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Preface

The series of scientific conferences on Information Technologies and Mathematical
Modelling (ITMM) was started in 2002. In 2012, the series acquired an international
status, and selected revised papers have been published in Communications in Computer
and Information Science since 2014. The conference series was named after Alexander
Terpugov, one of the first organizers of the conference, an outstanding scientist of the
TomskStateUniversity and a leader of the famous Siberian school on applied probability,
queueing theory, and applications.

Traditionally, the conferences have about ten sections in various fields of
mathematical modelling and information technologies. Throughout the years, the
sections on probabilistic methods and models, queueing theory, and communication
networks have been the most popular ones at the conference. These sections gather
many scientists from different countries.Many foreign participants come to this Siberian
conference every year because of our warm welcome and serious scientific discussions.
In 2021, the 20th ITMM conference was held online due to the ongoing COVID-19
pandemic.

This volume presents selected papers from the 20th ITMM conference. The papers
are devoted to new results in queueing theory and its applications. Its target audience
includes specialists in probabilistic theory, random processes, and mathematical
modeling, as well as engineers engaged in logical and technical design and operational
management of data processing systems, communication, and computer networks.

December 2021 Alexander Dudin
Anatoly Nazarov

Alexander Moiseev
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Analysis of the Polling System with Two
Markovian Arrival Flows, Finite Buffers,

Gated Service and Phase-Type
Distribution of Service and Switching

Times

Alexander Dudin1,2(B) and Yuliya Sinyugina3

1 Belarusian State University, 4 Nezavisimosti Avenue, 220030 Minsk, Belarus
dudin@bsu.by

2 Applied Mathematics and Communications Technology Institute,
Peoples’ Friendship University of Russia (RUDN University),

6 Miklukho-Maklaya St, 117198 Moscow, Russia
3 Francisk Skorina Gomel State University,
104 Sovetskaya str., 246019 Gomel, Belarus

sinyugina@gsu.by

Abstract. The polling system with two Markovian Arrival Flows, finite
buffers, gated service discipline and Phase-Type (PH) distribution of
service and switching times is considered. Stationary distribution of the
continuous-time multi-dimensional Markov chain defining the current
state of the server, number of customers in the buffers, the number of
customers that should obtain service during the residual time of service
of customers from various buffers and underlying processes of service
or switching time and of arrival process is computed. Expressions for
Laplace-Stieltjes transforms of distribution of waiting times of customers
in both buffers are obtained. Numerical results giving some insight into
performance of the system are presented.

Keywords: Polling system · Markovian Arrival Process · Phase-Type
Service Time Distribution

1 Introduction

Stochastic polling models are effectively used for performance evaluation, design
and optimization of telecommunication systems and networks, transport sys-
tems and road management systems, traffic, production systems and inventory
management systems. In the recent review of the state of art in [1] the authors
gave the extensive survey of the basic notions and existing results in polling
models. For more references see, e.g., [2–13]. In particular, in [1] the authors
separately discuss the importance of analysis and the existing in the literature
results for two-queue systems as a special case of polling systems. In our paper,
polling system with two Markovian Arrival Processes (MAP s), buffers of finite
c© Springer Nature Switzerland AG 2022
A. Dudin et al. (Eds.): ITMM 2021, CCIS 1605, pp. 1–15, 2022.
https://doi.org/10.1007/978-3-031-09331-9_1
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2 A. Dudin and Y. Sinyugina

capacity, gated service discipline and Phase-Type (PH) distribution of service
and switching times is considered. Consideration of such quite general arrival,
service and switching process is the main contribution of our paper. Especially,
this concerns analysis of waiting times distribution.

In Sect. 2, we describe the model under study. In Sect. 3, the continuous-time
multi-dimensional Markov chain describing behavior of the system is described.
A finite system of equations for the steady-state distribution of the chain is
derived. Short Sect. 4 contains formulas for computation of the average number
of customers and loss probabilities in the buffers. In Sect. 5, analysis of the
stationary distribution of waiting times in the buffers is presented. Section 6
contains some illustrative numerical results.

2 Mathematical Model

We consider a single server polling queueing system the structure of which is
shown in Fig. 1.

Fig. 1. Queueing system under study

The system has two queues with finite buffers of capacities N1 and N2, cor-
respondingly. Each queue receives its own flow of customers, which is defined by
the MAP (Markovian Arrival Process), see, e.g., [14–16]. The process of arrival
to the kth queue is defined by the irreducible continuous-time Markov chain
ν
(k)
t , t ≥ 0, having a finite state space {0, 1, ...,Wk}. The underlying process

ν
(k)
t stays in the state ν during an exponentially distributed time interval with

parameter λ
(k)
ν , ν = 0,Wk. After that, with probability p

(k)
l (ν, ν′) the underlying

process transits to the state ν′ with generation of l customers, l = 0, 1.
The behavior of the kth MAP is described by matrices D

(k)
0 and D

(k)
1 of size

W̄k = Wk + 1, which are defined by formulas:

(D0
(k))ν,ν′ =

{
−λν

(k), ν = ν′,
λν

(k)p
(k)
0 (ν, ν′), ν �= ν′,

(D1
(k))ν,ν′ = λν

(k)p
(k)
1 (ν, ν′), ν, ν′ = 0,Wk.

The matrix D(k) = D0
(k)+D1

(k) is the infinitesimal generator of the Markov
chain ν

(k)
t . The average intensity λk of customers arrival to the kth system is
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defined by the formula λk = χ(k)D
(k)
1 e, where χ(k) is the row vector of the

stationary probabilities of the Markov chain ν
(k)
t . The vector χ(k) is the unique

solution to the system χ(k)D(k) = 0, χ(k)e = 1. Here and throughout this paper,
e is a column vector of appropriate size consisting of ones, and 0 is a row vector
of appropriate size consisting of zeroes.

The service time of an arbitrary customer from the kth buffer has a PH
distribution, given by the irreducible representation (β(k), S(k)), k = 1, 2, and
the underlying process η

(k)
t , t ≥ 0, with the state space {1, ...,Mk,Mk+1}, where

the state Mk + 1 is the absorbing one. The initial state of the process η
(k)
t is

chosen among the transient states in accordance with a stochastic row vector
β(k) = (β(k)

1 , β
(k)
2 , ..., β

(k)
Mk

). The intensities of the transition of the process η
(k)
t

between transient states are defined by the matrix S(k). The intensities of the
transition to the absorbing state Mk + 1 is defined by the entries of the column
vector S(k)

0 = −S(k)e. More information about the PH distribution can be found
in [16,17]. Switching of the server between the queues is not instantaneous. The
switching time of the server to the service of customers located in the kth buffer
has a PH distribution given by the irreducible representation (β(−k), S(−k)),
k = 1, 2.

We assume the gated discipline of service. This means that the server provides
service only to those customers that are presenting in the buffer immediately
after completion of the server switching to this buffer. All customers that arrive
after completion of the switching will receive service only after the next switching
of the server to this buffer.

3 Process of System States

We describe the operation of the system by the process

ξt = {rt, jt, it
(1), it

(2),mt, νt
(1), νt

(2)}, t ≥ 0,

where, at the time instant t,

• it
(k) is the number of customers at the kth buffer, k = 1, 2;

• rt characterizes the state of the server:

rt =

{
k, if the server is processing the customer from the kth queue,
−k, if the server is switching to the kth queue, k = 1, 2;

• jt is the number of customers from the current queue that still need to be
serviced (including one in service). This component is absent in definition of
ξt if the server is currently switching to another queue;

• mt is the state of the underlying process of PH distributed ongoing service
or switching time;

• νt
(k), k = 1, 2, is the state of the underlying process of the customers arrival

in the kth MAP , k = 1, 2.
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The process ξt, t ≥ 0, is a regular irreducible continuous time Markov chain
and has a finite state space. Thus, the following limits (stationary probabilities)
exist:

π(r)
(
j, i1, i2,m, ν(1), ν(2)

)
=

lim
t→∞ P

{
rt = r, jt = j, it

(1) = i1, it
(2) = i2,mt = m, νt

(1) = ν(1), νt
(2) = ν(2)

}
.

Let us form the row vectors of these probabilities enumerated in the direct
lexicographical order of components rt, jt, it

(1), it
(2), mt, νt

(1), νt
(2):

π(r)(j, i1, i2) =
(
π(r)(j, i1, i2, 1, 0, 0), ..., π(r)(j, i1, i2, Mr, W1,W2)

)
,

π =
(
π(1) (1, 0, 0) , ..., π(1) (N1, N1, N2) ,π(2) (1, 0, 0) , ...,π(2) (N2, N1, N2) ,

π(−1) (0, 0) , ..., π(−1) (N1, N2) , π(−2) (0, 0) , ..., π(−2)(N1, N2)
)
.

Let us denote

R
(r)
i1,i2

= IMr
⊗ D

(1)
0 ⊗ IW̄2

(1 − δi1N1) + IMr
⊗ D(1)δi1N1 ⊗ IW̄2

+ IMr
⊗IW̄1

⊗D
(2)
0 (1 − δi2N2)+IMr

⊗IW̄1
⊗D(2)δi2N2 +S(r)⊗IW̄1W̄2

, ik = 0, Nk,

D̂
(1)
1 = D

(1)
1 ⊗ IW̄2

, D̂
(2)
1 = IW̄1

⊗ D
(2)
1 ,

where I is the identity matrix size of which is indicated by the suffix, ⊗ is the
symbol of the Kronecker product of matrices, see [18] δij is the Kronecker delta,
δ̄ij = 1 − δij .

The probability vector π satisfy the following system of linear algebraic equa-
tions, called equilibrium or Chapman-Kolmogorov equations:

π(1) (j, i1, i2) R
(1)
i1,i2

+ π(1) (j, i1 − 1, i2)
(
IM1 ⊗ D̂

(1)
1

)
δ̄i10

+ π(1) (j, i1, i2 − 1)
(
IM1 ⊗ D̂

(2)
1

)
δ̄i20 + π(1) (j + 1, i1, i2) δ̄jN1S

(1)
0 β

(1) ⊗ IW̄1W̄2

+ π(−1) (j, i2)S
(−1)
0 β

(1)
δi10 ⊗ IW̄1W̄2

= 0, j = 1, N1,

π(2) (j, i1, i2) R
(2)
i1,i2

+ π(2) (j, i1 − 1, i2)
(
IM2 ⊗ D̂

(1)
1

)
δ̄i10

+ π(2) (j, i1, i2 − 1)
(
IM2 ⊗ D̂

(2)
1

)
δ̄i20 + π(2) (j + 1, i1, i2) δ̄jN2S

(2)
0 β

(2) ⊗ IW̄1W̄2

+ π(−2) (i1, j)S
(−2)
0 β

(2)
δi20 ⊗ IW̄1W̄2

= 0, j = 1, N2,

π(−1) (i1, i2) R
(−1)
i1,i2

+ π(−1) (i1 − 1, i2)
(
IM−1 ⊗ D̂

(1)
1

)
δ̄i10
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+ π(−1) (i1, i2 − 1)
(
IM−1 ⊗ D̂

(2)
1

)
δ̄i20 + π(2) (1, i1, i2)S

(2)
0 β

(−1) ⊗ IW̄1W̄2

+ π(−2) (i1, 0)S
(−2)
0 β

(−1)
δi20 ⊗ IW̄1W̄2

= 0,

π(−2) (i1, i2) R
(−2)
i1,i2

+ π(−2) (i1 − 1, i2)
(
IM−2 ⊗ D̂

(1)
1

)
δ̄i10

+ π(−2) (i1, i2 − 1)
(
IM−2 ⊗ D̂

(2)
1

)
δ̄i20 + π(1) (1, i1, i2)S

(1)
0 β

(−2) ⊗ IW̄1W̄2

+ π(−1) (0, i2)S
(−1)
0 β

(−2)
δi10 ⊗ IW̄1W̄2

= 0.

The matrix of the Chapman-Kolmogorov system is degenerate according to
the properties of the infinitesimal generator. In order to find the vector π, add the
normalization condition πe = 1 and remove one of the equations of the system.
Thus, we obtain a system, the only solution of which is the vector of stationary
probabilities of the states of the system. As a numerically stable algorithm for
solving such a system, the algorithm from [19] is recommended.

4 Performance Measures

Having computed the vectors of the stationary probabilities πi, i ≥ 0, defined
by the partition π = (π0,π1,π2, . . . ), it is possible to compute a variety of the
performance measures of the system.

The average number of customers in the kth buffer, k = 1, 2, is computed by

Lk =
Nk∑
i=1

iπk(i)e,

where

π1(i)e =
2∑

k=1

N2∑
i2=0

( Nk∑
j=1

π (k)(j, i, i2)e + π(−k)(i, i2)e
)

,

π2(i)e =
2∑

k=1

N1∑
i1=0

( Nk∑
j=1

π (k)(j, i1, i)e + π(−k)(i1, i)e
)

.

The probability P
(loss)
k that an arbitrary customer arriving to the kth buffer

k = 1, 2, will be lost is computed by

P
(loss)
1 =

1

λ1

2∑
k=1

N2∑
i2=0

(Nk∑
j=1

π(k)(j, N1, i2)(IMk ⊗ D̂
(1)
1 )e + π(−k)(N1, i2)(IM−k ⊗ D̂

(1)
1 )e

)
,

P
(loss)
2 =

1

λ2

2∑
k=1

N1∑
i1=0

(Nk∑
j=1

π(k)(j, i1, N2)(IMk ⊗ D̂
(2)
1 )e + π(−k)(i1, N2)(IM−k ⊗ D̂

(2)
1 )e

)
.
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5 Distribution of the Waiting Time

Let Vk(x), x ≥ 0, be distribution function of the waiting time of an arbitrary
customer in the kth buffer and vk(s) be its Laplace-Stieltjes transform (LST ):

vk(s) =
∫ ∞

0

e−stdVk (t), Re s > 0.

We assume that the customers are served in the order of their arrival into
the buffers (FCFS service discipline).

We will derive expression for the LST vk(s) by means of the method of catas-
trophes. We interpret the variable s as the intensity of some virtual stationary
Poisson flow of so-called catastrophes. It is easy to see that the LST vk(s) is
equal to probability that no one catastrophe arrives during the waiting time. The
possible scenarios of the waiting time of an arbitrary customer are as follows.

1) The customer arrives to the kth buffer and the buffer is full. In that case the
customer is lost and vk(s) = 1.

2) The customer arrives when the server is switching to the kth queue. In that
case waiting time consists of the remaining switching time and the service
time of customers which arrived before the tagged customer.

3) The customer arrives when the server is servicing customers from another
queue. In that case waiting time consists of the remaining service time, the
service time of customers from another queue that still need to be serviced,
the switching time to the kth queue, the service time of customers which
arrived to the kth queue before the tagged customer.

4) The customer arrives when the server is switching to another queue. In that
case waiting time consists of the remaining switching time to another queue,
the service time of customers which have been staying in another buffer and
which arrived during the remaining switching time, the switching time to the
kth queue and the service time of customers which arrived before the tagged
customer.

5) The customer arrives when the server is servicing customers from the kth
queue. In that case, waiting time consists of the remaining service time, the
service time of customers from the kth buffer that still need to be serviced,
the switching time to another queue, the service time of customers which have
been staying in another buffer and which arrived during the switching time,
the switching time to the kth queue and the service time of customers which
arrived to this buffer before the tagged customer arrival.

Thus, to calculate the LST vk(s) of the waiting time of an arbitrary customer,
we need to analyse all the listed above scenarios.

Let us introduce the following functions: L(k)(s) =
(
sI − S(k)

)−1
S(k)
0 is the

vector consisting of LST s of the remaining service time of a customer from the
kth queue, if k = 1, 2 (or of switching time to kth queue, if k = −1,−2) with a
fixed current state of the corresponding underlying process; β(k)(s) = β(k)L(k)(s)
is the LST of the full service (or switching) time; Pm(l, t) is the matrix of
probabilities that l customers arrive to the mth queue during time t.
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Lemma 1. The LST of the column vector of remaining service times of a cus-
tomer from the rth queue, r = 1, 2, (or remaining switching time to the rth
buffer,−r = 1, 2) during which l customers from the mth flow will arrive to the
system, is calculated as follows:

F
(r)
l (m, s) = z

(r)
l (m, s)

(
S(r)
0 ⊗ IW̄m

)
,

the LST of the total service time during which l customers from the mth flow
will arrive in the system, is calculated as follows:

P
(r)
l (m, s) = k

(r)
l (m, s)

(
S(r)
0 ⊗ IW̄m

)
,

where
z
(r)
0 (m, s) = −(Δ(s, r) ⊗ IW̄m

)Ψ(s, r,m),

z
(r)
l (m, s) = −

l−1∑
i=0

z
(r)
i (m, s)(Δ(s, r) ⊗ D

(m)
l−i )Ψ(s, r,m),

k
(r)
0 (m, s) = −(β(r)(Δ(s, r) ⊗ IW̄m

)Ψ(s, r,m),

k
(r)
l (m, s) = −

l−1∑
i=0

k
(r)
i (m, s)(Δ(s, r) ⊗ D

(m)
l−i )Ψ(s, r,m),

Ψ(s, r,m) = (I + Δ(s, r) ⊗ D
(m)
0 )−1, Δ(s, r) = (−sI + S(r))−1.

