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Abstract. The paper considers the transmission of messages with
demultiplexing over two communication channels with different through-
put capacities. The channel with the highest throughput receives the
largest chunks of messages resulting from the demultiplexing, and the
channel with the smallest throughput receives the smallest chunks. The
problem of calculating the optimal channels throughputs is solved by
taking into account the characteristics of the transmitted traffic.
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1 Introduction

Due to the self-isolation and quarantine regimes implemented during the current
COVID-19 pandemic, there is an increased demand for Internet connection ser-
vices, data transfer speeds augmentation, throughput expansion, and additional
communication channels purchase [1–3]. The most popular transmitted content
is video data, for example, online broadcasts of cinemas, educational webinars.
Broadcasting is carried out using client-server applications, in which the con-
tent can be pre-transformed using any algorithms, and only then transmitted
to the user. The preliminary content transformation can be carried out in order
to compress it, in other words, to reduce the transmitted traffic, as well as to
ensure confidentiality, i.e., to perform cryptographic transformations. In such
situations, even the choice of optimal cryptographic algorithms can lead to sig-
nificant delays in the playback of the video data stream due to the fact that the
reverse cryptographic conversion must be performed on the client side. The use
of an additional communication channel makes it possible to organize distributed
data transmission, which allows to solve the problem of ensuring confidentiality,
but there arise some questions related to the efficiency of the use of computing
resources, optimization of channel throughput, synchronization of transmitted
streams, etc.
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2 Problem Statement

Let the sender (a person or an automatic device) transmit to the receiver a high-
quality uncompressed media stream, which is a sequence of images (frames).
The transmission is carried out over the Internet, and it is required that no
one except the recipient can access the contents of the transmitted data. To
meet this requirement, it is possible to organize secure media data streaming
using cryptographic methods. However, when using such methods, there may
arise problems related to ensuring the stability of the selected algorithms and,
accordingly, with the availability of sufficiently powerful computing resources on
the receiving side to guarantee timely data decryption. In such a situation, it
is advisable to consider the possibility of using other methods of information
protection that are not related to classical cryptography, e.g., secret sharing
schemes (SSS) [4], demultiplexing.

Algorithms for dividing video data into unequal shares are proposed in [5–7]
which will allow the sender and receiver to carry out the separation of the trans-
mitted TCP / IP traffic over these channels, using two communication channels
with different throughput, as, for example, it is described in [8–11]. Further, we
will assume that SSS for unequal shares can be used not only for transmitting
video frames, but also for transmitting streams of any messages, and all the trans-
formations described in [5–7] are performed directly on the bit representation of
these messages. When messages are divided into unequal shares, a smaller share
of each message is transmitted over a lower throughput channel, while a larger
share is transmitted over a higher throughput channel. Such message transmis-
sion from the sender to the recipient is carried out at the transport level of the
seven-level OSI network model [12], where the TCP protocol provides guaran-
teed data delivery. When using two communication channels at the same time,
there arise questions related to the efficiency of computing resources, optimiza-
tion of channel throughput, synchronization of transmitted streams, buffering.
These issues can be solved by implementing appropriate client-server applica-
tions and optimizing the throughput of communication channels. It is advisable
to optimize the throughput capacities according to cost minimization criteria,
one part of which is associated with message delays in the network (the growth of
which leads to a delay in the recipient’s response to messages and corresponding
losses), the other part is related to the payment for channel throughput, which
increases with throughput growth.

As a mathematical model for optimizing a two-channel SSS, a network with
splitting requests (S-network) with two single-channel queuing systems (QS) is
proposed (see Fig. 1). In terms of queuing theory (QT), we will call messages and
their parts requests, demultiplexing messages - splitting requests, multiplexing
messages assembling requests. Two requests corresponding to two parts of the
same divided message will be referred to as conjugate requests. We define the
discipline of servicing queues in front of the channels as FIFO (first in - first out)
discipline. Requests are transmitted over two channels with different throughputs
C1, C2 measured, for example, in Kbit/s. Unlike traditional QS networks, at
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Fig. 1. Network with splitting requests. S - split point, A - assemble point

