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Abstract. The model based testing approaches are not always capable of sug-
gesting exact optimized and prioritize test cases, like conventional approaches,
therefore some popular metaheuristic algorithms are gradually fabricated with
model based testing methodologies for generating optimized test data. The meta-
heuristic algorithms are complex in terms of their algorithm specific parameter
settings; they cannot provide good results without proper parameter settings. In
accordance with the above-described issues, here in this work a novel methodol-
ogy is proposed for test suite generation, using an improved metaheuristic Jaya
algorithm along with UML state machine model. Experimenting with the bench-
mark triangle classification problem, the results prove, the performance as well
as exploitation capability of the improved JAYA algorithm is quite good; over the
widely popular Differential Evolution algorithm.

Keywords: Model based testing - Improved Jaya algorithm - Metaheuristic
algorithms

1 Introduction

The object-oriented program testing is quite complex and still remains a critical research
area since decades [1, 2]. The traditional testing approaches are unsuitable for object-
oriented testing, thus a different testing practice, model-based testing is followed for
deriving test cases [3, 4]. Gradually the Nature inspired algorithms proved their efficiency
in proving sub-optimal solutions in various fields of engineering [11], thus researchers
started fabricating those nature inspired metaheuristics with the software testing process
[5-7]. The popular and widely accepted nature inspired metaheuristics mainly includes
the evolutionary and swarm based algorithms, starting from the Genetics algorithm to
recently popular [19, 20, 22], Bacteria foraging algorithm (BFO), Grey wolf algorithm
and the list goes on [11]. Every metaheuristic algorithm has its own specific set of param-
eters and without proper knowledge of those parameters the algorithms are unable to
provide their best results [11]. Keeping in mind those problems arising in metaheuristics
due to improper parameters settings, a parameter free algorithm known as teacher learn-
ing based algorithm (TLBO) was proposed [12]. The Teacher learning based algorithm
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includes two stages and it has only two parameters, the size of the population and iteration
numbers. Very recently keeping in mind the popularity of the TLBO algorithm, a param-
eter free algorithm, the JAYA algorithm was introduced, this algorithm is even simpler
than the TLBO algorithm, having one stage only [12]. The JAYA algorithm is gradu-
ally getting popular, efficiently handling the engineering optimization problems [12], in
facial emotion recognition [13], Dimensional optimization [14], economic optimization
[15] etc. Thus, keeping in track with the above research findings, this paper proposes
a novel improved JAYA algorithm as well as the framework for testing object-oriented
programs. The metaheuristic Improved JAYA algorithm is employed in the proposed
framework to automatically select a set of test suites to test the object-oriented triangle
classification program. Results indicate that the JAYA algorithm provides good exploita-
tion feature to generate test suits. The proposed work targets the following modules for
fulfilling the above mentioned objectives,

e Generation of test suites for testing the feasible test sequences of triangle classification
problem using a novel Improved JAYA algorithm.

e Generation of test suites for testing the feasible test sequences of triangle classification
problem using Differential Evolution algorithm.

e A set of experiments were carried out using the standard triangle classification prob-
lem followed by an exhaustive comparison between the metaheuristics i.e. JAYA,
Differential Evolution and improved JAYA algorithms.

The remaining sections of this work are systematized as follows, the Sect. 2 con-
veys a detailed explanation of the classical JAYA algorithm, the novel improved JAYA
algorithm and their specific set of parameters; Sect. 3 explains the suggested frame-
work for the generation of feasible test suits, Sect. 4 includes the extensive experimental
set up Sect. 5 provides experimental results and discussions with the detailed statisti-
cal analysis. Lastly, the conclusions and prospective future directions are projected in
Sect. 6.

