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Abstract. This paper considers a retrial tandem queue with single
orbit, Poisson arrivals of incoming calls and without intermediate buffer.
The first server provides services for incoming calls for an arbitrary ran-
dom time, while the second server does for an exponentially distributed
random time. Blocked customers at either the first server or the second
server join the orbit and stay there for an exponentially distributed time
before retrying to enter the first server again. Under an asymptotic con-
dition when the mean of retrial intervals is extremely large, we derive a
diffusion limit, which is further utilized to obtain an approximation to
the number of customers in the orbit in stationary regime.

Keywords: tandem queue · retrial queue · diffusion limit

1 Introduction

The new feature of retrial queues in comparison with the conventional ones is
that blocked customers that cannot find an idle server upon arrival join the
orbit and retry for service after some random time. These models have been
extensively studied in the literature; see the books [1,2] and survey papers [3,4].
The paper [4] summarizes major analytical results on retrial queues up to 1990
for both single server and multiserver models. Reference [3] presents a careful
survey on single server retrial models with and without impatient customers.
Furthermore, a survey of recent results for retrial queues is presented in [5].

The analysis of retrial queues is more difficult in comparison with that of
counterparts with infinite buffer because each orbiting customer independently
retries leading to a total retrial rate that is proportional to the number of cus-
tomers in the orbit.

Tandem queues are simple networks of queues connected in a line topology
are widely used in many applications such as computer communication, manufac-
turing and service systems. For example, in call centers, customers first connect
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to IVR (Interactive Voice Response) unit and then to operators [6]. Some other
applications can be found in transmitting multimedia information [7], and in [8]
for modelling a multi-agent robotic system, etc.

To our knowledge, only a little attention was paid the study of on tandem
queues with retrials due to the complex of these models. In [9], the authors con-
sider a tandem system of two sequentially connected servers without an interme-
diate buffer. In this system the blocking phenomenon occurs at the first server
when a customer finishes the service a the first server but sees the second server
busy. Customers that cannot enter the first server because the server is busy
or blocked join the orbit and retry to enter the first server according to a con-
stant retrial rate policy. Furthermore, [10] presents an approximate analysis for
a tandem queue with a common orbit and constant retrial rate.

As a closely related paper, Phung-Duc [11] obtained an explicit solution for
a simple model where only blocked customers the first server joins the orbit
while blocked customers at the second server are lost. In this line, [12] presented
a matrix-analytic solution for a model with Batch Markovian Arrival Process
(BMAP) and general service time distribution at the first server and customers
from the first server are lost if the second server is busy.

Furthermore, in our recent papers, we obtained the approximation of the
stationary probability distribution of the number of calls in the orbit by methods
of asymptotic analysis [13] and asymptotic diffusion analysis [14] for a special
case with exponential distributions for service times in both servers. Further
related papers can be found in [15,16]. In [16] a fixed point approximation is
proposed for a tandem retrial queue. Pourbabai [15] investigates the tandem
behavior in telecommunication systems with finite buffer and with repeated calls
of constant retrial time. In [15], an approximation method is proposed.

In this paper, we study the two-phase tandem retrial queue system with one
orbit and arbitrary service time distribution at the first server by the method
of asymptotic diffusion analysis under the condition when the delay of calls
in the orbit is extremely large. To the best of our knowledge, this is the first
work dealing with a tandem retrial queue with classical (linear) retrial rate and
arbitrary service time distribution at the first server, where blocked customers
at the first or the second server enters orbit.

The remaining parts of the paper are organized as follows. In Sect. 2, we
present the description of the model in detail. In Sect. 3, we write down the set
of Kolmogorov differential equations while Sects. 4 and 5 show to the first order
analysis (fluid limit) and the second order analysis (diffusion limit). Section 6
shows the use of the diffusion limit to approximate queue-length distribution in
the orbit in the steady-state. Section 7 demonstrates some numerical examples.

2 Analytical Model

We consider a tandem retrial queue with two sequentially connected servers
where customers arrive at the server according to a Poisson process with rate
λ (see the Fig. 1). In this paper, customers and calls are interchangeably used.
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If the server is idle upon the arrival of a call, the call occupies it immediately
for a random time with the distribution function B(x) and then moves to the
second server. In the case that the second server is free, the call occupies it for a
random time exponentially distributed with mean 1/μ. On the other hand, if the
first server is busy upon arrival of a customer, this customer immediately goes
to the orbit staying there for a period of time which is exponentially distributed
with parameter σ and then tries to enter the first server again. Upon the service
completion at the first server, if the second server is busy, the call immediately
goes to the same orbit, staying there for a random period of time which is
exponentially distributed mean 1/σ and trying to enter the first server for service
again. This process is repeated until the call successfully receives services from
both servers and leave the system.