Point S, the request does not go to one of the branches, but is split into two
requests, one of which arrives at QS1 and the other goes to QS2. At Point A, two
conjugate requests “merge” and turn into one request. Accordingly, the incoming
Traffic F (Kbit/s) is divided into two parts F1 and F2, where F1 + F2 = F . The
moment of entry of the request into the network is simultaneously the moment of
its splitting and the moment of entry of the resulting conjugate requests into each
of the two branches of the network (into each of the two QSs). Consequently, the
Intensities λ, λ1 and λ2 of the request flows entering the network are the same
in QS1 and in the QS2, respectively, and all three request flows are described
by the same probabilistic law. Another feature of the considered S-network, not
shown in Fig. 1, is that before Point A, two more queues are formed (one on each
branch) - synchronization queues. At the moment of exit from the first (second)
channel, the request enters the first (second) synchronization queue before Point
A, where it remains until its conjugate “half” is found in another synchronization
queue. In other words, one of the two conjugate requests that arrived first at
Point A waits for the second conjugate request to arrive. At the moment of its
arrival, both conjugate requests are merged into one request leaving the network,
and the transfer of the request is completed.

Note that all requests arrive in each synchronization queue in the same
sequence that they enter the network. Therefore, if at least one request is pend-
ing in one synchronization queue, the other synchronization queue is empty. At
any finite time interval, either the first synchronization queue is empty, or the
second, or both queues are empty. Both of these queues can be non-empty at
the same time only at one point in time: when the condition “at the selection
point there is a pair of requests conjugated with each other” is fulfilled. It follows
from this that of the two conjugate requests, the one that arrives later is not
delayed in the synchronization queue. Consequently, the Time u of the message
transmission (in terms of QT, the time the request is in the network, i.e., the
time elapsed from the moment the request arrives in Point S until the moment
it leaves Point A) is determined by the formula:

u = max(u1, u2), (1)

where u1 is the time the request was in QS1:

u1 = w1 + x1, (2)
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u2 is the sojourn time of the conjugate request in QS2:

u2 = w2 + x2, (3)

w1 is the request waiting time in Queue 1, x1 is the request service time in
Channel 1, w2 is the waiting time of the conjugate request in queue 2, x2 is the
service time of the conjugate request in Channel 2.

The average Time U of staying in the S-network, according to (1), is expressed
by the formula:

U = M [max(u1, u2)] = M [max(w1 + x1, w2 + x2)] . (4)

Time U depends on the Throughputs C1, C2:

U = U(C1, C2).

Let the price of the throughput of any channel, calculated for the network
operation time, be equal to m c.u./(Kbit/s). Then the problem of optimizing
Throughputs C1, C2 of the S-network channels (or, in other words, the problem
of optimizing the S-network) can be formulated as follows:

f = lU (C1, C2) + mC1 + mC2 → min
C1,C2

, (5)

{
C1 ≥ F1,

C2 ≥ F2,
(6)

where U(C1, C2) = M [max(u1, u2)], l (c.u./s) is the cost of the average network
delay per second. Cost Coefficient l is equal to losses (arising from waiting for
applications) calculated for the period of network operation.

Thus, the problem (5), (6) is posed as the problem of minimizing the average
costs over the network operation time. A network with optimal channel capacity
will be called optimal.

The non-triviality of the problem posed is due to the absence in the QT of
explicit formulas that allow, directly or by means of appropriate transformations,
to accurately calculate the average Time U of requests in the S-network under
some general and natural assumptions about the incoming flow of requests and
methods for their splitting. To solve this problem, it is necessary to develop
appropriate exact or approximate methods. Further development and research
of such methods is ongoing.

3 Exponential Network with Independent Branches

3.1 Problem Statement

Consider a network with independent branches (Fig. 2), which makes sense to
study as a simplified first approximation of the S-network shown in Fig. 1.
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Fig. 2. S-network with independent branches

In this network with independent branches, QS1 and QS2 operate indepen-
dently, each serving its own stream of requests. Each of these QSs is individually
equivalent to the corresponding QS in an S-network, but a pair of QSs in a net-
work with independent branches (Fig. 2) is not equivalent to a pair of QSs in an
S-network (Fig. 1). In a network with independent branches, the QSs function
independently; in an S-network the processes in one and the other QS are sta-
tistically dependent. Statistical independence of the network branches in Fig. 2
simplifies its analysis.