Proof. By definition we have

F
(r)
l (m, s) =

∫ ∞

0

e−steS(r)tS(r)
0 ⊗ Pm(l, t)IW̄m

dt

=
∫ ∞

0

e−steS(r)t ⊗ Pm(l, t)dt(S(r)
0 ⊗ IW̄m

) = z
(r)
l (m, s)(S(r)

0 ⊗ IW̄m
).

In turn,

z
(r)
l (m, s) =

∫ ∞

0

e−steS(r)t ⊗ Pm (l, t) dt =
∫ ∞

0

e(S
(r)−sI)t ⊗ Pm (l, t) dt

= −(Δ(s, r) ⊗ IW̄m
)δl,0 −

∫ ∞

0

e(S
(r)−sI)tΔ(s, r) ⊗

l∑
i=0

Pm(i, t)D(m)
l−i dt

= −(Δ(s, r) ⊗ IW̄m
)δl,0 −

l∑
i=0

z
(r)
i (m, s)(Δ(s, r) ⊗ D

(m)
l−i ).

From where we get the formulas for F
(r)
l (m, s) and z

(r)
l (m, s) under proof.

In a similar way, we obtain formulas for P
(r)
l (m, s) and k

(r)
l (m, s).
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Lemma 2. The LST of the total service time of n customers, n ≥ 1, from
the rth queue, r = 1, 2, during which l customers, l ≥ 0, from the mth flow,
m = 1, 2, will arrive to the system, is calculated as follows:

P
(∗n,r)
l (m, s) = h

(r)
l,n (m, s)

(
Γ

(n)
0,r ⊗ IW̄m

)
,

where

h
(r)
0,n (m, s) = −

(
γ(n)

r

(
−sI + Γ (n)

r

)−1

⊗ IW̄m

)
Φ(s, r,m, n),

h
(r)
l,n (m, s) = −

l−1∑
i=0

h
(r)
i,n(m, s)

((
−sI + Γ (n)

r

)−1

⊗ D
(m)
l−i

)
Φ(s, r,m, n),

Φ(s, r,m, n) = (I + (−sI + Γ (n)
r )−1) ⊗ D

(m)
0 )−1.

Here γr
(n) and Γr

(n) are parameters of the phase-type distribution of the
sum of n independent random variables having a phase-type distribution with
the irreducible representation

(
β(r), S(r)

)
, and γr

(n) =
(
β(r),0, ...,0

)
, where

0 is a null row vector of the same size as β(r), and

Γ (n)
r =

⎛
⎜⎜⎜⎜⎜⎜⎝

S(r) S(r)
0 β(r) O . . . O

O S(r) S(r)
0 β(r) . . . O

O O S(r) . . . O
...

...
...

. . .
...

O O O . . . S(r)

⎞
⎟⎟⎟⎟⎟⎟⎠

where O is a null matrix of the same dimension as S(r), and

Γ
(n)
0,r = (0T , . . . ,0T ,S(r)

0 )T .

Lemma 3. The LST of the conditional waiting time, provided that at the
moment of arrival of tagged customer to the first buffer the server is switch-
ing to the first queue and there are i1 customers in the first buffer, is calculated
by the formula:

v
(−1)
1 (s, i1) = L(−1)(s)

(
β(1)(s)

)i1
.

Proof. The probability that no one catastrophe arrives during the waiting time
of the tagged customer is the product of the probability that no one catastrophe
arrives during the remaining time of switching the server to the first queue
L(−1)(s) by the probability that no one catastrophe arrives during the service
time of i1 customers (β(1) (s))

i1 .

Lemma 4. The LST of the conditional waiting time, provided that at the
moment of arrival of tagged customer to the first buffer the server is servicing
customers from the second queue, there are i2 customers in the second buffer,
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and j customers from second queue still need to be serviced, and there are i1
customers in the first buffer, is calculated by the formula:

v
(2)
1 (s, j, i1, i2) = L(2)(s)

(
β(2) (s)

)j−1

β(−1)v1
(−1)(s, i1).

Proof. The probability that no one catastrophe arrives during the waiting time of
the tagged customer is the product of the following probabilities: the probability
that no one catastrophe arrives during the remaining service time of the current
customer L(2) (s); the probability that no one catastrophe arrives during the
service time of j − 1 customers

(
β(2) (s)

)j−1
; the probabilities of the states of

the underlying process when the server starts switching to the first queue β(−1);
the probability that no one catastrophe arrives during the remaining from the
moment of switching start waiting time v1

(−1) (s, i1) .

Lemma 5. The LST of the conditional waiting time, provided that at the
moment of arrival of tagged customer to the first buffer, the server is switching
to the second buffer, which contains i2 customers, and the first buffer contains
i1 customers, is calculated as follows:

v
(−2)
1 (s, i1, i2) =

∞∑
k=0

F
(−2)
k (2, s)β(2)v1

(2)(s,min{i2 + k,N2}, i1, 0).

Proof. The probability that no one catastrophe arrives during the waiting time
is the product of probabilities: the probability that no one catastrophe arrives
during the remaining switching time and k customers come to the second buffer
F

(−2)
k (2, s); the probabilities of the states of the underlying process for servic-

ing the first customer from the second buffer β(2); the probability that no one
catastrophe will arrive in the future v

(2)
1 (s,min{i2 + k,N2}, i1, 0).

Lemma 6. The LST of the conditional waiting time, provided that at the
moment of arrival of tagged customer in the first buffer, the server is servic-
ing customer from the first queue, j customers are still need to be serviced, there
are i1 customers in the first buffer, and i2 customers in the second buffer, is
calculated as follows:

v
(1)
1 (s, j, i1, i2)

=
N2−i2−1∑

m=0

N2−i2−1−m∑
k=0

F (1)
m (2, s)P (∗j−1,1)

k (2, s)β(−2)v1
(−2)(s, i1, i2 + m + k)

+
N2−i2−1∑

m=0

∞∑
k=N2−i2−m

F (1)
m (2, s)P (∗j−1,1)

k (2, s)β(−2)v1
(−2)(s, i1, N2)

+
∞∑

m=N2−i2

F (1)
m (2, s)(β(1)(s))j−1β(−2)v1

(−2)(s, i1, N2).

Proof. The probability that no one catastrophe arrives during the waiting time
is the product of probabilities: the probability that no one catastrophe arrives
during the remaining service time of customer and m customers arrive to the
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second buffer F
(1)
m (2, s); the probability that no one catastrophe arrives during

the service time of the remaining customers and k customers arrive to the second
buffer P

(∗j−1,1)
k (2, s); the probabilities of the states of the underlying process of

switching to the second queue β(−2); probability that no one catastrophe will
arrive in the future v1

(−2)(s, i1, i2).

Theorem 1. The LST of the waiting time of customer in the first buffer has
the form

v1(s) = P
(loss)
1 +

1
λ1

N1−1∑
i1=0

N2∑
i2=0

(
π(−1)(i1, i2)

(
IM−1 ⊗ D̂

(1)
1

)
e v

(−1)
1 (s, i1)

+π(−2)(i1, i2)
(
IM−2 ⊗ D̂

(1)
1

)
e v

(−2)
1 (s, i1, i2)

+
2∑

k=1

Nk∑
j=1

π(k)(j, i1, i2)
(
IMk

⊗ D̂
(1)
1

)
e v

(k)
1 (s, j, i1, i2)

)
.

The proof follows from the above lemmas and the total probability formula.

Theorem 2. The LST of the waiting time of customer in the second buffer has
the form

v2(s) = P
(loss)
2 +

1
λ2

N2−1∑
i2=0

N1∑
i1=0

(
π(−2)(i1, i2)

(
IM−2 ⊗ D̂

(2)
1

)
e v

(−2)
2 (s, i2)

+π(−1)(i1, i2)
(
IM−1 ⊗ D̂

(2)
1

)
e v

(−1)
2 (s, i1, i2)

+
2∑

k=1

Nk∑
j=1

π(k)(j, i1, i2)
(
IMk

⊗ D̂
(2)
1

)
e v

(k)
2 (s, j, i1, i2)

)
,

where the corresponding functions are defined similarly to the above:

v
(−2)
2 (s, i2) = L(−2)(s)(β(2)(s))

i2
,

v
(1)
2 (s, j, i1, i2) = L(1)(s)(β(1)(s))

j−1
β(−2)v

(−2)
2 (s, i2),

v
(−1)
2 (s, i1, i2) =

∞∑
k=0

F
(−1)
k (1, s)β(1)v

(1)
2 (s,min{i1 + k,N1}, 0, i2),

v
(2)
2 (s, j, i1, i2)

=
N1−i1−1∑

m=0

∞∑
k=0

F (2)
m (1, s)P (∗j−1,2)

k (1, s)β(−1)v
(−1)
2 (s,min{i1 + m + k,N1}, i2)

+
∞∑

m=N1−i1

F (2)
m (1, s)(β(2)(s))

j−1
β(−1)v

(−1)
2 (s,N1, i2).
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Proof. The proof follows from the above lemmas and the total probability for-
mula.

Corollary 1. The average waiting time of an arbitrary customer in the kth

buffer Vk, k = 1, 2, is calculated by the formula Vk = −dvk(s)
ds

|s=0.

The average waiting time of an accepted customer in the kth buffer V
(accept)
k

is calculated by the formula V
(accept)
k = Vk(1 − P

(loss)
k )−1.

Proof. Note that the average waiting time for an arbitrary customer in the kth
buffer, k = 1, 2, also takes into account lost customers, the waiting time of which
is equal to zero:

Vk = V
(loss)
k P

(loss)
k + V

(accept)
k P

(accept)
k ,

where V
(loss)
k = 0 is the average waiting time for a lost customer in the kth

buffer, P
(loss)
k is the probability of loss of a customer when it arrives in the kth

buffer. Note also that P
(loss)
k + P

(accept)
k = 1, then

V
(accept)
k = Vk(P (accept)

k )−1 = Vk(1 − P
(loss)
k )−1.

6 Numerical Examples

Now we consider numerical examples. Let us assume that the arrival flow of
customers to the first queue MAP1 is defined by the following matrices:

D
(1)
0 =

(−10.08 0
0.003 −0.327

)
, D

(1)
1 =

(
9.975 0.105
0.036 0.288

)
.

The average intensity of customers arrival is λ1 = 2.96625. The coefficient of
correlation of successive inter-arrival times in this arrival process is cor = 0.4,
and the squared coefficient of variation of inter-arrival times is 12.39.

The arrival flow of customers to the second queue MAP2 is defined by the
following matrices:

D
(1)
0 =

(−5.4104 0
0 −0.17564

)
, D

(1)
1 =

(
5.3744 0.036
0.09784 0.0778

)
.

The average intensity of customers arrival is λ2 = 4. The coefficient of cor-
relation of successive inter-arrival times is cor = 0.2, and the squared coefficient
of variation of inter-arrival times is 12.34.

We assume that the capacity of the first buffer is N1 = 4 and the capacity of
the second buffer is N2 = 5.
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The PHs distributions characterizing the service and switching processes are
defined by the row vectors β(k) = (1, 0), k = ±1,±2, and the sub-generators

S(k) =
(−αck αck

0 −αck

)
, where c1 = 1, c2 = 1.2, c−1 = 0.3, c−2 = 0.2, α is the

parameter which we will vary.

Fig. 2. The dependence of L1 and L2 on α.

Figure 2 shows that the queue length decreases with an increase in the param-
eter α which affects the speed of growth of the service and switching rates.
Figure 3 shows that the probability of losing a customer also decreases with an
increase in the parameter α.

To illustrate the importance of account of correlation in arrival process, now
let us assume that the arrival flow of customers to the first queue MAP1 is
defined by the following matrices:

D
(1)
0 =

(−5.25 2.25
3.75 −6.6

)
, D

(1)
1 =

(
3 0
0 2.85

)
.

The average intensity of customers is practically the same, as in the MAP1 used
in the first example, λ1 = 2.94375. But the coefficient of correlation is cor = 0.
The squared coefficient of variation is 1.

The arrival flow of customers to the second queue MAP2 and the PHs of
service and switching processes are the same as above.

Figure 4 shows the dependence of the queue length L1 on the parameter α
with various correlations in the process MAP1. Figure 5 shows the dependence
of the probability of losing a customer P

(loss)
1 on the parameter α with various

correlations in the process MAP1. Figures 4 and 5 allow us to conclude that
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Fig. 3. The dependence of P
(loss)
1 and P

(loss)
2 on α.

Fig. 4. The dependence of L1 on α at different correlation coefficients.

ignoring the effect of correlation can lead to an essentially incorrect assessment
of the effectiveness of a real system that may be described by the model under
consideration.
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Fig. 5. The dependence of P
(loss)
1 on α at different correlation coefficients.

7 Conclusion

Polling system with two queues is analyzed. We considered the model under
assumption that the input flows are described by the MAP s and the service and
switching times have phase-type distributions. This model can be applied to
obtain the characteristics of a polling model with an arbitrary number of queues
under the general assumptions about input flows and service and switching times
distributions.
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Abstract. In this paper, a finite-source retrial queueing system is con-
sidered with impatient customers and catastrophic breakdowns. The
characteristic of the system includes collision which occurs when a new
job arrives in the system and the service facility is occupied with a job,
they will collide. Both jobs will be forwarded to the virtual waiting room
the so-called orbit. Here, the customers initiate other attempts to reach
the server after a random time. But they give up retrying after staying in
the orbit a while and leave the system which is the impatient attribute
of the customers. In case of a negative event, a catastrophic breakdown
takes place meaning that all the customers at the server and in the orbit
depart from the system. The novelty of this paper is to investigate that
feature in a collision environment with impatient customers using differ-
ent distributions of the service time.

Keywords: Simulation · Catastrophic breakdown · Retrial queuing
system · Collision · Impatience · Sensitivity analysis

1 Introduction

Designing info-communication systems are essential because of understanding
how to optimize a system and also how to handle increasing network traffic.
Many tools and mechanisms are available for modeling different systems, and
among them, one of the most popular ones is retrial queuing systems. To illus-
trate real-life problems arising in main telecommunication systems, like tele-
phone switching systems, call centers, computer networks, and computer sys-
tems, retrial queues can be effectively applied. In many publications, retrial-
queuing systems with repeated calls are utilized to depict their models like in
[2,5,6,9]. The specialty of retrial queuing systems relies on the orbit which is
assumed to be a virtual waiting room with enough capacity to take in every cus-
tomer. In this way, a job - whose service can not start - is not lost and may launch
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numerous attempts to get its service requirement. The source is considered to
be finite mainly because in many situations a finite number of entities partici-
pate in the operation of the system. Naturally, researchers have studied models
with an infinite source but these are not suitably describing real-life applications
in many cases. Results in connection with finite-source retrial queuing systems
can be viewed in [1,14,18,19]. Impatient behaviour is a natural characteristic of
the customers provoking earlier departure without obtaining its service demand.
This phenomenon is experienced in many fields of our life and here are some
examples: healthcare applications, call centers, telecommunication networks. Not
to mention all the papers where the behaviour of impatience is intensively exam-
ined, see for example [8,11,17]. Real-life systems tend to be subjected to random
breakdowns which can be caused by a power outage, human negligence, or other
sudden act. Thus, it is important to examine its effect on the operation of the sys-
tem and the performance measures because it alters significantly the behaviour
of a model. Many papers have studied models having service units assumed to
be available all the time which is quite unrealistic. These types of systems have
been investigated by many authors for example in [4,10,20]. In technologies, like
in Ethernet or in communication sessions where the resources are constrained,
the probability of collisions of the jobs occurs. Several individuals in the source
may commence uncoordinated attempts leading to the interference of the sig-
nals resulting in the necessity for retransmissions. Consequently, it is important
to include this phenomenon as part of the investigation creating effective poli-
cies preventing conflicts and corresponding message delays. Results that are in
connection with collisions can be found in the following publication [12,13,15].

