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Abstract. The polling system with two Markovian Arrival Flows, finite
buffers, gated service discipline and Phase-Type (PH) distribution of
service and switching times is considered. Stationary distribution of the
continuous-time multi-dimensional Markov chain defining the current
state of the server, number of customers in the buffers, the number of
customers that should obtain service during the residual time of service
of customers from various buffers and underlying processes of service
or switching time and of arrival process is computed. Expressions for
Laplace-Stieltjes transforms of distribution of waiting times of customers
in both buffers are obtained. Numerical results giving some insight into
performance of the system are presented.

Keywords: Polling system · Markovian Arrival Process · Phase-Type
Service Time Distribution

1 Introduction

Stochastic polling models are effectively used for performance evaluation, design
and optimization of telecommunication systems and networks, transport sys-
tems and road management systems, traffic, production systems and inventory
management systems. In the recent review of the state of art in [1] the authors
gave the extensive survey of the basic notions and existing results in polling
models. For more references see, e.g., [2–13]. In particular, in [1] the authors
separately discuss the importance of analysis and the existing in the literature
results for two-queue systems as a special case of polling systems. In our paper,
polling system with two Markovian Arrival Processes (MAP s), buffers of finite
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capacity, gated service discipline and Phase-Type (PH) distribution of service
and switching times is considered. Consideration of such quite general arrival,
service and switching process is the main contribution of our paper. Especially,
this concerns analysis of waiting times distribution.

In Sect. 2, we describe the model under study. In Sect. 3, the continuous-time
multi-dimensional Markov chain describing behavior of the system is described.
A finite system of equations for the steady-state distribution of the chain is
derived. Short Sect. 4 contains formulas for computation of the average number
of customers and loss probabilities in the buffers. In Sect. 5, analysis of the
stationary distribution of waiting times in the buffers is presented. Section 6
contains some illustrative numerical results.

2 Mathematical Model

We consider a single server polling queueing system the structure of which is
shown in Fig. 1.

Fig. 1. Queueing system under study

The system has two queues with finite buffers of capacities N1 and N2, cor-
respondingly. Each queue receives its own flow of customers, which is defined by
the MAP (Markovian Arrival Process), see, e.g., [14–16]. The process of arrival
to the kth queue is defined by the irreducible continuous-time Markov chain
ν
(k)
t , t ≥ 0, having a finite state space {0, 1, ...,Wk}. The underlying process

ν
(k)
t stays in the state ν during an exponentially distributed time interval with

parameter λ
(k)
ν , ν = 0,Wk. After that, with probability p

(k)
l (ν, ν′) the underlying

process transits to the state ν′ with generation of l customers, l = 0, 1.
The behavior of the kth MAP is described by matrices D

(k)
0 and D

(k)
1 of size

W̄k = Wk + 1, which are defined by formulas:

(D0
(k))ν,ν′ =

{
−λν

(k), ν = ν′,
λν

(k)p
(k)
0 (ν, ν′), ν �= ν′,

(D1
(k))ν,ν′ = λν

(k)p
(k)
1 (ν, ν′), ν, ν′ = 0,Wk.

The matrix D(k) = D0
(k)+D1

(k) is the infinitesimal generator of the Markov
chain ν

(k)
t . The average intensity λk of customers arrival to the kth system is
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defined by the formula λk = χ(k)D
(k)
1 e, where χ(k) is the row vector of the

stationary probabilities of the Markov chain ν
(k)
t . The vector χ(k) is the unique

solution to the system χ(k)D(k) = 0, χ(k)e = 1. Here and throughout this paper,
e is a column vector of appropriate size consisting of ones, and 0 is a row vector
of appropriate size consisting of zeroes.