The dashed lines in Fig. 2 show a single passage through the network of a
single request, divided into parts, in a stationary mode of network operation
at a random time. At the moment of its arrival, the conjugate parts of the
split request arrive at the corresponding QSs, then pass through the queues
and service, and are assembled into one request, as described above. The travel
time of the split request through the network is expressed by formula (1), the
optimization problem for such a network is posed in the form (5), (6). In order
to solve this problem by analytical methods, let us express M [max(u1, u2)], in
terms of Channel Throughputs C1, C2.

3.2 Network with Independent Branches Optimization

The calculation of the system in Fig. 2 contains the following steps. First, we
can find the distribution functions of the sojourn time of entire requests in QS1,
QS2. Since these QSs are exponential, the required distribution functions are
known. Since Quantities u1 and u2 are independent, we find the distribution of
the maximum of these quantities, and through it the desired M [max(u1, u2)].

The distribution function of the sojourn time in QS1 has the form [13]:

P (u1 ≤ t) = 1 − e−μ1(1−ρ1)t, (7)

similarly in QS2 it is described as:

P (u2 ≤ t) = 1 − e−μ2(1−ρ2)t, (8)

where μ1, μ2 are the service intensity in the first and second channels, ρ1, ρ2 are
the load factors of the first and second channels.

We find the Distribution Function max(u1, u2) as the probability of simul-
taneous occurrence of two independent events: as the probability that the first
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value does not exceed t and that the second value does not exceed t:

P [max(u1, u2) ≤ t] =
[
1 − e−μ1(1−ρ1)t

] [
1 − e−μ2(1−ρ2)t

]
. (9)

Using the well-known formula for calculating the mathematical expectation of a
positive random variable (without calculating the probability density), we find

M [max (u1, u2)] =
∫ ∞

0

[
1 −

(
1 − e−μ1(1−ρ1)t

) (
1 − e−μ2(1−ρ2)t

)]
dt =

=
1

μ1(1 − ρ1)
+

1
μ2(1 − ρ2)

− 1
μ1(1 − ρ1) + μ2(1 − ρ2)

. (10)

The resulting expression can be substituted into the problem (5), (6) to solve it
for a network with independent branches by analytical methods. Before doing
this, let us move on to the expression (10) and the parameters used in the problem
(5), (6): ρ1 = F1/C1, ρ2 = F2/C2, μ1 = C1/H1, μ2 = C2/H2. Moving on to these
designations in the expression (10) and substituting it into the problem (5), (6),
we obtain:

f =
lH1

(C1 − F1)
+

lH2

(C2 − F2)
− l

H−1
1 (C1 − F1) + H−1

2 (C2 − F2)
+mC1 + mC2 → min

C1,C2
,

(11)

{
C1 ≥ F1,
C2 ≥ F2.

(12)

The point (C1, C2) of the local minimum of this positive function can be found
from the system of equations

∂f

∂C1
= 0,

∂f

∂C2
= 0,

that is, from the equations

− lH1

(C1 − F1)2
+

lH−1
1(

H−1
1 (C1 − F1) + H−1

2 (C2 − F2)
)2 + m = 0, (13)

− lH2

(C2 − F2)2
+

lH−1
2(

H−1
1 (C1 − F1) + H−1

2 (C2 − F2)
)2 + m = 0. (14)

Let us denote C1 − F1 by x and C2 − F2 by y. As a result, the system (13), (14)
takes the following form, which is well solved by numerical methods:

− lH1

x2
+

lH−1
1(

H−1
1 x + H−1

2 y
)2 + m = 0, (15)
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− lH2

y2
+

lH−1
2(

H−1
1 x + H−1

2 y
)2 + m = 0. (16)

One of the main methods for reducing the delay time of conjugate requests in syn-
chronization queues is to introduce the maximum positive correlation between
the processes of moving conjugate requests along the network branches. This
method is explored in the following sections of the article.

