2009). Alternatively, the asymmetric
depth profile in the Persian Gulf leads to different Kelvin wavelengths on either side
of the basin of the incoming and reflected Kelvin waves. Finally, basins characterised
by (stepwise) variations in basin width are touched upon in Sect. 4.5.

4.5 Discussion

The model approach described in this chapter has been introduced as idealised
process-based (Sect. 4.1), in other texts also referred to as exploratory (Murray
2003). This choice is motivated by our goal to provide a generic explanation of
the amphidromic patterns starting from the physical processes. Here, the obtained
insights immediately stem from the structure of the solution, i.e. a superposition
of fundamental wave solutions. These wave solutions can be found analytically,
which greatly facilitates interpretation and understanding of the tidal dynamics. As
a specific example, we highlight the identification of the Rossby deformation radius
R = √

gh/| f | as typical length scale for cross-shore decay of a Kelvin wave.
One of the challenges in idealised process-basedmodelling is thus to seek schema-

tisations of model geometry and process formulations that allow for efficient and
insightful solution techniques, while still realistic for the problem at hand. Examples
in our extended Taylor model are the linearised bottom stress parameterisation, as
well as the use of rectilinear coastlines and stepwise topographic changes. Clearly, too
strong schematisation jeopardise model validity. For example, other studies allowed
stepwise width variations have been adopted, e.g., to model the Labrador Sea/Davis
Strait/Baffin Bay system (Godin 1965) and the North Sea (Roos et al. 2011).



98 P. C. Roos and H. E. de Swart

116 114 112 110 108 106
longitude (°W)

22

24

26

28

30

32
la

tit
ud

e 
(°

N
)

P

Q'

Q

R

R'

S

-4000 -3000 -2000 -1000 0
bed level below MSL (m)

S'RRQ'QP
0
1
2
3
4

S'RRQ'QP
0

90
180
270
360

S'RRQ'QP
0
1
2
3
4

S'RRQ'QP
0

90
180
270
360

S'RRQ'QP
0
1
2
3
4

S'RRQ'QP
0

90
180
270
360

S'RRQ'QP

perimeter coordinate

0
1
2
3
4

S'RRQ'QP

perimeter coordinate

0
90

180
270
360

Fig. 4.12 Left: bathymetric chart of the Gulf of California with shallow region near closed end.
Also shown is the rectangular model basin PQRS with topographic step Q′R′ (dashed line) as
well as tide stations (black dots) and their projections onto the model basin boundary (open circles).
Right: comparison between model results (solid line) and observations (Carbajal and Backhaus
1998) (open circles). From top to bottom, this is done for the range and phase of M2, S2, K1 and
O1, plotted as a function of the perimeter coordinate along PQRS

This idealised modelling approach contrasts with complex simulation models,
which adopt state-of-the-art process formulation in numerical techniques aimed
at accurate solutions with a high level of detail. We argue that, ideally, the two
approaches are used in support of each other: complex models to reveal patterns,
idealised models to unravel the underlying physics of the patterns found.

The knowledge and insights on barotropic tides as presented in this chapter con-
stitute a basis for further studies that involve tides. For example, models have been
developed to investigate the dynamics of secondary, nonlinear tides that are gen-
erated by nonlinear terms in the equations of motion (Iannello 1977; Parker 1993;
Maas and Doelman 2002). Nonlinear tides include overtides, which are higher har-
monics of a principal tidal constituent (e.g., M4, M6 are overtides of M2) and tidal
residuals. Their manifestation implies that tidal records are asymmetrical, e.g. they
show different durations of flood and ebb periods and/or different peak flood currents
and ebb currents. Tides also nonlinearly interact with wind-driven flow (tide-surge
interactions), wind waves and river flow (tide-fluvial interactions). These aspects are
reviewed by Talke and Jay (2020).

Asymmetry of tidal currents is an important driver of net transport of matter, such
as salt, nutrients and pollutants. An interesting application in this regard concerns the
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demonstration of chaotic spreading of passive particles in a confined channel due to
a simple current field that consists of a spatially uniform M2 tide and an alternating
series of tidal residual eddies (Ridderinkhof and Zimmerman 1992). Furthermore,
in shallow seas tidal currents are often sufficiently strong to erode sediment from the
bottom and, when the currents are asymmetrical, they will also cause net transport of
that sediment. These processes lead to the formation of turbidity maxima in estuaries
(Burchard et al. 2018), and the emergence of bottom patterns: tidal sand ridges
(De Swart and Yuan 2019), sand waves (Besio et al. 2008), tidal flats and bars
(Seminara 2010), ebb-tidal deltas (De Swart and Zimmerman 2009), etcetera.

The theory of tides is further abundantly used to understand, reconstruct and pre-
dict alterations of tidal characteristics in seas and oceans. Nowadays, such alterations
typically result from a mixture of naturally and anthropogenically induced changes
in environmental conditions that occur on a wide spectrum of time scales. Examples
are fluctuations in wind and river discharge, geometrical changes due to changes in
mean sea level and shifts in positions of coastlines, as well as geometrical changes
caused by construction of dams and dikes, deepening of fairways. Specific examples
of studies that deal with changes in tides are given in the review by Talke and Jay
(2020).

Tides are also an important source of turbulence, both directly and indirectly. The
direct way is that turbulence is produced by the stress that tidal currents exert on a
rough bottom. A more indirect way is through internal tides, which are generated
by barotropic tides in stratified waters (density varies with depth) with an irregular
bottom topography (Gerkema 2019). These internal waves break at steep slopes,
such as those of underwater sea mountains and continental slopes, thereby creating
turbulence. These turbulent motions are essential for the maintenance of the large-
scale thermohaline circulation in the ocean and thus for the Earth’s climate (Munk
and Wunsch 1998).

4.6 Conclusions

Tides constitute a fascinating phenomenon of both theoretical and practical inter-
est. Using idealised process-based models, solving only the essential physics on
strongly schematised geometries, we have produced the gross features of tidal pat-
terns in coastal basins around the world. The structure of the presented solutions, i.e.
a superposition of fundamental wave solutions (Kelvin and Poincaré modes), leads
to the following insights.

• The Coriolis effect is responsible for the typical cross-shore decay of tidal range
away from the coast, a typical Kelvin wave property, and thus for the cyclonic
wave propagation around amphidromic points in (sufficiently wide) semi-enclosed
basins. Near the basin’s closed end, tidal currents are elliptical, which is associated
with the excitation of Poincaré waves.
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• Dissipation due to bottom friction mainly causes a decay of tidal range in the
direction of tidal wave propagation, implying a shift in the amphidromic points.

• Topographic effects, e.g. due to abrupt changes in depth, control tidal wave speed,
which may lead to tidal amplification in shallow regions. In turn, this may enhance
dissipation due to bottom friction, thus further affecting the amphidromic pattern.

Despite the strong schematisations, the idealised modelling approach is capable of
grossly reproducing tidal patterns as observed in, e.g., the Gulf of California. Tidal
patterns act as drivers in other studies of, e.g., morphodynamics, mixing and spread-
ing of particles. Finally, the obtained insights and modelling techniques can be used
to better understand the influence of large-scale changes due to climate change and
large-scale human intervention.

Acknowledgements The tide gauge data used in Fig. 4.1 have been provided by theBritishOceano-
graphic Data Centre.

Appendix

Wave Solutions in Channel with Topographic Step

The cross-channel structures of elevation and along-channel velocity of the wave
solutions in an infinite channel with a single transverse topographic step (Sect. 4.3.4)
are given by

η̃(y) = iC[ f 2 − γ 4σ 2] [αγ 2σ cosαy − f k sin αy
]

gh[α2γ 4σ 2 + f 2k2] sin αys
, (4.35a)

ũ(y) =
iC[ f 2 − γ 4σ 2]

[
αk cosαy − f σ

gh sin αy
]

h[α2γ 4σ 2 + f 2k2] sin αys
. (4.35b)

These expressions follow from subsequently combining the cross-channel velocity
solution in Eq. (4.25) with the second polarisation equation (4.9b), and then substi-
tuting the result (4.35a) in the the first polarisation equation (4.9a). Expressions for
η̃′(y) and ũ′(y) valid in the upper compartment are readily obtained by replacing the
quantities (α, γ, h, y, ys) in the above with (α′, γ ′, h′, y′, y′

s).
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Chapter 5
Variational Water-Wave Modeling: From
Deep Water to Beaches

Onno Bokhove

Abstract The mathematical and numerical modelling of free-surface water waves
is considered from the viewpoint of variational principles combined with finite-
element discretisations. Luke’s classical variational principle (VP) is derived first, as
opposed to Luke’s (ingenious) positing of his VP, and forms the basis for three geo-
metric or compatible finite-element water-wave models, two of which are validated
against laboratory measurements and compared. Potential-flow wave dynamics in
intermediate-depth water is coupled variationally to shallow-water beach dynamics,
the latter modelling breaking waves, and illustrative numerics is shown to highlight
the interactions between deeper water and shallow-water waves. Throughout, pho-
tographs of intricate wave interactions are used as illustrations.

5.1 Introduction

Water waves are ubiquitous on Earth, propagating on the free surface or interface
between water and air, under the restoring influence of gravity. Water waves emerge
when a (flat) water surface at rest is disturbed, e.g., when a stone is thrown in a
quiescent pond, and the restoring force of gravity leads to wave propagation, the
axisymmetric ripples with wave crests and throughs emanating after the stone has
perturbed the water surface. When the acceleration vector due to gravity is locally
(nearly) constant and unidirectional, the surface at rest will be (nearly) flat, while on
larger planetary scales the free surface at rest will be curved, normal to the accelera-
tion vector of gravity.Wewill consider water waves on smaller scales, on the order of
centimetres to a fewkilometres, thereby focussing on the scales ofwater-wavemotion
in laboratory channels, on ponds and lakes, near the shore and on fully-developed
seas (cf. the photos in Figs. 5.1, 5.2, 5.3 and 5.4). The mathematical modelling of
water waves, considered here, has a long history in fluid dynamics.

Predictive models for water-wave propagation started to emerge after the incom-
pressibleEuler orNavier-Stokes equationswere formulated. Typically, for both linear

O. Bokhove (B)
School of Mathematics, University of Leeds, LS2 9JT, Leeds, UK
e-mail: o.bokhove@leeds.ac.uk

© Springer Nature Switzerland AG 2022
H. Schuttelaars et al. (eds.), The Mathematics of Marine Modelling,
Mathematics of Planet Earth 9, https://doi.org/10.1007/978-3-031-09559-7_5

103

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-09559-7_5&domain=pdf
mailto:o.bokhove@leeds.ac.uk
https://doi.org/10.1007/978-3-031-09559-7_5


104 O. Bokhove

Fig. 5.1 a Rendering of a
breaking wave in a vertical
Hele-Shaw cell with water
and air: it is a 2 mm–narrow
cell with overall dimensions
0.7 × 0.002 × 0.24 m3 in
which wave frequencies are
used of circa 1 Hz (image
courtesy: Wout Zweers, see
also Bokhove et al. 2014;
Thornton et al. 2014).
Displayed is the time
evolution of the overturning
and splashing waterline as
function of x and t . b A
series of solitary water waves
generated by lifting a sluice
gate between different water
levels is shown in a channel
with approximate
dimensions 45 × 2 × 1.2 m3,
initially at rest, cf. Bokhove
et al. (2011), Bokhove and
Kalogirou (2016)

and nonlinear water-wave motion, the inviscid Navier-Stokes or Euler equations for
an incompressible liquid (water) with a free surface and either an active or a passive
gas (air) are considered to model water waves. Modelling of water waves focussed
first mainly on linear wave propagation. We will, however, almost exclusively con-
sider nonlinear water-wave dynamics even though we have used linear, exact solu-
tions to verify our nonlinear numerical models in their small-amplitude limits. One
of the first nonlinear models studied was the Korteweg-De-Vries (or KdV) equa-
tion (Drazin and Johnson 1989). It is an asymptotic subset of the three-dimensional
potential-flowwater-wave equations. These latter equations are, in turn, an exact sub-
set of the incompressible Euler equations with a free surface, for the restricted case
in which the three-dimensional velocity u = ∇φ is expressed in terms of a velocity
potential φ. Here, both the velocity u and the velocity potential φ depend on the hori-
zontal coordinates x and y, the vertical coordinate z, aligned in the opposite direction
of the acceleration vector of gravity g = (0, 0,−g)T , and time t , with g = 9.81 m/s2

the value near the Earth’s surface. This nonlinear KdV–equation was derived in 1895
together with its famous solitary-wave or soliton solution, the famous sech–soliton
by Korteweg and De Vries (Drazin and Johnson 1989). Both the KdV–equation and
the potential-flow water-wave equations are inviscid and have a rich mathematical
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Fig. 5.2 Crossing waves near shorelines often show wave amplification with Mach stems, which
may lead to localised wave breaking (as occurred for the cross-wave/Mach-stem in the foreground).
Such shallow-water waves can be modelled approximately with the Kadomtsev-Petviashvili equa-
tion (Kadomtsev and Petviashvili 1970; Kodema 2010) or “two-dimensional KdV-equation”, see
also Ablowitz and Curtis (2013), Gidel et al. (2017). Photo courtesy V. Zwart

Fig. 5.3 Nonlinear
unbroken waves start to shoal
and break on the beach south
of Newcastle. Photo O.B

and geometric structure intimately related to conservation laws and the phase-space
dynamics of these systems (Drazin and Johnson 1989).

The geometric structure of such water-wave equations is the continuum or field
extension of the geometric structure in classical mechanics; the latter mechanics was
developed by Euler, Lagrange and Hamilton in the 17 and 18th centuries (Lanczos
1970; Marsden and Ratiu 1994). Classical mechanics concerns interacting mechani-
cal or particle systems and results in a finite number of ordinary differential equations
with functions of time. In contrast, the degrees-of-freedom (dofs) in space are infi-
nite for fields, such as the velocity potential φ = φ(x, y, z, t) and the water depth
h = h(x, y, t), and the dynamics are governed by partial differential equations. Here
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Fig. 5.4 Photograph of the Severn Bore, with a crest that is partially an unbroken solitary
wave/undular bore in deep water and partially a spilling breaker along the shallow river bank,
by the late D. Howell Peregrine, some of whose photographs and slides O.B. inherited. This photo
was used as basis for one of the “Posters in the London Underground”, i.e., for the “maths makes
waves” poster

z = h(x, y, t) is the nonoverturning free surface above the flat-bottom topography
located at z = 0. We will use h(x, y, t) later.

To introduce Hamilton’s equations, consider the basic dynamics of a particle with
mass m moving in one spatial dimension with position q(t) and momentum p(t) in
an external potential V (q). It is succinctly captured in the variational principle (VP)

0 = lim
ε→0

∫ T

0

L(q + εδq, p + εδp) − L(q, p)

ε
dt = δ

∫ T

0
L(q, p) dt (5.1a)

≡ δ

∫ T

0
pq̇ − H(p, q) dt ≡ δ

∫ T

0
pq̇ − 1

2
p2/m − V (q) dt (5.1b)

=
∫ T

0
(q̇ − p/m)δp − ( ṗ + ∂V (q)/∂q) δq dt + (pδq)|t=T

t=0 (5.1c)

with Lagrangian L(q, p), Hamiltonian H(p, q) and final time T . Note that we also
defined the functional derivative of the functional

∫ T
0 L(q, p) dt and used integration

by parts in time. Given the arbitrariness of the variations δq and δp and by using end-
point conditions δq(0) = δq(T ) = 0, the two contributions in the integrand (5.1c)
at t = 0 and t = T are pointwise zero (in time). From (5.1c), we therefore obtain
Hamilton’s equations of motion (Lanczos 1970; Marsden and Ratiu 1994) as a first-
order system in time:

q̇ = ∂H

∂p
= p/m and ṗ = F(q) ≡ −∂H

∂q
= −∂V

∂q
(5.2)
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with the central force F(q) derived as the negative derivative of the potential V (q).
Combining (5.2) yields Newton’s law of motion for a single particle in an external
and central force, i.e.:mq̈ = F(q) = −V ′(q). Hamilton’s or Hamiltonian dynamics
extends to more general mechanical and multi-particle systems in higher dimensions
in which generalised coordinates q(t) and generalised momenta p(t) emerge for
finite-dimensional systems, cf. Lanczos (1970), Marsden and Ratiu (1994). The rea-
son to highlight such a straightforward example is that for infinite-dimensional sys-
tems such aswater-wave hydrodynamics, these generalised coordinates andmomenta
will be replaced by fields. Despite this additional complexity, such an intrinsic struc-
ture of the variational principle (5.1) will be shown to be similar, and to remain
recognisable, to that one for water-wave dynamics. For water-wave dynamics, the
development of geometric and Hamiltonian dynamics took off with the works of
Benney and Luke (1964), Luke (1967), Zakharov (1968) and Miles (1977) in the
1960 and 1970s. The work by Luke (1967) will be our starting point for describing
water-wave dynamics.

A finite-dimensional example that is more closely related to the “pre-Luke” VP
that we will present shortly in Sect. 5.2 is the following. Consider two nonlinear
oscillators/springs moving in one dimension, denoted by x = qi (for i = 1, 2), with
spatial coordinates q1 = q1(t), y1 = 0 and q2 = q2(t), y2 = L or q = (q1, q2)T with
generalised momenta p = (p1, p2)T and lateral y-direction, coupled together such
that their separation is fixed by

√
(q1 − q2)2 + L2 = R with R > L > 0 constant.

Based on specific initial conditions, we take q1 = q2 + A with A = √
R2 − L2. By

again using suitable endpoint conditions, an example of a constrained VP and its
variations is

0 =δ

∫ T

0
p1q̇1 + p2q̇2 − 1

2
p21/m1 − 1

2
p22/m2 − 1

3
k1|q1|3 − 1

3
k2|q2|3

+ P(q1 − q2 − A) dt (5.3a)

=
∫ T

0
(q̇1 − p1/m1)δp1 + (q̇2 − p2/m2)δp2 − ( ṗ1 + k1q1|q1| − P)δq1

− ( ṗ2 + k2q2|q2| + P)δq2 + (q1 − q2 − A)δP dt (5.3b)

with a Lagrange multiplier or “pressure” P = P(t) (Lanczos 1970; Marsden and
Ratiu 1994) imposing the constraint q1 − q2 − A = 0, spring constants k1,2 > 0 and
masses m1,2. The resulting equations of motion follow directly from (5.3) using the
arbitrariness of the variations δq, δp as

δq1 : ṗ1 + k1q1|q1| − P = 0, δq2 : ṗ2 + k2q2|q2| + P = 0, (5.4a)

δp1 : q̇1 = p1/m1, δp2 : q̇2 = p2/m2, δP : q1 − q2 − A = 0. (5.4b)

The multiplier P is determined by taking twice the time derivative of the con-
straint yielding, first, that p1/m1 − p2/m2 = 0 and, second, that P = (m1 +
m2)(k1q1|q1|/m1 − k2q2|q2|/m2)/(m1m2). This model is readily tested numerically
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by using a sympletic integrator (Leimkühler andReich 2009),with a forward timestep
for p and a backward timestep for q, that uses the update of p after first calcu-
lating the multiplier P . Initial conditions need to satisfy the constraint as well as
p1/m1 = p2/m2. The timestepping described maintains these constraints exactly,
which can be readily verified.

Taking Luke’s variational principle as starting point may be a surprise since Luke
states himself that “No satisfactory solution seems known for the general problem
of finding suitable Lagrangian functions. For the water wave problem, in particular,
the pressure function used in (1) is more productive than the traditional form of the
Lagrangian,L∗, equal to kinetic minus potential energy” (Luke 1967). Luke found
his variational principle presumably by insight. Cotter and Bokhove (2010) have,
in contrast, shown that one can derive Luke’s variational principle systematically
from a Hamilton’s action principle consisting of kinetic minus potential energy,
with pairs of generalised field coordinates and conjugate momenta. There are several
advantages for using such geometric formulations of hydrodynamics for water waves
and, in particular, for coupling deep or intermediate water-wave dynamics to either
moving structures such as elastic beams, buoys or ships or different, shallow-water
hydrodynamic models. These advantages are based on the following “principles”:

• The first principle is that, when damping and wave breaking are absent, the appro-
priate (coupled) models should contain a conservative limit.

• The second principle is that conservative, coupled wave-structure or coupled deep-
and shallow-water systems should in a relatively straightforward manner consist
of the sum of the variational principles of the separate systems. As a consequence
the combined system remains consistent without spurious energy losses or gains.

• The third principle is that we directly discretise these (nonlinear and/or coupled)
systems consistently in space and time, to obtain a space-time discrete algebraic
variational (finite-element) system. Its variation then “semi-automatically” yields
a stable and robust numerical scheme for advanced water-wave modelling.

We will employ finite-element methods (FEM) because the weak formulation inher-
ent in FEM closely matches the weak formulation of variational principles. It is
therefore a relatively small step—involving the finite-element expansion of the vari-
ables involved, their substitution and integration—to turn the relevant variational
principle for continuum water-wave dynamics into a spatially discrete or space-time
discrete variational principle. Variation of the latter algebraic principle then yields
the final discretisation to be implemented. To facilitate the development of such vari-
ational discretisations, we have employed Firedrake “…an automated system for the
portable solution of partial differential equations using the finite element method”
to implement our numerical discretisations in an efficient manner (Rathgeber et al.
2016).

The beauty of water-wave dynamics lies in part in the abundance of water-wave
phenomena surrounding us. We can, and most likely do, all observe water-wave
motion on a daily basis. In what follows, we will both show photographs of water-
wave phenomena (as in Figs. 5.1, 5.2, 5.3 and 5.4 using images fromO.B.’s laboratory
experiments and photographs from other people) as well as a range of numerical sim-



5 Variational Water-Wave Modeling: From Deep Water to Beaches 109

ulations from numerical models obtained following the above “principles”, including
simulation results fromBokhove andKalogirou (2016) ,Gagarina et al. (2014, 2016),
Gidel et al. (2017), Gidel (2018).

This chapter has the following outline. Luke’sVP is derived, as opposed to posited,
in Sect. 5.2. In Sect. 5.3, Luke’s VP is transformed from a time-dependent domain
with a free surface and wavemaker to a fixed reference domain, resulting in Miles’
VP in a transformed domain. Miles’ VP then forms the basis to discuss three com-
patible numerical discretisations, directly based on the VP. Numerical results of
two of the methods are compared and validated against wavetank experiments in
Sect. 5.3.2, before we consider a novel discretisation of a third method in detail.
A novel derivation of the variational coupling between a potential-flow water-wave
model and a shallow-water model on the beach is investigated in Sect. 5.4, with
illustrative numerical results. We conclude in Sect. 5.5 and finish with some future
research directions.

5.2 Derivation of Luke’s Variational Principle

In Cotter and Bokhove (2010), the starting point is a Lagrangian density Lincr con-
sisting of the kinetic energy minus potential energy of a compressible fluid weakly
constrained to be incompressible:

Lincr = 1

2
D|u|2 − gD(z − H0) + P(1 − D) (5.5)

with scaled density D = D(x, y, z, t) such that density ρ = ρ0Dwith constant water
density ρ0 and scaled pressure P = p/ρ0 enforcing the constraint 1 − D = 0. To
instill dynamics, “Lin” constraints (named after C.C. Lin) were imposed on the
space-time integral of Lincr , i.e., the continuity equation ∂t D + ∇ · (Du) = 0 was
enforcedwith aLagrangemultiplierφ and the kinematic condition for a single-valued
free-surface was enforced by another Lagrange multiplier. By taking variations with
respect to the velocity u it turns out that potential flow becomes a consequence, i.e.
one derives that u = ∇φ. After subsequent substitution of this relation u = ∇φ back
into this Lin-constrained variational principle, the following “pre-Luke” variational
principle (Cotter and Bokhove 2010) is shown to emerge:

0 =δ

∫ T

0
Lp[φ, φ̃, D, h] dt (5.6a)

=δ

∫ T

0

∫
ΩH

∫ h

0
D∂tφ + 1

2
D|∇φ|2 + gD(z − H0) + P(D − 1) dz dx dy dt

(5.6b)
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with φ̃(x, y, t) = φ (x, y, h(x, y, t), t) in a domain with a flat bottom at z = 0,
vertical channel walls (for the moment), horizontal extent ΩH and vertical extent
z ∈ [0, h], and a free surface at rest residing at z = H0. Similar to the basic example
with Hamilton’s equations (5.2), variation of (5.6) yields Hamilton’s equations,

δP : D = 1 (5.7a)

δD : ∂tφ + 1

2
|∇φ|2 + g(z − H0) = −P (5.7b)

δφ : ∂t D + ∇ · (D∇φ) = 0 (5.7c)

δh : ∂tφ + 1

2
|∇φ|2 + g(h − H0) = 0 at z = h (5.7d)

δφ̃ : ∂t h + ∇φ · ∇h = ∂zφ at z = h, (5.7e)

in which we have used the constraint D = 1 at the free surface already, integration
by parts in time with end-point conditions δφ(x, y, z, 0) = δφ(x, y, z, T ) = 0 (see
Appendix 1), Gauss’ law with n̂ · ∇φ = 0 at solid walls with the relevant outward
normal n̂, andwith outward normal n̂ = (−∇h, 1)T /

√
(1 + |∇h|2) at the free surface

located at z = h(x, y, t).
The structure of (5.6) and (5.7) is the same as in (5.1) and (5.2), or as in (5.3) and

(5.4), with the fields {φ, φ̃} playing the role of generalised coordinates q and fields
{D, h} playing the role of generalised momenta p. Pre-Luke’s variational principle
(5.6) does, however, have an additional constraint D − 1 = 0 relative to (5.1), but
this is akin to the constraint q1 − q2 − A = 0 and Lagrange multiplier P in (5.3).
After applying the constraint D = 1, Hamilton’s equations (5.7) reduce to the well-
known potential-flow water-wave equations with Laplacian ∇2φ = 0 from (5.7c),
dynamic boundary condition (5.7d) and kinematic boundary condition (5.7e), but we
have an additional equation defining the fluid pressure P via (5.7b). By imposing
constraint D = 1 directly onto pre-Luke’s variational principle (5.6), we find Luke’s
variational principle

0 =δ

∫ T

0
L[φ, φ̃, h] dt = δ

∫ T

0

∫
ΩH

∫ h

0
∂tφ + 1

2
|∇φ|2 + g(z − H0) dz dx dy dt

(5.8)

with, as Luke (1967) stressed in his remark quoted in the introduction, the (negative
and scaled) pressure as integrand. The disadvantage of (5.8) in contrast to (5.6) is
that it does not provide an explicit expression for the pressure P . For fluid-structure
interactions involving water waves coupled to dynamic structures, this implies that
there is no explicit mathematical expression for the value of the pressure on either
the structure or at the waterline.
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5.3 Transformed Luke’s/Miles’ Variational Principles
with Wavemaker

In these more complex situations with fluids and structures as well as for numerical
purposes, it is advantageous to transform the time-dependent domain to new coor-
dinates in a fixed domain. Such a transformation is considered next and, to simplify
the exposition, only within a two-dimensional domain (x, z) ∈ Ω .

Consider water waves modelled as incompressible potential flow. The domain
is bounded on the left side by a wavemaker at x = W (z, t), from below by a flat
bottom at z = 0, on the right side by a solid wall at x = Ls and from above by
a free surface parametrised as Xs = (X, Z). Here H0 is the position of the free
surface at rest for the case with the left boundary at x = W (z, t) = 0. The free
surface is allowed to overturn as long as domain Ω stays singly-connected during
the time interval t ∈ [0, T ] considered. The solenoidal velocity is now defined as
u = (u,w) = ∇φ ≡ (∂x , ∂z)φ(x, z, t). Starting from Luke’s variational principle
(5.8) restriced to a vertical plane, the water-wave dynamics then arises from

0 =δ

∫ T

0

∫∫
Ω

∂tφ + 1

2
|∇φ|2 + g(z − H0) dx dz dt. (5.9)

As in Bridges and Donaldson (2011), we transform the space-time domain with
(x, z) ∈ Ω and t ∈ [0, T ] to a cuboid ξ ∈ [0, Ls], η ∈ [0, H0], τ ∈ [0, T ]with τ = t ,
while we have added a wavemaker. The required transformations are

∂t =∂τ + J1
|J |∂ξ + J2

|J |∂η, ∂x = zη
|J |∂ξ − zξ

|J |∂η, ∂z = − xη
|J |∂ξ + xξ

|J |∂η, (5.10a)

in which the determinantal minors

|J | =xξ zη − xηzξ , J1 = xηzτ − xτ zη, J2 = xτ zξ − xξ zτ (5.10b)

arise from the three-dimensional space-time Jacobian

J =
⎛
⎝ xξ xη xτ

zξ zη zτ

0 0 1

⎞
⎠ . (5.10c)

Under transformations (5.10), Luke’s variational principle (5.9) becomes

0 =δ

∫ T

0

∫ Ls

0

∫ H0

0
(xξ zη − xηzξ )∂τ φ + (xηzτ − xτ zη)∂ξ φ + (xτ zξ − xξ zτ )∂ηφ

+ 1

2 J |
(
(x2η + z2η)|∂ξ φ|2 − 2(xξ xη + zξ zη)∂ξ φ∂ηφ + (x2ξ + z2ξ )|∂ηφ|2

)

+ |J |g(z − H0) dξ dη dτ. (5.11)
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Using (5.10b), it is straightforward to derive the geometric conservation law

∂τ |J | + ∂ξ J1 + ∂η J2 =0, (5.12)

whence, by combining (5.11) and (5.12), we obtain

0 =δ

∫ T

0

∫ Ls

0

∫ H0

0
∂τ (|J |φ) + ∂ξ (J1φ) + ∂η(J2φ)+

1

2 J |
(
(x2η + z2η)|∂ξφ|2 − 2(xξ xη + zξ zη)∂ξφ∂ηφ + (x2ξ + z2ξ )|∂ηφ|2)

+ |J |g(z − H0) dξ dη dτ. (5.13)

The above is the same as in Bridges and Donaldson (2011) but, due to the new
wavemaker condition x = W (z, τ ) at ξ = 0, new terms emerge when we integrate,
term-by-term, ∂τ (|J |φ) + ∂ξ (J1φ) + ∂η(J2φ) in the variational principle (5.13). This
demands that we adapt but also slightly extend the derivation given in Bridges and
Donaldson (2011). The first integral term in (5.13) can be manipulated to yield

δ

∫ H0

0

∫ Ls

0

∫ T

0
∂τ (|J |φ) dτ dξ dη =

∫ H0

0

∫ Ls

0
φ

(
(δx)ξ zη + xξ (δz)η

−(δx)ηzξ − xη(δz)ξ
) |τ=T

τ=0 + |J |δφ|τ=T
τ=0 dξ dη

=
∫ H0

0

∫ Ls

0

(
φ∂ξ (zηδx − xηδz) + φ∂η(xξ δz − zξ δx)

) |τ=T
τ=0 dξ dη = 0,

(5.14)

wherewe have used end-point conditions δφ|τ=0 = δφ|τ=T = 0, δx |τ=0 = δx |τ=T =
0 and δz|τ=0 = δz|τ=T = 0. The second integral term in (5.13) becomes

∫ Ls

0

∫ H0

0
∂ξ

(
(xηzτ − xτ zη)φ

)
dξ dη =

∫ H0

0
(xηzτ − xτ zη)φ|ξ=Ls

ξ=0 dη

=
∫ H0

0
zη∂τWφ|ξ=0 dη, (5.15)

since at ξ = Ls also x = Ls , and therefore xη|ξ=Ls = xτ |ξ=Ls = 0, while at ξ = 0
one has x = W (z, τ ) such that xη = ∂zW zη, xτ = ∂τW + ∂zW zτ and xηzτ − xτ zη =
−zη∂τW . The third integral term in (5.13) becomes

∫ Ls

0

∫ H0

0
∂η

(
(xτ zξ − xξ zτ )φ

)
dξ dη =

∫ Ls

0
(xτ zξ − xξ zτ )φ|η=H0

η=0 dξ

=
∫ Ls

0
(xτ zξ − xξ zτ )|η=H0 φ̃ dξ, (5.16)
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since z = 0 at η = 0 and thus zξ |η=0 = zτ |η=0 = 0. The outcome is therefore that
there are two surface contributions, underlined in (5.15) and (5.16), one at themoving
free surface η = H0 and one at the moving wavemaker ξ = 0. The gravitational
energy is also transformed as follows

∫ Ls

0

∫ H0

0
(xξ zη − xηzξ )g(z − H0) dξ dη

=
∫ Ls

0

∫ H0

0
∂η

(
xξ (

1

2
gz2 − gH0z)

)
− ∂ξ

(
xη(

1

2
gz2 − gH0z)

)
dξ dη

=
∫ Ls

0
xξ

1

2
gz2 − gH0z|η=H0

η=0 dξ −
∫ H0

0
xη

1

2
gz2 − gH0z|ξ=Ls

ξ=0 dη

=
∫ Ls

0
xξ g(

1

2
z2 − H0z)|η=H0 dξ +

∫ H0

0
xηg(

1

2
z2 − H0z)|ξ=0 dη, (5.17)

again using the conditions at ξ = Ls as well as z = 0 at η = 0.
Hence, for a domain with a flap-type wavemaker at ξ and a free surface at η =

H0, Luke’s variational principle in transformed coordinates (5.13) becomes Miles’
variational principle in transformed coordinates

0 =δ

∫ T

0

∫ Ls

0

(
xτ zξ − xξ zτ )φ̃ + xξ g(

1

2
z2 − H0z)

)
|η=H0 dξ

+
∫ H0

0

(
zη∂τWφ + xηg(

1

2
z2 − H0z)

)
|ξ=0 dη + K dτ

≡δ

∫ T

0

∫ Ls

0

(
xτ zξ − xξ zτ )φ̃ + xξ g(

1

2
z2 − H0z)

)
|η=H0 dξ

+
∫ H0

0

(
zη∂τWφ + xηg(

1

2
z2 − H0z)

)
|ξ=0 dη

+
∫ Ls

0

∫ H0

0

1

2 J |
(
(x2η + z2η)|∂ξ φ|2 − 2(xξ xη + zξ zη)∂ξ φ∂ηφ

+(x2ξ + z2ξ )|∂ηφ|2
)
dξ dη dτ (5.18)

with kinetic energy K.
The challenge in the variation of Miles’ variational principle (5.18) is that it

results in variations of the variables {φ, x, z}whereas {x, z} can only be independent
at the free surface and partially independent at the moving wavemaker. Bridges and
Donaldson (2011) provide an overview of models for the motion of x(ξ, η, τ ) and
z(ξ, η, τ ), including (nonlinear) elliptical solvers for {x, z} driven by the moving
boundaries. Variation of the (nonlinear) elliptic solvers will lead to linear equations,
for {δx, δz}, that relate the variations in the interior to the independent variations at
the moving boundaries, denoted by {X, Z}. It is shown in Bridges and Donaldson
(2011) that δK/δx = δK/δz = 0 in the interior, after oneuses the transformedelliptic
equation for φ in the interior. The motion of {x, z} can in certain cases be specified
and in other cases be imposed via Lagrange multipliers, the latter which has neither
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been explored thoroughly in an analytical way nor in a numerical way. Consequently,
the entire variation of (5.18) will lead to variations of only the variables {φ, φ̃, X, Z}.
The numerical integration with finite-element methods (FEM) of (5.18) including
(regular) mesh motion was explored for the first time in Gagarina et al. (2012, 2014)
and Gidel (2018).

5.3.1 FEM and Mesh Motion

Hitherto, two numerical approaches have been developed and applied to evaluate
and discretise (5.18) for domains with a piston wavemaker such that the boundary
condition on the left-side of the channel becomes x = W (z, t) = R(t). In the first
approach, marked by I, two variations have been developed and employed. The
difference is that in variation I.A, a continuous Galerkin FEM is used with, e.g.,
quadrilateral elements in the vertical {x, z}–plane, while in variation I.B a Galerkin
FEM is used in the horizontal plane and higher-order Lagrange polynomials in one
element in the vertical, in the transformed space and in three dimensions.

Variation I.A uses a space-time finite-element discretisation of Miles’ variational
principle in a two-dimensional {x, z} ∈ [R, Ls] × [0, h]–plane, so without explicitly
transforming it to the fixed reference domain in (5.18). The nodes of the (quadri-
lateral) mesh are moved in a regular fashion. In {x, z} ∈ [R, Lw] × [0, h], with
Lw < Ls , the nodes are moved in the horizontal and vertical according to the method
of lines, and in a linear fashion, such that the horizontal nodal movement at Lw is
zero and is R(t) on the piston wavemaker and, similarly, zero at the bottom at z = 0
and h(x, t) at the non-overturning free surface. For x > Lw nodes are only moving
in the vertical. This prescription of the node movement implies that δx = 0 and that
δz is uniquely and in a linear manner determined in terms of δh. The variation of
the space-discrete variational principle then directly yields the discrete equations of
motion. The detailed methodology is described in Gagarina et al. (2014, 2016).

Variation I.B in essence uses (5.18) with explicit expressions for the motion of
x and z. We extend the description in Gidel (2018), where the wavemaker is a
piston W (z, t) = R(t), here to the general waveflap expression x = W (z, t). The
first transformation is from {x, z, t} to {χ, z̃ = z, t̃ = t} with χ ∈ [0, Lw] and

x = W (z̃, t̃)Lw + χ
(
Lw − W (z̃, t̃)

)
Lw

. (5.19)

The second transformation is from {χ = ξ, z̃, t̃ = τ } to {ξ = χ, η, τ } with

x(ξ, η, τ ) =ξ
(
Lw − W (ηh/H0, τ )

) + W (ηh/H0, τ )Lw

Lw
and z(ξ, η, τ ) = ηh

H0
,

(5.20)
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where h = h(ξ, τ ). Expressions (5.20) can be substituted into (5.18), with δx and δz
uniquely and in a linear manner determined in terms of δh. The next step differs from
variation I.A:first (Lagrange)polynomials areused in thevariationalprinciple toelim-
inate the verticalη–dependence by integration over these polynomials, leading to sev-
eral predeterminedmatrices and vectors. It results in a reduced variational principle in
termsof thehorizontal spatial dimensions and time.Even though in the abovewe illus-
trated the approach in one horizontal dimension,Gidel (2018) extended the derivation
tothreedimensionsandusesapriorianexplicitcoordinatetransformationinsteadofthe
generic one developed to arrive at (5.18). The results are, by default, the same. Subse-
quently, this variational principle in the horizontal plane, based on polynomial expan-
sions with one element in the vertical, is discretised using continuous Galerkin finite
elements, on, e.g., quadrilateral elements in the horizontal. The variation of the now
fully space-discrete variational principle then directly yields the space-discrete equa-
tions of motion. Both symplectic Euler and Störmer-Verlet time-stepping schemes,
extendedtoincludewave-forcingterms,havethenbeenusedtoarriveatspace-timedis-
crete equations of motion. Alternatively, one can use (dis)continuous Galerkin finite-
element methods in time (Bokhove and Kalogiro 2016; Gagarina et al. 2016) to first
discretise the space-discrete variational principle in time aswell, which variation sub-
sequently leads to the same space-time discrete equations of motion. Approach I.B
has been implemented in Firedrake (Rathgeber et al. 2016), such that the variations of
theVP are essentially directly implemented inweak form, cf. the actualmathematical
formulations. In Firedrake, details of the finite-element implementation are to a large
extent hidden from the user, including matrix definitions, matrix assembly, nonlinear
solvers, parallelisation (viaMPI) and preconditioning.

In the second approach, marked by II, Miles’ variational principle (5.18) is discre-
tised in spaceusing a continuousGalerkinFEMand twononlinear elliptic solvers, one
each for x and z, are used to determine {x(ξ, η, τ ), z(ξ, η, τ )}. These nonlinear ellip-
tic solvers and the gradients of x and z in (5.18) are discretised using finite-difference
approximations and solved with an iterative successive overrelation method. Dirich-
let boundary conditions for x and z are used at solid-wall boundaries and at the free
surface one sets x = X and z = Z . The variations of this finite-difference approxima-
tion of the nonlinear elliptic solvers for x and z are linear in δx and δz. This therefore
again relates all interior domain variations of δx, δz, as in the previous approach I.A
and I.B, in a linear fashion to the (free-)surface evariations δX, δZ . The equations for
the variables {X, Z} and φ(ξ, H0, τ ) (at the free surface) are then stepped forward as
conjugate variable pairs in time using a symplectic Störmer-Verlet time integrator,
cf. Gagarina et al. (2012).

The results of these two approaches are geometric space-time discretisations of the
potential-flowwater-wave equations.We appear to be the first to have developed such
an approach in a completely systematic and geometricmanner. The advantage of such
geometric space-time integrators above classical nongeometric ones is that there is no
artificalnumericaldamping.Forlong-timesimulations,wave-amplitudesaretherefore
preserved.Adisadvantagemaybe that onehas touseapartially implicit numerical dis-
cretisation,whichismorecostlytoimplement.Anotherdisadvantageis thatenergyand
motion cannot escape to smaller and smaller scales because there is no subgrid-scale



116 O. Bokhove

parameterization integrated in the discretisation. It depends on the numerical applica-
tion at hand whether such a geometric approach is desirable or not.

Rogue waves are anomalously high waves, with at least twice the wave ampli-
tude of the ambient sea (Dysthe et al. 2008). Their occurrance at sea is rare and
difficult to predict, both statistically and deterministically. Understanding the occur-
rence of rogue waves is important because they have damaged or destroyed ships
as well as maritime and coastal structures, see Nikolkina and Didenkulova (2011)
for an overview of rogue-wave maritime disasters. Following our approach, we have
successfully simulated these rogue-wave interactions in long-time simulations, also
for a Benney-Luke approximation of the potential water-wave models, cf. Gagarina
et al. (2014), Bokhove & Kalogirou (2016), Gidel et al. (2017), Gidel (2018). Some
of these numerical results will be presented in Sect. 5.3.2.

5.3.2 Numerical Results: Comparison with Wave-Tank
Experiments

The first two numerical approaches are compared with data from wave-tank exper-
iments which have been collected at the Maritime Research Institute Netherlands
(MARIN). MARINs Case 202002 is considered, which is one case in the suite of
experimental test cases reported (Bunnik 2010). The wavetank at hand is 195.4 m
long with a piston wavemaker at x = R(t) and the water depth at rest is 1 m. The
set-up is symmetric such that the experiments are effectively two dimensional in a
vertical cross-section. Simulations are stopped before any wave reflections from the
end of the tank are having an effect. The wavemaker signal is such that a rogue wave
arises via wave focussing at circa t = 109.5 s and x = 50 m.

In approach I.A, using data from a probe around x = 50 m, the (finest) mesh
size and timestep are determined based on linear wave-dispersion estimates, and
are found to be Δx = 0.00385 m and Δt = 0.001 s. An exponential distribution of
20 mesh points is used in the vertical. In approach I.B, the numerical wave basin
is 120 m long with a uniform mesh. The mesh size Δx = 0.01 m and timestep
Δt = 0.001 s are again based on linear wave-dispersion estimates. Nine Lagrange
degrees-of-freedom are taken into account in the vertical. The comparison between
each simulation and the experimental data is shown as a time series in Figs. 5.5
and 5.6, while the corresponding Fourier spectra can be seen in Figs. 5.7 and 5.8,
respectively. Both simulation approaches compare favourably with the experimental
data and, hence, with another. The codes for Approach I.B have been parallised, a
nearly automatic feature within the Firedrake FEM environment.

Third Approach

The third and novel geometrical approach to discretise (5.18) is developed next. It
concerns the second principle stated in the introduction: that the variational principle
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Fig. 5.5 Free surface h(x, t)
at various locations x as
function of time t for
numerical simulations using
approach I.A (Störmer-Verlet
scheme, denoted by SV:
solid black lines) versus six
experimental-probe
measurements (red solid
lines) in MARIN’s wave tank
a)-to-f) at x =
(10, 20, 40, 49.5, 50, 54) m.
Figure11, taken from
Gagarina et al. (2014) taken
with permission
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Fig. 5.6 Free surface h(x, t) at various locations x as function of time t for numerical simulations
using approach I.B (Symplectic Euler, denoted by SE: solid blue lines; SV: green dashed line)
versus six experimental-probe measurements (black solid lines) in MARIN’s wave tank at x =
(10, 20, 40, 49.5, 50, 54) m as indicated. Figure3.20 from Gidel (2018) used with permission

of coupled models is the sum of the two variational principles. The first variational
principle involved will be Miles’ VP but, for simplicity, limited to the case with
no variations in δx , and the second variational principle concerns the motion of z,
renamed to z̄, with the interior motion driven by the free-surface motion.

Rather than imposing the relation between {δx, δz} and δh or {δX, δZ} explic-
itly, as in the first two numerical approaches summarised above, additional equa-
tions for x and z will be imposed using Lagrange multipliers. We illustrate the
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Fig. 5.7 Time spectra at probes 2, 3 and 5 at x = (20, 40, 50) m for simulation approach I.A
(blue lines) and the experiments (red lines) displayed as amplitude versus frequency (Fig. 13, from
Gagarina et al. (2014), used with permission)

approach for a simplified version of (5.18), i.e., one without wavemaker such that
W (z, t) = 0, andwith x = ξ such that δx = 0 and ξ ∈ [0, Ls]. One can either impose
the constraint solution z(ξ, η, τ ) − ηZ(ξ, τ )/H0 = 0, cf. (5.20), directly using a
Lagrange multiplier λ = λ(ξ, η, t), or one can impose the constraint differential
equation z̄ηη = 0 with boundary condition z̄(ξ, 0, τ ) = 0 by adding additional inte-
rior integrals 1

2 (z̄η)
2 + λ(z − z̄) and a boundary integral λ0(Z − z), thus indirectly

imposing the “Dirichlet” boundary condition z̄|η=H0 = Z . Consequently, we take
δz̄(ξ, 0, τ ) = δz̄(ξ, H0, τ ) = 0. The latter second-order equation has, of course, the
first constraint as solution: i.e., z̄(ξ, η, τ ) = ηZ(ξ, τ )/H0. In essence what we do, is
glueing two different variational principles together, one for the dynamics given in
(5.18) and one for the z̄–movement i.e. 0 = δ

∫ H0

0
1
2 (z̄

2
η) dη. The approach in Bridges

and Donaldson (2011) suggests to impose partial differential equations for z via a
Lagrange multiplier λ, but the determination of the boundary conditions for λ has
proven cumbersome and was left unresolved. Via the method outlined above, essen-
tially renaming z into z̄ before weakly equating them as shown in detail below, we
avoid the issues surrounding the definition of boundary conditions for λ because we
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Fig. 5.8 Time spectra at probes 1-to-6 simulation for approach I.A. for the experiments, and
simulations with SE and SV, as indicated. After Fig. 3.21 from Gidel (2018), used with permission

impose the (numerical) solution for z̄. Before stating the augmented VP, we give a
brief example of the idea and why it can work numerically.

Consider the second variational principle in isolation

0 = δ
(∫ H0

0

1

2
(z̄η)

2 + λ(z − z̄) dη + λ0(z − a)|η=H0

)
(5.21a)

=
∫ H0

0
z̄ηδz̄η − λδz̄ + (z − z̄)δλ + λδz dη + (

λ0δz + (z − a)δλ0
)|η=H0

(5.21b)

=
∫ H0

0
−(z̄ηη + λ)δz̄ + (z − z̄)δλ + λδz dη

+ (
z̄ηδz̄ + λ0δz + (z − a)δλ0

)|η=H0 − (z̄ηδz̄)|η=0, (5.21c)

with test function δz̄|η=0,H0 = 0, z̄(η = 0) = 0 and a a constant, yielding

z̄ηη + λ = 0, λ = 0, z = z̄, δλ0: z|η=H0 = a, δz|η=H0: λ0 = 0. (5.21d)

For illustrative purposes, to discretise (5.21), we use continuous Galerkin finite-
element expansions with piecewise linear basis functions wi (η), e.g. z̄ ≈ wi z̄i and
z ≈ wi zi for indices i, j = 1, . . . , N , with i, j = 1 at η = 0, i, j = N at η = H0 and
i ′, j ′ = 2, . . . , N − 1, while using the Einstein summation convention for repeated
indices. The variables and their variations belong to the following function spaces
δz̄ ∈ W 1

0,H0
, {z̄, δz, z} ∈ W 1

0 andλ ∈ W 1 withW 1 the standardSobolev space H 1(η ∈
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[0, H0]) and with the subscripts on W 1 indicating where the variables belonging to
that space are zero. The weak form (5.21b) yields that λ = 0 and z = z̄ and thus is
seen to be equivalent to theweak form

∫ H0

0 zηδzη dη = 0, and its boundary conditions,
as intended by design. The finite-element spaces follow by restriction to the space
of first-order polynomials on each element (here rods) with C0–continuity. More
explicitly, by direct substitution of the above expansions into the weak formulation
(5.21b), and after defining mass and “Laplacian” matrices Mi j = ∫

wi (η)w j (η) dη
and Ai j = ∫

w′
i (η)w′

j (η) dη, we find that

Ai ′ j z̄ j − Mi ′ jλ j = 0, Mi jλ j = 0 =⇒ Mi ′ jλ j = 0,

Mi j (z̄ j − z j ) = 0 =⇒ z j = z̄ j , z̄N = a, (5.22)

yielding that
∑N−1

j ′=2 Ai ′ j ′ z̄ j ′ = −Ai ′Na, which is exactly what a direct continuous
Galerkinfinite-element discretisationwith piecewise linear basis functions of z̄ηη = 0
with Dirichlet conditions z̄ = 0 and z̄ = a at η = 0, H0 would yield. The example
shows that it is required to introduce different variables z̄ and z because variations
δz̄ and δz obey different conditions at η = H0, but results are what one obtains in a
classic FEM.

