
High Utility Itemset Mining Using
Genetic Approach

Tracy Almeida e Aguiar1(B), Salman Khan1, and Shankar B. Naik2

1 Rosary College of Commerce and Arts, Navelim, Salcete, Goa, India
tracyaleida@gmail.com

2 Directorate of Higher Education, Government of Goa, Penha de França, India

xekhar@rediffmail.com

Abstract. Frequent Itemset Mining(FIM) aims to generate itemsets
having their frequency of occurrence not lesser than minimum support
specified by the user. FIM does not consider the itemset utility which
is the it’s profit value. High-utility itemset mining(HUIM) mines high-
utility itemsets(HUI) from data. HUIM is a combinatorial optimization.
With HUIM algorithms, the time required to search increases exponen-
tially with an increasing number of transactions and database items. To
address this issue an efficient algorithm to mine HUIs is proposed.

The proposed algorithm uses a compact form of chromosome encoding
by eliminating the itemsets with low transactional utilities. The algo-
rithm employs methodology of self mutation to reduce generation of
unwanted chromosomes.

Experimental results have shown that the proposed algorithm finds
HUIs for a given threshold value. The proposed algorithm consumes less
time as compared to another HUIM algorithm HUIM-IGA.

Keywords: High utility itemset mining · Frequent Itemset Mining ·
Data mining · Genetic Algorithm · Algorithm

1 Introduction

Quick and accurate information is always a necessity to make efficient decisions
[2]. The knowledge discovery process(KDD) aims to discover hidden patterns of
knowledge from data [1]. One major step of the KDD process is data mining.
FIM is an important task in data mining for finding the most occurring itemsets
from transactional databases [3]. In FIM itemsets are mined based upon the
frequency of occurrence of itemsets in the database only [4,5]. The information
about the quantity of the items and profit values associated with the items are
not considered [6,7].

HUIM mines itemsets based upon their utilities. Itemset utility is the profit
that it offers [8,9]. In this study, the itemset utility is a function of the quantity
and profit of the items contained in the itemsets.

The process of HUIM generates a large number of itemsets in the intermediate
stages. The itemsets are searched to generate the HUIs. HUIM is a combinatorial
c© Springer Nature Switzerland AG 2022
A. K. Luhach et al. (Eds.): ICAICR 2021, CCIS 1575, pp. 143–150, 2022.
https://doi.org/10.1007/978-3-031-09469-9_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-09469-9_13&domain=pdf
https://doi.org/10.1007/978-3-031-09469-9_13

144 T. Almeida e Aguiar et al.

optimization problem. The time required to generate HUIs is proportional to the
number of items [10,11]. Genetic Algorithms(GA) have the potential to address
this issue.

GAs avoid generation of all the candidate itemsets in the intermediate stages.
GAs encode itemsets as chromosomes. They generate a set(population) of item-
sets, evaluate them for their fitness and perform operations to generate fit item-
sets from the weaker ones. The efficiency of GAs in searching new HUIs is low
and can be enhanced.

Hence, we propose an efficient version GA to generate HUIs from transac-
tional database, which encodes itemsets as chromosomes where in the genes are
identified based upon the utilities of the corresponding item in the database.

2 Related Work and Motivation

2.1 Genetic Algorithm

GAs are used to solve NP-Hard problems [12]. GAs encode itemsets in the form
of chromosomes, also called as individuals, which are made up of genes. Each
gene represents an itemset. In the initial step GA generates a set of individuals
whose fitness(utility) are evaluated to identify the HUIs. In case the required
number of individuals are not generated then it performs three types of opera-
tions on the generated population. The operations are selection, crossover and
mutation. The selection operator selects fit individuals. The crossover opera-
tor recombines two of the selected individuals with each other by exchanging
their bits of pre-identified genes. The mutation operator alters bits of a single
individual to generate a fit individual from it.

2.2 High Utility Itemset Mining(HUIM)

The process of HUIM mines itemsets from transactional datasets which have high
utility. The utility is a profit value associated with the it. HUIM was proposed
in [14]. The algorithm proposed in [15] is a two phased algorithm which, in
the intermediate stages, generates a huge set candidate itemsets. This issue was
addressed in [16] which avoided generation of candidate itemsets. The major
issue with most of the algorithms in HUIM is huge set of candidate itemsets
generated in the intermediate phases. This led to the introduction of GAs in
HUIM.