4 S-Networks with Synchronous Branches

4.1 Fundamentals

Definition. Consider an S-network in which each incoming request has a random
size h (Kbit) and is split into two conjugate requests so that the same proportion
is always maintained between their sizes h1 and h2 (where h1 + h2 = h):

h2/h1 = γ = const. (17)

If, in this case, the throughput of the channels is connected by the condition

C2 = γC1, (18)

then the service time x1 of the request in Channel 1 and the Service Time x2 of
the conjugate request in Channel 2 coincide:

x1 = h1/C1,

x2 = h2/C2 =(γh1)/(γC1) = h1/C1 = x1. (19)

Since the equality (19) is satisfied for each pair of conjugate requests, then in
each pair both conjugate requests enter the queues to the channels, into the
channels, and to the assembly point simultaneously. We call such a network an
S-network with synchronous branches or an Ss-network.

It is easy to see that in the Ss network, C2 = γC1 implies C = (1 + γ)C1,
where C = C1 + C2 is the total throughput of the channels. Similarly, from
h2/h1 = γ it follows that Traffic F2 entering the second branch and all Traffic
F entering the network are expressed in terms of F1 by the relations F2 = γF1,
F = (1 + γ)F1.

Ss-Network Optimization Problem . The problem (5), (6) of optimizing an S-
network with synchronous branches can be solved exactly for any flow of requests
for which both QSs in the branches can be calculated using exact QT methods.

Indeed, since Sojourn Time u1 of any request in QS1 and Sojourn Time u2 of
the corresponding conjugate request in QS2 in the Ss-network coincide, then in
(1) we have u = max(u1, u2) = u1 and, therefore, in (4) U = M [max(u1, u2)] =
M [u1] = U1, where U1 is the average sojourn time of the request in QS1. Per-
forming the substitutions U(C1, C2) = U1(C1), C2 = γC1 and F2 = γF1 in the
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problem (5), (6), we obtain its equivalent formulation using only one variable
parameter C1:

f = lU1(C1) + m(1 + γ)C1 → min
C1

, (20)

C1 ≥ F1. (21)

Note that after these substitutions are performed, the second constraint in (6)
becomes equivalent to the first and, therefore, is absent in the constraints (21).

The solution to the problem (20), (21) of optimization of the Ss-network
determines the optimal throughput C1 of the first channel and, at the same
time, the corresponding throughput C2 = γC1 and C = (1 + γ)C1.

4.2 Ss-Network with Regular Incoming Flow and Fixed Order Size

Optimization. With a regular incoming flow, Time τ between arrivals of requests
to the network (and, therefore, to each of the two branches) is constant: τ =
const.The size of requests arriving in QS1 is also fixed (h1 = const), so the
service time x1 = h1/C1 is also fixed in QS1. It follows from the restriction
C1 ≥ F1 that x1 ≤ τ1, i.e., each request arriving in QS1 is serviced before the
next one arrives. Therefore, the queue in front of Channel 1 is not formed, and
the average sojourn time of the request in U1 = x1 = h1/C1. Substituting this
expression for U1 in (20), (21) instead of U1(C1), we obtain the problem

f = l
h1

C1
+ m(1 + γ)C1 → min

C1
, (22)

C1 ≥ F1, (23)

whose solution is reduced to solving the algebraic equation

∂f(C1)
∂C1

= 0 or − l
h1

C2
1

+ m(1 + γ) = 0,

determining the point of the local minimum

C1 =

√
lh1

m(1 + γ)
. (24)

If the obtained value C1 satisfies the constraint C1 ≥ F1, then (24) is the solution
to problem (22), (23). Otherwise, the solution to this problem is the smallest
value C1 closest to the point (24) that satisfies the constraint C1 ≥ F1, i.e.,
value C1 = F1.

Comparison with the Single-Channel Version. The two-channel implementa-
tion of the SSS, compared to the single-channel implementation, significantly
increases the security of the transmitted data from unauthorized use. To esti-
mate the losses due to which this is achieved, let us compare the costs obtained
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in the optimal Ss-network with the costs characterizing the corresponding basic
single-channel optimal system.

