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ANN Modeling of Groundwater 
Development for Irrigation 

Pritam Malakar and Susmita Ghosh 

Abstract The groundwater level is required to keep within the permissible limit for 
sustainable groundwater development in any area. In the present study, an Artificial 
Neural Network (ANN) model has been developed for groundwater development 
with respect to state variables of a groundwater system, i.e., a maximum depth to 
water table for agricultural purposes. The zonal cropping areas are considered as 
inputs to the ANN model. The methodology has been illustrated in the Yamuna-
Hindon Inter basin, India. The ANN model is performed for two different training 
algorithms like (i) Levenberg–Marquardt (LM) and (ii) Bayesian regularization (BR) 
and their performance was compared with the backpropagation (BP) algorithm. The 
prediction accuracy of both algorithms was tested using performance indices viz. 
mean square error (MSE), root mean square error (RMSE), and correlation coefficient 
(R2). The performance of both the ANN training algorithms in predicting maximum 
depth to water table over the study area was found to be almost similarly good. 
However, the performance of the LM algorithm was found slightly superior to that 
of the BR algorithm as well as the BP algorithm. 

Keywords Artificial Neural Network (ANN) · Feedforward Multilayer Neural 
Network (FNN) · Levenberg–Marquardt algorithm (LM) · Bayesian regularization 
algorithm (BR) · Groundwater modeling 

10.1 Introduction 

Groundwater is a very precisely available and dependable natural resource all over the 
world among various users to meet several needs (Firouzkouhi 2011). This resource 
should be utilized judiciously to maintain sustainability. But the lowering trend of
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groundwater level and aquifer depletion due to indiscriminate groundwater devel-
opment and also increasing trend of groundwater/subsurface pollution are threat-
ening the sustainability of water resources. Unsustainable groundwater usage leads 
to several socio/technical consequences, and these issues are increasing day by day 
throughout the world, especially in developing countries. In the present scenario, 
it is the first priority or utmost concern of a planner/manager, or user to maintain 
the yield from aquifers in a sustainable manner for long period (Sophocleous 2005; 
Todd and Mays 2005; Gorelick and Zheng 2015). Therefore, appropriate sustain-
able management/planning of surface water and groundwater usage conjunctively is 
the most important concern. Planning of groundwater development is carried out at 
two stages viz. (i) feasibility—ensuring acceptability/appropriateness of the ground-
water development without affecting the social/technical restrictions and (ii) opti-
mality—choose the best among all feasible alternatives. Feasibility means to check 
the desired level of various groundwater state variables like groundwater table depth, 
stream–aquifer inter-flow, seawater intrusion, etc. within a certain specified limit by 
considering relevant socio/technical issues. The next stage toward the planning is to 
pick up the most rewarding (kashyap and Chandra 1982) or least penalizing (Emch 
and Yeh 1998) optimal pattern from the array of the evolved feasible pattern. 

The groundwater management problems have been addressed by forming an opti-
mization problem. The optimization problem mainly comprises an array of deci-
sion variables, one or more than one objective function as per manager require-
ment, and an array of relevant constraints. The constraints and objective func-
tions are explicit or implicit functions of the decision variables and state variables 
(Deininger 1970; Maddock 1972). The numerous significant constraints of ground-
water management are limitations on the state variables such as maximum/minimum 
groundwater table depth (Ghosh and Kashyap 2012a, b), stream–aquifer interactions 
(Young and Bredehoeft 1972; Pulido-Velazquez et al. 2007), and seawater intrusion 
(Werner and Simmons 2009). The state variables are generally computed by physi-
cally based simulation models (Bredehoeft and Young 1970; Kashyap and Chandra 
1982; Kumar 2013). Therefore, said models are numerical solutions of the selected 
governing differential equations using the finite difference/element method. And it 
becomes computationally quite expensive in planning programs due to the sequential 
calling of simulation models. The computational cost of planning problems has been 
reduced considerably in case of some planning practices like the kernel function-
based approach (Maddock 1972; Ghosh and Kashyap 2012a, b), embedded tech-
nique (Gorelick and Remson 1982), and the physically based modeling techniques 
are also very much data-intensive. Thus, the use of a physically based model is being 
restricted due to the scarcity of required data which is a common problem in several 
parts of developing countries. Therefore, the computationally expensive and data-
intensive physically based simulation models can be replaced by approximate/black-
box models (Lefkoff and Gorelick 1990; Bhattacharya and Datta 2005, ASCE  2000, 
Mohanty et al. 2013) using relatively less computational time and data. The current 
study invokes artificial neural network (ANN) models as a simulation model. The 
ANN models are being used to simulate the aquifer response by considering several
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sets of inputs like pumping patterns, weather parameters, and aquifer characteris-
tics/conditions (Morshed and Kaluarachchi 1998; and Safavi et al. 2010). The outputs 
from the ANN models are aquifer parameters (Rizzo and Dougherty 1994), and water 
table/piezometric heads (Coulibaly et al. 2001; Daliakopoulos et al. 2005; Uddameri 
2007; Trichakis et al. 2011). The input–output data sets for training and testing of the 
ANN models are generated from simulation models (Singh and Datta 2006; Safavi 
et al. 2010) or from field data (Coppola et al. 2005; Feng et al. 2008). 