Similarly, we add the weak formulation of a differential equation for z̄, the interior
link λ(z − z̄) and the free-boundary link λ0(Z − z) to the water-wave variational
principle with Lagrange multipliers λ(ξ, η, τ ) and λ0(ξ, τ ). At the free surface,
define φ̃ ≡ φ(ξ, H0, τ ). Variations of a simplified yet extended version of (5.18)
become

0 =δ

∫ T

0

∫ Ls

0

(
−Zτ φ̃ + g(

1

2
Z2 − H0Z) + λ0(Z − z)

)∣∣
η=H0

dξ

+
∫ Ls

0

∫ H0

0

1

2

(
zη|∂ξφ|2 − 2zξ ∂ξφ∂ηφ + (1 + z2ξ )

zη

|∂ηφ|2)

+ 1

2
(z̄η)

2 + λ(z − z̄) dξ dη dτ (5.23a)

=
∫ T

0

∫ Ls

0

(
(∂τ φ̃ + g(Z − H0) + λ0)δZ − Zτ δφ̃ − λ0δz + (Z − z)δλ0

)∣∣
η=H0

dξ

+
∫ Ls

0

∫ H0

0
zη∂ξφ∂ξ δφ − zξ (∂ξφ∂ηδφ + ∂ηφ∂ξ δφ) + (1 + z2ξ )

zη

∂ηφ∂ηδφ

+ 1

2
|∂ξφ|2δzη − ∂ξφ∂ηφδzξ + zξ δzξ

zη

|∂ηφ|2 − 1

2

(1 + z2ξ )δzη

z2η
|∂ηφ|2

+ z̄ηδz̄η + λ(δz − δz̄) + (z − z̄)δλ dξ dη dτ (5.23b)
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=
∫ T

0

∫ Ls

0

((
∂t φ̃ + g(Z − H0) + λ0

)
δZ + (Z − z)|η=H0δλ0

+ (1
2
|∂ξφ|2 − 1

2

(1 + z2ξ )

z2η
|∂ηφ|2 − λ0

)|η=H0δz

− (
Zτ + ∂ξφzξ − (1 + z2ξ )

zη

∂ηφ
)
δφ

)∣∣
η=H0

dξ

+
∫ Ls

0

∫ H0

0

(
−∂ξ (zη∂ξφ) + ∂ξ (zξ ∂ηφ) + ∂η(zξφ∂ξφ) − ∂η

( (1 + z2ξ )

zη

∂ηφ
))

δφ

+
(

−∂η

(1
2
|∂ξφ|2) + ∂ξ (∂ξφ∂ηφ) − ∂ξ

( zξ

zη

|∂ηφ|2)

+∂η

(1
2

(1 + z2ξ )

z2η
|∂ηφ|2) + λ

)
δz − (z̄ηη + λ)δz̄ + (z − z̄)δλ dξ dη dτ, (5.23c)

in which we used the end-point conditions δz̄(ξ, η, 0) = δz̄(ξ, η, T ) = 0 and
δz̄(ξ, 0, t) = δz̄(ξ, H0, t) = 0, and solid-wall boundary conditions at ξ = 0, Ls . The
resulting equations of motion then follow via (5.23c) from the arbitrariness of the
respective variations:

δZ : ∂τ φ̃ + g(Z − H0) + λ0 = 0 at η = H0 (5.24a)

δz|η=H0 : λ0 = 1

2
|∂ξφ|2 − 1

2

(1 + z2ξ )

z2η
|∂ηφ|2 at η = H0 (5.24b)

δφ̃ : Zτ + ∂ξφzξ = (1 + z2ξ )

zη

∂ηφ at η = H0 (5.24c)

δφ : ∂ξ (zη∂ξφ) − ∂ξ (zξ ∂ηφ) − ∂η(zξ ∂ξφ) + ∂η

( (1 + z2ξ )

zη

∂ηφ
) = 0 (5.24d)

δz : λ = ∂η

(1
2
|∂ξφ|2) − ∂ξ (∂ξφ∂ηφ) + ∂ξ

( zξ

zη

|∂ηφ|2)

− ∂η

(1
2

(1 + z2ξ )

z2η
|∂ηφ|2) = 0 (5.24e)

δz̄ : z̄ηη + λ = 0 (5.24f)

δλ : z̄ = z (5.24g)

δλ0 : z = Z at η = H0. (5.24h)

Using the elliptic equation (5.24d) for φ into (5.24e) one derives, as noted, that
λ = 0. The solution of z̄ηη = 0 stated earlier is readily found using z̄η=H0 = Z and
z̄(ξ, 0, t) = 0. It is helpful to figure out a consistent time integration by first discretis-
ing time for (5.24). We leave that to the reader and instead directly give a complete
space-time discretisation.
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Time discretisation andweak formulation:To establish a time discretisation and in
addition a suitable weak formulation, one starts from the second expression (5.23b),
by discretising time using a first-order symplectic Euler scheme. The velocity poten-
tial is partitioned as follows: φ = φ1 + ϕ with φ1(ξ, η, τ ) = φ̃(ξ, τ )ϕ̃(η) such that
ϕ̃1(H0) = 1, ϕ̃1(0) = 0 and ϕ(ξ, H0, t) = 0 such that ϕ is clearly the interior contri-
bution. This partitioning of the velocity potential is similar to the partitioning used
in Kristina et al. (2014) for a different variational coupling problem. The function
spaces of the variables are the following:

{φ̃(ξ, τ ), Z(ξ, τ ), λ0(ξ, τ )} ∈ W 1(η = H0) ∩ Xk
h,

{φ1(ξ, η, τ ), ϕ(ξ, η, τ ), z(ξ, η, τ ), z̄(ξ, η, τ ), λ(ξ, η, τ )} ∈ W 1(Ω) ∩ Xk
h (5.25)

withW 1(Ω) the space of test functions and Xk
h the polynomials of order k on each ele-

ment of a triangulation Th = {K }. This space W 1(Ω) is the standard Sobolev space
H 1 with test functionw ∈ H 1, and in the two-dimensional case ||w||η=c = 0 at the
appropriate Dirichlet boundary with c = 0 or c = H0 and || · ||η=c is the L2(η = c)–
norm at η = c. All functions are C0–continuous, thus comprising a classical con-
tinuous Galerkin finite-element discretisation. In the implicit, predictor step, based
on all arbitrary variations as test functions, except the one for δZ , the unknowns
Zn+1 = z∗|η=H0 , λ0 and z̄∗, z∗, ϕ∗, λ are jointly determined from

0 =
∫ T

0

∫ Ls

0

(− (Zn+1 − Zn)

Δτ
δφ1 − λ0δz + (Zn+1 − z∗)δλ0

)|η=H0 dξ

+
∫ Ls

0

∫ H0

0
z∗
η∂ξφ∂ξ δϕ − z∗

ξ (∂ξ (ϕ
∗ + φn

1 )∂ηδϕ + ∂η(ϕ
∗ + φn

1 )∂ξ δϕ)

+ (1 + (z∗
ξ )

2)

z∗
η

∂η(ϕ
∗ + φn

1 )∂ηδϕ dη dξ

+
∫ Ls

0

∫ H0

0
z∗
η∂ξ (ϕ

∗ + φn
1 )∂ξ δφ1 − z∗

ξ (∂ξ (ϕ
∗ + φn

1 )∂ηδφ + ∂η(ϕ
∗ + φn

1 )∂ξ δφ1)

+ (1 + (z∗
ξ )

2)

z∗
η

∂η(ϕ
∗ + φn

1 )∂ηδφ1

+ 1

2
|∂ξ (ϕ

∗ + φn
1 )|2δzη − ∂ξ (ϕ

∗ + φn
1 )∂η(ϕ

∗ + φn
1 )δzξ

+ z∗
ξ δzξ

z∗
η

|∂η(ϕ
∗ + φn

1 )|2 − 1

2

(1 + (z∗
ξ )

2)δzη

(z∗
η)

2
|∂η(ϕ

∗ + φn
1 )|2

+ z̄∗
ηδz̄η + λ(δz − δz̄) + (z∗ − z̄∗)δλ dξ dη dτ. (5.26a)

Note that φn
1 is evaluated at the known, current time tn and that z∗, z̄∗, λ, λ0 and

ϕ∗ are all aid variables. The latter highlights that the (discretised) elliptic equation
for ϕ is rephrased as a Poisson problem with ϕ = 0 at the free surface rather than
phrased as a (discretised) Laplace equation for φ. Similarly, z̄∗ is solved weakly
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via an elliptic equation, with Dirichlet boundary conditions, with the one at the free
surface enforced via both Lagrange multipliers λ0 and λ. In the corrector step, based
on the arbitrary variations δZ as test functions, φ̃n+1 (underlined below) is solved
using

0 =
∫ T

0

∫ Ls

0

(( (φ̃n+1 − φ̃n)

Δτ
+ g(Zn+1 − H0) + λ0

)
δZ

)∣∣
η=H0

dξ dτ, (5.26b)

while again using the current value of the free-surface potential, i.e. ϕ̃n , as well as
the updates of variable ZN+1, λ0 and the aid variables ϕ∗, λ and z∗, which were
all solved in the previous, implicit predictor step. It is clear that the predictor step
contains the nonlinearities while the corrector step is linear in the unknowns. The
above set-up for the time integration is in essence similar to the one in Gidel (2018)
(cf. her expression (3.55)). The extension to mesh motion in two dimensions can
proceed along similar lines of reasoning.

5.4 Coupling Water Waves to Shallow-Water Beach
Hydraulics

In this section, the second principle stated in the introduction will be explored in a
more physically motivated example for a model in which Miles’ VP holds in a deep
or intermediate water-depth region and a shallow-water model is used in a beach
region (in which waves can break), cf. Figs. 5.3 and 5.4. It turns out that in Eule-
rian coordinates the only VP for shallow-water dynamics is one involving Clebsch
variables. In one spatial dimension, shallow-water dynamics involves two fields: the
water depth h = h(x, t) and the horizontal velocity u = u(x, t). In two dimensions, it
involves three fields h = h(x, y, t), u = u(x, y, t) and an additional lateral velocity
field v = v(x, y, t). A description in terms of Clebsch variables involves four fields
because the velocity is in that description rewritten as u = ∂x φ̃ + π∂x l with parcel
label l = l(x, t) and its conjugate hπ with π = π(x, t), as well as h and its conjugate
φ̃. These take over the role of q and p in the examples in the introduction. In two
spatial dimensions, the derivative ∂x (·) is replaced by a two-dimensional gradient.

Rather than using Miles’ VP, we use an extension of the potential-flow model in
Cotter and Bokhove (2010), which contains both the three-dimensional potential-
flow limit as well as the (horizontally) two-dimensional, depth-averaged shallow-
water limit with surface velocities u and v. Hence, this new model contains the
vertical component of the vorticity, ∂xv − ∂yu, while the other vortical components
are, by construction, absent. We will consider a symmetric version of this model
with no y–derivatives, except that the label reads l(x, t) + y, such that v(x, t) =
∂yφ(x, z, t) + π(x, t)∂y (l(x, t) + y) = π(x, t). The vorticity then becomes ∂xv.

The VP of the symmetric and coupled systems consists of the sum of the two
VPs for the separate systems, with the extended potential-flow motion residing in
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x ∈ [0, Lc] with topography z = b(x), and the shallow-water motion residing in
x ∈ [Lc, xw(t)] with xw = xw(t) the dynamic waterline point on the beach with
fixed bottom topography z = b(x). This “coupled VP” in Eulerian coordinates, with
now φ(x, z, t) = ϕ(x, z, t) + φ̃(x, t) and ϕ (x, z = h(x, t), t) = 0, thus reads

0 = δ

∫ T

0
L[ϕ, φ̃, h, l, π ] dt ≡ δ

∫ T

0

∫ Lc

0
φ̃∂t h + l∂t (hπ) − 1

2
g(h + b)2 + ghH0 dx

−
∫ b(x)+h(x,t)

b(x)

1

2
|∇ϕ + (u, v, 0)T |2 dz dx

+
∫ xw(t)

Lc

φ̃∂t h + l∂t (hπ) − 1

2
h(u2 + v2) − 1

2
g(h + b)2 + ghH0 dx dt (5.27a)

=
∫ T

0

∫ Lc

0
(∂t h + ∂x (hū)) δφ̃ − (∂t φ̃ + π∂t l + 1

2
|∇ϕ + u|2 + g(h + b − H0))|z=b+hδh

− h(∂t l + ū∂x l + v)δπ + (∂t (hπ) + ∂x (hūπ)) δl

+ (∂xb(∂xϕ + u) − ∂zϕ)|z=bδϕ|z=b −
∫ b(x)+h(x,t)

b(x)
(∂xxϕ + ∂zzϕ + ∂xu)δϕ dz dx

−
(
(hū)(δφ̃ + πδl)

)
|x=L−

c
+

(
(hu)(δφ̃ + πδl)

)
|x=L+

c

−
∫ b(x)+h(x,t)

b(x)
(∂xϕ + u)δϕ dz |x→L−

c
+

∫ xw

Lc

(∂t h + ∂x (hu)) δφ̃ − (∂t φ̃ + π∂t l + B)δh

− h(∂t l + u∂x l + v)δπ + (∂t (hπ) + ∂x (huπ)) δl dx dt (5.27b)

with u = ∂x φ̃ + π∂x l and v = π for x ∈ [0, xw], Bernoulli function B = (u2 +
v2)/2 + g(h + b − H0), (surface) velocity u = u(x, t) = (u, v, 0)T for x ∈ [0, xw],
depth-averaged zonal flux hū = ∫ b(x)+h(x,t)

b(x) ∂xϕ + u dz for x ∈ [0, Lc], and by using
end-point conditions δh(x, 0) = δh(x, T ) = δ(hπ)(x, 0) = δ(hπ)(x, T ) = 0 and
h(xw, t) = 0 at the moving waterline xw(t). The resulting equations of motion in
terms of the Clebsch variables, following directly from the arbitrariness of variations
in (5.27b), are:

δφ̃ : ∂t h + ∂x (hū) = 0,

δh : ∂t φ̃ + π∂t l + 1

2
|∇ϕ + u|2 + g(h + b − H0) = 0,

δπ : ∂t l + ū∂x l + v = 0,

δl : ∂t (hπ) + ∂x (hūπ) = 0,

δϕ : ∂xxϕ + ∂zzϕ + ∂xu = 0 (5.28)
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in deep water for x ∈ [0, Lc], with no normal flow ∂xb(∂xϕ + u) − ∂zϕ = 0 at the
bottom z = b, and

δφ̃ : ∂t h + ∂x (hu) =0, δh : ∂t φ̃ + π∂t l + B = 0,

δπ : ∂t l + u∂x l + v =0, δl : ∂t (hπ) + ∂x (huπ) = 0 (5.29)

in shallow water for x ∈ [Lc, xw]. Using the latter equation set and the definitions
of u and v = π , and then by differentiating the Bernoulli equation with respect to
x , it is straightforward to verify that the usual (symmetric) momentum equations
emerge, i.e., ∂t u − v∂xv + ∂x B = 0 and ∂tv + u∂xv = 0. Hence, this is a reduction
from the four equations and variables in (5.29) to three equations for three variables.
Likewise, the deep-water system (5.28) can be reduced to the variables {h, u, v, ϕ},
for details see Cotter and Bokhove (2010), Gagarina et al. (2013). The coupling
between the two systems is contained in the underlined terms in (5.27), concerning
fluxes at x = Lc that need to balance:

lim
x→L+

c

(hu) δφ̃ = lim
x→L−

c

(∫ b(x)+h(x,t)

b(x)
(∂xϕ + u)δϕ dz + hū δφ̃

)
,

lim
x→L+

c

(hu)π δl = lim
x→L−

c

hūπ δl. (5.30)

Coupling between a full, deep-to-intermediate-depth water-wave model to a
shallow-water model is only meaningful when the depth-dependence of the full
water-wave model has become sufficiently small or negligible. Hence, we assume
that at x = Lc the variations are asymptotically close such that

δl|x→L+
c

= δl|x→L+
c
, δφ̃|x→L+

c
= 1

h

∫ b+h

b
δϕ + δφ̃ dz|x→L−

c
. (5.31)

By using (5.31) in (5.30), we find that the deep-water flux is depth-independent

lim
x→L−

c

h(∂xϕ + u) = lim
x→L+

c

(hu) as well as lim
x→L+

c

(huπ) = lim
x→L−

c

(hūπ) (5.32)

Vice versa, δϕ|x=L−
c

= 0 in (5.30) leads to the shallow-water flux

hu|x=L+
c

= hū|x=L−
c
. (5.33)

These links between subsystems will be considered in the numerical coupling next.
Two different numerical techniques will be used for the two subsystems. The

extended potential-flow water-wave model will be discretised using the spatially
second-order variational technique established so far (Gidel 2018), while a classical
first-order finite-volume method will be used in shallow water, cf. Audusse et al.
(2004), Bokhove (2005). This finite-volume method can deal with breaking waves
on the beach in the form of classic hydraulic bores (Whitham 1974). The finite-
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volume method progresses the mean values of water depth and momentum forward
in time on finite elements (or rods in one dimension). Communication between the
elements is reached via a numerical flux vector F(UL ,UR)withU ≡ (h, hu, hv)T at
each face (or node in one dimension), in whichUL ,R are the limits of the mean values
to the left and right of each face. At the coupling point x = Lc, this numerical flux
needs to be determined by defining an appropriateUL based on the values of variables
in the potential-flow domain at x = L−

c , while in the finite-element potential-flow
domain, values from the shallow-water domain, i.e. UR at x = L+

c , will be used.
The finite-element weak formulation for the potential-flow is established, as in

Sect. 5.3.1, by taking variationswithout integration by parts in space, while temporar-
ily considering the shallow-water system to be continuous in space. For simplicity,
we will set l = π = v = 0 in x ∈ [0, Lc] and δl = 0 at x = L+

c in the shallow-water
domain. The weak formulation we obtain is then as follows

0 =
∫ T

0

∫ Lc

0
∂t h δφ̃ +

∫ b(x)+h(x,t)

b(x)
(∇ϕ + ∇φ̃) dz · ∇δφ̃

− δh ∂t φ̃ + (
1

2
|∇ϕ + φ̃|2 + g(h + b − H0))|z=b(x)+h(x,t)δh dx

+
∫ b(x)+h(x,t)

b(x)
(∇ϕ + ∇φ̃) · ∇δϕ dz dx +

(
(hu)δφ̃

)
|x=L+

c

+
∫ xw

Lc

(∂t h + ∂x (hu)) δφ̃ − (∂t φ̃ + π∂t l + B)δh

− h(∂t l + u∂x l + v)δπ + (∂t (hπ) + ∂x (huπ)) δl dx dt. (5.34)

Based on the arbitrariness of variations, we can take δh = δϕ = 0 and δφ̃ �= 0, such
that only the underlined terms in (5.34) remain. Coupling to the shallow-water flux
(hu)x=Lc+ is then established in the continuity equation of the potential-flow model,

cf. (5.32). Vice versa, we take UL = (
h,

∫ b+h
b ∂x (ϕ + φ̃) dz

)T |x=L−
c
in the numeri-

cal flux for the shallow-water model. The well-known HLL-approximation to the
Godunov flux is used as the numerical flux F(UL ,UR) (Bokhove 2005; LeVeque
1990). Briefly, theHLL-flux orGodunov flux uses (an approximation of) the shallow-
water characteristics u ± √

gh to establish whether information is (partially) enter-
ing or leaving the domain. Hence, providing the limiting values UL |x=L−

c
from the

potential-flowmodel does not imply a priori that these values are used. That depends
on whether the characteristic uL − √

ghL > 0 is bigger than zero, such that informa-
tion is estimated to enter the domain, or not, with hLuL = ∫ b+h

b ∂x (ϕ + φ̃)x=L−
c
dz

and hL = h|x=L−
c
, cf. (5.33). A consistent time discretisation is the partially implicit,

first-order symplectic Euler time-stepping scheme, in which the continuity equation
will be updated using a scheme implicit in the waterdepth, followed by an explicit
step in φ̃, in which the latter, explicit step the already updated value of h is used.
For details, we refer to Gidel (2018) who simplified the timestepping in the shallow-
water domain by only taking one explicit iterate of the symplectic Euler scheme into
account and with good results. In addition, the dynamic waterline at x = xw(t) is
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discretised using the technique of Audusse et al. (2004), in which the fixed numerical
shallow-water domain x ∈ [Lc, L] is extended to include an essentially dry part of
the domain, i.e. for x ∈ [xw(t), L] as long as xw < L . Only the potential-flowmodel
is then partially solved in an implicit manner. Numerical results of waves generated
by a wavemaker in the deep-water domain and dissipating by wave breaking on the
beach will be presented in the next section. For further details on the implementation
and numerical results presented next, we refer to Gidel (2018). The derivation of the
variational coupling presented here is novel and an integrated version of the ones
found in Klaver (2009), Kristina et al. (2014), Gidel (2018), for linear potential flow,
a linear Boussinesq model and a nonlinear potential-flow model coupled to non-
linear shallow-water model, respectively. Note that Gidel (2018) contains an extra,
stabilising, yet dissipative, coupling term.

5.4.1 Numerical Results: Damping of Waves on the Beach

Two simulations will be shown and interpreted in order to demonstrate the ability of
the numerical coupling strategy derived earlier.

A first simulation is shown in Fig. 5.9 for a domain with potential flow in x ∈
[0, Lc] and a shallow-water model on the beach beyond x ∈ [Lc, L] with Lc = 11
m and L = 12 m. The beach starts at x = 3 m and a piston wavemaker, oscillating
at x = R(t) with a period of T = 1.339 s, generates the waves for a finite time.
Based on linear dispersion of potential-flow water waves, the expected wave-length
is λ ≈ 2 m, as observed in Fig. 5.9. In that figure, a comparison is made between a
simulation with a solid wall at x = Lc and one with a transparant two-way boundary
with a shallow-water model allowing for energy dissipation in hydraulic bores. In the
simulation without wave breaking, standing waves occur due to the wave reflection,
while in the simulation with the beach, wave reflection is minimal and nearly only
unidirectional wave propagation occurs, towards the beach.

A long-time simulation is analysed next, involving three time intervals with wave
generation, wave equilibration and wave damping respectively. The energy balance
between the deep-water and shallow-water models as well as the total energy is dis-
played in Fig. 5.10. The wavemaker is switched on from t ∈ [0, 68.03] s. The energy
increases initially and starts to equilibrate, on average, after wave breaking com-
mences on the beach around t = 16 s. Total energy dissipation for short-wavemotion
rapidly sets in after the wavemaker is switched off. Some long-wave motion remains,
unaffacted by energy damping in the hydraulic bores, explaining why some of the
energy remains. Due to the dissipative nature of the finite-volume shallow-water
numerics, even in the absence of hydraulic bores, energy will eventually dissipate to
zero, relative to the potential energy present in the system at rest.
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Fig. 5.9 The difference between simulations with a vertical wall at x = Lc (top panel at a given
time instance) and a shallow-water model over a beach (bottom panel) where wavebreaking will
occur for x ∈ [Lc, xw(t)] is shown in three snapshots at t = (2.86, 13.86, 36.74) s. The dynamic
domain shape, topography and the free-surface are shown as well as the zonal velocity. At the
coupling point, the potential-flow model is observed to be nearly depth-independent, a posteriori
justifying the choice of the coupling at x = Lc. Figure4.4 from Gidel (2018) used with permission

5.5 Summary and Conclusions

The central theme of this chapter has been the use of classical variational principles
(VPs) for themodelling of water-waves in compatible and geometric numerical mod-
elling of these free-surface waves. Both classical water-wave modelling in a two- or
three-dimensional domain with fixed bottom and side walls as well as extensions to
problems with wavemakers and coupling to shallow-water beaches with wave break-
ing have been considered. We started with a derivation of Luke’s VP and linked the
structure of a pre-Luke VP to the standard structure of a VP in classical mechanics.
Subsequently, the domain with its moving free surface was transformed to a fixed
reference domain in which the original coordinates become time-dependent vari-
ables, essentially describing the continuous form of the mesh motion required in the
numerical modelling of water waves. We thus followed the first and third principles
stated in the introduction: that the overal dynamics satisfies a VP in the conservative
limit and that a space-time discretisation can follow “directly” from a discretisation
of this VP for the continuum dynamics. Three types ofmeshmotionwere considered,



130 O. Bokhove

Fig. 5.10 The energy partitioning between the subsystems is considered: the wavemaker operates
between t ∈ [0, 68.03] s after which time it is switched off. The wavemaker initially leads to a
(net) energy increase till wavebreaking at the beach starts to dissipate energy and the energy input
and energy loss reach a (net) balance around t = 35 s. Figure4.5 from Gidel (2018) used with
permission

including a novel version for which we derived a VP coupling water-wave dynamics
and mesh motion as the sum of the two separate VPs, cf. the second principle stated
in our introduction, stating that coupled systems can be modelled by “straightfor-
wardly” using the sum of the separate VPs. Another example of the second and third
principles concerned the coupling and discretisation of VPs for potential-flow water
waves in deep-to-intermediate-depth water coupled to breaking-wave dynamics on
a shallow-water beach.

In summary, the key reasons to adopt a variational approach have been twofold:
first, to ensure the stability, accuracy and speed of numerical discretisations by staying
close to the variational structure of the original continuum dynamics and, second, to
systematically formulate the dynamics of the coupled systems. We therefore finish
by outlining a few future directions in the area of coupled variational fluid-structure
systems, for which our variational approach has already shown to be fruitful:

• Variational and numerical coupling of water waves with wave-energy and ship
dynamics is undertaken in Kalogirou et al. (2017), Bokhove et al. (2019). Rigid
buoys and ships have been considered with translational and rotational degrees of
freedom of the solid structures.
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Fig. 5.11 Time sequence of a plunging breaker at (relative) times t = (0.0, 0.011, 0.022, 0.033,
0.044, 0.055) s. Courtesy Olivier Kimmoun, Institut de Recherche sur les Phénomènes Hors Equili-
bre (IRPHE); images taken during the laboratory tour at IRPHE, at theworkshop “BreakingWaves”,
on June 1st 2018 in Marseille, France

• Water waves have been coupled variationally to a nonlinear elastic beam repre-
senting a windturbine mast. Both this nonlinear formulation and stable variational
numerics of the linearised problem have been established (Salwa et al. 2017).

• Thevariationally coupledwave-beach dynamics has been validated inGidel (2018)
and will be analysed further in Gidel et al. (2021). A further challenge is to find a
suitable numerical discretisation of the unified potential-flow and shallow-water
model derived in Cotter and Bokhove (2010), Gagarina et al. (2013), because
the coupling point x = Lc chosen a priori in Sect. 5.4, between breaking and
nonbreaking waves, is intrinsically defined in this unified model.

• Wave slamming by breaking waves is an active topic of research but requires the
introduction of dissipative effects in the wave breaking. Plunging breakers lead
to changes in domain topology with droplets and bubbles, as seen in Fig. 5.11.
Mixed variational and dissipative approaches have been explored, using models
with (pseudo-)compressible effects, see, e.g. Salwa (2018).
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Appendix 1: Variations in Pre-Luke’s VP

While analysing the variations in (5.6), note furthermore that

∫ T

0

∫
ΩH

∫ h

0
D∂tδφ dz dx dy dt =

∫ T

0

∫
ΩH

∫ h

0
−δφ∂t D + ∂t (Dδφ) dz dx dy dt

(5.35a)

= −
∫ T

0

∫
ΩH

∫ h

0
δφ∂t D dz dx dy dt +

∫ T

0

d

dt

∫
Ωh

∫ h

0
Dδφ dz dx dy dt

−
∫ T

0

∫
ΩH

D∂t hδφ dx dy dt (5.35b)

= −
∫ T

0

∫
ΩH

∫ h

0
δφ∂t D dz dx dy dt −

∫ T

0

∫
ΩH

D∂t hδφ dx dy dt, (5.35c)

in which the volumetric contribution at t = 0 and t = T cancels, since
δφ(x, y, z, 0) = δφ(x, y, z, T ) = 0, and by assuming for the moment that Ωh is
time-independent. If Ωh is time-dependent, for example in the presence of a wave-
maker, then an extra term will emerge.
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Chapter 6
Quasi-2D Turbulence in Shallow Fluid
Layers

Herman J. H. Clercx

Abstract Flows in thin fluid layers, like in the Earth’s atmosphere or oceans, tend to
behave as quasi-two-dimensional flows. Their dynamics is strikingly different from
three-dimensional flows, and main features of the flow dynamics can be understood
by considering two-dimensional (2D) fluid flows. Inviscid 2D flows are governed
by conservation of vorticity due to absence of vortex stretching and tilting. Together
with conservation of kinetic energy this results in the famous inverse energy cas-
cade and the emergence and persistence of large-scale vortices. This also occurs in
shallow fluid-layer flows even if they are neither purely inviscid nor perfectly two-
dimensional. Basic phenomena for understanding the dynamics of 2D flows will be
discussed and 2D flows on bounded domains, mainly dealing with the large-scale
phenomenology of the flow, will be addressed: the self-organization of 2D turbulence
in confined domains and the interaction of coherent structures with domain walls.
This will be complemented with some observations from recent experiments on
quasi-2D turbulence in shallow-fluid layers including the role and impact of bottom
friction and out-of-plane motion on the flow evolution.

6.1 Introduction

Large-scale geophysical flows in the oceans and in the atmosphere basically con-
sist of a relatively thin fluid layer (with typical thickness H) with a large horizontal
extent, where we denote the horizontal length scale with L � H. Flow phenomena
on horizontal scales much larger than the thickness of the fluid layer (typically a few
kilometers deep in the oceans or 10 kmhigh in the atmosphere) behave predominantly
as two-dimensional (2D) flows. The common justification is that a small vertical
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length scale implies small characteristic vertical velocities due to mass conservation.
In shallow coastal seas, estuaries or shallow lakes with depths in the range of 10–100
m and horizontal extents of tens or hundreds of kilometers one can assume, based
on similar arguments as above, quasi-2D behaviour of large-scale flows. Even on the
level of riverine flows, aspects of the dynamics of large-scale eddies can be analysed
invoking two-dimensionality, see Uijttewaal (2014) for a recent overview. Besides
the aspect ratio of vertical and horizontal length scales some other mechanisms may
contribute to the process of two-dimensionalization of the flow. It is known that
background rotation promotes two-dimensionality which is nicely illustrated by the
Taylor-Proudman theorem (Proudman 1916; Taylor 1917). This theorem basically
states that for steady inviscid rapidly rotating flows the fluid velocity will not change
in the direction parallel to the background rotation. In the oceans the rotation of the
Earth will contribute to two-dimensionalization of large-scale flows with character-
istic horizontal length scales larger than about 100 km at low latitudes, gradually
decreasing to about 20 km at high latitudes, and in the atmosphere for flow scales
with a horizontal extent larger than typically 1000 km. In shallow coastal seas, estu-
arine flows or lakes a stable density stratification (by salinity or temperature effects
or a combination of them) suppresses vertical motion as that would enhance potential
energy content of the flow. Such flows have also a tendency to move predominantly
in the horizontal plane, thus contributing to quasi-two-dimensionality of the flow.
Note, however, that the type of two-dimensional flow is different depending on the
mechanism enforcing it: shallow and stratified flows tend to be flat because of the
constraints in the vertical while background rotation forms tall vertically-invariant
columnar structures. This leads to competing effects when combining rotation with
either shallowness or stratification; see, for example, Liechtenstein et al. (2005),
Duran-Matute et al. (2012).

Also the presence of domain boundaries might be important. Consider, for exam-
ple, closed or semi-closed basins such as the Gulf of California, the Gulf of Aden,
or in the Mediterranean the Adriatic or Tyrrhenian Sea. They reveal the existence
of arrays of vortical structures. A nice illustration of the flow in the Gulf of Aden,
visualized by phytoplankton blooms, is shown in Fig. 6.1. We can indeed observe
relatively large flow structures, including vortices with size almost the same as the
width of the Gulf of Aden. Similar patterns have been observed for the Adriatic Sea,
as reported by Falco et al. (2000), and for the Tyrrhenian Sea a few years earlier
by Buffoni et al. (1997). The energy to drive such vortical flows is mostly supplied
by the wind. Of course, one will never observe a perfect array of vortices as the wind
varies, the coastal boundaries are irregular and the bottom topography affects the
flow. Nevertheless, the basic flow phenomena, including the formation of arrays of
domain-sized vortices is inherently related to the self-organization of 2D turbulent
flows in confined (rectangular) geometries.Moreover, such arrays of vortices interact
with domain boundaries, or are perturbed otherwise, inducing unsteady wiggling of
these vortices. Such processes can lead to efficient transport and mixing of passive
tracers (such as nutrients or salt) or inertial particles.

The quasi-two-dimensionality of many geophysical and environmental flows
inspired research on the behaviour of 2D flows, including vortex dynamics and 2D



6 Quasi-2D Turbulence in Shallow Fluid Layers 137

Fig. 6.1 A winter plankton bloom in the Gulf of Aden. In the image the swirling motion of the
phytoplankton bloom in the basin-wide vortical structures is clearly visible. The image is composed
of data acquired on February 12, 2018, by the MODIS on the Aqua Satellite of NASA. Credit
NASA image by Norman Kuring, NASAś Ocean Biology Processing Group. Photograph courtesy
of Joaquim Goes, Lamont Doherty Earth Observatory

turbulence. A few examples of studies motivated by environmental flows include
turbulent wakes, large-scale flow structures and mixing processes in shallow flows
(Chen and Jirka 1995; Uijttewaal and Booij 2000; Jirka 2001), grid-generated tur-
bulence in a shallow fluid layer by Uijttewaal and Jirka (2003), and the dynamical
behavior of monopolar and dipolar vortices in such shallow turbulent flows, see Lin
et al. (2003), Sous et al. (2004), Sous et al. (2005). It has also motivated studies of
themechanisms promoting two-dimensionality by, for example, background rotation
or density stratification. Regarding the fundamental aspects of (2D) turbulence, the
reduction of dimensionality already attracted a lot of attention from a wide variety
of scientists. These investigations have been of theoretical and numerical charac-
ter, where two-dimensionality facilitates analysis and computations significantly by
exploiting the reduction of dimensionality (2D instead of 3D computations, for some
recent reviews with regard to numerical studies, see Clercx and Van Heijst (2009),
Boffetta andEcke (2012)), but also laboratory experiments turned out to be extremely
worthwhile as such flows are easily accessible for flow diagnostics. The dynamics of
vortices can be studied in rotating or density-stratified fluids, see the review by Van
Heijst and Clercx (2009), and 2D turbulence can be studied experimentally in den-
sity stratified fluids, in shallow fluid layer experiments or in soap film experiments,
see Danilov and Gurarie (2000), Tabeling (2002), Kellay and Goldburg (2002), Van
Heijst et al. (2006), Van Heijst and Clercx (2009), Clercx and Van Heijst (2009).

In this chapter the focus will be on the large-scale flow phenomenology. It will
start with a brief overview of the basic mechanisms in unbounded 2D turbulence in
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Sect. 6.2 and the role of confinement on the dynamics of 2D turbulence in Sect. 6.3.
In Sect. 6.4, the main features of the interaction of 2D vortex structures with (no-slip)
walls will be discussed. In order to make a connection once again to shallow flows,
2D turbulence experiments in shallow fluids will briefly be reviewed in Sect. 6.5. We
conclude with a brief summary of the most important observations in Sect. 6.6.

6.2 Two-Dimensional Turbulence

One of the most striking phenomena of 2D turbulence is the self-organization of
the flow. This is clearly visualized in both laboratory experiments in rotating flu-
ids, see Colin de Verdière (1980), Hopfinger et al. (1982), and in stratified fluids,
see Boubnov et al. (1994), Yap and Van Atta (1993), Fincham et al. (1996), Maassen
et al. (1999), Maassen et al. (2002). It has also been observed in shallow fluid layer
and soap film experiments, see Couder (1984), Sommeria (1986), Tabeling et al.
(1991), Kellay et al. (1995), Rutgers (1998), Rivera and Ecke (2005, 2016), and
Akkermans et al. (2008a), and in many direct numerical simulations of either freely-
evolving or forced 2D turbulence. Examples are the studies by McWilliams (1984),
Legras et al. (1988), Santangelo et al. (1989), and Boffetta (2007). In the remaining
part of this section some of the essential ingredients to understand the dynamics of
2D turbulence will be introduced.

6.2.1 Inertial Ranges in 2D Turbulence

One of the most striking differences between 2D and 3D turbulence concerns the
weakly dissipative and self-organizing character of 2D turbulent flow compared to
the highly dissipative character of 3D turbulence. Consider, for example, a simulation
of freely-evolving 2D turbulence, where the flow field is initialized with a random
vorticity field; see McWilliams (1984). This initial vorticity field does not contain
any coherent vortex structures. During the evolution of the flow field from this ini-
tial vorticity distribution, large and approximately axisymmetric vorticity patches
emerge as a result of subsequent vortex mergers. The typical lifetime of these vor-
tices turns out to be long compared with the typical flow advection time scale. This
self-organization process basically consists of transfer of kinetic energy from the
smaller scales of the flow towards larger scales (merging of like-signed vortices)
together with vorticity transport to the smaller scales. One can recognize the latter
process as the elongation of vorticity filaments in between larger coherent structures.
More recently, taking advantage of the increase in computing capabilities, (Boffetta
2007) illustrated this process with an extreme high-resolution simulation of forced
2D turbulence: the flowwas forced at some intermediate length scale, and the kinetic
energy supplied at the forcing length scale was transported almost completely to the
larger and even domain-size scales (a process known as the inverse energy cascade).
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Simultaneously, the enstrophy was transported downscale, in what we call the direct
enstrophy cascade, to the viscous dissipation range. This is in agreement with the
observation byMcWilliams (1984) and both cascade ranges where already predicted
by Kraichnan (1967, 1971).

From a phenomenological point of view the presence of an inverse energy cascade
and a direct enstrophy cascade can be illustrated in the following way. The motion
of an incompressible fluid with viscosity ν and density ρ in a plane is described by
the 2D velocity field v(r, t) = (u, v), with u and v its Cartesian components, and
r = (x, y). The velocity field should satisfy conservation of mass,

∇ · v = ∂u

∂x
+ ∂v

∂y
= 0 . (6.1)

Conservation of momentum is expressed by

∂v
∂t

+ (v · ∇)v = − 1

ρ
∇p + ν∇2v, (6.2)

where we assume that the flow is freely decaying (no injection of energy by external
forcing). With the vorticity ω defined as ω = ∂v

∂x − ∂u
∂y , we can reformulate Eq. (6.2)

into the vorticity equation

∂ω

∂t
+ (v · ∇)ω = ν∇2ω. (6.3)

Define the kinetic energy E of the 2D flow as

E = 1

2

∫
D

|v|2d A =
∫

E(k)dk, (6.4)

with D the flow domain of interest, d A an infinitesimal area element of D, E(k) the
energy spectrum and k the wave number. The enstrophy Ω is defined as

Ω = 1

2

∫
D

ω2d A =
∫

k2E(k)dk. (6.5)

For the inviscid regime (ν = 0), the kinetic energy is conserved (no dissipation), and
the vorticity of a fluid element is also conserved as the vorticity Eq. (6.3) reduces to
Dω
Dt = ∂ω

∂t + (v · ∇)ω = 0. The latter conservation law also means that any function
of the vorticity should be conserved too, thus also the enstrophy must be conserved
for inviscid 2D flows. Suppose initially a Gaussian shape of the energy spectrum
E(k) which should broaden in time. However, broadening of the energy spectrum
E(k) with satisfying both conservation of energy and enstrophy (see Eqs. (6.4) and
(6.5)), is only possible when the maximum of the spectrum shifts to lower wave
numbers, and energy accumulates in larger-scale structures.
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Fig. 6.2 Schematic representation of the inertial ranges in forced 3D turbulence with the direct
energy cascade (left), and forced 2D turbulence with both the inverse energy cascade and the direct
enstrophy cascade (right). The energy fluxes are denoted by ε (to large wave numbers in 3D and
small wave numbers in 2D turbulence) and the enstrophy flux is denoted by ζ (to large wave
numbers). The forcing wave number k f is at the largest scales for the 3D case, but at intermediate
scales for 2D turbulence; kd denotes the dissipation wave number

The processes described above are in strong contrast with our experiencewith cas-
cade processes in homogeneous and isotropic 3D turbulence. In 3D flows, processes
like vortex stretching and tilting are present, playing a crucial role in the transfer of
kinetic energy from large to small scales in the flow. In 2D flows, these two mecha-
nisms are absent as the vorticity vector is always perpendicular to the plane of flow.
In the 3D case, kinetic energy injected at a certain scale (mostly at large scales) is
thus transported downscale via the inertial range to the smallest (Kolmogorov) scales
where kinetic energy is dissipated.

Summarizing, in 2D turbulence kinetic energy is transported to and collected at
the large scales of the flow, the coherent vortex structures. Onsager (1949), Fjørtoft
(1953) already predicted on theoretical grounds the emergence of large-scale coher-
ent vortices in 2Dflows. In 3D turbulence kinetic energy is transported downscale and
is being dissipated, see a schematic sketch of these processes in Fig. 6.2. This differ-
ence is responsible for many exciting, and at first sight, somewhat counter-intuitive
phenomena that can be observed in large-scale quasi-2D flows.

6.2.2 2D Turbulence: The Early Years

Systematic investigations of homogeneous and isotropic 2D turbulence from a the-
oretical point of view, and also the first numerical attempts to simulate 2D turbu-
lence, started some 50 years ago by Kraichnan (1967), Leith (1968), and Batchelor
(1969). Kraichnan (1967) in his seminal contribution introduced a formal derivation
of the scaling of the energy spectrum E(k). He assumed conservation of energy
and enstrophy only (in the inviscid limit), and based on that, he proposed for 2D
forced turbulence the existence of a dual cascade which are known as the inverse
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energy cascade and the direct enstrophy cascade. For the inverse energy cascade,
assuming constant energy flux and no enstrophy flux, he found in the inertial range
E(k) ∼ ε2/3k−5/3. Here, ε is the constant rate of cascade of kinetic energy per unit
mass and the expression is valid for kL � k � k f with k f the wave number at which
forcing takes place (injection of energy) and kL a representative wave number for
the large-scale coherent structures. The proposed scaling looks very similar to the
Kolmogorov scaling of the energy spectrum in the inertial range of 3D turbulence,
but one should realize that the flux in the 3D case is in opposite direction, towards the
small dissipative scales. For the inertial range of the direct enstrophy cascade, assum-
ing a constant enstrophy flux and absence of an energy flux, he found a scaling of the
spectrum according to E(k) ∼ ζ 2/3k−3. In this case, ζ is the constant rate of cascade
of mean-square vorticity, and the expression is valid for k f � k � kζ with kζ the
enstrophy dissipation scale. See Kraichnan (1971) for a discussion of a logarithmic
correction to the energy spectrum in the direct enstrophy cascade range. Numerical
simulations of forced 2D turbulence have been carried out since the prediction of the
dual cascade, many providing supporting evidence for the dual cascade. As already
mentioned before, the extreme high-resolution simulation by Boffetta (2007) has
shown convincingly the existence of the dual cascade.

The analysis by Kraichnan (1967) concerned forced 2D turbulence. A few years
after Kraichnan’s contribution it was (Lilly 1971) who addressed 2D decaying (or
freely-developing) turbulence with numerical simulations. One of his motivations
was to confirm Kraichnan-Leith-Batchelor (KLB) theory, but also to test Batchelor’s
results on the time-dependent behavior of the kinetic energy E(t), enstrophyΩ(t) and
the palinstrophy P(t) = 1

2

∫
D |∇ω|2d A ≥ 0 for decaying flows. From the Navier-

Stokes equation for flows with finite viscosity ν one can rather straighforwardly
derive the following relations, valid for freely-evolving flows on an unbounded or
on a periodic domain:

dE(t)

dt
= −2νΩ(t) and

dΩ(t)

dt
= −2νP(t). (6.6)

Since the enstrophy and palinstrophy should always be positive (or zero), we can
directly conclude that both the energy E(t) and the enstrophy Ω(t) should decrease
in course of time for decaying 2D turbulence. We can also conjecture that the enstro-
phy is always bounded by its initial value as P(t) ≥ 0. In a natural way we then
see that dE(t)

dt → 0 for ν → 0. The study by Lilly (1971) indeed confirmed a few
results from KLB theory, such as the k−3 scaling of the direct enstrophy cascade
and the following asymptotic decay relations for t → ∞ predicted by Batchelor
(1969): E(t) ∝ t−1, Ω(t) ∝ t−2, and P(t) ∝ t−3. However, many numerical stud-
ies employing higher resolutions gave deeper insights into both the scaling of the
direct enstrophy cascade as the time behavior of energy, enstrophy, and palinstro-
phy. First of all, in the 1980s quite some evidence emerged about the presence of
quite persistent weakly dissipative coherent vortices and the existence of a kind of
quasi-steady equilibrium states, see, for example, Fornberg (1977), Matthaeus and
Montgomery (1980) and Basdevant et al. (1981), and the already mentioned study
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by McWilliams (1984). It was observed that the direct enstrophy cascade occurs as
a transient state and often the spectrum steepened considerably, typically showing a
k−5 scaling behavior (McWilliams 1984; Santangelo et al. 1989). Also a very-high
resolution (40962 grid points) simulation of decaying 2D turbulence by Bracco et al.
(2000) revealed a spectrum with a slope steeper than k−3. Prime suspect of this
behavior are the weakly dissipative coherent structures emerging during the decay
process (destroying scale invariance); see Santangelo et al. (1989).

6.2.3 Coherent Structures and 2D Turbulence

Keeping the observations with regard to the scaling of the energy spectrum in the
enstrophy cascade, and its possible cause, in mind several attempts have been under-
taken to analyse theoretically and numerically the temporal evolution of the hierar-
chy of coherent vortices in such 2D decaying turbulent flows (Carnevale et al. 1991,
1992; Weiss and McWilliams 1993). In the scaling theory proposed by Carnevale
et al. (1991), Carnevale et al. (1992) the time evolution of a few quantities have been
derived. The vortex density ρ(t) ∝ t−χ , the average vortex radius r(t) ∝ t−χ/4, the
average vortex separation d(t) ∝ t−χ/2 and the average enstrophy Ω(t) ∝ t−χ/2,
with χ undetermined. With numerical simulations the value χ ∼ 0.72 − 0.75 has
been found, see Carnevale et al. (1992) andWeiss andMcWilliams (1993). With this
value it turns out that Ω(t) ∝ t−0.36 and ρ(t) ∝ t−0.72. These scaling relations are
remarkably different compared to the predictions by Batchelor (1969) who obtained:
Ω(t) ∝ t−2 and ρ(t) ∝ t−2. The high-resolution simulation by Bracco et al. (2000)
confirmed the scaling relation for the enstrophy as predicted by the approach of
Carnevale and coworkers. They actually found the same exponent for the long-time
behavior of the enstropy:Ω(t) ∝ t−0.36. In recent decadesmanymore detailed studies
have been reported, see Clercx and VanHeijst (2009) for an overview and references.

From this overview it seems quite evident that the presence of coherent structures
in decaying 2D turbulence modifies the KLB-picture. In particular, scaling theories
for the vortex population do not support the scaling theory put forward by Batchelor
(1969) and the prediction of the scaling of the direct enstrophy cascade in decaying2D
turbulence (in contrast to forced 2D turbulence) is not always confirmed by numerical
studies. A final issue concerns the so-called quasi-equilibrium final states. The sea
of small-scale vortices will eventually evolve towards a final state by continuous
merging processes, see Matthaeus andMontgomery (1980) andMcWilliams (1984).
Several studies with very-long time integrations have shown that eventually one
large-scale dipolar quasi-equilibrium state will emerge (for decaying 2D Navier-
Stokes turbulence on a square periodic domain), see Matthaeus et al. (1991).
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6.3 2D Turbulence in Square, Rectangular and Circular
Domains

Three-dimensional homogeneous and isotropic turbulence is an extremely valuable
concept for studies of more general 3D turbulent flows. Although homogeneity and
isotropy can be broken by the presence of the boundaries or by the forcing, they
are quickly restored when going to smaller length scales. It is this assumption that
underlies the Kolmogorov scaling of the energy spectrum in the inertial range. This
means that for many fundamental studies, for example on turbulent mixing and
inertial particle dispersion on length scales compatible with the inertial range, it may
be sufficient to consider the relatively clean case of homogeneous and isotropic 3D
turbulence.With the presence of an inverse energy cascade in 2D turbulence, without
an energy sink at scales smaller than the domain size, energy is fed into the largest
accessible scale. This implies direct interaction of energy-rich eddieswith the domain
walls, and in the case of no-slip boundary conditions these walls serve as a source of
vorticity, even in the freely evolving case (without forcing). This is in strong contrast
with 2D freely evolving unbounded (homogeneous and isotropic) turbulence. In that
case the enstrophy is necessarily bounded by its initial value, see Batchelor (1969),
and no vorticity sources are present.

One of the most striking differences between freely decaying 2D turbulence on a
periodic domain and a similar decay process on a 2D confined domain is the shape
of the quasi-steady final state. As already mentioned, this quasi-stationary final state
on a periodic domain is basically a dipolar vortex, a structure with a patch of positive
and a patch of negative vorticity (although under certain conditions exceptions may
occur but are quite exceptional). For a square domain with walls, either free-slip (in
case of inviscid flows), no-slip or stress-free (the latter two for flows with viscous
effects included; the stress-free casewill not be discussed here), the quasi-steady final
state is different and are generally not a dipolar structure. A variety of statistical-
mechanical approaches have been used for the analysis of final states of inviscid flows
on confined domains; see Montgomery and Joyce (1974), Pointin and Lundgren
(1976), and Chavanis and Sommeria (1996). Typical final states are a monopolar
vortex on a square domain (Pointin and Lundgren 1976), a symmetric dipole, an
asymmetric dipole or a monopole on a circular domain (depending on the control
parameter Λ = Γ/

√
2E , with Γ the circulation and E the energy; see Chavanis and

Sommeria (1996) for details), and a large ellipsoidal or two counter rotating vortices
in a rectangular domain with length-to-width ratio of two (with a similar control
parameter; see Chavanis and Sommeria (1996)).
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6.3.1 Simulations of 2D Turbulence in Domains with No-Slip
Walls

From now on, we will consider decaying 2D Navier-Stokes turbulence on confined
domains with no-slip walls, which was the natural next step towards flows with
realistic boundary conditions and, moreover, experimentally accessible flow config-
urations (Li andMontgomery 1996; Li et al. 1997; Maassen et al. 1999, 2002, 2003;
Clercx et al. 1998, 1999, 2001; Schneider and Farge 2005, 2008; Keetels et al. 2010;
Fang and Ouellette 2017).

We first focus on the quasi-steady final states. Here, some care is needed as
the final state is always cessation of any flow. However, at an earlier stage during
the decay process small-scale features are dissolved due to merging processes and
sometimes disappear due to viscous dissipation. At a later stage, one final structure
remains and is rather persistent for a very long time. This is what we call the quasi-
steady final state. Some observations from both laboratory experiments of decaying
quasi-2D turbulence in stratified fluids (Maassen et al. 1999, 2002, 2003) and direct
numerical simulations (Clercx et al. 1998, 1999, 2001) with regard to the so-called
quasi-steady final states are the following. In square containers, we found mostly a
monopolar final state, and when the initial flow was more energetic, a tripolar state
is found. The latter state is basically the result of the interaction of a rapidly rotating
monopolar vortex that generates strong boundary layers at the no-slip wall. These
boundary layers detach, roll up and form the satellite vortices. The minority of the
end states in the numerical simulations had a dipolar-like character. Maybe the most
remarkable result has been the phenomenon of spontaneous spin-up of the flow that
initially had no angular momentum (Clercx et al. 1998). The higher the Reynolds
number the more likely is spin-up to occur, with about 50% of the runs having a final
state with clockwise rotation and the rest having counter-clockwise rotation (Keetels
et al. 2010).

Spontaneous spin-up can be quantified by measuring the time evolution of the
angular momentum L(t) contained by the flow. The angular momentum is defined
as

L(t) =
∫
D
ẑ · (r × v(r, t))d A, (6.7)

with ẑ the unit vector normal to the plane of flow, the origin of the coordinate system
(x, y) in the center of the container, and r the position vector. In the numerical
experimentsmentioned above, the angularmomentum at t = 0was negligible, L(t =
0) = L0 = 0. The rate of change of angular momentum can straightforwardly be
determined by taking the time derivative of Eq. (6.7) and substituting the Navier
Stokes Eq. (6.2) into the resulting expression for dL

dt . It yields the following integral
(in dimensionless form) over the boundary ∂D of the domain,

dL

dt
=

∫
∂D

p(r, t)r · ds + 1

Re

∫
∂D

ω(r, t)(r · n̂)ds. (6.8)
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Here, n̂ is a unit vector normal to the boundary, ds is an infinitesimal boundary
element (tangential to the boundary) and ds its magnitude. This relation clearly
shows that angular momentum production is due to a pressure contribution (inviscid)
and a viscous contribution proportional to the vorticity generated at the boundary.
The pressure contribution turns out to be the dominant term in the range of Reynolds
numbers considered in the experiments and simulations. More extensive discussions
on this phenomenon can be found in (Clercx et al. 1998; Clercx and Van Heijst 2009;
Keetels et al. 2010).

In the experiments mentioned above and inmost of the numerical studies, the inte-
gral scale Reynolds number Re = Urms L/ν (based on the initial root-mean-square
velocity Urms , the size of the container L , and the fluid kinematic viscosity ν) is
relatively low. In the experiments, 1000 � Re � 2000, and in the numerical simula-
tions, we typically have 1000 � Re � 5000, with a very few cases with Re = 104 or
2 × 104. Themore recent numerical simulations by Keetels et al. (2010) were carried
out with significantly higher initial large-scale Reynolds number, up to Re = 105. In
Fig. 6.3, we show a typical evolution of decaying 2D turbulence on a square domain
with no-slip rigid walls. The initial flow field consisted of an almost regular array of
10 × 10 Gaussian vortices. The positions of these vortices are all slightly disturbed
to give the evolution a kick-start towards a fully turbulent flow. The quasi-steady final
state that emerges after about 400 initial eddy turnover times is basically a relatively
strong, but also relatively small monopolar vortex embedded in a large-scale swirling
flow. Also several smaller vortices are embedded in this swirling background flow,
and these vortices are mostly the result of detachment and roll up of boundary layers
containing high-amplitude vorticity.