The service time of an arbitrary customer from the kth buffer has a PH
distribution, given by the irreducible representation (β(k), S(k)), k = 1, 2, and
the underlying process η

(k)
t , t ≥ 0, with the state space {1, ...,Mk,Mk+1}, where

the state Mk + 1 is the absorbing one. The initial state of the process η
(k)
t is

chosen among the transient states in accordance with a stochastic row vector
β(k) = (β(k)

1 , β
(k)
2 , ..., β

(k)
Mk

). The intensities of the transition of the process η
(k)
t

between transient states are defined by the matrix S(k). The intensities of the
transition to the absorbing state Mk + 1 is defined by the entries of the column
vector S(k)

0 = −S(k)e. More information about the PH distribution can be found
in [16,17]. Switching of the server between the queues is not instantaneous. The
switching time of the server to the service of customers located in the kth buffer
has a PH distribution given by the irreducible representation (β(−k), S(−k)),
k = 1, 2.

We assume the gated discipline of service. This means that the server provides
service only to those customers that are presenting in the buffer immediately
after completion of the server switching to this buffer. All customers that arrive
after completion of the switching will receive service only after the next switching
of the server to this buffer.

3 Process of System States

We describe the operation of the system by the process

ξt = {rt, jt, it
(1), it

(2),mt, νt
(1), νt

(2)}, t ≥ 0,

where, at the time instant t,

• it
(k) is the number of customers at the kth buffer, k = 1, 2;

• rt characterizes the state of the server:

rt =

{
k, if the server is processing the customer from the kth queue,
−k, if the server is switching to the kth queue, k = 1, 2;

• jt is the number of customers from the current queue that still need to be
serviced (including one in service). This component is absent in definition of
ξt if the server is currently switching to another queue;

• mt is the state of the underlying process of PH distributed ongoing service
or switching time;

• νt
(k), k = 1, 2, is the state of the underlying process of the customers arrival

in the kth MAP , k = 1, 2.
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The process ξt, t ≥ 0, is a regular irreducible continuous time Markov chain
and has a finite state space. Thus, the following limits (stationary probabilities)
exist:

π(r)
(
j, i1, i2,m, ν(1), ν(2)

)
=

lim
t→∞ P

{
rt = r, jt = j, it

(1) = i1, it
(2) = i2,mt = m, νt

(1) = ν(1), νt
(2) = ν(2)

}
.

Let us form the row vectors of these probabilities enumerated in the direct
lexicographical order of components rt, jt, it

(1), it
(2), mt, νt

(1), νt
(2):

π(r)(j, i1, i2) =
(
π(r)(j, i1, i2, 1, 0, 0), ..., π(r)(j, i1, i2, Mr, W1,W2)

)
,

π =
(
π(1) (1, 0, 0) , ..., π(1) (N1, N1, N2) ,π(2) (1, 0, 0) , ...,π(2) (N2, N1, N2) ,

π(−1) (0, 0) , ..., π(−1) (N1, N2) , π(−2) (0, 0) , ..., π(−2)(N1, N2)
)
.

Let us denote

R
(r)
i1,i2

= IMr
⊗ D

(1)
0 ⊗ IW̄2

(1 − δi1N1) + IMr
⊗ D(1)δi1N1 ⊗ IW̄2

+ IMr
⊗IW̄1

⊗D
(2)
0 (1 − δi2N2)+IMr

⊗IW̄1
⊗D(2)δi2N2 +S(r)⊗IW̄1W̄2

, ik = 0, Nk,

D̂
(1)
1 = D

(1)
1 ⊗ IW̄2

, D̂
(2)
1 = IW̄1

⊗ D
(2)
1 ,

where I is the identity matrix size of which is indicated by the suffix, ⊗ is the
symbol of the Kronecker product of matrices, see [18] δij is the Kronecker delta,
δ̄ij = 1 − δij .

The probability vector π satisfy the following system of linear algebraic equa-
tions, called equilibrium or Chapman-Kolmogorov equations:

