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Abstract. An intelligent and smart transportation system aims at effective trans-
portation and mobility usage in smart cities. In recent years, modern transportation
networks have undergone a rapid transformation. This has resulted in a variety of
automotive technology advances, including connected vehicles, hybrid vehicles,
Hyperloop, self-driving cars and even flying cars, as well as major improvements in
global transportation networks. Because of the open existence of smart transporta-
tion system as a wireless networking technology, it poses a number of security and
privacy challenges. Information and communication technology has long aided
transportation productivity and safety in advanced economies. These implemen-
tations, on the other hand, have tended to be high-cost, customized infrastructure
systems. To address these challenges, a novel machine learning method devel-
oped for a transportation system is reused for making it more generic and smart
for intelligent carriage. This type of transfer learning enables rapid progress on
the task with enhanced results. In this work, together with domain adaptation,
a novel weighted average approach is used to build models related to the smart
transportation system. A smart system comprising of interconnected sensors along
with the gateway devices can lead the way to a more efficient, viable and robust
city centers. Finally, in this paper also provides a view of current research in smart
transportation system along with future directions.

Keywords: Smart transportation - Transfer learning - Spatial and temporal
characteristics - Connected world - Machine learning models - Homogeneous
and heterogeneous transfer learning

1 Introduction

An intelligent transportation system refers to advanced application that helps to provide
novel services related to various modes of transport along with traffic management,
allowing consumers to be better educated and making the use of transport networks
safer, more coordinated and smarter. In the recent years, many deep learning models are
developed and have become an integral part of realizing the intelligent transportation [1].
This includes transportation traffic, the complex interactions and environmental elements
and so on as shown in Fig. 1 below. Transfer learning helps in this smart transportation
system through model features that are learned in diverse tasks by making them general:
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Intelligent transportation system (ITS) includes a variety of services like traveller
information systems, road traffic management, public transit system management and
autonomous vehicles [2].
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Fig. 1. A typical intelligent transportation system scenario

While smart transportation applications have been empowered by unprecedented
progresses in computing, sensing and wireless technology, they will also have a wide
variety of problems due to their scalability and varied quality-of-service requirements,
as well as the enormous volumes of data they will generate. During the recent times,
Machine Learning (ML) methods have gained significant attention in this field enabled
by different technologies, including cloud- and edge computing [16]. ML has been used
by a varied applications set, similar to I'TS services, having a wide range of requirements.

In specific, ML models such as reinforcement and deep learning have been beneficial
tools to explore underlying structures and configurations in big datasets for forecast and
precise decision-making [3]. The different benefits of smart transportation system and
ML approach to it are detailed below.

A. Communication

Intelligent transportation system helps create interconnected transport systems with
the help of open communication that happens between different devices and vehicles.

B. Vehicle management

Managing traffic systems that in turn helps to keep the public transportation on time
without any delay.
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C. Real time information

Citizens have access to different real time information about the vehicular movement,
traffic and other public transportation conditions.

Different sensors are used for collecting the data from the vehicles and are processed
using machine learning algorithms for prediction and feedback purposes. Supervised
learning methods works by inferring a regression or classification from alabeled database
[4, 17]. Unsupervised learning approach on the other hand infer data without using any
labels. Reinforcement Learning works towards learning to make a sequence of actions
for maximizing the rewards in a given environment. Deep learning models uses artificial
neural networks which consists of interconnected nodes offering non- linearity, high
flexibility and data-driven model building.

Data is one of the important commodity that is extracted from the smart systems.
ML try to further discover knowledge from this data. Classification, Regression, cluster-
ing, prediction and decision-making are the different features provisioned by ML that is
capable of enhancing ITS and being foundations for the ITS application’s. Data prepro-
cessing, feature extraction and modeling are the main stages in the ML pipeline. Smart
transportation system consists of four main components. It starts with the traffic data
collection which uses devices like road cameras, GPS devices and vehicle identifiers for
gathering the data in real time. The collected information provides details on speed of
the vehicle, location of the vehicle and traffic conditions. Data transmission is the second
stage in the pipeline which helps to transmit the data collected by the sensors to the net-
work or the processing center where it is further treated and forwarded to applications.
Data is further analyzed and the feedback is provided for the end users.