During the decay process the impact of the no-slip walls is large: many relatively
small or even tiny vortices can be observed in each of the panels of Fig. 6.3. These
small vortices are almost all generated at the no-slip walls, signifying a crucial
difference between 2D decaying spatially unbounded turbulence and 2D decaying
confined turbulence. It affects the vortex statistics, which is discussed in more detail
in (Clercx and Van Heijst 2009), and also the enstrophy production and decay rate
significantly. To illustrate the different decay scenarios, we show in Fig. 6.4 two
snapshots from simulations starting with exactly the same initial conditions. The left
panel shows the result with no-slip walls and the right panel those with periodic
boundary conditions (Keetels et al. 2010).

6.3.2 Quasi-Steady Final States: Laboratory Experiments

Quasi-steady final states can also be explored in laboratory experiments. Here, and
as a typical illustration, the decay scenarios of quasi-2D turbulence in laboratory
experiments, carried out in a two-layer stratified fluid in circular containers (for
experimental details, see Maassen et al. (1999)), are briefly discussed. See also Yap
and Van Atta (1993) and Fincham et al. (1996) for similar experiments a few years
earlier. Two sets of experiments in cylindrical containers have been carried out by
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Fig. 6.3 A few vorticity snapshots showing the process of spontaneous spin-up. The Reynolds
number of the simulation is Re = 5 × 104. The snapshots are taken at τ = 8, 24, 100 and 400 eddy
turnover times (with τ = 1 corresponding to the initial eddy turnover of the initial vortices). The
initial flow field consisted of an array of 10 × 10 vortices with positions slightly distorted to enhance
the rapid evolution towards an irregular turbulent flow field. For computational details, see Keetels
et al. (2010)

Maassen and collaborators, all in the spirit of (Li and Montgomery 1996; Chavanis
and Sommeria 1996): a set with initially hardly any swirl (L0 ≈ 0) and a set with
an initial condition with considerable swirl (L0 �= 0). The initial flow was generated
by dragging a rake through the stratified fluid. At a large enough towing speed the
wake behind each bar becomes turbulent, thus generating a turbulent initial flow
field. Symmetric rakes result in L0 ≈ 0, and asymmetric rakes result in L0 �= 0,
see Maassen et al. (1999) for details. The Reynolds number of the (initial) flow,
now defined as Re = Urms R/ν with R the radius of the container, is Re ≈ 4000.
The experiments with L0 ≈ 0 show the classical decay process. The small vortices,
generated by initializing the flow, start the merge quickly with like-sign counterparts
and the flow evolves towards a quadrupolar state. This evolution is due to a permanent
interaction of the flow with the rigid circular no-slip walls. Finally, a more or less
quasi-steady dipolar final state appears. The other set of experiments, with L0 �=
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Fig. 6.4 Vorticity snapshots, taken at dimensionless time τ = 15, from a simulation with no-slip
rigid walls (left panel) and a simulation with periodic boundary conditions (right panel). The initial
conditions were exactly the same for both numerical experiments and in both cases: Re = 105. Dark
and light grey represent positive and negative vorticity, respectively. Courtesy Keetels et al. (2010)

0, show basically a similar initial decay stage, but due to the swirl, a large-scale
monopolar vortex forms instead of a quadrupolar or dipolar state. This monopolar
vortex easily slides along the circular rigid walls, and less boundary-layer vorticity
is produced in this case (compared to the square container). The experimental results
are in very good agreement with the numerical simulations by Li et al. (1997).
The experimentally observed quasi-steady states agree remarkably well with the
predictions byChavanis andSommeria (1996) for inviscid flows in confineddomains:
a dipole when initially the circulation is zero, and a monopole when the initial
condition contains circulation.

These experiments of decaying 2D turbulence in circular domains show that for
L0 ≈ 0 the quasi-steady final state is a quadrupolar or dipolar structure, thus no spon-
taneous spin-up. Absence of spontaneous spin-up on circular domains was confirmed
later on in numerical studies by Schneider and Farge (2005). This can be understood
using Eq. (6.8). In circular domains, the pressure contribution to the production of
angular momentum vanishes as (r · n̂) = 0, thus the dominant term vanishes for this
particular geometry. The domain shape is thus relevant in determining the quasi-
steady final state by flow-wall interaction.

In a similar spirit, laboratory experiments in two-layer density stratified fluids and
numerical simulations have been carried out to explore the quasi-steady final states
of 2D decaying turbulence in rectangular containers with aspect ratios δ = L/W ,
with L the length and W the width of the container, varying from δ = 2 to δ = 5
(Maassen et al. 2003). The number of vortices N f in the final quasi-steady cell pattern
is in most experiments either N f = δ or N f = δ ± 1. This is not fully surprising,
and is consistent with observations as shown in Fig. 6.1 for the gyres in the Gulf of
Aden and the number of vortices observed in the Adriatic Sea. Another observation
concerned the comparison of the present results, for the case δ = 2, with results
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of the quasi-steady final states in inviscid flows in domains with the same aspect
ratio; see Pointin and Lundgren (1976) and Chavanis and Sommeria (1996). A clear
discrepancy was reported which most likely is due to the role of the boundary layers
present in the experiments but absent in the case of inviscid flows.

6.3.3 Forced 2D Turbulence on Confined Domains

The discussion above focuses solely on decaying 2D turbulence. However, the for-
mation of domain-size monopolar vortices has also been observed in forced 2D
turbulence in square domains. Both in experiments, see Sommeria (1986) and Paret
and Tabeling (1998), and in numerical studies, see Molenaar et al. (2004) and Van
Heijst et al. (2006). In particular the experimental study by Sommeria (1986) and
numerical results reported by Van Heijst et al. (2006) revealed reversals of the swirl
of the large-scale monopolar vortex. The time between reversals is orders of magni-
tude longer than the time scale needed for a reversal to occur, which is of the order
of a few large-scale eddy turnover times. The initialization of these reversals was
attributed to destabilizing disturbances such as small strong eddies (Sommeria 1986)
but their origin was not entirely clear. In numerical studies of forced 2D turbulence
in square domains with rigid no-slip sidewalls, with similar forcing length scale as
the experiments by Sommeria, it became clear that the disturbances originate from
formation and detachment of the boundary layers at the sidewall and subsequent
roll up of the boundary-layer filaments into small strong vortices (Van Heijst et al.
2006). When strong enough, they may destabilize and potentially disintegrate the
large-scale monopolar vortex. A new large-scale vortex will quickly build up after
this event, with same or opposite rotation sense. As an illustration of this process
three consecutive snapshots of the vorticity field from a forced 2D turbulence sim-
ulation in a square confined domain with no-slip sidewalls, provided by Molenaar
et al. (2004), are shown in Fig. 6.5. The integral-scale Reynolds number of this sim-
ulation was approximately 3000. The snapshots are taken just before the collapse,
during the collapse stage and just after it, when once again a domain-filling monopo-
lar vortex has formed (with opposite sign vorticity in this case). The lower panel
shows the normalized angular momentum computed according to Eq. (6.7) of the
same run. It clearly shows the existence of domain-filling monopolar vortices over
many turnover times and the collapse stages of relative short duration. Note that the
vorticity snapshots in Fig. 6.5 are taken at t = 800, 900 and 1000, respectively. This
kind of phenomena is a clear manifestation of the impact of rigid no-slip sidewalls
on the dynamics of 2D turbulence.
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L n
(t)

t →

Fig. 6.5 Snapshots of the vorticity evolution from a forced 2D turbulence simulation in a square
domain with no-slip walls. The snapshots are taken just before (left panel, t = 800) and just after
(right panel, t = 1000) the sign reversal of a large monopolar vortex. The panel in the middle
(t = 900) is taken during the collapse stage. Large negative values of vorticity are indicated with
black, and white indicates large positive values of vorticity. The lower panel shows the normalized
angular momentum of the flow in the square box, showing distinct phases of spin-up with collapse
stages in between. Normalization is done with the angular momentum of uniform rotation with the
same energy content E(t) as the actual flow field. Courtesy Molenaar et al. (2004)

6.4 Interaction of Vortices with Walls

In the previous section, we have discussed the large-scale flow structures emerging
during the decay of 2D turbulence in confined domains. There was a clear impact
of the presence of rigid walls and the domain geometry on the quasi-stationary final
states. However, we could also observe during the decay process the formation of
many small-scale vortices containing high values of vorticity; see Figs. 6.3 and 6.4.
The production of these small-scale vortices by detaching boundary layers also has
a strong impact on the vortex statistics and the time evolution of the vortex density,
vortex separation and the enstrophy is strongly affected when rigid no-slip walls are
present. See for a further discussion of this particular aspect (Clercx and Van Heijst
2009). Such small-scale vortices might also be the cause of reversals of large-scale
vortical structures in 2D forced turbulence in confined domains.

6.4.1 No-Slip Walls as Vorticity Sources

The formation of small-scale vortices near rigid no-slip walls indicate that flow-wall
interactions are relevant for 2D turbulence in confined domains. It is expected that
the larger and stronger the vortices, the larger their impact on the evolution of 2D
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t = 0.2 t = 0 .3 t = 0 .3278

t = 0.4 t = 0 .5 t = 0 .6

t = 0.7 t = 0 .8 t = 1 .0

Fig. 6.6 Sequence of vorticity contour plots showing the flow evolution of a dipole-like vortex
colliding with a rigid no-slip wall. The integral-scale Reynolds number, based on the initial speed
and radius of the dipole, is Re = 2500. Courtesy Kramer et al. (2007)

turbulence. This is, in particular, due to the production of more intense boundary
layers, that once again detach and create new strong vortices that travel to the inte-
rior. In other words, the rigid walls serve as a source of enstrophy, and this also
implies enhanced dissipation of kinetic energy. One of the open questions here is
what happens in the limit of vanishing viscosity, or in other words: what will happen
when Re → ∞? Will there be a finite dissipation in the inviscid limit for 2D flows
in confined geometries?

A variety of approaches can be used to tackle this problem. One of these is the
dipole-wall collision experiment, see Fig. 6.6, which has recently been reviewed
by Clercx and Van Heijst (2017). In particular, one can explore how vorticity pro-
duction during a vortex-wall collision is enhanced and how this affects the dissipation
of kinetic energy. For this purpose we need to introduce a slightly revised version
of the evolution equation of the enstrophy, which was introduced in Sect. 6.2 for the
unbounded or periodic domain. For domains bounded with no-slip walls we need to
add an additional term, a boundary integral, yielding
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dΩ(t)

dt
= − 2

Re
P(t) + 1

Re

∫
∂D

ω
∂ω

∂n
ds, (6.9)

with ∂
∂n the wall-normal derivative and ds an infinitesimal element of the boundary

∂D. The time rate of change of the enstrophy is expressed in dimensionless form.
The boundary integral may substantially increase the enstrophy at some instants of
time, in such a way, that as a net effect, enstrophy is produced during vortex-wall
collisions. Although the time rate of change of the kinetic energy will keep the same
form, here in dimensionless quantities written as

dE(t)

dt
= − 2

Re
Ω(t), (6.10)

the persistence of enstrophy, or even the increase of enstrophy, will automatically
imply stronger decay of the kinetic energy of the flow. Note that for 2D decay-
ing flows on periodic domains the enstrophy is always bounded by its initial value
(Batchelor 1969), thus the dissipation will reduce to zero in the inviscid limit, or:
dE(t)
dt ∝ Re−1 → 0 for Re → ∞. The question to be answered is whether the enstro-

phy production scales with the Reynolds number, which might be expected as the
boundary layers generated during the vigorous vortex-wall collisions contains large
amount of vorticity. Suppose that Ω ∝ Reα for Re → ∞. This would imply

dE

dt
= − 2

Re
Ω ∝ Reα−1 . (6.11)

Obviously, when the enstrophy does not scale with the Reynolds number, or α = 0,
the original result is retrieved: dEdt → 0whenRe → ∞. In the case thatα = 1, orΩ ∝
Re for Re → ∞, we end up with constant energy dissipation in the inviscid limit,
reminiscent to 3D turbulence. Some recent works have indeed indicated that α �= 0,
but debate exists about its precise value and its potential implications; see Clercx and
Van Heijst (2002, 2017), Sutherland et al. (2013), and Nguyen van yen et al. (2011,
2018), and values for α are found in the range 0.5–1.0.

6.4.2 Vorticity Production by Dipole-Wall Collisions

Exploration of vorticity production at walls is based on numerical experiments of
dipole-wall collisions with a rigid flat wall (with no-slip boundary conditions), as
for the first time investigated by Orlandi (1990). The original motivation of this kind
of studies were related to the problem of trailing vortices from aircraft, which will
interact with the ground during landing and take-off resulting in vortex rebounds.
Later on, the mechanism for inviscid dipole-vortex rebounds became also a topic of
interest in the geophysical flow community. There, vorticity production by stretching
of vortex tubes in the presence of a sloping bottom in the coastal zone could be
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Re=10000

t = 0.4 t =0 .5 t =0 .6 t =0 .7

Fig. 6.7 Sequence of vorticity contour plots illustrating the flow evolution during a dipole-wall
collision for Re = 5 × 103 (top panel) and Re = 104 (bottom panel). The plots only show the right-
hand side part of the domain as the dipole-wall collision is symmetric with regard to the dipole axis,
see also Fig. 6.6. Courtesy Kramer et al. (2007)

used to parameterize aspects of 3D vortex dynamics for a 2D description of the
inviscid rebound process (Carnevale et al. 1997). The complexity of dipole-wall
collisions, with vortex rebounds already for relatively low Reynolds numbers, is
nicely illustrated in Fig. 6.7. A brief review with regard to dipole-wall collisions is
provided by Clercx and Van Heijst (2017).

First numerical observations of Reynolds-number dependency of enstrophy pro-
duction during dipole-wall collisions were reported by Clercx and Van Heijst (2002).
They revealed that Ω ∝ Re0.8 for Re � 2 × 104 and Ω ∝ Re0.5 for Re � 2 × 104,
with the Reynolds number based on the radius of the dipole Rd , and its self-
induced traveling speed Ud . The scaling of the enstrophy implies dE

dt ∝ Re−0.2 and
dE
dt ∝ Re−0.5 for the respective regimes. This scaling behavior turned out to be inde-
pendent of the collision angle of the dipole with the rigid wall. A simple scaling
analysis for the large-Reynolds number regime (where Ω ∝ Re0.5) is based on the
following balance at the flat rigidwall (chosen parallel with the x− axis of a reference
frame),

− ν
∂ω

∂y
|wall = 1

ρ

∂p

∂x
|wall, (6.12)

which can directly be obtained from the Navier-Stokes equation. In the following,
we assume that the boundary layer remains laminar (but unsteady), an assumption
that eventually may break down at much higher Reynolds number values. When we
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assume that the pressure distribution along the boundary is finite, we may imme-
diately conclude from Eq. (6.12) that ∂ω

∂y |wall = O(Re) for large Reynolds number
values. The boundary-layer thickness δ scales according to Prandtl’s prediction:
δ ∝ Re−1/2. This immediately implies, using the predicted scaling of the vorticity
gradient normal to the wall, that ω|wall ∝ √

Re. Provided that the Reynolds num-
ber is large enough (here Re ≥ 2 × 104), we can expect that the total enstrophy
and palinstrophy in the flow will be dominated by the vorticity and vorticity gra-
dient values in the boundary layer itself. We can then easily derive the following
estimates: Ω ∝ Rdδω

2|wall ∼ Rd

√
Re. For the palinstrophy we can derive in a sim-

ilar way: P ∝ Rdδ(
∂ω
∂y )2|wall ∼ RdRe

√
Re. This is consistent with the scaling of the

palinstrophy reported by Clercx and Van Heijst (2002): P ∝ Re1.5 for Re � 2 × 104

and P ∝ Re2.25 for Re � 2 × 104. It is interesting to note that a scaling analysis for
Re � 104 by Keetels et al. (2011) provided similar scaling exponents, Ω ∝ Re3/4

and P ∝ Re9/4 (compared to Re0.8 and Re2.25, respectively, found by Clercx and Van
Heijst (2002)).

In recent years, a few more studies emerged addressing the possible existence of
extremely thin dissipation layers near the rigid wall, including the possible presence
of a slip-velocity at the rigidwall (Nguyen van yen et al. 2011, 2018; Sutherland et al.
2013). Nguyen van yen et al. (2011) did a first attempt, based on a similar dipole-
wall collision experiment as discussed above, to explore a possible Re-independent
energy dissipation rate. In other words, they explored the possibility of the exis-
tence of dE

dt → χ for Re → ∞ with χ < 0 and constant. Such behavior would be
in sharp contrast with the standard result for 2D decaying turbulence in unbounded
(or periodic) domains. In their analysis they complemented Prandtl’s boundary layer
argument with some theorems put forward by Kato (1984) on the dissipation rate in
the vanishing viscosity limit and showed two scaling regimes for the enstrophy. For
the early stage and initial collision stage they found Ω ∝ Re0.5 and during the colli-
sion stage (and boundary-layer detachment) they found Ω ∝ Re. The latter regime
implies indeed finite kinetic energy dissipation at ever larger Reynolds numbers.
These results were subsequently critically examined by Sutherland et al. (2013) who
provided supporting evidence of the earlier predicted scaling relation: dE

dt ∝ Re−0.5.
We should however emphasize that the studies by Nguyen van yen et al. (2011)
and Sutherland et al. (2013) do not actually extend the range of Reynolds numbers
compared to (Clercx and Van Heijst 2002; Keetels et al. 2011). Therefore, we should
still be careful to come to strong conclusions applicable for the vanishing viscosity
limit.

The discussion on the dissipation rate in the vanishing viscosity limit is still
ongoing; see Nguyen van yen et al. (2018). Moreover, the analysis presented so
far are based on laminar Prandtl boundary layer theory and possible implications
of boundary-layer detachment, but no deeper analysis is available for the case the
boundary layers become fully turbulent, a scenario that is expected to become impor-
tant when Re is further increased.
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6.5 Review of 2D Turbulence Experiments in Shallow
Fluids

In environmental flows, such as in estuaries and rivers (Uijttewaal 2014), suppression
of vertical motion and subsequent quasi-two-dimensionalization occurs predomi-
nantly by the shallowness of the flow domain. Planetary rotation is almost irrelevant
on these scales and density stratification is mostly not important (but not excluded
in certain cases). For this reason shallow flow experiments have been used to study
aspects of quasi-2D turbulence (Chen and Jirka 1995; Uijttewaal and Jirka 2003) and
dynamics of coherent structures in shallow flows, including secondary out-of-plane
motion (Jirka 2001; Lin et al. 2003; Sous et al. 2004, 2005; Akkermans et al. 2008a,
2010; Kelley andOuellette 2011; Duran-Matute et al. 2010, 2011; Tithof et al. 2018).

This overview of shallow fluid layer experiments will focus on the larger scale
flow phenomena such as the dynamics of vortices, the evolution of global integral
quantities like energy and enstropy, and the eventual presence of 3D secondary flows.
Quasi-steady final states belong to this class of phenomena but have already been
discussed in Sect. 6.3. For an extensive discussion of the statistical properties of the
velocity and vorticity field and the Lagrangian dispersion of tracers, also experimen-
tally explored bymeans of shallow fluid layer and soap film experiments, the reviews
by Tabeling (2002), Kellay and Goldburg (2002), Clercx and Van Heijst (2009), and
Boffetta and Ecke (2012) can be consulted.

In the preceding section, we have discussed the implications of the lateral bound-
aries in 2D confined turbulence and their impact on a variety of physical processes,
including coherent structure formation, vorticity production at rigid walls, and dissi-
pation of kinetic energy. Shallowflows, both in geophysical systems and in laboratory
experiments, need to be supported by a bottom, which implies an additional damping
mechanism affecting the flow, thus an additional source of dissipation. Furthermore,
the bottom will contribute to the emergence of 3D secondary flows. This damping
mechanism and the weak 3D recirculation flows in these systems, are not represented
in 2D (confined) turbulence. Their impact needs to be known for better understanding
of the quasi-2D behavior of environmental and geophysical flows.

Since the mid-1980s the first experiments have been reported addressing a vari-
ety of aspects of 2D turbulence. In particular, several of the exciting theoretical and
numerical findings based on KLB theory were put to a test, such as the inverse energy
and direct enstrophy cascade, the associated energy and enstrophy fluxes, statistical
quantities with regard to the fluctuating velocity and vorticity fields, vortex statis-
tics of freely evolving 2D turbulence, Lagrangian dispersion properties of passive
tracers (including pair dispersion), and last but not least, the emergence of so-called
condensation phenomena (Smith and Yakhot 1993). The last phenomenon is a clear
result of the inverse energy cascade as energy injected at some intermediate scale
is transferred upwards to the largest scales, and eventually this inverse cascade is
arrested by the finiteness of the container, a manifestation of confinement (see also
the brief discussion in the last paragraph of Sect. 6.3).
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Laboratory experiments can be carried out with a variety of generation mecha-
nisms for quasi-2D flows. One could think of rapidly rotating homogeneous fluids,
see, for example, the pioneering works by Colin de Verdière (1980) and Hopfin-
ger et al. (1982), or in homogeneous density-stratified (or two-layer) fluids, see, for
example, Yap and Van Atta (1993), Boubnov et al. (1994), Fincham et al. (1996),
and Maassen et al. (1999). We will not further discuss this kind of experiments (but
see Sect. 6.3 for some results on quasi-steady final states). We will focus on a discus-
sion of experiments in shallow fluid layers where two-dimensionality is enforced by
geometrical confinement only (and this will mostly exclude soap film experiments
for which the interested reader is referred to Kellay and Goldburg (2002)).

6.5.1 Laboratory Experiments in Shallow Fluid Layers

The first shallow flow experiment aimed at verifying aspects of KLB-theory was
reported by Sommeria (1986). His experiments were mostly focused on the mea-
surement of the 2D inverse energy cascade which he was able to confirm. For this
purpose he generated 2D turbulence in a shallow layer of mercury. By applying a
uniform magnetic field (with the field lines perpendicular to the shallow mercury
layer) 3D motions could be strongly suppressed. This approach resulted in a pretty
horizontal velocity field in a substantial part of the mercury layer. Near the bottom
plate a very thin viscous boundary layer is present which affects the flow in the core
in the form of a linear damping, i.e. proportional to the local horizontal fluid velocity
in the core. Larger coherent structures have larger velocities, and linear damping
particularly affects these larger scales and potentially can serve as a sink of energy
to arrest the inverse energy cascade at a certain scale.

As mercury has certain serious disadvantages, such as being inaccessible for
optical diagnostics to measure the fluid velocity inside the fluid layer, but also its
toxic properties (thus requiring quite some precautions to work safely) a different
kind of experiment was necessary. A new setup was proposed not many years later
by Tabeling et al. (1991) and Dolzhanskii et al. (1992), which initiated many lab-
oratory investigations on 2D turbulence worldwide. These experiments have been
carried out in a shallow layer of electrolyte and the forcing mechanism is based on
the interaction of a current density with a magnetic field inducing the Lorentz force
driving the fluid motion. For this purpose magnets are placed underneath the fluid
layer and two electrodes are placed on opposite sides of the container providing a
uniform electrical current that runs through the electrolyte to effectively force the
fluid motion. To achieve quasi-2D flow the horizontal scale of motion L must be
much larger than the fluid-layer thickness H . Under these conditions, it is usually
assumed that due to mass conservationw ≈ (H/L)U , withw andU the vertical and
horizontal velocity scale, respectively. At first sight, the two-dimensionality of the
flow can thus be tuned with the magnet size and fluid-layer thickness.

An important test for the shallow fluid layer setup was the comparison of exper-
imentally obtained vortex statistics data with theoretical and numerical results
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by Carnevale et al. (1991, 1992). Cardoso et al. (1994) found ρ(t) ∝ tχ with
χ = 0.44 ± 0.1, quite different compared to the value reported by Carnevale and
coworkers: χ ≈ 0.72 − 0.75. They also did not observe a rapid decrease of the area
occupied by the vortices as expected from the approach by Carnevale and coworkers.
Besides the fact that the integral-scale Reynolds number was of the order 1000–2000,
so that the flow is affected by viscous dissipation, bottom friction could explain this
deviation. Later, Akkermans et al. 2008b, a identified significant 3D recirculating
flows in shallow fluid layers uncovered by stereo-PIV measurements (and confirmed
in simulations) as another potential reason for deviations. Thus vertical confinement
and bottom friction might complicate the picture considerably.

6.5.2 2D Turbulence with Rayleigh Friction

For the analysis of bottom friction it is often assumed that the vertical profile of
the horizontal motion can be approximated by a Poiseuille profile (satisfying the
boundary conditions at the no-slip bottom and stress-free surface). This allows us
to reformulate the Navier Stokes Eq. (6.2) by replacing the viscous contribution
ν(∂2v/∂z2) by the term −λv. This linear damping term is known as Rayleigh fric-
tion and the bottom or Rayleigh friction coefficient takes the form λ = ν( π

2H )2. We
can now parameterize the quasi-2D flow in shallow fluid layers by the following
dimensionless equation:

∂v
∂t

+ (v · ∇)v = −∇p + 1

Re
∇2v − 1

Reλ

v + FL , (6.13)

with v representing the horizontal flow field only, satisfying 2D mass conservation,
Reλ the ratio of the bottom-friction time scale and the large-scale eddy turnover time
scale of the horizontal flow, and FL the Lorentz force to drive the flow. In these
shallow electrolyte solutions the typical integral scale Reynolds number is about
1000–2000.

Taking into account the presence of bottom friction an upgrade of this kind of
experiments has been proposed few years later to suppress the effects of bottom
friction (Marteau et al. 1995; Hansen et al. 1998). The new experiments consist of
two thin layers of electrolyte on top of each other, the bottom layer heavier than the
top layer, to reduce the impact of bottom friction (and to suppress vertical veloc-
ities). The flow is only effectively forced (in a similar way as described above) in
the bottom layer. Coupling with the top layer occurs via the stress boundary condi-
tion at their interface. They repeated the experiments by Cardoso et al. (1994) and
found the encouraging result χ ≈ 0.70 ± 0.1. The observed decay scenario of the
2D turbulent flow was quite similar as in the 2D simulations (with similar integral-
scale Reynolds number) reported by Clercx et al. (1999) and Wells and Afanasyev
(2004). Moreover, their vortex statistics scenario turned out to be quite similar to
those observed by Clercx and Nielsen (2000) and Clercx et al. (2003) for decaying
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2D turbulence in confined domains. These shallow fluid experiments provide strong
evidence that 2D turbulence decay scenarios follow those of 2D decaying and con-
fined turbulence and not the vortex statistics scenario by Carnevale and coworkers.
Quite remarkable, a similar stereo-PIV analysis by Akkermans et al. (2010) revealed
that also in stratified two-layer shallow flows 3D recirculating flows of similar mag-
nitude as in the single-layer experiments occur, implying that the two-layer solution
is not extremely effective in suppressing vertical velocities. This puts into question
the quasi-two-dimensionality of such flows. Although all these results are valuable
for understanding quasi-2D turbulence, any interpretation of experimental data is
still a delicate issue and should be done with care.

As laboratory experiments and confined 2D turbulence simulations appear to
provide similar decay scenarios it might be helpful to have a closer look at decaying
2D flow with Rayleigh friction. The discussion below is based on Eq. (6.13) without
forcing term. The dimensionless 2D vorticity equation is then

∂ω

∂t
+ (v · ∇)ω = 1

Re
∇2ω − 1

Reλ

ω. (6.14)

With the definitions of the kinetic energy and enstrophy of the flow, see Eqs. (6.4)
and (6.5), we can derive the following expression for the time rate of change of the
kinetic energy

dE(t)

dt
= − 2

Re
Ω(t) − 2

Reλ

E(t). (6.15)

By separatingRayleigh friction fromordinary 2Dflowdynamics the energy iswritten
as E(t) = E0(t)e−2t/Reλ and the enstrophy as Ω(t) = Ω0(t)e−2t/Reλ , with E0(t) and
Ω0(t) the compensated energy and the enstrophy, respectively, we simplify Eq. (6.15)
to

dE0(t)

dt
= − 2

Re
Ω0(t). (6.16)

This suggests that the 2D velocity field and the vorticity field can be written as
v(r, t) = v0(r, t)e−t/Reλ and ω(r, t) = ω0(r, t)e−t/Reλ , with r = (x, y) the dimen-
sionless horizontal coordinates and t a dimensionless time. Substituting these expres-
sions in Eq. (6.14), multiplying the full equation by et/Reλ and rescaling time to
t∗ = Reλ(1 − e−t/Reλ ) the following equation is obtained:

∂ω0

∂t∗
+ (v0 · ∇)ω0 = 1

Re∗
∇2ω0, (6.17)

with a renormalized Reynolds number, Re∗ = e−t/Reλ Re. Note that this renormal-
ized equation, first proposed by Hansen et al. (1998), is similar to the traditional
2D vorticity equation for t � Reλ as then t∗ ≈ t . Moreover, limλ→0 t∗ = t . With
this renormalization 2D decaying flows with bottom friction behave as purely 2D
decaying flows, but with a time-dependent Reynolds number, which can only evolve
for a finite time (as t∗ ≤ Reλ).
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Clercx et al. (2003) have tested the validity of the renormalized vorticity equation
for a range of Reλ in numerical simulations, and for a range of fluid-layer depths in
laboratory experiments. Numerical simulations with initial integral-scale Reynolds
numbers of 1000, 2000 and 5000 with Reλ ∈ {10, 20, 25, 33, 50, 100,∞} clearly
show bottom-friction independent time evolution of the compensated energy E0(t)
and for the compensated enstrophy Ω0(t). For each Re the curves for different Reλ

collapse on each other, thus have the same scaling exponents independent of Reλ.
The scaling exponents of the average vortex radius, the mean vortex separation, the
averaged normalized vorticity extremum, and the density of vortices, as obtained
in our numerical simulations (all key quantities in the analysis by Carnevale et al.
(1991), Carnevale et al. (1992)), turn out to be independent of bottom friction.

The analysis of data from laboratory experiments in shallow fluid layers (Clercx
et al. 2003) reveals a more mixed picture. The experiments have been carried out in a
container of horizontal dimensions of 52 × 52 cm, the diameter of the magnets is 25
mm and the magnets are positioned on a 10 × 10 chess-board-like pattern (minimum
distance between the magnet centers is 50 mm). The fluid layer depth H is varied
between 4 and 12 mm. The value of the Rayleigh friction λ can be estimated by the
expressionλ = π2ν

4H 2 . In these experiments, it is found that global quantities like E0(t),
Ω0(t), the average length scale l in the flow estimated by l ≈ √

E0(t)/Ω0(t) and the
normalized vorticity extremum, ωext/

√
E(t) are virtually independent of the fluid

layer depth (and in agreement with an earlier experiment by Danilov et al. (2002)
which have been carried out with fluid layer depths of 2–6 mm). The experimental
data for the average vortex density ρ(t) and average vortex radius r(t) are less
conclusive. Power-law exponents are found for small fluid layer depths (H ≤ 8 mm)
that are in agreement with earlier reported results by Cardoso et al. (1994), but
significantly larger power-law exponents are measured in the experiments with fluid
layer depths between 8 and 12mm.Thiswould suggest that for integral quantities like
the (compensated) energy and enstrophy the model of 2D turbulence with Rayleigh
damping is a suitable model also implying that these integral quantities are not very
sensitive to secondary 3D flow structures in shallow fluid layers. However, for the
vortex statistics quantities like vortex density, vortex size and vortex separation the
2D flow model with Rayleigh damping does not provide a complete description.

6.5.3 Secondary Flows in Quasi-2D Turbulence in Thin
Fluid Layers

During the last decade more attention has been paid to the influence of secondary 3D
recirculations in shallow fluid layer experiments. The first detailed measurements
were conducted by Akkermans et al. (2008a, b, 2010). Based on stereoscopic PIV
and 3D numerical simulations, they analyzed the flow field within dipolar vortex
structures in shallow fluid layers, with emphasis on the out-of-plane (vertical) veloc-
ity component. These stereoscopic PIV measurements have shown the presence of
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Fig. 6.8 Instantaneous velocity fields of a dipolar vortex in a horizontal plane by stereoscopic PIV
measurements. The panels, from left to right, represent the flow near the bottom plate, at half height
in the fluid layer and near the free surface, respectively. Vectors represent the horizontal velocity
components (typically with a magnitude of a few cm/s in the vortex core) and the colors indicate the
magnitude of the vertical velocity (5–10 mm/s). Courtesy Rinie Akkermans and Fluid Dynamics
Laboratory, TU Eindhoven

significant, persistent (in time) and complex 3D flow structures, see the stereoscopic
PIV data shown in Fig. 6.8. Full 3D numerical simulations revealed flow patterns
with significant vertical motion largely consistent with the experimental data. Quite
surprisingly, the flow patterns and out-of-plane motion appear independent of the
applied boundary condition at the bottom, no-slip or stress-free. This might hint at
the fact that bottom friction is not solely responsible for the 3D secondary flows,
but it is basically vertical confinement and associated vertical gradients in the hor-
izontal velocity field due to the boundary conditions; see Akkermans et al. (2008a)
for an in-depth discussion. By measuring vertical slices of the horizontal motion in
the fluid layer it became clear that a Poiseuille-like profile for the vertical variation
of the horizontal velocity field is completely absent, both in experiments and in sim-
ulations. These conclusions are supported by the use of a global indicator of (lack
of) two-dimensionality: the normalized horizontal divergence measured at several
heights in the fluid layer,

Λ = H
∫
D |∇ · v|d A

L
∫
D |ωz|d A . (6.18)

Here, v is once again the horizontal velocity field (u, v), and∇ represent the horizon-
tal gradient operator. This measure clearly gives significant non-zero values (while
for 2D flows it should be zero). For further discussions, see Albagnac et al. (2011),
Duran-Matute et al. (2010, 2011, 2012).

The question is then if the degree of two-dimensionality can be improved through
the use of a two-fluid-layer configuration. The finding that the 3D secondary flows in
shallow fluid layers are due to vertical confinement and associated vertical gradients
in the horizontal velocity field immediately implies that application of a stratified
shallow two-layer system, aimed at reducing the effect of bottom friction, will not
suppress out-of-plane motions significantly. A different set of experiments and simu-
lations by Akkermans et al. (2010) has confirmed this conjecture. Two recent studies
came with further supporting evidence, see Kelley and Ouellette (2011) for two-
layer stratified shallow flows, and (Tithof et al. 2018). In this latter work the authors
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compared three kinds of shallow flow experiments: a single fluid layer, a miscible
two-layer system, and an immiscible two-layer system. They do not have access to
all three components of the velocity field but used instantaneous 2D (horizontal)
flow fields and quantified the out-of-plane motion using an approach from physical
oceanography. The horizontal flowfield is projected onto a stream function, boundary
and potential modes, see for details (Kelley and Ouellette 2011), providing an alter-
native global indicator for two-dimensionality. This global indicator and the one in
Eq. (6.18) resulted in similar conclusionswith regard to howwell two-dimensionality
is or is not satisfied. Their conclusion, in agreement with those by Akkermans et al.
(2008a, 2010), is basically that comparable levels of out-of-plane motion are mea-
sured for the single-layer case and the immiscible two-layer case, bringing strong
doubt into the standard assumption since the 1990s that stratification enhances two-
dimensionality.

6.5.4 Concluding Remarks

From this overview, it is important to realize that imposing a parameterization of
bottom friction provides good results with regard to several global quantities, like
the energy and enstrophy of the flow. However, they provide only a very qualitative
description of the influence of 3D secondary flows (and do not cover the sources of it).
Even a global measure as the averaged horizontal divergence is of limited value and
deeper insight into the flow dynamics itself is required, for example, to understand
what happens for flows in thin two-layer stratified fluids. This is still a matter of
research. Several critical aspects with regard to quasi-2D flows in (stratified) shallow
fluid layers need to be understood better. This kind of experiments nevertheless have
provided useful insights with regard to the dynamics of 2D turbulence in the last few
decades and we expect they continue to do so.

6.6 Summary

This chapter started with the observation that flows in thin fluid layers, like in the
atmosphere of the Earth or in the oceans or coastal seas tend to behave quasi-two-
dimensional under certain conditions. Several phenomena in such systems such as
the formation and evolution of large-scale coherent structures, interaction of the
flow with coastal boundaries, confinement effects, etc. can, at least partly, be com-
prehended with basic processes relevant in 2D fluid dynamics and, more specifically,
2D turbulence. In this chapter, the basic processes relevant for 2D turbulence have
been reviewed with emphasis on a phenomenological description of these processes.
With the applications in mind the role of horizontal confinement on flow organi-
zation is discussed and the role of lateral walls as vorticity source is highlighted.
It describes processes that finds its counterparts in the oceans and coastal seas, see
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Fig. 6.1 as one typical example. Finally, the use of laboratory set-ups to study such
flows has been discussed in Sects. 6.3.2 and 6.5. I believe that the huge amount of
knowledge collected in the last 50 years from fundamental 2D turbulence studies
in general, but also the impact of lateral and bottom boundaries on their dynamics,
and the quasi-2D behavior of such systems can contribute to our understanding of
large-scale geophysical flows. This is a good example how numerical simulations
and laboratory experiments of model systems can contribute to our understanding of
geophysical systems.
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Chapter 7
Turbulent Dispersion

Benoit Cushman-Roisin

Abstract This chapter proposes a novel method for the modeling of turbulent dis-
persion in the absence of buoyancy effects. Starting from a few salient observations,
properties that an effective model should possess are identified, and amodel is subse-
quently developed to incorporate these necessary properties. The model turns out to
make use of fractional calculus and leads to a non-local operator, which is challeng-
ing from a computational perspective. Applications to dispersion by turbulent jets
(round and planar) and the marine Ekman layer (surface and bottom) demonstrate
the usefulness of the model.

7.1 Introduction

The purpose of this chapter is not to review the field observations, laboratory exper-
iments, or turbulence-resolving numerical simulations that have contributed to our
present knowledge of turbulent dispersion. Such reviews can be found in Csanady
(1973), Fischer et al. (1979), Roberts and Webster (2002), Garrett (2006), and
Cushman-Roisin (2013, and references therein). Rather, our purpose is to take the
salient properties thus discovered and to formulate a modeling method that repro-
duces those properties without the need for resolution of turbulent fluctuations. Such
non-eddy-resolving methods are necessary in the pursuit of large-scale ocean mod-
eling, especially at the basin scale.

The vast majority of non-eddy-resolving models handle unresolved, sub-grid pro-
cesses bymeans of an eddy diffusivity DE (eddy viscosity νE for momentum), which
is then made to vary heuristically with space and time according to the propensity
of the broader flow to generate eddies via instabilities, such as shear instability. A
prime example is the parameterization proposed by Joseph Smagorinsky (1963),
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which increaseswith the divergence and shear of the local flowfield under the reason-
ing that the greater the gradient of the velocity components, the greater the propensity
of the flow to develop eddy-generating instabilities. Somewhat more sophisticated
models, such as the family of k turbulence closure models (k, k− ε, k− ω; for a
summary, see Cushman-Roisin and Beckers (2011), Sects. 14.3 and 14.4), solve an
evolution equation for the turbulent kinetic energy k and make the eddy diffusivity
(viscosity) dependent of the level of turbulent kinetic energy. For example (Umlauf
and Burchard 2005), the eddy diffusivity may be expressed as:

DE = C
k2

ε
, (7.2)

in which the factor C depends on the velocity shear, and ε is the energy dissipation
rate, which like k needs its own evolution equation. The function C and several
terms in the evolution equations for k and ε are formulated based more on inferred
phenomenology and empirical evidence than basic physics.

Likewise, in the presence of density stratification (Umlauf and Burchard 2005),
the eddy diffusivity (viscosity) is made to depend on the local Richardson number in
such a way that when buoyancy forces are stabilizing (destabilizing), the diffusivity
is reduced (augmented). Again, the formulations are heuristic and accepted based
more on post-model validation than pre-model physics. Some values have also been
inferred from measurements of dispersion (e.g., Yanagi et al. 1982), by what might
be called reverse engineering.

Aside from the fact that these parameterizations involve much heuristics and
therefore stand on shaky grounds, the eddy diffusivity approach suffers from a major
deficiency, namely that it predicts a growth proportional to the square root of time
for the size of a tracer patch, with L � √

2DEt in which L is the size of the patch
undergoing dispersion and t is time. Amultiplicity of observations (Cushman-Roisin
2013) point out beyond a doubt that patch size in a turbulent flow environment grows
rather like the first power of time or even faster (like t

3
2 ), and a better model ought

to predict L � u∗t in which u∗ = √
2k is a turbulent velocity or L � ε

1
2 t

3
2 in which

ε is the energy dissipation rate. A clear example (albeit from the atmosphere, not
the ocean) is shown in Fig. 7.1. The unmistakable triangular shape of the plume
indicates linear growth over distance, which in a larger-scale and therefore locally
uniform wind corresponds to spreading proportional to the first power of time.1 It
should be noted that, for a case like this, spatially dependent eddydiffusivities as those
proposed in (7.1) and (7.2) are of no use. The straight path of the plume indicates a
uniform wind field from which we can presume homogeneous turbulence conditions

1 Because buoyancy affects the vertical dispersion of hot plumes, it is more instructive when consid-
ering mechanical dispersion alone to use the horizontal view provided by aerial or satellite imagery
than ground-level visualization that inevitably looks sideways.
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Fig. 7.1 Aerial view of an
ash and smoke plume
emanating from the Mt. Etna
volcano in Sicily, captured
by the MODIS sensor
onboard NASA’s Terra
satellite, on 27 October
2002. Note the unmistakable
triangular shape of the
plume, which indicates
linear growth over time in
the horizontal plane. Photo
credit NASA

and thus a uniform eddy diffusivity. The fact that the plume does not widen like
the square root of distance points to a fundamental flaw with the eddy diffusivity
approach. Put another way, the mathematics of turbulent dispersion, at least in this
case, should be governed by an operator other than a second derivative as inmolecular
diffusion. This argumentwas already voiced byRichardson and Stommel (1948)who
remarked in the context of marine dispersion that “The variation of K depends on
a geometrical quantity σ , and Fick’s equation is also geometrical in so far as it
contains ∂2/∂x2. For this reason it is difficult to regard the variation of K as an
outer circumstance detached from Fick’s equation. There appears to be a fault in the
equation itself.” (Note: In this quote the quantities K and σ stand respectively for
the diffusivity and patch size, noted DE and L above.). Notwithstanding their own
statement, Richardson and Stommel (1948) retained the eddy diffusivity concept and
Fick’s equation, preferring to rely on a diffusivity that grows as a power of patch size
and proposing (in the present notation) DE ∼ σα with α varying from 1.0 to 1.4. In
a follow-up study of turbulent dispersion in the sea, Stommel (1949) reiterated the
conclusion that the Fickian model fails to describe horizontal diffusion in the sea.

Richardson and Stommel (1948) were not the only ones to suggest a patch-size-
dependent diffusivity; others followed, including Okubo (1971) and Clark et al.
(1996), among others. But this is wholly inadequate in modeling. Indeed, how could
a model be so constructed when the system includes multiple overlapping patches at
various stages of development?What should be the local value of DE where an older,
wider patch overtakes a more recent and smaller patch? To be effective, a model of
turbulent dispersion ought to include amanner by which the vigor of dispersion auto-
matically adapts to the spatial distribution of the tracer’s concentration. The answer
lies in the formulation of a different operator than the second derivative preceded by
an eddy diffusivity. Put another way, turbulent dispersion in the environment pro-
ceeds in a qualitatively different manner than molecular diffusion with an enhanced
and varying diffusivity, and one ought to pursue other mathematical formulations.
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7.2 Model Requirements

Here, we are not interested in developing arguments about the statistics of dispersion
such as considering the evolution of two-particle separation or moments of displace-
ments (e.g., Taylor 1921; Richardson and Stommel 1948; Hunt 1985; Ferrari 2007).
Instead, we are strongly directed toward the development of a mathematical tool that
can readily be implemented in existing models, such as basin-wide oceanographic
models, in which unresolved sub-grid scale processes can be represented on the
resolving grid by means of calculations that provide the spatio-temporal evolution
of concentration fields.

The considerations outlined in the preceding section lead us to formulate a model
of turbulent dispersion that possesses the following three properties:

1. It must be based on physical principles rather than chiefly be validated after trials;
2. It should lead to patch growth proportional to the first or higher power of time;

for example, in wall turbulence characterized by a eddy velocity u∗ = √
τwall/ρ,

it should lead to patch growth proportional to the first power of time (L ∼ u∗t);
and

3. It must be such that the vigor of dispersion automatically adapts to the spatial
distribution of the tracer’s concentration.

To establish a working model, it is helpful to recall the essence of turbulent
dispersion. The cause of spreading is the eddy field inside which the tracer patch
resides, with eddies moving, distorting and stirring the patch (Fig. 7.2). The eddies
that are significantly larger than the patch sweep the latter around their orbits, merely
changing its location without affecting its shape or size significantly. At the opposite
end of the spectrum, the eddies much smaller than the patch size only stir the inside
of the patch, while marginally increasing its extent along the edges. In contrast,
the eddies of diameter comparable to the patch size greatly distort it, enlarge its
overall extent by means of stretching, and cause the most dispersion. While the eddy
population may remain statistically unchanged over time, the eddies take their turn
in effecting dispersion, with the smaller eddies acting first when the patch is small
and increasingly larger eddies acting sequentially as the patch widens. In terms of an
eddy diffusivity, this means that the value of the diffusivity must somehow vary with
the dominant scale of the patch. Thus, if the patch is characterized by a dominant
wavenumber2 k ∼ 1

L , the diffusivitymust be a function of k, and as k evolves, so does
the eddy diffusivity, locally and instantaneously without recording the time elapsed
or distance covered since the start.

The rate of growth of the patch depends on how the orbital velocity changes with
eddy size. Growth rate is constant in time when eddies all share the same orbital
velocity scale regardless of diameter (as in wall turbulence characterized by a single
orbital velocity u∗) or is increasing with time when larger eddies have larger orbital
velocities (as in inertial turbulence cascade).Growth proportional to the square root of

2 Note the subtlety in notation: straight k for the turbulent kinetic energy, now italic k for the
wavenumber magnitude, and, a bit later, bold k for the wavenumber vector.
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Fig. 7.2 Patch of a passive tracer of size L in a field of eddies of various scales. Eddies of diameter
much shorter than the patch size (d1 << L) stir the inside of the patch while marginally increasing
its size along its edges. Eddies of size comparable to that of the patch (d2 ∼ L) greatly distort
the patch and augment its size by means of stretching. Finally, eddies much larger than the patch
(d3 >> L) merely translate the patch around their orbits, causing large displacements but little
dispersion. The conclusion is that the eddies that most effectively contribute to the enlargement of
the patch are those of size comparable to the patch size. As the patch grows in time, eddies take
their turn at being those of the most effective kind

time, as a constant diffusivity would have it, would imply growth that slows down in
time ( rate of growth proportional to t− 1

2 ) and would correspond to a situation where
eddy orbital velocity decreases with increasing size, a situation never encountered
in geophysical turbulence.

To put these elements in mathematical terms, let us assume that the eddy field
is a collection of vortices of various sizes d with orbital velocity u∗(d), i.e. with
all eddies of comparable size having similar orbital velocities. The corresponding
half-turnaround time is Δt = πd/u∗(d), and over this time the displacement caused
by the eddies of size d is one diameter. In terms of an eddy diffusivity, we would
have

DE = 1

2

dL2

dt
= L

dL

dt
= L

d

Δt
= 1

π
Lu∗(d). (7.3)

As remarked earlier, the eddies contributing most to the dispersion are those with
diameters comparable to the patch size. Thus, the dominant contribution to DE is
due to d = O(L) and

DE = O(Lu∗(L)), (7.4)

or, in terms of the dominant wavenumber k ∼ L−1,
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DE = O
(
u∗(k−1)

k

)
. (7.5)

In Fourier space, the diffusion term DE∇2c of a concentration field c(x, t) is
−k2DE ĉ(k, t), and the preceding considerations suggest that we replace this by

− k2DE ĉ → −C ku∗(k−1) ĉ, (7.6)

with a constant dimensionless coefficient C in front and in which k stands for the
magnitude of the three-dimensional wavenumber k. The inverse Fourier transform
provides the substitution expression in space:

DE ∇2c → −C
1

(2π)
3
2

∫∫∫ ∞

−∞
ku∗(k−1) ĉ(k, t) eik·x dk. (7.7)

For wall turbulence with uniform orbital velocity u∗ across scales, the substituted
dispersion operator ought to be

2Cu∗
π2

∫∫∫
c(x′, t) − c(x, t)

|x′ − x|4 dx , (7.8)

while for the Kolmogorov inertial cascade with u∗(k−1) � (ε/k)
1
3 , it is

(...) Cε
1
3

∫∫∫
c(x′, t) − c(x, t)

|x′ − x| 11
3

dx , (7.9)

in which the triple integral covers the 3D infinite space.3 We recognize here expres-
sions of the fractional Laplacian (Kwaśnicki 2017).

7.3 Model Development

We now proceed to re-derive the preceding alternative expressions from basic
physics. For this, we begin with the elementary advection equation for a passive
tracer field c(x, t) in three dimensions:

∂c

∂t
+ u · ∇c = 0, (7.10)

in which the velocity field u is a three-dimensional random flow field with known
probability density function (pdf) f (u). Over a sufficiently short time interval Δt ,

3 The treatment of boundaries is delicate andwill be addressed later in the context of one-dimensional
modeling.
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the patch is merely advected from x − uΔt to x, i.e., c(x, t + Δt) = c(x − uΔt, t),
but since the value of u is one of many, the actual concentration will be the expected
value over all possible values of u:

c(x, t + Δt) =
∫∫∫

c(x − uΔt, t) f (u) du. (7.11)

Note in passing how we proceeded by solving the equation first and then averaging
its solution, in complete reversal from Osborne Reynolds’ original decomposition
with an averaging of the equations first followed by (an attempt at) their solutions.
Since the pdf of u must be normalized (

∫∫∫
f (u)du = 1), this can be rewritten as

c(x, t + Δt) − c(x, t)

Δt
=

∫∫∫
c(x − uΔt, t) − c(x, t)

Δt
f (u) du. (7.12)

Epps and Cushman-Roisin (2018) have shown that such an expression may be
taken to the limit Δt → 0 as long as the pdf f (u) is a stable α-Lévy distribution (a
family of pdf’s with parameter 0 < α ≤ 2), which we henceforth denote fα(u). The
general expression for this type of distribution is best given in terms of its inverse
Fourier transform4:

fα(u) = 1

(2π)3

∫∫∫
e−|γ ku|α eiku·u dku (7.13)

in which the factor γ > 0 is a scaling factor (also called elasticity) with the same
dimensions as u, which is length per time here. For large argument u and for α < 2,
the tail of the distribution is given by Nolan (2006), Epps and Cushman-Roisin
(2018):

fα(u) � Cα γ α

|u|α+3
, (7.14)

in which the coefficient Cα is given by

Cα = 2αΓ
(

α+3
2

)
π

3
2 |Γ (−α

2 )| . (7.15)

Particular values areC2 = 0 (the pdf falls off exponentially rather than algebraically),
C1 = 1

π2 and C2/3 = 0.066011.
For α = 2, the distribution is Gaussian (the only member of the family with non-

algebraic tails):

f2(u) = 1

(4π)
3
2 γ 3

e
− |u|2

4γ 2 . (7.16)

4 We assume here velocity distributions with zero mean. Adding a mean component ū to u is
relatively straightforward and yields the expected advection term ū · ∇c added to the time rate of
change ∂c/∂t .
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The non-singular limitΔt → 0 is obtained by taking γ = √
D/Δt so that Eq. (7.12)

becomes

c(x, t + Δt) − c(x, t)

Δt
=

(
1

4πD

) 3
2

Δt
1
2

∫∫∫
[c(x − uΔt, t) − c(x, t)] e− |u|2Δt

4D du.