In the considered case of a regular incoming flow and a fixed size of requests,
the average Time U of message transmission over one channel for C ≥ F is
equal to the average request service time (since there is no queue in front of
the channel). I.e. U = h/C, where h = h1 + h2 = const is the size of requests.
Therefore, the optimization problem for a basic single-channel system takes the
form

f = lh/C + mC → min
C

, (25)

C ≥ F. (26)

The local minimum of the objective function (25) is attained at the point

C =

√
lh

m
. (27)

Theorem 1. Transmission of a regular flow of fixed-size requests through the
optimal Ss-network leads to the same costs as transmission through the opti-
mal single-channel system. In this case, the total throughput of the optimal
Ss-network is equal to the throughput of the optimal single-channel system.

Proof of the Theorem. To prove the theorem, it suffices to note that the state-
ment of the problem (22), (23) for optimizing the Ss-network differs from the
statement of the problem (25), (26) for optimizing a single-channel system only
due to the formulation of the problem (22), (23) in terms of the optimal choice
of throughputs abilities C1. But since any of the parameters C1, C2, and C
uniquely determine the other two parameters in the Ss-network, the problem of
its optimization can be formulated in terms of the optimal choice of any of these
three parameters. When choosing the variable C as a variable parameter - the
total throughput of the channels - the formulation of the Ss-network optimiza-
tion problem becomes equivalent to the formulation of the optimization problem
for a single-channel system.

Indeed, in the problem (22), (23) C1 = C/(1 + γ), F1 = F/(1 + γ) and
h1 = h/(1 + γ). Carrying out the corresponding changes in the problem (22),
(23), we obtain its formulation

f = l
h/(1 + γ)
C/(1 + γ)

+ m(1 + γ)C/(1 + γ) → min
C

,

C/(1 + γ) ≥ F/(1 + γ).

equivalent to the formulation of the problem (25), (26). From the equivalence of
the formulations of the two fundamentally different problems under considera-
tion, the numerical coincidence of their solutions follows. The theorem is proved.

The two problems under consideration are optimization problems for two
different systems, the Ss-network and a single-channel system. The formal coin-
cidence of their solutions means that the transmission of a regular incoming flow
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with a fixed request size through the optimal Ss-network leads to exactly the
same costs as its transmission through the optimal single-channel system.

4.3 Ss-Network with an Arbitrary Incoming Flow of Requests

Theorem 1 is generalized by the following theorem.

Theorem 2. The transmission of any request flow through the optimal Ss-
network leads to the same costs as its transmission through the optimal single-
channel system. In this case, the total throughput of the optimal Ss-network is
equal to the throughput of the optimal single-channel system.

The proof of the theorem is based on a comparison of the processes of passing
through the Ss-network and through a single-channel system of the same imple-
mentation of the incoming request flow. Then, provided that the throughput
of the single-channel system is equal to the throughput of the Ss-network, the
advancement of requests in each branch of the Ss-network occurs synchronously
with the advancement of requests in the single-channel system. Therefore:

– the equivalence of the network optimization problem and the optimization
problem for a single-channel system (including when they are considered inde-
pendently, i.e. when independent implementations of the same request flow
are fed to the network input and to the single-channel system input);

– the coincidence of the total throughput of the optimal network channels with
the throughput of the optimal single-channel system;

– the coincidence of the costs calculated for the period of operation of the
optimal Ss-network and the costs of the optimal single-channel system for
the same period.

A detailed presentation of the proof is beyond the scope of this article.

4.4 Example of Exponential Ss Network Optimization

Definition. An Ss network is said to be exponential if it includes a Poisson request
flow and the request sizes are distributed exponentially. Accordingly, both QSs
in such a network are M/M/1 systems. Their calculation is carried out according
to the well-known formulas [13].

Ss-Network Optimization. The average Sojourn Time U1 in QS1 of the expo-
nential Ss-network is [13]:

U1 =
1/μ1

1 − ρ1
=

1
μ1 − λ1

=
H1

H1μ1 − H1λ1
=

H1

C1 − F1
, (28)

where μ1 is the intensity of servicing requests in the QS1, ρ1 = λ1/μ1 = F1/C1−
is the load factor of QS1, H1 = M(h1) is the average size of requests arriving in
QS1.