The first GA to mine HUIs was proposed in [10]. Several algorithms thereafter
were proposed. The algorithm HUIM-IGA discovered HUIs by using the strategy
to improve population diversity [13].

The proposed algorithm stores the HUIs in the form of binary tree which
increases the efficiency of searching for an existing HUI. It also maintains bit-
vectors of each item which stores information about the ids of the transaction
containing the item. This bit-vector enable quick identification of the transac-
tions containing all the items of the itemset and calculation of the itemset utility.

High Utility Itemset Mining Using Genetic Approach 145

3 Problem Definition

3.1 Preliminaries

Let I = x1, x2, ..., xm be the set of literals, called items. D = {T1, T2, , ...Tn}
represents the database containing n transactions, where Tj represents itemset
in transaction j. i is the unique identifier of the transaction and Tj ⊆ I.

The external utility of item xk ∈ I is the profit value denoted as μ(xk).
The internal utility denoted as νj(xk), of item in a transaction is the purchase
quantity of the item in that transaction, where xk ∈ I is the item in transaction
j.

Utility of xk ∈ I in Tj is

uTj(xk) = μ(xk) ∗ νj(xk) (1)

Utility xk ∈ I in D is

uD(xk) =
n∑

j=i

uTj(xk), n = |D| (2)

Utility Tj in D is

uTj =
∑

xk∈Tj

uTj(xk) (3)

The transactional utility xk in D is

u(xk) =
∑

xk∈Tj

uTj (4)

Utility of X in Tj is

uTj(X) =
∑

xk∈Tj∩X

uTj(xk) (5)

The utility of itemset X in database D is defined as

u(X) =
∑

X⊆Tj

uTj(X) (6)

X is HUI if u(X) ≥ s0, where s0 is minimum utility value given by the user.

3.2 Problem Statement

Generate high utility itemsets for a database D of transactions, given the mini-
mum utility, s0, and external utilities of items.

146 T. Almeida e Aguiar et al.

4 Proposed Algorithm

The proposed algorithm works in the following steps.

4.1 Database Pruning

The algorithm generates an new database Dbit from the transactional database
D. The transactions in Dbit are bit representations of transactions in D. The
columns in Dbit represent each item in I. If the item is in a transaction in D then
the bit for the corresponding item in the transaction in Dbit is set to 1 otherwise
is set to 0. The algorithm then identifies the items with their utilities less than
s0. The columns pertaining to these items are deleted from Dbit. This reduces
the number of comparisons required to generate and search for itemsets in the
database. Each column in Dbit is a vector of bits containing the transaction ids,
in D, to which the item pertaining to the column belongs.

4.2 Initial Population Generation

Each itemset is encoded as a chromosome of length l same as the column count
of Dbit i.e. the count of items with their utilities not less than s0.

Let Np be the size of the population. The algorithm generates the a set of Np

chromosomes in the following way. While generating an individual, all the genes
are randomly assigned values 0 or 1. The operator AND is performed between
the vectors of columns on each item corresponding to the genes which are set
to 1. The position of the 1 valued bits in resultant bit-vector contains the ids
of the transaction in Dbit containing all the items of the itemset encoded as the
new individual (chromosome). The utility of the newly generated itemset is the
total of the utilities of all these transactions. If the utility of the itemset is not
less than s0 then the generated individual is added to HUIS as an HUI.

After repeating the process for all the individuals, HUIS contains high utility
itemsets.

There are two challenges involved in this step. The first challenge is the
generation of duplicate HUIs. In this case, the newly generated itemset will have
to be searched for in the existing set HUIS. In order to make this search efficient,
the set HUIS is maintained as a binary tree of length l + 2. The root node is
empty. Each branch represents an HUI(individual). The other nodes store bits
representing the genes of the individual. When a new HUI is inserted into the
tree, the first bit is inserted as a root node child. If gene value is 0 then the node
is created as a left child. If value of the gene is 1 then node is created as a right
child. If the corresponding child node already existed then nothing is done. If
the value of the gene is 0 then the algorithm considers the left child node for the
second gene node creation. Otherwise the right child node is considered.

Similarly, for the second gene, the child node is created at level 3 in the binary
tree base on the value of the second gene in the same way as done for the first
gene. The process is repeated till all the genes are processed and a new branch of
nodes of depth l+1 is added to the tree. If a new branch is not created and there

High Utility Itemset Mining Using Genetic Approach 147

already existed a branch for the itemset then it implies that the HUI has already
been created before. Thus there is no extra step required to check whether an
HUI has been already created. This tree structure also avoids comparison with
individual HUIs in the set HUIS while searching for an itemset.