(7.17)
Defining the anterior position x′ = x − uΔt , switching from u to x′ as the integration
variable (with du = −dx/Δt3), and taking the limit of a vanishing time interval Δt ,
we obtain

∂c

∂t
=

(
1

4πD

) 3
2

lim
Δt→0

Δt−
5
2

∫∫∫
[c(x′, t) − c(x, t)] e− |x′−x|2

4DΔt dx′

=
(

1

4πD

) 3
2

lim
Δt→0

Δt−
5
2

∫∫∫ [
1

2
(x ′ − x)2

∂2c

∂x2
+ 1

2
(y′ − y)2

∂2c

∂y2
+ 1

2
(z′ − z)2

∂2c

∂z2

]

× e− (x ′−x)2+(y′−y)2+(z′−z)2

4DΔt dx′

= 2D

π
3
2

∫∫∫ [
ξ2

∂2c

∂x2
+ η2

∂2c

∂y2
+ ζ 2 ∂2c

∂z2

]
e−ξ2−η2−ζ 2 dξdηdζ = D ∇2c. (7.18)

Thus, we recover Fickian diffusion when taking α = 2. Since this predicts patch
growth proportional to the square root of time, it is deemed unsuitable to model
turbulent dispersion, and we reject the possibility α = 2.

Put anotherway, the probability density functionof velocityfluctuationsmust have
a so-called “fat tail” (that is, an algebraically decaying tail instead of an exponential
tail) in order to be applicable to turbulence. This stands to reason since turbulence is
characterized by a population of eddies, some of which may be as large as the entire
domain, leading to the likelihood of displacements always as large as the patch size.

For α = 1, the pdf is the Cauchy distribution,

f1(u) = 1

π2

au∗
(|u|2 + a2u2∗)2

, (7.19)

with γ = au∗ (a being a free multiplicative constant), and Eq. (7.12) becomes

∂c

∂t
= au∗

π2
lim

Δt→0

∫∫∫
c(x − uΔt, t) − c(x, t)

Δt

1

(|u|2 + a2u2∗)2
du.

= au∗
π2

lim
Δt→0

∫∫∫
c(x′, t) − c(x, t)

(|x′ − x|2 + a2u2∗Δt2)2
dx′

= C u∗
∫∫∫

c(x′, t) − c(x, t)

|x′ − x|4 dx′, (7.20)

with C = a/π2, in which we recognize the integral operator anticipated in (7.8).
So, we are assured that this model will produce tracer patches that grow with the
first power of time. In other words, the choice α = 1 is suitable for the modeling of
dispersion in shear turbulence characterized by a single turbulent velocity u∗. This is
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the case, for example, near the surface of the ocean under the action of a wind stress
τwind = ρwater u2∗, in which the u∗ value is unequivocally set by the surface stress.

The pdf for α = 2
3 , which we anticipate to correspond to inertial turbulence (Kol-

mogorov cascade), cannot be expressed in simpler terms than expression (7.13), but
its asymptotic behavior for large values of u is given in (7.14)–(7.15):

f2/3 � C2/3 γ
2
3

|u| 11
3

with C2/3 = 0.066011. (7.21)

Since inertial turbulence is governed by the energy dissipation rate ε of dimensions
L2/T 3, we now take γ = a

√
εΔt , and Eq. (7.12) in the limit of Δt → 0 becomes

∂c

∂t
= C2/3 a

2
3 lim

Δt→0
(εΔt)

1
3

∫∫∫
c(x − uΔt, t) − c(x, t)

Δt
|u|− 11

3 du

= C ε
1
3 lim

Δt→0

Δt
1
3

Δt

∫∫∫
[c(x′, t) − c(x, t)]

( |x′ − x|
Δt

)− 11
3 dx′

Δt3

= C ε
1
3

∫∫∫
c(x′, t) − c(x, t)

|x ′ − x| 11
3

dx′, (7.22)

in which the two multiplicative constants were lumped into one, C3/2 a
2
3 = C .

The general case α < 2 is treated briefly as follows. The asymptotic expression
of fα(u) generates a factor |u|−α−3, which after use of u = (x − x′)/Δt provides
a factor Δtα+3. This is in addition to the Δt−1 factor in [c(x′, t) − c(x, t)]/Δt and
another factor Δt−3 arising from the change of variable du = dx/Δt3. The net is
a factor Δtα−1. The limit Δt → 0 will be meaningful only if this power of Δt is
negated by a factor of opposing power in γ α in the numerator of the asymptotic
expression (7.14) of fα(u). Thus, γ must be made proportional to Δt

1−α
α , and we

write
γ = q

1
α Δt

1−α
α , (7.23)

with the quantityq having the dimensions Lα/T so thatγ has the required dimensions
of a velocity. This sets the rule to ascribe the value of α: Identify the physical quantity
that governs the nature of the turbulent flow field, determine its dimensions, and then
raise this quantity to the power that transforms its dimensions to the form Lα/T 1; the
exponent of L then sets the value to be adopted forα. For example, inwall turbulence,
the quantity governing the turbulent field is the friction velocity u∗, with dimensions
L/T ; thus, α = 1 in this case. For inertial turbulence, the pertinent quantity is the
energy dissipation rate ε with dimensions L2/T 3, and the corresponding quantity
is q = ε

1
3 of dimensions L

2
3 /T , setting α = 2

3 . This rule even applies to the non-
turbulent regime of molecular diffusion, which is governed by a diffusivity D of
dimensions L2/T , thus requiring α = 2.

In summary, we have developed an alternative to Fickian diffusion that should
be preferable for modeling turbulent dispersion. It consists of a family of fractional
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Laplacian operatorswith parameter 0 < α < 2. This is not entirely new, for fractional
calculus has already been proposed for the modeling of dispersion in porous media
(Schumer et al. 2001, 2009). The first case applies to the case of boundary turbulence
(shear turbulence) where the turbulent velocity fluctuations are all, regardless of eddy
size, on the order of the friction velocity imposed by the stress at the boundary,
u∗ = √

τwall/ρ, giving α = 1. The equation governing the concentration c(x, t) of a
passive tracer is (7.20), which with advection by the mean flow incorporated is:

∂c

∂t
+ ū · ∇c = C u∗

∫∫∫
c(x′, t) − c(x, t)

|x′ − x|4 dx′. (7.24)

The second case applies in the case of inertial turbulence (Kolmogorov cascade)
where the velocity fluctuations u∗ vary with eddy size d according to u∗ = (εd)

1
3 .

The equation for concentration is (7.22), which with advection terms included is:

∂c

∂t
+ ū · ∇c = C ε

1
3

∫∫∫
c(x′, t) − c(x, t)

|x′ − x| 11
3

dx′. (7.25)

The general formulation for 0 < α < 2 is:

∂c

∂t
+ ū · ∇c = C q

∫∫∫
c(x′, t) − c(x, t)

|x′ − x|α+3
dx′, (7.26)

in which the factor q with dimensions Lα/T is the physical quantity that governs the
turbulent field.

The multiplicative constant C should depend on detailed statistics of the eddy
field,5 but practicality suggests to use them as tunable factors. Sources and sinks can
be easily included as additional terms on the right-hand side. The triple integrals
in (7.24) and (7.25) are two particular cases of the fractional Laplacian (Kwaśnicki
2017) as it can be shown that their Fourier transforms are −kα ĉ (with α = 1, 2

3 ,
respectively).

The preceding formulations were developed without specifying boundaries and
thus apply strictly to an infinite domain in all three dimensions of space. The nature
of boundary conditions accompanying the fractional Laplacian is a subject of current
debate (Lischke et al. 2018). In practical situations, a first approximation is simply
to restrict the triple integration to the finite physical domain. The weighing factor

1
|x′−x|α+3 decays with distance, and the truncation to finite distances should not be
a problem in the interior of the domain. Closer to the boundaries, a reflection term
should preferentially be added, as discussed in the following section.

5 For shear turbulence case, the value ofC could perhaps be related to the ratio of the most probable
velocity magnitude |u| to u∗.
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7.4 Reduction to One Dimension with Boundaries

The preceding 3D formulations may be reduced to a single dimension in the case
where the tracer concentration depends on a single spatial variable, say z in the
vertical. In marine situations, this would be the case when vertical mixing occurs in
the presence of much weaker gradients in the two horizontal dimensions. In such
a case, the concentration spatial difference inside the integrals is c(z′, t) − c(z, t),
and integration over x ′ and y′ can be performed analytically prior to numerical
implementation. The result is:

∂c

∂t
+ w

∂c

∂z
= C1 u∗

∫
c(z′, t) − c(z, t)

(z′ − z)2
dz′ (7.27a)

∂c

∂t
+ w

∂c

∂z
= C1 ε

1
3

∫
c(z′, t) − c(z, t)

|z′ − z| 5
3

dz′, (7.27b)

for shear and inertial turbulence, respectively. The multiplicative constant C1 in
front of the dispersion operator is now designated with a subscript 1 to indicate
that it corresponds to one dimension. The relation between the constants at 1 and 3
dimensions is:

C1 = π
Γ

(
α+1
2

)
Γ

(
α+3
2

) C, (7.28)

yielding C1 = πC for α = 1 (wall turbulence) and C1 = 0.248855 C for α = 2
3

(inertial turbulence).
Strictly, these expressions apply for the infinite interval−∞ < z < ∞. When the

domain is semi-infinite, say with a boundary at z = 0 so that 0 ≤ z < ∞, the integral
is restricted to this physical interval in return for one additional term that may be
interpreted as a reflection term (Epps and Cushman-Roisin 2018)6. Since turbulence
near a wall is most often of the shear turbulence type, only the u∗ formulation needs
to be considered:

∂c

∂t
+ w

∂c

∂z
= C1 u∗

∫ ∞

0
[c(z′, t) − c(z, t)]

[
1

(z′ − z)2
+ 1

(z′ + z)2

]
dz′ .

(7.29)
The case of two boundaries (say 0 ≤ z ≤ H ) is more complicated and necessitates
the addition of an infinite series of reflection terms (Epps andCushman-Roisin 2018):

6 The origin of these additional terms is found in the “bounce-back” condition of the probability
density function in a Boltzmann kinetics framework.
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Fig. 7.3 A turbulent round
jet of dyed water being
discharged into clean water.
The half-angle value of
11.8◦ tends to be universal at
high Reynolds numbers.
Photo taken in the Thayer
School’s Fluids Lab at
Dartmouth College

∂c

∂t
+ w

∂c

∂z
= C1 u∗

∫ H

0
[c(z′, t) − c(z, t)]

{
1

(z′ − z)2
+ 1

(z′ + z)2

+
∞∑
n=1

[
1

(2nH + z′ + z)2
+ 1

(2nH + z′ − z)2
+ 1

(2nH − z′ + z)2
+ 1

(2nH − z′ − z)2

]}
dz′ .

(7.30)

7.5 Application to Dispersion in Turbulent Jets

An interesting application is to dispersion causedby a turbulent jet because oftentimes
contaminants are released by means of a smokestack or discharge pipe into the
atmosphere or water body. We distinguish here the round jet from the planar jet.

7.5.1 Turbulent Round Jet

The turbulent round jet (Fig. 7.3) is created by a flow of velocityU and concentration
c0 exiting from a circular orifice of radius R and penetrating in an otherwise quiescent
and pure fluid (no flow, no concentration). The quantity governing the “strength” of
the jet is its momentum injection ṁ = ρ(πR2)U 2, which is conserved all along
the jet for lack of downstream pressure force.7 Thus the quantity governing the

7 It can be shown rather easily that there cannot be any pressure force across and down the jet
as long as the pressure in the quiescent fluid away from the jet is uniform and radial acceleration
is weak, thus ensuring conservation of momentum. Radial acceleration is weak because the jet is
much longer than it is wide (so-called “thin jet approximation”). Note that in contrast mass is not
conserved in the jet as it entrains fluid form the quiescent surroundings. The amount of tracer in
the jet is conserved as long as the ambient fluid is tracer-free. The tracer concentration decreases
by dilution with tracer-free fluid.
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turbulence is ṁ, which leads us to adopting q = RU with dimensions L2/T , and we
set α = 2, which brings us exceptionally to using the classical diffusion model with
D proportional to RU .

The governing equations in cylindrical coordinates with x directed along the
centerline of the jet and r radially across it, andwith the assumptions of axisymmetry,
steady state and negligible radial momentum are:

∂u

∂x
+ 1

r

∂

∂r
(rv) = 0 (7.31a)

u
∂u

∂x
+ v

∂u

∂r
= C RU

(
∂2u

∂x2
+ ∂2u

∂r2
+ 1

r

∂u

∂r

)
(7.31b)

u
∂c

∂x
+ v

∂c

∂r
= C RU

(
∂2c

∂x2
+ ∂2c

∂r2
+ 1

r

∂c

∂r

)
, (7.31c)

in which u(x, r) is the downstream velocity, v(x, r) is the radial velocity (positive
outward and much weaker than u), and c(x, r) is the tracer’s concentration field. In
both momentum and tracer equations, the diffusivity is taken as CRU , based on the
assumption that in a turbulent environment all quantities can disperse at an equal rate
because the stirring is caused by the shared turbulent velocity fluctuations.8

Because the jet is nearly unidirectional (|v| � u), mass conservation (7.31a)
requires that the downstream variations be much weaker than the radial variations
( ∂
∂x � ∂

∂r ), and we may neglect downstream diffusion compared to cross-jet diffu-
sion, reducing the momentum and concentration equations to

u
∂u

∂x
+ v

∂u

∂r
= C RU

(
∂2u

∂r2
+ 1

r

∂u

∂r

)
(7.32a)

u
∂c

∂x
+ v

∂c

∂r
= C RU

(
∂2c

∂r2
+ 1

r

∂c

∂r

)
, (7.32b)

There are two upstream constraints that serve to set the velocity and concentration
amplitudes, namely the influx of momentum and tracer at the jet’s origin, which are
both conserved along the jet:

∫ ∞

0
u2(r, x) 2πr dr = πR2 U 2 (7.33a)∫ ∞

0
u(r, x) c(r, x) 2πr dr = πR2 Uc0. (7.33b)

The above set of equations and constraints possesses a similarity solution of the
form:

8 There is evidence (Jischa and Rieke 1979) that the turbulent Prandtl (heat vs. momentum) and
Schmidt (tracer vs. momentum) numbers depart from unity only when the molecular Prandtl and
Schmidt numbers are much less than one, as in liquid metals, and the dependence of the departure
depends on the Reynolds number of the flow, with smaller departures at high Reynolds numbers.
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u(x, r) = RU

x
ũ(η), v(x, r) = RU

x
ṽ(η), c(x, r) = Rc0

x
c̃(η) (7.34)

with the similarity variable η defined as the ratio of spatial coordinates:

η = r

x
. (7.35)

We note that the equal powers of r and x in the numerator and denominator of η

imply that the solution will represent a jet that widens linearly with distance, in
agreement with observations (Pope 2000, page 100). The value η = 0 corresponds
to the centerline.

The reduced equations governing the cross-jet profile functions ũ(η), ṽ(η) and
c̃(η) are:

−ũ − η
dũ

dη
+ 1

η

d(ηṽ)

dη
= 0 (7.36a)

−ũ2 − ηũ
dũ

dη
+ ṽ

dũ

dη
= C

(
d2ũ

dη2
+ 1

η

dũ

dη

)
(7.36b)

−ũc̃ − ηũ
dc̃

dη
+ ṽ

dc̃

dη
= C

(
d2c̃

dη2
+ 1

η

dc̃

dη

)
. (7.36c)

The accompanying constraints (7.33a)–(7.33b) become:

∫ ∞

0
ũ2(η) η dη = 1

2
(7.37a)∫ ∞

0
ũ(η) c̃(η) η dη = 1

2
. (7.37b)

Constraints (7.37a)–(7.37b) serve as substitutes for boundary conditions on ũ(η) and
c̃(η), to which we add the obvious ũ → 0 and c̃ → 0 for η → ∞ because the jet is
confined. Clearly, the solution for c̃(η) will be the same as ũ(η) because substitution
of ũ for c̃ in (7.36c) and (7.37b) reproduces (7.36b) and (7.37a), respectively.

Since these equations with a constant viscosity apply equally well to laminar flow,
they are not new, and Schlichting (1933) has already found the solution, which can
be expressed analytically:

ũ(η) = c̃(η) = 3

8C

1

(1 + aη2)2
(7.38a)

ṽ(η) = 3

16C

η (1 − aη2)

(1 + aη2)2
, (7.38b)

in which the constant a is related to the dispersion coefficient by
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Fig. 7.4 Profiles of the downstream velocity ũ(η) (in blue) and cross-jet radial velocity ṽ(η) (in
red, multiplied by 10 to highlight its features) that are solutions to (7.36a)–(7.36b) and given by
(7.38a)–(7.38b), for C = 0.033. While the jet velocity is fairly confined, the cross-jet velocity is
not. Away from the jet, the latter contributes to flow toward the jet and, therefore, to entrainment
into the jet. Around the center of the jet, the cross-flow reverses, contributing to jet divergence to
compensate for the downstream convergence of the slowing jet velocity along the centerline

a = 3

64 C2
. (7.39)

The jet velocity profile ũ(η) is symmetric across the centerline, whereas the cross-jet
velocity ṽ(η) is anti-symmetric across the centerline and reverses sign atη = ±1/

√
a.

The lower the value of C , the faster the centerline velocity (3/8C) and the nar-
rower the jet (η50% = 64(

√
2 − 1)C2/3). The profiles of ũ(η) and ṽ(η) are plotted in

Fig. 7.4 for C = 0.033. The jet velocity profile ũ(η) (Fig. 7.5) is not Gaussian, with
algebraic rather than exponential tails, but could be mistaken for Gaussian around
the peak.

Back with dimensions in the (x ,r ) plane, the velocity and concentration fields are:

u(x, r) = 3RU
8C x

1(
1+a r2

x2

)2 , v(x, r) = 3RU r
16C x2

1−a r2

x2(
1+a r2

x2

)2 ,

c(x, r) = 3Rc0
8C x

1(
1+a r2

x2

)2 .
(7.40)

An important characteristic of the round jet is the rate at which it widens with
downstream distance, called the spreading rate and defined from the distance r50% at
which the jet velocity drops to half of its centerline value:
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Fig. 7.5 Close-up on the downstream velocity profile (solid black line), re-scaled by centerline
value versus η/η50% in comparison with the best-fitting Gaussian distribution (red dashed line)
and data from Wygnanski and Fiedler (1969) for Re ≈ 105. The core of the jet has a very nearly
Gaussian structure but has thicker tails. In the tail, the data seem to conform better with the Gaussian
profile, but in this region at the edge of the jet, intermittency is very pronounced, and velocity values
are highly variable, as sketched by Wygnanski and Fiedler (1969) by means of envelope lines and
hatchings

S = r50%
x

=
√√

2 − 1

a
= 8C

√√
2 − 1

3
= 2.973 C. (7.41)

Laboratory observations (Hussein et al. 1994) for Re = 95, 500 give S = 0.098 ±
0.004, yieldingC = 0.033 ± 0.013. This corresponds to a conical jet with half-angle
of 11.8◦ when measured where velocity has dropped to 12% of its centerline value
(Fig. 7.3).

While the concentration profile c̃(η) is identical to the velocity profile ũ(η) in the
similarity solution, the measurement of concentration values in the laboratory is an
independent endeavor. The experiments by Becker et al. (1967), who used oil smoke
as a passive tracer in a turbulent air jet (with Schmidt number of about 38,000),
confirm that the concentration profile, like the velocity profile, exhibits a similarity
behavior, furthermorewith a radius of half value increasingwith downstreamdistance
0.106 x , which is nearly the same as that of velocity (Hussein et al. 1994). Figure
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Fig. 7.6 Comparison of the concentration profile in a turbulent round jet as predicted by the
similarity solution (7.38a) with C = 0.033 (normalized by centerline value) and laboratory data
reported by Becker et al. (1967). The scatter in the data is primarily caused by turbulent fluctuations
and turbulence intermittency at the edges, not experimental inaccuracies. The fit is excellent in both
center of jet and at the edge

7.6 compares the similarity solution c̃(η) given by (7.38a) to the laboratory data of
Becker et al. (1967).

7.5.2 Turbulent Planar Jet

The turbulent planar jet is created by a flow of velocity U and concentration c0
exiting from an elongated slit of width W and penetrating in an otherwise quiescent
and pure fluid (no flow, no concentration). The quantity governing the “strength” of
the jet is its momentum injection per unit length along the slit ṁ = ρWU 2, which is
conserved along the jet for lack of downstream pressure force (for the same reason
as for the round jet). Thus the quantity governing the turbulence is ṁ, which leads
us to adopting q = √

WU 2 of dimensions L
3
2 /T , with α = 3

2 in this case.
The governing equations in Cartesian coordinates with x directed downstream

along the centerline of the jet, y transversely in the direction along the slit, and z across
the jet, and with the assumptions of steady state, negligible cross-jet momentum, no
variation in the y−direction are:
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∂u

∂x
+ ∂w

∂z
= 0 (7.42a)

u
∂u

∂x
+ w

∂u

∂z
= C

√
WU 2

∫∫∫
u(x′) − u(x)

|x′ − x| 9
2

dx ′dy′dz′ (7.42b)

u
∂c

∂x
+ w

∂c

∂z
= C

√
WU 2

∫∫∫
c(x′) − c(x)

|x′ − x| 9
2

dx ′dy′dz′, (7.42c)

in which u(x, z) is the downstream velocity, w(x, z) is the cross-jet velocity (much
weaker than u), and c(x, z) is the tracer’s concentration field.

Applying now the assumption of much weaker dispersion in the downstream
direction x than in the cross-jet direction z, as we did for the round jet, allows us to
retain only the z variations in [u(x′) − u(x)] and [c(x′) − c(x)] inside the integrals
and thus to integrate over x ′ and y′ once and for all:

∫∫ ∞
−∞

1

[(x ′ − x)2 + (y′ − y)2 + (z′ − z)2] 94
dx ′dy′ = π

Γ
(
5
4

)
Γ

(
9
4

) 1

|z′ − z| 52
= 2.513274

|z′ − z| 52
.

(7.43)
The reduced equations are

u
∂u

∂x
+ w

∂u

∂z
= C1

√
WU 2

∫ ∞

−∞
u(x, z′) − u(x, z)

|z′ − z| 5
2

dz′ (7.44a)

u
∂c

∂x
+ w

∂c

∂z
= C1

√
WU 2

∫ ∞

−∞
c(x, z′) − c(x, z)

|z′ − z| 5
2

dz′, (7.44b)

with C1 = 2.513274 C . The injection of momentum and tracer, which are both
conserved downstream, provide the following two conditions:

∫ ∞

−∞
u2 dz = WU 2 (7.45a)∫ ∞

−∞
uc dz = WUc0. (7.45b)

As for the round jet, a similarity solution exists, this time with

u(x, z) = U

√
W

x
ũ(η), w(x, z) = U

√
W

x
w̃(η), c(x, z) = c0

√
W

x
c̃(η) (7.46)

with similarity variable

η = z

x
, (7.47)
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which means that the jet widens linearly with downstream distance like the round
jet, but the strength of the jet now decays with distance x like 1/

√
x instead of 1/x .

This is exactly what is observed (Pope 2000, page 135).
The equations governing the similarity profiles are:

−1

2
ũ − η

dũ

dη
+ dw̃

dη
= 0 (7.48a)

−1

2
ũ2 − ηũ

dũ

dη
+ w̃

dũ

dη
= C1

∫ ∞

−∞
ũ(η′) − ũ(η)

|η′ − η| 5
2

dη′ (7.48b)

−1

2
ũc̃ − ηũ

dc̃

dη
+ w̃

dc̃

dη
= C1

∫ ∞

−∞
c̃(η′) − c̃(η)

|η′ − η| 5
2

dη′. (7.48c)

There is a single dimensionless parameter, C1, which measures the strength of both
momentum and tracer dispersion. Integration of (7.48a) from w = 0 along the cen-
terline by symmetry yields:

w̃ = ηũ − 1

2

∫ η

0
ũ(η′) dη′. (7.49)

The injection conditions (7.45a)–(7.45b) that set the amplitudes of ũ and c̃ reduce
to: ∫ ∞

−∞
ũ2(η) dη = 1 (7.50a)∫ ∞

−∞
ũ(η)c̃(η) dη = 1. (7.50b)

As for the round jet, the solution for c̃(η)will be the same as ũ(η) because substitution
of ũ for c̃ in (7.48c) and (7.50b) reproduces (7.48b) and (7.50a), respectively.

In the absence of a known analytical solution, we proceed numerically as fol-
lows. An initial, bell-shape guess is made for the function ũ(η) with amplitude set
by (7.50a). From it, w̃(η) is calculated using (7.49). The two functions are then
inserted into the x−momentum Eq. (7.48b) in which a fake-time derivative dũ/dt
is introduced on the left. This permits to update ũ(η), on which condition (7.50a) is
imposed again, and the steps are repeated until convergence. Figure 7.7 displays the
twovelocity profiles forC1 = 0.011 (C = 0.00438), the value that yields a jet spread-
ing rate S = dz50%/dx = 0.1 to match observations (Pope 2000, page 138). Figure
7.8 compares the half-jet profile obtained numerically with the solution obtained
with constant eddy viscosity and laboratory data, both from Heskestad (1965).
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Fig. 7.7 Profiles of the downstream velocity ũ(η) (in blue) and transverse velocity w̃(η) (in red)
that are solutions to (7.48a)–(7.48b), for C1 = 0.011. While the jet velocity is fairly confined, the
transverse velocity is not. Away from the jet, the latter contributes to flow toward the jet and, there-
fore, to entrainment into the jet. Around the center of the jet, the cross-flow reverses, contributing
to jet divergence to compensate for the downstream convergence of the slowing jet velocity along
the centerline

7.6 Turbulent Flow along a Wall—The Logarithmic
Velocity Profile

It was shown in Sect. 7.4 that in the presence of a wall boundary at z = 0 and with
q = u∗ as the governing quantity (case α = 1), the dispersion operator is that given
in (7.29):

∂c

∂t
+ w

∂c

∂z
= C1 u∗

∫ ∞

0
[c(z′, t) − c(z, t)]

[
1

(z′ − z)2
+ 1

(z′ + z)2

]
dz′ . (7.51)

We now apply this to unidirectional turbulent flow along a wall by replacing the
concentration c(z, t) by the velocity u(z, t). In steady state and absence of a pressure
gradient, the x−momentum equation reduces to a single term:

0 = C1 u∗
∫ ∞

0
[u(z′) − u(z)]

[
1

(z′ − z)2
+ 1

(z′ + z)2

]
dz′. (7.52)
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Fig. 7.8 Close-upon the downstreamvelocity profile (solid black line), re-scaled by centerline value
versus η/η50% in comparison with the analytical solution obtained for constant eddy viscosity (red
dashed line) and data from Heskestad (1965) for Re = 3.4 × 104. The data reveal a tail thicker than
that predicted by the constant eddy diffusivity solution but thinner than that of the present solution.
At the far end (η/η50% ≥ 3), the laboratory data continue to show non-zero values in agreement with
the heavy tail of the present solution and in contrast to the solution with constant eddy diffusivity

It can be shown (Cushman-Roisin and Jenkins 2006) that the exact solution to this
integral equation with two degrees of freedom is:

u(z) = u∗
κ

ln
z

z0
, (7.53)

in which the factors κ and z0 serve, respectively, has a multiplicative constant and an
additive constant. We recognize here the well known logarithmic profile of velocity
for turbulent flow along a wall with κ being the von Kármán constant and z0 the
roughness height.

Epps and Cushman-Roisin (2018) showed that the shear stress associated with
the integral in (7.52) is:

τxz = C1ρu∗
∫ ∞

0
[u(z′) − u(z)]

[
1

z′ − z
− 1

z′ + z

]
dz′. (7.54)

The logarithmic velocity profile renders this stress constant, as it should be in a steady
flow with no nonlinear advection and no pressure gradient. After substituting (7.53)
in (7.54), we obtain:
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τxz = C1ρu∗
∫ ∞

0

u∗
κ

ln

(
z′

z

) [
1

z′ − z
− 1

z′ + z

]
dz′ = C1ρ

u2∗
κ

π2

2
= π2C1

2κ
ρu2∗.

(7.55)
Since the turbulent velocity u∗ is defined from the stress as τxz = τwall = ρu2∗, it
follows that:

π2C1

2κ
= 1 → C1 = 2κ

π2
= 0.0811. (7.56)

for κ = 0.40. This suggests which value should be used for the constant C1 when
the quantity governing the turbulence is the turbulent velocity u∗. The correspond-
ing constant in three dimensions isC = C1/π = 2κ/π3 = 0.0258. We note that this
value is fairly close to the ones determined for turbulent jets from fit with observa-
tions, namely C = 0.033 for the round jet, C1 = 0.011 for the planar jet.

7.7 Application to the Marine Ekman Layer

7.7.1 Surface Ekman Layer

The surface Ekman layer in the ocean is a manifestation of downward momentum
dispersion from a wind stress at the surface.9 The governing equations are those of
Ekman dynamics (Cushman-Roisin and Beckers 2011, Chap. 8) except that we now
substitute the preceding 1D turbulent dispersion operator to represent the frictional
terms. In the absence of horizontal gradients (and thus of horizontal advection and
a horizontal pressure force) and over an infinitely deep bottom, the equations to be
solved are:

∂u

∂t
− f v = C1 u∗

∫ 0

−∞
[u(z′, t) − u(z, t)]

[
1

(z′ − z)2
+ 1

(z′ + z)2

]
dz′ (7.57a)

∂v

∂t
+ f u = C1 u∗

∫ 0

−∞
[v(z′, t) − v(z, t)]

[
1

(z′ − z)2
+ 1

(z′ + z)2

]
dz′, (7.57b)

in which u∗ is set by the stress exerted on the surface by the wind, u∗ = √
τwind/ρ,

which we take in the x−direction and constant over time suddenly started at t = 0
over an ocean initially at rest. The value of C1 is given by (7.56) under the premise
that the presence of rotation does not appreciably affect the nature of the shear
turbulence near the surface. The second term inside the brackets in the integrand of
(7.57a)–(7.57b) is included to take into account the presence of the surface boundary
at z = 0. Boundary conditions are:

9 Recall that a shear stress is a momentum flux.
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Fig. 7.9 Evolution of the
surface velocity following
the sudden imposition of a
surface stress in the
x−direction. Inertial
oscillations are damped, and
a steady flow is achieved.
The surface velocity makes
an angle of 27◦ to the right
of the wind stress

τx = ρu2∗, τy = 0 at z = 0 (7.58a)

u → 0, v → 0 as z → −∞. (7.58b)

After scaling the velocity components by u∗, depth by u∗/ f and time by 1/ f , we
obtain the following dimensionless equations

∂u

∂t
− v = C1

∫ 0

−∞
[u(z′, t) − u(z, t)]

[
1

(z′ − z)2
+ 1

(z′ + z)2

]
dz′ (7.59a)

∂v

∂t
+ u = C1

∫ 0

−∞
[v(z′, t) − v(z, t)]

[
1

(z′ − z)2
+ 1

(z′ + z)2

]
dz′ . (7.59b)

The solution proceeds numerically from rest after a suddenly imposed stress in
the x−direction at z = 0 (enforced as a body force over the top grid cell) and until
steady state is reached. Figure 7.9 shows that, after a several inertial oscillations, the
flow settles into a steady state. Turbulent friction has a damping effect, as expected.

Steady-state velocity profiles (Fig. 7.10) show an interplay between the two veloc-
ity components hinting at veering with depth. If the depth of the Ekman layer is
defined as the depth where the velocity magnitude has dropped to 5% of its surface
value, the result is 0.63u∗/ f . This agrees with observations (Cushman-Roisin and
Beckers 2011, page 255), both in its analytical expression as well as in its numer-
ical value. The veering of the velocity with depth is prominently displayed in Fig.
7.11. The angle between surface stress and surface velocity is 27◦ (see also Fig.
7.9), noticeably lower than the 45◦ of the classical Ekman veering obtained with a
constant eddy diffusivity. We also note from the time evolution shown in Fig. 7.9
that the angle between wind stress and surface velocity can be very much smaller
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Fig. 7.10 Velocity profiles in the turbulent surface Ekman layer according to equations (7.59a)–
(7.59b). The horizontal bar indicates the level at which the velocity magnitude has dropped to 5%
of its surface value, serving as a measure of the Ekman layer depth

Fig. 7.11 Velocity
hodograph for the surface
Ekman layer. The angle
between the surface velocity
and the applied stress is 27◦.
A vector velocity is indicated
every 0.15 dimensionless
depth units (every 10 grid
points with Δz = 0.015)

than the ultimate angle of 27◦ in the early part of the first inertial oscillation. Thus,
in a situation with variable winds, the surface current can be expected to be more
closely aligned with the wind than in steady state (Stacey et al. 1982).
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7.7.2 Bottom Ekman Layer

The bottom Ekman layer differs from the surface Ekman layer by its forcing: Instead
of being driven by an applied boundary stress and having a vanishing velocity at great
distance, the bottom Ekman layer is driven by a non-zero geostrophic flow above
and has a vanishing velocity at the boundary. The velocity equations are the same as
(7.57a)–(7.57b) except for the bounds of integration now running upward from 0 to
infinity. The boundary conditions are:

u = v = 0 at z = 0 (7.60a)

u → ug, v → vg as z → ∞. (7.60b)

By aligning the x−axis with the direction of the geostrophic flow, we take vg = 0.
After scaling the velocity components by ug , height by ug/ f , and time by 1/ f , the
equations reduce to

∂u

∂t
− v = C1 λ

∫ ∞

0
[u(z′, t) − u(z, t)]

[
1

(z′ − z)2
+ 1

(z′ + z)2

]
dz′ (7.61a)

∂v

∂t
+ u = C1 λ

∫ ∞

0
[v(z′, t) − v(z, t)]

[
1

(z′ − z)2
+ 1

(z′ + z)2

]
dz′ , (7.61b)

in which λ = u∗/ug . The value of C1 remains that given in (7.56).
The numerical solution proceeds as follows: First, a guess value is made for the

parameter λ since the bottom stress is not known a priori. The velocity field is
initially set as the geostrophic flow throughout the water column (u = 1, v = 0), and
the bottom value u(z = 0) is suddenly set to zero to enforce no slip on the bottom
boundary in accordance with (7.60a). The equations are thenmarched numerically in
time until steady state is reached. Once the velocity profile is known, the two stress
components are determined with use of (7.54), once with velocity u(z) and once
again with v(z). The magnitude of the stress vector (nondimensionalized by ρu2g)
yields a value for λ2, and the resulting λ is compared to the initial guess. Iterations
are performed until the starting and ending values of λ coincide. That value is found
to be λ = 0.0905 for C1 = 0.0811.

Figure 7.12 displays the velocity profiles. If the thickness of the bottom Ekman
layer is defined as the height at which the magnitude of the velocity first reaches the
magnitude of the geostrophic velocity aloft (Garratt 1992, page 287), as indicated
by the horizontal bars across the velocity profiles in Fig. 7.12, the expression is

h = 0.34
u∗
f

. (7.62)

Not only is the expression proportional to the ratio u∗/ f as observed, but the numer-
ical coefficient is also within the range 0.2–0.4 derived from multiple observations
of the neutral atmospheric boundary layer (Garratt 1992, page 288, and references
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Fig. 7.12 Velocity profiles in the turbulent bottom Ekman layer according to equations (7.61a)–
(7.61b) using 1501 grid points covering the finite domain 0 ≤ z ≤ 2 (only the bottom 10% are
shown here) and run until steady state is achieved. The horizontal bars across the velocity profiles
indicate the level at which the velocity magnitude first equals the geostrophic value

therein) and 0.3–0.4 for bottom marine Ekman layers at various locations (Kundu
1976; Mercado and Van Leer 1976). Figure 7.13 displays the corresponding hodo-
graph, revealing a small angle of 18◦ between near-bottom velocity and geostrophic
flow aloft, confirming that in a turbulent situation the angle is much less than the
45◦ predicted by a theory with a constant diffusivity, as seen in observations. Perlin
et al. (2007) quote a range of values between 10◦ and 23◦ for bottom Ekman layers
in various coastal regions.

7.8 Conclusions

Notwithstanding the wide use of the eddy viscosity and diffusivity formulation in
currentmarinemodels, it is argued that a fundamentally different approach is required
for the propermodeling of turbulent dispersion in the ocean. The necessary ingredient
is a mathematical operator that represents stirring by eddies of size comparable
to the length scale of the instantaneous concentration field, and thus by eddies of
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Fig. 7.13 Velocity hodograph for the bottom Ekman layer. The angle between the bottom velocity
and the geostrophic flow aloft is 18◦

increasingly longer scales as the concentration field widens over time. Put another
way, the formulation needs to recognize in some automated way that, as a non-
uniform distribution of a substance10 evolves over time, the action of turbulence is
to disperse this substance by the selective action of those eddies that occur on the
same length scale as the distribution in that region and at that time. These arguments
lead to an integral operator that replaces the classical diffusion operator:

DE∇2c −→ C q
∫∫∫

c(x′, t) − c(x, t)

|x′ − x|α+3
dx′, (7.63)

in which C is a dimensionless constant, q is a dimensional variable characteristic
of the local turbulent field, with dimensions Lα/T , and α is the power of L in the
dimensions of q, which must lie between 0 and 2. Examples are q = u∗ with α = 1
in wall turbulence and q = ε

1
3 with α = 2

3 for inertial turbulence. The possible case
of multiple turbulent characterizations superimposed onto one another remains to be
elucidated.

Formulation (7.63) was applied to cases of round and planar turbulent jets, show-
ing the ability of the formulation to produce solutions in good agreement with lab-
oratory data. Before a value was ascribed to the constant C , it was shown that the
model possesses a similarity solution that matches the observed behavior, namely a
centerline velocity decreasing with downstream distance at the correct power (1 for
the round jet and 1

2 for the planar jet) and a jet width increasing proportionally to
downstream distance. After the value of the parameter C was adjusted to reproduce
one feature of the solution, chosen here to be the angle at which the jet widens with
downstream distance, the prediction of other information pertaining to the jet, such
as its cross-stream velocity profile, followed without further tuning. What sets the
value of C is not yet clear, but it appears that the various adjusted values are not too

10 The word “substance” should be understood broadly here. It may be a passive scalar or an active
scalar, such as temperature, or even momentum.
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disparate (0.0044 ≤ C ≤ 0.033). Assignment of a value for C remains an area of
inquiry.

The presence of a boundary causes the appearance a second, reflection-like term
in the integrand of (7.63) (see (7.29) in the 1D case of wall turbulence). Application
of this operator to the case of a turbulent flow along a wall reproduces the well known
logarithmic profile. A connection is then possible between the von Kármán constant
and the new constant C , which leads to C = 0.0258 (C1 = 0.0811 in one dimen-
sion) for wall turbulence. There is then no parameter left to tune! Using this value,
the formulation was applied to the surface and bottom Ekman layers, reproducing
accurately the key aspects of observed turbulent Ekman layers in both atmosphere
and ocean, namely angle of veering and Ekman layer thickness.

The integral operator in (7.63) demands that, at every grid point at every time step,
differences be computed with values at all other grid points. This is computationally
burdensome. The applications presented herein did not take any shortcut, but it is
hoped that numerical modelers can find ways to reduce the number of calculations
that are necessary to obtain approximate but accurate evaluations of the integrals. A
point of departure is to recognize that differences become less important at larger
distances by virtue of the increasing distance |x′ − x| raised to a power α + 3 > 3
in the denominator. The questions are: How far or near can the integral be truncated
to guarantee an acceptable approximation? Or, better, is there a way to approximate
analytically the contributions of tails in order to avoid calculating differences across
distant points at any time? Kämpf and Cox (2016) have begun this investigation.
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Chapter 8
Spreading and Mixing in Near-Field
River Plumes

Robert D. Hetland

Abstract Near-field plumes are supercritical, jet-like regions of rapid flow expan-
sion and strong mixing. The characteristics of near-field river plumes are described
based on our understanding from numerical ocean models and observations. A sim-
ple mathematical model is presented that demonstrates two competing processes
within the plume: spreading, which tends to accelerate the flow in the plume, and
mixing, which acts to retard the flow. The simple model is used to make statements
about the energetics of the flow, and net dilution of water properties flowing through
a near-field plume. Shortcomings of the model—including the effects of rotation,
and the difficulties in specifying a turbulence closure—are outlined and discussed.

8.1 Introduction

The estuary/river plume system is a mixing region where terrestrial fresh water is
transformed into brackish ocean seawater.While in some large systems, this brackish
seawater may be observed thousands of kilometers from the source, generally the
strongest gradients in salinity, and therefore the areas of most intense mixing, are
concentrated either within the estuary or in a near-field river plume.

The near-field plume is associated with energetic flows—Froude numbers above
one—and elevated mixing rates. As such, near-field plumes are regions of rapid
transition in the character of the estuarine outflow, both in terms of the dilution of
fresh water and the structure of the flow. Though both estuaries and near-field plumes
can be characterized by large gradients in salinity over an area small compared to
the continental shelf, and terrestrial water passing to the ocean must pass through
both regions, estuaries and river plumes are often treated separately. One reason
may be geographic; estuaries have clear boundaries, distinct ecosystems, and may
be next to population centers that care about local water quality. Near-field river
plumes on the other hand are ephemeral, generally only occurring during ebb tides,
they have no distinct boundaries. Near-field plumes are not associated with any
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particular ecosystems as they are transitional, with water parcels traversing the near-
field plume quickly—usually a few hours or less. Near-field plumes also have distinct
dynamics—supercritical flow detached from the bottom and not constrained laterally
by the coastline.

Not every river or estuary entering into the coastal ocean has an associated near-
field plume. The mouth of the estuary needs to be narrow enough for hydraulic
control to affect the outflow. For wide estuary mouths, rotation will become an
important factor in determining the structure of the outflow. If the estuarine flow is
given sufficient space, the buoyant estuarine outflow will form a trapped boundary
current, hugging the right-hand coast (in the northern hemisphere) as the flow travels
seaward. This process breaks the hydraulic control, as the structure of the flow exiting
the estuary is determined by rotating dynamics, and not hydraulics. Thus, the first
criterion for a near-field plume to exist is that the mouth be narrow compared to
the deformation radius, or that the Kelvin number, K , the ratio between the width
of the estuary mouth, W and the deformation radius, Rd = √

g′H f −1, be small,
so that K = WR−1

d � 1 is a necessary condition for a near-field plume to form
Horner-Devine et al. (2015).

Another condition for the existence of a substantial near-field plume is the pres-
ence of relatively quiescent receivingwaters. This can be quantified by comparing the
potential energy anomaly provided by the buoyant outflow to the dissipative energy
associated with winds and tides Pritchard and Huntley (2002); storms and strong
tides can mix away a plume before it forms or strongly impact its evolution. In prac-
tice, because river discharge varies over many orders of magnitude across different
systems and seasons, it is the input of potential energy by the buoyant outflow that
is the strongest determining factor in forming a robust plume; large river systems
generally have well defined plumes.

The first work on near-field plumes was done in a series of papers by Richard
Garvine (notably, Garvine 1982; O’Donnell and Garvine 1983; Garvine 1987). For
the cases considered, the estuarine source waters were directed downcoast, so that
the plume never separated from downcoast coastline; the focus was on predicting
offshore frontal positions. Fronts were treated as shock conditions; the details of
the frontal dynamics were explored in an earlier series of papers Garvine (1974);
Garvine and Monk (1974). Local entrainment was not considered, so the plume
density remained constant.

Building on this work, O’Donnell (1990) created a layer model that included both
interior and frontal mixing in a radially spreading plume. The radially expanding
plume has similarities to the laboratory experiments performed by Britter and Simp-
son (1978), who looked at an expanding dense plume flowing from a point source,
but O’Donnell’s numerical experiments included rotation.

There have been a number of observations of near-field plumes, starting with
observations of the outflow of South Pass in the Mississippi Delta Wright and Cole-
man (1971). Wright and Coleman’s observations show how the plume gets denser
offshore, and how the jet leans in response to the tide. Luketina and Imberger (1987)
discuss observations of a small tidal plume, and identify many key features of near-
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field plumes, including the lift-off point, entrainment in the core of the plume, and
the expansion of the plume front.

There are many similarities between ‘engineering’ scale jets and the near-field
plume (see Jones et al. 2007). The primary difference between a geophysical scale
near-field plume, and for example, a coolingwater outflow plume (engineering scale)
is the aspect ratio of the plume. Engineering scale jets have an aspect that isO(1) to
O(10−1). Geophysical scale plumes have an aspect closer to O(10−2) or less. Thus
for engineering scale plumes, lateral mixing is an important consideration. If eddies
caused by shear instabilities scale as a few times the plume depth, it is easy to see
how lateral processes can cause significant dilution in a plume that has an aspect of
O(10−1) or more. However, with a very small aspect, mixing on the edges will have
little influence on the bulk of the plume, so mixing is almost exclusively a vertical
process in geophysical scale plumes.

There have been a number of studies that have further investigated the mixing in
the near-field plume front (e.g., O’Donnell et al. 1998; Orton and Jay 2005; Kilcher
andNash 2010) and the generation of internal tides by the propagating front Nash and
Moum (2005); Stashchuk and Vlasenko (2009). As discussed further below, there is
some uncertainty about the relationship between the plume front and trailing core of
the near-field plume. As the dynamics of the plume front are distinct from the core
of the plume, this manuscript will focus primarily on the plume core.

8.2 Dynamical Regions

The near-field plume is part of a series of regions that process fresh water from rivers
by mixing and transporting water through the estuary/river plume system. The near-
field plume is an important region because, though small relative to the other regions
of the estuary/plume system, mixing can be intense, and a significant fraction of the
total mixing that river water experiences through the estuary/plume system can occur
in the near-field plume. The near-field plume can thus modify flow in downstream
regions, but can also be itself influenced by processes occurring at larger scales. In
the next section, the dynamical regions surrounding the near-field river plume are
examined in more detail.

Estuarine outflow defines the initial salinity and volume transport of the coastal
plume. If the mouth is narrow, a near-field plume will form, and salinity and momen-
tum will be rapidly modified by intense mixing. Otherwise, the estuarine outflow
will form a buoyancy driven coastal current where properties will change muchmore
slowly; this type of flow is more a continuation of the flow patterns in the estuary, and
is not as dynamically distinct as a near-field plume. A key difference between these
two features is that the near-field plume is supercritical, with Fr = U

√
g′h > 1,

so that momentum in the near-field plume is strong. The strong momentum in the
near-field plume inhibits the immediate formation of a rotating coastal current, and
often directs the flow offshore.
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As the near-field plume collapses and transitions back to subcritical flow, rotation
becomes a dominant factor, and the flow is redirected toward the coast. This creates a
recirculating bulge that has been the focus of a number of laboratoryAvicola andHuq
(2003), Horner-Devine et al. (2006), numerical Fong andGeyer (2002), Isobe (2005),
and observational Horner-Devine (2009), Kudela et al. (2010) studies. Connections
between the near-field plume and the recirculating bulge are not yet clear, but there
are two potential interactions that can influence the near-field plume circulation.
First, the transition from (non-rotating) near-field jet to (rotating) bulge region is not
abrupt, and rotational effects are important at the end of the near-field region Cole
(2014); this may cause a shutdown in near-field plume spreading that then inhibits
mixing. The second potential interaction is that the returning, up-coast flow in the
recirculating bulge may interact with the near-field plume; the recirculating bulge
water may place additional forces on the near-field plume, or modify the water that
is entrained.

Downcoast of the bulge region, an along-shore coastal current forms [] that may
be affected by tides De Boer et al. (2008), Pritchard and Huntley (2006) or winds
(Fong and Geyer 2001; Hetland 2005; Lentz 2004; Jurisa and Chant 2013). Though
this region is typically much larger than the near-field plume, the influence of the
near-field is important because the estuarine outflowmay be significantlymodified in
the near-field. Many theoretical studies relate the structure of the coastal current flow
to properties of the estuarine outflow, but in practice this should be related instead
to the water properies leaving the near-field plume.

The initiation of the near-field plume is located at a point of internal hydraulic
control. In practice this is usually bottom, topographic control from a tidal bar at
the mouth of an estuary, like in the Merrimack MacDonald et al. (2007) or Fraser
MacDonald and Geyer (2005) rivers, however there are also cases where the control
is created at the end of the jetties, where the channel width goes from finite to infinite,
as in the case of some of the Mississippi Delta passes Wright and Coleman (1971).
After the hydraulic control point, the seaward flow transitions to supercricital, and
this supercritical flow characterizes the near-field plume.

Supercritical flow influences the near-field plume in two ways. First, high Froude
numbers imply low bulk Richardson numbers, where Rib = g′hU−2 = Fr−2 which
in turnmeans the flow could be susceptible to internal Kelvin-Helmholtz instabilities.
Second, the supercritical flow is often associated with flow separation at the estuary
mouth. This can be influenced by the geometry of the estuary mouth; for example,
jetties will tend to favor flow separation more than a gradually widening, funnel-
shaped estuary mouth.

If a near-field plume separates from the coastline, the plume will be able to freely
spread. The spreading rate will be twice the internal gravity wave speed, the edges
of the plume will each expand in a direction away from the axis of the plume at
a rate defined by the local internal phase speed Hetland and MacDonald (2008).
Properties within the core of the plume are fairly constant in the lateral direction,
and are primarily a function of the distance from the estuary mouth. As such, the
spreading rate is also primarily a function of distance from the mouth, and does not
significantly vary laterally across the plume.
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Note that if the plume does not separate, the geometry of the estuary and coastline
will control the spreading rate instead of internal plume dynamics. In this case, a
plumemight look more like an expansion within an estuary, where the buoyant water
maintains contact with the spreading boundaries (see Geyer et al. 2017); situations
like this are also associated with elevated and intense mixing Geyer et al. (2010).
Similarly, the numerical simulations by O’Donnell (1990) show solutions for a radial
source where the flow does not separate from the coastline; in this case as well, the
spreading rate of the plume is specified by geometry, and not a dynamical feature of
the plume to be solved for.

Mixing in the near-field plume is driven by shear instabilities that can be quite
intense. In both the Merrimack MacDonald et al. (2007) and Columbia plumes Nash
et al. (2009), shear squared and stratification frequency squared can both exceed
0.1 s−2, and turbulence dissipation rates well exceeding 10−4 m−2s−3. A compari-
son between simulated and observed dissipation rates in the Merrimack river plume
MacDonald et al. (2007) showed good agreement in magnitude and spatial distribu-
tion, most likely because the turbulence closure schemes work well under the strong
signal of intense mixing.

There is a process that may bias estimates of mixing in 0D mixing parameteri-
zations, which includes essentially all modern turbulence closure schemes: there is
some evidence that mixing may be enhanced even beyond what is expected from a
local Richardson number-based parameterization through stretching and intensifica-
tion of the vortex tubes. As Kelvin-Helmholtz billows roll up, they are also stretched
laterally by the spreading plume. This spreading can further enhance the lateral vor-
ticity associated with the rolling billow, pumping more energy into the turbulent
cascade MacDonald and Chen (2012). In practice, this effect may be difficult to sep-
arate from variability in mixing within the plume, and a 0D mixing parameterization
will reproduce the primary features terms of mixing strength and distribution Mac-
Donald et al. (2007). In other situations, for example when a vortex tube starts as
vertical vorticity and is stretched laterally due to baroclinic shear, the intensification
in the mixing can be a dominant process (e.g., Farmer et al. 2002).

8.3 A Simple Near-Field Plume Model

Following Hetland (2010), the combined effects of a control point at the estuary
mouth (i.e., liftoff), and subsequent plume spreading and mixing can be combined
into a simple analytic model of the plume that can be used to approximate plume
structure and estimate net mixing through the near-field plume. The key dependant
variables are the density anomaly of the plume, Δρ, the thickness of the active layer,
h, the axial velocity, u, and the plume width, W ; see Fig. 8.1.

