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Abstract. In this paper we introduce a new queueing model with a
special kind of input processes. It is assumed that the number of arrivals
during consecutive time intervals makes an autoregressive sequence with
conditional Poisson distributions. A single server serves input flows one
by one in cyclic order with instantaneous switching. A d-limited policy
is used. The mathematical model of the queueing process takes form
of a multidimensional discrete Markov chain. The Markov chain keeps
track of the server state, recent arrival numbers and queues’ lengths.
The necessary and sufficient condition for the existence of the stationary
probability distribution is found. A possibility to give an explicit solution
for the stationary equations for the probability generating functions is
discussed.

Keywords: Autoregressive Poisson process · polling system · cyclic
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Introduction

Studies of many real flows in telecommunication networks and vehicular control
at junctions made it evident that a simple Poisson model or a renewal model [1]
are often statistically inadequate. In the last five decades models with different
kinds of dependence between some of the flow constituents. There are a least two
options to add dependence to the mode. One can think of a random arrival rate.
It leads to Cox’s doubly stochastic flows [2], Markov-modulated flows of Neuts
and Lucantoni [3]. On the other hand, dependence of the conditional probability
distribution for inter-arrival time intervals on past arrivals can be introduced
explicitely. On this way we come, for instance, to auto-regressive time series
models formed by successive inter-arrival times (see [4]). In [6] following [5], a
single-line queueing system with group arrivals is considered in which the group
sizes make a certain Markov chain. Since any of the above-mentioned models
watches after each single arrival time,

τ ′
1 � τ ′

2 � . . . , (1)
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this approach can be called local [7].
In [7] a non-classical approach was proposed and started developing. Accord-

ing to this approach, the flow is observed only at special chosen epochs. At that,
only a total random number of arrivals between two observation epochs becomes
known. This approach is called non-local. Let us cite here an appropriate defini-
tion.

Definition 1. Let 0 = τ
(obs)
0 < τ

(obs)
1 < . . . be a point sequence on the axis Ot

(here the superscript “obs” stands for “observation”), not coinciding with (1),
η
(obs)
i be a random number of requests from the flow Π during the time-interval

(
τ
(obs)
i , τ

(obs)
i+1

]
, and ν

(obd)
i be some characteristic(a mark) of those requests that

arrive during the time-interval
(
τ
(obs)
i , τ

(obs)
i+1

]
. A random vector sequence

{(
τ
(obs)
i , η

(obs)
i , ν

(obs)
i

)
; i = 0, 1, . . .

}

is called a flow of non-homogeneous requests under its incomplete(non-local)
description.

Informally speaking, our non-local auto-regressive flow is understood as a
flow with a linear form aη

(obs)
i−1 + b for the regression equation of η

(obs)
i onto

η
(obs)
0 , η

(obs)
1 , . . . , η

(obs)
i−1 . For count time-series, this kind of stochastic processes

was studied e.g. in [8].
The queueing system belongs to a class of polling systems [9]. Besides the

inputs, it differs from classical polling systems by an assumption on the service
process. Service time distributions are not known (in real queueing systems ser-
vice times can be dependent and have different probability distributions), but
the server’s sojourn time distribution for each node is given together with the
upper limit on the number of services customers. It models for example a roads
intersection controlled by a fixed-cycle traffic-light, and data transmission nodes
governed by a Round Robin algorithm.

We will demonstrate that even under simple assumptions on the queueing sys-
tem structure the equation for the stationary probability distribution generating
function is hard to solve. Still we will obtain conditions for the existence of the
stationary probability distribution in the system using the iterative-dominating
approach [10,11].

1 The Queueing System

Let us assume that all random variables and random elements in what follows
are defined on a probability space (Ω,F, P). Then E(·) denotes the mathematical
expectation with respect to the probability measure P. Set ϕ(x; a) = axe−a/x!
for a > 0 and x = 0, 1, . . . .