Fig. 1. The model

We define the following notations for further analysis.
The process k(t) - the state of servers at time t: 0, if both servers are free; 1,

if the first server is busy and the second one is free; 2, if the first server is free
and the second one is busy; 3, if both servers are busy;

The process z(t) - the remainder of service at the first server at time t;
The process i(t) - number of retrial customers in the orbit at time t.
The purpose of the study is twofold: 1) to obtain the fluid and diffusion limit

of i(t) and 2) based on the diffusion limit, to build an approximation to the
steady-state distribution of i(t).

3 Kolmogorov Backward Equations

We define probabilities

Pk(i, t) = P{k(t) = k, i(t) = i}, k = 0, 2,

Pk(i, z, t) = P{k(t) = k, i(t) = i, z(t) < z}, k = 1, 3. (1)

The process {k(t), i(t)}, k = 0, 2, {k(t), i(t), z(t)}, k = 1, 3 is a Markov chain.
Kolmogorov backward equations for (1) are given as follows.

∂P0(i, t)
∂t

= −(λ + iσ)P0(i, t) + μP2(i, t),
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∂P1(i, z, t)
∂t

=
∂P1(i, z, t)

∂z
− ∂P1(i, 0, t)

∂z
− λP1(i, z, t)

+ (i + 1)σB(z)P0(i + 1, t) + λP1(i − 1, z, t)

+λB(z)P0(i, t) + P3(i, z, t)μ,

∂P2(i, t)
∂t

=
∂P1(i, 0, t)

∂z
+

∂P3(i − 1, 0, t)
∂z

− (λ + μ + iσ)P2(i, t),

∂P3(i, z, t)
∂t

=
∂P3(i, z, t)

∂z
+

∂P3(i, 0, t)
∂z

− (λ + μ)P3(i, z, t)

+ λP3(i − 1, z, t) + λB(z)P2(i, t) + (i + 1)σB(z)P2(i + 1, t). (2)

We define partial characteristic functions, using j =
√−1

Hk(u, t) =
∞∑

i=0

ejuiPk(i, t), k = 0, 2.

Hk(u, z, t) =
∞∑

i=0

ejuiPk(i, z, t), k = 1, 3. (3)

We rewrite (2) using Hk(u, t), k = 0, 2,Hk(u, z, t), k = 1, 3 and add all the
resulted equations with z → ∞. We obtain following equations for further
research in next sections.

∂H0(u, t)
∂t

= −λH0(u, t) + jσ
∂H0(u, t)

∂u
+ μH2(u, t),

∂H1(u, z, t)
∂t

=
∂H1(u, z, t)

∂z
− ∂H1(u, 0, t)

∂z
− jσe−ju ∂H0(u, t)

∂u
B(z)

+λ(eju − 1)H1(u, z, t) + λB(z)H0(u, t) + μH3(u, z, t),

∂H2(u, t)
∂t

=
∂H1(u, 0, t)

∂z
+ eju ∂H3(u, 0, t)

∂z
+ jσ

∂H2(u, t)
∂u

− (λ + μ)H2(u, t),

∂H3(u, z, t)
∂t

=
∂H3(u, z, t)

∂z
− ∂H3(u, 0, t)

∂z
− jσe−juB(z)

∂H2(u, t)
∂u

+ (λ(eju − 1) − μ)H3(u, z, t) + λB(z)H2(u, t),

∂H(u, t)
∂t

= (eju − 1)
{

jσe−ju

(
∂H0(u, t)

∂u
+

∂H2(u, t)
∂u

)

+λ(H1(u, t) + H3(u, t)) +
∂H3(u, 0, t)

∂z

}
. (4)

We are going to solve (4) under σ → 0.
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4 Fluid Limit

By denoting σ = ε and performing substitution in (4)

τ = tε, u = εw,Hk(u, t) = Fk(w, τ, ε, ),

Hk(u, z, t) = Fk(w, z, τ, ε), (5)

we obtain

ε
∂F0(w, τ, ε)

