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Abstract. In this work we analyze an open queueing network with batch
services. In more detail, the arrival process is Poissonian and each node
consists of a single server and an infinite waiting queue. Arrivals are
served in fixed-size batches: if the number of customers in a node is less
than the predefined batch size, the server remains idle, otherwise he will
select the required number of customers, which then will be served as a
unique batch with exponentially distributed service time. In this paper
we show that, under suitable conditions on the routing matrix, such
queueing network is equivalent, in terms of stationary distribution, to
a Jackson network with single-server nodes and state-dependent service
rates. Finally, the goodness of the proposed approach is confirmed by
comparing analytical and simulation results.
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1 Introduction

Queueing systems and networks with batch services attract the interest of many
researchers, since they permit to model and analyze various multi-user sys-
tems [1,2], large scale semiconductor manufacturing systems [3], cloud comput-
ing systems [4] and wireless sensor networks [5].

The analysis of any queueing network is aimed at obtaining expressions for its
stationary characteristics, the most important of which is the stationary prob-
ability distribution of the states of the system. Since the equilibrium equations
for queuing networks with batch services have a high dimensionality, the calcu-
lation of the stationary distribution as a numerical solution of these equations is
computationally difficult. Therefore, special attention has been devoted to the
search for product-form solutions.

It is worth noticing that the fundamental works on queueing networks with
batch services are relatively recent, as they were published in 1990 [6,7]. In more
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detail, in [6] a continuous-time Markov chain is introduced to model queueing
networks with simultaneous changes due to batch services, or discrete-time struc-
ture and clustering processes such as those arising in polymer chemistry. It is
shown that if multiple instantaneous state transitions of the process are allowed
and the Markov chain is reversible, then its stationary distribution has a product-
form. In [7] a discrete-time closed queueing network with batch services is con-
sidered and the state of the network is defined by a vector with dimension equal
to the number of customers. Each element of the status vector is associated with
a specific customer and indicates the node occupied by that customer. So, cus-
tomers transitions are reduced to changes of the corresponding labels, and it is
assumed that the change of a label does not depend on the status of the labels
of the other customers. It is shown that on an irreducible set of states and for
arbitrary given functions of service and routing, there is a product-form for the
stationary probability distribution of the queueing network states. Chao [8] and
Economou [9] considered networks, for which the quasi-reversibility conditions
are met and the groups of customers at the end of the service in one node always
pass to another node together.

To analyze queuing networks with batch services and an arbitrary distri-
bution of the service time that do not admit a product-form of the stationary
distribution, in [3,10] it was proposed to use the decomposition method. Finally,
in [11,12] the stationary distribution was calculated as the normalized solution
of the system of equilibrium equations.

In this paper, we consider open queueing networks with service of fixed-size
batches of customers and independent routing. It is assumed that the batch size
is significantly smaller than the number of nodes to which the customers can be
routed at the end of the service. Thus, the network nodes work independently
and this consideration permits to simplify the analysis of the queueing network,
which is reduced to the investigation of the individual queues in isolation. In
more detail it is proposed to calculate the stationary state probability distribu-
tion of the open network in a product-form, similar to the case of birth-death
processes after recalculating the transition rates. To the best of our knowledge,
this approach is new. Until now, indeed, the probability generating function
[4,13–15], the Laplace-Stieltjes transform [16], and the direct calculation of the
stationary distribution as a solution of the Kolmogorov equations [17] have been
mainly used to calculate the stationary characteristics of the queueing network.

The rest of the paper is organized as follows. Section 2 introduces the model
of the queueing network, while in Sect. 3 an equivalent (in terms of stationary dis-
tribution) Jackson network with single-server nodes is proposed. In more detail,
for such equivalent system state-dependent service rates as well as expressions
for the stationary probability distribution are derived. Then, Sect. 4 compares
the values of the analytical expression with the simulation results, and analyses
the dependence of the characteristics of open queueing networks on different
system parameters (batch size, arrival rate, service rate).
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2 Statement of the Problem

Consider a continuous-time open queueing network N consisting of L nodes Si,
i ∈ I, I = {1, . . . , L}. Customers arrive to the queueing network N from an
outside source (denoted in the following as S0) according to a Poisson stream of
rate λ0. Customer transitions between nodes and the source are defined by the
routing matrix Θ = (θij), i, j = 0, . . . , L, where θij is the transition probability
from node Si to node Sj . The state of the network is defined by a vector s =
(s1, . . . , sL), where si is the number of customers at node Si. Denote by X =
{s : si ≥ 0} the state space of the queueing network N .