Optimization of the Transmission of Messages Divided into Different Shares 231

Therefore, the problem (20), (21) as applied to the exponential Ss-network is
specified as follows:

f = l
H1

C1 − F1
+ m(1 + γ)C1 → min

C1
, (29)

C1 ≥ F1. (30)

The only minimum of objective function (29), determined from the equation

∂f

∂C1
= − lH1

(C1 − F1)2
+ m(1 + γ) = 0 (31)

is reached at the point

C1 = F1 +

√
lH1

m(1 + γ)
(32)

and is the solution to the problem (29), (30),since it satisfies the constraint (30).
Substituting the throughput (32) into the objective function expression (29),

we find the costs of using the optimal exponential Ss-network:

f = l
H1√

lH1
m(1+γ)

+ m(1 + γ)

√
lH1

m(1 + γ)
= 2

√
(1 + γ)mlH1. (33)

Optimization of a Single-Channel Exponential System. The flow of requests
included in the considered exponential Ss-network has intensity λ = F/H =
F1/H1 and average request size H = (1 + γ)H1. When this stream is trans-
mitted over a single-channel system, the average request transmission time is
U = 1/μ

1−ρ = H
C−F . The optimization problem for such a single-channel QS has

the form
f(C) = l

H

C − F
+ mC → min

C
, (34)

C ≥ F (35)

and determines the throughput

C = F +

√
lH

m
, (36)

at which the average total costs (33) are minimal and amount to

f(C) = l
H√

lH
m

+ m

(
F +

√
lH

m

)
= 2

√
mlH + mF. (37)
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Comparison of the Optimal Exponential Ss-Network and the Corresponding
Single-Channel QS. To compare the solution (32) to the problem (29), (30) with
the solution (36), we rewrite the solution (32) in terms of the total throughput of
the Ss-network. Carrying out the substitutions C1 = C/(1+ γ), F1 = F/(1+ γ),
H1 = H/(1 + γ) in (32) equivalent for any Ss-network, we obtain the expression

C

1 + γ
=

F

1 + γ
+

√
lH

m(1 + γ)2
, (38)

and, simplifying it, we find the total throughput of the optimal exponential
Ss-network

C = F +

√
lH

m
,

coinciding, as we see, with the throughput (35) of the optimal single-channel
exponential QS.

Similarly, performing the replacement H1 = H/(1 + γ) in (33) equivalent for
Ss-networks, we make sure that the costs associated with the use of the opti-
mal exponential Ss-network coincide with the costs associated with the use of
the optimal single-channel exponential system. Thus, the solutions to the expo-
nential Ss-network optimization problem, and the optimization problem for the
corresponding single-channel exponential QS, obtained in general form, confirm
and illustrate Theorem 2 formulated above, proved for any request flow.

5 Networks with Splitting Requests in Constant
Proportion

5.1 Fundamentals

Definition. S-networks in which the condition h2/h1 = γ = const is satisfied
when splitting requests, but the condition C2 = γC1 is not imposed, we will call
networks with split requests in equal proportions, or Se-networks. Thus, the Ss-
networks considered above are a subset of Se-networks in which both conditions
(17), (18) are satisfied.

Optimization of Se-Networks. The optimization problem for Se-networks has
certain specific features. It is written, like the general problem (5), (6) of opti-
mization of S-networks, in the form

f = lU(C1, C2) + mC1 + mC2 → min
C1,C2

, (39)

{
C1 ≥ F1,

C2 ≥ F2,
(40)

(where U(C1, C2) = M [max(u1, u2)], and inherits the property (as opposed to
the network with independent branches, see Fig. 2) that in the general case,
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in an elementary function, the inexpressible dependence of the mathematical
expectation M [max(u1, u2)] on the variable parameters C1, C2 is determined
here on stochastically interdependent random variables u1, u2 (sojourn time in
QS1 and QS2).

In contrast to the optimization problem for Ss-networks, the variable param-
eters C1, C2 in (39), (40) are independent and not related by the condition
C2 = γC1, therefore, both inequalities are preserved in the constraints (40). And
so, the progress of requests in the network branches is generally asynchronous
here, which makes it difficult to find an explicit formula that accurately expresses
time in terms of U(C1, C2) = M [max(u1, u2)] network parameters.