2 Proposed Algorithm

The metaheuristic Jaya algorithm [16] was introduced by Venkata Rao [14], it’s a very
simple and parameter free algorithm that has been already used for numerous optimiza-
tion problems in diverse domains of continuous space. In this paper an improved Jaya
algorithm with improved exploration and convergence speed is proposed by adding an
efficient mutation scheme the conventional JAYA algorithm. This improved Jaya algo-
rithm was applied in one research work for automatic ear image enhancement of the
ear biometric system [18]. It was noticed that the improved JAYA algorithm show better
performance for image enhancement in comparison to other two metaheuristics i.e. PSO
and Differential Evolution based image enhancement techniques. Therefore, this paper
used the Improved JAYA algorithm as well as the Conventional JAYA algorithm and
compared the performance of the respective algorithms with widely popular Differential
evolution algorithm, in terms of test data generation and computational speed, for the
first time in the field of object-oriented testing.
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2.1 JAYA Algorithm

The metaheuristic JAYA algorithm is a parameter free optimization algorithm The prin-
ciple of the algorithm is to obtain good solutions avoiding bad solutions. Iteration-wise
updating each solution is mathematically expressed in [18] as follows:

Xijg+ 1) =Xij(@) +riij* (Xipest(®) — |Xij (@) — raij
# (Xi worst (8) — |Xij(2)])

where X; j(g) is the j’h parameter value for i solution at g iteration. X; peg () is the value
of the best solution for i parameter at gth iteration and X; ,,ors (g) 1s the value of the it
parameter for the worst solution at the same g™ iteration. Two random numbers 7y ;. jare
r2,ij generated in the range of [0, 1] at iteration g, X; j(g + 1) hold the updated values
of the j parameter for i/ candidate solution in (g + 1). The neighborhood positions
are exploited and candidate solutions are continuously upgraded in subsequent iteration
using Eq. (1) to lead the convergence towards global solution. The two random numbers
r1,ij and r7; ; help in improving the searching capability of Jaya algorithm. Initially
the candidate solutions are updated at current iteration n, then based on fitness values
the best individual solutions are updated after comparing the current solution X;(g) and
updated solution X;(g + 1) for the next iteration (g + 1) as described in [22]:

Xj(9), iff (Xj(8)) > f(Xj(g + 1))
Xj(g + 1), Otherwise

(D

Xjg+ 1= { )

Thus the solutions of subsequent iteration are better than the corresponding solutions
of current iteration. The modified fitness values of the candidate solutions are the inputs
for next iteration. In this manner the algorithm always converges towards best solution.

2.2 Improved JAYA Algorithm

In order to improve convergence rate, a mutation operator has been introduced with Jaya
algorithm and the proposed technique is known as an improved version of Jaya algorithm
(IJA). It is revealed in [ 18], that the Differential evolution metaheuristic algorithm shows
better performance than the Particle Swarm Optimization algorithm in robust perfor-
mance and faster convergence towards global optima. Therefore the mutation operator
of the Differential Evolution algorithm has been used in the JAYA algorithm to add
diversification. In order to establish balance between the exploitation and exploration
strategies an adaptive mutation operator is introduced. Mathematically the mutation
operator is defined in the following Eq. (3),

Xi(g+1) =X, (8) + F * (X1, (8) — X5 (8)) 3)
here j € {1, ..., K}, j" candidate solution of the population of size K. Correspond-
ingly, 11, rp, and r3 are the indices of the candidate solutions {1, ..., K}. Here, F is the

scaling factor used to avoid the population stagnation and to control the difference vector
in the mutation operation, it is in the range of [0, 1]. The an adaptive scaling factor has
been used here is described as in Eq. (4).

F =0.8+rand * ((Gpax — &)/Gmax) €]
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where g and G,y are the current iteration and maximum number of iterations respec-
tively. The rate of mutation in Eq. (3) can also be evaluated adaptively, and when in this
manner a random real number, greater than the rate of mutation. is generated then the
mutation operation will be performed.

rand > (1 — i) (®)]

max

The rate of mutation fluctuates between 1 to 0, through initial iteration to a maximum
number of iterations.