The different internet of things use cases related to this work include connected cards,
vehicle tracking system, public transport management and traffic management. All of
them involves usage of machine learning algorithms either at the source place where
the data is collected or in the cloud. Since each use case involves multiple modules and
most of them can be shared across applications with minor changes, hence use a new
transfer learning approach for smart transportation system is proposed.

Transfer Learning (TL) is an artificial intelligence approach to the problem of learn-
ing where a prototype is reclaimed as the initial point for the new task that is already
created [5, 18]. Developing a prototypical approach and a pre-trained model are the
two common methods used for TL. In first approach need of selecting the source task is
important to develop the source model, reuse the model and tune it as per the application.
In the latter approach, select the source model and reuse the model and tune the model.
This is very commonly used in the deep learning field.

The rest of the paper is organized as follows: Sect. 2 discusses the methods relevant
to this work in the literature, Sect. 3 describes the data-based modelling of the intelligent
transportation system, Sect. 4 deals with proposed transfer learning architecture, Sect. 5
shows the experimental outcomes and as a final point Sect. 6 concludes the work with
further scope of study related to this topic.
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2 Related Work

Emerging technology and the processing of big data have enabled the collection, analysis,
storage and processing of multi-source data by systems. Cars, pedestrians, and even
utilities will collect and exchange information in this area using a peer-to-peer procedure
or a telecommunication network. Vehicle-to-vehicle (V2V), vehicle-to-infrastructure
(V2I), pedestrian-to-infrastructure (P2I) or vehicle-to-pedestrian (V2P) interactions or
knowledge transfer are all possible in this model. The authors [6] have reviewed the
present trends in smart transportation applications along with insights in to connected
vehicle environment for these systems.

When using the double loop detectors now used in traffic control centers, traffic
practitioners prefer to calculate the time mean value rather than the space mean speed.
The authors [7] feel that the relationship between the two speeds is important in smart
transportation systems and hence have developed a probabilistic technique for appraising
the space mean value from the time mean speed. They have also experimented the idea
near Barcelona in real time and able to prove that the methodology can estimate with
comparative fault as low as 0.5% through the proposed model.

With deep neural networks, TL begins with the process of preparing the base system
on a given data set and then moving the structures to a target data set on the second net-
work. The generalization capabilities of the deep neural network get improved with this
approach. They are also useful in the time series classification problems. The researchers
[8] investigated on how to handover the deep neural networks for the time series task.
UCR archive that is publicly available and containing 85 datasets is used as the TSC
benchmark for evaluating the potential of the transfer learning in this work. They have
pre-trained a model for every dataset that is present in the archive, which is later fine-
tuned on other datasets to construct different deep neural networks. At the end of the
experimentation, the authors could prove that the TL can improve the predictions of the
prototype depending on the transfer dataset used.

In various real-world applications, data mining along with machine learning tech-
niques are used. Most approaches to machine learning demand that data from training
and testing come from the same domain, which makes the space of the input function
and the characteristics of the distribution of data the same. This assumption does not
hold well when the training data is expensive to collect or unavailable. Hence high per-
formance learners that can get trained with the data collected from different domains is
needed. The authors [9] have surveyed different transfer learning process available in
the literature along with their applications. The survey is made independent of the size
of the data and can be useful for big data processing.

The majority of previous heterogeneous models of TL methods investigate a cross-
domain feature plotting based on a small cross-domain instance-correspondence between
different feature spaces, with these instances assumed to be characteristic in the source
and target domains. The bias issues in this approach makes the assumptions to not hold
good. As a result, the researchers [10] developed a new transfer learning method called
Hybrid Heterogeneous Transfer Learning (HHTL), which allows for bias in either the
source or target field in the resultant events across domains. The relationship between
the source and the target has a significant impact on the effectiveness of transfer learning.
The source side brute force leveraging will decrease the performance of the classifier. The
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authors [11] have hence devised an approach that makes use of extending the boosting
framework for knowledge transfer from different sources rather than just one. Task-
TrAdaBoost and MultiSource-TrAdaBoost are the two different algorithms discussed in
this work which on experimentation proved that the performance is greatly improved
by reducing the negative transfer. This is a fast algorithm enabling rapid retraining over
new targets.