π(1) (j, i1, i2) R
(1)
i1,i2

+ π(1) (j, i1 − 1, i2)
(
IM1 ⊗ D̂

(1)
1

)
δ̄i10

+ π(1) (j, i1, i2 − 1)
(
IM1 ⊗ D̂

(2)
1

)
δ̄i20 + π(1) (j + 1, i1, i2) δ̄jN1S

(1)
0 β

(1) ⊗ IW̄1W̄2

+ π(−1) (j, i2)S
(−1)
0 β

(1)
δi10 ⊗ IW̄1W̄2

= 0, j = 1, N1,

π(2) (j, i1, i2) R
(2)
i1,i2

+ π(2) (j, i1 − 1, i2)
(
IM2 ⊗ D̂

(1)
1

)
δ̄i10

+ π(2) (j, i1, i2 − 1)
(
IM2 ⊗ D̂

(2)
1

)
δ̄i20 + π(2) (j + 1, i1, i2) δ̄jN2S

(2)
0 β

(2) ⊗ IW̄1W̄2

+ π(−2) (i1, j)S
(−2)
0 β

(2)
δi20 ⊗ IW̄1W̄2

= 0, j = 1, N2,

π(−1) (i1, i2) R
(−1)
i1,i2

+ π(−1) (i1 − 1, i2)
(
IM−1 ⊗ D̂

(1)
1

)
δ̄i10
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+ π(−1) (i1, i2 − 1)
(
IM−1 ⊗ D̂

(2)
1

)
δ̄i20 + π(2) (1, i1, i2)S

(2)
0 β

(−1) ⊗ IW̄1W̄2

+ π(−2) (i1, 0)S
(−2)
0 β

(−1)
δi20 ⊗ IW̄1W̄2

= 0,

π(−2) (i1, i2) R
(−2)
i1,i2

+ π(−2) (i1 − 1, i2)
(
IM−2 ⊗ D̂

(1)
1

)
δ̄i10

+ π(−2) (i1, i2 − 1)
(
IM−2 ⊗ D̂

(2)
1

)
δ̄i20 + π(1) (1, i1, i2)S

(1)
0 β

(−2) ⊗ IW̄1W̄2

+ π(−1) (0, i2)S
(−1)
0 β

(−2)
δi10 ⊗ IW̄1W̄2

= 0.

The matrix of the Chapman-Kolmogorov system is degenerate according to
the properties of the infinitesimal generator. In order to find the vector π, add the
normalization condition πe = 1 and remove one of the equations of the system.
Thus, we obtain a system, the only solution of which is the vector of stationary
probabilities of the states of the system. As a numerically stable algorithm for
solving such a system, the algorithm from [19] is recommended.

4 Performance Measures

Having computed the vectors of the stationary probabilities πi, i ≥ 0, defined
by the partition π = (π0,π1,π2, . . . ), it is possible to compute a variety of the
performance measures of the system.

The average number of customers in the kth buffer, k = 1, 2, is computed by

Lk =
Nk∑
i=1

iπk(i)e,

where

π1(i)e =
2∑

k=1

N2∑
i2=0

( Nk∑
j=1

π (k)(j, i, i2)e + π(−k)(i, i2)e
)

,

π2(i)e =
2∑

k=1

N1∑
i1=0

( Nk∑
j=1

π (k)(j, i1, i)e + π(−k)(i1, i)e
)

.

The probability P
(loss)
k that an arbitrary customer arriving to the kth buffer

k = 1, 2, will be lost is computed by

P
(loss)
1 =

1

λ1

2∑
k=1

N2∑
i2=0

(Nk∑
j=1

π(k)(j, N1, i2)(IMk ⊗ D̂
(1)
1 )e + π(−k)(N1, i2)(IM−k ⊗ D̂

(1)
1 )e

)
,

P
(loss)
2 =

1

λ2

2∑
k=1

N1∑
i1=0

(Nk∑
j=1

π(k)(j, i1, N2)(IMk ⊗ D̂
(2)
1 )e + π(−k)(i1, N2)(IM−k ⊗ D̂

(2)
1 )e

)
.
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5 Distribution of the Waiting Time

Let Vk(x), x ≥ 0, be distribution function of the waiting time of an arbitrary
customer in the kth buffer and vk(s) be its Laplace-Stieltjes transform (LST ):

vk(s) =
∫ ∞

0

e−stdVk (t), Re s > 0.

We assume that the customers are served in the order of their arrival into
the buffers (FCFS service discipline).

We will derive expression for the LST vk(s) by means of the method of catas-
trophes. We interpret the variable s as the intensity of some virtual stationary
Poisson flow of so-called catastrophes. It is easy to see that the LST vk(s) is
equal to probability that no one catastrophe arrives during the waiting time. The
possible scenarios of the waiting time of an arbitrary customer are as follows.

