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Abstract. In this paper, there is a approach to detect the results of
elements interaction in multi-channel queuing system with large load
and small queue. This method is extended to statistical estimates of
characteristics of non-uniform Poisson flow, describing distribution of
animals in some areas, a resolution of the most powerful decision rule
for constructing of technical systems “friend – foe”. Such approach gives
possibility to expand applications area and to simplify using methods of
research. These methods consists of structural analysis and construction
of upper bounds of objective functions. It permits to shorten numerical
calculations and to obtain explicit results.
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1 RQ-Queuing Systems with a Large Number of Servers

Consider an RQ-system, i.e., a queuing system with orbit in which customer,
which has not possibility to be served is directed to the orbit. When some server
is released, the customer may be directed to the server in accordance with some
protocol [1–3]. RQ-systems attract attention of specialists in queuing theory last
years (see, for example, materials of Conference ITMM 2018 in Tomsk and 12th
International Workshop on Retrial Queues and Related Topics (WRQ 2018).
But calculations of RQ-systems with large number of servers are sufficiently
complicated. To decrease a complexity of these calculations we use the theorem
on the asymptotic behaviour of an n-server queuing system for n → ∞. In
this theorem, it is proved that at T > 0 for n → ∞, the probability Pn(T )
of customers direction to the orbit during time interval [0, T ] tends to zero. So
used theorem gives possibility to change objective functions of multi-channel
RQ-system from its limit distribution to probability of customers direction to
the orbit during time interval T.

1.1 Preliminaries

Consider n - server queuing systems with the parameter n → ∞. Assume that
an intensity of input flow is proportional to n and en(t) is a number of input
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flow customers arriving until the moment t, en(0) = 0. Suppose that qn(t) is a
number of working servers at the moment t, qn(0) = 0, τj is the service time of j-
th arriving customer and τj , j ≥ 1, is a sequence of independent and identically
distributed random variables (s.i.i.d.r.v.’s) with the distribution function (d.f.)
F (t) (F = 1−F ). Here F (t) has continuous density f(t) ≤ f̄ , where 0 ≤ f̄ < ∞.
This section is based on [4, Chapter II, § 1, Theorem 1]

Theorem 1. Assume that the following conditions are true.

(1) For some a > 0 we have Een(t) = nat, t ≥ 0.
(2) There is B(n) such that A(n) = max(n1/2, B(n)) satisfies the relation for

n → ∞
B(n)
A(n)

→ B ≥ 0,

√
n

A(n)
→ K ≥ 0,

n

A(n)
→ ∞.

and max(B,K) = 1).

(3) Random processes xn(t) =
en(t) − Een(t)

B(n)
C-converges to the centred Gaus-

sian process z(t), when n → ∞.

(4) Random process ζ(t) =
∫ t

0

F (t−u)dz(u)+KΘ(t), 0 ≤ t ≤ T, where Θ(t) is

centred Gaussian process independent with z(t), and its covariance function

R(t, t + u) =
∫ t

0

F (v + u)F (v)adv and satisfies the formula P ( sup
0≤t≤T

ζ(t) >

L) → 0, L → ∞.

(5) If ρ = aEτj < 1, then for any T > 0 we have P

(
sup

0≤t≤T
qn(t) ≥ n

)
→

0, n → ∞.

Designate F1 the space of deterministic functions on the segment [0, T ] with
uniform metric ρ and denote F the set of bounded functional‘s f defined on
F1 and continuous in the metric ρ : if z = z(t), z1 = z1(t), z2 = z2(t), . . . ∈ F1

and ρ(z, zn) → 0, n → ∞, then f(zn) → f(z), n → ∞. Say that the sequence
of random processes zn = zn(t), n ≥ 1, C - converges to the random process
z = z(t) if for any functional f ∈ F we have that Ef(zn) → Ef(z), n → ∞.

1.2 Main Results

In this subsection we used the following obvious inequality for RQ-systems

Pn(T ) ≤ P

(
sup

0≤t≤T
qn(t) ≥ n

)
, n ≥ 1.