The objective of our investigation is to carry out a sensitivity analysis using
different distributions of service times on the main performance measures while
catastrophic breakdowns eventuate. In the case of these types of events, cus-
tomers are forced to leave the system due to sudden acts which can be mechanical
failures or power outages. Until repair, it is not allowed for any customer to enter
the system and detailed studies on catastrophic breakdowns have been exam-
ined by several papers. Because we utilize different distributions for the service
time of the customers the results are obtained by our simulation program that
is based on Simpack [7]. The basic building blocks of the code are used in which
we have the opportunity to calculate any desired measure using numerous values
of input parameters. Graphical illustrations are provided depicting the effect of
different parameters and distributions on the main performance metrics.

2 System Model

A finite-source retrial queueing system of type M/G/1//N is considered with
an unreliable service unit, impatient customers, the appearance of collisions,
and blocking. This model has one service unit and a finite-source where every
individual (altogether N) may generate a request towards the system according
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to exponential law with parameter λ/N meaning that the inter-arrival times are
exponentially distributed with mean λ/N . As there are no queues the service of
an arriving job starts immediately following gamma, hypo-exponential, hyper-
exponential, Pareto, and lognormal distribution with different parameters but
with the same mean and variance value. In the case of a busy server, an arriving
customer brings about a collision with the customer under service, and both
are moved into orbit. Jobs residing in the orbit after an exponentially random
time with parameter σ/N initiate other tries to be engaged with the server.
Since random breakdowns emerge the failure time is also an exponential random
variable with parameter γ0 when the server is occupied and with γ1 if idle. Two
scenarios are distinguished:

– general breakdown: the service of a job is interrupted and it is forwarded back
to the orbit, other jobs initiated by the individuals of the source can not enter
the system until the service unit is functional.

– catastrophic breakdown: the service of a job is interrupted but instead of
arriving at the orbit it leaves the system as the others from the orbit, no
customers are allowed by the system until the server fully recovers.

The repair process starts instantly upon the failure of the service unit which
follows an exponential distribution with parameter γ2. Customers are charac-
terized by impatience implicating that jobs can decide to leave the system after
spending an exponentially distributed time with parameter τ in the orbit. These
requests return to the source being unserved. In the paper of [16] similar models
are analyzed by an asymptotic method where N tends to infinity this is why
rates λ/N and σ/N are used. For example, it was proved that the number of
customers in the system follows a normal distribution. All the random variables
in the model creation are assumed to be totally independent of each other.

3 Simulation Results

3.1 First Scenario

To obtain the desired results, our self-developed simulation tool was used in
which almost all the performance measures can be estimated. Its statistics pack-
age utilizes the batch means method where the useful run is divided into a certain
number of batches. Batches are long enough in that way sample averages of the
batches are approximately independent thus we have a valid estimation. The
following article contains more information about that method [3]. The simula-
tions are performed with a confidence level of 99.9%. The relative half-width of
the confidence interval required to stop the simulation run is 0.00001. The size
of a batch used to detect the initial transient duration is 1000.

Table 1 consists of every parameter that is applied for all the following figures.
The parameters of service time of the customers can be found at Table 2, every
chosen parameter is listed resulting in the same mean and variance in every used
distribution. The reason for selecting these values is focusing on the interesting
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Fig. 1. System model

Table 1. Numerical values of model parameters

N γ0 γ1 γ2 σ/N τ

100 0.05 0.05 1 0.05 0.001

situations and it must be noted that this model was tested with other values
as well, and in most of the cases, the same phenomenon appeared. It is totally
intentional that the squared coefficient of variation is more than one, later on in
another scenario we will run the simulations when it is less than one (Fig. 1).

Table 2. Parameters of service time of primary customers

Distribution Gamma Hyper-exponential Pareto Lognormal

Parameters α = 0.054 p = 0.473 α = 2.027 m = −1.839

β = 0.077 λ1 = 1.353 k = 0.355 σ = 1.722

λ2 = 1.5

Mean 0.7

Variance 9

Squared coefficient of variation 18.367

On Fig. 2 and 3 on the X-axes i represents the number of customers located
in the system, and on the Y-axes P (i) denotes the probability that exactly i
customer are situated at the server and in the orbit altogether. In both Fig. 2
and 3 the distribution of the number of customers in the system is displayed when
λ/N is 0.1 using various distributions of service time. Catastrophic breakdown
feature is applied and interestingly the mean number of customers in the system
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differs from each other. In the case of the gamma distribution, customers tend
to spend less time in the system compared to Pareto distribution. It is also
noticeable that for both types of breakdowns the distribution of the number of
customers tends to follow Gaussian distribution.

Fig. 2. Distribution of the number of customers in the system

Figure 3 depicts the comparison of different failure modes besides gamma
and hyper-exponential distributions. Naturally more customers are in the sys-
tem using the general breakdown method but the shape of the curves curiously
are slightly disparate. In case of catastrophic breakdown, the peak is not that
high and the mean number is fewer but other than that curves follow the same
tendency.

The mean response time of an arbitrary customer is presented in the function
of the arrival intensity of incoming customers in Fig. 4. Even though the mean
and the variance are identical huge gaps develop among the applied distribu-
tions. With the increment of the arrival intensity, the mean response time of an
arbitrary customer increases as well until λ/N equals 0.05 when the maximum is
reached then it starts to decrease. The same tendency is observable for the other
distributions, as well. The usage of gamma distribution results in a lower mean
response time compared to the others, especially versus Pareto distribution.

Figure 5 demonstrates the development of the mean response time of a suc-
cessfully served customer besides increasing arrival intensity. This measure shows
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Fig. 3. Comparison of distribution of the number of customers in the system using
different failure modes

Fig. 4. Mean response time of an arbitrary customer vs. arrival intensity using various
distributions.
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the average response time of those customers who do not leave the system
because of impatience or catastrophic event. As λ/N increases, the value of
this performance measure raises as well which is true for every used distribution
but the difference is quite high among them. At gamma distribution that value
is much fewer than the others especially compared to Pareto distribution.

Fig. 5. Mean response time of a successfully served customer vs. arrival intensity using
various distributions.

3.2 Second Scenario

In this section after analysing the obtained results of the previous scenario, we
were curious to see what happens besides applying another parameter setting
on the performance measures. In scenario 1 the squared coefficient of variation
was greater than one and in this particular case, the parameters are selected
in a way that the squared coefficient of variation is less than one. This also
implies that the hyper-exponential distribution can not be used and instead of it
we replace it with the hypo-exponential distribution. Table 3 contains the exact
values of the parameters of the service time of primary customers in the case of
this scenario, the other parameters remain unchanged which is shown in Table 1.
Basically, our intention is to check that whether we get back the same tendencies
of the previous section or it greatly changes the behaviour of the system and the
performance measures with these modified parameters of service time of the
incoming customers.
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Table 3. Parameters of service time of incoming customers

Distribution Gamma Hypo-exponential Pareto Lognormal

Parameters α = 1.69 μ1 = 2 α = 2.64 m = −0.589

β = 2.41 μ2 = 5 k = 0.435 σ = 0.682

Mean 0.7

Variance 0.29

Squared coefficient of variation 0.592

First, we will examine the figures in connection to the steady-state distribu-
tion. Analyzing the curves in more detail the obtained values are much closer
to each other. As regards the shape of the curves they correspond to normal
distribution. The mean number of customers is higher in the case of every dis-
tribution compared to the previous section. Not much difference is experienced
though. In Fig. 6 regarding the mean values, they are very close to each other as
well the shape of the curves, but in this case, the obtained graphs do not tend
to correspond to Gaussian distribution.

Fig. 6. Distribution of the number of customers in the system using various distribu-
tions, λ = 0.1.

Figure 7 emphasizes the difference between the applied failure modes. The
results are depicted when gamma and hypo-exponential distribution are used
but it is worth mentioning that the same tendencies occur utilizing the other
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two remaining ones. The difference is quite obvious even though the peak points
are located in the same place but the value of possibility is much higher when
catastrophe does not take place.

The next two figures are related to the mean response time of an arbitrary and
a successfully served customer. First, in Fig. 8 it can be seen slight differences,
in the case of Pareto distribution the values are a little bit higher, otherwise,
the graphs almost overlap each other. Here, the same tendency develops as the
mean response time increases with the increment of arrival intensity. Obviously,
this maximum value feature is a specialty of finite-source retrial queuing systems
under a suitable parameter setting.

Fig. 7. Distribution of the number of customers in the system using various distribu-
tions, λ/N = 0.1.

Figure 9 demonstrates the comparison of the mean response time of a success-
fully served customer versus the arrival intensity. Not surprisingly after seeing
the curves of the previous figure, the difference in the obtained values are very
similar and it can be stated that the same maximum value feature appears in
every case. The lowest values are obtained when the service time follows gamma
distribution and the highest when Pareto distribution is applied.
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Fig. 8. Mean response time of an arbitrary customer vs. arrival intensity using various
distributions.

Fig. 9. Mean response time of a successfully served customer vs. arrival intensity using
various distributions.
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4 Conclusion

We simulated a retrial queueing system of type M/G/1//N with impatient cus-
tomers in the orbit and with an unreliable server using two different failure mech-
anisms when blocking is applied. Results are obtained by our program to carry
out a sensitivity analysis on different performance measures like the distribution
of the number of customers in the system. Under various parameter settings, the
most interesting measures were chosen which were graphically illustrated. When
the squared coefficient of variation is more than one significant deviation is
experienced between the distributions in almost every aspect of the investigated
measures. Consistently, it was also revealed that besides catastrophic breakdown
less customer is in the system than in the case of a normal breakdown which
is an expected phenomenon but the shape of the curves follows the same ten-
dencies. In future works, the authors aim to carry on investigating the effect of
catastrophic breakdown in other models and performing sensitivity analysis for
other variables like the failure rate or the impatience of the customers.
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Abstract. The Markov models of queuing-inventory systems with infi-
nite buffer were analyzed under different replenishment policies. Besides
traditional positive replenishment, the negative replenishment is consid-
ered after which inventory level instantly decreases. Some customers are
assumed to leave the system without acquiring an item after the service
completion. The ergodicity conditions of the introduced systems, as well
as, formulas for stationary distributions and performance measures were
developed. Total cost minimization problems were solved for the different
replenishment policies.

Keywords: Queuing-inventory systems · Markovian models · Positive
and negative replenishment · Matrix-geomteric method

1 Introduction

Systems where the serving process consists of releasing (selling) resource units
to incoming customers are called Queuing-Inventory Systems (QIS) [1]. The
reason for that naming is that such systems have properties both of Queuing
and Inventory systems. First papers on this subject are known to be [2,3]. QIS
subject has been widely studying by different authors during last three decades.
The current state of QIS theory and its applications were extensively discussed
in review paper [4].

In the most papers on QIS the replenishment is assumed to be positive, that
is upon its completion the inventory goes up by the given positive amount that is
defined by the accepted policy. But in practice, due to different reasons (technical
errors, human errors, etc.) the inventory level may immediately decrease. We call
such QIS with negative replenishment (like in case with negative customers).
To our best knowledge, this kind of models were not studied in the available
literature.

It should be noted that these models look similar to QIS models with per-
ishable inventory. But the main difference is that in latter models items perish
c© Springer Nature Switzerland AG 2022
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after some time and inventory goes down, while in our models inventory level
decreases immediately due to negative replenishment. So in our paper we intro-
duce separate class of QIS models with positive and negative replenishment.

2 Model Description

We consider Markov models of QIS system with one server under one of the
three replenishment policies: (s, S), (s,Q), (S − 1, S). Besides the traditional
positive replenishment, we assume negative replenishment after which inventory
level instantly decreases due to unexpected events. The negative replenishment
events are described by Poisson point process with parameter κ. We assume
that negative replenishment affect the items reserved for service as well. In each
policy lead time is exponentially distributed with average ν−1.

The customer income in all models are described by Poisson process with
intensity λ. We assume that all customers require the identical item amount.

The customers are accepted for service if upon arrival the server is idle and
inventory level is positive, otherwise customer joins the unlimited queue. Cus-
tomers are assumed to join queue even if the inventory level is 0, i.e. according to
Bernoulli scheme customer joins queue with probability φ1 or leaves the system
with complementary probability φ2, where φ1 + φ2 = 1.

Customers in queue are considered impatient, when inventory level drops
down to zero, customers leave the system independently after randomly dis-
tributed time that has exponential distribution with parameter τ−1.

After the service completion customer according to Bernoulli scheme either
acquires the item with probability σ1 or leaves the system empty handed with
probability σ2, where σ1 + σ2 = 1. Average service times for both cases have
exponential distribution with averages μ1 and μ2 accordingly.

3 Calculation of Stationary Distributions Under
the Different Replenishment Policies

First let’s consider the system under the (s, S) replenishment policy. The system
is described with Two Dimensional Markov Chain, (2-D MC) with state vectors
(m,n), where n represents the number of customers in the queue, n = 0, 1, 2, ...,
while m represents the inventory level, m = 0, 1, ..., S. The state space is defined
as follows:

E =
∞⋃

n=0

L(n)

where L(n) = {(n, 0), (n, 1), ..., (n, S)} called the nth level, n = 0, 1, 2, . . . .
Let’s rearrange state space E in lexicographical order as follows

(0, 0), (0, 1), ..., (0, S), (1, 0), (1, 1), ..., (1, S), ....
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In that case we obtain Level Independent Quasi-Birth-Death Process (LIQBD)
with the following generator:

G =

⎛

⎜⎜⎝

B A0 . . .
A2 A1 A0 . .
. A2 A1 A0 .
. . . . .

⎞

⎟⎟⎠ (1)

All block matrices in (1) are square matrices of dimension S+1 and their elements
B = ||bij || and Ak = ||a(k)

ij ||, i, j = 0, 1, ..., S are calculated as follows:

bij =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

ν, if i ≤ s, j = S

κ if i > s, j = i − 1
−(ν + λφ1), if i = j = 0
−(ν + κ + λ), if 0 < i ≤ s, j = i

−(κ + λ), if s < i ≤ S, j = i

0, in other cases

(2)

a
(0)
ij =

⎧
⎪⎨

⎪⎩

λφ1, if i = j = 0
λ, if i �= 0, i = j

0, in other cases
(3)

a
(1)
ij =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ν, if 0 ≤ i ≤ s, j = S

κ, if i > 0, j = i − 1
−(τ + ν + λφ1), if i = j = 0
−(ν + κ + λ + μ1σ1 + μ2σ2), if 0 < i, j = i

0, in other cases

(4)

a
(2)
ij =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

τ if i = j = 0
μ1σ1, if i �= 0, i = j

μ2σ2, if i > 0, j = i − 1
0, in other cases

(5)

Theorem 1. Under the (s, S) replenishment policy system is ergodic if and only
if the following inequality holds true:

λ(1 − (1 − φ1)π(0)) < τπ(0) + (μ1σ1 + μ2σ2)(1 − π(0)) (6)

where

π(0) =
(
1 + (1 + a−1)((1 + a)s+1 − 1) + (S − s − 1)(1 + a)

)−1
,

a =
ν

μ2σ2 + κ
.
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Proof. Let’s designate stationary distribution corresponding to the generator
A = A0 + A1 + A2 by π = (π(0), π(1), ..., π(S)). These variables satisfies the
following system of equations:

πA = 0, πe = 1 (7)

where 0 is null row vector of dimension S+1 and e is column vector of dimension
S + 1 that contains only 1’s. π(m),m = 0, 1, ..., S is the probability of the state
with inventory level equal to m,m = 0, 1, ..., S.

We conclude from (3)–(5) that elements of generator A = ||aij ||i, j =
0, 1, ..., S are calculated as follows:

aij =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

−ν, if i = j = 0
ν, if 0 ≤ i ≤ s, j = S

μ2σ2 + κ if i > 0, j = i − 1
−(μ2σ2 + κ + ν), if 0 < i ≤ s, j = i

−(μ2σ2 + κ), if i > s, j = i

0, in other cases

(8)

We conclude from (8) that system of linear equations (7) gets the following
form:

(ν + (κ + μ2σ2)(1 − δm,0))π(m) = (κ + μ2σ2)π(m + 1), 0 ≤ m ≤ s; (9)

(κ+μ2σ2)π(m) = (κ+μ2σ2)π(m+1)(1−δm,S)+ν

S∑

i=0

π(i)δm,S , s+1 ≤ m ≤ S.

(10)
Here and in later formulas δx,y designates Kronecker symbols.

aij =

{
(1 + a)mπ(0), if 1 ≤ m ≤ s + 1
(1 + a)s+1π(0), if s + 1 < m ≤ S

(11)

where π(0) is derived from the normalizing condition, π(0)+π(1)+...+π(S) = 1.
According [5] (Chapter 3, p. 81–83) LIQBD we are studying is ergodic iff:

πA0e < πA2e (12)

Then from (3), (5) and (11) after applying some mathematical transformations
we get (6) from (12).

