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Abstract. In this paper a processor-sharing queueing system is inves-
tigated. Two types of customers enter the system according a marked
Markovian arrival process. It is assumed that the number of customers
of each type simultaneously being serviced is limited. The service times
of customers have a phase type distribution the parameters of which
depend both on the type of a customer and on the number of customers
of this type in the system. The operation of the system is described in
terms of a multi-dimensional Markov chain. We calculate the stationary
probabilities, the main performance characteristics of the system and
derive the Laplace–Stieltjes transform of the sojourn time distribution.
We also present illustrative numerical examples to show the behavior
of the performance measures of the system and to solve numerically an
optimization problem.
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1 Introduction

Processor sharing technology is very popular in computer systems and telecom-
munications networks. It can be found a number of examples of real processor
sharing systems and their mathematical models in the literature , see, e.g. the
papers [1–8]. Most often, it is assumed that the processor can be used by an
unlimited number of users, the input flow is stationary Poisson, and the service
times are distributed exponentially. More general systems have been considered
in the papers [9,10] where it was assumed that customers arrive into the sys-
tem according to Markovian arrival process (MAP ) and service times have a
phase type distribution. In these papers, homogeneous traffic is assumed, which
is not always suitable for describing next-generation wireless communication net-
works, implying, in particular, the use of the Internet of Things and the presence
of interaction between H2H users and M2M devices, see, e.g. [6–8]. The pres-
ence of heterogeneous requests gives rise to the need to develop new mechanisms
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to maintain the specified quality of service parameters for both H2H users and
M2M devices. At the same time, with an increase in the intensity of the proposed
load, the planners at the base station of the LTE network must determine the
optimal strategy for the allocation of radio resources based on the established
restrictions, for example, the probability of loss of requests from H2H users and
the average transmission time of data blocks from M2M devices.

The queueing system considered in this paper significantly expands the capa-
bilities of modeling real systems with processor sharing. We believe that there are
restrictions on the number of users of different types simultaneously in service,
and we do not introduce restrictive assumptions such as the homogeneity and
uncorrelated nature of the customers flow, as well as the exponential distribution
of service times for customers of different types. We assume that the input flow
to the system is correlated and described by the marked Markov arrival process
(MMAP ) introduced in the paper [11]. For a more adequate description of the
service process, we use a phase type distribution (PH) which is successfully used
to approximate an arbitrary distribution.

Thus, in this paper we consider a queueing system with processor sharing
which receives two types of customers arriving according to a MMAP . If at
the moment of a customer arrival the number of customers of this type on the
server is greater than a predetermined threshold, then the customer leaves the
system un-handled, it is considered lost. Otherwise, the customer takes up part
of the throughput of the channel and is serviced for a period of time having a
PH distribution, the parameters of which differ for customers of different types.

2 Mathematical Model

We consider a queueing system with two type of customers and processor sharing.
Customers of different types arrive into the system according to the MMAP
under control of the irreducible Markov chain νt, t ≥ 0, which takes values in
the set {0, 1, 2, . . . ,W} and is called as an underlying process of the MMAP . The
transitions of the underlying process accompanied by an arrival of a customer of
type k are stored as entries of the matrix Dk, k = 1, 2, of order W̄ × W̄ where
W̄ = W + 1 and idle transitions of this process are described by the matrix D0.

The arrival rate of customers of type k in the MMAP is given by λk =
θDke, k = 1, 2, where the vector θ, is defined as the unique solution of the
system θD(1) = 0,θe = 1. The total arrival rate is λ = λ1 + λ2.

The variance of inter-arrival times of customers of type k is calculated by the
formula

vk =

2θ(−D0 −
2∑

l=1,l �=k

Dl)−1e

λk
−

(
1
λk

)2

, k = 1, 2.

The coefficient of correlation of the lengths of two adjacent intervals between
the arrivals of customers of type k is calculated by
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c(k)cor =
[θ(D0 +

2∑

l=1,l �=k

Dl)−1

λk
Dk(D0 +

2∑

l=1,l �=k

Dl)−1e −
(

1
λk

)2]

v−1
k , k = 1, 2.