Consider a rectangular estuary mouth, with width W0. We will consider the estu-
arine outflow to be a single active layer over quiescent receiving waters, so we use a
reduced gravity model. The outflow velocity is u0, and the depth of the upper layer
is h0, both subject to the constraint that the flow is exactly critical (i.e., the mouth
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Fig. 8.1 A schematic showing the variables in the simple model of a near-field plume

acts as a constriction, see Armi and Farmer 1986; Farmer and Armi 1986), so that
the internal Froude number is one,

Fr

∣
∣
∣
∣
x=0

= u√
g′h

∣
∣
∣
∣
x=0

= 1, (8.1)

where g′ = gΔρρ−1
0 is the reduced gravity, g the gravitational acceleration, Δρ the

buoyancy anomaly of the active layer, and ρ0 the density of the receiving waters.
As the plume evolves, it can entrain receiving waters into the active layer through

an entrainment velocity, we. The entrainment velocity will be a parameterization of
mixing processes, and could therefore be dependent on potential and kinetic energy
anomalies in the flow; a more detailed discussion of the parameterization of entrain-
ment follows, but for now it can be treated as an arbitrary function, or to simplify the
analysis, constant. Entertainment will affect both momentum and density anomalies
in the plume.

Conservation of momentum along the plume axis , x , following a slab of water
exiting the estuary mouth, is

Du

Dt
= −(g′h)x − weu

h
, (8.2)

where g′ must also be considered within the gradient operator as there can be an
adverse pressure gradient due to the decreasing density anomaly. Conservation of
density can be used to describe the evolution of the density anomaly following the
slab of water

DΔρ

Dt
= −weΔρ

h
. (8.3)

The width of the slab will increase at twice the local gravity wave speed, (see Hetland
and MacDonald 2008, as discussed above) requiring
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DW

Dt
= 2

√

g′h (8.4)

Finally, conservation of mass requires

D

Dt
(huWΔρ) = 0. (8.5)

Assuming that the plume is steady, the total derivative can be converted to an
advection term

D

Dt
= u

∂

∂x
. (8.6)

The equations can then be written as a set of ordinary differential equations, in x ,

∂Δρ

∂x
= −Δρ

we

u h
(8.7)

∂W

∂x
= 2Fr−1 (8.8)

∂u

∂x
= u

(1 − Fr−2)

[
Δρx

Δρ
+ Fr−2Wx

W

]

(8.9)

∂h

∂x
= −h

[
Δρx

Δρ
+ Wx

W
+ ux

u

]

(8.10)

where the internal Froude number, Fr = u(g′h)−1/2 has been substituted where
appropriate. A solution to this set of equations can be found numerically using
standard ODE solvers by integrating from the source, x = 0, toward the offshore
direction. The solution is valid only for the region of the plume that is supercritical,
where the wave characteristics are directed only offshore, so the solution ends when
Fr returns to one.

An equation for the evolution of the Froude number can be diagnosed from this
set of equations,

∂Fr

∂x
= uh(Fr2 + 2) − 3

2weW Fr3

Q(Fr2 − 1)
. (8.11)

This equation demonstrates the interplay between mixing an spreading in the plume.
In the case with no entrainment, we = 0, the Froude number always increases, since
the near-field plume is defined by the region of supercritical flow, Fr > 1. The
increasing Froude number is due to the spreading, shoaling, and subsequent accel-
eration of the plume; the rate of spreading actually decreases as the plume advects
offshore as the plume accelerates and the spreading rate decreases due to decreasing
plume thickness, resulting in a tulip shaped plume. If mixing is included this term
will eventually dominate as the Froude number increases—this is true even if the
mixing rate does not depend on the Froude number, but the effect is exacerbated if it
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does. When mixing dominates, the Froude number decreases offshore, and the rate
of expansion increases resulting in a trumpet shaped plume.

The near-field plume is a supercritical feature, so the Froude numbermust increase
from its initial value of one for the plume to have a region of supercriticality, in other
words, Frx |x=0) > 1. By Eq. 8.11, this requires

weW 2
0

Q0
< 2 (8.12)

at the estuary mouth, where the subscript 0 indicates values of the width and volume
transport at the mouth.

Observations, idealized 3D models, and the simple near-field plume model all
suggest that a typical structure is that the Froude number rapidly increases just out-
side the estuary mouth and quickly reaches a maximum of around 1.5–2. The Froude
number then gradually decreases in the bulk of the plume where mixing dominates
spreading. This region could be considered similar to an extended hydraulic jump,
except for the fact that mixing is slow enough that the plume structure can sub-
stantially change over the extent of the mixing region, in particular, the plume can
accelerate due to spreading.

The ratio of vertically and horizontally integrated kinetic energy,

K EI =
∫ W

2

− W
2

∫ 0

−h

1

2
ρ0u

2dz dx = 1

2
ρ0u

2hW, (8.13)

to vertically and horizontally integrated potential energy,

APEI =
∫ W

2

− W
2

∫ 0

−h

1

2
ρ ′gz dz dx = 1

2
ρ ′gh2W, (8.14)

is given by Fr2. The Froude number thus describes the partitioning of integrated
energy in the plume, but does not describe the total integraded energy, K EI + APEI .
There are twoways to consider energy in the plume: following a parcel at the surface,
and integrating across the entire plume.

The Bernoulli function, derived from conservation of momentum, defines the
summed energy of a parcel following the flow at the free surface, given in a steady
plume by

u
∂B

∂x
= u

∂

∂x

(
1

2
u2 + g′h

)

= −weu

h
. (8.15)

In the absence of mixing, we = 0, the total energy of a parcel at the free surface is
constant; the total energy of the surface parcel is reduced by entrainment.

The total integrated energy of the plume is more complicated. The change in the
total integrated energy may then be calculated as
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u
∂

∂x
(K EI + APEI ) = √

g′h

(

h
√
g′h − weW (Fr2 − 1

2 )

Fr(Fr2 − 1)

)

. (8.16)

Similar to the evolution of the Froude number, the total energy in the near-field plume
increase away from the estuary mouth in the absence of mixing; entrainment reduces
the total energy. The increase in energy can be thought of as caused by pressure
forces on the spreading plume. Consider a plume in an expanding channel, such that
the expansion is prescribed and not calculated. Pressure forces at the boundaries
accelerate the plume, like an inverse form drag. Similar processes are acting here,
except it is the receivingwaters that are applyingpressure to, and thereby accelerating,
the plume.

A curious feature of the model is that the net mixing through the near-field plume,
as defined by the dilution of the density anomaly at the point where the plume
transitions back to subcritical is inversely proportional to the local mixing rate. An
example of this is shown in Fig. 8.2, where the final density anomaly of the plume,
Δρ, normalized by the initial density anomalyΔρ0, is plotted against the normalized
entertainment velocity, weW 2

0 /Q0. The motivation for this choice of normalization
is discussed in detail in Hetland (2010), but can be seen as being inspired by the

Fig. 8.2 A parameter space of simulations of the simple near-field plume layer model with con-
stant entrainment shows normalized plume dilution, ΔρΔρ−1

0 , as a function of normalized local
entrainment, weW 2

0 Q
−1
0 . The near-field plume does not exist, and no dilution occurs for ΔρΔρ−1

0
= 1, higher dilution occurs at lower values. Parameters and value ranges include the width of the
estuary mouthWo = 50–3000 m, the fresh water transport Q f = 10–3000 m3 s−1, the initial density
anomaly Δρ0 = 1–24 kg m−3, and the entrainment velocity we = 10−4 to 5×10−3. The density
difference between the recieving waters and fresh water is constant through the simulations, Δρ f
= 24 kg m−3
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criticality condition in Eq. 8.12. For the cases shown, the entrainment velocity is
constant for each particular simulation, but varies across the parameter space, along
with the initial width,W0, initial volume flux of the estuarine outflow, Q0, and initial
density anomaly. The result that increased local mixing decreases net plume dilution
is robust for different is consistent across different mixing parameterizations, but the
functional relationship is shifted, and the collapse is not always as tight.

8.4 Complications to The Simple Plume Model

While the simple model of the near-field plume is a useful conceptual tool that
contains many key elements observed in energetic near-field plumes, in particular
the interplay between spreading and mixing, there are a number of complications
that limit the applicability of this model to predictions of real conditions.

8.4.1 Local Mixing Parameterization

In the absence of mixing, the near-field plume will spread and thin indefinitely, or
until some other process arrests the spreading; this can be seen by setting we = 0
in Eq. 8.11. Using a constant entrainment velocity gives solutions that qualitatively
agree with idealized numerical solutions, but the predicted Froude numbers are often
too high.

A sensible alternative is to use a mixing parameterization that is dependent on the
local Richardson number. However, common closures, such as the classic Ellison
and Turner (1959) scheme cease mixing at a critical Richardson number of 0.6, or a
Froude number of about 1.12. Without some background or minimum mixing, the
plume will never collapse, and after reaching the peak Froude number, the Froude
number will decrease, and the Richardson number will correspondingly increase,
until it reaches the critical value of 0.8. Then it will remain at this critical value of the
Richardson number, as there is a constant acceleration due to spreading that will only
be countered when the Froude number is higher than 1.12. Other closure schemes
for layer models, such as Christodoulou (1986) and Cenedese and Adduce (2008),
allow mixing at Froude numbers as low as 1.0, so these choices are good alternatives
that do not rely on an ad hoc background mixing rate.

An example of two simulations using the idealized near-field plume model are
shown in Fig. 8.3. The horizontal structure of both plumes is similar, with the length
and width scales being of similar order, with the plume extending five to six kilome-
ters offshore with a width of eight to twelve kilometers; the plume depth is generally
between one to two meters. There are larger differences in the other parameters:
there is about 50% more dilution at the end of the near-field in the variable mixing
case, and the Froude number is much larger in the constant mixing case. It is not
immediately clear which parameterization best matches reality.
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Fig. 8.3 Two idealized near-field plume simulations using constant entrainment, we = we0, and
the Ellison and Turner (1959) parameterization, with a background (minimum) mixing of we0.
The density anomaly and Froude number along the axis of each plume is shown to the right. The
background mixing in the variable mixing case is triggered just before 6 km offshore, and can be
seen as a kink in the Froude number profile, and in the layer thickness, but has little effect on the
density anomaly

8.4.2 Plume Frontal Mixing

Near-field plume fronts can be regions of intense overturning and mixing. Observa-
tions of the Columbia River tidal plume show that fresh water at the plume front can
plunge to 30 m below the free surface, about three times the thickness of the plume.
Measurements in the Connecticut river plume also show the plume front being about
twice that of the plume, though the plume is much thinner at about ameter O’Donnell
et al. (1998). While direct measurements of overturning and resultant mixing have
so far not been possible due to the rapid translation of the plume front, analogies to
gravity current bore heads suggest that mixing is intense.

Despite the fact that mixing at the front is clearly very intense, there is ongoing
debate about what percentage of total net mixing within the plume that occurs at the
plume front versus the supercritical flow region behind the plume front. Pritchard
and Huntley (2006) suggest that essentially all of the near-field plume mixing occurs
within the front; Orton and Jay (2005) suggest about 20%of netmixing occurs within
the Columbia plume front; Cole (2014) found even less net mixing within the plume
front in a series of idealized experiments.
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Fig. 8.4 Surface density contours are shown at four stages of plume evolution from a three-
dimensional, non-linear hydrodynamic simulation using an idealized configuration

To further emphasize the ambiguity in the interaction between the quasi-steady
plume and plume front, idealized experiments using steady fresh water forcing sug-
gest that as the plume front propagates, it exposes a steady near-field plume in its
wake (see Fig. 8.4). Thus, studies of mixing within a plume have used both perspec-
tives of flow through a steady plume Hetland (2010), or a Lagrangian perspective
following the plume front Jay et al. (2010). Though conceptually distinct, there is
considerable overlap in the analytical methods used to solve these two problems.

8.4.3 Rotation and Return to Geostrophy

High Froude numbers within a near-field plume imply strong advection. Thus
high Froude numbers are generally associated with high Rossby numbers, Ro =
U ( f L)−1, which in turn implies that rotation may not be a dominant factor in the
flow. A key factor is the timescale of flow through the near-field; if this timescale is
on the order of, or longer than, the rotational timescale f −1, the flow will likely be
influenced by rotation. In practice, the timescales of flow through a near-field plume
are rarely greater than an hour, so the impact of rotation is primarily to lean the plume
toward the downcoast direction, as defined by the direction of coastal Kelvin wave
propagation. But the result of even this minor influence of rotation is that spreading
may be suppressed by the turning of the plume so that net plume mixing may be
reduced as compared to a non-rotating plume Cole and Hetland (2016).
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8.5 Conclusions

The near-field plume, when it exists, is a small region of intense mixing that can
strongly alter estuarine outflow before it enters the larger, geostrophic river plume.
This manuscript highlighted the importance of two competing dynamical processes
that determine the evolution of a near-field plume: mixing and spreading. Unfor-
tunately, the simple analytical description of a near-field plume has a number of
problems that prevent it being used for predicting the conditions in realistic plumes,
notably the sensitivity to the mixing parameterization and ignoring the effects of
other mixing processes, such as winds and tides, and rotation.

The steady plume solution is mathematically similar to models of mixing in a
propagating plume front, as the steady plume can be thought of as being exposed
in the wake of a propagating plume front. It is not clear which conceptual model is
correct, as the relative amounts of mixing in the plume front, and in the steady plume
behind the front, are not well established.

Future work in near-field plume dynamics will most likely have to rely heavily on
three-dimensional ocean models, as the processes that are unknown are nonlinear,
like mixing, or difficult to place into a simple model, like rotation. Simulations in the
Merrimack river plume MacDonald et al. (2007); Hetland and MacDonald (2008),
or the Columbia river plume MacCready et al. (2009) show that numerical models
are capable of reproducing observed features in the near-field, so they may be used
as a tool for further investigation and understanding.
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Chapter 9
Lagrangian Modelling of Transport
Phenomena Using Stochastic Differential
Equations

Arnold Heemink, Eric Deleersnijder, Syed Hyder Ali Muttaqi Shah,
and Ulf Gräwe

Abstract When modelling transport processes in marine waters one might have to
solve the advection-diffusion equation or one can simulate the stochastic behaviour
of individual particles of the constituent under study. By using the well-established
theory of stochastic differential equations (SDEs) it is possible to derive for any
advection-diffusion model an underlying SDE governing the behaviour of one par-
ticle of the constituent. Using a numerical scheme for approximating this SDE a
particle model can then be obtained. In the present Chapter we first briefly describe
the results of the theory of SDEs that are relevant for marine transport modelling.
Then we derive a number of particle models for solving different types of transport
problems and formulate these particlemodels as SDEs. Finallywe discuss the numer-
ical treatment of SDEs and propose a number of numerical schemes for the particle
models. The performance of the methods is illustrated by a number of idealized test
cases of turbulent dispersion. The test cases considered are inspired by shallow-sea
dynamics and large-scale ocean transport processes.
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9.1 Introduction

There are two different approaches to model transport processes in oceanic or coastal
waters. Onemight adopt the Eulerian point of view and, hence, solve numerically the
associated advection-diffusion equations. Another option consists in having recourse
to Lagrangian models where the behaviour of individual particles of the constituent
is considered. By simulating the position of many particles using a random generator
the transport processes can be described (Dimou andAdams 1993;Hunter et al. 1993;
Visser 1997, 2008).

In most textbooks the relation between the Eulerian and Lagrangian approaches
is examined for the very simple case of a diffusion process with constant diffu-
sivity. More general problems are seldom addressed. However, by using the well-
established theory of SDEs it is possible to derive for any advection-diffusion model
an underlying SDE governing the behaviour of one particle of the constituent. Using
a numerical scheme for approximating the solution to this SDE a particle model can
then be obtained. The latter is consistent with the advection-diffusion equation under
consideration in the following sense: as the number of particles is increased and as
the time step is decreased, the results of the particle model converge to the exact
solution of the advection-diffusion equation.

The theory of SDEs and the numerical approximation thereof are not straightfor-
ward extensions of the deterministic case and, inmany respects, seem to be counterin-
tuitive. Most of the mathematical literature on these topics is difficult to comprehend
for non-mathematicians. However, we do believe that a sufficient command of SDE
theory would be very useful for those dealing with marine transport models. Eulerian
and Lagrangian models are respectively based on two different views of the same
transport processes. Knowledge on the relation between these two models increases
the insight into both types of models and into the question as to which approach
is optimal for a given problem. Moreover, if a Lagrangian model is formulated as
an SDE then the higher order numerical schemes developed for SDEs can be used
to obtain an accurate implementation of the particle model. As was clearly demon-
strated by Stijnen et al. (2006), Shah et al. (2011), Shah (2015), Gräwe et al. (2012),
just using the very simple Euler scheme is suboptimal in most cases. Therefore in
this chapter we would like to bridge the gap between the mathematical theory and
applications in oceanography. We do not present any new scientific results, but con-
centrate our efforts on explaining stochastic calculus and illustrating the theory with
practical applications. We do not strive for mathematical rigor or completeness, but
focus on the aspects that are relevant for marine transport problems. For a very good
introduction on the theory of SDEs the reader is referred to the classical work of
Jazwinski (1970) or, the more recent textbook of Oksendal (2003). Regarding the
numerical treatment of SDEs, a comprehensive presentation may be found in the
excellent book of Kloeden and Platen (1992).

In this chapter we first describe briefly the results of the theory of SDEs that are
relevant for ocean transport modelling. We derive a number of particle models for
solving different types of transport problems and formulate these particle models as
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SDEs. Then we discuss the numerical treatment of SDEs and propose a number of
numerical schemes for the particle models. We finally describe a number of relevant
transport test cases to illustrate the performance of the Lagrangian approach.

9.2 Stochastic Differential Equations

9.2.1 Introduction

The time varying behaviour of particles moving in a fluid in the absence of diffusive
effects can be described by deterministic ordinary differential equations. If we define
the state of the physical system as the particle position x(t) = (x(t), y(t), z(t)) we
have the following model:

dx
dt

= f(x, t), x (t0) = x0. (9.1)

In case diffusive effects become important, the particle behaviour can only be
described in terms of probability implying that a stochastic component needs to
be added. Therefore in this chapter we discuss a SDE as a model for a stochastic
process Xt . Here we first consider models of the following type:

dXt

dt
= f (Xt , t) + σ (Xt , t) Nt , Xt0 = X0, (9.2)

where we have introduced a stochastic process Nt to model uncertainties in the
underlying deterministic differential equation. The initial particle position X0 may
also be a random variable. The notations f and σ refer to deterministic functions
while the capital representations Xt and Nt are associated with stochastic processes.

Let us first consider the scalar case, Xt , of the stochastic model (9.2):

dXt

dt
= f (Xt , t) + σ (Xt , t) Nt , Xt0 = X0. (9.3)

An essential property of this model is that it should be Markovian. This implies
that information on the probability density of the state xt at time t is sufficient for
computing the future model state (times > t). If the model is not Markovian, then
the information on the system state for times< t would also be required. This would
make the model very impractical. The SDE (9.3) can be shown to be Markovian if
Nt is a continuous Gaussian white noise process with statistics:

E {Nt } = 0, E {Nt .Ns} = δ(t − s). (9.4)
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Here E{·} represents the expectation operator and δ(x) is the Dirac function. This
is one of the very few processes that guarantee the model (9.3) to be Markovian.
The importance of the white noise process lies in the fact that it has a very simple
correlation structure. Therefore it is a good candidate for generating another process
Xt with a certain probabilistic structure bymeans of the SDE (9.3). By generating this
process Xt using a white noise forcing, the correlation structure of Xt is completely
created by the SDE and not partly by the structure of the input Nt . Since we need to
be careful when working with delta functions we will rewrite the SDE (9.3) in terms
of a Wiener process.

A standardWiener processWt , t ≥ 0 is a process withW0 = 0 andwith stationary
independent increments such that for any 0 < s < t the increment Wt − Ws is a
Gaussian random variable with mean zero and variance equal to t − s. The formal
derivative of the Wiener process can be shown to be the Gaussian continuous white
noise process:

dWt

dt
= Nt , (9.5)

or:
dWt = Ntdt. (9.6)

It is now convenient to rewrite the SDE (9.3) in term of the Wiener process:

dXt

dt
= f (Xt , t) + σ (Xt , t)

dWt

dt
. (9.7)

This equation is usually rewritten as follows:

dXt = f (Xt , t) dt + σ (Xt , t) dWt , (9.8)

and can also be written as:

Xt = Xt0 +
t∫

t0

f (Xs, s) ds +
t∫

t0

σ (Xs, s) dWs . (9.9)

The second integral in (9.9) is a stochastic integral and in order to solve (9.9) the
stochastic integral needs to be defined precisely. Using the Wiener process as a
random driving force introduces somemathematical difficulties in defining and eval-
uating the stochastic integral in (9.9).

As pointed out above theWiener process is a very attractive driving noise process
in the stochasticmodel (9.9). There are only a very fewalternatives that also guarantee
that Xt is Markovian. Among them the Poisson jump process and the Lévy process
are the most popular ones (Gardiner 1985). The Wiener process is often used for
modelling physical processes, while the other two processes are very popular in
finance. More recently the Lévy process (Hanert 2012; Vallaeys et al. 2017) has also
been introduced for transport modelling.
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9.2.2 Îto Stochastic Integrals

Dealing with stochastic model (9.9) requires the evaluation of a stochastic integral
of the following type:

t∫

t0

σsdWs, (9.10)

where σs is a general stochastic process andWs is a Wiener process. To illustrate the
mathematical difficulties associated with stochastic integrals, let us first consider for
example the deterministic integral:

t∫

t0

sds. (9.11)

The classical Riemann-Stieltjes definition for this integral is:

t∫

t0

sds = lim
Δt→0

∑
t∗i (ti+1 − ti ) = t2

2
− t20

2
, (9.12)

where the interval [t0, t] is divided into many small sub intervals [ti , ti+1] of length
Δt and the point t∗i is chosen somewhere in this interval. Let us now consider the
stochastic integral:

t∫

t0

WsdWs, (9.13)

where Ws is a Wiener process. Inspired by the deterministic case (9.12) an obvious
definition for this stochastic integral would be:

t∫

t0

WsdWs = l. i.m.Δt→0

∑
Wt∗i

(
Wti+1 − Wti

)
, (9.14)

where again the interval [t0, t] is divided into many small sub intervals [ti , ti+1] of
length Δt and choose the point t∗i somewhere in this interval. The “l.i.m.” (limit in
mean square sense) refers to a stochastic extension of a limit, i.e. a series of stochastic
variables Xn is said to converge in the mean square sense to a limit X if

lim
n→∞ E

{
(Xn − X)2

} = 0, (9.15)

which is denoted by:
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l. i.m.n→∞ Xn = X. (9.16)

This definition states that the variance of the stochastic variable defined as the dif-
ference between Xn and X will approach zero for large values of n. This implies that
the probability that Xn will be significantly different from X will become very small
in the limit n → ∞.

Using the definition of the limit in mean square sense and the properties of the
Wiener process it is possible to derive (after some clever algebra, Jazwinski (1970))
the stochastic limit of (9.14):

t∫

t0

WsdWs = W 2
t

2
− W 2

t0

2
− (t − t0)

2
+

∑
i

(
t∗i − ti

)
. (9.17)

From this result we see that unlike in the deterministic case shown in (9.12) this
stochastic limit is not uniquely defined. The choice of t∗i is important for the final
result of the integral. Therefore we need another definition for a stochastic integral.

The Japanese mathematician Îto proposed the first and the most well-known def-
inition of a stochastic integral. The Îto integral is defined as:

t∫

t0

σsdWs = l. i.m.Δt→0

∑
Δt→0

σti

(
Wti+1 − Wti

)
. (9.18)

Using the Îto definition the evaluation point is always chosen at the beginning of the
interval. Interpreting the integral (9.17) in Îto sense results in:

t∫

t0

WsdWs = W 2
t

2
− W 2

t0

2
− (t − t0)

2
. (9.19)

This answer is not what we intuitively would expect. Compared to the corresponding
deterministic result an additional term (t−t0)

2 is obtained.

9.2.3 Îto Stochastic Differential Equations

Having defined the Îto stochastic integral we are now able to define the SDE (9.8)–
(9.9) as an Îto SDE:

dXt = f (Xt , t) dt + σ (Xt , t) dWt , (9.20)

or:
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Xt = Xt0 +
t∫

t0

f (Xs, s) ds +
t∫

t0

σ (Xs, s) dWs, (9.21)

where the stochastic integral has to be interpreted in the Îto sense. Using the definition
of the Îto stochastic integral it is possible to derive a simple numerical scheme for
solving an Îto SDE (9.20)–(9.21). For a small time step we have:

Xt+Δt = Xt +
t+Δt∫

t

f (Xs, s) ds +
t+Δt∫

t

σ (Xs, s) dWs

≈ Xt +
t+Δt∫

t

f (Xt , t) ds +
t+Δt∫

t

σ (Xt , t) dWs

= Xt + f (Xt , t)Δt + σ (Xt , t) (Wt+Δt − Wt )

= Xt + f (Xt , t)Δt + σ (Xt , t) ΔW,

(9.22)

where the Wiener increment ΔW is a random variable with mean zero and variance
Δt . This approximation is called the Euler-Maruyama scheme. This scheme is con-
sistent with the Îto definition of the stochastic integral and can only be used for an
Îto SDE. By using a random number generator realizations of theWiener increments
can easily be obtained.

From the Euler approximation we can also see that Xt is a Markov process.
Additional information about Xs for s < t will not help us to obtain more accurate
predictions at t + Δt . The terms in the right hand side of (9.22) are exactly known
given the value of Xt . The remaining Wiener increment is independent of previous
increments and thus of Xs for all times s < t . As a result, information on Xs will not
be useful to determine predictions ofΔW . Note that if theWiener process would not
have independent increments the process Xt would not be Markovian.

9.2.4 Îto’s Differentiation Rule

Having defined the Îto integral we can now discuss Îto’s differentiation rule. Consider
the process Xt described by the Îto SDE:

dXt = f (Xt , t) dt + σ (Xt , t) dWt . (9.23)

Let g(x, t) be a sufficiently smooth deterministic function. Then the SDE for gt is:

dgt = ∂g

∂t
dt + ∂g

∂x
dXt + 1

2
σ 2 ∂2g

∂x2
dt. (9.24)
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Clearly, from this equation we can see that this result is not what one would expect
from classical analysis.

To illustrate the use of Îto’s rule let us first consider a deterministic function
g(t) = ebt , where b is a constant. It is easy to see by differentiation that g(t) is the
solution of the deterministic differential equation:

dg

dt
= bg, g(0) = 1. (9.25)

Now suppose we have aWiener processWt and let us derive the SDE for the process
g (Wt , t) = ebWt . The application of the Îto differential rule for x = w, σ = 1 and
for g(w, t) = ebw results in:

∂g

∂t
= 0,

∂g

∂x
= bg,

∂2g

∂x2
= b2g. (9.26)

Substituting these results in (9.24) provides the SDE for gt :

dgt = b2

2
gtdt + bgtdWt . (9.27)

Note that this Îto SDE for gt has an extra dt term compared to the deterministic
result.

9.2.5 Stratonovich Stochastic Differential Equations

The Îto definition is not the onlyway to define stochastic integral (9.10). Stratonovich
has introduced another definition:

t∫

t0

σsdWs = l. i.mΔt→0

∑ σti+1+ti

2

(
Wti+1 − Wti

)
. (9.28)

In the Stratonovich definition the evaluation point is chosen in the middle of the
interval. Interpreting the integral (9.17) in Stratonovich sense results in:

t∫

t0

WsdWs = W 2
t

2
− W 2

t0

2
. (9.29)

This shows that the Stratonovich calculus is in agreement with the corresponding
deterministic results. A SDE can also be defined in Stratonovich sense using the
Stratonovich integral definition. The relation between the Îto and Stratonovich SDE
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is given below without proof. If a physical process Xt can be described by the Îto
equation:

dXt = f (Xt , t) dt + σ (Xt , t) dWt , (9.30)

then the same process can also be described by the Stratonovich equation:

dXt = f (Xt , t) dt − 1

2
σ (Xt , t)

∂σ

∂x
(Xt , t) dt + σ (Xt , t) dWt . (9.31)

On the other hand if a physical process Xt can be described by the Stratonovich
equation:

dXt = f (Xt , t) dt + σ (Xt , t) dWt , (9.32)

then the same process can also be described by the Îto SDE:

dXt = f (Xt , t) dt + 1

2
σ (Xt , t)

∂σ

∂x
(Xt , t) dt + σ (Xt , t) dWt . (9.33)

If σ does not depend on Xt the Îto and Stratonovich interpretations will both produce
the same results.

For example, let gt be again the solution of Îto (9.27):

dgt = b2

2
gtdt + bgtdWt . (9.34)

Now from relation (9.31) we can establish that the same process is also the solution
of the Stratonovich equation:

dgt = bgtdWt . (9.35)

From this example we see that the same process can be modelled by an Îto equation
or by a Stratonovich equation. The equations are different but their solutions are
similar since Îto and Stratonovich equations have to be solved using different rules.
Physically, there is no difference between the Îto approach and the Stratonovich one.
We can choose the definition we prefer as long as we use the calculation rules that are
consistent with this definition. This includes the use of the correct numerical scheme
for approximating the SDE.

Both Îto and Stratonovich calculus have their advantages and disadvantages. Îto is
more convenient for the analysis of an SDE,while the Stratonovich results aremore in
agreement with our physical intuition. The Stratonovich SDE is also very important
for the development of numerical approximations, since many popular schemes for
solving deterministic differential equations can only be used for approximating a
Stratonovich SDE.

More recently, another interpretation of the stochastic integral (9.10) called the
Îto-backward was introduced:
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t∫

t0

σsdWs = l. i.m.Δt→0

∑
σti+1

(
Wti+1 − Wti

)
. (9.36)

Using this definition the evaluation point is chosen at the end of the interval. This
stochastic integral is rarely used, but it has been shown by LaBolle et al. (2000)
and Spivakovskaya et al. (2007b) that it is attractive for transport problems with
diffusivity that strongly varies in space. If a physical process Xt can be described
by the Îto SDE (9.30) it is also possible to transform this SDE into an Îto-backward
SDE:

dXt = f (Xt , t) dt − σ (Xt , t)
∂σ

∂x
(Xt , t) dt + σ (Xt , t) dWt . (9.37)

The process Xt can also be described by this backward Îto equation.

9.2.6 Fokker-Planck Equation

Consider now the vector case of the Îto SDE (9.23). Togain insight into the probability
density of the particle position Xt which is related to the particle concentration we
need to know the probability density function of Xt . Without proof we state that this
function can be obtained by solving the Fokker-Planck equation also known as the
Kolmogorov forward equation:

∂p

∂t
= −

d∑
i=1

∂ ( fi p)

∂xi
+

d∑
i=1

d∑
j=1

∂2
(
ki j p

)
∂xi∂x j

. (9.38)

The initial condition for (9.38) could be:

p(x, t) = δ (x − x0) , (9.39)

implying that all particles were released at one point. The differential operator in
(9.38) consists of the drift vector f = fi as well as diffusion term given by a matrix
K = ki j . This diffusivity matrix K is symmetric and semi-positive definite and is
related to the matrix σ in the following way:

ki j = 1

2

(
σσ�)

i j
. (9.40)

Notice that thematrixσ is not uniquely determined by the symmetricmatrix K = ki j .
Twopossible choices ofσ are the symmetric square root of ki j and the lower triangular
matrix given by the Cholesky decomposition of K = ki j . All the choices of σ that
are consistent with (9.40) give statistically identical diffusion processes.
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The probability distribution p(x, t) of the Fokker-Planck equation can be approx-
imated by applying a numerical method to solve deterministic partial differential
equation, but on the other hand the distribution p(x, t) can also be approximated by
generating the trajectories of the following Îto SDE:

dXt = f (Xt , t) dt + σ (Xt , t) dWt , Xt0 = X0. (9.41)

Theprobability distributionof the Îto stochastic process (9.41)will satisfy theFokker-
Planck (9.38).

9.3 Particle Models for Marine Transport Problems

The Fokker-Planck equation describes the evolution in time of the particle concentra-
tion for a givenSDE.Butwe can also use the theory the otherway round.Although the
Fokker-Planck equation models the distribution resulting from advection diffusion
processes, it is not exactly equivalent to the classical advection diffusion equation.
Therefore it is also possible to start from an advection diffusion equation that is often
used for solving transport problems in oceans or coastal waters. By interpreting this
transport model as a Fokker-Planck equation it is possible to derive the underlying
SDE for the behaviour of the individual particles. In this way the particle model
obtained can be considered as a Lagrangian solver for the original transport model.

Let us consider the following 3D advection diffusion equation written:

∂C

∂t
= −∂ (uiC)

∂xi
+ ∂

∂xi

(
ki j

∂C

∂x j

)
, t0 ≤ t ≤ T, (9.42)

with positive-definite diffusivity tensor K with elements ki j and the velocity field
u = ui . The above equation (9.42) can be rewritten in the form

∂C

∂t
= − ∂

∂xi
(uiC) − ∂

∂xi

(
C

∂ki j
∂x j

)
+ ∂

∂xi

(
ki j

∂C

∂x j
+ C

∂ki j
∂x j

)

⇒∂C

∂t
= − ∂

∂xi

[(
ui + ∂ki j

∂x j

)
C

]
+ ∂2

(
ki jC

)
∂xi∂x j

.

If we set fi = ui + ∂ki j
∂x j

and C = p, the above equation will take the form of the

Fokker-Planck equation (9.38). Thus the Îto stochastic model corresponding to
(9.42) is obtained with this choice of f and with matrix σ as defined by (9.40)
(Spivakovskaya et al. 2007a; Shah et al. 2011):

dXt = f (Xt , t) dt + σ (Xt , t) dWt , Xt0 = X0. (9.43)
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It is also possible to include additional properties of the particle as an additional
variable. Consider for example the particle model (9.43) with as additional parameter
the age At of this particle, i.e. the time elapsed since this particle enters a specified
domain:

d At = dt. (9.44)

As long as the particle is in the specified domain At increases with time. The corre-
sponding Eulerian model can be derived in this case again from the Fokker-Planck
(9.38) for the probability p(x, y, z, a, t)to find a particle at location (x, y, z) with
age a:

∂p

∂t
= −∂p

∂a
+ ∇ · (K · ∇ p). (9.45)

This equation is equivalent to the one derived by Delhez et al. (1999).

9.4 Numerical Approximation of Stochastic Differential
Equations

Consider first the scalar deterministic equation:

dx

dt
= f (x, t), x (t0) = x0. (9.46)

We can approximate this equation numerically with the Euler scheme:

xn+1 = xn + f (xn, tn)Δt, (9.47)

where Δt is the time step. Recall that the order of convergence of a numerical
scheme for a deterministic differential equation is defined as follows: The order of
convergence is γ if there exists a positive constant c and a timestep Δ such that for
fixed T = NΔt :

|x(T ) − xN | ≤ c(Δt)γ , (9.48)

for all 0 < Δt < Δ.
Now consider the Îto SDE:

dXt = f (Xt , t) dt + σ (Xt , t) dWt , (9.49)

with the Euler scheme introduced in Sect. 9.2.3:

xt+Δt = xt + f (xt , t) Δt + σ (xt , t) (Wt+Δt − Wt ) , (9.50)

or with tn = nΔt :
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xn+1 = xn + f (xn, tn)Δt + σ (xn, tn)ΔWn. (9.51)

First we have to generalize the definition of the order of convergence to the stochastic
case: The strong order of convergence is γ if there exists a positive constant c and a
Δ such that for fixed T = NΔt :

E {|XT − XN |} ≤ c(Δt)γ , (9.52)

for 0 < Δt < Δ.
Convergence in the strong sense is a track wise approach. The exact particle track

Xt is approximated as accurately as possible by a numerical track Xn . However for
many practical particle simulation problems we are not interested in very accurate
individual tracks. This is for instance the case if we want to compute the particle
concentration or only the position variance of a particle. For these problems we can
use a weaker form of convergence: The weak order of convergence is α if there exists
a positive constant c and a Δ such that for fixed T = NΔt :

|E {h (XT , T )} − E {h (XN , NΔt)}| ≤ c(Δt)α, (9.53)

for all 0 < Δt < Δ and for all functions h(x, t) with polynomial growth.
If we take h(x, t) = x the definition of weak order convergence reduces to:

|E {XT } − E {XN }| ≤ c(Δt)α. (9.54)

In this case we use the realizations of Xt only to determine the mean at time T , and
we evaluate the accuracy of the numerical scheme by computing this quantity. We
do not evaluate the accuracy of the underlying tracks. If h(x, t) = x2 we have:

∣∣E {
(XT )2

} − E
{
(XN )2

}∣∣ ≤ c(Δt)α, (9.55)

and we evaluate the accuracy of the numerical scheme only by computing the second
moment.

For deterministic differential equations the Taylor series expansion is an important
method to evaluate the order of accuracy, however, for the stochastic case we can use
the stochastic version of the Taylor expansion (for more details the reader is referred
to Kloeden and Platen (1992)). By analysing the error terms in the stochastic Taylor
expansion the strong order of convergence of the Euler scheme can be determined:
O(Δt

1
2 ). For weak order convergence many realizations are generated and averaged

to determine an approximation of the particle concentration. Because of the averaging
procedure certain random error terms cancel out and vanish for increasing number
of realizations. This results in a weak order of convergence of the Euler scheme
of O(Δt). This implies that if we use the Euler scheme and generate many tracks
then the individual tracks are only half order accurate (strong convergence) while for
example the results on the mean and variance of the tracks are first order accurate
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(weak convergence). Certain stochastic errors in the track wise computations cancel
out when computing ensemble mean quantities like the mean or variance.

From the stochastic Taylor expansion, more accurate schemes can been obtained,
such as the following one:

xn+1 = xn + Δt f (xn, tn) + σ (xn, tn) ΔWn + 1

2
σ (xn, tn)

∂σ

∂x
(xn, tn)

(
ΔW 2

n − Δt
)
.

(9.56)
This scheme is called theMilstein scheme and isO(Δt) in the strong sense for scalar
equations. For vector systems it is generally of orderO(Δt

1
2 ) (except for very special

differential equations when its accuracy is as in the scalar case). In the weak sense
the Milstein scheme has the same order of convergence as the Euler scheme.

By including further terms of the stochastic Taylor expansion, the next higher
order scheme is of 1.5 order accuracy in the strong sense and 2.0 order in the weak
sense. The 1.5 order strong Taylor scheme is given as:

xn+1 = xn + Δt f Δt + σΔWn + 1

2
σ

∂σ

∂x

(
ΔW 2

n − Δt
) + ∂ f

∂x
σΔZn+

1

2

(
f
∂ f

∂x
+ 1

2
σ 2 ∂2 f

∂x2

)
(Δt)2 +

(
f
∂σ

∂x
+ 1

2
σ 2 ∂2σ

∂x2

)
(ΔWnΔt + ΔZn)

1

2
σ

(
σ

∂2σ

∂x2
+

(
∂σ

∂x

)3
)(

1

3
ΔW 2

n − Δt

)
ΔWn,

(9.57)
where all the functions are evaluated at x = xn and t = tn . In addition to the noise
increment ΔW a second random variable ΔZ is needed. ΔZ is also a Gaussian
random variable with the following properties: Mean 0, variance Δt

3 and covariance

E{ΔWΔZ} = Δt2

2 .
Weak approximation schemes can be simplified without losing accuracy. Instead

of the generation of Gaussian random numbers, numbers can be generated from any
probability distribution as long as the mean and variance are the same. The order 2.0
Milstein scheme is a one-step weak simplification of the previous scheme. Because
only a weak approximation is needed, some terms of the Taylor 1.5 scheme can be
skipped and there is no need for a second randomvariable. This schemewas proposed
by Milstein (1979) and is of 2.0 order accuracy in the weak sense:

xn+1 = xn + Δt f Δt + σΔWn + 1

2
σ

∂σ

∂x

(
ΔW 2

n − Δt
) + ∂ f

∂x
σΔZn+

1

2

(
f
∂ f

∂x
+ 1

2
σ 2 ∂2 f

∂x2

)
(Δt)2 + 1

2

(
∂ f σ

∂x
+ 1

2
σ 2 ∂2σ

∂x2

)
ΔWnΔt.

(9.58)

Similar to predictor-corrector schemes for ODEs, there exist equivalent methods for
SDEs. This class is often used due to their numerical stability, which they inherit from
the implicit counterparts of their corrector scheme. In addition, the differencebetween
the predicted and the corrected values at each time step provides an indication of the
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local error. Thus, they can be beneficial in (time) adaptive schemes (Charles et al.
2009).

The lowest order predictor-corrector scheme is as follows:

x p
n+1 = xn + f (xn, tn)Δt + σ (xn, tn)ΔWn

xn+1 = xn + 1

2

(
f
(
x p
n+1, tn+1

) + f (xn, tn)
)
Δt + σ (xn, tn)ΔWn.

(9.59)

This is a stochastic version of the trapezoidal method also known as Heun scheme.
Note that the predictor step is only applied to the deterministic part, the stochastic
part cannot be corrected to keep the numerical approximation consistent with the
original Îto SDE (Kloeden and Platen 1992). This Heun scheme is of orderO(Δt) in
the weak sense and of order O(Δt

1
2 ) in the strong sense. At this stage, the question

arises as to why another first order scheme is presented. In the limit of vanishing
diffusivity, the Euler scheme is equivalent to its deterministic counterpart and is
first order accurate. This is not the case for the Heun scheme. Due to the predictor-
corrector step, the scheme converges to a second order approximation of the ordinary
differential equation.

In case the stochastic term is also evaluated using the prediction step we obtain
the Heun scheme that can be used for approximating a Stratonovich SDEs:

x p
n+1 =xn + f (xn, tn)Δt + σ (xn, tn)ΔWn

xn+1 =xn + 1

2

(
f
(
x p
n+1, tn+1

) + f (xn, tn)
)
Δt

+ 1

2

(
σ

(
x p
n+1, tn+1

) + σ (xn, tn)
)
ΔWn.

(9.60)

For approximating a Stratonovich SDE this Heun scheme is first order accurate in
the strong sense and also first order accurate in the weak sense.

There are two complications in deriving strong higher order schemes. First the
number of error terms grows very rapidly, resulting in rather complicated numerical
schemes involving many terms. Secondly, most Wiener integrals appearing in the
expansion cannot be solved analytically like in the case of the Milstein scheme. As
a result special numerical schemes have to be implemented to approximate these
integrals too. For details the reader is referred to Kloeden and Platen (1992).

9.5 Test Cases for Marine Transport Problems

9.5.1 Simple Vertical Diffusion

Firstly, the numerical algorithms are applied to a simple diffusion problem in a
domain limited by two boundaries. This can be visualised as a one dimensional
water column that is bounded by the sea surface and the pycnocline. The model is
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discussed in detail inDeleersnijder et al. (2006) andSpivakovskaya et al. (2007a). The
governing partial differential equation for this test case is given by simple diffusion
equation:

∂C

∂t
= ∂

∂z

(
k(z)

∂C(z, t)

∂z

)
, t ≥ 0 and 0 ≤ z ≤ H, (9.61)

with a “no flux” boundary condition imposed at the boundaries domain and the initial
condition is a delta like concentration peak at z = z0:

k(z)
∂C

∂z

∣∣∣∣
z=0,H

= 0, (9.62)

C(z, 0) = δ (z − z0) . (9.63)

For the sake of generality, the above problem is normalized by introducing the dimen-
sionless variables:

t� = t

H 2/k
, z� = z

H
, k� = k

k̄
, (9.64)

where k̄ denotes the depth averaged diffusivity i.e.

k̄ = 1

H

H∫

0

k(z)dz. (9.65)

The parabolic profile is a good approximation of the diffusivity profile in the mixed
layer, but it is also a good description for a shallow, well-mixed, coastal region
(Burchard et al. 1998; Warner et al. 2005). Moreover, the parabolic profile is until
now the only realistic profile, for which analytical solutions exist (beside constant
diffusivity). Therefore, the dimensionless diffusivity k(z) = 6z(1 − z) is chosen to
be a parabolic function.

The Îto SDE for the particle position Zt is the 1D version of the case described
in Sect. 9.3 and takes the following form:

dZt = ∂k

∂z
dt + √

2k(z)dWt , Zt0 = Z0. (9.66)

Using this setup, an analytical solution for the dispersion of the initial concentra-
tion C(z, 0) = δ(z − z0) is known (Spivakovskaya et al. 2007a):

C(z, t) = 1 +
∞∑
n=1

(2n + 1)Pn(2z − 1)Pn (2z0 − 1) e(−6n(n+1)t), (9.67)
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Fig. 9.1 Analytical solution of the 1D diffusion equation at different times

where Pn(z) denotes the nth order Legendre polynomial. Figure9.1 presents the
analytical solution for z0 = 0.5 and for various times t .

We will now use various numerical schemes for the Îto SDEs introduced in
Sect. 9.4 to compute the particle concentration and will compare the results with
the analytical solution. Table9.1 summarises the numerical schemes used for this
test case.

The results for z0 = 0.5 are shown in Fig. 9.2. The results clearly indicate that
all schemes converge to the true solution according to the designed order of accu-
racy. Hence, by decreasing the time step, all schemes behave as expected and scale
according to their designed convergence order.

By increasing the number of particles N , see Fig. 9.2b, the error also becomes
smaller. Nevertheless, no differences in the scaling are visible, except fromdeviations
in the offset. This is due to the intrinsic nature of random processes. The results
include statistical errors proportional to N

1
2 . Therefore, to increase the accuracy, the

“brute-force-method” (using an excessively large number of particles) is an option,
but due to the slow convergence, having recourse to a more accurate numerical
scheme ismuchmore rewarding. It is important to note that both the chosen numerical
schemes and the use of a finite number of particles introduce errors. Preferably both
type of errors should be of the same order of magnitude. Therefore, it makes no sense
to use the fastest and most simple numerical scheme and a huge amount of particles.
But it also makes no sense to use a very accurate scheme and only a limited amount
of particles.

Comparing the efficiency, see Fig. 9.2c, it is visible, that the E1 scheme is the
fastest, but the M1 and M2 schemes show a better overall scaling. Thus, with mod-
erate time steps, these two schemes provide a higher accuracy at the same runtime.
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Fig. 9.2 Error of the dispersion test for a variation of the time step Δt , b variation of the number
of particles N , and c comparison of the efficiency (accuracy vs. runtime)

Table 9.1 Summary of the numerical schemes used

Scheme Short name Strong order Weak order

Euler E1 0.5 1

Milstein M1 1 1

Taylor 1.5 S1.5 1.5 2

Milstein 2.0 M2 1 2

Heun-Îto PC1 0.5 1

Therefore, these schemes should be preferred. From the efficiency plot, one can also
see the additional overhead of the predictor-corrector scheme PC1. Since a predictor
steps is needed, the efficiency is clearly lower than for the M1 scheme. Although the
S1.5 scheme offers the highest accuracy, it is less efficient due to the high computa-
tional demand.
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9.5.2 One Dimensional Water Column Including
a Pycnocline

The starting point is the test case of Stijnen et al. (2006). The authors performed
Lagrangian simulations in the shallow the coastal zone of the Netherlands. They
were facedwith the challenge of representing inhibition ofmixing due to stratification
associated with salinity contrasts, caused by river runoff. The stratification, which is
associated with a rather thin pycnocline, is a quasi-impermeable barrier to vertical
diffusive or turbulent motions. In Stijnen et al. (2006) it is showed that this is easily
taken into account by Eulerianmodels, while obtaining a similar result in Lagrangian
simulations is far from trivial. They could show that the pycnoclinewas no significant
barrier to diffusion when the Euler scheme was used. However, when using a higher-
order particle tracking scheme, the pycnocline remained almost impermeable to
diffusive fluxes—as it is supposed to be.

To construct a possible test case we use the diffusivity profile of Stijnen et al.
(2006) as a blueprint. We assume without any loss of generality that the pycnocline
is located in the middle of the water column. Accordingly, it is suggested that the
idealised vertical eddy diffusivity can be approximated by:

k(z) =2(1 + a)(1 + 2a)

a2H 1+ 1
a

z(H − 2z)
1
a , 0 ≤ z ≤ H

2

=k̄
2(1 + a)(1 + 2a)

a2H 1+ 1
a

(H − z)(2z − 1)
1
a ,

H

2
≤ z ≤ H,

(9.68)

where a is a constant that is larger than or equal to unity, z is the distance to the
seabed, which is located at z = 0, while the sea surface is at z = H . For more details
the interested reader is referred to Gräwe (2011).

The important tuning parameter that controls the sharpness of the pycnocline is
a. The dependence of the sharpness of the pycnocline on a is shown in Fig. 9.3.
The important feature of this analytical eddy diffusivity is that it vanishes at the
pycnocline and is small in the vicinity of the latter. The parameter a controls the
steepness of the diffusivity profile. The larger the value of a, the larger the vertical
diffusivity gradient near the pycnocline. Note, that setting a = 1 will produce a
double parabolic diffusivity profile.

For this test case, we have considered a pure diffusion problem so the SDE for
the particle position Zt is again described by (9.61). The boundaries are treated
again as “no flux” boundaries and the initial release is also in this test case a Dirac
function. For an analytical solution of the posed problem in the special case of a = 1,
the interested reader is referred to Gräwe (2011). The intention of this test case is
however not to reproduce the analytical solution. Our aim is to assess the ability of
different numerical schemes to treat the pycnocline as the requested impermeable
barrier. Thus, if we release particles in the upper half of the water column, a “perfect”
scheme is characterised by zero concentration in the lower half of thewater column at
any instant of time. This is easily done in Eulerian-type numerical model. Lagrangian
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Fig. 9.3 Diffusivity profile K = k
k̄
for different values of the parameter a

simulations, however, do show some crossings of the particles through pycnocline,
thereby causing simulation errors that have to be assessed. To quantify to what extent
the pycnocline is actually a barrier to vertical diffusion, we released N particles in the
upper half of the water column. Since the number of particles has to remain constant,
we constructed an error measure in such away that ε = 0, if no particles have crossed
the pycnocline, and ε = 1 if the particles are uniformly distributed in the whole water
column. Clearly, the lower ε the better the scheme under consideration.

An important point to mention is that although we are looking for the time evo-
lution of a particle distribution and thus weak convergence (9.53), the crossing of
the pycnocline tests for strong convergence (9.52). This is related to the fact that the
individual particle path in the vicinity of the pycnocline is important and therefore a
strong error measure is appropriate.

In Fig. 9.4 we show the time evolution of a point release of particles at z0 = 0.75.
Wehave used again all the schemes presented inTable9.1. The results clearly indicate
that for the E1 scheme the pycnocline is not at all a barrier. This is even true for
small values of a. The M2 scheme shows for a = 1 no crossing of particles of the
pycnocline. For a = 4 (Fig. 9.4d) there is a leakage of particles into the lower half of
the water column. Hence, by simple visual inspection, it is obvious that the results
obtained with the Euler scheme are completely wrong. Furthermore, variations of
the time step would not reveal this failure as we are already using a very small time
step for this problem (see Visser (1997)).

To visualise the impact for different values of a, we show in Fig. 9.5 the conver-
gence of the error for variations of the pycnocline sharpness. For moderate time steps
and small values of a the M1, M2 and S1.5 schemes can treat the pycnocline as a
barrier (Fig. 9.5a). However, for values of a larger then 7 all schemes fail this test.
Only by decreasing the time step the M1, M2 and S1.5 schemes show a scaling of
the error over the whole range of variations of a (Fig. 9.5b). Clearly, the S1.5 scheme
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Fig. 9.4 Dispersion of a particle cloud initially located at z0 = 0.75 for two different schemes and
for two values of a. Color coded is the particle concentration for a E1 scheme with a = 1, b E1
scheme with a = 4, c M2 scheme with a = 1, d M2 scheme with a = 4. The time step is 10−6

Fig. 9.5 Variation of the error ε for the different numerical schemes and a a time step of 7 · 10−6 b
a time step of 10−6. On the x-axis we show the pycnocline sharpness parameter a and on the y-axis
the error ε

shows the best performance. Again the E1 scheme and PC1 scheme do not treat the
pycnocline correctly for all values of a.