Then from Theorem 1 it is possible to prove the relation

P

(
sup

0≤t≤T
qn(t) ≥ n

)
→ 0, n → ∞ (1)

for n-channel RQ-systems with different input flows and so Pn(T ) → 0, n → ∞..
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Deterministic Input Flow of Customer Groups. Suppose that at the
moments 1, 2, . . . , groups of customers of the size η1 ≥ 0, η2 ≥ 0, . . . arrive
in the n-channel RQ system. Here η1, η2, . . . are i.i.d.r.v.‘s with integer values,
Eη1 = a, V ar β1 < ∞. Define deterministic input flow as follows by the equality

en(t) =
[nt+ψ]∑

k=1

ηk, t ≥ 0, where ψ is independent of ηk, k ≥ 1, τj , j ≥ 1, r.v.

with uniform distribution on [0, 1] and [g] is the integer part of the real number
g. For the n-channel RQ system with arbitrary protocol of customers direction
to servers after their being in orbit the relation (1) is proved in [5].

Alternating Input Flow. This flow is defined by ON and OFF periods alter-
nating with lengths X0 ≥ 0, X1 ≥ 0,X2 ≥ 0, . . . , and Y0 ≥ 0, Y1 ≥ 0, Y2 ≥
0, . . . respectively. In [6,7] a continuous random flow with ON and OFF period
is defined. Denote F1(t) = P (X1 < t), F2(t) = P (Y1 < t), t ≥ 0, and suppose
that

F 1(t) = t−α1L1(t), F 2(t) = t−α2L2(t), 1 < α1 < α2 < 2,

with L1(t) → l1 > 0, t → ∞, and L2(t) - slowly varying function and b(t) is the
inverse 1/F 1(t) : b(1/F 1(t)) = t.

Introduce i.r.v.‘s B, X, Y , and r.v. Y0 independent of Xn, Yn, n ≥ 1, so
that P (B=1) =

μ1

μ
, P (B=0) =

μ2

μ
, μ=μ1 + μ2, μ1 = EX1, μ2 = EY1,

P (X≤x) =
1
μ1

∫ x

0

F 1(s)ds, P (Y ≤x) =
1
μ2

∫ x

0

F 2(s)ds.

Then random sequence (Xk, Yk), k ≥ 0 generates the ON–OFF process W (t) as
follows

W (t) = BI[0,X)(t) +
∞∑

n=0

I[Tn,Tn+Xn+1)(t), t ≥ 0 where T0 = B(X + Y0) + (1 −

B)Y, Tn = T0 +
n∑

i=1

(Xi + Yi), n ≥ 1 and IA(t) = 1 if t ∈ A and IA(t) = 0 else.

The process W (t) satisfies equalities W (t) = 1 if t is in ON-period, W (t) = 0 if
t is in off-period, and stationary and EW (t) = μ1/μ = α.

Denote A(t) =
∫ t

0

W (s)ds, then EA(t) = αt, t ≥ 0. Let n = n(N) = NM(N),

M = M(N) = [Nγ ], γ > 0, and assume that random functions Am(t), m =

1, ...,M, are independent copies of A(t), en(t) =

[
M∑

m=1

Am(Nt) + ψ

]
For so

defined alternating input fLow the formula (1) is proved in [5].

Erlang Input Flow. Assume that En(t) is Poisson flow intensity nα and

en(t) =
[
En(t)

r
+ ψ

]
, t ≥ 0, with random variable ψ independent of ηk, k ≥

1, τj , j ≥ 1. and integer r. In [8] it is proved the formula (1) in condition
αEτj < 1.
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Consequently if the objective function of multi-channel RQ-system is Pn(T ),
then it is possible to replace complicated calculations by known asymptotic The-
orem 1.

2 Alternative Designs of High Load Queuing Systems
with Small Queue

It is well known that queuing systems in high-load mode have long queues. A
large number of publications are devoted to the study of asymptotic regimes in
such systems (see, for example, [9]. Therefore, such modes of operation of these
systems, that do not have large queues, are of great interest. These modes are
convenient from an economic point of view, since the service device is almost
fully loaded. On the other hand, this mode is also convenient for users which
waiting times become small.

Multi-channel Queuing System M |M |n|∞. Consider n – channel system
with a Poisson input flow of intensity nλ and the service time has an exponen-
tial distribution 1−exp(−μt). Such a system can be considered as an aggregation
(Fig. 1, right) of n single-channel systems M |M |1|∞ (Fig. 1, left) with Poisson
input flows of λ intensity and a similar distribution of service times. Here, aggre-
gation of n single-channel systems is understood as combining their input flows
and combining service channels into a multi-channel system. Denote ρ = λ/μ
load factor of the system M |M |n|∞ and put An the stationary average waiting
time, Bn the stationary average queue length.

Fig. 1. Transformation of n single-channel systems M |M |1|∞ into aggregated n - chan-
nel system M |M |n|∞.

The following are obtained in [10].