3 Projected Framework

This work proposes a framework; Fig. 1 for testing object oriented programs using the
UML state machine model of the triangle classification problem and a novel improved
JAYA algorithm. Initially the UML state machine model; Fig. 2 is developed and then
it is converted to state chart graph. After that the nodes and edges are assigned weights
[1, 2]. Then the SCG graph is traversed using the DFS algorithm in order to find out
the total path cost and the feasible paths. The fitness function of the feasible paths is the
total path weight [1, 2]. The JAYA, improved JAYA and DE metaheuristic algorithms
are applied to generate test suits, fulfilling the transition coverage criteria.

)

Fig. 1. Projected framework for model based testing

Design UML Stte Coavert Stte Chat Model | | Assign Node Weightsand
Chat Model to Stete Chart Graph (3CG) Edge Weights

Validte Tst Cases GeaerateTestCases Using Apply DFS Travere
Applying Transtion JAYA, Enbanced JAYA Algoriho Tracethe

Path Coveraze Criera ad DE Aleorthns Feasible Path Seonences

Fig. 2. The UML state machine model
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4 Experiments

First of all, a UML state machine model was generated using ArgoUML, for the example
problem, i.e., classification of triangles. After that metaheuristic JAYA, improved JAYA
and DE algorithms, are used to generate test suits automatically using Matlab R2016b.

The fitness function of the problem is the total path weights of respective feasible
paths, it is a maximization problem. The range of data variation is —10000 to 10000. To
verify the exploitation and exploration capabilities of the metaheuristic algorithms, i.e.
JAYA, Improved JAYA and DE a number of experiments were conducted with varying
populations (10, 20, 30) and fixed generation (10), and then with varying generations
(20, 30, 50) and fixed populations (10). After that again the different combination of gen-
eration, 20, 30 and population 50, 100 were taken to thoroughly test the time complexity
and exploration capabilities of the algorithms.

Case study

Triangle classification problem is the benchmark problem in software testing domain
[1, 2], specifically test data generation [3, 9]. The distinctive attribute of the problem
is, it needs separate groups of test data to test first the triangle properties and then the
types of triangles like scalene, equilateral and isosceles. [1]. This problem is selected as
the case study to automatically generate test suites using Improved JAYA, DE and JAYA
algorithms. This example problem has four feasible path sequences and six states (S1,
S2, S3, S4, S5, S6). The statistical results after using JAYA, DE, and improved JAYA
algorithms are depicted in Table 2 and Table 3. The test suits generated for respective
path sequences using improved JAYA, algorithm are represented in Fig. 3 and Fig. 4
respectively. The Fig. 5 and Fig. 6 are showing the test suites generated by all the three
algorithms i.e., JAYA, DE and Improved JAYA. The Table 2 and Table 3, show the
detailed statistical analysis of the test suits generated using the proposed framework
and metaheuristic algorithms. In these tables the minimum and maximum point outs
the lower number of test cases and maximum number of test cases generation for the
individual path. The maximum point outs the upper bound in test cases generation for
a particular path. The table shows a minimum value to be zero when in at least one of
the executions no data is available for covering a path, in the same way if the maximum
value provided is zero then it signifies no data is generated at all for testing that path.
Lastly the Table 4 shows the execution time of the three algorithms (Table 1).

Table 1. Test sequences of the triangle classification problem

Test sequencel S1-S3 Not a triangle

Test sequence 2 S1-S2-S4 Scalene-triangle
Test sequence3 S1-S2-S5 Isosceles-triangle
Test sequence4 S1-S2-S6 Equilateral triangle
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5 Results and Discussions