Consider a queueing system with m < ∞ input flows and a single server.
Customers from the j-th flow join an infinite-capacity buffer Oj . Probability
properties of the input flows will be defined later. The server spends a constant
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time T > 0 in front of each queue, and then an instant switch-over to the
next queue occurs. After the last queue the first queue is visited. The server
implements a d-limited policy: during its stay at the j-th queue the server can
provide service to d = �j customers at most from that queue, no matter when
exactly they arrived if they have arrived before the time T expired.

Let τ0, τi+1 = τi + T = (i + 1)T , i = 0, 1, . . . be the time instants when
the server switches to a next queue. Denote by Γ (r) the server state when is at
the r-th queue, i = 1, 2, . . . , m and let Γ = {Γ (1), Γ (2), . . . , Γ (m)} be the server
state space. Let a random variable Γi ∈ Γ be the server state during the time
interval (τi−1, τi] for i = 1, 2, . . . , and Γ0 ∈ Γ be the random server state at time
τ0. Let r ⊕ 1 = r + 1 for r < m and m ⊕ 1 = 1. Then Γi+1 = Γi+1(ω) = Γ (r⊕1)

for all ω ∈ Ω such that Γi = Γ (r).
Denote by ηj,i, i = 1, 2, . . . the random number of new customers arriving

from the flow Πj during the time interval (τi, τi+1], j = 1, 2, . . . , m. Let ηj,−1 be
a non-negative integer-values random variable, j = 1, 2, . . . , m. Let us assume
that the conditional probability distribution of ηj,i+1 for any given ηj,−1 = x−1,
ηj,0 = x0, . . . , ηj,i = xi is the Poisson distribution with parameter (ajxi + bj)
for some aj > 0 and bj > 0, so that the regression of ηj,i+1 on past numbers of
arrivals equals

E(ηj,i+1 | {ηj,−1 = x−1, ηj,0 = x0, . . . , ηj,i = xi}) = ajxi + bj .

We will call such an input flow an autoregressive Poisson flow. The previous
number of arrivals, ηj,i−1, can be used as a mark of requests during the time-
interval (τi, τi+1]. Then the non-local description of the autoregressive Poisson
flow Πj is a marked point process

{(τi, ηj,i, ηj,i−1); i = 0, 1, . . .}.

In particular, if the flow Πj is a classical Poisson with intensity λj then we will
have aj = 0 and bj = λjT . Further, let us assume that the stochastic sequences

{ηj,i; i = −1, 0, . . .}, j = 1, 2, . . . , m

are independent.
Denote by κj,i the random number of customers in the queue Oj at time

instant τi. Denote by ξj,i the largest number of customers which can be serviced
from Oj during the time interval (τi, τi+1]. Then the probability

P({ξ1,i = y1, ξ2,i = y2, . . . , ξm,i = ym} | {Γi = Γ (r)})

equals 0 for tyj > 0 and yk > 0 for some k �= j; it equals 1 for yr⊕1 = �j . We
have

κj,i+1 = max{0, κj,i + ηj,i − ξj,i}, i = 0, 1, . . . ; j = 1, 2, . . . ,m. (2)

The recurrent equations and probability distributions given above prove the
following claims.
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Theorem 1. For a given probability distribution of the vertor

(Γ0, κ1,0, κ2,0, . . . , κm,0, η1,−1, η2,−1, . . . , ηm,−1),

random sequences

{(Γi, κ1,i, κ2,i, . . . , κm,i, η1,i−1, η2,i−1, . . . , ηm,i−1); i = 0, 1, . . .},

{(Γi, κj,i, ηj,i−1); i = 0, 1, . . .}, j = 1, 2, . . . , m

are irreducible periodic Markov chains.