Theorem 2. 1) If ρ < 1, then for some c < ∞, q < 1 the relation holds
An ≤ c qn, n ≥ 1, 2) If ρ = 1 − n−α, 0 < α < ∞, then for n → ∞

An →
⎧⎨
⎩

0, α < 1,
1/μ, α = 1,
∞, α > 1.

Bn →
{

0, α < 1/2,
∞, α ≥ 1/2.
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This theorem develops and specifies the results of [11,12] in the direction of
determining the changed structure of the queuing system.

It is clear that an alternative to the described mode of operation of a queuing
system with a large load and a small queue can serve as an almost deterministic
queuing system. Such a system operates on a specific schedule and its mainte-
nance processes are almost cyclical [13]. The question arises as how to randomly
perturb cyclic processes in order to keep a small queue in them along with a large
load. Obviously, such perturbations will strongly depend on the distributions of
random fluctuations.

Almost Deterministic Single-Channel Queuing System. Despite the
importance of Theorem 2, such a queuing system design assumes its large size,
which is not always convenient from an application point of view. It is clear that
an alternative to the described mode of operation of a queuing system with a
large load and a small queue can serve as an almost deterministic one channel
queuing system (see, for example [13]).

Let’s describe the single-channel queuing system G|G|1|∞ by Lindley chain
of waiting times for the service: wi+1 = max(0, wi + ηi − τi). Here τi is the
interval between the arrival of i - th and (i + 1) - th customers, Mτi = a, and ηi

– service time of i - th customer, Mηi = b, 0 < a − b = ε. Assume that random
deviations from the distributions means are reduced as follows:

ηε
i = b + εα(ηi − b), τε

i = a + εα(τi − a)

and introduce Markov chain wε
i , i ≥ 0, wε

0 = 0, describing almost deterministic
single-channel queuing system

wε
i+1 = max(0, wε

i + ηε
i − τε

i ) = max(0, wε
i + εαδi).

Here δ0, δ1, . . . , is a sequence of independent and identically distributed random
variables, δi = ηi − τi + ε, Mδi = 0. In high load mode, when the load factor

ρ =
b

a
is close to one, the positive parameter ε = (1 − ρ)a is small: ε � 1. Value

α > 0 characterizes the rate of decreasing random perturbations with increasing
loading.

Due to known results for a single-channel queuing system G|G|1|∞ Markov
chain wε

i , i ≥ 0 has given for any ε, α : 0 < ε, 0 < α the stationary distribution
limi→∞ P{wε

i > y} = P{Wα(ε) > y}, y ≥ 0. Using [15–25] it is possible to
formulate following statements.

Statement 1. Let for some positive constants β, c < ∞ the inequality
M |δ1|2+β ≤ c takes place. Then for any y ≥ 0 we have P{εW0(ε) > y} →
e−2y/d, ε → 0.
Statement 2. If for some fixed ν, 1 < ν < 2; hν > 0, the following rela-
tions are true when y → ∞ P (η1 > y) ∼ hνy−ν ; P (τ1 > y) = o(P (η1 > y),
or P (τ1 > y) ∼ hνy−ν ; P (η1 > y) = o(P (τ1 > y). Then there is a tail
R(y) of non - degenerate distribution function and Δν(ε) ∼ cε1/(ν−1), ε → 0,
such that for any y ≥ 0 we have P{Δν(ε)W0(ε)/b > y} → R(y), ε → 0 or
P{Δν(ε)W0(ε)/a > y} → R(y), ε → 0.
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Using Statement 1 it is possible to prove Theorem 3.

Theorem 3. Assume that in a single-channel queuing system G|G|1|∞ con-
ditions of Statement 1 are true. Then the following limit relations are valid:
Wα(ε) ⇒ (convergence in distribution) + ∞, 0 ≤ α < 1/2; Wα(ε) ⇒ 0, 1/2 <
α; Wα(ε) ⇒ η, P{η > y} = e−2y/d, α = 1/2.

Using Statement 2 it is possible to prove Theorem 4.

Theorem 4. Assume that in a single-channel queuing system G|G|1|∞ con-
ditions of Statement 2 are true. Then the following limit relations are valid:
Wα ⇒ +∞, 0 ≤ α < 1/ν; Wα ⇒ 0, 1/ν < α; ε → 0.

The most simple variant of these theorems proves are based on following well
known and elementary statement [14, Exercises 15-19 on pages 184-185].