Utpal Paul et al. have conducted a measurement analysis with the help of large-scale
data set that is collected through 3G cellular data network [22]. Individual subscriber
behaviour is analysed and a significant variation in network is studied by the authors. The
different implications with respect to protocol design, pricing parameters, resource and
spectrum management are described in detail in this work. Different mobile networking
networks have been developed in recent times in such a way that they have highly complex
infrastructure and advanced range of related devices along with resources, as well as more
diverse network formations, due to the firm development of current industries focused
on mobile and Internet technology. As a result, Xiaofei Wang and others have discussed
artificial intelligence-based methods for developing heterogeneous networks [23], as
well as the current state of the art, prospects, and challenges.

The wireless communication techniques advancements along with mobile cloud
computing, intelligent terminal technology and automotive domains are driving the evo-
lution of automobile networks into the Internet of Vehicles paradigm. The vehicle routing
problem hence gets changed based on the static data that is towards the real time traffic
prediction. In this research, the authors Jiafu Wan et al. first address the classification
of cloud-assisted IoV from the perspective of the service association between IoV and
cloud computing [24]. After that, they assess traditional traffic prediction, which is used
in both V2V and V2I communications.

The numerous traffic-related accidents that occur on expressways in a developed
world are calculated to be closely related to previous traffic conditions, which are actually
time-varying. To predict the likelihood of crashes, volume, speed, and occupancy-related
parameters are used. These parameters are invalid for roads where traffic conditions are
estimated using speed data. A dynamic Bayesian network model is designed by Jie Sun
and others which models the time sequence traffic data and they have also inves tigated
the relationship between dynamic speed condition data and the crash occurrence itself
[25]. The authors have collected and used 551 different crashes data along with their
corresponding speed related information from the expressways present in Shanghai,
China. They developed the DBN models using time series speed condition data as well
as different state combinations. The experimentation results from the authors show that
the proposed DBN model offers a prediction exactness of 76.4% with a failure rate of
23.7% with only speed condition related data along with the nine traffic state blends.
The results of the transferability verification show that the DBN models discussed are
suitable for other related expressways, with a crash prediction accuracy of 67.0%.

With the ever-increasing global number of road traffic accidents, street traffic safety
has become a serious issue for smart transportation systems. The identification of high-
probability locations where major traffic incidents occur, so that precautions can be
implemented efficiently, is a crucial step toward improving road traffic safety. The major
limitations in this solutioning includes location accuracy and data availability.
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To address these issues, researchers Lanyu Shang, Yang Zhang, Daniel Zhang, Yi-
wen Lu and Dong Wang created RiskSens, a multi-view learning method that uses
social data and remote sensing data to identify dangerous traffic locations [26]. This is
shown in Fig. 2 above. The authors’ experimentation findings show that the RiskSens
approach proposed in this paper significantly outperforms other state-of-the-art baselines
for identifying different risky traffic locations in a region.

In developing countries, a lack of reliable data is a significant impediment to sus-
tainable growth, disaster relief, and food security. Poverty data, for example, is typically
scarce, labor-intensive to obtain, and has limited scope. Remote sensing data is becoming
gradually available and low-priced as well. However, such data is highly unstructured,
and there are currently no tools for extracting valuable insights to inform policy deci-
sions and guide charitable efforts. A TL method [27] has been discussed by Marshall
Burke, Neal Jean, David Lobell, Michael Xie and Stefano Ermon, where night-time light
power is used as a data-rich substitute. The authors trained a completely convolutional
neural network (CNN) model to predict night time lights using daytime imagery while
studying characteristics that can be used to predict poverty. The researchers show that
these learned features are extremely useful for poverty plotting, even precluding the
prognostic presentation of field-collected survey data.
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Fig. 2. RiskSens scheme

3 Data Based Modeling for Smart Transportation System

For implementing an intelligent transportation application, five different data processing
stages have to be considered. Figure 3 below shows the different functional requirements
for a smart transportation system. It is a list of possibilities that can help to make a model
actionable and it includes usability, self-sustainability, application context, traffic theory
and transferability.
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1) Data collection through devices and sensors