The second challenge is that not all the individuals generated during this
process will qualify to be high utility itemset. If this happens then the number
of HUIs in the set HUIS will be less than Np.

In both the cases, i.e. if the generated itemset is already existing in set HUIS
or the itemset is not an HUI, then itemset is made to undergo mutation and a
new itemset is created by exchanging values of randomly selected two genes such
that both the genes have different values. The new itemset is evaluated for its
fitness and checked whether it has been already included before in set HUIS. If
not, then it also undergoes mutation.

4.3 Time Complexity

The algorithm has the time complexity of Np ∗ l + N2
p ∗ l, where Np is the size

of population and l is the length of the chromosome.

5 Experiments

The performance of the proposed algorithm was compared with HUIM-IGA. The
algorithm proposed in this paper was implemented using C++. The experiments
were conducted on a 64-bit Intel Core-i5 processor system having 8 GB RAM
and Windows 10 operating system.

The dataset used is a synthetic dataset which as generated using the IBM
synthetic generator. Size of the population is 20. The number of fitness calcula-
tions is 30K. The value of s0 was set to 40%.

Figure 1 shows the convergence of both the proposed and HUI-IGA algo-
rithms with respect to the count of HUIs generated.

The convergence of the proposed algorithm is faster than the convergence of
HUIM-IGA. The number of HUIs with lesser fitness evaluation calculations in
the proposed algorithm are more as compared to that in HUIM-IGA.This is due
to the intersections of the item bit-vectors at the time of generation of a new
individual.

Figure 2 shows the execution time of both, the proposed and HUI-IGA algo-
rithms with respect to the minimum utility threshold s0.

For lower values of s0 the proposed algorithm requires more time than HUIM-
IGA. The proposed algorithm is better in terms of time efficiency as compared
to the HUIM-IGA for higher values of s0. Since the proposed algorithm stores
the HUIs in the form of a tree which avoid unnecessary comparisons required
for searching HUIs, the execution time is lower than that of HUIM-IGA.

148 T. Almeida e Aguiar et al.

Fig. 1. Convergence with s0 = 40%

Fig. 2. Execution time vs s0

High Utility Itemset Mining Using Genetic Approach 149

6 Limitation of the Study

The proposed algorithm has been experimented on one and only synthetic data.
Experiments on multiple dataset and real datasets will enhance the experimental
study.

There are possibilities that the proposed algorithm may enter infinite loop
while generating a new individual out of duplicate HUI or an unfit individual
in the initial population generation stage. A control strategy to avoid repetitive
generating of new individuals forever is needed.

Only one algorithm has been considered for comparison. The performance
has not been compared with other algorithms. Also, the observations are true
for the current dataset used. Whether the same trends will or will not be followed
for other datasets has to analysed.

7 Conclusion

HUIM aims to discover itemsets having high utility. HUIM algorithms generate
large no of itemsets out of which the HUIs are discovered. This issue has been
addressed by Genetic Algorithms. GAs generate a set of individuals and evaluates
their fitness. In case of an unfit individual, operations such as mutations and
crossover are performed to either convert a weak individual into a fit one or
generate a new individual from two parents. In case of high utility itemset mining
the individuals represent the itemsets. GAs also have to maintain and search
large number of itemsets in their intermediate steps.

A GA which stores HUIs in the form of a tree has been proposed in this
paper. This reduces the unnecessary comparisons thereby improving the search
efficiency and reducing the overall execution time. The algorithms also maintains
the bit image of the transactional database which enables quick calculations of
utilities of itemset by performing AND operations between the bi-vectors of
items.

The proposed algorithm was implemented in C++ to perform experiments
to compare its performance with the state-of-art GA algorithm HUIM-IGA. As
per the experiments the proposed algorithm is efficient in mining HUIs for high
s0 values.

A limitation of the proposed algorithm is that the process of generating a new
HUI from a duplicate HUI or low utility itemset may enter an infinite loop. The
strategy to prevent it from entering an infinite loop is required. Only synthetic
data were used in the experiment. A better insight about the performance of the
algorithm would be possible using real datasets. Our future work will focus on
these issues.