Statement 3. Suppose that Xn, n ≥ 1, is a sequence of positive real-valued
random variables that converges in distribution to a non degenerate limit random
variable X as n → ∞. Then if an are positive real numbers with an → ∞, then
it follows that anXn ⇒ ∞ and Xn/an ⇒ 0 as n → ∞.

Thus, a parameter α, characterizing either the rate of convergence of the load
factor to one in the system M |M |n|∞, or a random fluctuation in the system
G|G|1|∞, allows to detect the convergence of the stationary waiting time to
either zero or infinity.

3 Related Statistical Problems

In this section statistical estimates of characteristics of non-uniform Poisson flow,
describing distribution of animals in some areas and resolution of the most pow-
erful decision rule for constructing of technical systems discriminating “friend
– foe“. Main idea of this consideration is in a choice of convenient objective
functions for next estimates. Such objective functions may be as relative errors
of mean number of points of Poisson flow in some area so a calculation of the
most powerful decision rule in a construction of technical system for discrimi-
nating “friend – foe“. This results are based on the classification of statistical
problems proposed in the monographs [32,33] and on the ideas of testing statis-
tical hypotheses in the processing of physical and physico-technical observations
[34,35].

Estimates of the Mean Number of Poisson Flow Points in Some Area.
In geographical and geological investigations (see, for example [27]) there is a
problem to estimate mean number of points in some area and to evaluate its
quality. Let the study area is divided into m cells, and the number of points in
the cell k is nk, k = 1, . . . ,m. As we deal with Poisson flow then the random
variables n1, . . . , nm are independent with Poisson distributions which have the

parameters λ1, . . . , λm. Consequently the random variable N =
m∑

k=1

nk has a

Poisson distribution with the parameter Λ =
m∑

k=1

λk and so EN = Λ, V arN = Λ.
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Consider now random variable
N

EN
=

N

Λ
and calculate its variance

V ar
N

Λ
=

1
Λ

. Consequently the following relation is true

√
V ar

N

Λ
=

1√
Λ

.

From Chebyshev-Bienome inequality we have P

(∣∣∣∣NΛ − 1
∣∣∣∣ > Λ−1/3

)
≤ Λ−1/3 →

0, Λ → ∞. Therefore, the relative error of this estimate, constructed for non
uniform Poisson flow decreases with the growth of total Λ.

Resolution of the Most Powerful Decision Rule. In the papers [28–31],
a neural network converter ‘Biometrics access code‘is built on the basis of an
electroencephalogram. The main indicator of the effectiveness of this converter
is the probability of errors of the first α1 kind when the probability of errors of
the second kind α2 is chosen by experts to distinguish between simple hypotheses
“friend - foe”. This distinction of hypotheses is made using the most powerful
decision rule. A special role here is played by a set of sample characteristics,
with the help of which these hypotheses are distinguished.

In this paper, we introduce a characteristic A of the resolution of the most
powerful decision rule. The value of A is determined by the probability α2, by
the sample size n from independent and equally normally distributed random
variables with variance σ2 and the difference of the average a1 − a2 of these
random variables when performing alternative hypotheses. It is established that

the probability of errors of the first kind strongly (approximately as
exp(−A2)

A
√

2π
)

depends on the resolution A of the most powerful solving rule.
This work is based on the classification of statistical problems proposed in the

monographs [32,33], the Neumann-Pearson lemma and the well-known rule for
finding the most powerful solving rule by the Bayesian solving rule. An important
role here is played by the idea of testing statistical hypotheses when processing
physical and physico-technical observations [34,35]. The main characteristic that
determines the distinguishing ability of A in this statistical problem is the differ-
ence of the averages a1 − a2. This difference of parameters corresponding to the
hypotheses “friend - foe” plays an important role in the design of the technical
system that specifies the access code, thus A = A(a1 − a2, α2, n, σ).

Consider a sample x1, . . . , xn, consisting of independent random variables
having a normal distribution with an average a and a known variance σ2. From
two hypotheses H1 = (a = a1), H2 = (a = a2), a1 > a2, the most likely hypoth-
esis is selected. This choice is made under the assumption that the probability
of an error of the second kind is P (H1/H2) = α2, where the value of α2 is deter-
mined by experts (and in accordance with the requirements of GOST). In this
assumption, we are looking for a decisive rule that minimizes the probability of
a first-kind error P (H2/H1). The search for the most powerful solving rule is
based on the Neumann-Pearson lemma [32, chapter 3, § 1, 2] and is searched in
the form

1
n

n∑
i=1

xi > C ⇒ H1,
1
n

n∑
i=1

xi ≤ C ⇒ H2. (2)
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The constant C is determined by the probability of an error of the second kind
α2 from the relations

α2 = P

(
1
n

n∑
i=1

xi > C/H2

)
= P

(
1√
n

n∑
i=1

√
(xi − a2)

σ
>

√
n(C − a2)

σ
/H2

)

Let’s denote X a random variable with a normal distribution having zero mean
and unit variance. Then from the above equalities we get

α2 = P

(
X >

√
n(C − a2)

σ

)
=

∫ ∞

t(α2)

exp(−u2/2)√
2π

du, t(α2) =
√

n(C − a2)
σ

.