Together with state-of-the-art and sophisticated microchip, RFID (Radio Frequency
Identification) and low-cost smart beacon sensing technologies [12, 19], technical
advances in information technology and telecommunications have strengthened pro-
cedural capabilities that will simplify motor safety assistance for smart transportation
systems worldwide. Such sensing systems for smart transportation include infrastruc-
ture and vehicle based networked systems. These infrastructure sensors are long-lasting
instruments that are fixed or installed in the driving road or surrounding path as required.
They can be manually distributed by sensor injection machinery for fast positioning or by
preventive road erection maintenance. Vehicle-sensing strategies include the placement
of electronic communications beacons for vehicle-to-infrastructure and infrastructure-
to-vehicle and can also deploy video-based automatic number plate segmentation or
vehicle magnetic signature recognition technologies at preferred intervals to improve
continuous monitoring of vehicles operating in sensitive world zones. The data col-
lected through such sensing systems needs to be pre-processed and stored before further
analysis.
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Fig. 3. Functional requirements for a smart transportation system

2) Data Pre-processing

The data comes from the sensors and devices in different forms and formats which
needs pre-processing before modelling [13, 20]. Also, the corrupted instances present in
the captured data can distort the databased model outputs and hence an actionable data
pre-processing must emphasis not only on refining the captured data quality in terms
of regularity and completeness, but also on giving valuable insights about the essential
phenomena yielding corrupted, missing and/or outlying data, along with their effects
on modelling. The study of possible pre-processing stages of data using experiential
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knowledge of domain features can be used as a method to increase the performance of
the target learner, in addition to resolving inconsistencies in the domain varying step
for dissemination. The heuristic knowledge will be characterized by a set of complex
rules or connections that traditional transfer learning methods cannot explain. In certain
instances, this heuristic knowledge will be exhaustive for each domain, resulting in no
standard solution. If such a pre-processing phase, however, may lead to better target
learner performance, then the effort is probably worth it.

3) Modelling

Modelling phase works towards extracting knowledge from the pre-processed data by
constructing a model [14] that characterizes the distribution of the data. If this modelling
can be generalized through transfer learning, then it can be used across domain rather
than limiting to a particular domain. Machine Learning algorithms are hence put in to use
in this stage which allow for modelling automation for instance, to understand patterns
relating to the input data to a set of supervised outputs directing to automatically label
unseen new data, to forecast future values based on the previous inputs, or to examine
the output formed by a model when processing the data that is provided as input. In our
use case, where the goal is to model data communications within complex systems such
as transportation grids, the modelling choice routes to groups of diverse learner types.

A key feature of this modelling is the generalization of the established model to
new unforeseen data. So the design goal would be to find the trade-off between the
generalization and the model performance. For smart transportation, the accuracy in
prediction can be improved by analysing different models and picking the right archi-
tecture or by combining different models for the new system. Optimization needs to be
taken care when different models are combined together thereby increasing the system
computational complexity.

4) Adaptation

A real time ITS environment is provided for the trained model to see how it adapts
and behaves. Actions taken from the outcome result of a data-based model can aid for
tactical, strategical or in operational decision making [15]. The output of the prior data-
based modelling stage can be used to quantitatively evaluate the fitness or quality of the
system. Finally, the suggested actionable data handling workflow contemplates model
adaptation as a new processing level that can be applied over various modelling stages
in the pipeline. Adaptations can be observed from two standpoints: automatic versions
that the system is prepared to do when some circumstances happen, or the adaptations
that are derived due to user changes.

Different models for following the vehicle patterns in the same lane can be studies
through Gazis-Herman-Rothery (GHR) model. In this model, a vehicle fast-tracks in
reaction to the velocity and front vehicle distance. The GHR model in its most general
form is represented as:

vy, (1)
(Xn—l (t) - Xn([)

a(t+T) =« )1 Vo1 (1) — V(D) + Kiap—1 (1) + Kza, (1) (N
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where a,(t + T) refers to the speeding up of next car at any given time denoted by t + T,

T = Actual Time

V,, = Following car velocity

V,—1 = Leading car velocity

X, = Follower car longitudinal position

X,—1 = Leading car longitudinal position

A = Acceleration at any given time t for both cars

Alpha, m, 1, k1 and k2 are the other related parameters.

This model provides a general stimulus response and it is observed that the follower’s
acceleration is relational to the comparative speed between the trailing vehicle and the
leading vehicle, whereas the actual data analysis is again inversely proportional. This
model is derived from different basic prototypes such as G-H-P model, C-H-M system
and basic GHR model.

The purpose of the calibration technique is to reduce the discrepancies between
the driving behaviour simulated and the driving behaviour measured. This measured
difference is referred to as the relative error, which is defined in Eq. 1 below, with
variable ‘a’ designated as the error dimension.