A detailed description of the MMAP can be found, for example, in [11].
In this paper we assume that the server can simultaneously serve up to N

customers of type 1 and up to R customers of type 2. If only one customer
of the kth type is serviced on the server, then its service time has the PH
distribution given by the irreducible representation (βk, Sk) and the underlying
process m

(k)
t , t ≥ 0, with the state space {1, . . . ,Mk,Mk + 1}, where the state

Mk + 1 is absorbing. The intensities of transitions to the absorbing state are
determined by the column vector S

(k)
0 = −Ske. The service rate of a customer

of type k is calculated as μk = (βk(−Sk)−1e)−1.
The customers of each type divide the throughput of the server allocated

to them equally. If the server simultaneously serves nk customers of the kth
type, then the service time of any of these customers has the PH distribution
given by the irreducible representation (βk, 1

nk
Sk) and the underlying process

m
(k)
t , t ≥ 0, with the state space {1, . . . ,Mk,Mk + 1}, where the state Mk + 1 is

absorbing. The intensities of transitions to the absorbing state are determined
by the column vector 1

nk
S

(k)
0 .

If an incoming customer of type 1 finds n < N customers on the server,
then it is sent for service. In this case, the throughput of the server allocated to
customers of the 1st type is divided equally between n+1 customers. Otherwise,
the customer leaves the system un-handled, it is considered lost. Similarly, if a
customer of the 2nd type finds r < R customers on the server, then it is sent for
service. The throughput of the server allocated to customers of type 2 is divided
equally between r + 1 customers. Otherwise, the customer is lost.

3 Process of the System States

The operation of the system is described by the regular irreducible Markov chain

ξt = {nt, rt, η
(1)
t , η

(2)
t , . . . , η

(M1)
t , τ

(1)
t , τ

(2)
t , . . . , τ

(M2)
t , νt},

where at the moment t

• nt is the number of customers of type 1 on the server, nt = 0, N ;
• rt is the number of customers of type 2 on the server, rt = 0, R;
• η

(m(1))
t is the number of customers of type 1 that are served in the phase m(1),

η
(m(1))
t = 0, nt, m(1) = 1,M1;

• τ
(m(2))
t is the number of customers of type 2 that are served in the phase m(2),

τ
(m(2))
t = 0, rt, m(2) = 1,M2;

• νt is the state of underlying process of the MMAP , νt = 0,W ,
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In the following we will also use the processes

u(1)
t = {η

(1)
t , η

(2)
t , . . . , η

(M1)
t }; u(2)

t = {τ
(1)
t , τ

(2)
t , . . . , τ

(M2)
t }.

Let us arrange the states of the considered Markov chain ξt, t ≥ 0, as follows.
We enumerate the components nt, rt in the direct lexicographic order and, for
fixed values of these components, we renumber the states of the processes u(1)

t

and u(2)
t in the reverse lexicographic order.

To further describe the transition rates of the chain, we need the matrices
Pi(·), Ai(·, ·), and Li(·, ·), which have the following probabilistic sense: the matrix
Ll(n, S̃k) contains the transition rates of the process u(k)

t , leading to the end of
servicing of one of n − l customers of the kth type; the matrix Pn(βk) contains
the transition probabilities of the process u(k)

t leading to an increase in the
number of customers of the kth type on the server from n to n + 1; the matrix
An(l, S̃k) contains the transition rates of the process u(k)

t in its state space
without increasing or decreasing the number of customers of the kth type. Here

S̃k =
(

0 O

S
(k)
0 Sl

)

, k = 1, 2. Algorithm for calculating matrices Pi(·), Ai(·, ·), and

Li(·, ·) follows from the results of V. Ramaswami and D. Lucantoni published in
the papers [12,13].

Let us introduce the notation Qn,n′ for the matrices of transition rates of the
chain from the states corresponding to the value n of the first component to the
states corresponding to the value n′ of this component, n, n′ = 0, N. We also
introduce the following notation:

• Cm
n =

(
n
m

)

= n!
m!(n−m)! ;

• diag{a1, a2, ..., an} is a block diagonal matrix in which the diagonal blocks
are equal to the elements listed in brackets, and the other blocks are zero;

• diag+{a1, a2, ..., an} (diag−{a1, a2, ..., an}) is a square block matrix in which
the off-diagonal (below-diagonal) blocks are equal to the elements listed in
brackets, and the other blocks are zero.

Lemma 1. The infinitesimal generator Q of a Markov chain ξt, t ≥ 0, has the
block three-diagonal structure

Q =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

Q0,0 Q0,1 O . . . O O
Q1,0 Q1,1 Q1,2 . . . O O
O Q2,1 Q2,2 . . . O O
...

...
...

. . .
...