Note 1. Ergodicity condition (6) has probabilistic meaning. Total summed inten-
sity of incoming requests should be smaller than total summed intensity of out-
going requests. Condition (6) could be replaced with rough but easily checked
condition: λ < min(τ, μ1σ1 + μ2σ2).

Let’s replace stationary distribution corresponding to generator G with p =
(p0, p1, ...) where pn = (p(n, 0), p(n, 1), ..., p(n, S)), n = 0, 1, ..... Assuming that
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ergodicity condition (6) holds true, stationary distributions may be calculated
as follows:

pn = p0R
n, n = 0, 1, .... (13)

where R is minimal nonnegative solution of the following quadratic equation:

R2A2 + RA1 + A0 = 0 (14)

Probability of border states p0 is calculated from the following system of equa-
tions:

p0(B + RA2) = 0 (15)

p0(I − R)−1e = 1 (16)

where I is unit matrix of size S + 1.
Now let’s consider model with (s,Q) policy. State space of this model is also

given by E, but corresponding generator matrix G̃ is determined as follows:

G̃ =

⎛

⎜⎜⎝

B̃ A0 . . .

A2 Ã1 A0 . .

. A2 Ã1 A0 .

. . . . .

⎞

⎟⎟⎠

where elements of matrices B̃ and Ã1 are calculated as follows:

b̃ij =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

ν, if j = i + S − s

κ, if i > 0, j = i − 1
−(ν + λφ1), if i = j = 0
−(ν + κ + λ), if 0 < i ≤ s, j = i

−(κ + λ), if s < i ≤ S, j = i

0, in other cases

(17)

ã
(1)
ij =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ν, if 0 ≤ i ≤ s, j = i + S − s

κ, if i > 0, j = i − 1
−(τ + ν + λφ1), if i = j = 0
−(ν + κ + λ + μ1σ1 + μ2σ2), if 0 < i, j = i

0, in other cases

(18)

Theorem 2. Under the (s,Q) replenishment policy system is ergodic if and only
if the inequality (6) holds true, where

π(0) = (1 + a)−(s+1)

(
(1 + a)s+1 − 1

a(1 + a)
+ S − s − a−1(1 − (1 + a)−s)

)−1

.
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Proof. The elements of generator Ã = A0 + Ã1 + A2 are calculated as follows:

ãij =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

−ν, if i = j = 0
ν, if 0 ≤ i ≤ s, j = i + S − s

μ2σ2 + κ, if i > 0, j = i − 1
−(μ2σ2 + κ + ν), if 0 < i ≤ s, j = i

−(μ2σ2 + κ), if i > s, j = i

0, in other cases

(19)

We conclude from (19) that system of linear equations (7) corresponding to
generator Ã has the following form:

(ν + (κ + μ2σ2)(1 − δm,0))π(m) = (κ + μ2σ2)(π(m + 1), 0 ≤ m ≤ s; (20)

(κ + μ2σ2)π(m) = (κ + μ2σ2)(π(m + 1)(1 − δm,0)
+ νπ(m − S + s)δm,S , s + 1 ≤ m ≤ S; (21)

Then from (24) and (21) we get:

πm =

⎧
⎪⎨

⎪⎩

(1 + a)m−(s+1)π(s + 1) if 0 ≤ m ≤ s

π(s + 1), if s + 1 ≤ m ≤ S − s

(1 − (1 + a)m−(S−1))π(s + 1), if S − s + 1 ≤ m ≤ S

(22)

where π(s + 1) is calculated from normalizing condition:

π(s + 1) =
(

(1 + a)s+1 − 1
a(1 + a)

+ S − s − a−1(1 − (1 + a)−s)
)−1

.

Taking into consideration (3), (5) and (22) and after applying some transfor-
mations from (12) we conclude that Theorem 2 is true.

Finally, let’s consider model with (S−1, S) policy. Elements for corresponding

generator matrix ˜̃
G is calculated as follows:

˜̃
G =

⎛

⎜⎜⎜⎜⎝

˜̃
B A0 . . .

A2
˜̃
A1 A0 . .

. A2
˜̃
A1 A0 .

. . . . .

⎞

⎟⎟⎟⎟⎠

where elements of matrices ˜̃
B and ˜̃

A1 are calculated as follows:

˜̃
bij =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(S − i)ν, if 0 ≤ i ≤ S − 1, j = i + 1
κ, if i > 0, j = i − 1
−(Sν + λφ1), if i = j = 0
−((S − i)ν + κ + λ), if 0 < i ≤ s, j = i

0, in other cases
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˜̃a
(1)

ij =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(S − i)ν, if 0 ≤ i ≤ S − 1j = i + 1
κ, if i > 0, j = i − 1
−(τ + Sν + λφ1), if i = j = 0
−((S − i)ν + κ + λ + μ1σ1 + μ2σ2), if 0 < i, j = i

0, in other cases

Theorem 3. Under the (S, S − 1) replenishment policy system is ergodic if and
only if the inequality (6) holds true, where

π(0) =

(
S∑

m=0

S!am

(S − m)!

)−1

.

Proof. The elements of generator ˜̃
A = A0 + ˜̃

A1 + A2 are calculated as follows:

˜̃aij =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

−(Sν + λφ1), if i = j = 0
−(μ2σ2 + κ + (S − i)ν), if 0 < i ≤ S, j = i

(S − i)ν, if 0 ≤ i ≤ S − 1, j = i + 1
μ2σ2 + κ, if 0 < i ≤ S, j = i − 1
0, in other cases

(23)

We conclude from (23) that system of linear equations (7) corresponding to

generator ˜̃
A is the same as balance equations for one-dimensional birth-death

process, where death intensity is equal to μ2σ2 + κ and birth intensity of state
m is equal to (S − m)v,m = 0, 1, ...S. Therefore, we get the following:

π(m) =
S!

(S − m)!
amπ(0),m = 0, 1, ..., S (24)

where π(0) is calculated from normalizing condition.
Then taking into consideration (3), (5) and (23) after applying some trans-

formation to (12) we conclude that Theorem 3 is true.

4 Calculation of Performance Measures

In each replenishment policy the performance measures are calculated through
corresponding state probabilities. So average inventory level Sav is calculated as
follows:

Sav =
S∑

m=1

m

∞∑

n=0

p(n,m) (25)

Average reorder quantity Vav under (s, S) policy:

Vav =
S∑

m=S−s

m

∞∑

n=0

p(n, S − m) (26)



Queuing Systems with Positive and Negative Replenishment Policies 35

Note 2. Average reorder quantities under (s,Q) and (S, S − 1) policies are con-
stants and equal to Q = S − s and 1 correspondingly. Average queue length Lav

under all policies is calculated as follows:

Lav =
∞∑

n=1

n

S∑

m=0

p(n,m) (27)

Average reorder rate RR under (s,Q) and (s, S) policies is determined as follows:

RR = κp(0, s + 1) + (μ2σ2 + κ)
∞∑

n=1

p(n, s + 1) (28)

RR under (S, S − 1) policy is calculated as follows:

RR = κ

S∑

m=1

p(0,m) + (μ2σ2 + κ)
S∑

m=1

∞∑

n=1

p(n,m) (29)

Total loss probability PL is calculated as follows:
Under (s, S) and (s,Q) policies:

PL = φ2

∞∑

n=0

p(n, 0) +
τ

τ + φ2λ + ν

∞∑

n=1

p(n, 0) (30)

Under (S − 1, S) policy:

PL = φ2

∞∑

n=0

p(n, 0) +
τ

τ + φ2λ + Sν

∞∑

n=1

p(n, 0) (31)

First operand in formulas (30) and (31) refers to the loss due to the empty
inventory, while the second operand refers to the loss due to customer impatience.

5 Numerical Results

In this section results of numerical experiments will be presented and discussed.
The behavior of performance measures vs s under (s, S) and (s,Q) policies are
depicted in Fig. 1 and Fig. 2.

We used the following parameters for numerical experiments:

λ = 30, φ1 = 0.5, φ2 = 0.5, σ1 = 0.4, σ2 = 0.6, μ1 = 45, μ2 = 35,

ν = 8, κ = 6, τ = 20, S = 20

Sav under (s, S) policy is increasing with the increase of s and is a little bit
higher than (s,Q). This behavior is expected as with higher s the inventory is
replenished more frequently up to S which results in higher average inventory
level. But under (s,Q) the replenishment amount is fixed (S − s) and becomes
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Fig. 1. Dependence of inventory related performance measures on the reorder level s
under (s, S), (s,Q) policies
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Fig. 2. Dependence of customer related performance measures on the reorder level s
under (s, S), (s,Q) policies

lower with higher s which in turn results in lower average inventory level. Average
order size Vav is also proportional to s which is reflected in graph. We excluded
(s,Q) series from Vav as it is fixed for given s. RR is also lower under (s, S)
policy due to higher average inventory level.

The average number of customers Lav in queue is almost the same for both
policies and increase with s. Customer loss probabilities decrease for higher val-
ues of s due to higher Sav under both policies.

Behavior of the performance measures against maximum inventory size S
under (S − 1, S) policy is depicted in Fig. 3. The inventory related performance
measures Sav and RR intuitively increases, while Lav and PL decreases because
with larger inventory system could serve more customers.
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Fig. 3. Performance measures vs inventory size S under (S − 1, S) policy
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6 Conclusion

The models of queuing-inventory systems with impatient customers and infinite
buffer were studied under (s, S), (s,Q) and (S, S − 1) replenishment policies.
The negative replenishment were considered that decreases the inventory level.
Customer enters the system even when the inventory level is zero. We assume
that customers after being served according to Bernoulli scheme either leaves the
system empty handed or with an item from inventory. We used 2D Markov chains
with tridiagonal generator matrices for mathematical modeling of the system.
Ergodicity conditions were found and the algorithm for calculation of system
performance measure was developed. Numerical experiments were performed
and behavior of performance measures was analyzed under different policies.
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Abstract. In this work we analyze an open queueing network with batch
services. In more detail, the arrival process is Poissonian and each node
consists of a single server and an infinite waiting queue. Arrivals are
served in fixed-size batches: if the number of customers in a node is less
than the predefined batch size, the server remains idle, otherwise he will
select the required number of customers, which then will be served as a
unique batch with exponentially distributed service time. In this paper
we show that, under suitable conditions on the routing matrix, such
queueing network is equivalent, in terms of stationary distribution, to
a Jackson network with single-server nodes and state-dependent service
rates. Finally, the goodness of the proposed approach is confirmed by
comparing analytical and simulation results.

Keywords: Open queueing networks · Analysis · Batch service

1 Introduction

Queueing systems and networks with batch services attract the interest of many
researchers, since they permit to model and analyze various multi-user sys-
tems [1,2], large scale semiconductor manufacturing systems [3], cloud comput-
ing systems [4] and wireless sensor networks [5].

The analysis of any queueing network is aimed at obtaining expressions for its
stationary characteristics, the most important of which is the stationary prob-
ability distribution of the states of the system. Since the equilibrium equations
for queuing networks with batch services have a high dimensionality, the calcu-
lation of the stationary distribution as a numerical solution of these equations is
computationally difficult. Therefore, special attention has been devoted to the
search for product-form solutions.

It is worth noticing that the fundamental works on queueing networks with
batch services are relatively recent, as they were published in 1990 [6,7]. In more
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detail, in [6] a continuous-time Markov chain is introduced to model queueing
networks with simultaneous changes due to batch services, or discrete-time struc-
ture and clustering processes such as those arising in polymer chemistry. It is
shown that if multiple instantaneous state transitions of the process are allowed
and the Markov chain is reversible, then its stationary distribution has a product-
form. In [7] a discrete-time closed queueing network with batch services is con-
sidered and the state of the network is defined by a vector with dimension equal
to the number of customers. Each element of the status vector is associated with
a specific customer and indicates the node occupied by that customer. So, cus-
tomers transitions are reduced to changes of the corresponding labels, and it is
assumed that the change of a label does not depend on the status of the labels
of the other customers. It is shown that on an irreducible set of states and for
arbitrary given functions of service and routing, there is a product-form for the
stationary probability distribution of the queueing network states. Chao [8] and
Economou [9] considered networks, for which the quasi-reversibility conditions
are met and the groups of customers at the end of the service in one node always
pass to another node together.

To analyze queuing networks with batch services and an arbitrary distri-
bution of the service time that do not admit a product-form of the stationary
distribution, in [3,10] it was proposed to use the decomposition method. Finally,
in [11,12] the stationary distribution was calculated as the normalized solution
of the system of equilibrium equations.

In this paper, we consider open queueing networks with service of fixed-size
batches of customers and independent routing. It is assumed that the batch size
is significantly smaller than the number of nodes to which the customers can be
routed at the end of the service. Thus, the network nodes work independently
and this consideration permits to simplify the analysis of the queueing network,
which is reduced to the investigation of the individual queues in isolation. In
more detail it is proposed to calculate the stationary state probability distribu-
tion of the open network in a product-form, similar to the case of birth-death
processes after recalculating the transition rates. To the best of our knowledge,
this approach is new. Until now, indeed, the probability generating function
[4,13–15], the Laplace-Stieltjes transform [16], and the direct calculation of the
stationary distribution as a solution of the Kolmogorov equations [17] have been
mainly used to calculate the stationary characteristics of the queueing network.

The rest of the paper is organized as follows. Section 2 introduces the model
of the queueing network, while in Sect. 3 an equivalent (in terms of stationary dis-
tribution) Jackson network with single-server nodes is proposed. In more detail,
for such equivalent system state-dependent service rates as well as expressions
for the stationary probability distribution are derived. Then, Sect. 4 compares
the values of the analytical expression with the simulation results, and analyses
the dependence of the characteristics of open queueing networks on different
system parameters (batch size, arrival rate, service rate).
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2 Statement of the Problem

Consider a continuous-time open queueing network N consisting of L nodes Si,
i ∈ I, I = {1, . . . , L}. Customers arrive to the queueing network N from an
outside source (denoted in the following as S0) according to a Poisson stream of
rate λ0. Customer transitions between nodes and the source are defined by the
routing matrix Θ = (θij), i, j = 0, . . . , L, where θij is the transition probability
from node Si to node Sj . The state of the network is defined by a vector s =
(s1, . . . , sL), where si is the number of customers at node Si. Denote by X =
{s : si ≥ 0} the state space of the queueing network N .

Each node Si, i = 1, . . . , L, operates as an infinite capacity single-server
queue. Arriving customers are placed in the waiting queue if the server is busy.
Customers are served in batches, and let bi be the customer batch size for node
Si. The server remains idle until the required number bi of customers arrives
at the node and then the service of the batch starts immediately; otherwise, bi

customers are selected in any order for service, while the others remain in the
queue. The service times of batches at node Si are exponentially distributed
with parameter μi, i = 1, . . . , L. After a batch finishes its service at node Si,
each customer will go, independently of the others, to node Sj with probability
θij , i, j = 0, 1, . . . , L.

Our aim is to find the stationary distribution π(s) = (π1(s1), . . . , πL(sL)),
s ∈ X, for the queueing network N , where πi(si) represents the stationary
distribution for node Si, si = 0, 1, . . . , i = 1, . . . , L, starting from the analysis of
a single node.

3 Analysis of the Model

In this paper we analyze large scale networks with individual routing of the
customers, assuming that the number of possible destinations is significantly
larger than the batch size. Hence the probability of the simultaneous arrival of
two or more customers in a node can be neglected. Therefore, we will assume
that each node in N is fed by a Poisson stream of customers.

First we will study the isolated node Si, i = 1, . . . , L. It is known that the
equilibrium equations for this node have the form

⎧
⎪⎨

⎪⎩

λiπi(n) = μiπi(bi), n = 0,

λiπi(n) = λiπi(n − 1) + μiπi(bi + n), 1 ≤ n ≤ bi − 1,

(λi + μi)πi(n) = λiπi(n − 1) + μiπi(bi + n), n ≥ bi.

(1)

where λi denotes the arrival rate to node Si, i = 1, . . . , L.
We define a birth-death process ξi, which will be equivalent in steady-state

probabilities to the Markov process describing the node Si. Let the process ξi

be defined on a set of states {0, 1, . . . }, let λi = λi(n) be the transition rate of
the process ξi from state n to state n+1, which does not depend on the state n,
n ∈ {0, 1, . . . }, and let μ̃i(n) be the transition rate of the process ξi from state
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n to state n − 1, where n ∈ {1, 2, . . . }. The states {0, 1, . . . } and the parameter
λi of the process ξi correspond to the states {0, 1, . . . } and the parameter λi of
node Si. Let us find the rates μ̃i(n), n = 1, 2, . . . . To this aim, note that the
steady-state probabilities of the birth–death process ξi are given by [18]

πi(k) = πi(0)
k∏

n=1

λi

μ̃i(n)
, k = 1, 2, . . . , (2)

where

πi(0) =

(

1 +
∞∑

k=1

k∏

n=1

λi

μ̃i(n)

)−1

, i = 1, . . . , L.