9.5.3 Multidimensional Diffusion in an Unbounded Domain

Large-scale diffusion processes in the oceans occur mostly along isopycnal surfaces,
i.e. surfaces of equal density. Diapycnal diffusion associated with a diffusion flux
orthogonal to isopycnal surfaces is usually very small. The diapycnal and isopycnal
diffusion fluxes are commonly parameterised á la Fourier-Fick (Redi 1982).
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The natural coordinates for representing diffusive processes in oceans are diapy-
cnal and isopycnal. The slope of the isopycnal surfaces, though generally small,
contains significant information about the dynamics of the ocean and its interaction
with the atmosphere. Most ocean models do not use iso and diapycnal coordinates.
Instead they rely on the horizontal-vertical coordinates, in which the Redi diffusiv-
ity tensor is resorted to in order to model diapycnal and isopycnal diffusion. This
diffusivity tensor contains off-diagonal terms.

The Eulerian discretisations of isopycnal diffusion terms yield discrete operators
that are not monotonic (Beckers et al. 1998, 2000), occasionally producing spuri-
ous oscillations and over- or under-shootings in tracer concentration fields, which
obviously are unrealistic (Mathieu and Deleersnijder 1998; Mathieu et al. 1999). To
overcome these shortcomings Lagrangian numerical schemes can be used. In this
Section, idealized test cases are constructed to assess Lagrangian methods for the
iso- and diapycnal diffusion problems. For more details see Spivakovskaya et al.
(2007a), Shah et al. (2011), Shah (2015).

Iso and Diapycnal Diffusion Along Flat Isopycnal Surfaces

If only large scales of motions are actually resolved, the unresolved motions com-
prise much more that those giving rise to the molecular diffusion. The unresolved
phenomena are usually parameterised as non-isotropic diffusion. Such a formulation
resorts to two diffusivity coefficients, K I and Kd , which are the isopycnal diffusiv-
ity and the diapycnal diffusivity, respectively. In the principal axes, the associated
diffusivity tensor reads:

K =
⎛
⎝ K I 0 0

0 K I 0
0 0 Kd

⎞
⎠ . (9.69)

The z-principal axes is perpendicular to the isopycnal plane. To rotate the coordinate
system associated with the isopycnal surface into the geodesic coordinate system we
need two angles θ and γ (Redi 1982) and the diffusivity tensor takes the form:

K =

⎛
⎜⎜⎜⎝
K I cos2 θ + sin2 θ

(
Kl sin2 γ + Kd cos2 γ

)

− cos γ sin γ sin2 θ
(
K I − Kd

)

cos γ sin θ cos θ
(
Kl − Kd

)

− cos γ sin γ sin2 θ
(
K I − Kd

)
cos γ sin θ cos θ

(
K I − Kd

)

K I cos2 θ + sin2 θ
(
Kl cos2 γ + Kd sin2 γ

)
sin γ sin θ cos θ

(
K I − Kd

)

sin γ sin θ cos θ
(
K I − Kd

)
Kl sin2 θ + Kd cos2 θ

⎞
⎟⎟⎟⎠ .

(9.70)

As a test case, it is assumed that the isopycnal surfaces are flat and equally spaced.
Furthermore, we assume that the velocity field is zero and that the iso and diapycnal
diffusivity are constant. As in Sect. 9.3 we consider the following partial differential
problem in an infinite domain:
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∂C

∂t
= ∇ · (K · ∇C), −∞ < x < ∞, C (x, t0) = δ(x − 0), (9.71)

where δ denotes a Dirac function. The exact solution of problem (9.71) can be shown
to be:

C(x, t) =
exp

(
− x�·K−1·x

4t

)

(4π t)
n
2
√
det(K )

. (9.72)

Here det(K ) is the determinant of the constant diffusion matrix K while n is the
number of space dimensions considered. Introducing the dimensionless quantities
for space and time:

t∗ = t

T
, x∗ = x

Lh
, y∗ = y

Lh
and z∗ = z

Lv

, (9.73)

where T , Lh and Lv represent the appropriate timescale, horizontal and vertical
length scale, respectively. It is also convenient to define:

T = L2
h

K I
= L2

h

K I
, α = Lh

Lv

and C∗ = C

1/L2
h Lv

. (9.74)

The ratio to the vertical to horizontal length is given byα and the scaled concentration
is represented byC∗. Using these quantities (9.73) and (9.74) into (9.70) and dropping
the asterisk notation the diffusion tensor takes the following form:

K =
⎛
⎝cos2 θ + sin2 θ

(
sin2 γ + α2 cos2 γ

)
− cos γ sin γ sin2 θ

(
1 − α2

)
cos γ sin θ cos θ

(
α−1 − α

)
− cos γ sin γ sin2 θ

(
1 − α2

)
cos γ sin θ cos θ

(
α−1 − α

)
cos2 θ + sin2 θ

(
cos2 γ + α2 sin2 γ

)
sin γ sin θ cos θ

(
α−1 − α

)
sin γ sin θ cos θ

(
α−1 − α

)
sin2 θ + α−2 cos2 θ

⎞
⎠ ,

(9.75)
and the exact solution (9.68) can be rewritten in the form:

C(x, y, z, t) = 1
(4π t)3/2

exp

[
− 1

4t

(
z cos θ − α−1(y sin θ sin γ + x sin θ cos γ )

)2]×
exp

[
− 1

4t (zα cos θ + x cosα cos γ + y cos θ sin γ )2
]

× exp
[
− 1

4t (x sin γ − y cos γ )2
]
.

(9.76)

The values of the parameters θ ≈ α ≈ 10−3 are reasonable. The corresponding Îto
SDE for the particle position whose probability distribution satisfies the diffusion
problem (9.71) reads (see also Sect. 9.3):

dX t = σ (Xt , t) dW(t), X t0 = X0. (9.77)
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Fig. 9.6 Comparison between the particle model and the exact solution of the diffusion (9.69).
This implies the Lagrangian model is indeed consistent with the concentration field of the diffu-
sion equation. a–c shows the exact solution along the xy-, xz- and yz- plane and, d–f shows the
probability distribution of 105 Lagrangian particle initially released at origin

Since, the matrix K is symmetric and positive definite it may be decomposed using
Cholesky decomposition in following form of σ :

σ =
⎛
⎝σxx 0 0

σyx σyy 0
σzx σzy σzz

⎞
⎠ , (9.78)

with

σxx = √
2kxx , σyx =

√
2kyx√
kxx

, σzx =
√
2kzx√
kxx

, σyy =
√

2(kxx kyy−k2xy)
kxx

σzy =
√
2(kxx kyz−kxykzx)√
kxx(kxx kyy−k2xy)

, σzz =
√

2(kxx kyykzz+2kxykxzkyz−k2xzkyy−k2yzkxx−k2xykzz)
kxx kyy−k2xy

.
(9.79)

Themain idea of the Lagrangian model is to simulate the trajectory of many different
particles using an appropriate numerical scheme of the SDEs and then construct the
probability distribution function which is in this case equal to the particle concentra-
tion using non-parametric statistical methods. In our experiment the trajectories of
the SDE (9.77) are simulated using the Euler scheme described in Sect. 9.4. In order
to obtain the concentration from the particle trajectories a kernel estimator (Silver-
man 1986; Spivakovskaya et al. 2007a) is used. Here we used the Gaussian kernel
and the comparison between the Eulerian and Lagrangian is depicted in Fig. 9.6.
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Isopycnal Diffusion Along Non-flat Isopycnal Surfaces

In case the isopycnal surfaces are flat, the Lagrangian simulation reveals that a first
order Euler scheme is accurate enough to attain the desired accuracy. If the diapycnal
diffusion is zero, the particles should remain on the isopycnal surface they are released
on, even if a simple time stepping is used. By contrast, if the isopycnal surfaces are
assumed to be not flat, particles tend to leave the isopycnal surface they are released
on. In such cases, the first order Lagrangian schemes might fail due to numerical
errors and higher order Lagrangian schemes might reduce these errors. This is why
assessing different numerical schemes for isopycnal diffusion on a non-flat isopycnal
surfaces is important.

The objective here is to simulate diffusion processes along non-flat isopycnal
surfaces in the absence of diapycnal diffusion (Shah et al. 2011; Shah 2015; van
Sebille et al. 2018). Here, it is more important to accurately reproduce the individual
trajectories of the particles rather than the time evolution of a distribution. For approx-
imating particle tracks, higher order strong, in lieu of weak, schemes should be used.
A three dimensional idealised test case is constructed for purely isopycnal diffusion
along non-flat isopycnal surfaces. Moreover, to validate, numerically, the equiva-
lence between the Îto, Stratonovich and Îto-backward models the Îto, Stratonovich
and Îto-backward Lagrangian models for transport along non-flat isopycnal are all
considered.

Let x and y denote the horizontal coordinates, while z denotes the vertical coor-
dinate (increasing upward). If ρ is the density, then the isopycnal tensor (Redi 1982)
reads:

K = K I

ρ2
x + ρ2

y + ρ2
z

⎛
⎝ρ2

y + ρ2
z −ρxρy −ρxρz

−ρxρy ρ2
x + ρ2

z −ρzρy

−ρxρz −ρzρy ρ2
x + ρ2

y

⎞
⎠ . (9.80)

Density decreases as z increases, so lighter water lies on the top of heavier water.
We consider the following three dimensional density field:

ρ(x, y, z) = ρ0

[
1 − N 2z

g
+ αx sin (κx x) + αx sin

(
κy y

)]
, (9.81)

where αx , αy , κx and κy are constants. The following values of these parameters seem
to be a reasonable choice:

αξ = 10−3 and κξ = 10−6, ξ = x, y.

Note that the vertical density gradient is assumed to be constant, but the horizontal
one is not, so that the isopycnal surfaces are not flat. The horizontal and vertical
density gradients are

ρx = ρ0αxκx cos (κx x) , ρx = ρ0αyκy cos
(
κy y

)
and ρz = −ρ0N 2

g
, (9.82)
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and the corresponding isopycnal surface may be represented as follows:

z = g

N 2

(
1 − ρ∗

ρ0

)
+ gαx

N 2
sin (κx x) + gαy

N 2
sin

(
κy y

)
. (9.83)

Substituting the density gradients (9.82) into (9.80) yields the actual expressions
of the components of the diffusion tensor and substituting the resulting components
(9.78) of σ into (9.43), lead to the following system of Îto SDEs for non-flat isopycnal
diffusion:

dXt = f (Xt , t) dt + σ (Xt , t) dWt Xt0 = X0. (9.84)

Here the components of the drift vector a are given by:

fx = ∂kxx
∂x

+ ∂kxy
∂y

, fy = ∂kyx
∂x

+ ∂kyy
∂y

and fz = ∂kzx
∂x

+ ∂kzy
∂y

. (9.85)

The components of σ are given in (9.78)-(9.79). This system of SDEs is again
consistent with diffusion equation:

∂C

∂t
= ∇ · (K · ∇C), −∞ < x < ∞, C (x, t0) = δ (x − x0) . (9.86)

For the numerical simulations the particles are all released at the origin (x, y, z) =
(0, 0, 0). This point belongs to the isopycnal surface whose equation reads:

z = gαx

N 2
sin (κx x) + gαy

N 2
sin

(
κy y

)
. (9.87)

The position (xi (t), yi (t), zi (t)), j = 1, 2, . . . , J of the particles is updated bymeans
of Lagrangian schemes. Since the diapycnal diffusion is zero the particles should
not leave the isopycnal surface (9.83), but numerical errors are unavoidable. Their
magnitude may be estimated by means of the following error measure:

μ(t) =
√√√√ 1

J

J∑
j=1

[
z j (t) − z = gαx

N 2
sin

(
κx x j (t)

) + gαy

N 2
sin

(
κy y j (t)

)]2
. (9.88)

This expression is approximately equal to the standard deviation of the distance of
the particles to the isopycnal surface on which they should remain. Clearly, the better
a Lagrangian scheme is, the slower the rate of increase of standard deviation μ(t)
will be.

In order to depict the equivalence between the Îto, Stratonovich and Îto-backward
stochastic models. The Îto SDEs (9.80)(80) is transformed into Stratonovich and
Îto-backward SDEs. The drift coefficients in (9.80) is modified by using the transfor-
mations described in Sect. 9.3. The resulting Stratonovich and Îto-backward SDEs
are then used to simulate the trajectories of the particles on the non-flat isopycnal



9 Lagrangian Modelling of Transport Phenomena Using Stochastic … 239

Fig. 9.7 Comparison of the performance of the numerical schemes for different time steps

surface. Note that careful attention is required to implement Lagrangian schemes for
Îto, Stratonovich and Îto-backward models (Kloeden and Platen 1992). It is impor-
tant to recall here that, assessing the pathwise strong approximations for Lagrangian
model interpreted in Îto, Stratonovich and Ito-backward sense is a main goal here,
that is why attention is not paid to the probability distribution.

The comparison between the accuracy and efficiency of the Lagrangian schemes
is shown in Fig. 9.7a, b. The standard deviation μ against the different time steps
Δt is shown in Fig. 9.7a, while Fig. 9.7b depicts the CPU time of the Lagrangian
schemes. The results reveals that Îto Euler and Îto-backward Euler converges with
order 0.5 and Îto and Stratonovich Milstein schemes converges with the order 1.0. It
is quite clear from these experiments that the higher order schemes produce better
pathwise approximations. Another way of assessing the numerical schemes under
consideration consists in estimating the spurious diapycnal diffusion

(
K D

)
they are

associated with. The related spurious diapycnal diffusivity is of the order μ2(t)
2t . The

spurious diapycnal diffusivity of each Lagrangian scheme is determined and the
results are displayed in Fig. 9.7c. The spurious diapycnal diffusivity of the Euler and
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Milstein schemes differs approximately by a factor of 10−4. This shows the spurious
diffusivity in the Milstein scheme is negligible compared with the Euler scheme.

Moreover, it is can also be observed in Fig. 9.7 that the Îto-backwardEuler solution
converges to the Îto Euler and the Stratonovich Milstein solution converges to the
Îto Milstein solution. This implies that if the SDE is interpreted in Îto sense then one
can switch to Stratonovich and Îto-backward models by using the transformations
described in Sect. 9.3 and one will reach to the same solution. The idealised test
case for purely isopycnal diffusion on non-flat isopycnal surfaces was considered to
evaluate the performance of the Lagrangian schemes. The idealised test case shows
that the Euler approximation is not an appropriate option to simulate the movement
of the particle on non-flat isopycnals. The implementation of the Milstein scheme
shows that a relatively limited additional computational effort (Fig. 9.7) is required
to obtain a good accuracy. The assessment of Lagrangian schemes suggests that one
may not obtain satisfactory results with the Euler scheme, while the Milstein scheme
is a more accurate and more reliable approximation for simulating the particle paths.
Turning to the higher order strong Lagrangian schemes leads to a very significant
improvement.

9.6 Conclusion

The Lagrangian random walk model which is dictated by the desired representation
of the turbulent diffusion is broadly discussed in this chapter. This chapter provides
the foundation to the useful concept to theory of SDEs and it numerical aspects
that are used to model diffusive transport processes in marine modelling problems.
Implementation of different Lagrangian schemes on various test cases has clearly
shown that the order of convergence of the Euler scheme is not sufficient to achieve
the desired result. However, the Milstein scheme shows that a relatively limited
additional computational effort is required to obtain a good accuracy. The results
obtained for the various higher order schemes has shown more accurate results than
that of the Milstein scheme. But such schemes are not computationally attractive.
Therefore, it is suggested that turning to the higher order strong Lagrangian schemes
leads to a very significant improvement.
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Chapter 10
Morphodynamic Modelling in Marine
Environments: Model Formulation
and Solution Techniques

H. M. Schuttelaars and T. J. Zitman

Abstract The bathymetry and geometry of coastal seas, barrier coasts and estuaries
strongly influence tides and currents, and the associated transport of sediments. In
turn, these transports result in a constantly evolving bathymetry and geometry, thus
resulting in a feedback loop between bathymetry and geometry, water motion and
sediment transport. To capture this evolution, morphodynamic models are employed.
In this chapter, first the conservation laws are derived, resulting in a systemof strongly
coupled partial differential equations that model the morphodynamic evolution. Sub-
sequently, two different solution strategies, indicated as the initial value and the
bifurcation approach, are discussed. In the former approach, the emphasis is on
the temporal evolution of bathymetric patterns, whereas the latter approach focuses
on the direct identification of asymptotic states of the system under consideration.
To exemplify these two approaches, the morphodynamic evolution and asymptotic
states of a short, rectangular tidal inlet are considered, showing that these two model
approaches result in different and complementary insights.

10.1 Introduction

Thegeomorphologyof coastal seas and estuaries is characterized by complexpatterns
at vastly different length and time scales. An example of large scale features is given
in Fig. 10.1, where the bathymetry is shown of the Dutch and German Wadden Sea
and a large part of the southern North Sea. First focussing on the Wadden Sea,
many different morphological elements can be identified: on the largest scale of the
Wadden Sea itself, a chain of barrier islands is observed. Between the barrier islands
tidal inlets are found that connect the back–barrier basins to the North Sea. On the
seaward side of these inlets, ebb–tidal deltas are found, whereas complex channel-
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Fig. 10.1 Bed level with respect to mean sea level in the Dutch and German Wadden Sea and a
large part of the southern North Sea. Data downloaded from the European Marine Observation and
Data Network (EMODnet)

shoal patterns are observed in the back-barrier region. Connected to the seaward side
of themost easterly barrier islands and on the closedwestern coast of theNetherlands,
shoreface connected ridges can be seen. In the North Sea itself, large fields of sand
banks with wavelengths up to 5 km are visible. Apart from these large scale features,
there are extensive fields of sand waves (wavelengths up to 500m) present in this
area as well (Hulscher and Van den Brink 2001).

Furthermore, other smaller–scale morphodynamic features, such as ripples, beach
cusps, nearshore bars, are observed in these coastal areas (Dodd et al. 2003).

To understand and predict the origin and evolution of these morphodynamic fea-
tures, the dynamic interaction among the water motion, sediment movement and the
evolution of erodible boundaries (such as the bottom) has to be captured. The water
motion is driven by many different forcing agents, such as tides (see Chap. 5), wind
stresses exerted at the free water surface (see Chap. 4) and horizontal as well as
vertical density gradients (see Chap. 8), resulting in a water motion that varies over
a wide range of temporal and spatial scales (from turbulent eddies to large scale sea
level changes), that mutually affect each other. The water motion results in the ero-
sion of sediments from the bed, with the erosion flux depending on the velocity and
concentration profile close to the bed (mm–cm scale). The sediment is transported
close to the bed as bedload transport, or is suspended into the water column where
it is transported by advective and diffusive processes. The divergences and conver-
gences of the bedload and suspended load transport result in bathymetric changes,
that in turn influence the water motion.
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The aim of this chapter is to derive a mathematical model needed to describe this
morphodynamic evolution, and to review two different solution strategies, namely
the initial value approach and the bifurcation approach.

Various approaches to model the morphodynamic evolution are discussed in
Sect. 10.2. From these approaches, the so–called process–basedmodels are discussed
in detail in Sect. 10.3 since these approaches allow for insight in the underlying phys-
ical mechanisms. In this section the emphasis is on the derivation of the sediment
mass balance, as this equation forms the basis for the study of a wide range of prob-
lems in morphodynamics. A derivation of such a mass balance equation for riverine
systems was first given by Exner (1920, 1925), hence it is often named the Exner
equation. To obtain a balance equation applicable to awide variety of coastal systems,
we follow the generic derivation given by Paola and Voller (2005). Various forms of
the morphodynamic equations that are in common use in coastal morphodynamics
are presented. In Sect. 10.4 two different solution strategies are highlighted. In the
first strategy, the initial value approach, the morphodynamic equations are integrated
over time, resulting in the morphodynamic evolution of the bathymetry. The bifur-
cation approach focuses on obtaining asymptotic states (such as equilibria) directly,
allowing for extensive sensitivity studies. These two approaches are illustrated by
considering the morphodynamic evolution of a tidal inlet system (Sect. 10.5), and
the pros and cons of both methods are discussed. Finally in Sect. 10.6, conclusions
regarding the employability of the two approaches are summarized and major chal-
lenges for further advancement are identified.

10.2 Morphodynamic Modelling Approaches

Morphodynamic features in coastal seas result from nonlinear interactions among
the water motion, sediment transport and bed evolution, and vary over a large range
of length and time scales. The characteristics of these features can either be directly
linked to the forcing conditions, or emerge from internal systemdynamics (forced and
free behaviour, respectively), see De Vriend (2001), Murray (2013). Henceforth, the
typical time scale of morphological change for a particular phenomenon is denoted
by Tmorph, and the typical length scale of a morphological element by Lmorph. Usually,
the larger the time scale Tmorph of some phenomenon, the larger the associated length
scale Lmorph (see Fig. 10.2).

The time scale Tmorph can be of the same order as the typical forcing time scale
Tforcing (for example in the swash zone) or much larger than Tforcing (for example
the evolution of a channel–shoal system in tidal inlet systems)1 (De Vriend 2001).
The phenomena and processes at different length and time scales may interact with
each other, with small–scale processes influencing larger scale behaviour and vice–
versa (Murray et al. 2014). Apart from this wide range of length and time scales

1 For later reference, long–term time scales are defined in this chapter as time scales much larger
than both the forcing and morphodynamic time scales.



246 H. M. Schuttelaars and T. J. Zitman

Fig. 10.2 Examples of typical time and length scales of morphological elements in coastal seas

involved, the study ofmodellingmorphodynamic evolution is further complicated by
the partial unpredictability of the input signal (waves, storm surges, river discharges).

To deal with these complicating aspects, various modelling strategies have been
developed. Following De Vriend (1996), these approaches can be classified as data–
based models, empirical relationship models and process–based models (including
the semi–empirical long–term and formally integrated long–term models defined
in De Vriend (1996)). The first type of models is entirely driven by observations
to describe phenomena (e.g. Reeve et al. 2016), for example geostatistical models,
models based on the empirical orthogonal function (EOF) analysis (Wijnberg and
Terwindt 1995), and neural network models (Pape and Ruessink 2011). Empirical
relationship models are derived from a statistical analysis of field data, and establish
a relationship between input and output variables. An example of such a relationship
is the equilibrium–state relationship given between the cross–sectional area of an
inlet and the tidal prism, proposed by O’Brien (1931, 1969). Other examples are
the Bruun rule for coastal retreat (Bruun 1962) and the Dean profile for shoreface
slopes (Dean 1990). Even though these model types can give valuable information
concerning the morphodynamic evolution, the focus in the remainder of this chapter
is on process–based models because this type of models allows for generic insight
from first principles.

In process–basedmodels, themorphodynamic phenomena are simulated and anal-
ysed using a system of coupled (partial) differential equations. Following Murray
(2003), these models can be arranged along a continuum with simulation models
at one end and exploratory models at the other. Simulation models are designed
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to reproduce as wide a range of morphodynamic features, in as much detail, and
with as much quantitative accuracy as can be achieved. To accomplish this goal, a
modeller typically strives to include all processes that could significantly affect the
quantitative accuracy of the model, in as much detail as is practically feasible. As
few processes as possible are parameterised, ideally only those processes on scales
smaller than those treated in the model (e.g., parameterisation of turbulence as an
effective eddy viscosity and the transport of sediment grains by the bulk behaviour of
the sediment/water mixture). In Sect. 10.3.1, the mathematical system of equations,
adopting this approach, is derived.

The exploratory models, at the other end of this model spectrum, aim at discover-
ing what processes or interactions produce some poorly understood phenomenon—
when searching for the clearest, simplest explanation. In this case, a modeller strives
to include only the essential mechanisms, either by systematically simplifying the
full system of equations and/or geometry used in the simulationmodels, or by replac-
ing some (or all) of the balance equations used in the mathematical description for
simulation models by empirical relations or rules that are based on physical insight
and intuition (Murray 2003, 2007), see Sect. 10.3.2. These empirically–based param-
eterisations or rules are often employed for accurate modelling of large–scale mor-
phodynamic features, features that are usually difficult to capture by process–based
models that resolve much smaller scales (De Vriend 2001; Murray 2007).

10.3 Process–Based Models

The mathematical formulation of the balance laws underlying process–based sim-
ulation models applied to coastal seas is derived in Sect. 10.3.1. In Sect. 10.3.2 a
discussion on the derivation of exploratory models is presented, by either a sys-
tematic approach to simplify the laws obtained in Sect. 10.3.1, or by combining or
replacing these laws by employing empirically–based parameterisations or rules.

10.3.1 Mathematical Formulation of Simulation Models

Conservation of Sediment

A process–based description of the morphodynamic evolution is derived from con-
servation of sediment, covering sediment both suspended in the water column and
at the bed interface.

In the literature, many different relations for this mass balance can be found,
usually based on an adaptation of Exner’s original equation (Exner 1920, 1925) to a
particular problem. In Paola and Voller (2005), a general expression of the standard
Exner equation is derived, including effects of tectonic uplift and subsidence, soil
deformation and creep, compaction, aswell as chemical precipitation and dissolution.



248 H. M. Schuttelaars and T. J. Zitman

Fig. 10.3 Earth surface,
considered as a three layer
system, consisting of a water,
a sediment and a bedrock
layer. For an explanation of
the symbols, see text

They apply the continuum approach2 to a stack of primarily horizontal material
layers. For each individual layer, characterised by a typical, distinct density and
moving layer interfaces, a sediment mass balance is derived.

Here, this general approach is applied to a system consisting of three distinct
layers (see Fig. 10.3), namely a water layer, a bed layer of quasi–static homogeneous
particulate matter, and a bedrock layer. Defining an arbitrary reference level z = 0,
the interface between the bedrock and the sediment is denoted by z = η, the interface
between the sediment and the water by z = h and the free surface is found at z =
H + ζ , with z = H the location of the undisturbed water surface. With respect to
sediment transport, we discriminate between the water and bed layers, thus ignoring
aeolian transport. The transport in the water layer, averaged over its depth, is denoted
by T f, with the subscript ‘f’ referring to fluid. For the bed layer, that is T s with
subscript ‘s’ denoting sediment. The exchange of material between the water layer
and the sediment layer is denoted by Dfs − Efs, where the subscript ‘fs’ denotes that
the fluxes are defined at the interface of the water and sediment layer. The deposition
of material from the water layer on the bed is denoted by Dfs, and Efs denotes the

2 For a derivation based on spatial averaging of the sub–particle–scale differential equation of solid
mass conservation, see Coleman and Nikora (2009).
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erosion of the sediment layer3. Similarly, a sediment flux, denoted by Ωsb is defined
between the sediment layer and the bedrock. This flux is defined positive for a net
exchange from the sediment layer to the bedrock layer.

Using this notation, the conservation law for sediment in the flow and sediment
layers is derived. First, the sediment balance in the bedrock layer is discussed briefly.
Next, in Sect. 10.3.1, the mass balance equations for the three layers are combined
with equations that describe the water motion in the water layer, resulting in a system
of equations that is typically used tomodel and simulatemorphodynamic phenomena.
To make this set of equations suitable for simulating coastal and estuarine morpho-
dynamics, some processes need to be parameterised. This is outlined in subsequent
sections.

Concentration Equation and Boundary Conditions

Taking the continuum assumption and considering only one sediment class (see
e.g. McAnally and Mehta 2002; Jay et al. 2007 for multiple class models), the sed-
iment balance in the water layer reads (Van Rijn 1993; Ter Brake and Schuttelaars
2010; Burchard et al. 2018):

∂c

∂t
+ ∇ · uc − ∂wsc

∂z
− ∇H · (Kh∇Hc) − ∂

∂z

(
Kv

∂c

∂z

)
= Γf, (10.1)

with ∇H = ( ∂
∂x , ∂

∂y , 0)T , where T is the transpose operator. The sediment mass con-

centration is denoted by c (units kgm−3), ws is the settling velocity of the sedi-
ment particles, and Kh and Kv the horizontal and vertical eddy diffusivities, respec-
tively. The three–dimensional Cartesian velocity vector, denoted by (u, v, w)T , is
typically obtained by solving the continuity and Reynolds-Averaged Navier-Stokes
equations for shallow waters, using the hydrostatic pressure assumption and Boussi-
nesq approximation (see Chap. 1). For cohesive sediments, the settling velocity may
be influenced by hindered settling and flocculation, processes that depend, among
others, on suspended sediment concentration, turbulence intensity, and biological
factors (Richardson and Zaki 1954; Winterwerp 1998, 2001; Horemans et al. 2020).

The first term on the left–hand side of Eq. (10.1) reflects the temporal changes in
the local sediment concentration c, the second term the divergence of the advective
sediment flux, the third term the settling of sediments in the water column due
to gravitational effects, and the final two terms reflect the horizontal and vertical
diffusive fluxes. Sediment sources and sinks in the water column are gathered in the
Γf on the right–hand side of the balance.

3 The exchange of sediment between the water and/or sediment layer on the one hand and the air
on the other hand is not considered here. These fluxes can either be prescribed at the respective
interfaces, or may be modeled by introducing a fourth layer that describes the dynamics of sediment
in the air (aeolian transport) and the exchange of sediment over the appropriate interfaces.
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As boundary condition at the free surface we require that the normal sediment
flux vanishes:

− wsc − Kv
∂c

∂z
= 0, at z = H + ζ. (10.2)

Furthermore, the sediment flux normal to the bottom has to equal the difference
between the erosion flux Efs and deposition flux Dfs:

− wsc − Kv
∂c

∂z
= Efs − Dfs, at z = h, (10.3)

where the subscript ‘fs’ henceforth is left out. It is important to note that for these
versions of the boundary conditions, surface and bottom slopes are assumed to be
small (Kumar et al. 2017).

The horizontal boundary conditions depend on the problem at hand, typical con-
ditions are no–transport boundary conditions at closed walls, prescribed transport
conditions at a riverine sides and prescribed concentrations at seaward boundaries.

The deposition flux is defined as D = wsc, with c evaluated at z = h, allowing
for continuous deposition (Winterwerp and Van Kesteren 2004; Sanford 2008).With
this, (10.3) reduces to −Kv∂c/∂z = E , evaluated at the top of the sediment layer
(z = h). The erosion flux is usually parameterised to being proportional to a power
of the absolute value of the excess bed shear stress |τ − τc| if this quantity is pos-
itive, otherwise it is set to zero. Here τ is the actual bed shear stress and τc the
critical shear stress for erosion (Fredsøe and Deigaard 1992). Specific formulations
for sandy beds can be found in Van Rijn (1993), Dyer (1986), while for cohesive
material the Ariathurai-Partheniades formulation is typically used (Kandiah 1974;
Ariathurai 1974; Winterwerp and Van Kesteren 2004). For high suspended sediment
concentrations the proportionality constant in the erosion formulation and both the
eddy viscosity and diffusivity become functions of the suspended sediment con-
centration (Munk and Anderson 1948; Adams and Weatherly 1981; Dijkstra et al.
2019).

Integrating the mass–balance equation (10.1) over depth, using boundary condi-
tions (10.2) and (10.3) (again assuming the horizontal gradients of ζ and h negligible
when applying the boundary conditions), results in

∂

∂t

H+ζ∫
h

c dz + ∇H ·
H+ζ∫
h

(uHc − Kh∇Hc) dz + D − E = 0. (10.4)

The second term on the left can be identified as the suspended sediment transport in
the water layer Tf:

Tf =
H+ζ∫
h

(uHc − Kh∇Hc) dz, (10.5)
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with uH = (u, v, 0)T the horizontal component of the velocity vector. In deriving
Eq. (10.4), it has been assumed that there are no source and sink terms in the water
column (Γf = 0).

Bed Evolution Equation

Following a similar approach as in the previous section, the depth–integrated mass
balance equation for the sediment layer can be derived (see also Paola and Voller
(2005)):

h∫
η

∂α

∂t
dz + α(h)

∂h

∂t
− α(η)

∂η

∂t
+ ∇H · Ts − D + E + Ωsb +

h∫
η

Γs dz = 0,

(10.6)
with α the density in the sediment layer and Γs the volume rate of mass production or
destruction, accounting for the production or dissolution of particulate mass within
the sediment column. In Eq. (10.6) the first term on the left hand side accounts for
changes in the sediment density in the sediment column (e.g., compaction, or inflation
of the sediment due to chemical changes). The second and third terms model the rate
of movement of the bed surface h and the rate of movement of the bedrock interface
η, respectively. The fourth term accounts for the net flow of soil or sediment due to
creep in the horizontal plane. The exchange between the water layer and the sediment
layer is captured by the deposition and erosion terms (D − E). Net sediment outflow
across the sediment–bedrock interface is captured by the seventh contribution (Ωsb).

The morphodynamic bed evolution equation, usually deployed for coastal seas,
can be obtained from Eq. (10.6) by introducing a number of assumptions. Awareness
of these assumptions is crucial to judge whether they are appropriate for the specific
problem under consideration. One of these assumptions comprises a fixed interface
between the sediment and bedrock layers and zero exchange across it, in which case
the third and seventh terms in Eq. (10.6) vanish. This implies that processes such as
the lateral flow of bedrock (folding) and tectonicmotion are not taken into account (to
include these processes, a dynamic equation for the bedrock layer has to be derived,
see Paola andVoller (2005) and references therein for appropriate formulations when
these terms cannot be ignored). Furthermore, the density α in the sediment layer is
assumed to be constant in time, and the net production term Γs is assumed negligible.
If, apart from these assumptions, the sediment layer thickness h − η is assumed to
be always larger than zero4 and horizontal transport T s takes only place in the upper
layer (the active layer) as bedload transport5 qb, Eq. (10.6) reduces to

4 If only a limited amount of erodible sediment is available, the evolution of a so–called bottom
pool, that can be depleted, has to be explicitly taken into account, see Burchard and Baumert (1998),
Brouwer et al. (2018), Burchard et al. (2018).
5 The distinction between bedload and suspended load can be made as follows: the bedload is that
part of the loadwhich is travelling in the active layer of the bed, supported by intergranular collisions
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Fig. 10.4 Earth surface,
considered as a two layer
system. For an explanation
of the symbols, see text

α
∂h

∂t
+ ∇H · qb = D − E, (10.7)

i.e., the bed level h only changes due to convergences and divergences of the bedload
transport qb and exchange processes (erosion and deposition) with the water layer.
The constant density in the sediment layer can now be related to the density of
sediment particles ρs and the sediment porosity p by α = (1 − p)ρs (with ρs ∼
2650 kgm−3 and p ∼ 0.4 for sandy material).

Since the bedrock layer is ignored and the sediment layer thickness never vanishes
(neither in space nor in time), the three layer system has effectively been reduced to
a two layer system: a sediment and water layer, see Fig. 10.4. Combining Eqs. (10.7)
and (10.4) results in the bed evolution equation typically used in coastal morphody-
namics:

(1 − p)ρs
∂h

∂t
+ ∇H · qb + ∂

∂t

H+ζ∫
h

c dz + ∇H · Tf = 0, (10.8)

with Tf defined in Eq. (10.5).
Most parameterisations for the mass bedload transport per unit width perpendicu-

lar to the transport direction are of the form (Meyer-Peter and Müller 1948; Soulsby
1997)

qb = (1 − p)ρsq̂b

√
g′d3

s (θ − θc)
bbl

[
τ

|τ | − λ · ∇Hh

]
H(θ − θc), (10.9)

with H(·) the Heaviside function, g′ = g(ρs − ρ)/ρ the reduced gravity, g the grav-
itational acceleration, ρ the water density, ds the typical sediment diameter, and θ

the Shields parameter, defined as θ = |τ |/ [gds(ρsed − ρ)], expressing the ratio of
motion induced forcing and resistance. The critical Shields parameter is denoted
by θc. Furthermore, q̂b, bbl and the elements of the second–rank tensor λ are coef-

rather than by fluid turbulence (Wilson 1966). Suspended sediment is that part of the transported
particles which mainly is supported by the fluid turbulence.
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ficients which depend on the sediment properties and flow conditions (Van Rijn
1993; Soulsby 1997). See also e.g. Soulsby (1997) for other parameterisations of the
bedload transport.

Morphodynamic System of Equations

From the above sections, it follows that a process–based morphodynamic model for
coastal systems consists of equations describing thewatermotion, the suspended sed-
iment dynamics and the evolution of the bed interface, and the appropriate boundary
conditions. The governing equations read:

∇ · u = 0, (10.10)

∂u

∂t
+ u · ∇u + f v = −g

∂ζ

∂x
+ ∂

∂x

ζ∫
z

b dz′ + ∂

∂z

(
νt

∂u

∂z

)
, (10.11)

∂v

∂t
+ u · ∇v − f u = −g

∂ζ

∂y
+ ∂

∂y

ζ∫
z

b dz′ + ∂

∂z

(
νt

∂v

∂z

)
, (10.12)

∂c

∂t
+ ∇ · uc − ∂wsc

∂z
= ∇H · (Kh∇Hc) + ∂

∂z

(
Kv

∂c

∂z

)
, (10.13)

(1 − p)ρs
∂h

∂t
+ ∇H · qb = − ∂

∂t

H+ζ∫
h

c dz − ∇H · Tf. (10.14)

The water motion is described by the incompressible shallow water equations
(here with the horizontal eddy viscosity terms neglected), with Eq. (10.10) the con-
tinuity equation and Eqs. (10.11) and (10.12) the momentum equations in the x and
y direction, respectively. The Coriolis parameter is denoted by f , and νt denotes
the vertical eddy viscosity. The buoyancy b is defined as b = −g(ρ − ρ0)/ρ0, with
ρ0 the reference water density. Both at the free surface and the bottom kinematic
(i.e., fluid elements cannot escape from these boundaries) and dynamic (continuous
tangential (shear) stresses) boundary conditions are applied (see Chap. 1, and refer-
ences therein). The boundary conditions in the horizontal direction depend on the
problem at hand. The suspended sediment dynamics are described by the concen-
tration equation (10.13), together with appropriate boundary conditions, and the bed
evolution by Eq. (10.14), with the bedload transport defined in Eq. (10.9) and the
depth–integrated suspended sediment transport according to Eq. (10.5).

By adopting the Boussinesq and hydrostatic assumptions, the description of water
and sediment dynamics has been focused on comparatively slowly varying condi-
tions. In principle, it is technically feasible to describe conservation of mass and
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momentum in a similar fashion for circumstances where also ocean waves play a
significant role (which implies the relaxation of the hydrostatic assumption). That,
however, is computationally very expensive as it requires a time step that is small
compared to the smallest involved wave period. Therefore, the effects of waves (sea
and swell) are commonly included in morphodynamic models in a wave–averaged
sense. Concerning thewatermotion,wave–current interaction is usually dealt with by
discriminating between effects of waves on currents and effects of currents on waves.
This is depicted in Figs. 10.5 and 10.6, showing that waves and currents are com-
puted separately, being that mutual interactions are taken into account, indicated by
the Waves and Flow boxes, respectively. Within the wave computations, the regional
wave propagation and generation are usually based on the wave action balance (see
for instance Hiswa (Holthuijsen et al. 1989), Swan (Ris et al. 1994; Booij et al. 1999),
Wavewatch (Tolman 1991)). Including effects of ambient flow and spatial variations
in water depth, obtained from the flow computations, the action balance reads (see
e.g. Mei 1983; Komen et al. 1994)

∂ A

∂t
+ ∇H · ([cg + U

)
A
] + ∂(cσ A)

∂σ
+ ∂(cθ A)

∂θ
= 1

σ
S, (10.15)

with A the wave action, defined as energy density divided by frequency σ , cg is
the wave group velocity, θ is the direction of wave propagation and S combines
all energy sources and sinks (like wind input, dissipation, non-linear redistribution
of wave energy over frequencies). Furthermore, cσ and cθ are wave velocities in σ

and θ space, respectively (Mei 1983; Dingemans 1997). The ambient flow velocity
is denoted by U, and is assumed to be uniform in the vertical direction (SWAN
team 2006). It should be stressed that the velocity field, obtained from the flow
computations, is a three dimensional flow field. This implies that information from
the three–dimensional velocity field has to be reduced to a two–dimensional field,
which can be done in various ways. For example, inMoghimi et al. (2013) the surface
velocity was used in the two–way coupled experiments.

To include the effects of waves on the flow, two approaches exist in the litera-
ture. The first approach incorporates wave effects via a depth–dependent radiation
stress formulation (Mellor 2003, 2011, 2015), whereas the second approach uses the
vortex force formulation (McWilliams et al. 2004; Uchiyama et al. 2010; Ardhuin
et al. 2008; Bennis et al. 2011; Ardhuin et al. 2017). Comparing these two formu-
lations, it was shown that both approaches give similar results, even though some
shortcomings were revealed. For a detailed discussion, see Moghimi et al. (2013),
Xia et al. (2020). Apart from these conservative wave forces, non–conservative wave
forces such as depth–induced breaking, whitecapping induced flow accelerations,
and the enhancement of the apparent bed roughness have to be taken into account
parametrically (Moghimi et al. 2013; Olabarrieta et al. 2014).



10 Morphodynamic Modelling in Marine Environments: Model Formulation … 255

Similar to the hydrodynamic equations, the sediment transport equations and
the bed evolution equation are wave–averaged. This implies that the hydrodynamic
variables, the suspended sediment concentration and the bed level in Eqs. (10.13)
and (10.14) are wave–averaged quantities, including the currents induced by waves
(wave boundary layer streaming, breaking–induced currents). Due to wave effects,
the sediment diffusivity coefficients in Eq. (10.13) have to be expressed as wave–
averaged quantities, which is realised by either employing empirical equations (Van
Rijn 2007a, b) or using turbulence closure models. Furthermore, the effect of the
waves on the magnitude and direction of the bed shear stress should be taken into
account (Zyserman and Fredsøe 1994; Soulsby 1997; Van Rijn 2007a, b).

Waves are also able to generate non–vanishing wave–averaged sediment fluxes,
i.e. fluxes related to the correlation between the velocities and sediment concentration
that vary on the time–scale of the waves (Green and Coco 2014). In most morphody-
namic models, these fluxes, which take place mainly in the wave boundary layer, i.e.
the wave–related suspended transport and the bedload transport, are either neglected
or included using empirical sediment transport formulae. For a detailed discussion
and their importance in the coastal zone, see Van Rijn et al. (2013).

10.3.2 Mathematical Formulation of Exploratory Models

Exploratory models are often derived from the full-blown simulation models by
averaging over specific time and length scales, constraining the dynamics and only
retaining the processes that are believed essential for explaining some morphody-
namic feature. Averaging the equations and reducing the number of processes taken
into account are examples of model reduction, see Murray (2003) for a discussion.

A model reduction approach, that is often used in morphodynamics, is based
on the assumption that resolving the depth–averaged dynamics suffices to capture
the essential physical mechanisms. To capture these dynamics, Eqs. (10.10)–(10.13)
have to be integrated over the water depth. Employing the vertical boundary condi-
tions and applying Leibniz differentiation rule to interchange derivatives and inte-
grations, and assuming that density gradients and wind stresses are negligible, one
obtains the following system of equations (for a detailed derivation of the depth–
averaged shallow–water equations and depth–integrated suspended sediment equa-
tion, see Nihoul (1975) and Ter Brake and Schuttelaars (2010)):
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∂ζ

∂t
+ ∇ · [(H − h + ζ )û

] = 0, (10.16)

∂ û

∂t
+ û · ∇û + f v̂ = −g

∂ζ

∂x
− τx

ρ(H − h + ζ )
,

(10.17)

∂ v̂

∂t
+ û · ∇ v̂ − f û = −g

∂ζ

∂y
− τy

ρ(H − h + ζ )
,

(10.18)

∂C

∂t
+ ∇ · ûC − Kh∇ ·

[
∇C + ws

Kv
βC∇h

]
= E − D, (10.19)

(1 − p)ρs
∂h

∂t
+ ∇ · qb = D − E . (10.20)

Equation (10.16) is the depth–averaged continuity equation, Eqs. (10.17) and (10.18)
are the depth–averaged momentum balance in the x and y direction, respectively.
Equation (10.19) is the depth–integrated concentration equation and Eq. (10.20)
describes the conservation of sediment mass. In these equations, û = (û, v̂)T denotes
the depth averaged velocity,C the depth–integrated concentration, and β a parameter
that depends exponentially on the local water depth (see Ter Brake and Schuttelaars
2010 for an explicit expression). Note that the erosion E , the deposition D, and
the bedload transport term qb still depend on the velocities, shear stresses and con-
centrations at the bed. However, since the depth–averaged model only results in
depth–averaged velocities and depth–integrated concentrations, these contributions
have to be parameterised in terms of the depth–averaged quantities (see Sect. 10.5
and Appendix 1 for an example, where the morphodynamic model is applied to a
tidal inlet).

The effects of sea and swell can be included as discussed in Sect. 10.3.1, namely by
averaging the equations over the time scale associated with waves, resulting in wave–
and depth–averaged morphodynamic equations. The generation and propagation of
waves again follows from Eq. (10.15), in which the velocity U is now unambiguous,
namely the depth–averaged velocity û. To include the effects of waves on the flow,
the net wave–induced momentum flux is modelled by the divergence of the depth–
integrated radiation stress tensor (Longuet-Higgins and Stewart 1964).

Apart from reducing the model equations by formal averaging, empirical sub-
models can be used in model reduction. In such submodels, complex small–scale
processes are lumped together into a simple relationship between larger–scale quan-
tities. In deriving the three–dimensional model equations in (10.10)–(10.14) this
approach has been already used, for example in directly relating the bed load trans-
port to the flow parameters. Instead of using such an empirical model only for the bed
load transport, the total sediment transport, including both suspended load and bed
load transport, may also be given by an empirical formula. This amounts to replacing
Eqs. (10.19) and (10.20) in the above model equations by
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(1 − p)ρs
∂h

∂t
+ ∇H · qt = 0, (10.21)

with qt the total load transport, including bed slope effects (Dyer 1986; Soulsby
1997). As shown by Hepkema et al. (2019), it may be important to increase the
bed slope coefficient(s) (the elements of the second–rank tensor λ in Eq. (10.9)) to
include the slope contribution associated with concentration equation (10.19).

When describing large scale phenomena, the morphodynamic evolution is often
directly linked to flow velocities. An example is the model reduction developed
by Escoffier (1940) to assess the stability and possible closure of a single inlet
system by relating the tidal inlet cross–section directly to the cross–sectionally aver-
aged velocity in the tidal inlet. Simplifying the water motion in the backbarrier
basin, Van de Kreeke (1990), Van de Kreeke et al. (2008), Brouwer et al. (2012)
extended this approach to a double inlet system. Brouwer et al. (2013) extended
this analysis by allowing for a dynamic water motion in the backbarrier basin, an
approach extended to multiple inlet systems by Roos et al. (2013), Reef et al. (2020).

By only using empirical relations or rules (with rules defined as parameterisations
when they are first proposed, to differentiate them from well–accepted parameteri-
sations (Murray 2013), so–called rule–based models can be constructed. Examples
of such models can be found inWerner and Fink (1993) for beach cusps, Murray and
Paola (1994) for breaded stream models, and Ashton et al. (2001) and Stive et al.
(1998) for the formation of large scale coastline features.

10.4 Solution Procedure

Once themorphodynamic process–basedmodel has been formulated (see Sect. 10.3),
a solution strategy to solve the resulting mathematical model has to be decided upon.
Two different classes of numerical solution strategies can be distinguished, the initial
value approach and the bifurcation approach (Dijkstra et al. 2014). In Sect. 10.4.1 the
former approach is discussed in detail, while the bifurcation approach is elaborated
upon in Sect. 10.4.2.

10.4.1 Initial Value Approach

In the initial value approach, the temporal evolution of themorphology is obtained by
integrating the system of mathematical equations forward in time using a so–called
morphodynamic loop, see Fig. 10.5. As a first step in themorphodynamic loop, initial
conditions for all dependent variables and appropriate boundary conditions have to
be prescribed. The boundary conditions usually contain forcing terms that are tem-
porally varying, for example tidal elevations, wave conditions, and concentrations at
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Fig. 10.5 Flow diagram of a morphodynamic model using time–integration. First the initial con-
ditions (green box) and boundary conditions (top red box left) are defined. Next the water motion
(blue box) and sediment dynamics, including the sediment transport (yellow box) are calculated.
The resulting sediment transport fields are used to update the bed profile (brown box). This updated
bed profile is used to close the morphodynamic loop (red box, top right). Often the hydrodynamic
variables and the suspended sediment concentration vary on a much shorter time scale than the bed,
allowing for various acceleration techniques (see text for a detailed discussion)

open boundaries. Using these initial and boundary conditions, the temporal evolution
of the water motion and sediment concentration is calculated by numerically inte-
grating the appropriate equations from an initial point in time t = tini to a final time
t = tini + T with a time stepΔt that is small enough to get an accurate solution. If the
water motion is not influenced by the suspended sediment concentration, the water
motion and suspended sediment concentration can be solved sequentially. However,
if the suspended sediment concentrations significantly influence the water motions,
the hydrodynamic and suspended sediment equations have to be solved simultane-
ously. In both approaches, a key assumption is that the bed does not change during
the elapsed time T . The water motion and suspended sediment concentrations are
used to calculate the cumulative sediment transport over the total elapsed time T .
Spatial gradients in the cumulative transport are used to update the bed profile, i.e.
the morphological time step is T . The morphodynamic loop is completed by again
calculating the hydrodynamic variables and sediment transport, using the updated
bed profile, water motion and suspended sediment concentrations at t = tini + T ,
and the prescribed boundary conditions.
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When updating the bed without making any assumptions concerning time scales,
one has to update the bathymetry after each time step Δt , i.e., T = Δt . Since Δt is
typically in the order of seconds to minutes, it is evident that this approach is not
feasible for bed changes on the long time scale. By taking advantage of the vast
difference between the fast and slow time scales, i.e., employing the observation that
the time scales associated with the water motion and transport processes are much
smaller than the typical time scales of the significant morphodynamic change, T can
usually be chosen much larger than Δt .

Unfortunately, even with this approach, the simulation of the long–term mor-
phodynamic evolution is usually prohibitively time–consuming. To illustrate this,
consider a coastal system in which the water motion is mainly forced by tides, for
example a tidal inlet (see Sect. 10.5). If the morphodynamic time scale of the phe-
nomenon under study is much larger than the tidal time scale (for example order
of years), morphological changes within a single tidal cycle are very small and the
bottom can be considered fixed during the computation of hydrodynamics and sedi-
ment transport over a tidal cycle (i.e., the morphological time step T defined in the
previous paragraph is equal to the tidal period). The bed evolution then follows from
the divergence of the tidally–integrated sediment transport or the tidally–averaged
sediment transport multiplied by the tidal period. However, the use of this morpho-
logical time step (of approximately 12.5 h) to assess the morphodynamic evolution
on the long term (i.e., time scales even larger than the morphodynamic time scale),
is still computationally too expensive.

To overcome this problem, various reduction schemes have been developed.
Focussing onmodel reduction (contrasting input reduction techniques, seeDeVriend
et al. (1993)), these methods can be divided broadly into two groups. The first type
of reduction schemes is intuitive, as it has not been derived rigorously from the com-
plete mathematical system, while the second formal approach is based on rigorous
mathematical techniques that exploit the difference between the fast and slow time
scales (De Vriend et al. 1993).

InDeVriend et al. (1993), Latteux (1995), Roelvink (2006) an overviewof various
intuitive reduction schemes is given. Examples are the introduction of an effective
morphological time step bymultiplying the bed changes after onemorphological time
step by a prescribed factor (De Vriend et al. 1993), the assumption that the water
transport (i.e. the depth integrated velocity) and flow pattern remain constant in time
(continuity correction), and the so–named ‘online’ approach employing a morpho-
logical factor (Roelvink 2006). The latter approach is now commonly used in most
morphodynamic codes based on the time–integration approach. In this approach,
which is similar to the concept of an elongated tide (Latteux 1995), the water motion,
sediment transport and bottom are all updated after each time step Δt , associated
with the fast time scale. To account for the difference in time scales between the
water motion and the morphodynamic evolution, after every time step Δt the bed
changes are multiplied by a constant factor N (Lesser et al. 2004; Roelvink 2006).
Hence, after a simulation over one tidal cycle, an approximation of the morpho-
logic changes after N tidal cycles has been obtained. At this moment, no robust
and objective method to determine the acceleration factor N , resulting in accurate
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results when compared to the results obtained without this acceleration factor, has
been reported (Ranasinghe et al. 2011). Notwithstanding this problem, the online
approach, combined with model input reduction techniques (De Vriend et al. 1993),
is now typically used to perform simulations of morphological changes over time
periods of years to decades (Luijendijk et al. 2019).