∂τ
= −λF0(w, τ, ε) + j

∂F0(w, τ, ε)
∂w

+ μF2(w, τ, ε),

ε
∂F1(w, z, τ, ε)

∂τ
=

∂F1(w, z, τ, ε)
∂z

− ∂F1(w, 0, τ, ε)
∂z

− je−jwε ∂F0(w, τ, ε)
∂w

B(z)

+λ(ejwε − 1)F1(w, z, τ, ε) + λB(z)F0(w, τ, ε) + μF3(w, z, τ, ε),

ε
∂F2(w, τ, ε)

∂τ
=

∂F1(w, 0, τ, ε)
∂z

+ ejwε ∂F3(w, 0, τ, ε)
∂z

+ j
∂F2(w, τ, ε)

∂w
− (λ + μ)F2(w, τ, ε),

ε
∂F3(w, z, τ, ε)

∂τ
=

∂F3(w, z, τ, ε)
∂z

− ∂F3(w, 0, τ, ε)
∂z

− je−jwεB(z)
∂F2(w, τ, ε)

∂w

+ (λ(ejwε − 1) − μ)F3(w, z, τ, ε) + λB(z)F2(w, τ, ε),

ε
∂F (w, τ, ε)

∂τ
= (ejwε − 1)

{
je−jwε

(
∂F0(w, τ, ε)

∂w
+

∂F2(w, τ, ε)
∂w

)

+λ(F1(w, τ, ε) + F3(w, τ, ε)) +
∂F3(w, 0, τ, ε)

∂z

}
, (6)

which we will solve under the assumption that functions Fk(w, τ, ε), Fk(w, z, τ, ε)
and their derivatives have limits as ε → 0.

Theorem 1. We have

lim
σ→0

Mejwσi( τ
σ ) = ejwx(τ), (7)

where x = x(τ) satisfies

x′(τ) = (1 + b1(λ + x))−1

(
λb1(λ + x) − x + B∗(μ)

(λ + x)2

μ + λ + x

)
, (8)

and where b1 =
∫ ∞
0

xdB(x) and B∗(μ) =
∫ ∞
0

e−μxdB(x).
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Proof. We take the limit ε → 0 in (6)

−λF0(w, τ) + j
∂F0(w, τ)

∂w
+ μF2(w, τ) = 0,

∂F1(w, z, τ)
∂z

− ∂F1(w, 0, τ)
∂z

− j
∂F0(w, τ)

∂w
B(z)

+λB(z)F0(w, τ) + μF3(w, z, τ) = 0,

∂F1(w, 0, τ)
∂z

+
∂F3(w, 0, τ)

∂z
+ j

∂F2(w, τ)
∂w

− (λ + μ)F2(w, τ) = 0,

∂F3(w, z, τ)
∂z

− ∂F3(w, 0, τ)
∂z

− jB(z)
∂F2(w, τ)

∂w

+ (λ − μ)F3(w, z, τ) + λB(z)F2(w, τ) = 0,

∂F (w, τ)
∂τ

= jw

{
j

(
∂F0(w, τ)

∂w
+

∂F2(w, τ)
∂w

)

+λ(F1(w, τ) + F3(w, τ)) +
∂F3(w, 0, τ)

∂z

}
. (9)

We assume that (9) has a solution in the form

Fk(w, τ) = r(x)ejwx(τ), k = 0, 2, Fk(w, z, τ) = r(z, x)ejwx(τ), k = 1, 3, (10)

where x = x(τ) expresses limσ→0 σi(τ/σ). Substituting (10) into (9), we obtain

−(λ + x)r0(x) + μr2(x) = 0,

∂r1(z, x)
∂z

− ∂r1(0, x)
∂z

+ (λ + x)B(z)r0(x) + +μr3(z, x) = 0,

∂r1(0, x)
∂z

+
∂r3(0, x)

∂z
− (λ + μ + x)r2(x) = 0,

∂r3(z, x)
∂z

− ∂r3(0, x)
∂z

− μr3(z, x) + (λ + μ)B(z)r2(x) = 0, (11)

x′(τ) = λ(r1(x) + r3(x)) − x(r0(x) + r2(x)) +
∂r3(0, x)

∂z
. (12)

Summing up the first equation with the third, the second equation with the
fourth of (11), we have

∂r1(z, x)
∂z

+
∂r3(0, x)

∂z
= (λ + x)(r0(x) + r2(x))

∂r3(z, x)
∂z

− ∂r3(0, x)
∂z

+
∂r1(z, x)

∂z
− ∂r1(0, x)

∂z

+ (λ + x)B(z)(r0(x) + r2(x)) = 0. (13)
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We denote

r02(x) = r0(x) + r2(x),

r31(z, x) = r1(z, x) + r3(z, x),

r31(0, x) = r1(0, x) + r3(0, x).