Each node Si, i = 1, . . . , L, operates as an infinite capacity single-server
queue. Arriving customers are placed in the waiting queue if the server is busy.
Customers are served in batches, and let bi be the customer batch size for node
Si. The server remains idle until the required number bi of customers arrives
at the node and then the service of the batch starts immediately; otherwise, bi

customers are selected in any order for service, while the others remain in the
queue. The service times of batches at node Si are exponentially distributed
with parameter μi, i = 1, . . . , L. After a batch finishes its service at node Si,
each customer will go, independently of the others, to node Sj with probability
θij , i, j = 0, 1, . . . , L.

Our aim is to find the stationary distribution π(s) = (π1(s1), . . . , πL(sL)),
s ∈ X, for the queueing network N , where πi(si) represents the stationary
distribution for node Si, si = 0, 1, . . . , i = 1, . . . , L, starting from the analysis of
a single node.

3 Analysis of the Model

In this paper we analyze large scale networks with individual routing of the
customers, assuming that the number of possible destinations is significantly
larger than the batch size. Hence the probability of the simultaneous arrival of
two or more customers in a node can be neglected. Therefore, we will assume
that each node in N is fed by a Poisson stream of customers.

First we will study the isolated node Si, i = 1, . . . , L. It is known that the
equilibrium equations for this node have the form

⎧
⎪⎨

⎪⎩

λiπi(n) = μiπi(bi), n = 0,

λiπi(n) = λiπi(n − 1) + μiπi(bi + n), 1 ≤ n ≤ bi − 1,

(λi + μi)πi(n) = λiπi(n − 1) + μiπi(bi + n), n ≥ bi.

(1)

where λi denotes the arrival rate to node Si, i = 1, . . . , L.
We define a birth-death process ξi, which will be equivalent in steady-state

probabilities to the Markov process describing the node Si. Let the process ξi

be defined on a set of states {0, 1, . . . }, let λi = λi(n) be the transition rate of
the process ξi from state n to state n+1, which does not depend on the state n,
n ∈ {0, 1, . . . }, and let μ̃i(n) be the transition rate of the process ξi from state



Analysis of Open Queueing Networks with Batch Services 43

n to state n − 1, where n ∈ {1, 2, . . . }. The states {0, 1, . . . } and the parameter
λi of the process ξi correspond to the states {0, 1, . . . } and the parameter λi of
node Si. Let us find the rates μ̃i(n), n = 1, 2, . . . . To this aim, note that the
steady-state probabilities of the birth–death process ξi are given by [18]

πi(k) = πi(0)
k∏

n=1

λi

μ̃i(n)
, k = 1, 2, . . . , (2)

where

πi(0) =

(

1 +
∞∑

k=1

k∏

n=1

λi

μ̃i(n)

)−1

, i = 1, . . . , L.

By substituting (2) in (1), we get the expressions that define μ̃i(n), n = 1, 2, . . . ,
⎧
⎪⎪⎨

⎪⎪⎩

μ̃i(n) = λi − μi
λbi

i

μ̃i(n + 1) · . . . · μ̃i(bi + n)
, 1 ≤ n ≤ bi − 1,

μ̃i(n) = λi + μi − μi
λbi

i

μ̃i(n + 1) · . . . · μ̃i(bi + n)
, n ≥ bi.

(3)

Let Mi = lim
n→∞ μ̃i(n); if the limit exists, then:

μiλ
bi
i = (λi + μi − Mi)M bi

i

or
M bi+1

i − (λi + μi)M bi
i + λbi

i μi = 0. (4)

The existence of the equivalent birth-death process ξi requires that the previous
equation has a positive solution, fulfilling the stability condition for each node Si.