Formal methods exploit the observation that the fast time scale associated with
the water motion and sediment transport, is often time periodic, for example in the
case of sea waves and tides. One is generally not interested in the details of this short-
term motion, but in the residual effects which cause the morphological evolution.
Using multiple scale techniques, this residual effect can be obtained by averaging
over the short time scale (Sanders and Verhulst 1985), resulting in an asymptotic
approximation. Krol (1990) was the first to apply this to a morphological model of a
simple tidal basin. He showed that, when the morphodynamic time scale Tmor and the
tidal time scale Ttidal are related as Ttidal = δTmor, the approximation h̄ of h obtained
by averaging the divergence of the sediment transport over the tidal time scale, is
an o(1) approximation of the actual bottom topography h, obtained without tidally
averaging the divergence of the transport, valid on a 1/δ time scale. In Sect. 10.5 the
averaging method will be applied to analyse the morphodynamic evolution of single
inlet system.

10.4.2 Bifurcation Approach

In the so–called bifurcation approach, the focus is on the computation of the asymp-
totic states in the morphodynamic models, i.e., the states observed as t → ∞. These
asymptotic states can be characterised by their temporal behaviour as steady states,
periodic orbits, quasi-periodic orbits or more complicated states, usually referred to
as strange attractors of the model (characterised by chaotic, aperiodic behaviour).
These asymptotic states, except for the strange attractors, can be obtained system-
atically and efficiently using the bifurcation approach, resulting in insight in the
number of asymptotic states and their stability for a given set of parameter values.
Furthermore, the transitions between different states by changes in parameter values,
resulting in so–called bifurcations, can be efficiently detected as well. This allows
for a detailed framework to understand these transitions.

To find the asymptotic states and identify the transitions, methods of dynamical
systems theory are employed. As a first step, the system ofmorphodynamic equations
is discretized, resulting in a (usually large) system of n coupled ordinary differential
equations (Dijkstra et al. 2014):

Mdu
dt

= Φ(u, p) = Lu + N (u), (10.22)

where u ∈ R
n is a discretized solution of the orginal PDEs, and p denotes the vector

of prescribed parameters. The matrix M is called the mass matrix, the discretized
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linear operator is denoted by L and the nonlinear operator by N . In general, these
operators will depend on the prescribed parameters p.

Given a set of parameters p the aim of the bifurcation approach is to find the
possible attractors. The number and type of attractors will typically change when
the value of one or more parameters is changed. These transitions occur through
bifurcations. The simplest ones, i.e., bifurcations for which the stability of steady
states changes by varying only one parameter, are the fold or saddle–node, the trans-
critical, the pitchfork and the Hopf bifurcation (see Intermezzo for a short discussion
on the supercritical pitchfork bifurcation). These and other types of bifurcations, as
well as the mathematical aspects of dynamical systems, are discussed elaborately
in Guckenheimer and Holmes (1983), Kuznetsov (2004), Seydel (2010). Numerical
techniques to detect bifurcation points and their type, and continuation methods to
follow the attractors are extensively discussed in Keller (1977), Crisfield (1981),
Kuznetsov (2004), Seydel (2010).

In Fig. 10.6 the flow diagram associated with the bifurcation approach for steady
states morphodynamic equilibria is shown. As a first step, a sufficiently accurate ini-

Fig. 10.6 Flow diagram of a general morphodynamic model using a bifurcation approach to obtain
steady state morphodynamic equilibria. The initial guess of this morphodynamic equilibrium, con-
sisting of a water motion, sediment concentration and bed in morphodynamic equilibrium close
enough to this equilibrium (top green box), together with the prescribed boundary conditions (red
box, left), is substituted in the system of equations (large red box, bottom). The resulting deviation
from equilibrium is used to update the guess of the morphodynamic equilibrium (red box, top right).
This loop is iterated until the updated morphodynamic equilibrium does not change anymore
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tial guess of the solution of the morphodynamic problem has to be given. Since this
initial guess is usually not a solution of the nonlinear system of equations (10.22),
a robust nonlinear solver has to be used to get the associated morphodynamic equi-
librium. Usually, the Newton–Raphson method is used, a method that converges
quadratically, provided that the initial guess is sufficiently close to the actual equi-
librium solution and that the Jacobian is non-singular (Seydel 2010). As soon as
a morphodynamic equilibrium is obtained for one set of parameter values p, the
continuation approach mentioned above can be started. For a discussion on the con-
tinuation of periodic and quasi–periodic solutions, we refer to the review of Dijkstra
et al. (2014).

Intermezzo
To illustrate the dependency of the number and stability of equilibria on
model parameters (here only one parameter is considered, denoted by p), we
consider the following equation of an arbitrary quantity u(t):

du

dt
= u(p − u2), (10.23)

which is the normal form of a (supercritical) pitchfork bifurcation. Concern-
ing steady state solutions, it is found that for p < 0 only one (real) solution
for u exists, namely ueq = 0. If p > 0, apart from the steady state solution
ueq = 0, two other stationary equilibrium solutions are found: ueq = ±√

p
(see Fig. 10.7).
To obtain the linear stability of these equilibria, we insert u = ueq + u′(t) in
Eq. (10.23) and linearize the equation w.r.t. the perturbation u′, resulting in

du′

dt
= (p − 3u2

eq)u
′.

The linear stability is obtained by solving this eigenvalue problem. This
immediately results in the observation that ueq = 0 is stable for p < 0, and
unstable for p > 0. At p = 0 the eigenvalue associated with the trivial equi-
librium is zero, indicating that a bifurcation occurs: ueq = 0 loses its stability
and two new branches of solutions are found for p > 0. Both branches are
linearly stable.
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Fig. 10.7 Supercritical pitchfork bifurcation. The green lines indicate the (linearly) stable steady
states, the red lines are the unstable solutions. The vertical arrows denote the evolution with respect
to time (i.e., going towards the stable solutions). At p = 0, a bifurcation occurs: the stability of the
trivial solution changes and two new stable solutions come into existence

10.5 Example: Morphodynamics of Tidal Inlet Systems

10.5.1 Introduction

To illustrate the approaches sketched in Sects. 10.4.1 and 10.4.2, the morphodynamic
evolution in a short tidal embayment is considered, ignoring the effects of earth
rotation ( f = 0). For both the initial value approach (Sect. 10.5.2) and the bifurcation
approach (Sect. 10.5.2), the focus will be on a rectangular embayment of tidally–
averaged length L and width B, see Fig. 10.8 for the geometry and Table10.1 for
default parameter values.

The embayment considered can be characterised as short because the product of
the wavenumber k = √

gH/σ of the frictionless tidal wave (with g the gravitational
constant and σ the dominant tidal frequency, taken in this example as the M2 tidal

Fig. 10.8 Geometry of a rectangular tidal inlet a top view and b side view
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Table 10.1 Quantities and parameter values for the Frisian inlet system, taken from Ter Brake and
Schuttelaars (2010)

Geometry Tide

L = 20 km AM2 = 0.84m

B0 = 2 km σ = 1.4 · 10−4 rad s−1

H = 10m

Sediment

ρs = 2650 kgm−3 Kv = 0.1m2 s−1

d = 130µm α = 0.01 kgsm−4

ws = 0.015ms−1 Kh = 100m2 s−1

p = 0.4 λ = 6.8 · 10−6 m2 s−1

Non–dimensional parameters

ε ∼ 0.15 a ∼ 0.04

κ ∼ 1 · 10−3 b ∼ 3

δs ∼ 8 · 10−4 δb ∼ 5.4 · 10−7

μ ∼ 1.8 · 10−3 φ ∼ 7◦

frequency), and the tidally–averaged embayment length L is much smaller than one
(kL 
 1). The water depth is denoted by H̄ − h + ζ , with H̄ the width–averaged,
undisturbed water depth at the entrance, h the height of the bed (measured with
respect to z = 0) and ζ is the free surface elevation (measured with respect to the
undisturbed water level z = H̄ ).

10.5.2 Cross–Sectionally Averaged Morphodynamic
Equilibria

As a first step, the morphodynamic evolution and possible equilibria are studied for a
cross–sectionally averagedmodel. This model is obtained by averaging the system of
morphodynamic equations, Eqs. 10.16–10.20, over the width. Using a scale analysis
(see Appendix 1 for details), and assuming that the suspended sediment transport is
dominated by diffusive processes (neglecting the diffusive transports associated with
topographic variations and advective processes), the resulting system of equations
reads

∂ζ̄

∂t
+ ∂

∂x

[
(H̄ − h̄)ū

] = 0, (10.24)

∂ζ̄

∂x
= 0, (10.25)

∂C̄

∂t
− Kh

∂2C̄

∂x2
= αū2 − γ C̄, (10.26)
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(1 − p)ρs
∂ h̄

∂t
= −

〈
∂

∂x

⎛
⎜⎜⎝−Kh

∂C̄

∂x︸ ︷︷ ︸
q̄x,diff

+−ŝλ
∂ h̄

∂x︸ ︷︷ ︸
q̄x,bl

⎞
⎟⎟⎠
〉

, (10.27)

with boundary conditions

ζ̄ = AM2 cos(σ t),
〈
γ C̄−αū2

〉= 0, h̄ = 0 at x = 0, (10.28)

∂ ū

∂x
is finite, Kh

∂C̄

∂x
+ ŝλ

∂ h̄

∂x
= 0, h̄ = H̄ at x = L , (10.29)

where the overbar ·̄ denotes that the variable is averaged over width and 〈·〉 denotes
that the quantities are averaged over a tidal cycle. The boundary conditions at x = L
are obtained by reformulating the boundary conditions at the moving boundary to
equivalent conditions at x = L , see Ter Brake and Schuttelaars (2010) for details.
Note that drying and flooding are not explicitly taken into account. In Eq. (10.27)
the first term on the right is minus the divergence of the width–averaged diffusive
sediment transport q̄x,diff and the second term minus the divergence of the width–
averaged bedload transport q̄x,bl, where ŝ is a coefficient that depends, amongst
others, on the velocity and the sediment properties, and λ a bedload coefficient (see
the Appendix for a detailed discussion).

Because the bed only evolves on a long morphodynamic time scale, as indicated
by the angular brackets in Eq. (10.27), the bed can be considered fixed at the hydro-
dynamic time scale. This allows for an explicit solution of the comparatively fast
varying hydrodynamic quantities, resulting in

ζ̄ (x, t) = AM2 cos(t
∗),

ū(x, t) = U
x∗ − 1

1 − h̄∗ sin(t∗),

where the non–dimensional quantities, appearing in these expressions, are defined
as t∗ = σ t , x∗ = x/L , h̄∗ = h̄/H̄ , and U = σ AM2 L/H̄ . Since we are mainly inter-
ested in the bed evolution, only the tidally averaged component of the suspended
sediment concentration C̄ , denoted by 〈C̄〉, has to be calculated. The diffusion term
in Eq. (10.26) is much smaller than the erosion and deposition terms, which gives,
to a good approximation, that

〈C̄〉 = 1

2

α

γ
U 2

(
x∗ − 1

1 − h̄∗

)2

.

In deriving this expression, corrections of the order ŝλ have been neglected. For
consistency, these corrections are neglected in the bed evolution equation as well,
resulting in
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∂ h̄∗

∂t∗ = 1

2
δ∗

s a∗K ∗
h

∂2

∂x2

(
x∗ − 1

1 − h̄∗

)2

, (10.30)

with boundary conditions h̄∗ = 0 at x∗ = 0 and h̄∗ = 1 at x∗ = 1. The non–
dimensional parameter δ∗

s = αU 2/ρs(1 − p)σ H is the ratio of the tidal time scale
and the typical time scale Ts at which the bed changes due to suspended sediment
transports, K ∗

h = Kh/σ L2 and a∗ = σ/γ (see Appendix for more details). Since
δ∗

s a∗K ∗
h 
 1, the bed indeed evolves at a long time scale, substantiating the assump-

tion that the bed is, to a good approximation, fixed at the short (tidal) time scale.
The resulting bed evolution equation (10.30) can be solved using both approaches

discussed in Sect. 10.4. In the next section, the results obtained using the time–
integration approach are discussed, followed by a discussion of the bifurcation
approach.

Initial Value Approach

The bed evolution equation (10.30) is discretized in time, using the θ–scheme, a
generalization of the Crank-Nicolson scheme, with a time step Δt∗. In space the
domain is discretized using N X intervals of size Δx∗, and the spatial part of the
bed evolution equation is approximated using a central finite difference scheme. The
resulting discretized equation reads

h j+1
i = h j

i + θ

(
F j+1

i+1 − 2F j+1
i + F j+1

i−1

)
Δx∗2 + (1 − θ)

(
F j

i+1 − 2F j
i + F j

i−1

)
Δx∗2 ,

with 0 < i < N X − 1, where i indicates the location x∗
i = iΔx∗. The superscript j

indicates time t∗ j = jΔt∗. The function F j
i reads

F j
i = 1

2
δ∗

s a∗K ∗
h

(
x∗

i − 1

1 − h̄∗ j
i

)
.

As boundary conditions, h̄∗ j
0 = 0 and h̄∗ j

N X = 1 for all j ≥ 0. Furthermore, as a closed
boundary at x∗ = 1 is assumed, together with a fixed bed level at that location, the
transport at the location i = N X − 1 must equal zero. This condition reads

θ

(
1 − F j+1

i−1

)
2Δx∗ + (1 − θ)

(
1 − F j

i−1

)
2Δx∗ = 0.

In Fig. 10.9a a few snapshots in time of the resulting profile are shown, starting from
a bed profile that is ∼10m deep in the largest part of the inlet system (the initial bed
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Fig. 10.9 a The initial bed profile (blue) as a function of the position in the tidal inlet, and the
resulting bed profiles after 5 (orange), 10 (green), 20 (red) and 50 (purple) thousand years. The
equilibrium is reached after approx. 20 thousand years, b Bed profiles as a function of the location
in the tidal inlet system (horizontal axis) and time (vertical axis). Lighter (darker) colors indicate
smaller (larger) water depths

profile is prescribed as a power of x∗, h̄ = (x∗)50, at t = 0). Next, the bed evolves
on a long time scale towards an equilibrium bed profile, indicated by the purple line
(reflecting the bed level reached after 50 thousand years). In Fig. 10.9b, this bed
evolution is visualized by a colorplot with on the horizontal axis the location in the
tidal inlet system, and the time on the vertical axis. The bed is color coded, with
lighter (darker) colors indicating smaller (larger) water depths.

In Fig. 10.10 the tidally averaged import of sediment is shown as a function of
time by the red line. This quantity is obtained by calculating the instantaneous sedi-
ment transport at the seaward entrance (x = 0). This quantity has to be equal to the
instantaneous bed change, integrated over the embayment length. These integrated
bed changes are shown by the red dots, clearly showing that the numerical scheme
used is mass conserving. The blue line indicates the cumulative amount of sedi-
ment imported. Since the instantaneous import of suspended sediments goes to zero
and the cumulative amount of imported sediments becomes constant, it follows that
the system is approaching an equilibrium, that can be characterised as a constantly
sloping bed.

In this example, a very simplified morphodynamic model was employed to obtain
the cross–sectionally averaged bed profiles through time integration. For results
obtained with cross–sectionally averaged models for estuaries of arbitrary length
and more general planform geometry, including advective contributions, the reader
is referred to Schuttelaars and De Swart (1996), Lanzoni and Seminara (2002),
Pritchard et al. (2002), Hibma et al. (2003), Todeschini et al. (2008), Van der Wegen
and Roelvink (2008), Bolla Pittaluga et al. (2015), Guo et al. (2016), Xu et al. (2019).
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Fig. 10.10 Transport (left axis) and cumulative amount of sediment imported (right axis) as a
function of time (horizontal axis). The red line indicated the instantaneous transport of sediment
through the open boundary per unit width, whereas the red dots are obtained by integrating the
instantaneous bed change over the embayment length at that moment in time. The blue line indicates
the total amount of sediment imported per unit width

Bifurcation Approach

When employing the bifurcation approach, the morphodynamic equilibrium is not
obtained through time integration. Instead, a combination of ū∗, ζ̄ ∗, C̄∗ and h̄∗ is
directly searched for, such that the bed h̄∗ does not change anymore on the long time
scale. In the example considered here, this amounts to finding h̄∗, such that

1

2
δ∗

s a∗K ∗
h

d2

dx2

(
x∗ − 1

1 − h̄∗

)2

= 0,

together with the boundary conditions for h̄∗, and the requirement that the sediment
transport at x∗ = 1 vanishes. The resulting equilibrium solution is given by h̄∗,eq =
x∗, i.e., a constantly sloping bed profile. By coincidence, this equilibrium profile also
results in a zero tidally averaged transport at x∗ = 1. If this condition would not be
satisfied, the slope contribution of the bedload transport has to be taken into account.
Note that this bed profile is also obtained by time integration (see previous section),
indicating that this morphodynamic equilibrium is stable (see also Schuttelaars and
De Swart 1996).

Using this equilibrium, continuation methods can be employed to obtain morpho-
dynamic equilibria for morphodynamic models that are not restricted to short inlet
systems or systems that are only forced by an M2 tidal constituent at the entrance.
When allowing for an arbitrary embayment length, the advective contributions in the
momentum equation and suspended sediment equation cannot be neglected anymore.
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Fig. 10.11 The amplitude of the M2 horizontal velocity ū at the entrance of the embayment as a
function of the non–dimensional length L/Lg for different values of β, which is the ratio of the M4
and the M2 tidal amplitudes of the free surface elevation at the seaward side (with AM2 = 1.75m at
the seaward side). The velocity is scaled with ε

√
gH , with ε the ratio of the M2 tidal amplitude and

the undisturbed water depth at the seaward side. Figure adopted from Schuttelaars and De Swart
(2000)

Continuation implies that the embayment length L is gradually increased, starting
from the known equilibrium solution for a short basin. This morphodynamic equilib-
rium is used as the initial guess of themorphodynamic equilibrium for an embayment
with a slightly larger length. Imposing that the tidally averaged sediment transport
has to be zero everywhere, a root–finding algorithm is employed to iterate to the
morphodynamic equilibrium associated with that embayment length.

This process can be continued up to a maximum embayment length Lmax; for
larger embayment lengths no equilibria exist anymore (for a detailed discussion,
seeSchuttelaars andDeSwart 2000). The existence of Lmax is illustrated inFig. 10.11,
where the amplitude of the M2 tidal velocity at the entrance, scaled with ε

√
gH ,

is shown as a function of the non–dimensional embayment length L/Lg , with
Lg = 2π

√
gH/σ the frictionless tidal wavelength. Considering only an M2 tidal

forcing at the entrance, equilibrium tidal velocity amplitudes indicated by the orange
line (β = AM4/AM2 = 0) are found: for all embayment lengths one unique equi-
librium exists, up to a maximum length of L/Lg ∼ 0.44. Increasing the strength
of the overtide to β = 0.15 results in equilibrium velocity amplitudes indicated by
the green line. The morphodynamic equilibria for relatively short embayments are
linearly stable (solid lines). By slowly increasing the non–dimensional embayment
length to approximately 0.23, a limit point is found: the embayment length has to be
reduced to find newmorphodynamic equilibria. These equilibria are linearly unstable
(dashed lines). For L/Lg ∼ 0.21 another limit point is encountered, and new mor-
phodynamic equilibria can only be found by increasing the embayment length again.
Finally for L/Lg > 0.3, no morphodynamic equilibria are found anymore. In this
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example,multiplemorphodynamic equilibria are found for 0.21 ≤ L/Lg ≤ 0.23 and
β = 0.15. These morphodynamic equilibria are associated with different balances
between the sediment transport contributions, see Schuttelaars and De Swart (2000)
for a discussion.

10.5.3 Depth–Averaged Morphodynamic Equilibria

In Sect. 10.5.2 it was shown that the cross–sectionally averaged bed profile evolves to
a morphodynamic equilibrium profile that can be characterised as constantly sloping
in the example of a rectangular, short basin with vertical side walls and a steady tidal
forcing. Of course, the characteristic channel–shoal patterns, observed in many tidal
inlet systems (see Fig. 10.1), cannot be captured in a width–averaged formulation.
Therefore the time–integration and bifurcation approach will be discussed below for
a short, rectangular inlet system. Again, a depth–averaged formulation is applied and
the effects of the Coriolis forcing are neglected.

Time Integration Approach

In Van der Wegen and Roelvink (2008) the morphodynamic evolution in a rectan-
gular tidal inlet was studied using the Delft3D modelling suite (Lesser et al. 2004).
The water motion was described using the depth–averaged shallow water equations,
neglecting Coriolis effects. The sediment transport was modeled using a total load
formula, see Sect. 10.3.2. The parameter used to represent the slope effects was
much larger than the typical values used in the literature. This overestimation can be
interpreted as including the downslope sediment transport related to the suspended
load contribution (Hepkema et al. 2019). The bed evolution followed from the Exner
equation, using the online approach, see Sect. 10.4.1, to speed up themorphodynamic
calculations. Since Coriolis effects were neglected and the tidal inlet is rectangular,
the (quasi–)equilibria obtained from the model run in a width–averaged mode, were
also (quasi–)equilibria for the depth–averaged model and hence used as initial con-
ditions to speed up the calculations. This laterally uniform initial condition was
randomly disturbed with bed perturbations with amplitudes of maximum 5% of the
local water depth. Next, this initially perturbed bed profile was allowed to evolve for
400years.

In Fig. 10.12 the bed profile after 20years (left panel) and the resulting bathymetry
after 400years of evolution (right panel) are shown. Initially the major morpho-
dynamic evolution takes place in the relatively shallow part near the head, where
relatively small bars are formed. These bed forms resemble the eigenpatterns that
are found in linear stability analyses (see the next section, also Schuttelaars and
De Swart 1999; Ter Brake and Schuttelaars 2011). After the initial bar formation,
channel–shoal patterns develop toward the deeper, more seaward parts of the basin.
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Fig. 10.12 The bed profiles found after 20years (left panel) and 400years (right panel), starting
from a laterally uniform bed profile. Figure adopted from Van der Wegen and Roelvink (2008)

After approximately 400years, a meandering channel is found in the seaward side,
whereas a branching channel–like structure is found in the shallower region.

Apart from this example, modelling morphodynamic evolution through time inte-
gration has been extensively employed to investigate the morphodynamic evolution
of tidal inlet systems, e.g.Marciano et al. (2005),Dastgheib et al. (2008),Dissanayake
et al. (2009), Van Maanen et al. (2013), Xu et al. (2019) and estuarine systems, see
for example Van der Wegen and Roelvink (2008), Ganju et al. (2009), Dam et al.
(2016), Nnafie et al. (2018) for more information.

Bifurcation Approach

To obtain depth–averaged morphodynamic equilibria, the following system of equa-
tions is used (see Appendix 1 for a derivation):

∂ζ

∂t
+ ∇ · [(H − h)û

] = 0, (10.31)

∂ζ

∂x
= 0, (10.32)

∂ζ

∂y
= 0, (10.33)

∂2v̂

∂x ∂t
− ∂2û

∂y ∂t
= − ∂

∂x

(
r v̂

H − h + h0

)
+ ∂

∂y

(
r û

H − h + h0

)
,

(10.34){
∂C

∂t
− Kh∇2C

}
= α

[(
û
)2 + (

v̂
)2] − γ C, (10.35)

(1 − p)ρs
∂h

∂t
= −∇ · (−Kh∇C︸ ︷︷ ︸

qdiff

+ −ŝλ∇h︸ ︷︷ ︸
qbl

), (10.36)

with boundary conditions
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ζ = AM2 cos(σ t),
〈
γ C − α

[(
û
)2 + (

v̂
)2] 〉= 0, h̄ = 0 at x = 0.

(H − h)û = 0, Kh
∂C
∂x + ŝλ ∂h

∂x = 0, h = H at x = L ,

(H − h)v̂ = 0, Kh
∂C
∂y = 0, ŝλ ∂h

∂y = 0 at y = 0, y = B.

(10.37)

It canbeverified that the one–dimensional solution, obtained inSect. 10.5.2, is also
a solution of this system of equations when the lateral velocity is assumed to be zero.
However, this laterally uniform equilibrium bed is not necessarily stable against two–
dimensional perturbations. Whether or not the amplitudes of infinitesimally small
perturbations will grow or decay follows from a linear stability analysis (Dodd et al.
2003). For small friction values, it turns out that all perturbations are damped and
hence that the laterally uniformbed is linearly stable.By slowly increasing the friction
parameter (continuation), it is found that for a critical value of the friction parameter
rcr/σ H ∼ 0.162 the laterally uniform bed becomes unstable (Ter Brake 2011), and
new non–trivial equilibria can be found. To obtain these non–trivial equilibria, the
physical variables Ψ = (u, v, ζ, C, h)T are written as

Ψ = Ψ eq + Ψ ′,

with Ψ eq the width–averaged equilibrium solution and Ψ ′ the deviation from this
laterally uniform equilibrium. By substituting this expression in the governing equa-
tions, a nonlinear system of equations for Ψ ′ is obtained. Using the lateral boundary
conditions, the lateral structure of the components of Ψ ′ can be directly identified.
Using a Fourier expansion in tidal components for the fast variables {u, v, ζ, C}
and an expansion in Chebyshev polynomials Ti (x) for the longitudinal profile of all
components of Ψ ′ the expansions of the physical variables can be made explicit. The
expansion for h′ reads (for the other components, see Ter Brake (2011)):

h′(x, y, τ ) =
∞∑

i=0

∞∑
j=0

Hi j Ti (x) cos(
jπ L

B
y).

Truncating the infinite sums to M Chebychev polynomials in the longitudinal direc-
tion ond N lateralmodes results in a coupled, nonlinear systemof n = 6N M ordinary
differential equations (see Eq. (10.22) for a generic notation, where u in that equation
is now replaced by Ψ ′, and Ter Brake (2011) for explicit expressions).

Given that the laterally uniform equilibrium loses its linear stability at r = rcr =
0.162, the numerical bifurcation approach is employed to find nontrivial solutions
associated with this bifurcation point. It turns out that the bifurcation at rcr = 0.162
is a supercritical pitchfork bifurcation, denoted by P1 in the bifurcation diagram in
Fig. 10.13. For r slightly larger than rcr = 0.162 three equilibria exist: two stable
equilibria and one unstable one. The linear stability of the solutions is indicated by
their color: black lines denote stable equilibria, whereas gray lines denote unstable
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Fig. 10.13 Bifurcation diagram with on the horizontal axis the dimensionless friction parameter
and on the vertical axis the coefficient of one of themodes that is used to build up themorphodynamic
equilibria. Black solid lines are stable equilibria, whereas gray lines correspond to linearly unstable
ones. The bifurcation points are indicated by ‘P’ for pitchfork bifurcations, ‘F’ for fold bifurcations
(limit points) and ‘H’ for Hopf bifurcations. Figure adopted from Ter Brake (2011)

ones. The lowest branch of solutions, starting at P1 is stable for all friction parame-
ters shown in Fig. 10.13, whereas the upper branch loses its linear stability through
another pitchfork bifurcation around r ∼ 0.169. This pitchfork bifurcation, denoted
by P4, is a subcritical one, resulting in new equilibria for r < 0.169. These equilib-
ria undergo a fold bifurction (F1,F2) and a Hopf bifurcation (H1,H2), after which
these branches attach to the laterally uniform equilibrium again through a subcritical
pitchfork bifurcation P2. In Fig. 10.13, two examples of equilibrium bathymetries
(top panels of insets) and their deviation from the underlying laterally uniform equi-
libria (bottom panels of insets) are shown. The equilibrium bathymetry with the
positive value of the coefficient of mode 2 , can be characterised as a two channel
system, with a shoal inbetween, whereas the other equilibrium consists of a deep
channel, flanked by two shallow regions at either side.



274 H. M. Schuttelaars and T. J. Zitman

10.6 Summary and Conclusions

To understand and predict the dynamic interaction between the water motion,
sediment transport and bed evolution, process–based morphodynamic models are
employed. Such a process–based model consists of equations describing the water
motion, the suspended sediment dynamics and the evolution of the bed. Focussing
on coastal regions, the water motion is typically modeled using the shallow water
equations. In this chapter, the equation for the suspended sediment concentration in
the water column and the bed evolution equation are derived using conservation of
mass in the water and sediment layer, respectively.

This system of equations can be solved by two, complementary, methods: the time
integration and bifurcation approach. In the time integration approach, the emphasis
is on the temporal evolution of the bathymetry and planform geometry. With this
approach, the impact of human interventions and temporally varying forcings can be
studied in detail, especially on the shorter time scale (order of one to two decades).
Even though these models can also be employed to obtain approximate long–term
results by efficiently taking differences in physical time scales into account in numer-
ical schemes (Roelvink et al. 2016), it is usually not the focus of this modelling
approach. Since themorphodynamic evolution depends on the initial bathymetry and
geometry, it is difficult to assess the possibile existence of multiple morphodynamic
equilibria (i.e., for the same parameter settings and forcing conditions, there can be
more than one asymptotic solution, depending on the initial condition); furthermore,
unstable equilibria can never be found using the time–integration approach.

The bifurcation approach is specifically geared towards directly finding asymp-
totic solutions, both the stable and unstable ones, and their sensitivity to parameter
variations. This approach allows for a systematic analysis of the number of morpho-
dynamic equilibria that exist for the same forcing conditions (multiple morphody-
namic equilibria), and gives direct insight in the physical mechanisms resulting in
these equilibria. However, direct assessment of the temporal evolution due to human
interventions or changing forcing conditions is not possible.

The above clearly shows that the initial-value and bifurcation approach are com-
plementary, with both approaches giving different, but equally valuable informa-
tion. This is illustrated by considering the morphodynamic evolution of a short tidal
embayment, first in a cross–sectionally averaged sense, followed by model results
obtained in a depth–averaged setting. The latter example clearly shows this com-
plementarity: the time–integration approach gives valuable information concerning
the evolution towards equilibrium but cannot be directly used to assess the possible
existence of multiple morphodynamic equilibria, whereas the bifurcation approach
directly identifies these equilibria, their stability and multiplicity, but gives no infor-
mation concerning the evolution towards these equilibria.

There are many challenges concerning morphodynamic models. At this moment,
models using the time–integration approach are much more advanced than models
employing the bifurcation approach. To take advantage of the synergistic use of both
model types, the bifurcation–type of models have to be extended to include more
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advanced processes and allow for more general geometries. Encouraging results
concerning these aspects can be found in Boelens et al. (2021), Deng et al. (2021),
where a finite element approach is applied that allows for an arbitrary geometry.

Other research challenges that apply to both modelling approaches, remain:

• Are physical processes accurately represented in the morphodynamic models?
Examples are the accuracy of the bottom boundary conditions, sediment transport
formula’s, the interaction of sand and mud mixtures.

• What is the sensitivity and uncertainty in morphodynamic evolution with respect
to initial conditions, parameter values and forcing conditions?

• Howcan extreme events (such as hurricanes and extreme storms) and possible tran-
sitions (for example due to climate change) that result in tipping point behaviour,
be incorporated in a mathematically correct way and analysed in a systematic
manner in morphodynamic models?

• Is there a time horizon for predicting morphodynamic evolution and how does this
time horizon depend on the spatial scales under consideration? Additionally, what
is the influence of model reduction techniques on this forecasting limit?
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Digital Bathymetry (DTM), http://doi.org/10.12770/18ff0d48-b203-4a65-94a9-5fd8b0ec35f6 for
making available the bathymetric data used in Fig. 1.

Appendix

In this appendix, specific parameterisations will be chosen and the depth–averaged
morphodynamic system of equations, given in Eqs. (10.16)–(10.20), will be scaled
using characteristic dimensions of short tidal inlet systems. Using the non–
dimensional equations, an asymptotic expansion of the physical variables is proposed
and the leading order system of equations is derived.

As a first step, the bottom shear stresses (τx , τy)
T , the erosion function E and

the deposition function D have to expressed in terms of relevant physical variables.
Concerning the bed shear stresses, observations for turbulent flow conditions and
dimension analysis suggest a quadratic dependency on the depth–averaged velocity.
However, the gross features of the water motion are well captured by linearizing this
quadratic dependency, resulting in a linearized friction law (Lorentz 1922; Zimmer-
man 1982, 1992), which is the approach taken here:

(τx , τy)
T = ρr�û. (10.38)

In this expression, r� is a friction parameter with units ms−1. The parameter r� is
chosen such that the net dissipation of energy (averaged over the tidal cycle and
embayment) due to the linearized shear stress (10.38) equals that of the bed shear

http://doi.org/10.12770/18ff0d48-b203-4a65-94a9-5fd8b0ec35f6
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stress based on the quadratic friction law. This implies that the parameter r� is pro-
portional to the tidal current amplitude U and the bottom roughness.

The parameterisation of the friction terms F̂
b
in the depth–averaged momentum

Eqs. (10.17) and (10.18), which read

F̂
b = (τx , τy)

T

ρ(H − h + ζ )
,

becomes unbounded if the water depth tends to zero, as observed near tidal flats.
As our model is designed to give only a global description of the tidal flow in an
embayment, the friction terms are regularized by increasing the water depth in the
denominator of the friction term by a constant h0 (see Ter Brake and Schuttelaars
2010 for a detailed discussion, and the influence of this parameter on the morpho-
dynamic equilibria).

The erosion function E and deposition function D are due to the pick–up and
deposition of the sediment near the bottom. Motivated by field observations (Dyer
and Soulsby 1988) and theoretical considerations, the sediment pick–up term E is
taken proportional to some power of the absolute value of the difference between the
actual bed shear stress and the critical shear stress for erosion. Taking this power to be
equal to one (which provides a fair approximation and is computationally beneficial)
and assuming the critical shear stress for erosion to be much smaller than the typical
bed shear stress in a tidal inlet system, the sediment pick–up term is parameterised
as:

E = α̂
(
û2 + v̂2

)
,

where α̂ is a constant which depends on the sediment characteristics. For fine sand
(grain size 2 · 10−4 m) a typical value is α̂ ∼ 10−2kgm−2 s−1.

The deposition function D is obtained by assuming an approximate balance
between settling and vertical diffusion in the three dimensional concentration equa-
tion (10.1). Assuming the verical eddy diffusivity to be constant in space and time
and that the sediment Peclet number ws H/Kv � 1, the resulting bottom concen-
tration can be expressed in terms of the depth–integrated concentration, resulting in
D = γ C , with γ = Kv/w

2
s .

Using these parameterisations, the morphodynamic system of equations is made
non–dimensional by introducing characteristic scales for all physical variables.
Focussing on basin–wide phenomena, the tidally averaged basin length L is used
as a typical horizontal length scale, and the inverse of the angular frequency σ of
the semidiurnal tide as a typical time scale. As a typical water depth the tidally and
width-averagedwater depth at the open boundary H is used, and for the M2 amplitude
of the free surface elevation the width–averaged water level amplitude at the open
boundary AM2 is employed. The velocity scale follows from the continuity equa-
tion (10.16) by requiring a balance between the temporal change in the free surface
elevation and the convergence of the water transport, resulting in U = σ AM2 L/H .
The depth-integrated suspended sediment concentration is obtained by assuming an



10 Morphodynamic Modelling in Marine Environments: Model Formulation … 277

approximate balance between erosion E and deposition D. Substituting the resulting
non–dimensional variables (indicated by an asterisk),

(x, y) = L(x∗, y∗); t = σ−1t∗; ζ = AM2ζ
∗; (z, h) = H(z∗, h∗);

(u, v) = U (û∗, v̂∗); C = α̂U 2

γ
C∗, (10.39)

into the morphodynamic equations results in the following non–dimensional system
of equations:

∂ζ ∗

∂t∗ + ∇∗ · [(1 − h∗ + εζ ∗)û∗] = 0, (10.40)

∂ û∗

∂t∗ + εû∗ · ∇∗û∗ + f ∗v̂∗ +
(

1

Λ∗

)2
∂ζ ∗

∂x∗ = − r∗u∗

(1 − h∗ + εζ ∗)
, (10.41)

∂ v̂∗

∂t∗ + εû∗ · ∇∗v̂ ∗− f ∗û∗ +
(

1

Λ∗

)2
∂ζ ∗

∂y∗ = − r∗v̂∗

(1 − h∗ + εζ ∗)
, (10.42)

a∗
{

∂C∗

∂t∗ + ε∇∗ · (û∗C∗) − K ∗
h ∇∗2C∗

}
=

[(
û∗)2 + (

v̂∗)2] − C∗, (10.43)

∂h∗

∂t∗ − λ∗δ∗
b∇∗2h∗ = δ∗

s

{
C∗ −

[(
û∗)2 + (

v̂∗)2]} .

(10.44)

For simplicity, the diffusive transport resulting from topographic variations is
neglected in the concentration equation. Furthermore, the bedload transport has been
significantly simplified (compare with Eq. (10.9)): only the contribution related to
the topography is retained. Furthermore, this contribution is assumed to be isotropic
in space (with the second–rank tensor λ reduced to a scalar coefficient λ).

The non–dimensional numbers inEqs. (10.40)–(10.43) are ε = AM2/H ≡ U/σ L ,
which is the ratio of the mean M2 tidal amplitude at the seaward boundary and the
meanwater depth at this boundary, f ∗ = f/σ the non–dimensional Coriolis parame-
ter, 1/Λ∗ = σ 2L2/gH the square of the product of the frictionless tidal wavenumber
and the typical lengthscale L , r∗ = r∗/σ H the non–dimensional friction parame-
ter, K ∗

h = Kh/σ L2 the non–dimensional horizontal eddy viscosity coefficient, and
a∗ = σ/γ the ratio of the deposition time scale and the tidal time scale 1/σ .

In the bed evolution equation (10.44), apart from the non–dimensional parameter
λ∗ = Hλ/L , two other non–dimensional parameters appear. The first one is denoted
by δ∗

s = α̂U 2/ρs(1 − p)σ H which is the ratio of the tidal time scale and the typical
time scale Ts at which the bed changes due to spatial gradients in suspended sediment
transport. The second non–dimensional parameter reads δ∗

b = ŝ/σ H L , with ŝ =
(1 − p)ρsq̂b

√
g′d3

s (θ − θc)
bbl . This parameter δ∗

b is the ratio of the tidal time scale
and the time scale Tb of the bed evolution due to spatial gradients in bedload transport.
In the systems under study the time scale Tb is much larger than Ts, hence the bedload
transport ismuch smaller than the suspended load transport.However, bedload effects
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cannot be neglected because they are necessary to suppress the growth of small–scale
bedforms (Schuttelaars and De Swart 1999; Ter Brake and Schuttelaars 2011).

The fact that both morphodynamic time scales Ts and Tb are much larger than
the hydrodynamic time scale σ−1 implies that the bed level h can be regarded as
slowly varying compared to the other physical variables. Consequently the method
of time–averaging can be used: the sediment and the bedrock layer thickness may be
considered stationary on the comparatively short tidal time scale and its evolution is
only determined by spatial gradients in the sediment transports averaged over a tidal
cycle. The mathematical foundations of this approach are discussed in Sanders and
Verhulst (1985) and Krol (1991).

This results in the following non–dimensional bottom evolution equation:

h∗
τ ∗ = 〈

C∗ −
[(

û∗)2 + (
v̂∗)2] 〉+λ∗〈∇∗2h∗〉, (10.45)

with 〈·〉 denoting averaging over the tidal time scale, τ ∗ = δ∗
s t∗ denotes the slow time

coordinate, and λ∗ = κ∗δb/δs . Using Eq. (10.43), this expression can be rewritten as

h∗
τ ∗ = −∇∗ · (q∗

diff + q∗
adv + q∗

bl

)
, (10.46)

with the sediment transport contributions defined as

q∗
diff = −a∗K ∗

h 〈∇∗C∗〉,
q∗
adv = a∗ε〈û∗C∗〉, (10.47)

q∗
bed = −λ∗〈∇∗h∗〉.

Considering the rectangular basin geometry, described in Sect. 10.5, the non–
dimensional boundary conditions at the sidewalls are given by

(1 − h∗ + εζ ∗)v̂∗ = 0, K ∗
h

∂C∗

∂y∗ = 0, λ∗ ∂h∗

∂y∗ = 0 at y∗ = 0, y∗ = B

L
,

where the first condition requires the normal transport of water through the wall to
vanish, and the second and third conditions require that both the suspended sediment
transport and the bedload transport through the sidewalls vanish.

To obtain boundary conditions at the landward boundaries, define the location
where the water depth vanishes as X∗(t). At this moving boundary, the velocity is
given by û∗ = d X∗/dt∗ and the tidally averaged (diffusive) sediment transport is
assumed to vanish. The tidally averaged non–dimensional embayment length is 1,
with deviations from this averaged length of O(ε). Introducing this expansion in the
condition of vanishingwater depth at x∗ = X∗, 1 − h(X∗) + εζ(X∗, t∗) = 1, using a
Taylor expansion, it follows that in leading order h∗ = 1 at x∗ = 1. After substitution
of this condition in the continuity equation, the boundary condition at the end of the
embayment can be reformulated as a boundary condition at x∗ = 1 and is given by
u∗

x∗ is finite at x∗ = 1 (Van Leeuwen and De Swart 2001; Ter Brake and Schuttelaars
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2011). Apart from this condition, the following boundary conditions are imposed:

K ∗
h

∂C∗

∂x∗ + λ∗ ∂h∗

∂x∗ = 0, h∗ = 1 at x∗ = 1.

At the seaward boundary the water motion is forced by a single tidal constituent,
the bed level is kept fixed, meaning that erosion is assumed to balance deposition:

ζ∗ = (
AM2/AM2

)
cos(t∗),

〈
C∗ −

[(
û∗)2 + (

v̂∗)2] 〉= 0, h̄∗ = 0 at x∗ = 0.

The latter expression requires that the bed elevation h̄∗, which is h∗ averaged over the
seaward boundary, is equal to zero. For a more detailed discussion of these boundary
conditions, see Schuttelaars andDe Swart (1999), Ter Brake and Schuttelaars (2011),
Boelens et al. (2021).

Equations (10.40)–(10.43) and (10.46) can be solved using an asymptotic expan-
sion in the small parameter ε, reflecting comparatively small deviations from the
O(1) values of primary parameters, see Schuttelaars and De Swart (2000), Ter Brake
and Schuttelaars (2011). Assuming that all parameters are O(1), the focus will be
on the O(1) equations, neglecting terms of O(ε) and smaller. Furthermore, for the
system under consideration 1/Λ∗ � 1 which allows for a further simplification of
the momentum equations (10.41) and (10.42):

∂ζ ∗

∂x∗ = ∂ζ ∗

∂y∗ = 0,

which states that the variations in the free surface elevations are spatially uniform.
Information on the zeroth–order velocity field is obtained from the O((Λ∗)2)momen-
tum balance: elimination of the pressure terms results in a vorticity equation, which
reads (neglecting earth rotation effects):

∂2v̂∗

∂x∗ ∂t∗ − ∂2û∗

∂y∗ ∂t∗ = − ∂

∂x∗

(
r∗v̂∗

1 − h∗ + h∗
0

)
+ ∂

∂y∗

(
r∗û∗

1 − h∗ + h∗
0

)
. (10.48)

Converting the system of non–dimensional equations and the associated boundary
conditions back to dimensional ones resulting in the equations of Sect. 10.5.3.
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Chapter 11
Wetting and Drying Procedures
for Shallow Water Simulations

Sigrun Ortleb, Jonathan Lambrechts, and Tuomas Kärnä

Abstract In the coastal zone, the alternating exposure and submerging of the seabed
is an important feature in coastal engineering and marine ecosystems. The wet-
ting and drying of shallow regions challenges the numerical simulation in terms
of robustness, efficiency, and the preservation of physical properties. Considering
a physically sound representation, desired numerical properties include positivity
preservation with respect to the water depth, local and global mass conservation,
well-balancedness with respect to lake at rest steady states, and avoidance of artifi-
cial pressure gradients. This chapter focuses on recent numerical methods on fixed
computational grids based on the depth-averaged shallow water equations where we
review and discuss the classes of finite volume methods and discontinuous Galerkin
schemes and their respective wetting and drying treatment. In addition, the numerical
approaches are classified with respect to either explicit or implicit time integration,
and we discuss the advantages and disadvantages accompanying these two alterna-
tives.

11.1 Introduction

The study of ocean dynamics requires the simulation of water flow in diverse regions
of varying fluid depth. Part of the considered regionsmay therefore be subject to alter-
nating wetting and drying processes where the water depth may drastically change.
Wetting and drying also occurs on different time scales such as hours in the case of the
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tides or days in the case of storm surges. The situations relevant to wetting and dry-
ing include coastal regions of different characteristics, such as shores, embayments,
tidal flats or estuaries. Capturing the fluid dynamics in these areas is significant in
order to study and possibly predict the ramifications of singular phenomena such as
storm surges or inundations. In addition, repetitive flooding and ebbing is vital to the
local ecosystem. Hence, in modelling the occurring biological processes, the time
evolution of the flooding and receding water front plays an important role. Further-
more, the periodic occurrence of wetting and drying due to the tides affects sediment
transport and the run-up on beaches and dunes and subsequent receding of the water
front may cause coastal erosion.

The importance of the alternating wetting and drying water flows in coastal engi-
neering and marine ecosystems is accompanied by challenges with respect to both
the development of suitable mathematical models of the occurring processes and the
construction of accurate and robust numerical methods.

Considering mathematical models, this chapter focuses on the depth-averaged
shallow water equations which are commonly used in coastal areas. These equations
are based on the assumption of a small vertical length scale compared to large hori-
zontal ones and a hydrostatic pressure distribution. Near the wet-dry front, however,
these assumptions are not fully valid: First, when the fluid depth vanishes, these equa-
tions become ill-posed. In addition, if themodel includes bottom friction, e.g. in form
of a Manning friction term with experimentally determined roughness coefficient,
this again involves division by the fluid depth. Second, near the front the horizontal
and vertical length scales become comparable. Indeed, the hydrostatic assumption
may be violated in certain cases, such as Tsunami modelling which may require the
inclusion of non-hydrostatic effects, as discussed in Candy (2017). Nevertheless, on
moderate scales as in estuaries or mud flats, the shallow water equations may capture
the relevant dynamics quite efficiently and to a sufficient degree of accuracy.

In terms of three-dimensional modeling, most 3D models use a mode-splitting
technique in timewhichmeans that the free surface dynamics and the internal motion
of the fluid are solved separately, possibly using different time step sizes. Some
schemes explicitly solve the full 2D shallow water equations, while others introduce
a reduced 2D free surface equation where the depth-integrated fluxes are computed
from the 3D velocity fields. As such, in most cases, the treatment of wetting and
drying essentially reverts to the techniques of the 2D problem.

From the numerical standpoint, several challenges in dealing with wetting and
drying in a shallow water model have been stated in the literature. First, the scheme
must be positivity preserving, i.e. water depth must remain non-negative in the entire
computational domain at all times. As stated above, the governing equations are ill-
posed for H < 0 and the surface wave celerity

√
gH is not defined. In addition, the

computation of velocity from the discharge u = (Hu)/H becomes ill-posed as H
approaches zero.

Second, the model must be locally and globally conservative. The shallow water
equations are a systemof balance lawswhich is generally formulated in the conserved
quantities of volume and momentum. In addition, in simulations that involve tracers,
the wetting and drying treatment should not jeopardize tracer mass conservation. The
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tracer advection scheme should also be consistent, i.e. a constant tracer field should
remain constant at all times—a property often called local conservation. Arguably
the mass and volume conservation properties are essential in most applications,
especially in long-term environmental applicationswhere even a small deviationmay
accumulate over long integration times. Conservation of momentum, on the other
hand, is less crucial as the coastal ocean is generally highly dissipative. Nevertheless,
a proper resolution of the momentum equation is required for correct representation
of the advancing wet-dry front.

Third, the shallow water equations admit certain steady state solutions, most
importantly the so-called “lake at rest” steady state consisting of a vanishing velocity
vector and a constant sea surface elevation. A numerical scheme which does not
discretely preserve this particular steady state is prone to instabilities as it may
generate unphysical oscillations due to the improper balance of flux and source
terms. In addition, such a scheme will experience difficulties to achieve lake at rest
steady state solutions in the long time limit. Therefore, much effort has been taken
to construct so-called well-balanced schemes preserving the lake at rest steady state
in a discrete sense, sometimes by reformulating the shallow water equations in terms
of the surface elevation instead of the water height. It should be remarked in this
context that it is still not trivial to discretely preserve lake at rest steady states in
partially dry cells, e.g. at a shoreline.

Amore specific requirement is the non-permeability of dry areas. Coastal domains
often feature lakes or ponds that remainwet in the dry stage and become disconnected
from larger water bodies. Such emerging dry barriers should remain impermeable,
i.e. attain a zero volume flux so that the lakes do not artificially dry out. This condition
is often violated by so called porosity schemes that relax the positivity requirement
and/or allow water flow beneath the bed.

As water depth reduces, the flow is mostly dominated by the pressure gradient
and bottom friction terms. Over a sloping bathymetry the pressure gradient remains
non-zero until the water is completely drained, whereas the bottom friction parame-
terization increases slowing down the flow. The bottom friction term is problematic
as it grows without bound as the depth vanishes. The non-zero pressure gradient, on
the other hand, becomes an issue in methods that retain a thin water layer over the dry
areas: In order to ensure positivity, the artificial pressure gradient must be omitted
or canceled. In the literature several methods have been developed for achieving this
goal, including flux-limiting schemes, direct cancellation of the pressure gradient
term, and positivity preserving limiters.

In addition to the properties listed above, an ideal numerical wetting and dry-
ing method should also be robust, computationally efficient, and generalizable to
unstructured meshes. Robustness implies that the scheme remains stable under rapid
flows and highly variable bathymetry. In terms of computational efficiency, many
wetting and drying schemes introduce time step limitations which may increase the
computational cost significantly and restrict their applicability to realistic problems.

Many techniques to deal with wetting and drying have been suggested and have
been classified in at least two classes of methods—moving mesh methods and fixed
mesh methods. With fixed mesh methods, the computational grid itself is fixed
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throughout the computation of the time-dependent solution. On the other hand,mov-
ing mesh methods, also referred to as mesh adaption algorithms adapt the boundaries
of the computational mesh to precisely match the water front. The general idea is
that the moving wet-dry front can be essentially described as a Lagrangian pro-
cess which bases the moving mesh approach on a sound mathematical formulation.
Hence, many difficulties can be circumvented as the equations are always well-
defined and there is no artificial pressure gradient. Thus, shorelines can be tracked
quite accurately and a non-negative water height is present throughout the computa-
tional domain. However, as discussed in Nielsen (2003), Bunya and Kubatko (2009),
Lee and Lee (2016), movingmeshmethods are computationally more expensive than
fixed grid techniques, more difficult to implement especially in case of strongly vary-
ing bathymetry and complex boundary shapes. In addition, they can potentially lead
to excessively elongated elements along the coastline as stated in Nielsen (2003).
In addition, according to Bunya and Kubatko (2009), mesh adaption techniques do
not necessarily yield more accurate solutions than fixed grid schemes. Furthermore,
front-tracking is difficult to combine with implicit time integration.