...
O O O . . . QN−1,N−1 QN−1,N

O O O . . . QN,N−1 QN,N

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,
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where

Q0,0 = diag−{ 1
r LR−r(R, S̃2), r = 1, R} ⊗ IW̄

+ diag{0, 1
r Ar(R,S2), r = 1, R} ⊕ D0 + diag{OR−1∑

r=0
C

M2−1
r+M2−1

, I
C

M2−1
R+M2−1

} ⊗ D2

+ diag+{Pr(β2), r = 0, R − 1} ⊗ D2 + Δ0;

Qn,n+1 = Pn(β1) ⊗ I R∑

r=0
C

M2−1
r+M2−1

⊗ D1, 0 ≤ n ≤ N − 1;

Qn,n−1 = 1
nLN−n(N, S̃1) ⊗ I R∑

r=0
C

M2−1
r+M2−1

⊗ IW̄ , 1 ≤ n ≤ N ;

Qn,n = I
C

M1−1
n+M1−1

⊗ diag−{ 1
r LR−r(R, S̃2), r = 1, R} ⊗ IW̄

+ 1
nAn(N, S̃1) ⊕ diag{0, 1

r Ar(R,S2), r = 1, R} ⊕ (D0 + δn,ND1)

+ I
C

M1−1
n+M1−1

⊗ diag{OR−1∑

r=0
C

M2−1
r+M2−1

, I
C

M2−1
R+M2−1

} ⊗ D2

+ I
C

M1−1
n+M1−1

⊗ diag+{Pr(β2), r = 0, R − 1} ⊗ D2 + Δn, 1 ≤ n ≤ N,

where ⊗(⊕) denotes the Kronecker product (sum) of matrices, δn,N is the Kro-
necker symbol, Δn, n = 0, N, are diagonal matrices, which are constructed so
that the equality Qe = 0T holds.

Proof. The generator block Q0,0 contains the transition rates in the set of states
corresponding to the absence of customers of type 1. The corresponding transi-
tions occur when

a) one of the customers of type 2 finishes the service. The corresponding rates
are given by the matrix diag−{ 1

r LR−r(R, S̃2), r = 1, R} ⊗ IW̄ ;
b) the number of customers of type 2 that are in a certain phase of servicing

is changed or the MMAP underlying process makes an idle transition. The
corresponding rates are given by the matrix diag{0, 1

r Ar(R,S2), r = 1, R} ⊕
D0;

c) a customer of type 2 arrives and take place on the server (the matrix
diag+{Pr(β2), r = 0, R − 1} ⊗ D2) or, if all places for customers of this type
are occupied, the customer leaves the system un-handled (the matrix
diag{OR−1∑

r=0
C

M2−1
r+M2−1

, I
C

M2−1
R+M2−1

} ⊗ D2.

Block Qn,n, n = 1, N , contains the transition rates in the set of states corre-
sponding to the presence of n customers of type 1 in the system. The expression
for this block differs from the expression for the block Q0,0 only in the second
term, which in this case specifies the transition rates of the processes of servicing
customers of types 1 and 2 in their sets of states without changing their numbers
or the MMAP idle transition, or the loss of customer of type 1.

Block Qn,n+1, n = 0, N − 1, contains the rates of transitions accompanied by
the arrival of a customer of type 1 which takes up place on the server.
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Block Qn,n−1, n = 1, N , contains the rates of transitions accompanied by the
departure of the serviced customer of type 1 from the system.

All other blocks of the generator are zero matrces, since they consist of the
rates of two or more transitions of the considered Markov chain on an infinitely
small time interval.

4 Stationary Distribution. Performance Measures

In accordance with the described ordering of the states of the Markov chain
ξt, we form the row vectors pn, n = 0, N, of the stationary probabilities of the
states of the chain corresponding to the value n of the first component nt. Let
p = (p0,p1, . . . ,pN ) be the vector of steady state probabilities of the chain.
This vector is the unique solution to the system of linear algebraic equation
pQ = 0,pe = 1. If the dimension of this system is large, the solution can be
calculated using the algorithm developed in [14].

Based on the stationary distribution, we can obtain formulas for calculating
a number of stationary performance characteristics of the system. Below we
present some of them.

• Joint distribution of the number of type 1 customers on the server, the number
of type 1 customers in different service phases, and the states of the MMAP

p∗
n = pn(I

C
M1−1
n+M1−1

⊗ e R∑

r=0
C

M2−1
r+M2−1

⊗ IW̄ ), n = 0, N.