The answer is provided by the following theorem (without loss of generality
we denote the generic Mi, for i ∈ I by x).

Theorem 1. The equation

xb+1 − (λ + μ)xb + λbμ = 0 (5)

has two positive roots, the largest of which belongs to the interval
(

b(λ + μ)
b + 1

,
(λ + μ)b+1 − λbμ

(λ + μ)b

)

.

Proof. Consider the function

f(x) = xb+1 − (λ + μ)xb + λbμ

for λ < bμ and b ≥ 1.
It is easy to verify that f(x) is continuous for any x ∈ R and x1 = λ is a

root of f(x). To determine the existence of other roots let us consider the first
derivative of f(x):
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f ′(x) = (b + 1)xb−1

(

x − b

b + 1
(λ + μ)

)

. (6)

The equation f ′(x) = 0 has only one positive root

x∗ =
b(λ + μ)

b + 1
,

with x∗ > x1. Indeed,

x∗ − x1 =
b

b + 1
(λ + μ) − λ =

bμ − λ

b + 1
> 0,

since λ < bμ and b ≥ 1. Since f ′(x) > 0 for

x ∈
(

b(λ + μ)
b + 1

, λ + μ

)

,

then the function f(x) is increasing in such interval. Moreover,

f

(
b(λ + μ)

b + 1

)

< 0

and f(λ+μ) > 0, hence in the interval
(

b(λ+μ)
b+1 , λ + μ

)
there is a value of x such

that f(x) = 0.
To further refine the estimation of the root, let us note that in the above-

mentioned interval the function f(x) is convex, since

f ′′(x) = bxb−2((b + 1)x − (b − 1)(λ + μ)) > 0

for

x >
b(λ + μ)

b + 1
>

(b − 1)(λ + μ)
b + 1

.

The tangent line to f(x) at the point x = λ + μ is

y(x) = λbμ + (λ + μ)b(x − (λ + μ))

and its intersection with the horizontal axis is

x0 = (λ + μ) − λbμ

(λ + μ)b
.

Since the function f(x) is convex, x0 is an upper bound for the roots of f(x),
and this implies that the largest root of Eq. (5) belongs to the interval

(
b(λ + μ)

b + 1
,

(λ + μ)b+1 − λbμ

(λ + μ)b

)

.
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Taking into account the previous theorem and the stability condition of the
equivalent birth-death process, Eq. (4) has a unique root, located in the interval
(λi, λi + μi), which can be determined numerically (explicit closed-for solutions
can be easily derived only for b = 1 and b = 2). From the system of Eqs. (3) it
follows

μ̃i(bi) = μ̃i(bi + 1) = μ̃i(bi + 2) = · · · = Mi,

and then the service rates μ̃i(bi−1), μ̃i(bi−2),. . . , μ̃i(1) can be easily calculated.
Thus, the rates μ̃i(n) are determined for each state n of process ξi.

The results obtained for the process ξi can be applied to any node, and so we
can create an open queueing network Ñ with nodes S̃i and service rates μ̃i(n),
where n is the number of customers in the node S̃i, n = 1, 2, . . . , i = 1, . . . , L.
The other parameters of Ñ coincide with the corresponding parameters of the
original queueing network N .

Ñ is equivalent in stationary distribution to the queueing network N with
batch services and is a Jackson network.

The arrival rates in nodes Si are determined by the following equations

λi =
ωi

ω0
λ0, i = 1, . . . , L,

where the vector of visitation rates ω = (ω1, . . . , ωL) is the solution of the equa-
tion ωΘ = ω with the normalization condition

∑L
i=0 ωi = 1.

The queueing network N and its equivalent network Ñ are stable if the
utilization coefficient in the node Si, i = 1, . . . , L,

ρi =
λi

biμi
< 1,

and, under such conditions, we can compute the stationary distribution for Ñ .
We obtain

π(s) =
L∏

i=1

πi(si), s ∈ X,

where

πi(si) = πi(0)
si∏

n=1

λi

μ̃i(n)
.

Then, the average number of customers in the node Si, i = 1, . . . , L, is given
by

s̄i =
∞∑

n=1

nπi(n),

the average sojourn time in the node Si, i = 1, . . . , L, is

ūi =
s̄i

λi
,
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and the average response time of the queueing network is

τ̄ =
1
λ0

L∑

i=1

λiūi.