1) The customer arrives to the kth buffer and the buffer is full. In that case the
customer is lost and vk(s) = 1.

2) The customer arrives when the server is switching to the kth queue. In that
case waiting time consists of the remaining switching time and the service
time of customers which arrived before the tagged customer.

3) The customer arrives when the server is servicing customers from another
queue. In that case waiting time consists of the remaining service time, the
service time of customers from another queue that still need to be serviced,
the switching time to the kth queue, the service time of customers which
arrived to the kth queue before the tagged customer.

4) The customer arrives when the server is switching to another queue. In that
case waiting time consists of the remaining switching time to another queue,
the service time of customers which have been staying in another buffer and
which arrived during the remaining switching time, the switching time to the
kth queue and the service time of customers which arrived before the tagged
customer.

5) The customer arrives when the server is servicing customers from the kth
queue. In that case, waiting time consists of the remaining service time, the
service time of customers from the kth buffer that still need to be serviced,
the switching time to another queue, the service time of customers which have
been staying in another buffer and which arrived during the switching time,
the switching time to the kth queue and the service time of customers which
arrived to this buffer before the tagged customer arrival.

Thus, to calculate the LST vk(s) of the waiting time of an arbitrary customer,
we need to analyse all the listed above scenarios.

Let us introduce the following functions: L(k)(s) =
(
sI − S(k)

)−1
S(k)
0 is the

vector consisting of LST s of the remaining service time of a customer from the
kth queue, if k = 1, 2 (or of switching time to kth queue, if k = −1,−2) with a
fixed current state of the corresponding underlying process; β(k)(s) = β(k)L(k)(s)
is the LST of the full service (or switching) time; Pm(l, t) is the matrix of
probabilities that l customers arrive to the mth queue during time t.
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Lemma 1. The LST of the column vector of remaining service times of a cus-
tomer from the rth queue, r = 1, 2, (or remaining switching time to the rth
buffer,−r = 1, 2) during which l customers from the mth flow will arrive to the
system, is calculated as follows:

F
(r)
l (m, s) = z

(r)
l (m, s)

(
S(r)
0 ⊗ IW̄m

)
,

the LST of the total service time during which l customers from the mth flow
will arrive in the system, is calculated as follows:

P
(r)
l (m, s) = k

(r)
l (m, s)

(
S(r)
0 ⊗ IW̄m

)
,

where
z
(r)
0 (m, s) = −(Δ(s, r) ⊗ IW̄m

)Ψ(s, r,m),

z
(r)
l (m, s) = −

l−1∑
i=0

z
(r)
i (m, s)(Δ(s, r) ⊗ D

(m)
l−i )Ψ(s, r,m),

k
(r)
0 (m, s) = −(β(r)(Δ(s, r) ⊗ IW̄m

)Ψ(s, r,m),

k
(r)
l (m, s) = −

l−1∑
i=0

k
(r)
i (m, s)(Δ(s, r) ⊗ D

(m)
l−i )Ψ(s, r,m),

Ψ(s, r,m) = (I + Δ(s, r) ⊗ D
(m)
0 )−1, Δ(s, r) = (−sI + S(r))−1.

Proof. By definition we have

F
(r)
l (m, s) =

∫ ∞

0

e−steS(r)tS(r)
0 ⊗ Pm(l, t)IW̄m

dt

=
∫ ∞

0

e−steS(r)t ⊗ Pm(l, t)dt(S(r)
0 ⊗ IW̄m

) = z
(r)
l (m, s)(S(r)

0 ⊗ IW̄m
).

In turn,

z
(r)
l (m, s) =

∫ ∞

0

e−steS(r)t ⊗ Pm (l, t) dt =
∫ ∞

0

e(S
(r)−sI)t ⊗ Pm (l, t) dt

= −(Δ(s, r) ⊗ IW̄m
)δl,0 −

∫ ∞

0

e(S
(r)−sI)tΔ(s, r) ⊗

l∑
i=0

Pm(i, t)D(m)
l−i dt

= −(Δ(s, r) ⊗ IW̄m
)δl,0 −

l∑
i=0

z
(r)
i (m, s)(Δ(s, r) ⊗ D

(m)
l−i ).