2 Analysis of the Model

The main purpose of this section is to establish necessary and sufficient condi-
tions for the existence of the stationary probability distribution of the Markov
chain {(Γi, κj,i, ηj,i−1); i = 0, 1, . . .} for j = 1, 2, . . . , m, since it is easy to prove
then, that the Markov chain

{(Γi, κ1,i, κ2,i, . . . , κm,i, η1,i−1, η2,i−1, . . . , ηm,i−1); i = 0, 1, . . .}
has a stationary probability distribution if and only if each single

{(Γi, κj,i, ηj,i−1); i = 0, 1, . . .}, j = 1, 2, . . . ,m

does. In the remainder of this section the value of the index j is fixed.
In the first place, for the existence of the stationary distributions of the

Markov chains, the inputs {ηj,i; i = 0, 1, . . .} need to have statioinary probability
distribution. This is possible only if 0 < aj < 1 for all j = 1, 2, . . . , m. We assume
so in the rest of the section.

Let us define

Qj,i(r, x, y) = P({Γi = Γ (r), κj,i = x, ηj,i−1 = y}).

Let I(·) denote the indicator random variable for the event given in the paren-
theses. Let us introduce for |z| � 1, |w| � 1 and i = 0, 1, . . . the probability
generating functions

Ψj,i(z, w; r) =
∞∑

x=0

∞∑

y=0

zxwyQj,i(r, x, y)E
(
zκj,iwηj,i−1I({Γi = Γ (r)})

)
.

Theorem 2. The following recurrent equations with respect to i = 0, 1, . . .
hold:

Ψj,i+1(z, w; r ⊕ 1) = ebj(zw−1)Ψj,i(z, eaj(zw−1); r), r ⊕ 1 �= j;

Ψj,i+1(z, w; r ⊕ 1) = z−�j ebj(zw−1)Ψj,i(z, eaj(zw−1); r)

+
�j−1∑

x=0

�j−x−1∑

n=0

( ∞∑

y=0

Qj,i(r, x, y)ϕ(n; ajy + bj)
)
(1 − zx+n−�j )wn

for r ⊕ 1 = j.
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Proof. Let r ⊕ 1 �= j. Then

Ψj,i+1(z, w; r ⊕ 1) = E[zκj,i+ηj,iwηj,iI(Γi = Γ (r))]

= E
(
E(zκj,i(zw)ηj,iI(Γi = Γ (r)) | κj,i, ηj,i−1, Γi)

)

= E[zκj,ie(ajηj,i+bj)(zw−1)I(Γi = Γ (r))]

= eb(zw−1)Ψj,i(z, ea(zw−1); r).

For r ⊕ 1 = j,

Ψj,i+1(z, w; r ⊕ 1) = E[zκj,i+ηj,i−�j wηj,iI(Γi = Γ (r))]

+ E[(1 − zκj,i+ηj,i−�j )wηj,iI(Γi = Γ (r), κj,i + ηj,i < �j)]

= z−�j ebj(zw−1)Ψj,i(z, eaj(zw−1); r)

+ E[(1 − zκ1,i+η1,i−�)wη1,iI(Γi = Γ (m), κ1,i + η1,i < �)]

= z−�eb(zw−1)Ψ1(z, ea(zw−1);m)

+
�−1∑

x=0

�−x−1∑

n=0

( ∞∑

y=0

Q1(m,x, y)
(ay + b)n

n!
e−(ay+b)

)
(1 − zx+n−�)wn.

Using methods from [10,11] we get.

Theorem 3. For the existence of the stationary probability distribution of the
Markov chain {(Γi, κj,i, ηj,i−1); i = 0, 1, . . .} it is necessary and sufficient that

bj

1 − aj
m < �j . (3)

The condition in the last theorem can be easily interpreted from a physical point
of view because the quantity mbj(1 − aj)−1 is the stationary expected number
of arrivals from the flow Πj during a complete cycle of the server.

In course of the proof of Theorem 3 the following Lemma is essential.