• Distribution of the number of customers of type 1 in the system pn =
p∗

ne, n = 0, N.
• Joint distribution of the number of type 2 customers on the server, the number

of type 2 customers in different service phases, and the states of the MMAP

q∗
r =

N∑

n=0

pn(I(n,r) ⊗ IW̄ ), r = 0, R,

where

I(n,r) =

⎛

⎜
⎜
⎜
⎜
⎝

O
C

M1−1
n+M1−1

r−1∑

m=0
C

M2−1
m+M2−1×C

M2−1
r+M2−1

e
C

M1−1
n+M1−1

⊗ I
C

M2−1
r+M2−1

O
C

M1−1
n+M1−1

R∑

m=r+1
C

M2−1
m+M2−1×C

M2−1
r+M2−1

⎞

⎟
⎟
⎟
⎟
⎠

.

• Distribution of the number of customers of type 2 in the system qr = q∗
re, r =

0, R.
• The probability of losing a customer of the kth type

Ploss,k =
λk − ϕk

λk
, k = 1, 2,

where λk is the arrival rate of customers of kth type, ϕk is the output rate of
customers of kth type. The value of ϕk is calculated as
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ϕ1 =
N∑

n=1
p∗

n(I
C

M1−1
n+M1−1

⊗ eW̄ ) 1
nLN−n(N, S̃1)e,

ϕ2 =
R∑

r=1
q∗

r(IC
M2−1
r+M2−1

⊗ eW̄ ) 1r LR−r(R, S̃2)e.

5 Sojourn Time Distribution

Denote by v
(1)
n (η(1), η(2), . . . , η(M1), η̃, ν, s) the Laplace-Stieltjes transform (LST )

of the virtual sojourn time distribution of a customer of type 1 for which ser-
vice began with the phase η̃, and which found n customers of the first type in
the system, the number of customers in phase m(1) equal to η(m(1)), and the
underlying process of the MMAP in the state ν, n = 0, N − 1, η(m(1)) = 0, n,
m(1) = 1,M1, ν = 0,W .

Similarly, let v
(2)
r (τ (2), . . . , τ (M2), τ̃ , ν, s) be the Laplace-Stieltjes transform

of the virtual sojourn time distribution of a customer of type 2 for which ser-
vice began with the phase τ̃ , and which found in the system r customers of
the second type, the number of customers in the phase m(2) equal to τ (m(2)),
and the underlying process of the MMAP in the state ν, r = 0, R − 1,

τ (m(2)) = 0, r, m(2) = 1,M1, ν = 0,W . First we derive formulas of the con-
ditional LST s v

(1)
n (η(1), η(2), . . . , η(M1), η̃, ν, s). Let us arrange these LST s in the

reverse lexicographic order of arguments η(1), η(2), . . . , η(M1), in the direct lexi-
cographic order of arguments η̃, ν and form the column vectors

v(1)
n (s), n = 0, N − 1, v(1)(s) = ((v(1)

0 (s))T , (v(1)
1 (s))T , . . . , (v(1)

N−1(s))
T )T .

Similarly, for customers of type 2, we form the column vectors

v(2)
r (s), r = 0, R − 1, v(2)(s) = ((v(2)

0 (s))T , (v(2
1 (s))T , . . . , (v(2)

R−1(s))
T )T .

Theorem 1. The Laplace-Stieltjes transform vector v(1)(s) is calculated as fol-
lows:

v(1)(s) = (sI − A(1))−1b(1), (1)

where

A(1) = diag{[ 1
n+1An(N,S1) + Δn] ⊕ S1 ⊕ (D0 + D2), n = 0, N − 1}

+ diag−{ 1
n+1LN−n(N, S̃1) ⊗ IM1W̄ , n = 1, N − 1}

+ diag+{Pn(β1) ⊗ IM1 ⊗ D1, n = 0, N − 2}

+ diag{O
W̄

N−2∑

n=0
C

M1−1
n+M1−1

, I
C

M1−1
N+M1−2

} ⊗ IM1 ⊗ D1},

b(1) = diag{I
C

M1−1
n+M1−1

⊗ 1
n+1S

(1)
0 ⊗ IW̄ , n = 0, N − 1}e.