From where we get the formulas for F
(r)
l (m, s) and z

(r)
l (m, s) under proof.

In a similar way, we obtain formulas for P
(r)
l (m, s) and k

(r)
l (m, s).
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Lemma 2. The LST of the total service time of n customers, n ≥ 1, from
the rth queue, r = 1, 2, during which l customers, l ≥ 0, from the mth flow,
m = 1, 2, will arrive to the system, is calculated as follows:

P
(∗n,r)
l (m, s) = h

(r)
l,n (m, s)

(
Γ

(n)
0,r ⊗ IW̄m

)
,

where

h
(r)
0,n (m, s) = −

(
γ(n)

r

(
−sI + Γ (n)

r

)−1

⊗ IW̄m

)
Φ(s, r,m, n),

h
(r)
l,n (m, s) = −

l−1∑
i=0

h
(r)
i,n(m, s)

((
−sI + Γ (n)

r

)−1

⊗ D
(m)
l−i

)
Φ(s, r,m, n),

Φ(s, r,m, n) = (I + (−sI + Γ (n)
r )−1) ⊗ D

(m)
0 )−1.

Here γr
(n) and Γr

(n) are parameters of the phase-type distribution of the
sum of n independent random variables having a phase-type distribution with
the irreducible representation

(
β(r), S(r)

)
, and γr

(n) =
(
β(r),0, ...,0

)
, where

0 is a null row vector of the same size as β(r), and

Γ (n)
r =

⎛
⎜⎜⎜⎜⎜⎜⎝

S(r) S(r)
0 β(r) O . . . O

O S(r) S(r)
0 β(r) . . . O

O O S(r) . . . O
...

...
...

. . .
...

O O O . . . S(r)

⎞
⎟⎟⎟⎟⎟⎟⎠

where O is a null matrix of the same dimension as S(r), and

Γ
(n)
0,r = (0T , . . . ,0T ,S(r)

0 )T .

Lemma 3. The LST of the conditional waiting time, provided that at the
moment of arrival of tagged customer to the first buffer the server is switch-
ing to the first queue and there are i1 customers in the first buffer, is calculated
by the formula:

v
(−1)
1 (s, i1) = L(−1)(s)

(
β(1)(s)

)i1
.

Proof. The probability that no one catastrophe arrives during the waiting time
of the tagged customer is the product of the probability that no one catastrophe
arrives during the remaining time of switching the server to the first queue
L(−1)(s) by the probability that no one catastrophe arrives during the service
time of i1 customers (β(1) (s))

i1 .

Lemma 4. The LST of the conditional waiting time, provided that at the
moment of arrival of tagged customer to the first buffer the server is servicing
customers from the second queue, there are i2 customers in the second buffer,
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and j customers from second queue still need to be serviced, and there are i1
customers in the first buffer, is calculated by the formula:

v
(2)
1 (s, j, i1, i2) = L(2)(s)

(
β(2) (s)

)j−1

β(−1)v1
(−1)(s, i1).

Proof. The probability that no one catastrophe arrives during the waiting time of
the tagged customer is the product of the following probabilities: the probability
that no one catastrophe arrives during the remaining service time of the current
customer L(2) (s); the probability that no one catastrophe arrives during the
service time of j − 1 customers

(
β(2) (s)

)j−1
; the probabilities of the states of

the underlying process when the server starts switching to the first queue β(−1);
the probability that no one catastrophe arrives during the remaining from the
moment of switching start waiting time v1

(−1) (s, i1) .

Lemma 5. The LST of the conditional waiting time, provided that at the
moment of arrival of tagged customer to the first buffer, the server is switching
to the second buffer, which contains i2 customers, and the first buffer contains
i1 customers, is calculated as follows:

v
(−2)
1 (s, i1, i2) =

∞∑
k=0

F
(−2)
k (2, s)β(2)v1

(2)(s,min{i2 + k,N2}, i1, 0).