Lemma 1. If 0 < a < 1 then the equation w = ea(wz−1) has a unique solution

w(z) = e−a +
∞∑

n=1

zn (n + 1)n−1ane−(n+1)a

n!
,

convergent in the open disk |z| < a−1ea−1, such that w(1) = 1, |w(z)| < 1 for
|z| < 1.

Proof. Let’s fix |z| < 1. We have an estimate from below for the magnitude of
the complex quantity

|ea(zw−1)| = e−a|eazw| � e−aea|w||z| < e−aea|w|.

So, on the circle |w| = 1 we have

|ea(zw−1)| < ea(|w|−1) = 1 = |w|. (4)
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By the classical Rouchè’s theorem, for any such z there is a unique solution
w = w(z) of the equation w = ea(wz−1) such that |w(z)| � 1. It can be computed
by evaluating the integral

w(z) =
1

2πi

∫

|w|=1

w · F ′
w(z, w)

F (z, w)
dw =

1
2πi

∫

|w|=1

w − azwea(zw−1)

w − ea(zw−1)
dw,

where i =
√−1 and F (z, w) = w−wea(zw−1). We only need to prove analyticity

of w(z) in the open unit disk.
Let |w| = 1 and 0 < r < 1 be fixed. Let us consider the function w(z) in a

disk |z| � r. Since

|F (z, w)| �
∣
∣|w| − |ea(wz−1)|∣∣ � |w| − ea(|w||z|−1) � 1 − ea(r−1) > 0,

a function wF ′
w(z, w)/F (z, w) is analytic inside the open disk |z| < r and with

uniformly bounded absolute value as a ratio of two continuous functions in bath
variables in a closed set {(z, w) : |z| � r, |w| = 1}. A corollary from Vitali’s
theorem, the function w(z) is an analytic function of z in the open disk |z| < r,
and hence in the open disk |z| < 1.

From inequality (4) it follows that

∣
∣
∣
ea(wz−1)

w

∣
∣
∣ < 1,

so that the integral can be represented by a series:

1
2πi

∫

|w|=1

w − azwea(zw−1)

w − ea(zw−1)
dw =

1
2πi

∫

|w|=1

1 − azea(zw−1)

1 − ea(zw−1)

w

dw

=
∞∑

n=0

1
2πi

∫

|w|=1

(1 − azea(zw−1))
ena(wz−1)

wn
dw.

Using the Cauchy’s Integral representation, we get

1
2πi

∫

|w|=1

(1 − azea(zw−1))
ena(wz−1)

wn
dw = 0 for n = 0,

1
2πi

∫

|w|=1

(1 − azea(zw−1))
ena(wz−1)

wn
dw

=
1

(n − 1)!
dn−1

dwn−1
(1 − azea(zw−1))ena(wz−1)

∣
∣
∣
w=0

=
1

(n − 1)!
((naz)n−1e−na − az(a(n + 1)z)n−1e−(n+1)a) for n � 1.
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So,

∞∑

n=1

1
(n − 1)!

((naz)n−1e−na − az(a(n + 1)z)n−1e−(n+1)a)

= e−a +
∞∑

n=1

zn
( (n + 1)nane−(n+1)a

n!
− an(n + 1)n−1e−(n+1)a

(n − 1)!

)

= e−a +
∞∑

n=1

zn (n + 1)n−1ane−(n+1)a

n!

The convergence radius R is found from

1
R

= lim
n→∞

n

√
(n + 1)n−1ane−(n+1)a

n!
= lim

n→∞
n

√
(n + 1)nane−(n+1)a

(n + 1)!

= lim
n→∞

n

√
(n + 1)nane−(n+1)a

√
2π(n + 1)(n + 1)n+1e−(n+1)

= ae1−a.

Now let us prove that the series at z = 1 equals w(1) = 1. Any convergent
series is a continuous function inside its disk of convergence. Here we focus on
real values for z and w > 0. Then

z =
1

aw
(a + lnw),

dz

dw
=

1 − a − ln w

aw2
.