164 V. Klimenok et al.

Proof. Using the probabilistic interpretation of the Laplace-Stieltjes transform,
we obtain the following equations for the vectors v(1)

n (s), n = 0, N − 1 :

v(1)
n (s) =

∞∫

0

e−ste[
1

n+1An(N,S1)+Δn]⊕S1t(I
C

M1−1
n+M1−1

⊗ 1
n + 1

S
(1)
0 ) ⊗ e(D0+D2)tdte

+

∞∫

0

e−ste[
1

n+1An(N,S1)+Δn]⊕S1t(LN−n(N, S̃1) ⊗ IM1) ⊗ e(D0+D2)tdtev(1)
n−1(s)

+

∞∫

0

(e−ste[
1

n+1An(N,S1)+Δn]⊕S1t ⊗ e(D0+D2)t)(Pn(β1) ⊗ IM1 ⊗ D1)dt

× v(1)
min{n+1,N−1}(s)e. (2)

Let us explain the meaning of the terms on the right-hand side of (2):

– the first integral (first term) is the probability that the incoming virtual
customer will be serviced before any of the n customers of type 1 that are
already on the server at the time of the virtual customer arriving, and during
the time of servicing the virtual customer there will be no catastrophe.

– the integral in the second term is the vector of probabilities that after the
arrival of the virtual customer one of the n customers of type 1 that are
already on the server at the time of the arrival of the virtual customer will
be served first, and no catastrophe will occur during the service of this first
customer. After the first of the mentioned n customers is served, the server
resource is redistributed between the remaining i customers, including the
virtual one, and the further scenario of servicing the virtual customer up to
the distribution of the MMAP states and service phases will be the same as
at the moment of the arrival of a virtual customer that found n−1 customers
in the system. By definition, the corresponding vector of LST s is v(1)

n−1(s) The
product of the integral and v(1)

n−1(s) will give the required vector of LST s of
the service time distribution of the virtual customer.

– when describing the third term, we will distinguish between the cases n <
N −1 and n = N −1. In both cases, the integral in the third term is a vector of
probabilities that after the arrival of the virtual customer, the first event that
entails a change in the number of customers on the server will be the arrival
of a customer of type 1 and no catastrophe will occur in the time before it
arrives. In the case n < N −1, after this customer arrives, the server resource
will be redistributed between n + 2 customers, including the virtual one, and
the further scenario of servicing the virtual customer up to the distribution
of the MMAP states and servicing phases will be the same as at the moment
of arrival of the virtual customer that found n + 1 customers in the system.
By definition, the corresponding vector of LST s is v(1)

n+1(s). The product of
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the integral and v(1)
n+1(s) will give the required vector of LST s of service time

of the virtual customer. In the case n = N − 1 the received customer will be
rejected, since the server already contains N customers, including the virtual
one. Then the further scenario of servicing the virtual customer, up to the
distribution of the states of the MMAP , will be the same as at the moment of
the arrival of the virtual customer that found N −1 customers in the system.
By definition, the corresponding vector of LST s is v(1)

N−1(s). The product of
the integral and v(1)

N−1(s) will give the required vector of LST s of service time
of the virtual customer.

After calculating the integrals in (2) and a number of algebraic transforma-
tions, we obtain the required formula (1).

Corollary 1. The Laplace-Stieltjes transform vector v(2)(s) is calculated as fol-
lows:

v(2)(s) = (sIW̄ − A(2))−1b(2),

where the matrix A(2) and the vector b(2) are obtained from the matrix A(1) and
the vector b(1), respectively, by replacing N by R and permutation of indices 1
and 2.

Having known the Laplace-Stieltjes transforms defined in Theorem 1 and
Corollary 1, we can find all the moments of the sojourn time, in particular, the
mean and the variance of this time.

The corresponding mean (variance) for customers of type 1 we denote as
v̄
(1)
n (η(1), η(2), . . . , η(M1), η̃, ν) (d(1)n (η(1), η(2), . . . , η(M1), η̃, ν)) and for customers

of type 2 as v̄
(2)
r (τ (1), . . . , τ (M2), τ̃ , ν) (d(2)n (τ (1), τ (2), . . . , τ (M2), τ̃ , ν)).

We renumber the values v̄
(1)
n (η(1), η(2), . . . , η(M1), η̃, ν), (v̄(1)

n (η(1), η(2), . . . ,

η(M1), η̃, ν))2 and d
(1)
n (η(1), η(2), . . . , η(M1), η̃, ν) in the lexicographic order

described above and form the corresponding column vectors

v̄(1)
n , ¯̄v(1)

n, d̄(1)
n , n = 0, N − 1.