Proof. The probability that no one catastrophe arrives during the waiting time
is the product of probabilities: the probability that no one catastrophe arrives
during the remaining switching time and k customers come to the second buffer
F

(−2)
k (2, s); the probabilities of the states of the underlying process for servic-

ing the first customer from the second buffer β(2); the probability that no one
catastrophe will arrive in the future v

(2)
1 (s,min{i2 + k,N2}, i1, 0).

Lemma 6. The LST of the conditional waiting time, provided that at the
moment of arrival of tagged customer in the first buffer, the server is servic-
ing customer from the first queue, j customers are still need to be serviced, there
are i1 customers in the first buffer, and i2 customers in the second buffer, is
calculated as follows:

v
(1)
1 (s, j, i1, i2)

=
N2−i2−1∑

m=0

N2−i2−1−m∑
k=0

F (1)
m (2, s)P (∗j−1,1)

k (2, s)β(−2)v1
(−2)(s, i1, i2 + m + k)

+
N2−i2−1∑

m=0

∞∑
k=N2−i2−m

F (1)
m (2, s)P (∗j−1,1)

k (2, s)β(−2)v1
(−2)(s, i1, N2)

+
∞∑

m=N2−i2

F (1)
m (2, s)(β(1)(s))j−1β(−2)v1

(−2)(s, i1, N2).

Proof. The probability that no one catastrophe arrives during the waiting time
is the product of probabilities: the probability that no one catastrophe arrives
during the remaining service time of customer and m customers arrive to the
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second buffer F
(1)
m (2, s); the probability that no one catastrophe arrives during

the service time of the remaining customers and k customers arrive to the second
buffer P

(∗j−1,1)
k (2, s); the probabilities of the states of the underlying process of

switching to the second queue β(−2); probability that no one catastrophe will
arrive in the future v1

(−2)(s, i1, i2).

Theorem 1. The LST of the waiting time of customer in the first buffer has
the form

v1(s) = P
(loss)
1 +

1
λ1

N1−1∑
i1=0

N2∑
i2=0

(
π(−1)(i1, i2)

(
IM−1 ⊗ D̂

(1)
1

)
e v

(−1)
1 (s, i1)

+π(−2)(i1, i2)
(
IM−2 ⊗ D̂

(1)
1

)
e v

(−2)
1 (s, i1, i2)

+
2∑

k=1

Nk∑
j=1

π(k)(j, i1, i2)
(
IMk

⊗ D̂
(1)
1

)
e v

(k)
1 (s, j, i1, i2)

)
.

The proof follows from the above lemmas and the total probability formula.

Theorem 2. The LST of the waiting time of customer in the second buffer has
the form

v2(s) = P
(loss)
2 +

1
λ2

N2−1∑
i2=0

N1∑
i1=0

(
π(−2)(i1, i2)

(
IM−2 ⊗ D̂

(2)
1

)
e v

(−2)
2 (s, i2)

+π(−1)(i1, i2)
(
IM−1 ⊗ D̂

(2)
1

)
e v

(−1)
2 (s, i1, i2)

+
2∑

k=1

Nk∑
j=1

π(k)(j, i1, i2)
(
IMk

⊗ D̂
(2)
1

)
e v

(k)
2 (s, j, i1, i2)

)
,

where the corresponding functions are defined similarly to the above:

v
(−2)
2 (s, i2) = L(−2)(s)(β(2)(s))

i2
,

v
(1)
2 (s, j, i1, i2) = L(1)(s)(β(1)(s))

j−1
β(−2)v

(−2)
2 (s, i2),

v
(−1)
2 (s, i1, i2) =

∞∑
k=0

F
(−1)
k (1, s)β(1)v

(1)
2 (s,min{i1 + k,N1}, 0, i2),

v
(2)
2 (s, j, i1, i2)

=
N1−i1−1∑

m=0

∞∑
k=0

F (2)
m (1, s)P (∗j−1,2)

k (1, s)β(−1)v
(−1)
2 (s,min{i1 + m + k,N1}, i2)

+
∞∑

m=N1−i1

F (2)
m (1, s)(β(2)(s))

j−1
β(−1)v

(−1)
2 (s,N1, i2).
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Proof. The proof follows from the above lemmas and the total probability for-
mula.