By substituting (2) in (1), we get the expressions that define μ̃i(n), n = 1, 2, . . . ,
⎧
⎪⎪⎨

⎪⎪⎩

μ̃i(n) = λi − μi
λbi

i

μ̃i(n + 1) · . . . · μ̃i(bi + n)
, 1 ≤ n ≤ bi − 1,

μ̃i(n) = λi + μi − μi
λbi

i

μ̃i(n + 1) · . . . · μ̃i(bi + n)
, n ≥ bi.

(3)

Let Mi = lim
n→∞ μ̃i(n); if the limit exists, then:

μiλ
bi
i = (λi + μi − Mi)M bi

i

or
M bi+1

i − (λi + μi)M bi
i + λbi

i μi = 0. (4)

The existence of the equivalent birth-death process ξi requires that the previous
equation has a positive solution, fulfilling the stability condition for each node Si.

The answer is provided by the following theorem (without loss of generality
we denote the generic Mi, for i ∈ I by x).

Theorem 1. The equation

xb+1 − (λ + μ)xb + λbμ = 0 (5)

has two positive roots, the largest of which belongs to the interval
(

b(λ + μ)
b + 1

,
(λ + μ)b+1 − λbμ

(λ + μ)b

)

.

Proof. Consider the function

f(x) = xb+1 − (λ + μ)xb + λbμ

for λ < bμ and b ≥ 1.
It is easy to verify that f(x) is continuous for any x ∈ R and x1 = λ is a

root of f(x). To determine the existence of other roots let us consider the first
derivative of f(x):
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f ′(x) = (b + 1)xb−1

(

x − b

b + 1
(λ + μ)

)

. (6)

The equation f ′(x) = 0 has only one positive root

x∗ =
b(λ + μ)

b + 1
,

with x∗ > x1. Indeed,

x∗ − x1 =
b

b + 1
(λ + μ) − λ =

bμ − λ

b + 1
> 0,

since λ < bμ and b ≥ 1. Since f ′(x) > 0 for

x ∈
(

b(λ + μ)
b + 1

, λ + μ

)

,

then the function f(x) is increasing in such interval. Moreover,

f

(
b(λ + μ)

b + 1

)

< 0

and f(λ+μ) > 0, hence in the interval
(

b(λ+μ)
b+1 , λ + μ

)
there is a value of x such

that f(x) = 0.
To further refine the estimation of the root, let us note that in the above-

mentioned interval the function f(x) is convex, since

f ′′(x) = bxb−2((b + 1)x − (b − 1)(λ + μ)) > 0

for

x >
b(λ + μ)

b + 1
>

(b − 1)(λ + μ)
b + 1

.

The tangent line to f(x) at the point x = λ + μ is

y(x) = λbμ + (λ + μ)b(x − (λ + μ))

and its intersection with the horizontal axis is

x0 = (λ + μ) − λbμ

(λ + μ)b
.

Since the function f(x) is convex, x0 is an upper bound for the roots of f(x),
and this implies that the largest root of Eq. (5) belongs to the interval

(
b(λ + μ)

b + 1
,

(λ + μ)b+1 − λbμ

(λ + μ)b

)

.
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Taking into account the previous theorem and the stability condition of the
equivalent birth-death process, Eq. (4) has a unique root, located in the interval
(λi, λi + μi), which can be determined numerically (explicit closed-for solutions
can be easily derived only for b = 1 and b = 2). From the system of Eqs. (3) it
follows

μ̃i(bi) = μ̃i(bi + 1) = μ̃i(bi + 2) = · · · = Mi,

and then the service rates μ̃i(bi−1), μ̃i(bi−2),. . . , μ̃i(1) can be easily calculated.
Thus, the rates μ̃i(n) are determined for each state n of process ξi.

The results obtained for the process ξi can be applied to any node, and so we
can create an open queueing network Ñ with nodes S̃i and service rates μ̃i(n),
where n is the number of customers in the node S̃i, n = 1, 2, . . . , i = 1, . . . , L.
The other parameters of Ñ coincide with the corresponding parameters of the
original queueing network N .

Ñ is equivalent in stationary distribution to the queueing network N with
batch services and is a Jackson network.

The arrival rates in nodes Si are determined by the following equations

λi =
ωi

ω0
λ0, i = 1, . . . , L,

where the vector of visitation rates ω = (ω1, . . . , ωL) is the solution of the equa-
tion ωΘ = ω with the normalization condition

∑L
i=0 ωi = 1.

The queueing network N and its equivalent network Ñ are stable if the
utilization coefficient in the node Si, i = 1, . . . , L,

ρi =
λi

biμi
< 1,

and, under such conditions, we can compute the stationary distribution for Ñ .
We obtain

π(s) =
L∏

i=1

πi(si), s ∈ X,

where

πi(si) = πi(0)
si∏

n=1

λi

μ̃i(n)
.

Then, the average number of customers in the node Si, i = 1, . . . , L, is given
by

s̄i =
∞∑

n=1

nπi(n),

the average sojourn time in the node Si, i = 1, . . . , L, is

ūi =
s̄i

λi
,
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and the average response time of the queueing network is

τ̄ =
1
λ0

L∑

i=1

λiūi.

4 Numerical Examples

Numerical examples are reported in this section to verify the goodness of the
product-form approximation for complex networks and investigate the depen-
dence of their characteristics on different system parameters (batch size, arrival
rate, service rate). Although different topologies have been investigated, for sake
of brevity just one network topology is considered, focusing on overall system
performance parameters as well as on characteristics of single queues.

Consider the queueing network N with the following parameters (unless oth-
erwise stated): L = 14, b = (3, 2, 2, 3, 2, 2, 3, 3, 2, 2, 3, 2, 2, 3),
μ = (0.8, 0.6, 0.9, 0.6, 0.8, 0.8, 0.9, 0.6, 0.7, 0.8, 0.9, 1.0, 0.7, 0.7), and

Θ =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0.0 0.3 0.4 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.0
0.0 0.0 0.0 0.0 0.0 0.1 0.1 0.2 0.2 0.1 0.1 0.1 0.1 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.1 0.1 0.2 0.1 0.2 0.1 0.1 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.1 0.1 0.1 0.1 0.2 0.2 0.1
0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.1 0.1 0.1 0.1 0.1 0.2
0.2 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.2 0.1 0.1 0.1 0.1
0.2 0.1 0.1 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.1 0.1 0.1
0.2 0.0 0.0 0.0 0.1 0.1 0.1 0.0 0.0 0.1 0.1 0.1 0.1 0.0 0.1
0.1 0.1 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.1 0.2 0.1 0.1
0.3 0.1 0.1 0.1 0.1 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0
0.3 0.0 0.0 0.0 0.0 0.1 0.1 0.1 0.1 0.1 0.0 0.0 0.0 0.1 0.1
0.3 0.1 0.1 0.1 0.1 0.0 0.0 0.0 0.0 0.1 0.1 0.1 0.0 0.0 0.0
0.3 0.0 0.0 0.0 0.0 0.1 0.1 0.1 0.1 0.0 0.0 0.1 0.1 0.0 0.1
0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.1 0.1 0.1 0.1 0.1 0.0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
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.

The considered network satisfies the assumptions introduced above. Indeed,
the network consists of a relatively large number of nodes, the size of the batches
that are served together is significantly less than the number of possible output
nodes and the routing probabilities are of the same order of magnitude (there is
no privileged path through the network). Hence, the Poissonian assumption can
be reasonably assumed for any node of the network.

The first two sets of tests investigated the accuracy of the developed method
by comparing the analytical values with the results of discrete-event simulation.
In more detail, in the first experiment we analysed the (overall) average response
time as a function of the input rate λ0.

Table 1 shows that the largest difference in the values of τ̄ is observed for
λ0 = 0.1 and does not exceed 10.2%, while for the other values of λ0, the
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Table 1. Average response time of the queueing network.

λ0 0.1 0.5 1.0 1.5 2.0 2.5 2.7

Approximation 107.32 27.57 18.29 16.20 16.76 20.62 24.06

Simulation 118.25 28.78 18.61 16.35 16.86 20.82 25.24

deviation is no more than 5%. Note that the intensity of the flow λ0 = 2.7 is
almost the maximum for the network under consideration, since for such value
the stability condition for node S9 is still met.

In the second example we focused on a specific node (the queue S7), consid-
ering the average number of customers (Tables 2) as well as the average sojourn
time in the node (Tables 3) for different values of the service rate μ7 with fixed
arrival rate λ0 = 1.5.

Table 2. Average number of customers in the node S7.

μ7 0.2 0.4 0.6 0.8 0.9 1.0 1.2

Approximation 8.72 2.53 1.89 1.63 1.56 1.5 1.41

Simulation 8.66 2.53 1.91 1.66 1.58 1.52 1.43

Table 3. Average sojourn time in the node S7.

μ7 0.2 0.4 0.6 0.8 0.9 1.0 1.2

Approximation 18.26 5.31 3.95 3.42 3.26 3.13 2.95

Simulation 18.13 5.30 3.99 3.47 3.31 3.18 3.00

The characteristics of the node S7, derived by discrete-event simulation, were
calculated in stationary conditions with a confidence interval of 0.001 and a
confidence level higher than 0.95.

In the third experiment we investigated the dependence of the stationary
characteristics of the nodes S2, S6 and S11 on the intensity of the incoming flow
λ0 (see Fig. 1 and 2). The characteristics of the other nodes are not shown in the
graphs for sake of clarity, since their behavior does not differ qualitatively form
the reported ones.

Figure 1 shows that the average number of customers in all systems mono-
tonically increases with λ0. Instead, the average (node) sojourn time reaches a
minimum for some value of λ0 as highlighted by Fig. 2. This can be explained
as follows. When λ0 is close to zero, the device is idle for a long time, and
the customers forming an “incomplete” batch have to wait in the buffer until
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Fig. 1. Average number of customers in
the nodes S2, S6 and S11.
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Fig. 2. Average sojourn time in the
nodes S2, S6 and S11.

the last element of the batch enters the system. Instead, when the arrival rate
into the considered system approaches its service rate, the average waiting time
increases significantly. Thus, there is an optimal value of the arrival rate, at
which the average sojourn time in the node is minimal.

The fourth experiment is devoted to the study of stationary characteristics
of the nodes S7 and S9 for different sizes b of the batch in these systems. The
input rate in this experiment is again λ0 = 1.5.

1 2 3 4 5 6
1

1.2

1.4

1.6

1.8
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Fig. 3. Average number of customers
in the node S7.
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Fig. 4. Utilization coefficient of the
node S7.

The minimum value of the average number of customers in both nodes is
achieved when the batch size is two (Fig. 3 and 5), while the utilization coefficient
is a monotone decreasing function of b (Fig. 4 and 6), but its numerical value
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Fig. 5. Average number of customers in
the node S9.
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Fig. 7. Average number of customers in
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Fig. 8. Average sojourn time in the node
S5.

depends on the arrival rate at the considered node (in our example ρ9 is almost
twice ρ7). It is worth noticing (see Fig. 6) that for b9 = 1, the utilization ρ9 of
the node S9 is close to 1 and this is confirmed by the high value of the number of
customers in the system (s̄9 ≈ 20 as shown in Fig. 5). When b9 = 2, then s̄9 ≈ 2,
while the increment of b9 leads to a slight increase in s̄9. Thus, the increase of the
batch size can significantly improve the basic average characteristics of service
systems. Actually, as shown by numerical experiments, the minimum value of
both the average sojourn time and average number of customers in the system
can be assumed at different values b, depending on the network topology and
the routing matrix.

Finally, we calculated the stationary characteristics of the nodes S5 and S9

for different values of the service rate in these systems (assuming, as before,
λ0 = 1.5).
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Fig. 9. Average number of customers in
the node S9.
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Fig. 10. Average sojourn time in the node
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The graphs shown in Fig. 7, 8, 9 and 10 decrease monotonically with the
growth of μ and asymptotically tend to their limit values.

5 Conclusions

In this paper large-size open queueing networks with batch services are consid-
ered. Under the assumption that the number of output nodes is significantly
more than the batch size, it is shown that the stationary distribution of the
queueing network can be expressed in product-form. Then, the parameters of
the equivalent queueing network are derived and the goodness of the approxi-
mation is verified by means of discrete-event simulation.
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Abstract. This paper presents an optimal control policy that minimizes
the long-run cost in an (s, S) production inventory system with positive
service time. The Matrix Geometric method is used to analyze the sys-
tem. A necessary and sufficient condition for system stability is obtained.
Some significant system performance measures are defined, and the effect
of system parameters on performance measures is illustrated numerically.
The Optimal (s, S) pair is determined for the specific set of parameter
values, and the effects of the parameters on the cost function are graph-
ically illustrated.

Keywords: N -policy · Production inventory · Service time · Matrix
Geometric Method

1 Introduction

In most of the inventory models, it is crucial for the server to decide when to
start its service, as an intermittent setup can greatly increase operating costs. A
company’s inventory control policies determine how the company manages the
movement of inventory under its control. Proper inventory control policies and
procedures reduce the cost associated with the inventory. In some production
and manufacturing systems, the high switching costs associated with inactive
servers often make it uneconomical to provide service immediately after the first
customer arrives. In such cases, it is better to begin the service only when a
few customers arrive, say N, so that excessive setups can be avoided. In this
work, we introduce N policy to a production inventory with positive service
time. According to the policy, the status of the server is turned ON only when
there are N or more customers encountered in the system and the inventory
level is positive and is turned OFF when the system is empty.

Inventory with positive service time is first investigated by Berman et al.
[2] where demands and service formed two distinct deterministic processes. A
detailed review of inventory models involving positive service time is given by
Krishnamoorthy et al. [8]. Krishnamoorthy et al. [5] dealt with production inven-
tory with positive service time. The authors discussed the stochastic decompo-
sition of the system by considering the assumption that the customer does not
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join the system when the inventory level is zero. Krishnamoorthy and Jose [6]
analyzed and compared three production inventory systems with positive service
time and retrial of customers. The inter arrival time of customers, service time,
production time and inter retrial times are assumed to follow exponential distri-
butions. The authors arrive at the conclusion that overall and successful retrial
rate of customers increases with the increase of arrival rate and decreases with
the increase of production rate or service rate. Jose and Rejitha [11] analysed
a stochastic inventory system with two modes of service rate and retrials. They
derived several important performance measures of the system in the steady
state and a suitable cost function is constructed and analyzed numerically for
the expected minimum cost. Jose and Salini [4] studied a MAP/PH/1 produc-
tion inventory model with varying service rates. They assumed that, when the
inventory level decreases to s, service is given at a reduced rate and an arriving
customer who identifies the server busy or inventory level zero, proceeds to an
orbit of infinite capacity and retries from there. They computed some of the sys-
tem performance measures and constructed a suitable cost function. Jose and
Beena [3] studied a production inventory system with two heterogeneous servers
involving multiple vacations. By assuming poisson arrival rate and exponential
server vacation rate, they obtained the stability condition and performance mea-
sures of the system.

Over the past decade, an increasing attention can be seen in queuing scenario
to control the queue by applying the concept of N-policy. The concept of N-policy
is most commonly used for controlling service. This has been widely accepted due
to their applicability for modeling purposes of any production and manufacturing
system as well as computer and telecommunication system. N-policy was first
introduced in 1963 by Yadin and Naor [12] in queueing literature to minimize
the total operational cost in a cycle. Artalejo [1] compared N,T,D policies on
M/G/1 queueing system. The author showed that the D-policy is superior to
the N-policy when the cost function is based on the mean work-load, whilst the
average queue length is used to show the superiority of the N-policy over the
T-policy. The author also showed that the T-policy is the worst policy under
both cost structures and the relation between the optimum N and D policies
depends on the employed cost function. Krishnamoorthy et al. [7] was the first
to introduce N-policy in (s, S) inventory system with positive service time. They
assumed that the lead time is zero and showed that the cost function is separately
convex in the variables S and N. They also proved that the cost is minimum at
s = 0.

The technical aspects of this paper are presented in four parts. The first part
offers a description of the model. In the second part, it moves on to the steady
state analysis and computation of system performance measures. Numerical and
graphical illustrations are given in the third section. Finally, it is concluded by
computing the optimal (s, S) pair and the optimal value of N .
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2 Description of the Model

Consider an (s, S) production inventory system with a single server and positive
service time. Customers arrive according to the Poisson distribution with rate λ
and service rate and production rate follow Exponential distributions with rate
μ and β respectively. Each production is of 1 unit and the production process is
ON when the inventory level reaches s and is switched OFF when the inventory
level reaches S. Whenever the server is idle, it is switched off and is activated only
when N customers accumulate and when there is a positive on-hand inventory.
The following assumptions and notations are used in this model.