At the same time, it is very important to find the exact solution to the
problem (39), (40). This is due to the following considerations. The previously
considered problem This is due to the following considerations. The previously
considered problem (20), (21) of optimizing Ss-networks is the problem of find-
ing the conditional minimum of the objective function (39), since it connects
the arguments of function (39) with an additional condition C2 = γC1, i.e.
limits in the coordinate system (C1, 0, C2) the search area for the minimum f
to a one-dimensional set of points of the straight line C2 = γC1. And when
solving the problem (20), (21), we found the solution on this straight line that
does not increase the costs of a two-channel SSS implementation in comparison
with a single-channel implementation. And if in the two-dimensional region of
feasible solutions to the problem (39), (40) the only minimum point of the objec-
tive function (39) is outside Straight Line C2 = γC1, then the solution to the
problem (39), (40) will be better than the solution to the problem (20), (21).
The substantive meaning of such a solution will be to discover the possibility
of switching to a two-channel SSS implementation not only without increasing
costs (see Theorem 1), but also with their accompanying decrease.

In the next two sections, it is established that such a possibility is excluded
in the class of Se-networks: the optimal solutions of the problem (39), (40) with
independent throughputs always lie on Straight Line C2 = γC1.

5.2 Se-Network with Regular Incoming Flow and Fixed Request
Size

Theorem 3. The Se-network that is optimal for transmitting a regular flow of
fixed-size requests is an Ss-network, i.e., when transmitting a regular flow of
requests of a fixed size, the optimal solution to the problem (39), (40) always
lies on Straight Line C2 = γC1.

Proof of the Theorem. Taking into account the condition h2/h1 = γ = const
which defines the Se-network, we represent the domain of feasible solutions to
the problem (39), (40) in the form of a union of two domains, R1 and R2 (Fig. 3).

Domain R1 is determined by conditions C1 ≥ F1, C2 ≥ γC1, Domain R2

is determined by conditions C2 ≥ F2, C2 ≤ γC1. Line C2 = γC1 for C1 ≥ F1

belongs to both domains. The point (F1, F2) lies on this line, since F2/F1 =
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Fig. 3. Domain of feasible solutions to problem (39), (40)

λh2/λh1 = γ (the coordinates of the point satisfy the equation of the line).
Any point (C1, C2) belonging to the domain of feasible solutions determines
the service time of requests x1 = b1 = h1/C1 ≤ h1/F1 = τ1 for QS1, i.e., the
constant service time of requests in the first branch of the network does not
exceed the constant period τ1 of the arrival of requests in this branch. There is
no queue to the channel in the first branch, Time u1 of the sojourn of requests
in QS1 is constant and equal to h1/C1. Similarly, we find that there is no queue
to the channel in the second branch of the network, and Time u2 of the sojourn
of requests in QS2 is equal to constant h2/C2.

We use the method of proof by contradiction and assume that the least value
of objective function (39) is attained at Point C = (C1, C2), which does not lie
on Straight Line C2 = γC1. Then the required point lies either in Domain R1

and above this line, or in Domain R2 and to the right of this line.
In the first case, the coordinates of Point C which lies in the domain of

feasible solutions and delivers the smallest value of the objective function, have
the form (C1, C2) = (C1, γC1+ε), where ε > 0. In this case, the periodic process
of servicing requests in QS1 is characterized by the Service Time x1 = h1/C1, in
QS2 - by the Service Time x2 = h2/C2 = γh1/(γC1 + ε) = h1/(C1 + ε/γ) < x1.
Each request in the first branch and its conjugate request in the second branch
starts to be served at the same time. The request in the second branch is served
earlier and waits for the completion of the service of the conjugate request,
which should come from QS1. As a result, Time u spent by the request to the
network (until the moment of assembly) becomes equal to x1 = h1/C1. But we
get the same sojourn time at Point C

∗
= (C1, γC1), at which x2 = x1. And,

since at Point C
∗

with the same sojourn time and the same throughput C1,
the throughput of C2 is lower than at Point C , we get f(C

∗
) < f(C) (39).

The resulting contradiction excludes the possibility of finding a solution to the
problem (39), (40) in Domain R1 outside Straight Line C2 = γC1.

