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Abstract. The purpose of the article is to investigate the reliability of
an unmanned high-altitude module based on a mathematical model of
the k-out-of-n:G system. An analytical model of the k-out-of-n:G sys-
tem under two system failure scenarios is considered. In the first case,
the system failure occurs after (n − k + 1) elements failure. The second
one examines the system failure depending on the location of the failed
elements. The sensitivity analysis of system reliability characteristics to
the shape of the lifetime distribution function of the components has
been carried out. The impact of the coefficient of variation of the system
elements lifetime on its operating probability without failure is investi-
gated. Several machine learning methods are used to calculate reliability
characteristics for arbitrary input data based on practically significant
parameters. The accuracy of the trained models is expressed in terms of
estimated mean values.
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1 Introduction and Motivation

Currently, telecommunication high-altitude platforms (THAP), which are imple-
mented on autonomous unmanned aerial vehicles (UAV), are widely developed
and used in various fields of human activity [1,2]. The main disadvantage of
UAVs is the limited operating time associated with the short service life of UAV
batteries equipped with electric motors or a limited supply of fuel for inter-
nal combustion engines. In this regard, such UAVs cannot be effectively used
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in systems that require a long operating time. The long-term operation can be
ensured by tethered THAP, in which the engines and payload equipment are
powered from ground-based energy sources [3–5]. The ability to transmit high-
power energy (10–15 kW) through a cable from the ground to the THAP’s board
allows lifting and holding at altitudes of 100–200 m of a payload telecommuni-
cation load for a long time, limited only by the reliability characteristics of the
platform [6–9]. High reliability of the tethered unmanned module is achieved
by the following ways: 1) choice of propulsion systems with a large meantime
between failures; 2) redundancy of individual elements of the control system; 3)
the usage of a multi-rotor architecture (for example, in a quadcopter, a failure
of one engine leads to a complete cessation of operation, and in an eight-rotor
version, in case of failure two motors, the copter may continue to run) and so on.

The reliability of such complex systems is effectively investigated using a
mathematical model of the k-out-of-n system [10]. Such a system has broad prac-
tical applications in various industries: telecommunications and robotics [11,12],
oil and gas [13], subsea pipeline monitoring systems [14], cryptography [15], etc.
This model has been widely studied under many assumptions about the struc-
ture of such a model, for example, the dependence and independence of the
system elements, the shape of life and repair times distributions, different recov-
ery scenarios, and others. To study various k-out-of-n systems, both analytical
methods based on multidimensional Markov processes and simulation are used
[11,16–18].

Sensitivity analysis is a significant research stage, especially for redundancy
systems like k-out-of-n system. In stochastic systems, stability is often under-
stood as the insensitivity or low sensitivity of their output characteristics to
the shape of some input distributions. The term “sensitivity” in other areas,
for example, civil engineering, can be defined differently [19]. In queuing theory,
the first results of sensitivity research are presented by Sevastyanov, Kovalenko,
Gnedenko, Soloviev, and others. Some of the latest studies see in [18] and its
references.

An additional research method considered in this paper is machine learn-
ing (ML). In queuing and reliability theories, ML methods are usually used for
studying various probabilistic and time characteristics of complex systems. They
are also useful in those cases when it is impossible to obtain results either analyti-
cally or using simulation [20]. The application of ML techniques for analyzing the
reliability of an unmanned high-altitude module is due to the following factors.

1. From a practical point of view, the system service time is often estimated by
its average value, while the shape of the lifetime distribution is unknown and
can only be assumed based on some statistical data. ML model can operate
based on the mean value without considering a specific distribution function
of the lifetime of system elements.

2. Some parameters inside the system can significantly impact its reliability.
However, from practice, this information may also be absent. The sensitivity
analysis helps identify these weaknesses, after which they will be included in
the ML model.
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3. A model built and trained using ML techniques can predict the system reli-
ability characteristics faster than a simulation model. In addition, it allows
making accurate predictions on many data simultaneously, while simulation
can only give a similar result after a lot of iterations.