4 Numerical Examples

Numerical examples are reported in this section to verify the goodness of the
product-form approximation for complex networks and investigate the depen-
dence of their characteristics on different system parameters (batch size, arrival
rate, service rate). Although different topologies have been investigated, for sake
of brevity just one network topology is considered, focusing on overall system
performance parameters as well as on characteristics of single queues.

Consider the queueing network N with the following parameters (unless oth-
erwise stated): L = 14, b = (3, 2, 2, 3, 2, 2, 3, 3, 2, 2, 3, 2, 2, 3),
μ = (0.8, 0.6, 0.9, 0.6, 0.8, 0.8, 0.9, 0.6, 0.7, 0.8, 0.9, 1.0, 0.7, 0.7), and

Θ =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0.0 0.3 0.4 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.0
0.0 0.0 0.0 0.0 0.0 0.1 0.1 0.2 0.2 0.1 0.1 0.1 0.1 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.1 0.1 0.2 0.1 0.2 0.1 0.1 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.1 0.1 0.1 0.1 0.2 0.2 0.1
0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.1 0.1 0.1 0.1 0.1 0.2
0.2 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.2 0.1 0.1 0.1 0.1
0.2 0.1 0.1 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.1 0.1 0.1
0.2 0.0 0.0 0.0 0.1 0.1 0.1 0.0 0.0 0.1 0.1 0.1 0.1 0.0 0.1
0.1 0.1 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.1 0.2 0.1 0.1
0.3 0.1 0.1 0.1 0.1 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0
0.3 0.0 0.0 0.0 0.0 0.1 0.1 0.1 0.1 0.1 0.0 0.0 0.0 0.1 0.1
0.3 0.1 0.1 0.1 0.1 0.0 0.0 0.0 0.0 0.1 0.1 0.1 0.0 0.0 0.0
0.3 0.0 0.0 0.0 0.0 0.1 0.1 0.1 0.1 0.0 0.0 0.1 0.1 0.0 0.1
0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.1 0.1 0.1 0.1 0.1 0.0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

The considered network satisfies the assumptions introduced above. Indeed,
the network consists of a relatively large number of nodes, the size of the batches
that are served together is significantly less than the number of possible output
nodes and the routing probabilities are of the same order of magnitude (there is
no privileged path through the network). Hence, the Poissonian assumption can
be reasonably assumed for any node of the network.

The first two sets of tests investigated the accuracy of the developed method
by comparing the analytical values with the results of discrete-event simulation.
In more detail, in the first experiment we analysed the (overall) average response
time as a function of the input rate λ0.

Table 1 shows that the largest difference in the values of τ̄ is observed for
λ0 = 0.1 and does not exceed 10.2%, while for the other values of λ0, the
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Table 1. Average response time of the queueing network.

λ0 0.1 0.5 1.0 1.5 2.0 2.5 2.7

Approximation 107.32 27.57 18.29 16.20 16.76 20.62 24.06

Simulation 118.25 28.78 18.61 16.35 16.86 20.82 25.24

deviation is no more than 5%. Note that the intensity of the flow λ0 = 2.7 is
almost the maximum for the network under consideration, since for such value
the stability condition for node S9 is still met.

In the second example we focused on a specific node (the queue S7), consid-
ering the average number of customers (Tables 2) as well as the average sojourn
time in the node (Tables 3) for different values of the service rate μ7 with fixed
arrival rate λ0 = 1.5.

Table 2. Average number of customers in the node S7.

μ7 0.2 0.4 0.6 0.8 0.9 1.0 1.2

Approximation 8.72 2.53 1.89 1.63 1.56 1.5 1.41

Simulation 8.66 2.53 1.91 1.66 1.58 1.52 1.43

Table 3. Average sojourn time in the node S7.

μ7 0.2 0.4 0.6 0.8 0.9 1.0 1.2

Approximation 18.26 5.31 3.95 3.42 3.26 3.13 2.95

Simulation 18.13 5.30 3.99 3.47 3.31 3.18 3.00

The characteristics of the node S7, derived by discrete-event simulation, were
calculated in stationary conditions with a confidence interval of 0.001 and a
confidence level higher than 0.95.