When comparing the calibrated variables, it is important to evaluate the compas-
sion of various constraints of the objective function, which is how much the value of
the objective deviates when adding a slight adjustment to the original parameter. Data-
driven modelling along with simulation technique is a noteworthy research focus. Com-
pared to traditional knowledge-based modelling and mechanism modelling approaches,
it demonstrates numerous advantages in operability and accuracy. Nevertheless, when
implementing such modelling methods in practice, it is still doubtful since data-driven
display is occasionally bad in description and data noises can also cause additional errors
during modelling.

4 Proposed Transfer Learning Architecture

The case of smart transport domain usage that is considered defined by the letter ‘D’
and has two parts: a function vector space denoted by X and a marginal distribution
of probability of the same by P (X). Here X = {x1,...,xn} X. If the machine learning
algorithm can classify defects and each software metric in the algorithm is considered a
function, then xi is the i-th feature instance conforming to the i-th module in the software,
n is the total number of feature vectors present in X, Y is the space of all likely feature
vectors, and X is a particular learning sample in this environment.

Once the source area is trained for a certain application, now that can extend the
same for a different transportation related application through transfer learning instead
of training it from scratch. This new transport domain is represented by DS with the
resulting source task TS, along with the target area DT with the analogous TT task. TL
refers to the procedure of refining the target projecting function fT() with the help of
related information from TS and DS, where TS = TT or DS = DT. This symmetric
transformation mapping is represented in Fig. 4 below.
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If the distributions of the transport area are not found to be identical, then additional
steps for domain revision are required. The type of data transfer is another essential
feature of this transfer learning technique. This include four categories namely transfer
learning through instances, learning through features, learning through shared param-
eters and finally transfer information created on some distinct association among the
basis and target areas. This is presented in Fig. 5 below:
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Fig. 5. System architecture for transfer learning

The proposed architecture of transfer learning addresses the following: What kind
of data should be transferred between tasks, when to transfer this data and how to
transfer it effectively without increasing the complexity of the system. The proposed
algorithm takes advantage of the source domain’s inductive biases to improve the target
task effectively. Depending on the application, the learning could either be self-teaching
or multitasking. It is suggested the use of four different forms of transfer, including the
transfer of instances, the transfer of feature representations, the transfer of parameters
and the transfer of relational information. The algorithm infers a mapping from the
trained examples set. The inductive bias or conventions can be classified based on a
variety of variables, including the hypothesis space within which it confines the method
and the search procedure within that space. Hypothesis biases have an effect on how the
algorithm has learned from the model on a particular mission.
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D. Homogeneous transfer learning

The homogeneous TL categories can be built on parameters, instances, asymmetric
features, symmetric features, relational or hybrid (both instance and feature based). The
source data will be labeled while the target data can be labeled, unlabeled or partially
labeled. So, the requirement here is to bridge the gap among the basis and the target
domains. Proposed Strategies for this problem is

(a) Correct the marginal distribution differences in such a way that (P (Xt) = P (X5s)).

(b) Correct the conditional distribution differences in such a way that (P (YtIXt) =P
(YslIXs)).

(c) A hybrid method of correcting both the above mentioned distribution differences.

In this method, reweight the samples collected in the source domain that helps to
precise the marginal distribution changes. It uses these reweighted occurrences for train-
ing in the target domain. The conditional distribution should remain same in both the
domains for better performance. The weights are adjusted based on the statistical values
such as the mean and variance of the data that is under test. Maximum Mean Discrepancy
is a distance metric that is applied on the probability measures space which has found
different applications in nonparametric testing and machine learning, as shown in the
following Eq. (2).

i=1

1 & 1 &
Disat(P(x), PX7) = | — > ¢(xsi) - p > oGTy) )
s j=1 H

Based on the statistics and their contributions to the classification accuracy in the
target domain, part of the source domain labeled data can therefore be reused in the
target domain as well after re-weighting.