4. Trained model can be useful and used by engineers at the development stage
of such modules for many aims: to determine a highly reliable system archi-
tecture (parameters k, n), select the module components, the characteristics
of which will support reliability and long-term operation of THAP (mean
lifetime a and the coefficient of variation v), and also predict how long this
unmanned module will operate with a satisfactory level of reliability.

There are many machine learning techniques. In the article, we will consider
supervised learning for some types of regressions and neural networks using a
Python programming language [21]. For this Scikit-learn [22] and TensorFlow
[23] libraries will be used.

This paper continues studies related to reliability and sensitivity and consid-
ers a hot standby non-repairable system using analytical and simulation methods.
The current paper aims to study the reliability of tethered THAP using the k-out-
of-n:G system and ML methods, which make it possible to determine a satisfac-
tory level of module reliability at different initial parameters with high accuracy.

The article is organized as follows. The next section introduces the problem
setting and some notations. In Sect. 3, reliability function of homogeneous k-out-
of-n:G system will study. Subsections 3.1 and 3.2 contain analytical results for
a simple homogeneous k-out-of-n:G system and a homogeneous k∗-out-of-n:G
system, the failure of which depends on the location of the failed elements. A
numerical example and sensitivity analysis of the considered systems are pre-
sented in Subsects. 3.3. In Sect. 4, various ML techniques for predicting the
level of reliability of unmanned module will discuss. Subsection 4.1 describes the
methods and data used in this research, which are implemented in Subsects. 4.2
and 4.3. The paper ends with a conclusion and some problems descriptions.

2 Problem Setting

Due to the multi-rotor architecture of the high-altitude module, which consists
of n identical engines, consider homogeneous k-out-of-n:G system. Such a system
consists of n elements and remains operational iff at least k out of n elements are
operational. Denote by Ai, i = 1, 2, ..., lifetimes of the system elements. Sup-
pose that these random variables are independent and identically distributed, thus
the corresponding cumulative density function is defined as A(t) = P{Ai ≤ t}.
Suppose also that instantaneous failures are impossible and their mean times are
finite:

A(0) = 0, a =
∫ ∞

0

(1 − A(t))dt.
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For the system study, introduce the random process J = {J(t), t ≥ 0} with

J(t) = number of working components in time t

with the set of states E = {j = 0, k}, where j is number of working units.
Denote also by T time to first system failure T = inf{t : J(t) ∈ E1}, where

E1 = {j = 0, k − 1} is the set of UP states. E0 = {j = k} is the set of DOWN
states. Thus, we are interesting in calculation of reliability function

R(t) = P{T > t},

and the mean time to system failure (MTTF)

m =
∫ ∞

0

R(t)dt.

3 Analytical Models and Sensitivity Analysis

3.1 Reliability Function of Homogeneous k-out-of-n:G System

Consider homogeneous k-out-of-n:G system, Ai(t) = A(t) (i = 1, n). It is well
known, the probability that exactly i elements of the system from n at time t
are in a working state has the form

P(t) = Ci
n(1 − A(t))iA(t)n−i.

Thus, the reliability function of such a system (the probability of the system
operating for a certain time t without failure) is

R(t) = P{T > t} =
n∑

i≥k

Ci
n(1 − A(t))iA(t)n−i. (1)

3.2 Reliability Function of Homogeneous k-out-of-n:G System
Taking into Account the Location of the Failed Units

To investigate the reliability function of more complex homogeneous system, the
failure of which depends on the location of its failed components, introduce a
vector description of the state of the system j = (ji, j2, ..., jn), where ji = 0 if
i-th component failed and ji = 1 if it works. Then the probability of state j in
time t equals to

pj(t) =
∏

1≤i≤n

(1 − A(t))jiA(t)1−ji .

The probabilities of the operable and failure states of the system at the time t
take the forms

P(UP ) =
∑
j∈E1

pj(t), P(DOWN) =
∑
j∈E0

pj(t).