In a neighborhood of w = 1 it is a continuous monotonously increasing function
for 0 < w < e1−a and it takes on value z = 1 at w = 1. Its inverse function takes
on values w < 1 for z < 1, and it takes on value w = 1 for z = 1.

Proof (to Theorem 3). 1) Necessity. Let us assume that the stationary proba-
bility distribution exists. By substituting it in place of the initial probability
distribution we guarantee the existence of limits

lim
i→∞

Qj,i(r, x, y) = Qj(r, x, y)

equal to the stationary probabilities. Let r(j) be the solution to r ⊕ 1 = j.
To obtain equations for the time-stationary probability generating functions we
can omit indices i and i + 1 in the equations in Theorem 3. Substituting there
w = w(z) from Lemma 1 where a = aj and b = bj , and denoting

Aj(x, n) =
∞∑

y=0

Qj(r(j), x, y)ϕ(n; ajy + bj)

we get

Ψj(z, w(z); r ⊕ 1) = ebj(zw(z)−1)Ψj(z, w(z); r), r ⊕ 1 �= j; (5)
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Ψj(z, w(z); j) = z−�j ebj(zw(z)−1)Ψj(z, w(z); r(j))

+
�j−1∑

x=0

�j−x−1∑

n=0

Aj(x, n)(1 − zx+n−�j )(w(z))n. (6)

Summation of Eqs. (5), (6) with respect to r = 1, 2, . . . , m results in

m∑

r=1

Ψj(z, w(z); r) =
∑

r �=r(j)

ebj(zw(z)−1)Ψj(z, w(z); r) + z−�j ebj(zw(z)−1)

×Ψj(z, w(z); r(j)) +
�j−1∑

x=0

�j−x−1∑

n=0

Aj(x, n)(1 − zx+n−�j )(w(z))n. (7)

In the left neighborhood of z = 1 (on the real axis) we have Taylor expansions

ebj(zw(z)−1) = 1 + (bj + bjw
′(1))(z − 1) + o((z − 1))

= 1 +
bj(z − 1)
1 − aj

+ o(z − 1),

z−�j ebj(zw(z)−1) = 1 +
( bj

1 − aj
− �j

)
(z − 1) + o(z − 1),

(1 − zx+n−�j )(w(z))n =
(
�j − x − n +

naj

1 − aj

)
(z − 1) + o(z − 1).

There expansions substituted into (7), we get after collecting terms

0 =
∑

r �=r(j)

bj(z − 1)
1 − aj

Ψj(z, w(z); r) +
( bj

1 − aj
− �j

)
(z − 1)Ψj(z, w(z); r(j))

+
�j−1∑

x=0

�j−x−1∑

n=0

Aj(x, n)
(
�j − x − n +

naj

1 − aj

)
(z − 1) + o(z − 1). (8)

Divide by (z − 1) and send z to 1 from the left. We get

0 =
∑

r �=r(j)

b

1 − a
Ψj(1, 1; r) +

( b

1 − a
− �j

)
Ψj(1, 1; r(j))

+
�−1∑

x=0

�−x−1∑

n=0

Aj(x, n)
(
�j − x − n +

na

1 − a

)
. (9)

Substituting z = 1 into (5) and (6) leads to Ψj(1, 1; r) = m−1 for all r = 1, 2,
. . . , m. So, we finally come to

0 =
b

1 − a
− �j

m

+
�−1∑

x=0

�−x−1∑

n=0

( ∞∑

y=0

Q1(m,x, y)
(ay + b)n

n!
e−(ay+b)

)(
�j − x − n +

na

1 − a

)
. (10)
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Taking into account that �j − x − n + na
1−a > 0 for those x and n which occur

at summation, we draw the conclusion that for the existence of a stationary
probability distribution it is necessary that

b

1 − a
− �j

m
< 0.