In the third experiment we investigated the dependence of the stationary
characteristics of the nodes S2, S6 and S11 on the intensity of the incoming flow
λ0 (see Fig. 1 and 2). The characteristics of the other nodes are not shown in the
graphs for sake of clarity, since their behavior does not differ qualitatively form
the reported ones.

Figure 1 shows that the average number of customers in all systems mono-
tonically increases with λ0. Instead, the average (node) sojourn time reaches a
minimum for some value of λ0 as highlighted by Fig. 2. This can be explained
as follows. When λ0 is close to zero, the device is idle for a long time, and
the customers forming an “incomplete” batch have to wait in the buffer until



48 E. Stankevich et al.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8
0

1
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5

6

λ0

s̄

S2

S6

S11

Fig. 1. Average number of customers in
the nodes S2, S6 and S11.
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2

4
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12

14

16

18

20

λ0

τ̄

S2

S6

S11

Fig. 2. Average sojourn time in the
nodes S2, S6 and S11.

the last element of the batch enters the system. Instead, when the arrival rate
into the considered system approaches its service rate, the average waiting time
increases significantly. Thus, there is an optimal value of the arrival rate, at
which the average sojourn time in the node is minimal.

The fourth experiment is devoted to the study of stationary characteristics
of the nodes S7 and S9 for different sizes b of the batch in these systems. The
input rate in this experiment is again λ0 = 1.5.

1 2 3 4 5 6
1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

3.2

b7

s̄ 7

S7

Fig. 3. Average number of customers
in the node S7.

1 2 3 4 5 6

0.1

0.2

0.3

0.4

0.5

b7

ρ
7

S7

Fig. 4. Utilization coefficient of the
node S7.

The minimum value of the average number of customers in both nodes is
achieved when the batch size is two (Fig. 3 and 5), while the utilization coefficient
is a monotone decreasing function of b (Fig. 4 and 6), but its numerical value
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10
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14
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20

b9

s̄ 9
S9

Fig. 5. Average number of customers in
the node S9.
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1

b9

ρ
9

S7

Fig. 6. Utilization coefficient of the node
S9.

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

1
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2
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3
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4

μ5

s̄ 5

S5

Fig. 7. Average number of customers in
the node S5.
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7

8

9

10

μ5

τ̄ 5

S5

Fig. 8. Average sojourn time in the node
S5.

depends on the arrival rate at the considered node (in our example ρ9 is almost
twice ρ7). It is worth noticing (see Fig. 6) that for b9 = 1, the utilization ρ9 of
the node S9 is close to 1 and this is confirmed by the high value of the number of
customers in the system (s̄9 ≈ 20 as shown in Fig. 5). When b9 = 2, then s̄9 ≈ 2,
while the increment of b9 leads to a slight increase in s̄9. Thus, the increase of the
batch size can significantly improve the basic average characteristics of service
systems. Actually, as shown by numerical experiments, the minimum value of
both the average sojourn time and average number of customers in the system
can be assumed at different values b, depending on the network topology and
the routing matrix.

Finally, we calculated the stationary characteristics of the nodes S5 and S9

for different values of the service rate in these systems (assuming, as before,
λ0 = 1.5).
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0.4 0.5 0.6 0.7 0.8 0.9 1

1

2
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4

5

6
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9
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μ9

s̄ 9

S9

Fig. 9. Average number of customers in
the node S9.
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12

14

μ9

τ̄ 9

S9

Fig. 10. Average sojourn time in the node
S9.

The graphs shown in Fig. 7, 8, 9 and 10 decrease monotonically with the
growth of μ and asymptotically tend to their limit values.

5 Conclusions

In this paper large-size open queueing networks with batch services are consid-
ered. Under the assumption that the number of output nodes is significantly
more than the batch size, it is shown that the stationary distribution of the
queueing network can be expressed in product-form. Then, the parameters of
the equivalent queueing network are derived and the goodness of the approxi-
mation is verified by means of discrete-event simulation.
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