References

1. Han, J., Kamber, M., Pei, J.: Data Mining: Concepts and Techniques, 3rd edn.
Morgan Kauffman, Burlington (2011)

150 T. Almeida e Aguiar et al.

2. Barretto, H.M., Dessai, P.S.: Challenges faced by Academic Libraries due to
resource sharing and networking models. Libr. Philos. Pract. 1–14 (2021)

3. Zaki, M.J., Meira, W., Jr., Meira, W.: Data Mining and Analysis: Fundamental
Concepts and Algorithms. Cambridge University Press, Cambridge (2014)

4. Naik, S.B., Pawar, J.D.: An efficient incremental algorithm to mine closed frequent
itemsets over data streams. In: Proceedings of the 19th International Conference
on Management of Data, pp. 117–120, December 2013

5. Naik, S.B., Pawar, J.D.: A quick algorithm for incremental mining closed frequent
itemsets over data streams. In: Proceedings of the Second ACM IKDD Conference
on Data Sciences, pp. 126–127, March 2015

6. Naik, S.B., Khan, S.: Application of Association Rule Mining-Based Attribute
Value Generation in Music Composition. In: Bhateja, V., Satapathy, S.C., Travieso-
González, C.M., Aradhya, V.N.M. (eds.) Data Engineering and Intelligent Com-
puting. AISC, vol. 1407, pp. 381–386. Springer, Singapore (2021). https://doi.org/
10.1007/978-981-16-0171-2 36

7. Amballoor, R.G., Naik, S.B.: Utility-based frequent itemsets in data streams using
sliding window. In: 2021 International Conference on Computing, Communication,
and Intelligent Systems (ICCCIS), pp. 108–112. IEEE, February 2021

8. Chan, R., Yang, Q., Shen, Y.D.: Mining high utility itemsets. In: Third IEEE
International Conference on Data Mining, pp. 19–19. IEEE Computer Society,
November 2003

9. Lin, J.C.W., et al.: Mining high-utility itemsets based on particle swarm optimiza-
tion. Eng. Appl. Artif. Intell. 55, 320–330 (2016)

10. Kannimuthu, S., Premalatha, K.: Discovery of high utility itemsets using genetic
algorithm with ranked mutation. Appl. Artif. Intell. 28(4), 337–359 (2014)

11. Pattern Mining with Evolutionary Algorithms. Advances in Intelligent Systems and
Computing, Springer, Cham (2016). https://doi.org/10.1007/978-3-319-33858-3

12. Karakatič, S., Podgorelec, V.: A survey of genetic algorithms for solving multi
depot vehicle routing problem. Appl. Soft Comput. 27, 519–532 (2015)

13. Zhang, Q., Fang, W., Sun, J., Wang, Q.: Improved genetic algorithm for high-utility
itemset mining. IEEE Access 7, 176799–176813 (2019)

14. Yao, H., Hamilton, H.J., Butz, C.J.: A foundational approach to mining itemset
utilities from databases. In: Proceedings of the 2004 SIAM International Confer-
ence on Data Mining, pp. 482–486. Society for Industrial and Applied Mathematics,
April 2004

15. Liu, Y., Liao, W., Choudhary, A.: A Two-Phase Algorithm for Fast Discovery of
High Utility Itemsets. In: Ho, T.B., Cheung, D., Liu, H. (eds.) PAKDD 2005. LNCS
(LNAI), vol. 3518, pp. 689–695. Springer, Heidelberg (2005). https://doi.org/10.
1007/11430919 79

16. Li, Y.C., Yeh, J.S., Chang, C.C.: Isolated items discarding strategy for discovering
high utility itemsets. Data & Knowledge Engineering 64(1), 198–217 (2008)

https://doi.org/10.1007/978-981-16-0171-2_36
https://doi.org/10.1007/978-981-16-0171-2_36
https://doi.org/10.1007/978-3-319-33858-3
https://doi.org/10.1007/11430919_79
https://doi.org/10.1007/11430919_79

	High Utility Itemset Mining Using Genetic Approach
	1 Introduction
	2 Related Work and Motivation
	2.1 Genetic Algorithm
	2.2 High Utility Itemset Mining(HUIM)

	3 Problem Definition
	3.1 Preliminaries
	3.2 Problem Statement

	4 Proposed Algorithm
	4.1 Database Pruning
	4.2 Initial Population Generation
	4.3 Time Complexity

	5 Experiments
	6 Limitation of the Study
	7 Conclusion
	References