2) Sufficiency. Let us assume for now that Inequality (3) is true, but no
stationary probability distribution exists. All the states of the Markov chain are
essential and belong to a single class of communicating states, one must have

lim
i→∞

Qj,i(x, y; r) = 0

for all x, y, and r, It follows then that the sequence of mathematical expecta-
tions Eκj,i i = 0, 1, . . . unboundly grows. We claim that, on the contrary, the
mathematical expectations are bounded if the condition from the theorem holds.

Let us setup the initial probability distribution so that the probability gen-
erating functions Ψj,0(z, w; r) are analytic in (z, w) ∈ C

2. Then all the next
probability generating functions Ψj,i(z, w; r), i = 1, 2, . . . can have analytical
continuations onto whole C

2. Consequently, the functions Ψj,i(z, w(z); r) will be
analytic in the disk |z| < 1 + ε < 1/(ae1−a) (i.e. inside the disk of convergence
of the series w(z)) and will satisfy equations

Ψj,i+1(z, w(z); r ⊕ 1) = z−�j ebj(zw(z)−1)Ψj,i(z, w(z); r), r ⊕ 1 �= j;

Ψj,i+1(z, w(z); j) = z−�j ebj(zw(z)−1)Ψj,i(z, w(z); r(j))

+
�j−1∑

x=0

�j−x−1∑

n=0

Aj(x, n)(1 − zx+n−�j )(w(z))n.

Let us fix a z, 1 < z < 1 + ε and let r ⊕ m = r = j. The one has (Aj(x, n) � 1):

Ψj,i+m(z, w(z); r ⊕ m) � z−�j ebj(zw(z)−1)Ψj,i+m−1(z, w(z); r ⊕ (m − 1))

+
�j−1∑

x=0

�j−x−1∑

n=0

(1 − zx+n−�j )(w(z))n

=
(
z−�j ebj(zw(z)−1)

)2
Ψj,i+m−2(z, w(z); r ⊕ (m − 2))

+
�j−1∑

x=0

�j−x−1∑

n=0

(1 − zx+n−�j )(w(z))n = . . .

=
(
z−�j ebj(zw(z)−1)

)m
Ψj,i(z, w(z); r) +

�j−1∑

x=0

�j−x−1∑

n=0

(1 − zx+n−�j )(w(z))n.

Since
d

dz

(
z−�j ebj(zw(z)−1)

)m
∣
∣
∣
z=1

= −m�j +
mbj

1 − aj
< 0,
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the sequence

Ψ+
0 = Ψj,0(z, w(z); j), Ψ+

1 = Ψj,1(z, w(z); j), . . . , Ψ+
m−1 = Ψj,m−1(z, w(z); j),

Ψ+
i+m = z−m�j embj(zw(z)−1)Ψ+

i +
�j−1∑

x=0

�j−x−1∑

n=0

(1 − zx+n−�j )(w(z))n, i = 0, 1, . . .

converges, and hence is bounded. At the same time, for all i = 0, 1, . . . we have

Ψj,i(z, w(z); r) � Ψ+
i .

It follows that all numbers (for this z) Ψj,i(z, w(z); r), r = 1, 2, . . . , m, and
i = 0, 1, . . . are bounded by some constant C > 0. Then,

E(κj,i) =
∣
∣
∣
∣

1
2πi

∫

|ζ−1|=δ

∑m
r=1 Ψj,i(z, 1; r)

(z − 1)2
dz

∣
∣
∣
∣

�
∫ 1

0

∑m
r=1 Ψj,i(1 + δ, 1 + δ; r)

δ
du � mC

δ
.

This contradiction prove the claim.

To solve Eqs. (5), (6) for the functions Ψj(z, w(z); r), r = 1, 2, . . . , m, one
needs to identify �j(�j + 1)/2 unknown constants A(x, n), 0 � x + n < �j , n, x
integers. We get

(z�j − embj(zw(z)−1))Ψj(z, w(z); r)

=
�j−1∑

x=0

�j−x−1∑

n=0

Aj(x, n)(z�j − zx+n)(w(z))n, r ⊕ 1 = j.