Thus, the system reliability function is

R(t) =
∑
j∈E1

∏
1≤i≤n

(1 − A(t))jiA(t)1−ji . (2)
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3.3 Numerical Examples and Sensitivity Analysis

As a numerical example consider the case of 4-out-of-6:G system. It is supposed
that the lifetime of the system’s units have the following distributions:

– Gamma
[
Γ

(
1/v2, av2

)]
;

– Gnedenko-Weibull
[
GW

(
μ, a

Γ (1+1/μ)

)]
;

– Log-normal
[
LnN

(
ln a√

1+v2 ,
√

ln (1 + v2)
)]

,

where a is mean lifetime of the system components and v is its coefficient of
variation. μ is the shape parameter of GW distribution and selected based on
the value of v.

In our experiments we choose a = 1 and v = [0.1, 0.5, 1, 5, 10]. First, consider
the simple case of homogeneous 4-out-of-6:G system.

Fig. 1. Reliability function R(t) of homogeneous 4-out-of-6:G system

Figure 1 shows the dependence of system reliability function on the time t
calculated by formula (1). Black, red and blue colors correspond the Γ , GW , and
LnN distributions, respectively. As it can be seen from the curves, the reliability
function of the system is asymptotically insensitive to the form of the lifetime
distribution at fixed mean and coefficient of variation v ≤ 1. At the same time,
with v > 1, this insensitivity disappears, and the system loses its reliability very
quickly. We can conclude that the system behavior depends on the value v.
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Further, look at the reliability of the 4-out-of-6:G system taking into account
the location of the failed units. Denote such a system as a 4∗-out-of-6:G system.
Suppose that the system is operational as long as at least 4 out of 6 engines
are running, and two failed motors should not be located next to each other. In
other words, the system fails when two adjacent motors stop operate, or when
any three engines fail.

Due to the complexity (time and computational) of calculating the reliability
function using the formula (2) for arbitrary A(t), k, and n, here we will apply
simulation modeling to achieve our goals. The numerical example for the case of
exponential distribution of system elements lifetime can be found in paper [11].

To build a simulator Python programming was chosen. The constructed sim-
ulation model is shown graphically as a process flowchart (Fig. 2). As a result of
the algorithm, we can get the empirical reliability function R̂(t), and MTTF.

BEGIN

Checking stop condition
Is next failure near with the last one?

OR
Is it (n-k+1) element failure? 

Declaring and initializing variables and arrays

Determine next failure taking into account the 
remaining time

Simulation time update

Collect statistics

Determine time to 
system’s failure

Return simulation 
results

END

yes

no

Fig. 2. Flowchart of the simulation model of a k∗-out-of-n:G system

Figure 3 shows evaluation result using simulation. The example of both the
same system and parameters as before are used.

As can be seen from the numerical examples, the behavior of 4-out-of-6:G and
4∗-out-of-6:G system reliability functions is very similar. To see the difference
between them, consider corresponding MTTF (Table 1).

The results of the calculation of m confirm the conclusions of the sensitivity
analysis. Moreover, the 4-out-of-6:G system, without dependence on the location
of the failed elements, is efficient for a longer time than the other one.
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Fig. 3. Reliability function R(t) of homogeneous 4∗-out-of-6:G system

Table 1. Mean lifetime m of 4-out-of-6:G/4∗-out-of-6:G systems

A(t)

v
0.1 0.5 1 5 10

Γ
0.9775

0.9608

0.8445

0.7747

0.6174

0.5154

0.0077

0.0041

8 ∗ 10−5

3 ∗ 10−5

GW
0.9886

0.9693

0.8593

0.7777

0.6176

0.5177

0.0697

0.0503

0.0197

0.0136

LnN
0.9760

0.9598

0.8349

0.7743

0.6509

0.5714

0.2047

0.1621

0.1154

0.0874

4 Machine Learning Methods and Their Application
to the Task

This section presents the results of prediction THAP reliability using ML meth-
ods.