In turn, from these vectors we form the column vectors

v̄(1) = ((v̄
(1)
0 )T , (v̄

(1)
1 )T , . . . , (v̄

(1)
N−1)

T )T , ¯̄v(1) = ((¯̄v(1)
0)

T , (¯̄v(1)
1)

T , . . . , (¯̄v(1)
N−1)

T )T ,

d(1) = ((d
(1)
0 )T , (d

(1)
1 )T , . . . , (d

(1)
N−1)

T )T .

By analogy we introduce the column vectors v̄(2), ¯̄v(2),d(2).

Corollary 2. The vector of conditional means, v̄(k), and the vector of condi-
tional variances, d(k), of the sojourn times of a customer of type k are calculated
by the following formulas:

v̄(k) = −(A(k))−1e, d(k) = 2(A(k))−2e − ¯̄v(k), k = 1, 2.
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To calculate the Laplace-Stieltjes transforms of the sojourn time distributions
of the customers of type 1 and 2 admitted into the system, we introduce into
consideration the vector p+ (q+), the components of which define the joint
distribution of the number of type 1 (type 2) customers that are in different
service phases and the states of the MMAP immediately after the moment the
customer of type 1 (type 2) has been admitted into the system. It is easy to see
that these vectors are calculated as follows:

p+ = λ−1
1 (p∗

0,p
∗
1, . . . ,p

∗
N−1)[diag{Pn(β1), n = 0, N − 1} ⊗ D1],

q+ = λ−1
2 (q∗

0,q
∗
1, . . . ,q

∗
R−1)[diag{Pr(β2), r = 0, R − 1} ⊗ D2].

Theorem 2. The Laplace-Stieltjes transformations of the sojourn time distribu-
tions of the customers of type 1 and type 2 accepted to the system are calculated
as

v(1)(s) = p+v(1)(s), v(2)(s) = q+v(2)(s).

Corollary 3. The means and variances of the sojourn times of customers of
type 1 and type 2 accepted to the system are calculated using the following for-
mulas:

v̄(1) = p+v̄(1), d(1) = p+d(1); v̄(2) = q+v̄(2), d(2) = q+d(2).

6 Numerical Results

In this section we conduct a number of numerical experiments aimed at studying
the behavior of the performance characteristics of the system depending on its
parameters and at solving optimization problems. To carry out the experiments,
a computer program was written in Python using built-in packages for process-
ing matrices, calculating complex mathematical formulas and executed in the
PyCharm 2019.3.4 (Professional Edition) program.

In Experiment 1 we analyse the dependence of the loss probabilities,
Ploss,k, k = 1, 2, and the mean sojourn times, v̄(k), k = 1, 2, on the maximum
number of channels allocated for customers of type k. In this experiment we used
the following input data.

The MMAP is specified by the matrices D0, D1, D2, where

D0 =
(−86 0.01

0.02 −2.76

)

, D1 =
(

59.5 0.693
0.14 1.778

)

, D2 =
(

25.5 0.297
0.06 0.762

)

.

With such matrices λ = 12.43, λ1 = 0.7λ and λ2 = 0.3λ, c
(1)
cor = 0.39, c

(2)
cor = 0.33.

The PH distribution of the service time of a single customer of type 1 is

given by the vector β(1) = (1, 0) and the matrix S(1) =
(−80 80

0 −80

)

. This

means that the service time has Erlang distribution of order 2 with parameter
80 and the service rate μ1 = 40.
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Fig. 1. Ploss,1 and Ploss,2 vs N under fixed number of channels N + R = 30

Fig. 2. v̄(1) and v̄(2) vs N under fixed number of channels N + R = 30

The PH distribution of the service time of a single customer of type 2 is

given by the vector β(2) = (1, 0) and the matrix S(2) =
(−20 20

0 −20

)

. This

means that the service time has Erlang distribution of order 2 with parameter
20 and the service rate μ2 = 10.

The total number of channels, into which the throughput of the servers is
divided, is N + R = 30.

It is seen from Fig. 1 that Ploss,1 decreases and Ploss,2 increases. This is due
to the fact that with an increase in N the possible number of type 1 customers in
the system increases and the smaller part of the customers will be lost. Taking
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into account the equality N + R = 30, with an increase in N the value of R
decreases and more and more customers are lost.