Corollary 1. The average waiting time of an arbitrary customer in the kth

buffer Vk, k = 1, 2, is calculated by the formula Vk = −dvk(s)
ds

|s=0.

The average waiting time of an accepted customer in the kth buffer V
(accept)
k

is calculated by the formula V
(accept)
k = Vk(1 − P

(loss)
k )−1.

Proof. Note that the average waiting time for an arbitrary customer in the kth
buffer, k = 1, 2, also takes into account lost customers, the waiting time of which
is equal to zero:

Vk = V
(loss)
k P

(loss)
k + V

(accept)
k P

(accept)
k ,

where V
(loss)
k = 0 is the average waiting time for a lost customer in the kth

buffer, P
(loss)
k is the probability of loss of a customer when it arrives in the kth

buffer. Note also that P
(loss)
k + P

(accept)
k = 1, then

V
(accept)
k = Vk(P (accept)

k )−1 = Vk(1 − P
(loss)
k )−1.

6 Numerical Examples

Now we consider numerical examples. Let us assume that the arrival flow of
customers to the first queue MAP1 is defined by the following matrices:

D
(1)
0 =

(−10.08 0
0.003 −0.327

)
, D

(1)
1 =

(
9.975 0.105
0.036 0.288

)
.

The average intensity of customers arrival is λ1 = 2.96625. The coefficient of
correlation of successive inter-arrival times in this arrival process is cor = 0.4,
and the squared coefficient of variation of inter-arrival times is 12.39.

The arrival flow of customers to the second queue MAP2 is defined by the
following matrices:

D
(1)
0 =

(−5.4104 0
0 −0.17564

)
, D

(1)
1 =

(
5.3744 0.036
0.09784 0.0778

)
.

The average intensity of customers arrival is λ2 = 4. The coefficient of cor-
relation of successive inter-arrival times is cor = 0.2, and the squared coefficient
of variation of inter-arrival times is 12.34.

We assume that the capacity of the first buffer is N1 = 4 and the capacity of
the second buffer is N2 = 5.
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The PHs distributions characterizing the service and switching processes are
defined by the row vectors β(k) = (1, 0), k = ±1,±2, and the sub-generators

S(k) =
(−αck αck

0 −αck

)
, where c1 = 1, c2 = 1.2, c−1 = 0.3, c−2 = 0.2, α is the

parameter which we will vary.

Fig. 2. The dependence of L1 and L2 on α.

Figure 2 shows that the queue length decreases with an increase in the param-
eter α which affects the speed of growth of the service and switching rates.
Figure 3 shows that the probability of losing a customer also decreases with an
increase in the parameter α.

To illustrate the importance of account of correlation in arrival process, now
let us assume that the arrival flow of customers to the first queue MAP1 is
defined by the following matrices:

D
(1)
0 =

(−5.25 2.25
3.75 −6.6

)
, D

(1)
1 =

(
3 0
0 2.85

)
.

The average intensity of customers is practically the same, as in the MAP1 used
in the first example, λ1 = 2.94375. But the coefficient of correlation is cor = 0.
The squared coefficient of variation is 1.

The arrival flow of customers to the second queue MAP2 and the PHs of
service and switching processes are the same as above.

Figure 4 shows the dependence of the queue length L1 on the parameter α
with various correlations in the process MAP1. Figure 5 shows the dependence
of the probability of losing a customer P

(loss)
1 on the parameter α with various

correlations in the process MAP1. Figures 4 and 5 allow us to conclude that
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Fig. 3. The dependence of P
(loss)
1 and P

(loss)
2 on α.

Fig. 4. The dependence of L1 on α at different correlation coefficients.

ignoring the effect of correlation can lead to an essentially incorrect assessment
of the effectiveness of a real system that may be described by the model under
consideration.
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Fig. 5. The dependence of P
(loss)
1 on α at different correlation coefficients.

7 Conclusion

Polling system with two queues is analyzed. We considered the model under
assumption that the input flows are described by the MAP s and the service and
switching times have phase-type distributions. This model can be applied to
obtain the characteristics of a polling model with an arbitrary number of queues
under the general assumptions about input flows and service and switching times
distributions.
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Academic Leadership Program.
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