Assumptions

• The arrival of customers follows Poisson distribution with parameter λ.
• The service pattern and production process follow exponential distributions

with parameters μ and β respectively.
• The server is switched OFF when the system is empty and it is turned ON

at the instant when there are N customers in the waiting line; and there is a
positive on-hand inventory.

Notations

N(t) : Number of customers in the system at time t.

I(t) : Inventory level at time t.

C(t) :

{
0, if server is idle at time t;
1, if server is busy at time t.

J(t) :

{
0, if the production is OFF mode;
1, if the production is ON mode.

e : (1, 1, 1, ..., 1)T , column vector of appropriate dimension.

Then Z(t) = {(N(t), C(t), J(t), I(t)), t ≥ 0} is a Quasi Birth Death Process

on the state space S =
∞⋃

i=0

L(i) and is independent for i ≥ N + 1, where,

L(0) = {(0, 0, 0, j); s + 1 ≤ j ≤ S}
⋃

{0, 0, 1, j); 0 ≤ j ≤ S − 1},

For 1 ≤ i ≤ N − 1,

L(i) = {(i, 0, 0, j); s + 1 ≤ j ≤ S}
⋃

{i, 0, 1, j); 0 ≤ j ≤ S − 1}⋃
{(i, 1, 0, j); s + 1 ≤ j ≤ S}

⋃
{(i, 1, 1, j); 1 ≤ j ≤ S − 1},

For i ≥ N,

L(i) = (i, 0, 1, 0)
⋃

{(i, 1, 0, j); s + 1 ≤ j ≤ S}
⋃

{(i, 1, 1, j); 1 ≤ j ≤ S − 1}.
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Arranging the states in the lexicographic order, infinitesimal generator of the
process {Z(t)|t ≥ 0} is a block tridiagonal matrix given by,

G =

0
1
2

N−1
N

N + 1

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

B00 B01

B10 A∗
1 A∗

0

A∗
2 A∗

1 A∗
0

. . . . . . . . .
A∗

2 A∗
1 A∗∗

0

A∗∗
2 A1 A0

A2 A1 A0

A2 A1 A0

. . . . . . . . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

where the block matrices are obtained as follows:

[B00](pq) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

λ, if p = q; p = 1, 2, ..., S − s,

−(λ + β), if p = q; p = S − s + 1, ..., 2S − s,

β, if p = 2S − s & q = S − s,

q = p + 1; p = S − s + 1, ..., 2S − s − 1,

0, otherwise.

[B01](pq) =

{
λ, if p = q; p = 1, 2, ..., 2S − s,

0, otherwise.

[B10](pq) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

μ, if p = 2S − s + 1 & q = S + 1,

p = 2S − s + 1 + q; q = 1, 2, ..., S − s − 1,

p = 2S − s + q; q = S − s + 1, ...2S − s − 1,

0, otherwise.

[A∗
1](pq) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−λ, if p = q; q = 1, 2, ..., S − s,

−(λ + β), if p = q; q = S − s + 1, ....2S − s,

−(λ + μ), if p = q; q = 2S − s + 1, , ..., 3S − 2s,

−(β + λ + μ), if p = q; q = 3S − 2s + 1, , ..., 4S − 2s − 1,

β if q = p + 1; p = S − s + 1, ....2S − s − 1,

p = 2S − s & q = S − s,

q = p + 1; p = 3S − 2s + 1, , ..., 4S − 2s − 2,

p = 4S − 2s − 1 & q = 3S − 2s,

0. otherwise.

[A0]∗(pq) =

{
λ, if p = q; q = 1, 2, ..., 4S − 2s − 1,

0, otherwise.



56 N. J. Thresiamma and K. P. Jose

[A∗
2](pq) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

μ, if p = 2S − s + 1 and q = 3S − s,

q = p − 1; p = 2S − s + 2, ..., 3S − 2s,

p = 3S − 2s + 1; q = S − s + 1,

p = q − 1; p = 3S − 2s + 2...4S − 2s − 1,

0, otherwise.

[A0]∗∗(pq) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

λ, if q = p + 1; p = 1, 2, ..., S − s,

p = S − s + 1 & q = 1,

q = p; p = S − s + 2, ..., 2S − s,

q = p − (2S − s − 1); p = 2S − s + 1, ..., 4S − 2s − 1,

0, otherwise.

[A∗∗
2 ](pq) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

μ, if p = 2 & q = 3S − s,

q = 2S − s − 2 + p; p = 3, 4, ..., S − s + 1,

p = S − s + 2, & q = S − s + 1,

q = 2S − s − 2 + p, p = S − s + 3, ..., 2S − s,

0, otherwise.

[A0](pq) =

{
λ, if p = q, p = 1, 2, ..., 2S − s,

0 otherwise.

[A1](pq) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−(λ + β), if p = q = 1,

−(λ + μ), if p = q; p = 2, 3, ...S − s + 1,

−(β + λ + μ), if p = q; p = S − s + 2, , ..., 2S − s,

β, if p = 1 & q = S − s + 2,

q = p + 1, p = S − s + 2, ..., 2S − s − 1,

p = 2S − s & q = S − s + 1,

0, otherwise.

[A2](pq) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

μ if p = 2 & q = S + 1,

q = p − 1; p = 3, 4, ..., S − s + 1,

p = S − s + 2 & q = 1,

p = q − 1; p = S − s + 3, ..., 2S − s,

0, otherwise.

3 Steady State Analysis

Let A be the generator matrix A0 + A1 + A2. The entries of A is given below:
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[A](pq) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−β, if p = q = 1,

−μ, if p = q; p = 2, 3, ...S − s + 1,

−(β + μ), ifp = q; p = S − s + 2, , ..., 2S − s,

β, if p = 1 & q = S − s + 2,

q = p + 1; p = S − s + 2, ..., 2S − s − 1,

p = 2S − s & q = S − s + 1,

μ, if p = 2 & q = S + 1,

q = p − 1; p = 3, 4, ..., S − s + 1,

p = S − s + 2 & q = 1,

p = q − 1; p = S − s + 3, ..., 2S − s,

0, otherwise.

Theorem 1. The steady state probability vector πA = (π1, π2, ..., π2S−s) corre-
sponding to the generator matrix A = A0 + A1 + A2 is given by
πj = ψjπS−s+1, where

ψj =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

(μ
β )s+1(1−(μ

β )S−s)

1− μ
β

j = 1,

1 j = 2, ..., S − s + 1,
(μ

β )S+2−j(1−(μ
β )S−s)

1− μ
β

j = S − s + 2, ..., S + 1,

(μ
β )(1−(μ

β )2S−s+1−j)

1− μ
β

j = S + 2, ..., 2S − s − 1,
μ
β j = 2S − s.

and πS−s+1 =
(1− μ

β )2

(S−s)(1− μ
β )+((μ

β )S+2−(μ
β )s+2)

.

Proof: We have πAA = 0 and πAe = 1.
From the equation πAA = 0, we obtain the following system of equations.

βπ1 + μπS−s+2 = 0,

−μπk + μπk+1 = 0, k = 2, ..., S − s.

−μπS−s+1 + βπ2S−s = 0,

−(μ + β)πS−s+2 + βπ1 + μπS−s+3 = 0,

−(μ + β)πk + βπk−1 + μπk+1 = 0, k = S − s + 3, ..., S.

−(μ + β)πS+1 + μπ2 + βπS + μπS+2 = 0,

−(μ + β)πk + βπk−1 + μπk+1 = 0, k = S + 2, ..., 2S − s − 1.

−(μ + β)π2S−s + βπ2S−s−1 = 0.

(1)
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Solving the system of Eqs. (1) and using the normalising condition πAe = 1, we
obtain the required result.

Theorem 2 (Stability condition). The process {Z(t)|t ≥ 0} is stable if and
only if λ < (1 − π1)μ, where

π1 =
(μ

β )s+1(1 − (μ
β )S−s)(1 − μ

β )

(S − s)(1 − μ
β ) + ((μ

β )S+2 − (μ
β )s+2)

.

Proof: Since the process {Z(t)|t ≥ 0} is a level independent QBD, it will be
stable if and only if πAA0e < πAA2e(see Neuts [10]). Here πAA0e = λ and
πAA1e = (1 − π1)μ. Using Theorem 1 we get the required result.

3.1 The Steady State Probability Vector of G

Let the steady state probability vector x of G can be partitioned according to
the levels as

x = (x(0), x(1), ..., x(N − 1), x(N), ...),

where x(i), 1 ≤ i ≤ N − 1 contain 4S − 2s − 1 elements and all other sub
vectors contains 2S − s elements. The QBD process Z(t) is state independent
for i ≥ N + 1. Therefore the steady state solution is of the form (see Latouche
and Ramaswami [9].)

xN+1+j = xN+1R
j : j ≥ 1.

where R is the minimal nonnegative solution of the matrix quadratic equation
R2A2 + RA1 + A0 = 0. R can be calculated from the iterative procedure (refer
Neuts [10])

Rn+1 = −(R2
nA2 + A0)A−1

1 .

Also x satisfies the equations xG = 0 and x e = 1.

Thus we obtain the following system of equations

x(0)B00 + x(1)B10 = 0,

x(0)B01 + x(1)A∗
1 + x(2)A∗

2 = 0,

x(i − 1)A∗
0 + x(i)A∗

1 + x(i + 1)A∗
2 = 0, 2 ≤ i ≤ N − 2.

x(N − 2)A∗
0 + x(N − 1)A∗

1 + x(N)A∗∗
2 = 0,

x(N − 1)A∗∗
0 + x(N)A1 + x(N + 1)A2 = 0,

x(N)A0 + x(N + 1)(A1 + RA2) = 0,

(2)

x(0)e +
N−1∑
i=1

x(i)e + x(N)e + x(N + 1)(I − R)−1e = 1. (3)

Solving Eqs. (2) and (3) we get x.
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3.2 System Performance Measures

The steady state probability vector for the system allows us to calculate the
system’s measures of effectiveness. We partition the components of the steady
state probability vector x as

x(0) = (x(0, 0, 0, k), x(0, 0, 1, j)); k = s + 1...S; j = 0, 1....S − 1.

For 1 ≤ i ≤ N − 1,

x(i) = (x(i, 0, 0, k), x(i, 0, 1, j), x(i, 1, 0, k), x(i, 1, 1, n)),

k = s + 1...S; j = 0, 1....S − 1; n = 1, 2, ..., S − 1.

For i ≥ N,

x(i) = (x(i, 0, 1, 0), x(i, 1, 0, j), x(i, 1, 1, k))j = s + 1, ..., S; k = 1, ..., S − 1.

With the above notation, we obtain the following system performance measures.

1. Expected Number of customers in the system,

EC =
∑∞

i=1 ix(i)e

=
∑N−1

i=1 ix(i)e + Nx(N)e +
∑∞

i=N+1 ix(i)e

=
∑N−1

i=1 ix(i)e + Nx(N)e + x(N + 1)(N(I − R)−1 + (I − R)−2)e.

2. Expected Inventory Level.

EI =
S∑

j=s+1

jx(0, 0, 0, j) +
S−1∑
j=0

jx(0, 0, 1, j)

+
N−1∑
i=1

(
S∑

j=s+1

jx(i, 0, 0, j) +
S−1∑
j=0

jx(i, 0, 1, j) +
S∑

j=s+1

jx(i, 1, 0, j)

+
S−1∑
j=1

jx(i, 1, 1, j)) +
∞∑

i=N

(
S∑

j=s+1

jx(i, 1, 0, j) +
S−1∑
j=1

jx(i, 1, 1, j)).
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3. Probability that the server is idle,

PI = x(0)e +
N−1∑
i=1

(
S∑

j=s+1

(x(i, 0, 0, j) +
S−1∑
j=0

x(i, 0, 1, j))

+
∞∑

i=N

x(i, 0, 1, 0).

4. Expected Number of customers in the system when the server is busy.

ECbusy =
N−1∑
i=1

i(
S∑

j=s+1

(x(i, 1, 0, j) +
S−1∑
j=1

x(i, 1, 1, j))

+
∞∑

i=N

i(
S∑

j=s+1

(x(i, 1, 0, j) +
S−1∑
j=1

x(i, 1, 1, j))

5. Expected Number of customers in the system when the server is idle,

ECidle =
N−1∑
i=1

i(
S∑

j=s+1

(x(i, 0, 0, j) +
S−1∑
j=0

x(i, 0, 1, j))

+
∞∑

i=N

ix(i, 0, 1, 0).

6. Expected inventory in the system when the server is busy,

EIbusy =
N−1∑
i=1

S∑
j=s+1

jx(i, 1, 0, j) +
S−1∑
j=1

jx(i, 1, 1, j))

+
∞∑

i=N

(
S∑

j=s+1

jx(i, 1, 0, j) +
S−1∑
j=1

jx(i, 1, 1, j)).

7. Expected inventory in the system when the server is idle,

EIidle = (
S∑

j=s+1

jx(0, 0, 0, j) +
S−1∑
j=0

jx(0, 0, 1, j))

+
N−1∑
i=1

(
S∑

j=s+1

jx(i, 0, 0, j) +
S−1∑
j=0

jx(i, 0, 1, j))).

8. Expected number of items produced,

EP = β({
S−1∑
j=0

x(0, 0, 1, j) +
N−1∑
i=1

(
S−1∑
j=0

x(i, 0, 1, j) +
S−1∑
j=1

x(i, 1, 1, j))

+
∞∑

i=N

(x(i, 0, 1, 0) +
S−1∑
j=1

x(i, 1, 1, j))}).
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9. Expected Switching Rate for production,

ES1 = μ

∞∑
i=1

x(i, 1, 0, s + 1).

10. Expected Switching Rate for service,

ES2 = λ(
S∑

j=s+1

x(N − 1, 0, 0, j) +
S−1∑
j=0

x(N − 1, 0, 1, j)).

11. Expected Number of departures after completing the service,

ED = μ(
∞∑

i=1

(
S−1∑
j=1

x(i, 1, 1, j) +
S∑

j=s+1

x(i, 1, 0, j))).

3.3 Cost Analysis

Now, we develop the following cost function by means of some of important
performance measures given in Subsect. 3.2. The expected total cost per unit
time,

ETC = c0ES1 + c1EP + c2ES2 + c3EI + c4EC + c5ED,

where,

c0: fixed cost for production,
c1: production cost/item/unit time,
c2: reward cost of customer when the server is idle/customer/unit time,
c3: holding cost of inventory/unit/unit time,
c4:holding cost of customer/unit time,
c5: cost of service/item/unit time.