4.1 Methods and Data

As ML methods [21], we will consider the followings from scikit-learn (for regres-
sions) and TensorFlow (for neural network) libraries:

– Linear regression (LinReg),
– Polynomial regression (degree = 4) (PolyReg),
– K-nearest neighbors regression (n neighbors = 5) (KNN),
– Multi-output regression with cross-validation (scoring = MSE) based on

Ridge regression (MultiReg),
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– Artificial neural network with three hidden layers (optimizer = RMSprop(1e-
3), loss = MSE, batch size = 96) (ANN).

As it was noted in the introduction, the purpose of machine learning applica-
tion is to predict the reliability and time characteristics of a tethered unmanned
module. Therefore, the output parameters are R, t,m (Table 2). The set of
parameters, as well as their ranges, is associated with the following. The previous
section concludes some hidden parameters of the system, namely the coefficient
of variation, have a significant impact on its behavior and performance. More-
over, the system is insensitive to the shape of the lifetime distribution with v < 1.
In addition, from a practical point of view, we assume that the system is at a
satisfactory level of reliability if R(t) ≥ 0.5.

Table 2. Variables for machine learning models and their ranges

Type Variables Symbol Range

Input Total number of system’s elements n 4–10

Needed number of elements in operating states k 2 − (n − 1)

Mean lifetime a 0.1–1

Coefficient of variation v 0.01–1

Output Reliability R 0.5–1

Time to system acceptable level of R t >0

MTTF m >0

We have generated two datasets for training the models.

1. To train the model, which describes the behavior of THAP by homogeneous
k-out-of-n:G system, the dataset was generated using formula (1), in which
A(t) ∼ Γ .

2. For the second case, in which system failure depends on the location of the
failed elements, simulation results were used, here also A(t) ∼ Γ . This data
supposes that a system failure occurs either when 2 adjacent or any (n−k+1)
elements have failed.

The architecture of the selected ML models is different. Some can predict
several outputs simultaneously, while others can operate with only one outcome.
The whole process contains two phases – training and testing. Before training,
we divide the initial dataset into train and test sets with a ratio of 70% and 30%,
respectively. The learning process for LinReg, PolyReg, and KNN is structured
as follows. The first step is to predict reliability R using parameters n, k, a, v, t.
Next, the model is trained for prediction t on parameters n, k, a, v,R. The last
cycle ends with a forecast of m based on the set n, k, a, v,R, t. After each round,
the accuracy of the trained model is assessed, and testing begins on a new
data sample. For MultiReg and ANN, there is one training cycle, in which the
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model predicts R, t,m simultaneously based on n, k, a, v. These models provide
an additional phase for monitoring training, the so-called cross-validation. In
this way, the initial set is divided into 70%, 20% and 10% for train, validation
and final test.

4.2 Training and Testing Results for k-out-of-n:G System

Now move on to the results of ML techniques application for analyzing the
reliability of a tethered unmanned high-altitude module. First, consider the k-
out-of-n:G system. Table 3 shows the mean square error (MSE) for the predicted
values on the training set. The table results show the smallest prediction error
was achieved using PolyReg and KNN. The greatest error corresponds to Multi-
Reg. The closest prediction in the training phase among all methods was made
for MTTF m.

Table 3. Accuracy of training

LinReg PolyReg KNN MultiReg ANN

MSE R 0.0094 0.0028 10−4 0.0313 0.0094

t 0.0246 0.0149 0.0110 0.0322 0.0090

m 0.0093 10−4 4 ∗ 10−4 0.0123 10−4

Table 4 demonstrates MSE, mean absoulute error (MAE) as well as the coef-
ficient variation (R2) for the test set. Analyzing the results obtained, we can
note that MSE estimate for all cases lies in an acceptable interval. MAE esti-
mate shows the relative value of the prediction error. In our task, MAE ≥ 0.05
is considered unsatisfactory. Therefore, only the K-nearest neighbors regression
shows the obtained accuracy result among all the considered cases. R2 estimate