(3)
It follows from the formula (2) that the constant C, defining the decisive rule
(2), satisfies the equality

C = a2 +
t(α2)σ√

n
. (4)

Consequently we have

α1 = P

(
1
n

n∑
i=1

xi ≤ C/H1

)
= P

(
1√
n

n∑
i=1

√
(xi − a1)

σ
≤

√
n(C − a1)

σ
/H1

)
.

Hence the equality follows

α1 = P

(
X ≤

√
n(C − a1)

σ

)
= P

(
X ≥

√
n(a1 − C)

σ

)
=

=
∫ ∞

t(α1)

exp(−u2/2)√
2π

du, t(α1) =
√

n(a1 − C)
σ

. (5)

Substituting the formula (4) into the formula (5), we get

t(α1) = A(a1, a2, α2, n, σ), (6)

where the value

A(a1, a2, α2, n, σ) =
√

n

σ
(a1 − a2) − t(α2) (7)

defines the resolution of the most powerful decision rule (2).
Let us now consider how strong is the dependence of the probability of errors

of the first kind on this value. To do this, we calculate for t > 0

J(t) =
∫ ∞

t

exp(−u2/2)√
2π

du =
∫ ∞

t

exp(−u2/2)√
2πu

d
u2

2
≤ exp(−t2/2)

t
√

2π
,

from here we get

J(t) =
∫ ∞

t

exp(−u2/2)√
2πu

d
u2

2
≥ exp(−t2/2)

t
√

2π

(
1 − 1

t2

)
.
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Combining the obtained inequalities, we find(
1 − 1

t2

)
exp(−t2/2)

t
√

2π
≤ J(t) ≤ exp(−t2/2)

t
√

2π
, t > 0. (8)

It follows that the function J(t), determining the probabilities of errors of the
first and second kind decreases very quickly with the growth of t.

Let’s take α2 = 10−9, α1 = 7 ·10−4 as a numerical example (these values are

taken from [31]), then we can build an approximation J(t) ≈ exp(−t2/2)
t
√

2π
and

with an accuracy of 10−2, get the values t(α1) = 5.99781, t(α2) = 3.19465. As a
result, we come to equality

A(a1, a2, α2, n) =
√

n

σ
(a1 − a2) − t(α2) = 9.19246.

Since α1 = 7 · 10−4, then combined with the formula (8) from the inequality

α1 ≤ exp(−A2(a1, a2, α2, n)/2)√
A(a1, a2, α2, n)

it can be seen how much the resolution of A(a1, a2, α2, n) affects the probability
of an error of the first kind α1, which is the main indicator in this statistical
problem.

The formula (7), which determines the resolution of A(a1, a2, α2, n), specify-
ing the probability of an error of the first kind, despite its simplicity, contains a
whole series of characteristics: the difference of the averages a1−a2, variance σ2,
sample size n (and the probability of an error of the second kind α2). Therefore,
the choice of the characteristics of a1 − a2, σ2, n becomes a rather difficult task
of designing the technical system described in [30]. Moreover, a special role here
is played by the difference a1 − a2 > 0 of the average a1, a2, characterizing
the distributions of samples describing the “friend - foe“ states shared by the
technical system.

4 Conclusion

The results presented in this paper go beyond the theory of probability and queu-
ing. In these results, the main focus is not on proving probabilistic theorems of
the greatest generality, but on obtaining explicit estimates of the comparison
of queuing systems, statistical algorithms and programs before and after the
transformation of their structure. The peculiarity of such results, and it is con-
venient to call them synergetic effects, is the strong dependence of the compared
performance indicators when a certain parameter tends to zero or to infinity.
However, this circumstance in no way reduces the requirements for the accuracy
of the estimates obtained. According to the author, such estimates are most con-
venient to carry out during computational experiments. Another thing is that
it is convenient to conduct such computational experiments working with com-
plex systems if there are some analytical estimates of the marginal behavior of
performance indicators.
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