Then from (13) we obtain

r31(z, x) = (λ + x)r02(x)

z∫

0

(1 − B(s))ds.

Letting z → ∞ and denoting rk(∞, x) = rk(x), k = 1, 3, we have

r1(x) + r3(x) = (λ + x)b1(r0(x) + r2(x)),

where b1 =
∫ ∞
0

xdB(x). Because r0(x)+ r1(x)+ r2(x)+ r3(x) = 1, from the last
equality we obtain

r1(x) + r3(x) =
(λ + x)b1

1 + (λ + x)b1
,

r0(x) + r2(x) =
1

1 + (λ + x)b1
.

Taking into account the first equation of (11), we write

r0(x) =
μ

λ + x
r2(x).

We write the solution of the fourth differential equation of system (11) in the
form

r3(z, x) = eμz

z∫

0

e−μs

(
∂r3(0, x)

∂z
− (λ + x)B(s)r2(x)

)
ds. (14)

Let us send z → ∞ in this equation to have

μ

∞∫

0

e−μs

(
∂r3(0, x)

∂z
− (λ + x)B(s)r2(x)

)
ds = 0.

The integrand satisfies the condition

∂r3(0, x)
∂z

= (λ + x)r2(x)B∗(μ), (15)

where B∗(μ) =
∫ ∞
0

e−μxdB(x). Solution (14), taking into account (15), we
rewrite under z → ∞ in the form

r3(x) = (λ + x)r2(x)(1 − B∗(μ)).
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We obtain equations for the stationary probability distribution rk(x), k = 0, 3
of the states of servers

r0(x) =
μ

μ + λ + x
(1 + b1(λ + x))−1,

r1(x) = (1 + b1(λ + x))−1(λ + x)
(

b1 − 1
μ

λ + x

μ + λ + x
(1 − B∗(μ))

)
,

r2(x) =
λ + x

μ + λ + x
(1 + b1(λ + x))−1,

r3(x) =
1
μ

(λ + x)2

μ + λ + x
(1 − B∗(μ)) (1 + b1(λ + x))−1. (16)

Let us substitute rk(x) into (12) in order to obtain

x′(τ) = (1 + b1(λ + x))−1

(
λb1(λ + x) − x + B∗(μ)

(λ + x)2

μ + λ + x

)
, (17)

which coincides with (8).
Since x(τ) represents the asymptotic value (ε → 0) of σi(τ/σ), (7) holds. So,

Theorem 1 is proved.

Let us denote

a(x) = x′(τ) = (1 + b1(λ + x))−1

(
λb1(λ + x) − x + B∗(μ)

(λ + x)2

μ + λ + x

)
. (18)

a(x) plays an important role for our analysis. First, as it is shown in Theorem
1, a(x) represents the dynamic of x(τ), which is the limit under σ → 0 for
σi(τ/σ). Second, as it will be shown, a(x) expresses the drift coefficient for the
diffusion process that represents a scaled version of i(t).

5 Diffusion Limit

We carry out the following substitution in (4)

Hk(u, t) = ej u
σ x(σt)H

(1)
k (u, t), k = 0, 2

Hk(u, z, t) = ej u
σ x(σt)H

(1)
k (u, z, t), k = 1, 3. (19)

For H
(1)
k (u, t) and H

(1)
k (u, z, t), k = 0, 3, considering (18), we obtain

∂H
(1)
0 (u, t)
∂t

= −(λ + jua(x) + x)H(1)
0 (u, t)

+ jσ
∂H

(1)
0 (u, t)
∂u

+ μH
(1)
2 (u, t),
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∂H
(1)
1 (u, z, t)

∂t
=

∂H
(1)
1 (u, z, t)

∂z
− ∂H

(1)
1 (u, 0, t)

∂z
− jσe−ju ∂H

(1)
0 (u, t)
∂u

B(z)

+ (λ(eju − 1) − jua(x))H(1)
1 (u, z, t) + (λ + xe−ju)B(z)H(1)