Figure 2 shows that v̄(1) is an increasing function of N . This is due to the fact
that with an increase in N the throughput allocated for a customer of type 1
decreases and hence the sojourn time increases. Due to the relation N + R = 30
when N increases then R decreases. That entails an increase in the throughput
available for a customer of type 2 and a decrease in the time for servicing the
customer.

Experiment 2. In this experiment, we solve numerically the optimization
problem which consists in the optimal sharing of the throughput μ = μ1 + μ2

of the server between customers of types 1 and 2 and the optimal choice of the
maximum numbers of simultaneously served customers of types 1 and 2 under
the given restrictions on the minimum throughput allocated for each customer.

As a criterion for the quality of the operation of the system, we use the
economic functional, which is the average penalty per unit of time

J = aN̄ + c1λ1Ploss,1 + c2λ2Ploss,2, (3)

where a is the penalty charged per unit of time spent by one customer of type 1
in the system, ck is the penalty charged for the lost customer of type k, k = 1, 2.

The problem is to choose the parameters μ1, N and R which provide the
minimum to criterion (3) under the following conditions:

μ1 + μ2 = μ = const, γ1 =
μ1

N
= const, γ2 =

μ2

R
= const.

Here γk is the minimum throughput of the server that can be used to provide
service to a customer of type k.

Fig. 3. N̄ vs μ1 under restrictions μ = 70, γ1 = 2, γ2 = 7
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Fig. 4. Ploss,1, Ploss,2 vs μ1 under restrictions μ = 70, γ1 = 2, γ2 = 7

In the experiment, we will use the MMAP specified in Experiment 1. The
shape of service time distributions is the same as in Experiment 1. In the course
of the current experiment, we will only change the service rates μ1 and μ2 mul-
tiplying the matrices S1, S2 by the corresponding constants. We fix the values
of μ, γ1, γ2 as μ = 70, γ1 = 2, γ2 = 7.

For these initial data, let us look at the graphs of the dependence of the
mean number of customers of the type 1, N̄ , and the probabilities of losses of
customers of different types, Ploss,1, Ploss,2, which are shown in Fig. 3 and 4.

Having calculated the dependence of N̄ , Ploss,1, Ploss,2 on μ1 we can calculate
the dependence of the cost criteria J on μ1 under different cost coefficients. Let

Fig. 5. J vs μ1 for c1 = 1, c2 = 20, a = 1, 3, 7 under restrictions μ = 70, γ1 = 2, γ2 = 7
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us consider the following cost coefficients: a = 1, 3, 7, c1 = 1, c2 = 20. The results
of calculation are presented in Fig. 5 and in Table 1.

Table 1. Values of N, R, J as functions of μ1 for c1 = 1, c2 = 20, a = 1, 3, 7 under
restrictions μ = 70, γ1 = 2, γ2 = 7

μ1 N R J, a = 1 J, a = 3 J, a = 7

2 1 9 13.09 14.60 17.64

5 2 9 12.81 14.76 18.67

10 5 8 11.69 14.91 21.34

15 7 7 9.24 13.58 22.24

20 10 7 6.54 11.40 21.11

25 12 6 3.96 8.17 16.57

30 15 5 2.45 5.58 11.83

35 17 5 2.15 4.04 7.83

40 20 4 4.13 5.32 7.72

45 22 3 8.82 9.65 11.32

50 25 2 16.99 17.62 18.89

55 27 2 22.84 23.35 24.37

60 30 1 44.79 45.22 46.07

63 31 1 50.32 50.70 51.48

It is seen from Fig. 5 and Table 1 that for input data under consideration the
server throughput is divided approximately in half between customers of types
1 and 2. In the case a = 1, 3, it is optimal to divide the throughput allocated
to customers of types 1 and 2 as 17:5. When a = 7, this proportion changes as
20:4.

7 Conclusion

We analysed a queuing system with the MMAP of customers of two types, pro-
cessor sharing and a limited number of places for customers of different types.
We described the system operation by the multi-dimensional Markov chain, cal-
culated its stationary distribution and the main performance characteristics.
The Laplace-Stieltjes transform of the sojourn time distribution is found. For-
mulas for means and variances of the sojourn time are obtained. We carried out
numerical experiments to study the behavior of the system performance charac-
teristics and to find the optimal strategy for sharing the processor throughput
between users of different types. The results obtained can be used in the study
and planning of telecommunication networks for various purposes, in particular,
the Internet of Things.
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