4 Numerical and Graphical Illustrations

This section provides the details of numerical experiments that have been car-
ried out for studying the effects of variation of different parameters on various
performance measures. Figure 1 shows the plots of variation of expected total
cost with respect to the different parameters S, s,N, λ, β and μ. Table 1 shows
the effect of λ, β and μ on performance measures.
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Fig. 1. Variation of ETC with respect to various parameters

From Table 1(a), it is clear that when the arrival rate λ increases, the expected
number of customers, expected production rate and expected departure rate
increases, while the mean on-hand inventory level decreases. As the mean arrival
rate increases, more items are taken by customers from the inventory and hence
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Table 1. Effect of parameters on performance measures

Table 1(a). Effect of λ on performance measures

λ EC EI PI ECbusy ECidle EIbusy EIidle EP ES1 ES2 ED
1.2 2.5638 6.9215 0.5333 1.6439 0.9199 3.7093 3.2122 1.9979 1.00E-04 0.1753 0.9329
1.21 2.5944 6.852 0.5307 1.6742 0.9202 3.7048 3.1472 1.9979 1.00E-04 0.1764 0.9382
1.22 2.6259 6.7858 0.528 1.7055 0.9204 3.702 3.0839 1.998 1.00E-04 0.1774 0.9436
1.23 2.6583 6.723 0.5253 1.7378 0.9205 3.7008 3.0222 1.9981 1.00E-04 0.1783 0.949
1.24 2.6917 6.6634 0.5225 1.7712 0.9205 3.7013 2.9621 1.9981 1.00E-04 0.1792 0.9546
1.25 2.7261 6.6071 0.5197 1.8057 0.9205 3.7035 2.9036 1.9982 1.00E-04 0.1801 0.9602
1.26 2.7617 6.5541 0.5169 1.8414 0.9203 3.7075 2.8466 1.9982 1.00E-04 0.1809 0.9659
1.27 2.7984 6.5043 0.514 1.8783 0.9201 3.7132 2.791 1.9983 1.00E-04 0.1817 0.9717
1.28 2.8364 6.4577 0.511 1.9165 0.9198 3.7209 2.7368 1.9983 1.00E-04 0.1824 0.9776
1.29 2.8756 6.4144 0.508 1.9562 0.9195 3.7304 2.684 1.9983 1.00E-04 0.183 0.9836
1.3 2.9162 6.3743 0.505 1.9972 0.919 3.7418 2.6325 1.9983 1.00E-04 0.1836 0.9898

S = 45, s = 13, N = 4, μ = 2, β = 2

Table 1(b). Effect of μ on Performance measures

μ EC EI PI ECbusy ECidle EIbusy EIidle EP ES1 ES2 ED
2.2 3.5612 4.902 0.4892 2.5235 1.0377 3.1027 1.7993 1.9995 3.00E-05 0.207 1.1234
2.21 3.5397 4.8566 0.4918 2.4958 1.0438 3.0574 1.7992 1.9996 3.00E-05 0.208 1.1235
2.22 3.5187 4.8129 0.4943 2.4689 1.0499 3.0136 1.7992 1.9996 3.00E-05 0.209 1.1236
2.23 3.4983 4.7707 0.4968 2.4425 1.0558 2.9714 1.7993 1.9996 3.00E-05 0.21 1.1237
2.24 3.4785 4.7301 0.4992 2.4169 1.0616 2.9306 1.7995 1.9996 3.00E-05 0.211 1.1238
2.25 3.4592 4.6909 0.5016 2.3918 1.0674 2.8912 1.7997 1.9997 2.00E-05 0.212 1.1239
2.26 3.4404 4.653 0.504 2.3674 1.073 2.853 1.8 1.9997 2.00E-05 0.213 1.1239
2.27 3.422 4.6165 0.5063 2.3435 1.0786 2.8161 1.8004 1.9997 2.00E-05 0.2139 1.1240
2.28 3.4042 4.5813 0.5086 2.3201 1.0841 2.7804 1.8009 1.9997 2.00E-05 0.2149 1.1241
2.29 3.3867 4.5473 0.5109 2.2973 1.0894 2.7459 1.8014 1.9997 2.00E-05 0.2158 1.1242
2.3 3.3697 4.5144 0.5131 2.2749 1.0947 2.7124 1.802 1.9998 2.00E-05 0.2167 1.1243

S = 45, s = 13, N = 4, λ = 1.5, β = 2

Table 1(c). Effect of β on performance measures

β EC EI PI ECbusy ECidle EIbusy EIidle EP ES1 ES2 ED
1.95 4.332 6.0141 0.426 3.4129 0.9191 4.3063 1.7078 1.9476 1.00E-04 0.1795 1.1379
1.96 4.2986 6.0703 0.4265 3.3858 0.9128 4.3426 1.7278 1.9574 1.00E-04 0.18 1.1402
1.97 4.2672 6.1263 0.427 3.3603 0.9069 4.3788 1.7475 1.9672 1.10E-04 0.1806 1.1408
1.98 4.2375 6.1819 0.4274 3.3361 0.9014 4.4149 1.7669 1.9771 1.10E-04 0.1811 1.1409
1.99 4.2094 6.2372 0.4279 3.3133 0.8961 4.451 1.7862 1.9869 1.20E-04 0.1815 1.1416
2 4.1829 6.2923 0.4283 3.2917 0.8912 4.487 1.8052 1.9966 1.30E-04 0.182 1.1432
2.01 4.1577 6.347 0.4287 3.2712 0.8865 4.523 1.8241 2.0064 1.30E-04 0.1824 1.1424
2.02 4.1339 6.4015 0.4291 3.2518 0.8821 4.5588 1.8427 2.0162 1.40E-04 0.1828 1.1425
2.03 4.1113 6.4557 0.4294 3.2334 0.8779 4.5945 1.8612 2.026 1.50E-04 0.1832 1.1426
2.04 4.0898 6.5096 0.4298 3.2159 0.874 4.6302 1.8794 2.0357 1.50E-04 0.1836 1.1430
2.05 4.0695 6.5632 0.4301 3.1992 0.8702 4.6657 1.8975 2.0455 1.60E-04 0.1839 1.1432

S = 45, s = 13, N = 4, λ = 1.5, μ = 2.
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the on-hand inventory level EI decreases. Furthermore, as this inventory level
decreases, the fraction of the time that the production process is switched ON
will increase and hence the mean production rate EP also increases. It is observed
from Table 1(b) that expected inventory and expected number of customers
decrease with the increase of μ, while the expected production rate and expected
switching rate for service increases. This can be explained as follows. When the
service rate increases, more customers are served and hence the inventory and
number of customers in queue reduces. A decrease in the number of customers
may result in the system being empty. So there may be more chances for the
server to take a vacation which leads to an increase in the expected switching
rate for service. In Table 1(c), one can see that the expected production rate,
expected inventory level and expected departure rate increase with the increas-
ing of the production rate β, while the expected number of customers decreases.
This agrees with our intuition that as the production rate increases, more items
are produced and replenished to the inventory which results in an increase of
the mean production rate EP and the mean on-hand inventory level EI and a
decrease in the expected number of waiting customers.

Optimal (s, S) Pair

The variation of the expected total cost with respect to (s, S) is shown in Table 2
and Fig. 2. The optimum value of (s, S) pair and N are obtained by considering
suitable parameter values. For the set of parameters S = 45, s = 13, N = 4, λ =
1.5, μ = 2, β = 2, c0 = 10, c1 = c2 = c3 = c5 = 1, c4 = 8, the optimal(s, S) pair is
found to be (13, 45) and optimum value of N is 4. The minimum cost is obtained
as 43.0784

Table 2. Variation of ETC with respect to (s, S)

S
s

10 11 12 13 14 15

42 43.0833 43.0822 43.0815 43.0812 43.0812 43.0815
43 43.0816 43.0806 43.0800 43.0797 43.0798 43.0800
44 43.0804 43.0795 43.0790 43.0788 43.0788 43.0791
45 43.0798 43.0790 43.0785 43.0784 43.0784 43.0786
46 43.0803 43.0790 43.0787 43.0785 43.0786 43.0788
47 43.0816 43.0797 43.0794 43.0792 43.0793 43.0795

N = 4, λ = 1.5, μ = 2, β = 2, c0 = 10, c1 = c2 = c3 = c5 = 1, c4 = 8
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Fig. 2. Variation of ETC with respect to (s, S)

5 Conclusion

In this paper, we studied a production inventory system with N− policy and
positive service time. The production process added items one by one exponen-
tially to the inventory and is governed by an (s, S) policy. Matrix Geometric
Method is used to find the stationary probability vector, which makes it easy to
obtain some key performance measures. The results are numerically and graphi-
cally illustrated to show the effect of various parameters on system performance
measures. A suitable cost function is constructed and the optimal (s, S) pair is
obtained. The optimal value of N is also obtained. This work can be extended
in the future for multi-server production models.
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Abstract. This paper considers the analysis of discrete-time priority
queues formed due to the customer’s induced interruption during ser-
vice. The customers who interrupted during service are moved to a lower
priority queue. Both preemptive and non-preemptive disciplines for the
service are considered. The Matrix-Analytic Method extended to the infi-
nite phase is used to analyze the model. The stability condition for the
system is derived. The marginal distributions of both higher and lower
priority queue lengths in each discipline are studied. Numerical exper-
iments are incorporated to illustrate the calculation of the rate matrix
and queue lengths.

Keywords: Discrete-time queue · Peemptive · Non-preemptive ·
Markovian arrival process · Discrete phase-type distribution ·
Matrix-Analytic Method

1 Introduction

The concept of priority in queues was introduced by White and Christie [16]
in 1958. The main classification of priority queues are i) Preemptive and ii)
Non-preemptive. In preemptive priority, the service of the lower priority is inter-
rupted on the arrival of high priority customer during the service whereas in
non-preemptive, the arriving high priority customer during the service of the
lower priority customer gets service only after the completion of the undergoing
service. Jaiswal [10] discussed the service on non-priority unit when preemption
occurred. The service is started at the point where it was interrupted. Further
Jaiswal [9] described the development of priority queues until 1968. Recent works
of Gated Batch Priority Queues and reservation in priority queues are found in
Takagi [1]. A survey of priority queues is analysed by Brodal [5]. The author
tried to list some of the directions research on priority queues that has gone over
the last 50 years. Matrix-geometric method for discrete-time priority queue is
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discussed by Alfa [2] in which arrivals two classes are modeled by Markovian
Arrival Process in which correlation of inter-arrival time within each class and
between two classes of jobs are considered and service time of each class follows
a phase-type distribution with different parameters. The author extended the
structure of the rate matrix R obtained by Miller [14] to the discrete case.

The creation of high priority or low priority customers may occur during the
service due to an emergency or interruption. The self-generated priority queue
with MAP arrivals and phase-type service time distribution is analysed by Krish-
namoorthi et al. [11] in which priority customer accommodating capacity is one
and remaining generated priority customers are assumed to be lost. Interruption
in a queue occurs due to many reasons such as server breakdowns, servers tak-
ing emergency breaks, and customers having incomplete information or getting
distracted. Krishnamoorthy et al. [13] look at both continuous and discrete-time
queueing models with interruptions in service. Jacob et al. [8] investigated an
infinite capacity queueing system with a single server to which customers arrive
according to a Poisson process and the service time follows an exponential distri-
bution. The customer interruption occurs according to a Poisson process and the
interruption duration follows an exponential distribution. The self-interrupted
customers will enter a buffer of finite size and any interrupted customer, finding
the buffer full, is considered to be lost. Dudin et al. [6] generalized the model
with MAP arrivals and phase-type service in which two multi-server service
systems are considered. Primary customers arrive at a multi-server queueing
system-1 having an infinite buffer. An interruption removes one of the primary
customers from the service and with some probability, the interrupted primary
customer moves for service to system-2 and after completing this service, this
customer becomes a priority customer. The ergodicity and various performance
measures are analysed. The concept of self interruption infinite buffer for lower
priority in continuous time was analysed by Krishnamoorthy and Manjunath
[12]. Anillumar and Jose [4] generalized this model to discrete-time cases with
MAP arrivals and phase-type service processes. A discrete-time priority queue-
ing inventory model with customer-induced interruption was also analyzed by
Anilkumar and Jose [3]. In this paper, we discus the generalized self-induced
service interruption.

2 Modeling

We consider infinite capacity single server discrete-time queue in which arrival
of customers is modeled by Markovian arrival process having n phases with rep-
resentation (D0,D1). Then the arrival rate λ = ψD1e, where ψ is the stationary
probability vector of (D0 + D1) and e is the column vector of 1’s having dimen-
sion n×1. There are two types of priority queues P1 and P2. The customer who
arrives in the system first enters into the high priority queue. During his service,
he may or may not interrupt the service. The time taken for primary service is
considered to be the time till absorption of a discrete-time Markov chain that has
two absorbing states which are represented by the transition probability matrix
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T =

⎡
⎣

S(1) S0(1) S02(1)
0 1 0
0 0 1

⎤
⎦

with initial probability β(1) and transient matrix S(1) having dimension m1. If
a customer interrupts the service, he is transferred to a low priority queue P2.
The same server serves customers in these two queues one at a time according
to their priority. Once an interrupted customer in P2 receives service, he will
have no further interruptions during service (except when P1 customers arrive
in the preemptive case). After completing the service customers in both queues
leave the system. A customer in P2 is taken for service only when no customer is
present in P1 and no customer in P2 ahead of him. The arrival of customers in P1

during the service of P2, may or may not affect the service. In other words, service
P2 is either according to preemptive or non-preemptive discipline. We study
this separately. The processing time of customers in P2 is discrete phase-type
distributed random variables with parameters (β(2), S(2)) with dimension m2.

Notations

(i) N1(n): Number of P1 customers in the system at an epoch n.
(ii) N2(n): Number of P2 customers waiting for service an epoch n
(iii) I(n): The arriving phase of a customer
(iv) J(n): The service phase
(v) ā = 1 − a where 0 ≤ a ≤ 1
(vi) e: Column vector of 1’s of appropriate order
(vii) e(k): Column vector of 1’s of order k
(viii) S0(2) = e − S(2)e
(ix) For an m × n matrix Z given by Z = [Z1, Z2, . . . Zn] where Zj is the jth

column of Z, V ec(Z) is the mn × 1 column vector defined by,

V ec(Z) =

⎡
⎢⎢⎢⎣

Z1

Z2

...
Zn

⎤
⎥⎥⎥⎦

3 Preemptive Priority

We assume that the priority of service in P2 is in the preemptive discipline. That
is the service of nonpriority customers affects the arrival of customers in P1. Now,{
(N1(n), N2(n), I(n), J(n)), n = 1, 2, 3, ...

}
is a Level Independent Quasi-Birth

Death process (LIQBD) on the state space Δ1 ∪ Δ2 ∪ Δ3, where

Δ1 = {(0, j); 1 ≤ j ≤ n},

Δ2 = {(0, i2, j, k2); i2 ≥ 0, 1 ≤ j ≤ n, 1 ≤ k2 ≤ m2},

Δ3 = {(i1, i2, j, k1); i1 ≥ 1, i2 ≥ 0, 1 ≤ j ≤ n, 1 ≤ k1 ≤ m1}.
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The transition probability matrix P of this process is given by

P =

⎡
⎢⎢⎢⎢⎢⎢⎣

B00 B01 0
B10 A1 A0

A2 A1 A0

. . . . . . . . .
. . . . . . . . .

⎤
⎥⎥⎥⎥⎥⎥⎦

,

where the elements of P are square matrices of order S and are given by

B00 =

⎡
⎢⎢⎢⎣

B00
00

B10
00 B1

00

B2
00 B1

00

. . . . . .

⎤
⎥⎥⎥⎦, B01 =

⎡
⎢⎢⎢⎣

B00
01

B2
01 B1

01

B2
01 B1

01

. . . . . .

⎤
⎥⎥⎥⎦,

B10 =

⎡
⎢⎢⎢⎣

B00
10 B0

10

B1
10 B0

10

B1
10 B0

10

. . . . . .

⎤
⎥⎥⎥⎦, A2 =

⎡
⎢⎢⎢⎣

A1
2 A0

2

A1
2 A0

2

A1
2 A0

2

. . . . . .

⎤
⎥⎥⎥⎦,

A1 =

⎡
⎢⎢⎢⎣

A1
1 A0

1

A1
1 A0

1

A1
1 A0

1

. . . . . .

⎤
⎥⎥⎥⎦, A0 =

⎡
⎢⎢⎢⎣

A1
0

A1
0

A1
0

. . .

⎤
⎥⎥⎥⎦ .

B00
00 = D0, B

10
00 = D0 ⊗ S0(2), B1

00 = D0 ⊗ S(2), B2
00 = D0 ⊗ S0(2)β(2),

B00
01 = D1 ⊗ β(1), B2

01 = D1 ⊗ S0(2)β(1), B1
01 = D1 ⊗ S(2)eβ(1),

B00
10 = D0 ⊗ S0(1), B0

10 = D0 ⊗ S02(1)β(2), B1
10 = D0 ⊗ S0(1)β(2).

A1
1 = (D0 ⊗ S(1) + D1 ⊗ S0(1)β(1)), A0

1 = D1 ⊗ S02(1)β(1), A1
0 = D1 ⊗ S(1),

A1
2 = D0 ⊗ S0(1)β(1), A0

2 = D0 ⊗ S02(2)β(1).

3.1 Stability

Theorem 1. The system is stable if and only if

λβ(1)(I − S(1))−1e + λβ(1)(I − S(1))−2S02(1)β(2) (I − S(2))−1
e < 1. (1)
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Proof. The proof can follow using an intuitive argument. The server is always
available to high priority job. Hence the portion of time the priority queue is
empty is

λβ(1)(I − S(1))−1e.

Now the arrival rate to low priority queue is

λβ(1)(I − S(1))−2S02(1).

Hence the portion of time the low priority queue is nonempty is

λβ(1)(I − S(1))−2S02(1)β(2) (I − S(2))−1
e.

Therefore, the portion of time both queues is nonempty is

λβ(1)(I − S(1))−1e + λβ(1)(I − S(1))−2S02(1)β(2) (I − S(2))−1
e.

The system is stable if and only if this portion of time is less than 1.

3.2 Steady-State Analysis

Since the matrix P has the structure of quasi-birth and death process and the
individual phases are infinite, we can use the generalization of matrix geometric
method of Neuts [15] to the case of infinite submatrix by Miller [14]. For this,
first find the minimal nonnegative solution R of the matrix quadratic equation,

R2A2 + RA1 + A0 = R,

in which spectral radius is less than 1. Since A0, A1 and A2 are of upper trian-
gular structure, the rate matrix R also has the upper triangular structure which
is given by,

R =

⎡
⎢⎢⎢⎢⎢⎣

R0 R1 R2 R3 . . .
R0 R1 R2 . . .