Table 4. Accuracy of testing

LinReg PolyReg KNN MultiReg ANN

MSE R 0.0094 0.0028 2 ∗ 10−4 0.0239 0.0131

t 0.0177 0.0339 0.0117 0.0344 0.0322

m 0.0107 0.0056 2 ∗ 10−6 0.0105 0.0043

MAE R 0.0708 0.0365 0.0033 0.0761 0.0746

t 0.1001 0.1125 0.0395 0.1395 0.1342

m 0.0690 0.0121 3 ∗ 10−4 0.0687 0.0273

R2 R 0.3804 0.8134 0.9894 0.1343 0.1370

t 0.6824 0.4274 0.7891 0.3807 0.4249

m 0.8934 0.9295 0.9999 0.8942 0.9571
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indicates how well the constructed model adequately describes the initial data.
The best result for this indicator is again shown by the KNN method. Note that
all methods are suitable for predicting the meantime m. The estimates MSE
and MAE are quite small, and R2 is high, which confirms the high dependence
between the input and output parameters.

Consider prediction results on the test set graphically. Figure 4, 5, 6, 7 and 8
shows the scatter diagrams for ML methods described above. For each of these
figures, 500 samples were taken at random. In reality, the test sample contains
about 200.000 values. LinReg and MultiReg demonstrate similar results for all
predicted parameters, but their accuracy is quite low. PolyReg and ANN show
acceptable prediction accuracy of m. For the other two, the prediction error is
too high. These methods present insufficient prediction accuracy. It suggests that
models do not reflect the relationship between input and output data. Predictions
for R and m using KNN are close enough to their exact values. For t, this is
not so much accurate. Nonetheless, the application of the KNN method obtains
the most accurate prediction result for all metrics among the considered ML
techniques.

a) R b) t c) m

Fig. 4. Scatter plots for LinReg

a) R b) t c) m

Fig. 5. Scatter plots for PolyReg
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a) R b) t c) m

Fig. 6. Scatter plots for KNN

a) R b) t c) m

Fig. 7. Scatter plots for MultiReg

a) R b) t c) m

Fig. 8. Scatter plots for ANN

4.3 Training and Testing Results for k∗-out-of-n:G System

The application of machine learning techniques to the task at hand has shown
that KNN most accurately predicts the reliability of an unmanned high-altitude
module, the failure of which occurs after the failure of (n − k + 1) its elements.
Therefore, for the second case of dependence of the system failure on the location
of the failed elements, we will consider only the KNN method. Consider the
learning accuracy results (Table 5). MSE is small enough and takes the desired
value.
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Table 5. Accuracy of training (MSE)

R t m

KNN 10−4 8.7 ∗ 10−3 10−4

The results on the test set are presented in Table 6 and Fig. 9. The results of
the prediction accuracy take acceptable values. MSE and MAE are small enough,
and the coefficient of determination R2 is high.

Table 6. Accuracy of testing

R t m

MSE 1.6 ∗ 10−4 8.6 ∗ 10−3 1.9 ∗ 10−6

MAE 3.6 ∗ 10−3 0.0492 3.3 ∗ 10−4

R2 0.9904 0.7545 0.9999

The graphical results show similar prediction accuracy to the k-out-of-n:G
system. The KNN model accurately reflects the dependence of R and m on the
initial data, while the prediction of t is not so accurate, MAE ≈ 5%.

a) R b) t c) m

Fig. 9. Scatter plots for KNN

5 Conclusion

The paper investigates the reliability of an unmanned high-altitude module based
on a mathematical model of the k-out-of-n system and machine learning meth-
ods. Two scenarios of the dependence of the system failure on the location of
the failed elements were considered. Analytical results and sensitivity analysis
demonstrated the dependence of the system reliability on the coefficient of vari-
ation of the lifetime for both scenarios. The application of machine learning
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methods showed that K-nearest neighbors regression describes the system relia-
bility in the best way. As future research direction, we plan to improve chosen
ML model to achieve more accurate predictions and consider other methods and
models.
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