E. Heterogeneous transfer learning

Different feature spaces are used to describe the basis and target areas in the case of
heterogeneous transfer learning. The characteristics are used for learning by reducing
the difference in the latent space between the various distributions. Data label obtainabil-
ity is one of the functions of the primary application. Heterogeneous transfer learning
solutions aims towards bridging the gap between the different feature spaces and change
the problem to a homogeneous transfer learning one where additional distribution that
could be either conditional or marginal differences will need to be modified. Machine
learning algorithms have already shown promising results in the transportation indus-
try, where it has demonstrated better performance compared to the traditional solutions.
Nevertheless, the transportation issues are still rich in relating and leveraging machine
learning techniques and need more attention. The fundamental goals for these models
are to decrease congestion, increase safety and reduce human errors, optimize energy
performance, lessen unfavorable environmental influences, and progress the productiv-
ity along with surface transportation efficiency. The machine learning pipeline and the
interaction between ITS and ML is shown in Fig. 6:
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Fig. 6. ML pipeline and interaction with ITS system

The raw data could also be obtained, apart from the sensors, by triangulation pro-
cess, vehicle re-identification, GPS-based methods and rich monitoring based on smart-
phones. Mobile operators across the world are also are becoming an important player in
these value chains as they provide dedicated apps which can be used for making mobile
payments, provide insights in to data and navigation tools, offer discounts and incentives
to the end customer, and act as a digital e-commerce medium as well.

The proposed system has two models namely the convolutional base and the classifier.
The convolutional base consists of a pooling stack and convolution layers. Development
of image features is the main objective of this convolution base. Typically, the classifier
used in this method is generated by completely linked layers. Using the detected features
and classifying the image is the main objective of the classifier. A completely related
layer is a layer whose neurons have a total effect on all previous activation of the layer.
Once the system is trained with the model, it can re purpose a pre-trained model by
removing the actual classifier and then introduce the new classifier that fits the ITS
purpose and fine tune it through one of the following strategies:

(a) Train the full model: the pre-trained model’s design is used and trained as per
the ITS dataset in this case. The model is learned from scratch and thus needs a
considerable amount of dataset.

(b) Train some layers while leaving the rest frozen: The general features are referred
in the lower layers which are problem independent and the higher layers refer to
precise features which are problem dependent. The weight of the network is adjusted
and the frozen layer present in the model does not change during the training stage.
If there are large number of parameters and the dataset is small, then there will be
more frozen layers to avoid the problem of overfitting. On the other hand, if the
dataset is huge with lowered parameters, then by training more layers to the new
task, that can increase the model output as the issue of overfitting is not a problem.

(c) Freeze the complete convolutional base. This situation relates to the serious state
of the freeze and train trade-off. In this method, the key concept is to maintain
the convolutionary base as such and then re-use only the output as input for the
classifier. Feature extraction happens through the pre-trained model and it is useful
when the computational power is low, the provided dataset is small, or when the
pre-trained model can solve multiple problems.
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Since it is a hyper-parameter that is dependent on the weight change in the network,
the learning rate associated with the convolutional component must be carefully chosen.
In general, the high learning rate can make the system to lose the previous knowledge
while the small learning rate is good to use. This will also make sure that the weights
are not adjusted too often in the system.

The system model is presented in Fig. 7 where a set of vehicles on the road are
equipped with different sensors to collect the raw data and transmitted through a mobile
network to the edge computing device. Data accumulation provides the strength for
analyses to capture some data insights that would not be conceivable from single sensors.
The sensed data is transmitted frequently and the vehicles interacts with the gateway
devices on every transmission. Based on the intended service, the gateway device will
collect and handle the data accordingly. Transportation efficiency, vehicle security, travel
safety, environment monitoring, are just few samples of types of services that can be
offered. Before the feedback is provided to the vehicles or the end users, the machine
learning algorithms can be run either on the edge computing system or on the cloud.
The concept of transfer learning is also realized on the gateway device or on the cloud
depending upon the application.

Decentralized Storage DLT

and Computing

- - =
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Fig. 7. System model for smart transportation system

For the purpose of smart transportation system, select the pre-trained model of con-
volutional neural network (CNN) which has a 4-layer architecture and then deep-belief
network (DBN) model was employed to distinguish between the various associated activ-
ities. The dataset used for experimentation in this system is divided into three diverse
groups such as speed limit overrun, immediate line overrun and yellow-line driving.
This method can be used for different category features for different kinds of vehicles
without training them independently.

Size similarity matrix is one which control the different choices in the system. Based
on the size of the dataset, this matrix helps to classify the computer vision problem. This
matrix is also useful for fine-tuning the model and repurposing the previously trained
method. We have also performed weight transfusion based experiments, in which only
a pre-trained weights subset of the system is transferred, with the remainder of them
being just initialized randomly. While comparing the convergence speeds of these weight
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transfused models with full transfer learning, it is observed that the reuse of the extracted
features are happening only at the lowest layers of the system.