0 (u, t) + μH
(1)
3 (u, z, t),

∂H
(1)
2 (u, t)
∂t

=
∂H

(1)
1 (u, 0, t)

∂z
+ eju ∂H

(1)
3 (u, 0, t)

∂z
+ jσ

∂H
(1)
2 (u, t)
∂u

− (λ + μ + jua(x) + x)H(1)
2 (u, t),

∂H
(1)
3 (u, z, t)

∂t
=

∂H
(1)
3 (u, z, t)

∂z
− ∂H

(1)
3 (u, 0, t)

∂z
− jσe−juB(z)

∂H
(1)
2 (u, t)
∂u

+ (λ(eju − 1) − μ − jua(x))H(1)
3 (u, z, t) + (λ + xe−ju)B(z)H(1)

2 (u, t),

∂H(1)(u, t)
∂t

+ jua(x)H(1)(u, t)

= (eju − 1)

{
jσe−ju

(
∂H

(1)
0 (u, t)
∂u

+
∂H

(1)
2 (u, t)
∂u

)

−xe−ju(H(1)
0 (u, t) + H

(1)
2 (u, t))

+λ(H(1)
1 (u, t) + H

(1)
3 (u, t)) +

∂H
(1)
3 (u, 0, t)

∂z

}
. (20)

Because H(1)(u, t) is the characteristic function of i(t) − 1
σ x(σt), we make the

substitutions as follows.
By defining σ = ε2 in (20) and substituting

τ = tε2, u = wε,H
(1)
k (u, t) = F

(1)
k (w, τ, ε), k = 0, 2,

H
(1)
k (u, z, t) = F

(1)
k (w, z, τ, ε), k = 1, 3, (21)

we obtain

ε2
∂F

(1)
0 (w, τ, ε)

∂τ
= −(λ + jεwa(x) + x)F (1)

0 (w, z, τ, ε)

+ jε
∂F

(1)
0 (w, τ, ε)

∂w
+ μF

(1)
2 (w, τ, ε),

ε2
∂F

(1)
1 (w, z, τ, ε)

∂τ
=

∂F
(1)
1 (w, z, τ, ε)

∂z
− ∂F

(1)
1 (w, 0, τ, ε)

∂z

− jεe−jwε ∂F
(1)
0 (w, τ, ε)

∂w
B(z) + (λ(ejwε − 1) − jεwa(x))F (1)

1 (w, z, τ, ε)

+ (λ + xe−jwε)B(z)F (1)
0 (w, τ, ε) + μF

(1)
3 (w, z, τ, ε),

ε2
∂F

(1)
2 (w, τ, ε)

∂τ
=

∂F
(1)
1 (w, 0, τ, ε)

∂z
+ ejwε ∂F

(1)
3 (w, 0, τ, ε)

∂z
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+ jε
∂F

(1)
2 (w, τ, ε)

∂w
− (λ + μ + jεwa(x) + x)F (1)

2 (w, τ, ε),

ε2
∂F

(1)
3 (w, z, τ, ε)

∂τ
=

∂F
(1)
3 (w, z, τ, ε)

∂z
− ∂F

(1)
3 (w, 0, τ, ε)

∂z

− jεe−jwεB(z)
∂F

(1)
2 (w, τ, ε)

∂w
+ (λ(ejwε − 1) − μ − jεwa(x))F (1)

3 (w, z, τ, ε)

+ (λ + xe−jwε)B(z)F (1)
2 (w, τ, ε),

ε2
∂F (1)(w, τ, ε)

∂τ
+ jεwa(x)F (1)(w, τ, ε)

= (ejwε − 1)

{
jεe−jwε

(
∂F

(1)
0 (w, τ, ε)

∂w
+

∂F
(1)
2 (w, τ, ε)

∂w

)

−xe−jwε(F (1)
1 (w, τ, ε) + F

(1)
2 (w, τ, ε))

+λ(F (1)
1 (w, τ, ε) + F

(1)
3 (w, τ, ε)) +

∂F
(1)
3 (w, 0, ε)

∂z

}
. (22)

which we will solve under the assumption that F
(1)
k (w, τ, ε), F

(1)
k (w, z, τ, ε) and

their derivatives have limits as ε → 0.