10.2 Present Study 

The water requirement/demand for agricultural purposes is generally met by ground-
water water entirely or in conjunction with surface water in canal command areas. As 
a result, the water table level declined excessively due to the unplanned withdrawal 
of groundwater resources. Effective modeling is essential to achieve sustainable agri-
cultural groundwater development to restrict the lowering trend of water table depth. 
The ANN model has been developed considering crop areas and maximum water 
table depth as input and output, respectively, and illustrated at Yamuna-Hindon inter 
basin (Ghosh and Kashyap 2012a). The area falls under the command area of the 
Eastern Yamuna Canal system that starts from Yamuna river at Tajewala and also has 
abundant groundwater. In spite of that, the sustained lowering trend of water table 
level is observed in the several past reported studies (Kashyap and Chandra 1982; 
Mishra 1987; Rathi 1997; Ghosh 2011; Ghosh and Kashyap 2012a, b). Therefore, the 
ANN-based technique is utilized to simulate the groundwater levels for agricultural 
purposes considering the relevant groundwater state variable, i.e., a maximum depth 
to the water table. The zone-wise cropping pattern is a decision variable to quantify the 
requirement of groundwater for irrigation. In this study, the array of input–output data 
sets is used from the preceding studies (Ghosh and kashyap 2012a). Training of the 
ANN model has been done using two algorithms, i.e., Levenberg–Marquardt (LM) 
and Bayesian regularization (BR) and ANN architecture as feedforward multilayer 
neural network (FNN), and the developed ANN model performance with the previous 
study where training has been done using backpropagation is compared (Ghosh and 
Kashyap 2012a). The limitation of the backpropagation training algorithm is that it 
is an inefficient algorithm because of its slow convergence (Wilamowski and YuHao 
2010). Therefore, in the present study, ANN models have been developed using 
Levenberg–Marquardt (LM) and Bayesian regularization (BR) training algorithms 
and with ANN architecture as a feedforward multilayer neural network (FNN). 

10.3 Zonal Cropping Pattern 

The study area is divided into two zones of uniform cropping pattern having alike 
hydrogeological characteristics, namely (I) centralized zone and (II) outer zone with
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Fig. 10.1 Study area 
(Ghosh and Kashyap 2012a) 

five different major crops, (a) paddy, (b) other kharif, (c) sugarcane, (d) wheat, and 
(e) other rabi. 

10.4 Study Area 

The study area is an agricultural area viz. the Hindon-Yamuna inter basin under the 
Eastern Yamuna canal system (India), area of 0.6 million hectares, from latitude 29° 
18'–30° 25’ N and longitude 77° 1' 30''–77° 40' 45'' E (Fig. 10.1). The Yamuna and 
Hindon rivers are in the west and east directions, respectively, of the area. The two 
rivers meet at the southern end. The Siwalik Mountains are on the north side of the 
area. 

10.5 Data 

The major crops in this area are (a) paddy, (b) other kharif, (c) sugarcane, (d) wheat, 
and (e) other rabi. The area is separated in two zones (0.14 and 0.46 million ha) based 
on uniform cropping patter (Fig. 10.1). The tens crop-area matrix are as follows:
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Table 10.1 Typical sample input and output data sets (Ghosh 2011) 

Zone a1 a2 a3 a4 a5 Dmax 

1 12.9692 8.24774 9.82509 17.3934 0.386502 24.1229 

2 14.9072 1.18408 9.33594 14.8987 10.1094 24.8448 

1 0.859897 2.83655 11.894 1.14095 3.97282 26.3508 

2 4.08903 1.98249 26.9565 4.75386 6.94958 25.7999 

1 15.4811 7.16388 2.83331 23.1313 22.1833 26.1485 

2 13.834 2.28658 14.4762 4.35599 0.75820 17.5441 

1 5.57739 2.05444 9.34082 13.8232 1.18652 26.2885 

2 4.67789 12.5568 3.16156 13.9262 2.27144 24.6855 

1 12.9414 10.5560 5.89602 15.7663 8.2802 26.1040 

2 19.4572 9.78525 1.28113 5.17804 17.9679 25.4882 

[{(ajl), j = 1, 2, 3, 4, 5}, l = 1, 2]. The generated zonal crop areas of each crop are 
used from previous studies (Ghosh 2011). 