The aim of conducting the experiments with varying generations and populations was
to figure out the exploration and exploitation capabilities of the algorithms. The detailed
statistical analysis of the results like max, min, and average performance of the algorithms
along with standard deviations were recorded in Table 2 and Table 3. The worst-case
analysis of the algorithms shows that for path sequence 3, the critical path of the problem
only improved JAYA achieved the best results, with large population size. The same trend
is observed in average case analysis too. In most of the iterations the JAYA, improved
JAYA, DE algorithms generated no data for path sequence2 and 3 whereas the Improved
JAYA generated test data uniformly for every path sequence in case of maximum. The
Fig. 3(a, b, c) depicts the test cases generated by improved JAYA with generation 10 and
population variation 10, 20, 30, similarly Fig. 4(a, b, c) shows the test cases generated
by improved JAYA with generation 20, 30,50 and population variation 10. In the next
experiment the results of all the three algorithms for generating all four paths are recorded
in Table 3 by varying the population to 10, 20, 50 and keeping the number of generations
fixed at 10. The best, worst, and average case analysis of the results along with statistical
analysis is provided in Table 3. Here it is observed that for path sequence 3, all of the
three algorithms are providing almost zero results for best case in population 10 and 20,
the DE is giving best result for only path sequencel and JAYA for path sequence4 in all
the three generations. The worst-case analysis shows that DE is giving best results for
path sequencel, JAYA for path sequence 4, Improved JAYA for path sequence2 and 3.
The average case analysis shows the same results. The Fig. 5(a, b, ¢) depicts the test cases
generated by all the three algorithms at generation fixed at 10 and population size (30,
50,100). The Fig. 6(a, b, c) show the generated test cases, at generation fixed at 20 and
population size (30, 50,100). When the results of Table 2, and Table 3 were compared,
it was clear that the JAYA, DE and Improved JAYA, are not able to provide adequate
number of test suits, when the population size and generations are small. The improved
JAYA algorithm generated stable and uniform test suits, only when the population size
is large.

Table 2. The statistics for test suite generation using Jaya, De, Improved Jaya with population
size (30) & generation number (10, 20, 30)

Generation/ Model-based | Sequencel | Sequence2 | Sequence3 |sequence4
population algorithm
Gen =10 |Minimum |JA 2 0 0 1
Pop =30
DE 4 0 0 8
EJA 1 1 0 1

(continued)
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Table 2. (continued)

Generation/ Model-based | Sequencel | Sequence2 |Sequence3 |sequence4
population algorithm
Maximum |JA 17 19 19 20
DE 13 12 14 18
EJA 16 17 17 20
Mean JA 8.62 8.91 2.36 10.11
DE 8.81 7.76 1.76 7.76
EJA 7.57 9.51 4.97 791
Standard | JA 2.6285 3.398 1.879 3.349
deviation | pg 3.06 487 7.86 9.05
EJA 3.104 3.206 2.623 3.338
Gen =20 | Minimum |JA 0 0 0 3
Pop =30 DE 0 3 0 4
EJA 1 1 0 1
Maximum |JA 17 18 7 20
DE 13 15 9 16
EJA 19 19 15 17
Mean JA 8.33 9.025 2.19 10.405
DE 5.19 15.26 5.7 12.03
EJA 6.33 10.2 5.395 7.075
Standard | JA 2.767 3.14 1.403 3.071
deviation | pp 2.81 4.44 5.06 53
EJA 2.841 2.953 2.566 2.991
Gen =30 | Minimum |JA 0 1 0 1
Pop =30 DE 1 0 0 4
EJA 1 2 0 2
Maximum |JA 19 21 18 17
DE 18 12 13 19
EJA 18 17 19 21
Mean JA 6.037 11.784 6.041 6.125
DE 5.53 18.9 5.03 10.53
EJA 6.99 10.75 5.896 6.352
Standard | JA 2.81 3.096 2.438 2.562
deviation | pp 3.34 5.36 3.99 435
EJA 2.534 2.076 2.904 2.072
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Table 3. The statistics for test suite generation using Jaya, De, Improved Jaya with population
size (10, 20, 50) & generation number (10)