The transfer learning scenario can be considered as a set of segments of the road “n”
that are built with speed sensors. Each of the sensors “i”” can provide the traffic speed
at any given point of time “t” and is represented as vi[t]. Transfer learning is applied to
this use case in order to predict the future speed of traffic at a given time. Historical data
can be generally used for future value prediction but when such values are not available,
then the concept of transfer learning helps.

The model proposed in this work will exploit this dataset for some source areas and
then will build a prediction model for target location where there is only little or no
available data. The data format consists of the road network represented through links
and nodes. Each node in the network characterizes the latitude and longitude properties.
Every link in the network will help to connect nodes and most streets consists of multiple
links. The average traffic speed is given by the row values of a particular link at any given
point of time. Different spatial and temporal features are extracted from the given data
which will act as the essential constituents of the proposed approach. Once the features
are extracted, different machine learning methods such as support vector machines, linear
regression, convolutional neural networks etc. are used for training the system followed
by testing on a new dataset not related to the training as such.

For smart transportation networks, various types of wireless communications tech-
nologies have been proposed. Radio mobile communication on VHF and UHF frequen-
cies are extensively used for long and short range communication within ITS. This
proposed intelligent transportation system based on transfer learning can be applied
for various use cases, including Controlling traffic flow (traffic lights, measuring traffic
flow, analysing traffic flow, and controlling guidance equipment), and managing pub-
lic transportation (highway and tunnels, parking lots, expressway, railway and subway,
bus, taxi and truck), Publication of Traffic Data (LED plate release information, SMS,
radio station and television, terminal and website for public inquiry), Control of Traffic
Offenses (over speed, red light running, wrong direction, occupied lane), Management
of the Vehicle and Driver (vehicle information, driver information, driving route trac-
ing, violation record and penalty), Statisticians and research (record demand, log, user
management and simulation), daily tasks and emergency management (command cen-
tre, resource dispatch, pre-plan and daily task management) as well as real-time traffic
status monitoring (accident, traffic jam and abnormal status).

5 Experimentation and Results Discussion

The availability of models developed for the source task and also tested is one of the
significant criteria for the successful use of transfer learning. There are several advanced
deep learning frameworks for TL and research purposes available across domains. Dif-
ferent pre-trained prototypes are typically shared in the parameters/weights form which
is attained while being qualified to a stable state. For smart transportation system, the
popular computer vision models include VGG-19, VGG-16, XCeption, Inception V3
and ResNet-50. One of the such model for training and testing is used in this method.
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The identified Dataset is first divided into two categories — namely the training set
and the testing set. Three different scenarios namely the no transfer task, cross transfer
task and the local transfer task are considered for testing. The first one will predict the
future speed based on the history of the data, second one will build a model first and
then test on another target region that is not completely related while the last one will
also have model training with the exception being testing from the same set.

Freight management, arterial and freeway management, transit management sys-
tems, regional multi modal and traveller information systems, incident and emergency
management systems, and information management systems are all major areas of intelli-
gent transportation systems in metropolitan deployments. Its applications are not limited
to highway traffic alone, with electronic toll collection, highway data collection, traffic
management systems, vehicle data collection, and transit signal priority being among
them.

Open source library for machine learning purposes which includes grid based search
tests and helps us to find the best performing model along with the appropriate hyper
parameters. Our system has: 6 Hidden layers, 6 Neurons per layer, learning rate is 0.01and
minimum error is 0.01.

Wireless communications, inductive loop detection, sensing technologies, bluetooth
detection, computing technologies and video vehicle detection are some of the enabling
technologies used in this research. During the initial stages, the larger networks needs
more number of epochs to fit the data. Conversely after some number of epochs, it
exceeds the smaller ones and achieves the best score.

When it comes to transfer learning, the proposed network is first pre-trained using
simulation and then applied on the real data. When compared to the control network,
these approaches work well. The convergence time is also much faster with this proposed
approach. Some iterations are required for the random initialization network in order to
fit the new weights in it. The complexity of the neural network, the predictive capabilities
and the size of the gap between the simulation and real data will decide on the success of
the different approaches discussed. An empirical study was conducted in South Indian
districts, using three types of traffic datasets: floating cars, annual average daily traffic
and public transportation routes.