The cropping areas and corresponding maximum groundwater table depth (D) 
are calculated using the ground elevations and model computed groundwater table 
elevations by Eq. (10.1) in previous studies (Ghosh 2011) and these data sets are 
used in this study. 

D = Max 
i,k

⌈
Gi − h∗ 

ik

⌉
(10.1) 

D Maximum groundwater table depth 
Gi The ground elevations 
h* ik Head under dynamic equilibrium. 

There are shown some of the typical samples of data sets of input and output 
(Table 10.1), whereas inputs are that of zones 1 and 2, crop areas (% of geographical 
area) of a1, a2, a3, a4, a5, and Dmax is the output that is the maximum depth of the 
groundwater in meter sample in Table 10.1. 

10.6 Artificial Neural Network 

Artificial Neural Network (ANN) is an artificial intelligence method motivated by 
the working of the human brain. The human brain is possibly the most powerful 
information processing tool. ANN is a dominant huge data-driven, flexible compu-
tational tool having the ability to capture the physical behavior of any nonlinear and 
complex physical process with an acceptable accuracy level. An ANN comprises 
input, hidden, and output layers. The input layer represents input variables that are 
connected to the hidden layer and output layer simultaneously. The nodal output



138 P. Malakar and S. Ghosh

values of the hidden layer are computed through specified activation functions and it 
computes the weights of the variables to search for the effects of predictors upon the 
target (dependent) variables. In the output layer, the computation process is ended 
and the results, i.e., output variables are achieved with a minor estimation error. 

In this study, regarding the ANN model, ANN architecture as a feedforward 
neural network (FNN) is used. In the previous studies (Ghosh and kashyap 2012a), a 
backpropagation training algorithm had been used for ANN model. The limitation of 
the backpropagation training algorithm is that it converges slowly (Wilamowski and 
Hao 2010). Therefore, in the present study, ANN models have been developed using 
Levenberg–Marquardt (LM) and Bayesian regularization (BR) training algorithms. 

10.7 Development of ANN Models 

Generally, the large input–output data sets for the training and testing of the ANN 
networks are essential for ANN model development. In this study, 750 sets of uniform 
cropping patterns and the corresponding maximum depth of the groundwater tables 
are used to train and test an artificial neural network (Ghosh and Kashyap 2012a). 
675 data sets are used for ANN training and the remaining 75 data sets are used for 
validation. The ANN models have been developed using Levenberg–Marquardt (LM) 
and Bayesian regularization (BR) training algorithms and with ANN architecture as 
feedforward multilayer neural network (FNN) using the MATLAB R2014a Neural 
Network Toolbox. In the training phase, the number of hidden layers and number of 
neurons at each hidden layer is increased one by one starting from the bare minimum 
model. The parameters like epoch and maximum fail also change to achieve the 
desired accuracy of the ANN model. The ANN architecture, i.e., the number of 
hidden layers and number of neurons at every layer is finalized by the trial-and-error 
method keeping performance indices of the trained ANN model in an acceptable 
range. Inputs and outputs of the ANN model have been normalized in the range of 
(0–1, 0.1–0.9), and to observe the effect of normalization. The adaption learning 
function is LEARGDM, the performance function is MSE, and the transfer function 
is LOGSIG. After the successful training of the ANN model, the ANN architecture 
is fixed and then tested with the remaining data sets. The mean squared error (MSE) 
and correlation coefficient (R2) are computed for the training and testing phases, 
respectively (Tables 10.3 and 10.4) and considered as performance evaluation criteria 
in training and testing phases of the developed ANN model. The efficiency of the 
ANN model is measured by minimizing the MSE and maximizing the R2 value.
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Fig. 10.2 Target and ANN computed Dmax Levenberg–Marquardt training and testing (0–1) 

10.8 Results and Discussion 

After several trial runs with different combinations of epochs and maximum fails, the 
optimal ANN architecture is chosen for minimum MSE, i.e., 0.0044, and maximum 
R2, i.e., 0.940. 