For the further discussion of wetting and drying algorithms in this chapter we
will concentrate on methods on fixed computational grids. A contemporary review
of wetting and drying algorithms for numerical tidal flow models on fixed grids
given by Medeiros and Hagen (2013) classifies the wetting and drying fixed mesh
methods into four general frameworks: (1) thin film algorithms, (2) element removal
methods that employ checking routines to determine if an element or a node is wet,
dry or potentially one of the two, subsequently adding or removing nodes from
the computational domain (3) fluid depth extrapolation from wet nodes onto dry
ones, (4) negative water depth methods. As stated in Medeiros and Hagen (2013),
the defining feature of thin film algorithms, also called thin layer algorithms, is the
constant presence of a small layer of water within the domain. The algorithm may
distinguish between wet and dry cells only by a minimum water height threshold.
When the water height drops below the threshold, the velocity of the flow is often
set to zero and fluxes between adjacent dry cells are prohibited. Commonly, in finite
volume and discontinuous Galerkin schemes, a flux-limiting strategy is employed,
where the fluxes are modified, i.e. reduced or cancelled, in the vicinity of dry zones.
Recent thin film algorithms have been developed in Ern et al. (2008), Bunya and
Kubatko (2009), Gourge et al. (2009), Xing et al. (2010), Xing and Zhang (2013),
Warner et al. (2013), Meister and Ortleb (2014), Vater et al. (2015). As discussed in
Bunya and Kubatko (2009), since thin film approaches keep a small layer of water
in nominally dry regions until these cells become fully wet again, it is difficult to
determine an exact shoreline. In addition, an erroneous gradient may be present at
the shoreline, possibly generating unphysical flows which are difficult to remove
without violating momentum conservation. A recent example of a finite volume
implementation of wetting and drying via a thin layer approach is given by Warner
et al. (2013). The minimum depth used within their algorithm is a spatially constant
user-defined parameter. If the total depth at the cell center is smaller than this thin
layer tolerance, the cell is considered dry and no water is permitted to leave the cell,
however water is allowed to enter dry cells at any time. Thus, the arrival of incoming
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tide is not limited. In addition, the authors state that if the blocking of water relied
on the water depth at cell faces, isolated wet patches could be generated for a fluid
depth below the tolerance, since the fluid depth at the cell center could in fact be
higher.

For element removal algorithms, wet elements are included in the computational
domain while dry ones are not. At the wetting front, further consideration is needed
for the treatment of partially wet cells. For example, this may include distinguishing
partially wet cells of dam-break type from those of flooding type as in Bates and Her-
vouet (1999). The list of element removal algorithms given byMedeiros andHagen is
quite extensive, including the finite elementmodels TELEMAC (Hervouet 2000) and
ADCIRC (Luettich 1992), as well as the finite difference models Delft3D-FLOW
(Deltares 2009) and MIKE 21 (DHI 2007). As discussed in Bunya and Kubatko
(2009), mesh reduction techniques may cause oscillations due to sudden elimination
and addition of nodes as well as mass and momentum loss. Considering our list of
desirable numerical properties, mass conservation and well-balancedness are hence
the most endangered properties when an element removal algorithm is applied.

Most of the abovemethods rely ondetecting the dry elements and applying suitable
changes to the numerical procedure. These changes can consist in cancelling fluxes
(flux-limitingmethods), or omitting pressure gradient terms in partially dry elements.
Such “switches” introduce sudden changes in the solver and generally can only be
marched in time with explicit schemes. Moreover, they require sufficiently short
time steps to prevent oscillations. Due to the discontinuous switches of the method,
implicit solvers do not converge because an exact Jacobian is not computable and
approximate Jacobians are either discontinuous or highly non-linear.

Depth extrapolation methods focus on the advancing water front from which
information is extracted. Mostly, the fluid depth is extrapolated from wet cells onto
dry ones, if the algorithm detects an advancement of the front. If new wet cells occur,
the corresponding velocities are calculated. In this category, only few approaches are
listed by Medeiros and Hagen and it is mentioned that these schemes occasionally
lead to artificially wetted elements. In addition, mass conservation has to be dealt
with by correction routines.

Negative depth algorithms allow thewater surface to drop below the bottom topog-
raphy, similar to the idea of porosity schemes. While regions with negative depth
are considered as dry, fluid flow below the ground is dealt with a porosity approach.
The concept of artificial porosity is based on assuming a certain porosity of the sea
bed which has to be properly modelled, e.g. by a thin porous layer, and allows for
non-zero fluxes in regions formerly considered as dry. The negative depth algorithms
are the most recent schemes listed by Medeiros and Hagen and are accredited with a
close description of the physical processes involved with the wetting front. The ben-
efit of negative depth methods is that there is no need to detect dry elements or cancel
fluxes. In these methods the continuous equations are modified slightly to account
for the porosity. As such the artificial pressure gradient issue does not arise, and these
schemes are compatible with many discretizations, including implicit time integra-
tion schemes. However, negative depth algorithms often break the non-permeability
requirement mentioned above. Nielsen (2003) investigated the parameters affect-
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ing the performance of the marsh porosity method RMA2. Newer versions of the
TELEMAC model include various options of a negative depth approach as well.
An alternative approach to negative depth algorithms has been used in Kärnä et al.
(2011). Here, the bottom topography is allowed to move in time as the water surface
drops.

In the literature, explicit time stepping is implemented in the majority of previous
wetting and drying methods. As mentioned above this is required by most flux-
limiting and thin layer methods that detect dry elements. However, explicit schemes
are subject to time step limitations that may become severe, especially if the mesh
is refined in the shallow regions. The choice of explicit or implicit time integration
should also be based on the involved time scales of the specific application. In an
evaluation of several methods which were developed until 1994 for the simulation of
wetting and drying in one space dimension, Balzano (1998) already includes several
implicit schemes. In addition, a simple calculation is given regarding the distance
which the moving boundary covers within one time step. More precisely, if the speed
of the moving boundary is vb and Δt denotes the time step, we have for this distance

vbΔt = vb√
gH

Δt

Δx

√
gH Δx = Fr CrΔx,

where Fr and Cr are the Froude number and the Courant number, respectively, Δx is
the cell size, H the water height and g is the gravitational constant. Balzano further
argues that, in practice, the Courant number is between 0.5 and 1 while the Froude
number takes typical values in the interval [0.01, 0.05], hence 20 to 200 time steps
would be needed to move the wet-dry boundary over a distance of Δx , i.e. a cell
length.

Considering the possibly severe limitation of the allowable time step size, devising
implicit time stepping schemes compatible with wetting and drying is generally
desirable. A special unconditionally positive implicit time integration scheme is used
by Casulli (2009). This approach leads to amildly nonlinear system to be solved each
time step but is mass conserving and guarantees nonnegative water height for any
time step size. However, this method is only first order accurate in space and time.
In the context of stabilized residual distribution schemes, Ricchiuto and Bollermann
(2009) developed awell-balanced and positivity preserving scheme for shallowwater
flows also considering implicit time integration via the second order trapezoidal
rule. In this case, the time step size can be chosen twice as large as for the explicit
Euler scheme. Wu (2011) design an implicit finite volume shallow water code on
unstructured rectangular meshes based on the backward Euler scheme. Wetting and
drying is implemented using the thin layer approach. A different approach is taken
by Kärnä et al. (2011). There, the bottom topography is allowed to move in time as
water elevation drops, i.e. a user-defined function is introduced which redefines the
bottom topography. However, this function has to fulfill certain conditions and hence
has to be carefully chosen prior to numerical computation. In Meister and Ortleb
(2014), Meister and Ortleb developed an unconditionally positive approach to time
integrationwithin aDG scheme in order to obtain non-negative water heights without
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time step restriction.This approachwasbasedon amodificationof an implicitRunge–
Kutta scheme,more precisely the classical third order SDIRK scheme byCash (1979)
via a modified Patankar trick as invented in Burchard et al. (2003). Further recent
implicit approaches are given by Marras et al. (2016), combining dynamic viscosity
for shock capturing with with a high-order wetting and drying method, a 3D non-
hydrostatic implicit model by Candy (2017), and a finite difference implicit 1D code
by Kalita (2018).

This chapter is organized as follows. In Sect. 11.2, the most popular variants
of the 2D shallow water equations are described. Here, we discuss the different
formulations with respect to their impact on well-balancedness. Section11.3 deals
with space discretization where we focus on finite volume methods in Sect. 11.3.1
and discontinuous Galerkin schemes in Sect. 11.3.2. Section11.4 is dedicated to time
discretization where we distinguish wetting and drying treatments with respect to
explicit and implicit time integration schemes. Concluding remarks are given in
Sect. 11.5.

11.2 Governing Equations

The shallow water equations (SWE) model the flow of water in the case that the
horizontal length scale is significantly greater than the vertical one and the vertical
velocity is comparatively small with respect to the horizontal velocity. The derivation
of the SWE is based on depth-integration of the Navier-Stokes equations which
removes the vertical velocity from the set of variables.

In conservative form, the SWE in two space dimensions are given by

∂H

∂t
+ ∂Hu

∂x
+ ∂Hv

∂y
= 0 ,

∂Hu

∂t
+ ∂(Hu2 + g

2 H
2)

∂x
+ ∂Huv

∂y
− f Hv = −gH

∂b

∂x
+ τ s

x − τ b
x

ρ
,

∂Hv

∂t
+ ∂Huv

∂x
+ ∂(Hv2 + g

2 H
2)

∂y
+ f Hu = −gH

∂b

∂y
+ τ s

y − τ b
y

ρ
,

where H is the water column height, (u, v)T is the fluid velocity vector, b is the
bottom topography and g denotes the gravitational acceleration. Furthermore, Cori-
olis forces are included in this formulation, where f denotes the Coriolis parameter
depending on the geographic latitude. Forces due to wind stress and bottom fric-
tion are contained, denoting the surface stresses by τ s

x , τ
s
y and bottom stresses by

τ b
x , τ b

y , while ρ is the density of water. Further influences, such as eddy viscosity,
may be included within the momentum equations but have been neglected in the
above formulation. The conservative SWE can be written in the more compact form
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∂

∂t
U (x, y, t) + ∇ · F(U (x, y, t)) = S(U (x, y, t), x, y), (11.1)

where the conservative variables are now collected inU = (H, Hu, Hv)T , while F
contains the fluxes and S the sources.

When solving the conservative formulation of the shallow water equations, a
central requirement is to satisfy the well-balanced property, i.e. to maintain a lake
at rest steady state solution. This precise steady state is given by a constant sea
surface elevation η = H + b = const and a zero velocity vector, i.e. u = 0, v = 0.
When neglecting wind stresses, these steady states are obviously exact solutions of
the analytical equations above, basically due to the fact that the net pressure forces
vanish.More precisely, due to the constant sea surface, we have the following balance
for the first of the momentum equations

g

2

∂H 2

∂x
+ gH

∂

∂x
b = gH

∂

∂x
η = 0 ,

and an analogous one for the second momentum equation. Hence, in the analytical
equations the pressure forces are split in two parts which attain non-zero values of
opposite signs in case of non-constant bottom topography b and thus cancel each
other out. One has to ensure that the numerical scheme satisfies this property as well
(within machine-precision). With respect to wetting and drying methods, satisfying
both the well-balanced property and non-negativity simultaneously is not trivial, see
e.g. Xing et al. (2010). This issue may not arise for slightly modified formulations
such as the reformulation

∂Hu

∂t
+ ∂Hu2

∂x
+ ∂Huv

∂y
− f Hv = −gH

∂η

∂x
+ τ s

x − τ b
x

ρ

of the first momentum equation, where the pressure gradient term is written directly
with respect to the water surface elevation η. This form of the momentum equations
is given for example in Balzano’s review paper (Balzano 1998).

In the non-conservative formulation of the SWE, the pressure gradient term is
based on thewater surface elevation aswell. Thefirstmomentumequation is rewritten
as

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
− f v = −g

∂η

∂x
+ τ s

x − τ b
x

Hρ

and the second momentum equation is rewritten accordingly. Therefore, numerical
schemes based on the non-conservative formulation generally behave well for lake at
rest steady states. However, in dry areas, the non-conservative form does not admit
reasonable values for the velocity since this quantity is in fact not defined in dry
areas and artificially setting u and v to zero would lead to a discontinuity at a moving
wet-dry front. In addition, the non-conservative form does not hold across shocks or
hydraulic jumps.
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To alleviate the well-balancedness issue, some methods also use the so called
pre-balanced shallow water equations. These equations where designed to directly
account for the balance of pressure forces acting on a fluid control volume and employ
the water surface elevation η as a prognostic variable instead of the water height H .
According to Liang and Marche (2009), the main advantage of the pre-balanced
formulation is that it maintains the hyperbolicity of the original, conservative formu-
lation and mathematically balances the flux and source terms at the same time. More
precisely, the sum of pressure terms g

2
∂H 2

∂x + gH ∂
∂x b is rewritten in the variables of

surface elevation and bottom topography as

g

2

∂H 2

∂x
+ gH

∂

∂x
b = g

2

∂(η − b)2

∂x
+ g(η − b)

∂

∂x
b

and algebraically manipulated to obtain the form

g

2

∂(η2 − 2ηb)

∂x
+ gη

∂

∂x
b .

If η = const , both of the above summands have precisely the same form gη ∂
∂x b. The

pre-balanced form of the SWE is now given by the equations

∂η
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2 (η
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∂y
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y

ρ
.

The various numerical methods designed to simulate shallow water flows with wet-
ting and drying are now based on one of the above governing equations. They will be
described more cleary in the following Sect. 11.3 dealing with space discretization.

11.3 Space Discretization

In terms of spatial discretization, the first ocean circulation models were based on
finite differences (FD). In recent decades, however, the finite volume (FV) formula-
tion has become increasingly popular due to its conservation properties, its suitability
for advection dominated problems, and its applicability on quite general grids. Con-
sequently, many recent circulation models use the finite volume formulation, and
existing FD models have been reformulated into the FV methodology using conser-
vative numerical fluxes.
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In addition, there has been an increasing interest in developing higher-order meth-
ods since they require less degrees of freedom to obtain the desired accuracy. Par-
ticularly the more modern discontinuous Galerkin (DG) schemes are attractive due
to their support of arbitrary meshes, their amenability for hp-refinement and parallel
computation, favorable dissipation and dispersion properties, as well as similar local
conservation properties as for FV schemes.

In this chapter we therefore focus on the FV method and the DG scheme. The
major difference between these approaches consists in the construction of the desired
higher order discretizations. While finite volume methods rely on reconstruction of
pointwise data using stencils of adjacent cells to achieve higher order in space, for
the discontinuous Galerkin approximation, the polynomial degree of the test and
basis functions is increased. With respect to the wetting and drying treatment, the
approaches used for these classes of schemes differ as well. In the following, we will
first review finite volume methods for wetting and drying simulations based on the
shallow water equations and then consider the newer class of discontinuous Galerkin
schemes.

11.3.1 Finite Volume Methods

Finite volumemethods for the shallowwater equations commonly start from the con-
servative formulation based on either the water height and discharge or the surface
elevation and discharge.While the numerical representation of the conserved quanti-
ties in a finite volume scheme is given by their cell averages, the bottom topography
is typically represented either by cell means as in Audusse et al. (2004), Marche et al.
(2017), Liang and Marche (2009), Duran et al. (2013), Clain et al. (2016) or by a
piecewise linear function which is continuous across cell boundaries as in Kurganov
and Petrova (2007), Bryson et al. (2011), Horváth et al. (2015). For the case of one
spatial dimension, the basic FV scheme has the form

Δxi
d

dt
Ui (t) + Fi+1/2 − Fi−1/2 = Si , Ui =

(
Hi

Hivi

)
, (11.2)

where Ui contains the cell means, Fi±1/2 denotes the output of the numerical flux
function and Si is a suitable source term discretization.

As stated in Sect. 11.2, due to the conservative formulation, special consideration
has to be taken to ensure the well-balanced property. More precisely, the necessary
cancellation of pressure terms gH ∂

∂x η = ∂
∂x (

g
2 H

2) + gH ∂
∂x b = 0 for the lake at rest

is not fulfilled by the simple source term discretization −gH ∂
∂x b ≈ −gHi

bi+1−bi−1

Δx
coupled with a classical numerical flux such as the Lax-Friedrichs (LF) flux or the
Harten-Lax-vanLeer (HLL) flux (Harten et al. 1983). This fact has also been revisited
by Clain et al. (2016).
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(a) Two adjacent wet cells. (b) Dry cell adjacent to a wet cell.

Fig. 11.1 Illustration of hydrostatic reconstruction approach depicting auxiliary interface bottom
topography bi+1/2 and reconstructed left and right water heights H±

i+1/2

A very simple and popular technique handling both discontinuous topography
and wet-dry interfaces is given by Audusse et al. (2004). Their scheme is designed
to achieve the above mentioned well-balanced property, while Clain et al. (2016)
demonstrates its viability for Tsunami simulations. Incorporating the hydrostatic
reconstruction technique into a finite volume MUSCL scheme, Clain et al. hereby
provide numerical results with good agreement both for benchmarks and a realistic
historical Tsunami event.

Due to its popularity and simplicity, the hydrostatic reconstruction by Audusse et
al. deserves a review in this context. In order to determine the input values for the
numerical flux function at a cell interface, the water surface H + b and the bottom
topography on the two adjacent cells are taken into account. In a first order scheme,
at an interface denoted by i + 1/2, the reconstructed left and right water height is
given by the non-negative values of

H−
i+1/2 = max{0, Hi + bi − bi+1/2}

H+
i+1/2 = max{0, Hi+1 + bi+1 − bi+1/2},

(11.3)

where bi+1/2 = max{bi , bi+1}. as illustrated in Fig. 11.1.
The leading order water height values H±

i+1/2 now determine the left and right

states of the conserved variables. They are computed as U±
i+1/2 =

(
H±
i+1/2

H±
i+1/2v

±
i+1/2

)
,

where v−
i+1/2 = vi and v+

i+1/2 = vi+1.
These values are then used as input values for the numerical flux function in

(11.2), i.e. Fi+1/2 = F(U−
i+1/2,U

+
i+1/2). In order to achieve well-balancedness, the

source term discretization is based on the reconstructed values of water height. If
the source term simply contains the pressure forces due to the bottom slope, i.e. the
term −gHbx , and all other forces are neglected, its discretization is given by

Si = g

2

(
0

(H−
i+1/2)

2 − (H+
i−1/2)

2

)
.
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As mentioned in Audusse et al. (2004), the source term can be redistributed to the
cell interfaces. The scheme (11.2) can then be rewritten as

Δxi
d

dt
Ui (t) + Fl(Ui ,Ui+1, bi , bi+1) − Fr (Ui−1,Ui , bi−1, bi ) = 0,

where the left and right interface fluxes are given by

Fl(Ui ,Ui+1, bi , bi+1) = F(U−
i+1/2,U

+
i+1/2) +

(
0

H 2
i − (H−

i+1/2)
2

)
,

Fr (Ui ,Ui+1, bi , bi+1) = F(U−
i+1/2,U

+
i+1/2) +

(
0

H 2
i+1 − (H+

i+1/2)
2

)
.

(11.4)

In order to achieve a spatial discretization of second order, a piecewise linear
representation of the conserved quantities needs to be reconstructed in a way which
maintains well-balancedness and non-negativity. Thus, starting with a first order
FV scheme, a second order extension may be obtained using reconstructed values
at the cell interface. Thereby gradients of the conserved quantities are computed
and limited if necessary, in order to avoid overshoots. Based on the situation at an
interface between a wet and a dry cell, Audusse et al. argue that of the quantities
H, b and η = H + b, the water height H and water surface η are the variables which
should actually be reconstructed while b is to be computed as b = η − H .

In case of wetting and drying, one of the basic ingredients to ensure non-negativity
of water height within a FV discretization is a positivity preserving numerical flux.
Used within a FV method and explicit Euler time integration, these numerical flux
functions yield non-negative cell means of water height at the next time level under
the premise of non-negative cell means at the current time level. Roe-type solvers
based on the linearized original equations and the corresponding modified Riemann
problems are generally not positivity preserving. Specifically for the SWE, this well-
known drawback is discussed in detail in Pelanti et al. (2011) where positivity is
guaranteed by a relaxation solver related to Roe’s method. Positivity preservation is
furthermore given for the local Lax-Friedrichs flux or for the HLL flux mentioned in
the beginning of this section. If the well-balanced flux (11.4) designed by Audusse et
al. is based on the local Lax-Friedrichs flux for F , positivity in one space dimension
can be shown as follows. For the cell averages of water height Hn

i , Hn+1
i at two

successive time levels tn, tn+1 the first order scheme reads

Hn+1
i = Hn

i − Δt

Δxi

(
F1(U

−
i+1/2,U

+
i+1/2) − F1(U

−
i−1/2,U

+
i−1/2)

)
,

where F1(Ul,Ur ) = 1
2 ((Hv)l + (Hv)r − α(Hr − Hl)) is the first component of the

Lax-Friedrichs numerical flux with α = max
{|vl | + √

gHl, |vr | + √
gHr

}
. Since

U−
i+1/2 = H−

i+1/2

Hi
(Hi , (Hv)i )

T and U+
i+1/2 = H+

i+1/2

Hi+1
(Hi+1, (Hv)i+1)

T , we can rewrite
the new water height average as the convex combination
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Hn+1
i =

(

1 − Δt

2Δxi

Hn,−
i+1/2

Hn
i

(vn
i + α) − Δt

2Δxi

Hn,+
i−1/2

Hn
i

(α − vn
i )

)

Hn
i

+ Δt

2Δxi

Hn,−
i−1/2

Hn
i−1

(α + vn
i−1) H

n
i−1 + Δt

2Δxi

Hn,+
i+1/2

Hn
i+1

(α − vn
i+1) H

n
i+1 .

Now, since per construction in (11.3) we have H−
i+1/2 ≤ Hi and H+

i+1/2 ≤ Hi+1,

under the CFL condition α Δt
Δxi

≤ 1, the factors in front of Hn
i , Hn

i−1, Hn
i+1 are all

non-negative. This proves non-negativity of the cell average Hn+1
i .

The well-balanced and positivity preserving approach by Audusse et al. described
above is simple and fulfills the requirements ofwell-balancedness and non-negativity.
It has thus been used as a basic building block in many subsequent FV schemes in
one space dimension such as Marche et al. (2017), Liang and Marche (2009) as well
as extension to unstructured meshes in Duran et al. (2013) and structured meshes in
Clain et al. (2016). It should be remarked that both of the approaches by Liang and
Marche (2009) and by Duran et al. (2013) are based on the pre-balanced formulation
given in Sect. 11.2.

Furthermore, the possibility to write the scheme in terms of only interface fluxes
has lead to its use also as an important ingredient within many of the discontinu-
ous Galerkin schemes to be reviewed in Sect. 11.3.2. In this respect, the approach
of hydrostatic reconstruction simply yields a modification of the numerical flux
function used within the discontinuous Galerkin scheme in case of a discontinuous
representation of the bottom topography.

FV schemes based on a continuous, piecewise linear representation of the bottom
topography need slightly different techniques to guarantee well-balancedness and
non-negativity at the same time. Approaches of this kind are usually found within
the class of central-upwind FV schemes as in Kurganov and Petrova (2007), Bryson
et al. (2011), Horváth et al. (2015). The term central-upwind hereby refers to the
use of a specific numerical flux function which is a weighted sum of a central and
an upwind part with weights determined by the computed characteristic speeds. The
central-upwind scheme byKurganov and Petrova (2007) can essentially be written in
the form (11.2) where the conserved variables are now taken as the water surface and

the discharge,Ui =
(

ηi
(Hv)i

)
and the source term is computed from the linear bot-

tom topography and the water surface as Si = (
0,−g(ηi − bi )(bi+1/2 − bi−1/2)

)T
.

Kurganov and Petrova also explicitly mention the ill-conditioned computation of the
velocity by v = Hv

H for very small water height and propose to avoid the division by

small numbers via the formula
√
2H(Hv)√

H 4+max{H 4,ε} with the regularization parameter ε

chosen grid dependent, i.e. decreasing with decreasing grid size. The algorithm then
recomputes the discharge Hv using (Hv) := H · v where it is explicitly mentioned
that failing to adjust the discharge may produce negative values of H , in accordance
with the proof of non-negativity in Kurganov and Petrova (2007). Furthermore, the
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scheme by Kurganov and Petrova has been extended to triangular grids in Bryson
et al. (2011).

Horváth et al. (2015) argue that the Courant-Friedrichs-Lewy (CFL) condition
for explicit time integration allows for each wave to travel at most one quarter of
a grid cell per time step which limits the propagation of information. They extend
their central-upwind scheme on structured quadrilateral grids to a method which is
well-balancedness also in partially dry cells. Furthermore, they use a draining time
step technique similar to Bollermann et al. (2011). The draining time step hereby
describes how long it takes for a specific cell to become dry due to outflow fluxes
and it is only used at cell interfaces of partially flooded cells. The resulting scheme
is reported to allow for larger time steps than the method in Kurganov and Petrova
(2007) due to the removal of spurious high velocities at the wet-dry boundaries. The
original scheme by Kurganov and Petrova may be classified as a thin-layer method
due to the computation of the velocity based on a tolerance εwhichmaybe considered
as a “reference” thin layer of water. Comparative numerical experiments in Horváth
et al. (2015) also show that for the method (Kurganov and Petrova 2007), a thin
layer of water is present once a cell becomes wet which will never dry out. This is
different to the result of scheme (Horváth et al. 2015) due to the new reconstruction
in partially dry cells and the draining time step technique.

Regarding implicit FV schemes, fewer wetting and drying methods are reported.
One of the few algorithms which actually guarantee non-negative water height inde-
pendent of the time step size, is given by the first order FVmethod of Casulli (2009).
The description in Casulli (2009) contains a mathematically very sound foundation
based on the M-matrix property to guarantee positivity. Furthermore, existence and
uniqueness of the solution aswell as convergenceof aNewton-type scheme is derived.
The approach by Casulli is based on the non-conservative formulation of the shallow
water equations which is discretized in time in a semi-implicit way. The precise for-
mulation is vital to obtain theM-matrix property for thematrices used within the iter-
ations of the Newton-type scheme.More precisely, wewill describe this approach for
the one-dimensional case and furthermore neglect Coriolis forces and eddy viscosity.
Then, the non-conservativemomentum equation H

(
∂
∂t v + v ∂

∂x v
) = −gH ∂

∂x η − γ v

is discretized. A representative semi-implicit time discretization has the form

Hn
j v

n+1
j = Hn

j ADV (vn) − gHn
j

Δt

Δx
D jη

n+1 − Δtγ jv
n+1
j ,

where ADV is a space discretization operator of the advective term and Dj is a
matrix representing a suitable difference operator applied to the vector of water
surface values. Typical of the FV approach, the time evolution of the water volumes
V (η j ) within the finite volume cells is given by

V (ηn+1
j ) = V (ηn

j ) − Δt
(
Hn
i+1/2v

n+1
i+1/2 − Hn

i−1/2v
n+1
i−1/2

)
.
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Hereby, thewater volumesV (η j ) are non-negative by construction as they are defined
via integration over the wet part of the cell. Now, the unknown velocity values vn+1

j
are formally substituted into this last equation in order to obtain a non-linear equation
of the form

V (ηn+1) + T nηn+1 = rn .

To this last equation, Newton’s method is formally applied. Hereby, the Jacobian
of V (ηn+1) + T nηn+1 is discontinuous if dry or partially dry cells occur. Moreover,
the Jacobian can be proven to possess the M-Matrix property which in particular
means that its inverse has only entries ≥ 0. Using the properties of the Jacobian it
can furthermore be shown that the Newton iteration generates a converging sequence
to the solution of the semi-implicit scheme.

Furthermore, an implicit FV scheme on unstructured quadtree rectangular meshes
is constructed by Wu et al. in Wu (2011). Although the focus lies on the quadtree
data structure and the coupling of velocity and water level within their algorithm, it is
mentioned in a short paragraph on the wetting and drying treatment that the velocity
is set to zero at dry nodes and that a wall function approach is used between dry and
wet nodes.

11.3.2 Discontinuous Galerkin Schemes

The classical derivation of a DG scheme consists in multiplying the governing equa-
tions, e.g. the conservative SWE as in (11.1), by test functions and integrating over
the computational domain. In case of unstructured triangular grids, let T h be a con-
forming triangulation consisting of triangular elements Ki of the given computational
domain Ω and let Wh be the piecewise polynomial space defined by

Wh = {wh ∈ L∞(Ω) | wh|Ki ∈ PN (Ki ) ∀ Ki ∈ T h} ,

where PN (Ki ) denotes the space of all polynomials on Ki of degree ≤ N . Now, an
approximationUh(x, y, t) to the exact solution of the conservative SWE is given by
a vector of piecewise polynomial functions Uh(·, ·, t) ∈ (Wh)3, which satisfies the
semi-discrete equation

d

dt

∫

Ki

Uh · W dxdy =
∫

Ki

F(Uh) · ∇W dxdy −
∫

∂Ki

F(U−
i ,U+

i , ni ) · W dσ, (11.5)

for any Ki ∈ T h, W ∈ (Wh)3. Hereby, the numerical flux function F takes into
account the outward pointing normal vector ni of the cell Ki and U−

i , U+
i denote

the approximate solution within Ki and an adjacent element, respectively. The DG
scheme may generally use any numerical flux function developed within the context
of FV schemes. In particular, we note that the approximate DG solution is allowed
to be discontinuous across cell interfaces.
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Fig. 11.2 Illustration of the numerical solution of a typical thin layer method. We note that the
method conserves a small layer of water of height Hε in an actually dry region, hence artificial
gravity forces are present due to hanging nodes above the water surface

The advancement of wetting and drying approaches for discontinuous Galerkin
schemes is more recent. Bokhove (2005) developed a space-time DG scheme which
uses mesh adaption to accurately separate wet and dry regions. The thin layer
approaches of Ern et al. (2008) and Bunya and Kubatko (2009) generally provide
the background for more recent DG approaches. Hereby, Ern et al. design a well-
balanced scheme by incorporating the hydrostatic reconstruction numerical flux by
Audusse et al. (2004) described in Sect. 11.3.1, i.e. the numerical fluxF in Eq. (11.5)
is given by the left and right fluxes in (11.4). For wetting and drying, a slope mod-
ification is introduced. Hereby, if the cell average of the water height is negative,
the water height in this cell is set to zero. If the cell average of the water height H
is non-negative, but the minimum over the integration points is below the drying
threshold, a linear representation of H is reconstructed where the slope is modified.
In addition the corresponding discharge is set to zero. As long as no negative averages
of H occur, mass is preserved by this approach but not momentum. In addition, the
method may add mass if non-negativity is violated. In order to rectify the artificial
increase of mass, Bunya et al. redistribute the water mass within an element by a
modification of the surface elevation to guarantee non-negativity. Additionally, they
thereby guarantee local mass conservation. The redistribution process heavily relies
on non-negative averages of the water height, so both a sufficient condition on the
allowable time step to guarantee non-negativity is derived and a reflection flux is
introduced to dispose of the time step restriction. Furthermore, fluxes between dry
cells are restricted to prevent unphysical oscillations and to prevent dry cells from
loosing their mass.

As stated in Kärnä et al. (2011), the main difficulty in thin layer approaches
when used within higher order methods such as DG is treating the wet-dry transition
elements. These cells may have “hanging nodes” above the water surface elevation
possibly causing an artificial pressure gradient, i.e. gravity forces that drag the water
down, as shown in Fig. 11.2. Such a situation may also occur for the lake at rest
because, in general, the prolongation of the constant water surface by the dry bottom
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(a) Flooding-type partially dry cell: Lake at
rest with artificial surface elevation slope.

(b) Wet cell: Lake at rest for a moving mesh
method.

(c) Two different types of dam-break type partially dry cells.

Fig. 11.3 Illustration of surface elevation, bottom topography and shoreline representation in one
discretization cell for a second order method in 1D. Black dashed vertical lines: cell boundaries.
Blue and brown dashed lines: continuous surface elevation and bottom topography. Solid lines:
discrete representation

topography is not a smooth function. In fact, its approximation by a polynomial
function then usually yields hanging nodes. This can be seen in Fig. 11.3a where
obviously the water surface elevation has an artificial slope creating an artificial
pressure gradient. This artifact does not occur for moving mesh methods adapted
to the shore line as depicted in Fig. 11.3b and is also prevented in negative depth
algorithms. In this context, in order to address this problem in a numerical method, a
distinction between dam-break type (Fig. 11.3c) and flooding-type partially dry cells
(Fig. 11.3a) has already been proposed by Bates and Hervouet (1999). In case of
flooding-type cells which by definition also include lake at rest situations, movement
of water in dry cells is only allowed by convective transport. However, for dam-break
cells a high water surface level next to the dry cell results in the flow of water due
to gravitational forces, which should not be neglected in this case. Flooding-type
cells can be identified by considering the representation of water surface and bottom
topographywithin the numerical scheme.Given a cell Ki withwater surface elevation
ηh(x, y) and bottom representation bh(x, y), then Ki is a flooding-type partially dry
cell if we have
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max
(x,y)∈Ki

ηh(x, y) − max
(x,y)∈Ki

bh(x, y) < Hε ,

where Hε denotes the drying threshold under which a node is considered dry. This
distinction of partially dry cells has also been made by other authors, for example by
Bunya and Kubatko (2009), where it is included in the wet-dry status to determine
fluxes between dry elements, and by Vater et al. (2015).

Once, partially dry cells are distinguished with respect to their desired behavior,
the numerical methods are adjusted. Common to many high order schemes, Bunya
et al. use cancellation of gravity to balance the effect of an artificial gradient of the
surface elevation in wetting or drying elements. However, their precise choice of the
momentum fluxes violates momentum conservation.

In addition, we have to remark that these more or less complicated rules which
are applied to partially dry cells in order to remove the artificial pressure forces are
difficult to integrate into an implicit time stepping scheme.

Additional difficulties may arise through the combination of wetting and drying
techniques with TVB limiters for shock capturing. As reported by Ern et al. (2008)
and Bunya and Kubatko (2009), the slope modification of the wet-dry treatment and
the TVB slope limiter of the DG schememay artificially activate each other, possibly
leading to instability. Thus, the TVB limiter is commonly only applied to the fully
wet region.

In Gourge et al. (2009), a flux limiting wetting and drying DG approach is devel-
oped and applied to achieve a realistic simulation of the Scheldt Estuary. The lim-
itation involves computing three intermediate states of the water surface elevation
preserving local mass conservation. As in the method of Bunya et al., gravitational
forces are neglected within dry elements to allow the water surface to align with
the bottom topography. Within a “buffer layer” of very shallow water, bottom stress
and eddy viscosity are increased while surface stress is decreased. Due to the many
switches in turning the fluxes on or off, the method is discontinuous with respect to
the variables. Therefore, Gourge et al. state that implicit time stepping is not directly
available for this approach.

The series of works by Xing, Zhang and Shu with the basic ideas given in Xing
et al. (2010), Xing and Zhang (2013) deal with the construction of a so-called positiv-
ity preserving limiter and the special design of explicit Runge–Kutta time integrators
based on convex combinations of explicit Euler steps. Here, the methods are gen-
erally in line with the ideas in Ern et al. (2008); Bunya and Kubatko (2009), but a
more systematic approach to well-balancedness and positivity preservation is given.
Therefore, in principle, the properties of well-balancedness and positivity preserva-
tion for the shallow water equations carry over to high order in space and time. One
of the basic ingredients of the method by Xing et al. (2010) is a positivity preserving
numerical flux function for the shallow water equations as introduced in Sect. 11.3.1.
For these flux functions which attain non-negative cell means for explicit Euler
time stepping, positivity preservation can be extended to a DG scheme. Hereby, the
equations for the water height cell averages are rewritten as convex combinations of
finite volume approximations. The occurring factors in this convex combination then
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Fig. 11.4 Nodes for
positivity enforcement on
triangular grids for a
polynomial degree of N = 2.
Figure reproduced with
permission from Meister and
Ortleb (2014)

determine the CFL condition for positivity preservation, see Xing et al. (2010). More
precisely, when writing the DG scheme as a combination of finite volume fluxes, the
representation of the scheme is based on values at explicit intermediate nodes within
the DG cell. At these nodes, which may be computed a priori, the values of water
height are required to be non-negative as well, the mere enforcement of non-negative
averages is not sufficient. In order to obtain these non-negative water height values at
intermediate nodes, Xing et al. use their so-called positivity preserving limiter which
is a simple scaling of the solution around the cell average. This high order positivity
preserving limiter is locally mass and momentum conserving and only requires the
positivity of water height averages.

In summary, the result by Xing et al. asserts that the new cell averages of water
height at time tn+1 are non-negative under the premises that a suitable CFL-type
time restriction is fulfilled and that the DG representation at time tn is non-negative
at each quadrature point in a set of nodes related to the finite volume representation.
As mentioned, this set of nodes can be determined a priori, also for unstructured
triangular grids, and depends on the polynomial degree of the DG approximation.
To provide an example, for a polynomial degree of N = 2, Fig. 11.4 shows the
distribution of the set of nodes requiring non-negative water height within a reference
triangle. The construction of this nodal set is described by Zhang et al. (2012). In
addition, it is possible to extend the approach of Xing et al. to higher order time
integration methods which lie within the contents of Sect. 11.4.

In Duran and Marche (2014), Duran and Marche extend a previously constructed
FV scheme based on the pre-balanced shallowwater equations to aDGdiscretization.
Hereby, the pre-balanced equations reduce the required degree of exactness of the
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DG quadrature rule to achieve well-balancedness which is otherwise higher than in
the standard approach. Their approach is generally in line with the methods of Xing
et al. (2010), Xing and Zhang (2013), as they also use hydrostatic reconstruction as
described in Sect. 11.3.1 to determine the input values for the numerical flux, the
positivity preserving limiter and strong-stability preserving explicit time integration
as described inSect. 11.4.2. Furthermore, the idea of using the pre-balanced equations
has been extended to a DG method which uses finite volume subcells in nearly dry
regions by Meister and Ortleb (2016).

The numerically determined velocity in nearly dry regions can be large, especially
within a DG scheme which uses a polynomial representation of the conserved vari-
ables. In this context, the challenge of computing a stable linear distribution of the
velocity within a DG scheme is addressed by Vater et al. (2015) via a velocity-based
limiting procedure. Furthermore, favourable properties of monotonicity preserving
Bernstein polynomials have been used within a DG model for flooding and dry-
ing by Beisiegel and Behrens (2015). In addition, Lee and Lee (2016) extend the
approaches in Ern et al. (2008), Bunya and Kubatko (2009) to an implicit treatment
of bottom friction terms.

More recently, DG schemes treating wetting and drying for shallow water flow
with implicit time integration have been developed.

In Kärnä et al. (2011), Kärnä et al. observe that porosity methods have the advan-
tage of smooth transitions for wetting and drying areas which increases their com-
patibility with implicit time integration schemes. Their approach to wetting and
drying is similar to a negative-depth algorithm but does not need to introduce the
concept of porosity since it temporarily moves the bottom topography such that
the new surface elevation is always positive. After a DG discretization, the numer-
ical solution is obtained by high order diagonally implicit Runge–Kutta (DIRK)
schemes, whereby the nonlinear systems are solved via Newton iteration using a
finite-difference approximation to the Jacobian. Due to the removal of switches
and discontinuities within the algorithm, the Newton solver is robust and converges
rapidly. Difficulties are reported for the third Balzano test case, where the constant
presence of the gravitational forces causes the interior pond to dry out. However, this
is as a common drawback in porous media methods (Nielsen 2003) and not specific
to this scheme. Generally, lakes may be artificially emptied when the water surface
is aligned with the non-constant bottom topography, creating an artificial flux at the
corresponding cell boundaries which moves water out of the lake.

In Meister and Ortleb (2014), Meister and Ortleb extend the method of Xing et
al. to unconditionally positive implicit time integration via the so-called Patankar
approach which is also shortly dealt with in Sect. 11.4.2 on implicit time discretiza-
tion.

In recent work, Marras et al. (2016) incorporate a wetting and drying strategy into
a unified continuous/discontinuous Galerkin (CG/DG) scheme with dynamically
adaptive viscosity as artificial dissipation used for shock capturing. In their work,
they extend the already mentioned strategy by Xing, Zhang and Shu for wetting and
drying to their CG/DG method and use a three-stage, second order ESDIRK scheme
to advance the numerical solution in time. The scheme belongs to the category of
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fixed grid thin-layer methods. As the first stage of the ESDIRK time integration
scheme is explicit and equals the last stage of the previous step, effectively only
computations of a two-stage scheme are carried out. The non-linear systems are
solved by a Jacobian-free Newton-Krylov scheme, where the GMRES method is
used to solve the linear system in each Newton step. This basic strategy is similar
to the ones used in the works (Kärnä et al. 2011) and (Meister and Ortleb 2014).
A closer look at the formulation of the governing equations in Marras et al. (2016)
reveals that a very similar form to the pre-balanced shallow water equations is used
in this work, the only difference given in the use of H as conserved variable.

11.4 Time Discretization

In the method of lines approach, once a suitable space discretization has been carried
out, such as a FVmethod as in Sect. 11.3.1 or aDG scheme as in Sect. 11.3.2, a system
of ordinary differential equations (ODEs) is obtained, as canbe seen inEqs. (11.2) and
(11.5). We denote this system of ODEs by d

dtU = L(U, t), whereU now contains all
spatial degrees of freedom and L denotes the operator corresponding to the spatial
discretization. The system can be solved by any numerical scheme designed for
ordinary differential equations. In the context of the method of lines approach, this
process is referred to as time discretization and the chosen numerical scheme is the
time integrator. Many of the aforementioned schemes are based on the method of
lines, but there are exceptions such as the semi-implicit Casulli scheme described
in Sect. 11.3.1, which intertwines space and time discretization as well as other
approaches such as space-time methods based on a variational formulation for space
and time. Basically, two classes of time integrators can be distinguished: explicit
and implicit ones. The various methods discussed in the previous Sect. 11.3 have
already been classified with respect to either explicit or implicit time discretization.
The current section is dedicated to the specifics of each of these two classes in the
context of simulating wetting and drying shallow water flows.

11.4.1 Explicit Time Integration

Many advantages can be listed in favor of explicit time integration schemes. They are
easier to implement because they do not require the solution of nonlinear systems,
they are usually robust, and provide physically sound results as they can accurately
represent the dynamics of the flooding front due to the necessarily small time step
sizes.

Explicit time integrators evaluate the right hand side of the ODE given by the
spatial operator L using as input values for U only already known data, either at
the current time level tn , at computed intermediate stages or at previous time levels.
Very popular explicit time integrators are Runge–Kutta (RK) schemes which have
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the form

U(i) = Un + Δt
i−1∑

j=1

ai j L(U( j), tn + c jΔt), i = 1, . . . , s,

Un+1 = Un + Δt
s∑

i=1

bi L(U(i), tn + ciΔt) ,

(11.6)

where Δt denotes the time step size, Un the approximation to U(t) at time tn and
U(i) suitable intermediate stages corresponding to time levels tn + ciΔt . The simplest
example is the explicit Euler, or forward Euler method Un+1 = Un + Δt L(Un, tn).

These explicit schemes are easy to implement, also in parallel hardware envi-
ronment, need a comparatively small amount of CPU time per time step, and may
be constructed to have a high order of accuracy. However, their range of stability
is limited. The allowable time step size depends on the characteristic speed and, in
case of a global time step size in the computational domain, on the length scale of
the smallest cell. Due to this severe time step restriction in case of locally refined
grids, explicit time integrators are sometimes used in a multirate fashion, allowing
different time step sizes in different parts of the computational domain, see e.g. Seny
et al. (2012).

The treatment of wetting and drying, including the maintenance of non-negative
water height, hinges on a subclass of RK schemes called strong stability preserving
(SSP-RK) methods. As already mentioned in Sect. 11.3.2, in order to achieve non-
negativity of the fluid depth, a FV method or DG scheme has to apply a positivity-
preserving numerical flux and needs to respect a suitable CFL-type time step restric-
tion for the explicit Euler method. In addition, within the DG scheme, non-negativity
of the water height at certain nodes is mandatory, which may be achieved by the pos-
itivity preserving limiter by Xing et al. Now, these techniques may be extended to a
particular class of Runge–Kutta schemes which may be written as convex combina-
tions of explicit Euler steps. Their precise formulation is

U(1) = Un,

U(i) =
i−1∑

j=1

(
αi jU( j) + Δt βi jL(U( j), tn + c jΔt)

)
, i = 1, . . . , s,

Un+1 = Us ,

with coefficients αi j , βi j ≥ 0, where a given αi j is zero only if its corresponding
βi j is zero. In this respect, positivity preservation with respect to explicit Euler time
integration can be extended to higher order in time. More precisely, these SSP-RK
schemes have the so-called strong-stability preserving property as they preserve
stability properties of the explicit Euler scheme. The respective stability property is
defined for a given convex function ‖ · ‖ and based on the assumption, that there is
a sufficiently small time step ΔtFE > 0 such that the forward Euler scheme satisfies
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‖Un + ΔtL(Un)‖ ≤ ‖Un‖, ∀Δt ≤ ΔtFE . (11.7)

The above assumption is called forward Euler (FE) assumption in this context.
Now, a time integration scheme is called SSP method, if there is a constant c > 0
such that we have

‖Un+1‖ ≤ ‖Un‖, ∀Δt ≤ cΔtFE ,

if the FE assumption (11.7) is fulfilled. Since by ‖U‖ = maxi {−Ui } a convex func-
tion is given, the positivity requirement Un ≥ 0 ⇒ Un+1 ≥ 0 carries over from the
forward Euler method to an SSP scheme, if the time step restriction Δt ≤ cΔtFE

is fulfilled. The parameter c is hereby determined by the parameters occurring in
the corresponding convex combination of explicit Euler time steps within the SSP
scheme as c = mini, j

αi j

βi j
.

This mathematical background on the SSP property is the basis for positivity
preservation in higher order time integration schemes, as pioneered by Xing et al.
in Xing et al. (2010). Many of the more recent schemes discussed in Sect. 11.3.2
follow this approach when supplementing their respective space discretization by
the time stepping routine. In summary, the resulting list of construction principles
for methods of this kind consists in: 1. designing a DG scheme for which the FE
assumption (11.7) is fulfilled for the above example of a convex function regarding
positivity; 2. asserting non-negativity of the cell averages ofwater height by satisfying
the time step constraint of the respective SSP-RK method, given by the parameter
c; 3. applying the positivity preserving limiter at each Runge–Kutta stage to obtain
non-negative water height at the intermediate nodes, which is relevant to fulfill the
first construction principle.

11.4.2 Implicit Time Integration

Implicit time integration methods involve the solution of linear or nonlinear equa-
tions to determine the numerical solution in the next time step. Thus, the compu-
tational effort per time step is larger than for explicit schemes and parallel com-
puting is more difficult to realize. However, implicit schemes may be preferred
over explicit ones if the time step constraints ensuring stability are much more
restrictive than those necessary to achieve the desired accuracy of the numeri-
cal solution. Then, the implicit scheme can take larger time steps and thus be
more efficient. Problems of this kind which are more efficiently solved by an
implicit scheme are called stiff. In case of space-discretized partial differential
equations such as the SWE, stiffness may be introduced e.g. by the inclusion of
bottom friction or by grid-induced stiffness in case of locally refined grids. An
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implicit RK scheme is basically of the form (11.6) with stage values now implic-
itly determined by U(i) = Un + Δt

∑s
j=1 ai j L(U( j), tn + c jΔt). A very popular

subclass of implicit RK schemes are diagonally implicit (DIRK) schemes with
U(i) = Un + Δt

∑i
j=1 ai j L(U( j), tn + c jΔt). For these schemes, the size of the non-

linear systems is reduced since each stage is equivalent, in terms of computational
effort, to the implicit Euler scheme Un+1 = Un + ΔtL(Un+1, tn + Δt). The result-
ing nonlinear systems may be linearized by Newton’s method leading to a sequence
of linear systems to be solved. The solution of these usually large linear systems
again involves iterative schemes such as preconditioned Krylov subspace methods.

Although the time step sizes of implicit schemesmay by chosen larger for stability
reasons, positivity preservation usually still demands a severe time step constraint.
In fact, if the order of accuracy of the time integration method exceeds first order, the
allowable time step still depends on the finite SSP parameter c. However, the implicit
Euler method can be proven unconditionally SSP, i.e. strong-stability preserving for
any time step size. Hence, for a first ordermethod, unconditional positivity is possible
in principle.

In order to alleviate the time step restriction based on positivity, RK schemes may
be modified by the so-called Patankar trick. Hereby, the semi-discrete continuity
equation of the FV or DG scheme is written as a production-destruction equation for
the cell averages of water height. Production terms are ingoing water fluxes, while
outgoing fluxes of water yield destruction terms. Generally, production-destruction
equations have the form

dci
dt

=
I∑

j=1

pi j (c) −
I∑

j=1

di j (c), i = 1, . . . , I , (11.8)

where c is a vector of positive quantities while pi j ≥ 0 and di j ≥ 0 denote the
production and destruction terms, respectively. For fully conservative production-
destruction equations, we have pi j = d ji and pii = dii = 0. While the explicit Euler
scheme violates positivity for large enough time steps, it is possible to introduce an

implicitly given factor cn+1
i
cni

in front of the destruction term in order to reduce outgo-
ing water fluxes. However, this violates conservation. Hence, the modified Patankar
scheme developed in Burchard et al. (2003) introduces weighting coefficients for
both production and destruction terms.

This Patankar idea has been incorporated into an SDIRK scheme in Meister and
Ortleb (2014) to obtain an unconditionally positivity preserving scheme for the SWE.
In some cases, difficulties arise with this method in form of a slow convergence of the
Newton solver. Basically, the Newton convergence is slowed down by wetting and
drying switches. This includes for example the computation of the velocity, which
needs a non-zero water height and is unstable for small water height, as well as
the Riemann solver, with respect to the computation of the speed of sound and the
computation of dissipation parameter α within Lax-Friedrichs flux. The check for
neglecting gravitational forces usually is a non-smooth switch as well.
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The time step is also restricted by potentially ill-conditioned linear systems as
well as the degree of non-linearity of the non-linear system. A large time step can
prevent the convergence of the Newton solver or even the convergence of the linear
system inside each Newton step. Those restriction are worsened by the presence of
wet/dry fronts.

Implicit schemes can yield significant speed-up and permit simulations that would
be impossible to carry out with explicit methods. For real applications this substantial
increase in efficiency has been documented e.g. in Kärnä et al. (2011). When explicit
time step restrictions become far too prohibitive, e.g. due to grid stiffness, implicit
time stepping is already a viable alternative. In addition, the interest in the further
development of implicit schemes for wetting and drying simulations has increased
in recent years and there is still room for improvement.

Many of the switches inherent in wetting and drying techniques may have a neg-
ative effect on the convergence rate, as observed in Meister and Ortleb (2014). But
not all higher order implicit approaches suffer from difficulties with respect to con-
vergence. One such example is given by the moving topography method in Kärnä
et al. (2011) where the realization of a moving bottom topography prevents dry states
and the resulting switches. It should also be remarked that Casulli’s method (Casulli
2009) is still unique in terms of its mathematical properties, i.e. unconditional posi-
tivity preservation and provable convergence of the Newton procedure. The method
can be used with unstructured grids, and a similar formulation is used in several
circulation models, e.g., ELCIRC, SELFE, and SUNTANS (Fringer et al. 2006).
However, this approach is only first order accurate and has not been extended to
higher order of accuracy so far.

11.5 Concluding Remarks

This chapter presented a review on numerical methods for wetting and drying shal-
low water flows on fixed grids in two space dimensions based on finite volume and
discontinuous Galerkin space discretization. These restrictions notwithstanding, an
overwhelming variety of different wetting and drying treatments is obviously present
in current numericalmodels.Most numerical schemes try to satisfy the key properties
mentioned in this review, i.e. positivity preservation, local and global mass conserva-
tion, well-balancedness, non-permeability of dry areas, and elimination of artificial
pressure gradients. Combining this with the necessity of robustness and efficiency,
it is clear that there is not just one road to a satisfactory numerical simulation for all
applications of interest which include the influence of a wetting and receding water
front.

This review shows that for first order schemes in space and time, wetting and
drying is managed more easily because many of the desired properties can already
be fulfilled by a suitable choice of the numerical flux function and the source term
discretization. Here, we have robust positivity preserving well-balanced schemes
equipped with explicit time integration as well as an unconditionally positivity pre-
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serving implicit scheme by Casulli with provably convergent Newton iteration. For
higher order schemes such as the DG scheme all of these properties require more
effort. Positivity preservation, in particular, requires positivity at additional interior
nodes, SSP time integration with a specific time step restriction, and the prevention
of artificial pressure gradients.

With respect to higher order schemes and suitable time stepping routines, there
still is a lot of room for further development. Implicit time stepping may show its
full potential once new techniques are found which guarantee positivity preserva-
tion, robust computation of velocity from discharge, well-balancedness, and absence
of artificial pressure gradients without the additional introduction of discontinuous
switches into the method which negatively influence convergence of the subsolvers.
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