Table 1. Comparison of transfer performance

Location RMSE MAE
Bellary 10.63 7.62
Parbhara 5.74 4.33
Hampi 491 3.04
Guntur 8.11 5.65
Jaina 11.32 8.92
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There are two metrics used in this work to calculate the precision of continuous vari-
ables, namely the mean absolute error and the root-mean-square error. The first one deals
with the error average magnitude in the prediction set without direction consideration.
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The latter one called as the Root Mean Square Error is a quadratic scoring rule. It
also helps to measure the average magnitude of the error. This is calculated as the square
root of the average of prediction and actual values squared differences.
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The average model prediction error is expressed through these two metrics MAE
and the RMSE. They can range between 0 to infinity. They are both indifferent to the
error direction. The lower the value, the better the output, and so on, as both scores are
negative. RMSE will give more importance to large errors due to squaring of errors when
compared to MAE. Table 1 gives the transfer performance across different locations in
Karnataka, India in terms of MAE and RMSE. From this table, we observed that larger
regions that has different kinds of links gave us better performance when compared to
the other locations nearby. This is also represented through a graph in Fig. 8 below.
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Fig. 8. Performance comparison across locations
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Below shows the results and summarized statistics along with the error rates for
the proposed method vs. other architecture for ITS in the literature that resorts to DLT
features. The proposed transfer learning based smart transportation system outperforms
in terms of performance when compared to simple pre-train CNN system that uses PCA
in the same selected dataset (Table 2).

Table 2. Results for 60, 120 and 240 vehicles based on latency and error rates

Vehicles Method Average latency Error rate
65 Fixed Random 72.68 s 14.36 %
Dynamic Random 57.1s 18.26%
Proposed Method 20.40 s 0.70%
120 Fixed Random 86.85s 24.48%
Dynamic Random 67.5s 18.99%
Proposed Method 24.90 s 1.0%
240 Fixed Random 187.62 s 42.80%
Dynamic Random 128.19 s 44.85%
Proposed Method 71.37s 6.45%

It is clear from the above table that both the error ate as well as the average latency is
very less as compared to the existing approaches. While the average rate for the proposed
method is ~ 1%, the other two approaches have well above 15% which is not acceptable
in case of a smart transportation system and hence unusable. The empirical cumulative
distribution function is shown in Fig. 9 below.

Similarly, the error rate across methods is shown in Fig. 10 below. It is clear that
through an appropriate selection of full nodes, it is plausible to achieve consistent ledger
updates or in other terms low errors, thus making feasible the use of IOTA to provision
intelligent transportation system.

During our experimental assessment, all the full nodes had typically a low compu-
tational load. However, results indorse that the node selection is quite relevant. As an
additional validation of this claim, in our initial tests we tried to feat a heuristic, substitute
to those offered in the previous section. The idea here was to find the best N full nodes,
in terms of existing resources, and use them to provide or validate the transactions. A
gateway can also be used to employ an edge computing model as an alternative solution
which would be an interesting future work.
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Empinical cumulative distnbution function
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6 Conclusion and Future Directions

Intelligent transportation applications include warning systems for emergency vehicles,
automated road compliance, variable speed limits and systems for crash avoidance. It
involves the collection and processing of collected data for the purpose of providing
information, control the actions of drivers, fleet operators, travellers and network man-
agers. It provides a better understating of the transport network, providing new methods
to manage the network and services to the public as well. ITS can be beneficial on
its own or supporting other measures. It is not so easy to train the system for each of
these applications related to transportation. Transfer learning helps simplify this task
through pre-trained models used for other tasks. In this research, the proposed uses a
new transfer learning architecture which is optimized for smart transportation system
without compromising on the performance. ITS provides speed control devices that
are not aimed at prosecutions like speed activated signs and displaying registration of
speeding vehicle. In several transfers learning-based applications, the domain adapta-
tion process focuses on either changing the conditional distribution differences or the
marginal distribution differences between the source and target domains. Due to the lack
of target data labels, modifying the conditional distribution differences is a difficult task.
Drivers always wanted more information and more reliable journeys. We have addressed
these expectations and issues in this work and moving forward, we would like to address
the other issues associated with the marginal distribution differences as well.
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