A similar contradiction is caused by the assumption that it is possible to
find the required minimum point in Domain R2 outside Straight Line C2 = γC1

leads to a similar contradiction.
Thus, the solution to the problem (39), (40) always lies on Straight Line

C2 = γC1. With the optimal choice of throughput, the considered Se-network
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(with a regular flow of fixed-size requests) becomes an Ss-network. The optimal
throughput of such a network is found in Sect. 3.2 of the article. It was also
shown there that the transmission of such a stream through the optimal Ss-
network leads to exactly the same costs as its transmission through the optimal
single-channel system. Now the corresponding conclusion also applies to optimal
Se-networks.

5.3 Se-Network with Arbitrary Incoming Flow of Requests

Theorem 4. The Se-network that is optimal for transmitting any flow of requests
is an Ss-network; Optimal Throughputs C1, C2 of the Se-network lie on Straight
Line C2 = γC1.

The Proof of the Theorem is based on the comparison of the Se-network request
processes passing through its branches and establishing the fact that if C1, C2 are
not connected by condition C2 = γC1, i.e., if the service time of two conjugate
requests does not coincide, then the random sojourn time ui = max(ui

1, u
i
2) of

the i-th request in the Se-network is determined by the formula

ui = max(ui
1, u

i
2) =

{
ui
1, if C2 ≥ γC1,

ui
2, if C2 ≤ γC1.

(41)

For C2 = γC1 for all i we obtain ui
1 = ui

2.
Averaging the sojourn time (41) over all requests, we obtain an expression

that is valid for any Se-networks:

U =
{

U1, if C2 ≥ γC1,
U2, if C2 ≤ γC1.

(42)

And then we complete the establishment of the validity of Theorem 4 by proving
it by contradiction (by analogy with the proof of Theorem 3).

We note two important corollaries of Theorem 4:

– for any incoming flow, the Ss-network is the optimal Se-network;
– the optimal two-channel SSS implementation in the form of a Se-network does

not increase operating costs in comparison with the optimal (and, therefore,
compared to any) single-channel SSS implementation.

Theorem 4 greatly simplifies the solution of the complex problem of nonlinear
optimization of Se-networks, since it reduces the search for the optimal values
of two variable parameters C1, C2, which provide the minimum of the function
of two variables, to the search for the optimal value of one variable parameter,
e.g., C1 (the other is determined from the relation C2 = γC1), that provides
the minimum of the objective function. This is especially important when it is
necessary to use simulation modeling to calculate the objective function, e.g.,
when QS in the network branches belongs to G/G/1 class systems for which
there are no exact formulas in QT that express the average sojourn time in QS
in terms of its parameters.



236 V. Zadorozhnyi and D. Sagaydak

The average delay in both synchronization queues is zero. Hence it follows
that for C2 = γC1 in Se-networks u1 = u2 and is determined by the formula (4)
U = U1. Consequently, the optimal value of C1 and the minimum cost (5) can
be easily calculated analytically if QS1 is, for example, a system of class M/M
/1, M/G/1, etc.

6 Discussion of Research Results (Conclusion)

The article introduces and investigates a mathematical model for the transmis-
sion of messages, divided into smaller and larger shares, transmitted over differ-
ent channels with different throughput. In terms of queuing theory, a network
with split requests (S-network) is defined as such a model. This network takes
into account the transmission of a split request over two different channels, the
formation of queues in front of the channels, and the assembly of split requests on
the receiving side of the channel. The mathematical problem of optimizing the
throughput of two channels of the S-network is posed in a general form. Meth-
ods for solving this problem (methods for optimizing S- network) are formulated
and investigated. Analytical methods have solved the problem of optimizing an
exponential S-network with independent branches. In practice, the solution to
this problem can be used to optimize S-networks, in which the transmission of
split requests constitutes a small part of the total traffic transmitted over two
channels.

Special methods are used to study optimization problems for such S-networks,
in which the transmission of split requests constitutes the main load transmit-
ted over two channels. Four theorems are proved, which makes it possible to
reduce two-dimensional optimization problems of such S-networks (i.e.,. prob-
lems with two variable parameters) to one-dimensional ones. Several S-networks
with sequentially more complex properties are considered, as a result of which
the possibility of reducing a two-dimensional optimization problem to a one-
dimensional one for S-networks with the most general assumptions regarding
the type of flow of requests arriving in the S-network and the distribution laws
of the sizes of requests has been established.

All analytical solutions presented in the article have been verified and con-
firmed by simulation modeling.
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