Generation/ Metaheuristic | Sequencel | Sequence2 | Sequence3 | Sequence4
population optimization
algorithms
Gen =10 | Minimum |JA 0 0 0 1
Pop =10 DE 1 0 0 0
EJA 1 0 0 1
Maximum |JA 7 7 5 8
DE 5 6 4 6
EJA 7 7 9 6
Mean JA 2.4 3.7 2.3 4.3
DE 2.3 1.8 1.5 2.7
EJA 3.28 2.68 2.5 3.16
Standard | JA 1.56 1.67 1.04 1.67
deviation | pp 1.45 228 243 3.84
EJA 1.06 1.28 1.77 1.29
Gen =10 | Minimum |JA 2 1 0 2
Pop =20 DE 11 2 0 0
EJA 1 1 0 2
Maximum |JA 11 11 8 11
DE 5 18 0 0
EJA 12 12 10 11
Mean JA 5.74 5.68 2.34 6.24
DE 3.25 1.57 2.7 4.5
EJA 5.16 6.72 2.52 5.6
Standard | JA 2.036 242 1.47 243
deviation | pp 3.07 14.05 2.71 34
EJA 2.67 2.138 1.665 2.014
Gen =10 | Minimum |JA 7 2 0 6
Pop =50
DE 5 3 0
EJA 6 3
Maximum |JA 26 25 12 31

(continued)



120 M. Panda and S. Dash

Table 3. (continued)

Generation/ Metaheuristic | Sequencel | Sequence2 | Sequence3 | Sequence4
population optimization
algorithms
DE 25 18 17 28
EJA 22 23 21 30
Mean JA 12.52 14.28 3 18.2
DE 11.5 13.8 10.2 14.9
EJA 135 15.2 16.82 14.48
Standard | JA 4.33 5.55 2.26 4.24
deviation | p 2.94 445 4.46 6.29
EJA 4.3 4.85 4.32 44

rrrrr

(b).G10-P20 (©).G10-P30

Fig. 3. Test suites using Improved Jaya (A, B, C), with generations (10) and population size 10,
20, 30

(a). G20-P10 (b). G30-P10 (¢)G50-P10

Fig. 4. Test suite using Improved Jaya (A, B, C), with fixed population 10 and variations in
generations 20, 30, 50

(Somparison of testsuits using. JA. DE. and EJA Comparison of testsuits using. JA, DE, and EJA Gomparison of testsuits using. JA. DE. and EJA

Test suit
2
Test suit

(a). G10-P30 (b). G10-P50 (c). G10-P100

Fig. 5. Test suites generation using Jaya, De and Improved Jaya (A, B, C), with generations 10
and population size 30, 50, 100
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Spmparion of textuits using, JA, DE, and F31 S parion of textsuits wxing, JA. DE, and 3o Gomparison of testsuits using. JA. DE. and EJA

IR

Paths,

(a). G20-P30 (b). G20-P50 (c). G20-P100

Fig. 6. Test suite generation using Jaya, De and Improved Jaya (A, B, C), with fixed number of
generations (20) and variations in population size (30, 50, 100)

Table 4. Average run time (in seconds) for generation of test suits based on JAYA, DE, and
Improved JAYA with generation 10 and population size 50.

JAYA DE Improved JAYA
0.004 0.025 0.018

6 Conclusions

The testing of object-oriented programs, particularly the test suite generation from design
artifacts is a very difficult task. This work provided a novel Improved JAYA algorithm-
based framework to generate optimized test suits. The optimal test suites were generated
using the proposed framework and UML behavioral model. The proposed framework
efficiently generated uniform test suits for all the feasible paths. The obtained simulation
results ensured the efficiency of the improved JAYA algorithm over the performances
of the individual JAYA and DE algorithm in terms of the exploration and exploitation
capabilities. The framework can be further improved by using the hybrid version of this
metaheuristic JAYA algorithm along with different UML diagrams.
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