Case 1. If �j = 1, then the only unknown constant is Aj(0, 0). Recalling that
Ψj(z, z; r) = 1/m and expanding terms z − embj(zw(z)−1), (1 − z−1) in the left
neighborhood of z = 1, we get

(
1 − mbj

1 − aj

) 1
m

= Aj(0, 0).

Case 2. If �j > 1, we have �j(�j + 1)/2 > 1 unknown constants. Let us study
the equation

z�j − ebj(zw(z)−1) = 0.

It follows from the modified Rouché theorem [12] and the Lemma below that
it has exactly �j − 1 zeros inside the unit disk |z| < 1 when the stationarity
condition (3) is fulfilled.

Lemma 2. If inequality (3) is fulfilled, then |ebj(zw(z)−1)| < 1 for all |z| = 1,
z �= 1.



On the Existence of the Stationary Distribution 103

Proof. Let z = eiu, w(z) = Reiϕ, 0 � u < 2π, 0 � ϕ < 2π. Then

Reiϕ = ea(eiu·Reiϕ−1).

Its right-hand side equals ea(Rei(u+ϕ)−1). By comparing moduli, we get

R = eaR cos(u+ϕ)−a.

We have R = 1 if and only if a cos(u + ϕ) − a = 0, whence cos(u + ϕ) = 1. But
then sin(u + ϕ) = 0 and it’s the argument value ϕ of the complex number Reiϕ.
Finally, from 1 = cos(u + ϕ) = cos u we get u = 0.

Denote these zeros by β1, β2, . . . , β�j−1.

Theorem 4. If inequality (3) is fulfilled then the following equations take place:

�j−1∑

x=0

�j−x−1∑

n=0

Aj(x, n)(�j − x − n) =
�j

m
− bj

1 − aj
,

�j−1∑

x=0

�j−x−1∑

n=0

Aj(x, n)((βk)�j − (βk)x+n)(w(βk))n = 0, k = 1, 2, . . . �j − 1.

The number of linear equations given by Theorem 4 is less than the number
of unknown constants. Still, it was to be expected, since Eqs. (5) and (6) are
not equivalent to equations of Theorem 2 and by substituting w = w(z) there
we lose evidently essential parts of information about the generating functions
of interest. Moreover, once we obtain all Aj(x, n), 0 � x + n < �j , we still need
to solve a functional equation relating Ψj(z, w; r ⊕1) to Ψj(z, eaj(zw−1); r) in the
polydisk {(z, w) : |z| � 1, |w| � 1} ⊂ C

2.
Since the main functional transform (2) for a queue length is produces a

random walk with reflection at zero, a many times studied (under a variety
of assumptions) process, it is of interest to compare the assumptions on the
input processes, such as input flows and service processes, in our work and in
other classical works. Usually (c.f. [13]) it is assumed that the sequence (in our
notation)

{ηj,i − ξj,i; i = 0, 1, . . .}
is a stationary process. In our case, it would imply not only that the input
sequence {ηj,i; i = −1, 0, 1, . . .} is stationary, but also that the initial server state,
Γ0, is random with the uniform probability distribution on Γ . Our exposition
leaves more freedom for the input flow and the initial server state.

3 Conclusion

It was shown in this work that discrete-time models of queueing systems with
auto-regressive input process may lead to a challenging problem in the domain
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of several complex variables in terms of multivariate probability generating func-
tions. This problem still wait for its solution. Nethertheless, the necessary and
sufficient conditions on the parameters of the queueing system which guarantee
the existence of the stationary probability distribution can be found by careful
analysis of these (yet unsolved) equations. For the polling queueing system under
study, these conditions are easily verifiable and have natural physical interpre-
tation in terms of mean values for the basic quantities like numbers of arrivals
and saturation flow intensity.
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