An optimal design is completed for one hidden layer (10-10-1) with a feedforward 
multilayer neural network (FNN), and corresponding R2 and MSE are given in Table 
10.3 (normalized range: 0–1) and Table 10.4 (normalized range: 0.1–0.9). The two 
training algorithms such as Levenberg–Marquardt (LM) and Bayesian regularization 
(BR) are used for ANN training and their efficiency is computed. The target values and 
corresponding ANN computed values (Table 10.2) show good match for LM training 
and testing (Fig. 10.2) and BR training and testing (Fig. 10.3) in the (0–1) normalized 
range. In Figs. 10.4 and 10.5, it is observed that the target and ANN computed 
maximum groundwater table depth is also quite a good match using BR training for 
the (0.1–0.9) normalized range. Therefore, it may be concluded from Tables 10.3 and 
10.4 that there is as such no more effect on the ANN model efficiency considering two 
separate normalized ranges viz. (0–1) and (0.1–0.9). And the application of an ANN 
has been successfully demonstrated using FNN architecture to compute maximum 
groundwater table depth for an agricultural area 

.

10.9 Conclusion 

ANN models have been developed in the case of groundwater development for irri-
gation considering the relevant groundwater state variable, i.e., Maximum depth of 
the groundwater table. The cropping pattern is a decision variable to quantify the 
requirement of groundwater for irrigation. An optimal design is completed for one 
hidden layer with ANN architecture as a feedforward multilayer neural network 
(FNN). The two training algorithms viz. LM and BR are used and their performance 
is assessed.
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Table 10.2 Sample values Target and ANN computed Dmax of data sets 

Levenberg–Marquardt Bayesian regularization 

Target value ANN computed value Target value ANN computed value 

20.6536 21.4354 12.4354 14.9065 

22.5432 23.1886 25.2328 24.9856 

26.3541 26.2355 22.9265 23.7649 

14.9889 12.3245 13.4354 15.4354 

25.6739 24.8971 23.5647 23.8795 

13.4354 14.8985 19.4354 16.7853 

15.9265 15.9281 23.7694 24.8793 

26.0292 22.9098 16.8749 15.7832 

13.9043 16.9087 21.9265 20.1236 

15.4354 13.9807 19.4351 19.2138 

Table 10.3 Performance index for normalized range (0–1) 

Training algorithm Epoch ANN architecture R2 MSE 

Training Testing Training Testing 

LMA 200 10-10-1 0.940 0.701 0.0044 0.027 

BRA 200 10-10-1 0.905 0.700 0.0065 0.029 

BPA 6000 10-7-1 0.922 0.813 0.0053 0.006 

Table 10.4 Performance index for normalized range (0.1–0.9) 

Training algorithm Epoch ANN architecture R2 MSE 

Training Testing Training Testing 

LMA 200 10-10-1 0.911 0.700 0.0080 0.0209 

BRA 200 10-10-1 0.906 0.710 0.0089 0.0222

The application of an ANN has been successfully demonstrated using FNN archi-
tecture to predict maximum groundwater table depth in the agricultural area. The 
prediction accuracy of both the ANN training algorithms has been tested using two 
performance indices like mean square error (MSE) and efficiency criterion (R2). 

LM and BR training achieved the desired accuracy level faster than BP. From 
Tables 10.3 and 10.4, it is clearly evident that the performance of both the ANN 
training algorithms to predict groundwater levels in this area is shown to be almost 
equally good, though the performance of the LM training algorithm shows slightly 
superior to that of the BR as well as the BP training algorithm. The normalized 
data set was done from the range 0.1–0.9 to avoid the extreme limits of the transfer 
function. But still, there is no effect after normalizing the range 0.1–0.9 and the same 
LM training algorithm was found slightly improved than that of the BR training
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Fig. 10.3 Target and ANN computed Dmax Bayesian regularization training and testing (0–1) 

Fig. 10.4 Target and ANN computed Dmax Levenberg–Marquardt training and testing (0.1–0.9) 

Fig. 10.5 Target and ANN computed Dmax Bayesian regularization training and testing (0.1–0.9)
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algorithms. The ANN model with respect to cropping pattern-maximum groundwater 
depth to the water table is more relevant for groundwater development for canal 
command area for irrigation than pumping-groundwater level done in the previous 
study. 
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