Theorem 2. F
(1)
k (w, τ) is given by

F
(1)
k (w, τ) = Φ(w, τ)rk(x), k = 0, 3 (23)

where Φ(w, τ) satisfies

∂Φ(w, τ)
∂τ

= a′(x)w
∂Φ(w, τ)

∂w
+ b(x)

(jw)2

2
Φ(w, τ) (24)

and rk(x) is defined in (16). a(x) is defined by (18) and b(x) is given by

b(x) = a(x)+2(λ(g1(x)+g3(x))+g′
3(0, x)−x(g0(x)+g2(x)−r0(x)−r2(x))), (25)

where

g′
3(0, x) = (λ + x)B∗(μ)g2(x) + ((a(x) − λ)(λ + x)B∗′(μ) − xB∗(μ)) (26)

and gk(x), k = 0, 3 are defined by

−(λ + x)g0(x) + μg2(x) = a(x)r0(x),

(λ + x)g0(x) + ((λ + x)(B∗(μ) − 1) + μ)g2(x) + μg3(x)

= xr0(x) + (a(x) − λ)r1(x) − ((a(x) − λ)(λ + x)B∗′(μ) − a(x) + λB∗(μ))r2(x),

g1(x) + g3(x) − (λ + x)b1(g2(x) + g0(x))

=
(

(λ − a(x))(λ + x)
b2
2

− xb1

)
(r0(x) + r2(x)),

g0(x) + g1(x) + g2(x) + g3(x) = 0, (27)

and where b2 =
∫ ∞
0

x2dB(x).
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Proof. The methodology of the proof is similar to that used in paper [14] before.

As it will be shown a(x) in (18) and b(x) in (25) are coefficients of a diffusion
process. Later we will show their role in the approximation of the stationary
distribution of i(t).

Remark 1. The results in Theorem 2 show that in the heavy traffic regime (σ →
0) i(t) and the state of the servers are independent as their joint characteristic
function is decomposed as a product of the orbit part and the server part.

6 Approximation of the Stationary Distribution Based
on Diffusion Limit

In this section, we apply the diffusion limit to find the probability distribution of
i(t) under σ → 0 in our system. This general method is also used other related
work e.g. [14].

Lemma 1. Under σ → 0

y(τ) = lim
σ→0

√
σ

{
i(τ/σ) − 1

σ
x(τ)

}
, (28)

is the solution of
dy(τ) = a′(x)ydτ +

√
b(x)dw(τ). (29)

We consider
l(τ) = x(τ) + εy(τ),

where ε =
√

σ as before.

Lemma 2. The process l(τ) is the solution of

dl(τ) = a(l)dτ +
√

σb(l)dw(τ) (30)

up to an infinitesimal of order ε2.

Under the steady-state regime, we consider l(τ)

s(l, τ) = s(l) =
∂P{l(τ) < l}

∂l
. (31)

Theorem 3. The density s(l) of l(τ) is given by

s(l) =
C

b(l)
exp

⎧
⎨

⎩
2
σ

l∫

0

a(x)
b(x)

dx

⎫
⎬

⎭ , (32)

where C is some constant that satisfies the normalization condition.
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7 Numerical Examples

Let us consider G(i) in the form

G(i) =
C

b(σi)
exp

⎧
⎨

⎩
2
σ

σi∫

0

a(x)
b(x)

dx

⎫
⎬

⎭ , (33)

and define P (i) as

P (i) =
G(i)

∞∑
i=0

G(i)
. (34)

We use P (i) to approximate P{i(t) = i}.
We consider a particular case of B(x) as a Gamma distribution with param-

eters of shape α = 2 and of scale β = 2. We consider λ = 0.5 and μ = 1.
Figure 2 presents the approximation of the probability distribution of the

i(t) with different values of calls’ delay time in the orbit: P1 - the approximation
with σ = 0.5, P2 - the approximation with σ = 0.3, P3 - the approximation with
σ = 0.1.

Fig. 2. The probability distribution i(t)

This figure shows the feasibility of our proposed approach.

8 Conclusion

In this paper, we have investigated the tandem retrial queue with two connected
servers and without intermediate buffer. The first server provides services for
calls for an arbitrary random time, while the second does for an exponentially
distributed random time. Under the condition that σ → 0, we have obtained
diffusion limit of a scaled version of i(t). The stationary probability density



M | GI | 1 | M | 1 Tandem Queue with Retrials 143

distribution of this diffusion process is used to approximate the stationary dis-
tribution of i(t).

In further research, we plan to compare our approximate results with simu-
lation
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