R0 R1 . . .
R0 . . .

. . .

⎤
⎥⎥⎥⎥⎥⎦

.

Then,

R2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

R
(2)
0 R

(2)
1 R

(2)
2 R

(2)
3 . . .

R
(2)
0 R

(2)
1 R

(2)
2 . . .

R
(2)
0 R

(2)
1 . . .

R
(2)
0

. . .

. . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

,

where R
(2)
j =

∑j
v=0 RjRj−v for j ≥ 0.

Substituting in (1), we get

R
(2)
0 A1

2 + R0A1 + A1
0 = R0,
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R
(2)
j−1A

0
2 + R

(2)
j A1

2 + Rj−1A
0
1 + RjA

1
1 = Rj , for j ≥ 1.

R0 is the minimal non negative solution of R0 = (A1
0 + R2

0)(I − A1
1)

−1, which
can be calculated using the iterative method.
Now from (2), we have,

j−1∑
v=0

RvRj−v−1A
0
2 +

j∑
v=0

RvRj−vA
1
2 + Rj−1A

0
1 + RjA

1
1 = Rj , for j ≥ 1.

Which can be re written as,

Gj + R0RjG2 = RjG0, (2)

where Gj = Rj−1A
0
1 +

∑j−1
v=0 RvRj−v−1A

0
2 +

∑j−1
v=1 RvRj−vA

1
2, for j ≥ 1, G2 =

A1
2 and

G0 = I − A1
1 − R0A

1
2.

Using the property of kronecker product (see [7]), (2) is equivalent to

V ec(Gj) + (GT
2 ⊗ R0)V ec(Rj) = (GT

0 ⊗ I)V ec(Rj), for j ≥ 1.

V ec(Rj) = ((GT
0 ⊗ I) − (GT

2 ⊗ R0))−1V ec(Gj), for j ≥ 1. (3)

In order to compute R, first calculate R0, then successively find R1, R2, . . .
recursively using (3).

Since, under stability condition (Rn)ij → 0, one can truncate R. That is,
we need only to consider low priority queue to a certain level. This generates a
QBD having a finite set of phases, which can be easily analysed.

3.3 Steady-State Probability Vector

Let x = (x0, x1, x2, . . . ) be the steady state probability vector of P . That is
xP = x and xe = 1, where e is the infinite column vector of 1’s

Then xi+1 = xiR, for i ≥ 1.
To find the boundary probability vectors(x0, x1). For this consider the fol-

lowing system of equations

x0B00 + x1B10 = x0,

x0B01 + x1(A1 + RA2) = x1.

From the second equation, we have

x1 = x0B01(I − A1 − RA2)−1.

Substituting this in the normalizing condition, x0e+x1(I −R)−1e = 1, one can
solve for x0 and x1.
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3.4 Marginal Probability Distributions

Let Pi(v) be the probability that there are i jobs of in the queue Pv for v =
1, 2, i ≥ 0

pi(1) = xie,

pi(2) = xo(i−1)e(nm2) + x1(I − R)−1βi.
(4)

where βi is an infinite column matrix whose (inm1 + 1)th to (i + 1)nmth
1 entries

are one and remaining values are zeros.
Let E(v) be the expected number jobs in the queue Pv for v = 1, 2
Then

E(1) = 0x0e + 1x1e + 2x2e + . . .

= x1(1 + 2R + 3R2 + . . . )e

= x1(I − R)−2e

and E(2) =
∑

iqi(2)

= 1x01e(nm2) + 2x02e(nm2) + . . .

+ 1x1(I − R)−1β1 + 2x1(I − R)−1β2 + . . .

= x0γ1 + x1(I − R)−1γ2.

Where γ1 =
[

0 ⊗ (e)(n)
φ ⊗ e(nm2)

]
, γ2 =

[
0 ⊗ e(nm2)
φ ⊗ e(nm1)

]
and φ =

[
1 2 3 . . .

]
.

4 Non-preemptive Self Generated Interruption

Here we assume all the previous assumptions except that the arrival of P1 cus-
tomer does not interrupt the service of P2 customer who is already in ser-
vice. In addition to above notation, let S(n) denote the status of server at
an epoch n which takes the value 1 and 2 according as server serve P2 and
P2 customer respectively. Then {(N1(n), N2(n), S(n), I(n), J(n));n ≥ 1} is a
discrete time quasi birth and death process with state space {(0, i); 1 ≤ i ≤
n} ∪ {(0, n2, i, j);n2 ≥ 1, 1 ≤ i ≤ n, 1 ≤ j ≤ m2} ∪ {(n1, n2, s, i, j);n1 ≥ 1, n2 ≥
0, s = 1, 2&1 ≤ j ≤ mv}. The transition probability matrix P ′ describing this
QBD is given by

P ′ =

⎡
⎢⎢⎢⎢⎢⎢⎣

B00 B01 0
B10 A1 A0

A2 A1 A0

. . . . . . . . .
. . . . . . . . .

⎤
⎥⎥⎥⎥⎥⎥⎦

,

where B00 is the same as in matrix P , A0, A1, and A2 possess subsquare matrix
as above but whose values block matrices given by
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A1
0 =

[
D1 ⊗ S(1) 0

D1 ⊗ S0(2)β(1) D1 ⊗ S(2)

]
, A0

1 =
[
D1 ⊗ S02(2)β(1) 0

0 0

]
,

A1
1 =

[(
D1 ⊗ S0(1)β(1) + D0S(1)

)
0

D0 ⊗ S0(2)β(1) D0 ⊗ S(2)

]
, A1

2 =
[
D0 ⊗ S0(1)β(1) 0

0 0

]
,

A0
2 =

[
D0 ⊗ S02(2)β(1) 0

0 0

]
,

B01 =

⎡
⎢⎢⎢⎣

B∗
01

B∗∗
01 0

B∗∗
01 0

. . . . . .

⎤
⎥⎥⎥⎦, B10 =

⎡
⎢⎢⎢⎣

B∗
10 B0

10

B1
10 B0

10

B1
10 B0

10

. . . . . .

⎤
⎥⎥⎥⎦ ,

B∗
01 =

[
D1 ⊗ β(1) 0

]
, B∗∗

01 =
[
D1 ⊗ S0(2)β(1) D1 ⊗ S(2)

]
,

B∗
10 =

[
D0 ⊗ S0(1)

0

]
, B0

10 =
[
D0 ⊗ S02(1)β(2)

0

]
, B1

10 =
[
D0 ⊗ S0(1)β(2)

0

]
.

4.1 Stability

The condition for stability is the same as that of the preemptive case. Hence the
above QBD is stable if and only if

λβ(1)(I − S(1))−1e + λβ(1)(I − S(1))−2S02(1)β(2) (I − S(2))−1
e < 1. (5)

4.2 Computation of Rate Matrix and Steady-state Probability
Vector

The rate matrix R possesses an upper triangular structure as in the preemptive
case with the only difference is that each Ri is block lower triangular having
order n(m1 + m2) of the form

Ri =
[
Ri

11 0
Ri

21 Ri
22

]
.

The (i, j)th entries of the rate matrix R is the expected number of visits into
state (k + 1, j), starting from the state (k, i), until the first return to level k,
k > 1. Since the structure of A0

1, A0
2 has second column blocks zeros, we can

conclude that

Ri
22 = 0, for i ≥ 1.

This can also be verified recursively by substituting the values in the Eq. (3).
Let x = (x0, x1, x2, . . . ) be the steady-state probability vector of P ′ where xi =
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(xi0(1), xi1(1), xi1(2), xi2(1), xi2(2), . . . ) for i ≥ 1 and x0 as in above preemptive
case. Then here also

xi+1 = xiR, for i ≥ 1.

The marginal probability density functions are calculated as in the previous case
with the exception that for i = 0, βi is an infinite column matrix whose first nm1

entries are one and the remaining entries are zeros and for i ≥ 1, it is infinite
column matrix whose (nm1 +(i−1)n(m1 +m2)+1)th to (nm1 + in(m1 +m2))th

entries are one and remaining entries are zeros.

5 Numerical Illustrations

For a given model, we consider both preemptive and non-preemptive case for
the computation of the rate matrix R. One can observe that Ri, the entries of
R tends to zero as i −→ ∞.

Consider the parameters of the model as

D0 =
[
0.4 0.4
0.3 0.4

]
, D1 =

[
0.1 0.1
0.1 0.2

]
,

S(1) =
[
0.1 0.2
0.3 0.3

]
, S0(1) =

[
0.6
0.2

]
, S02(1) =

[
0.1
0.2

]
, S(2) =

[
0.1 0.2
0.2 0.3

]
,

β1 =
[
0.2 0.8

]
and β2 =

[
0.2 0.8

]
.

Computed values of Ri in Preemptive case

R0 =

⎡
⎢⎢⎣

0.0217 0.0383 0.0238 0.0424
0.0515 0.0653 0.0555 0.0734
0.0272 0.0473 0.0409 0.0743
0.0619 0.0826 0.0987 0.1268

⎤
⎥⎥⎦ , R1 =

⎡
⎢⎢⎣

0.0030 0.0068 0.0037 0.0087
0.0056 0.0127 0.0069 0.0163
0.0047 0.0105 0.0058 0.0137
0.0087 0.0195 0.0108 0.0255

⎤
⎥⎥⎦ ,

R2 =

⎡
⎢⎢⎣

0.0009 0.0020 0.0011 0.0025
0.0017 0.0037 0.0020 0.0047
0.0014 0.0031 0.0017 0.0039
0.0026 0.0058 0.0031 0.0073

⎤
⎥⎥⎦ , R3 =

⎡
⎢⎢⎣

0.0003 0.0007 0.0004 0.0009
0.0006 0.0014 0.0007 0.0017
0.0005 0.0012 0.0006 0.0014
0.0010 0.0022 0.0012 0.0027

⎤
⎥⎥⎦ ,

R4

⎡
⎢⎢⎣

0.0001 0.0003 0.0002 0.0004
0.0003 0.0006 0.0003 0.0007
0.0002 0.0005 0.0003 0.0006
0.0004 0.0009 0.0005 0.0011

⎤
⎥⎥⎦ , R5 =

⎡
⎢⎢⎣

0.0001 0.0001 0.0001 0.0002
0.0001 0.0003 0.0001 0.0003
0.0001 0.0002 0.0001 0.0003
0.0002 0.0004 0.0002 0.0005

⎤
⎥⎥⎦ .
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Computed values of Ri in Non-Preemptive case

R0 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.02167 0.03830 0.02378 0.04241 0.00000 0.00000 0.00000 0.00000
0.05151 0.06527 0.05548 0.07344 0.00000 0.00000 0.00000 0.00000
0.02724 0.04725 0.04088 0.07431 0.00000 0.00000 0.00000 0.00000
0.06186 0.08261 0.09874 0.12676 0.00000 0.00000 0.00000 0.00000
0.05737 0.13296 0.06498 0.14874 0.01510 0.02819 0.01584 0.02938
0.05477 0.12659 0.06260 0.14370 0.02819 0.04328 0.02938 0.04523
0.07797 0.17003 0.10475 0.25234 0.01734 0.03178 0.02870 0.05397
0.07609 0.16803 0.09896 0.23628 0.03178 0.04912 0.05397 0.08268

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

R1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.00302 0.00680 0.00372 0.00874 0.00000 0.00000 0.00000 0.00000
0.00562 0.01266 0.00693 0.01628 0.00000 0.00000 0.00000 0.00000
0.00467 0.01048 0.00580 0.01368 0.00000 0.00000 0.00000 0.00000
0.00870 0.01955 0.01082 0.02550 0.00000 0.00000 0.00000 0.00000
0.01242 0.02806 0.01518 0.03559 0.00000 0.00000 0.00000 0.00000
0.01360 0.03077 0.01655 0.03876 0.00000 0.00000 0.00000 0.00000
0.01907 0.04301 0.02344 0.05506 0.00000 0.00000 0.00000 0.00000
0.02082 0.04706 0.02543 0.05962 0.00000 0.00000 0.00000 0.00000

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

R2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.00089 0.00201 0.00108 0.00252 0.00000 0.00000 0.00000 0.00000
0.00165 0.00374 0.00201 0.00470 0.00000 0.00000 0.00000 0.00000
0.00138 0.00313 0.00168 0.00393 0.00000 0.00000 0.00000 0.00000
0.00258 0.00583 0.00313 0.00733 0.00000 0.00000 0.00000 0.00000
0.00404 0.00917 0.00490 0.01145 0.00000 0.00000 0.00000 0.00000
0.00464 0.01053 0.00561 0.01312 0.00000 0.00000 0.00000 0.00000
0.00625 0.01416 0.00756 0.01768 0.00000 0.00000 0.00000 0.00000
0.00715 0.01621 0.00864 0.02020 0.00000 0.00000 0.00000 0.00000

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

R3 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.00033 0.00075 0.00040 0.00093 0.00000 0.00000 0.00000 0.00000
0.00061 0.00139 0.00074 0.00173 0.00000 0.00000 0.00000 0.00000
0.00051 0.00116 0.00062 0.00144 0.00000 0.00000 0.00000 0.00000
0.00096 0.00217 0.00115 0.00269 0.00000 0.00000 0.00000 0.00000
0.00158 0.00358 0.00190 0.00444 0.00000 0.00000 0.00000 0.00000
0.00185 0.00420 0.00223 0.00520 0.00000 0.00000 0.00000 0.00000
0.00244 0.00554 0.00294 0.00686 0.00000 0.00000 0.00000 0.00000
0.00285 0.00648 0.00343 0.00801 0.00000 0.00000 0.00000 0.00000

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

R4 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.00014 0.00031 0.00017 0.00039 0.00000 0.00000 0.00000 0.00000
0.00026 0.00059 0.00031 0.00072 0.00000 0.00000 0.00000 0.00000
0.00022 0.00049 0.00026 0.00060 0.00000 0.00000 0.00000 0.00000
0.00040 0.00091 0.00048 0.00113 0.00000 0.00000 0.00000 0.00000
0.00068 0.00155 0.00082 0.00191 0.00000 0.00000 0.00000 0.00000
0.00081 0.00184 0.00097 0.00227 0.00000 0.00000 0.00000 0.00000
0.00106 0.00240 0.00127 0.00296 0.00000 0.00000 0.00000 0.00000
0.00125 0.00284 0.00150 0.00350 0.00000 0.00000 0.00000 0.00000

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,
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R5 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.00006 0.00014 0.00008 0.00018 0.00000 0.00000 0.00000 0.00000
0.00012 0.00027 0.00014 0.00033 0.00000 0.00000 0.00000 0.00000
0.00010 0.00022 0.00012 0.00027 0.00000 0.00000 0.00000 0.00000
0.00018 0.00042 0.00022 0.00051 0.00000 0.00000 0.00000 0.00000
0.00032 0.00072 0.00038 0.00088 0.00000 0.00000 0.00000 0.00000
0.00038 0.00086 0.00045 0.00106 0.00000 0.00000 0.00000 0.00000
0.00049 0.00111 0.00059 0.00137 0.00000 0.00000 0.00000 0.00000
0.00058 0.00132 0.00070 0.00163 0.00000 0.00000 0.00000 0.00000

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

For these parameter values, the entries of Ri decrease with the increase of
i in both preemptive and non-preemptive cases. The traffic intensity, which is
the expression on the left side of Eq. (1), is 0.7957 and hence the system is
stable. The entries of Ri become negligible as i becomes large. In this example,
we can neglect Ri for i ≥ 6. This truncation leads to the truncation of the lower
priority queue and hence the rate matrix R will become as a finite matrix. Now
the boundary probability x0 and x1 can be easily calculated using formulas in
Sect. 3.3. Using the set of Eqs. (4), The marginal probability density functions
are calculated for both preemptive and non-preemptive cases and are expressed
graphically in the following Figs. 1 and 2 respectively.
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Fig. 1. Marginal probability distributions in preemptive discipline
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Fig. 2. Marginal probability distributions in non-preemptive discipline

6 Concluding Remarks

This paper looked at discrete-time, self-interrupting priority queues of MAP
arrivals and service as the time till absorption. The absorbing Markov chain has
two absorbing states through which a customer leaves the system after service
or the interrupted customer moved to lower priority queue. The matrix-Analytic
Method is used to analyze the model. The marginal probability distribution of
queue length is discussed. For future studies, one can consider the chance of
abandoning the service if interruption happened. A similar self-generated pri-
ority can be generated through a feedback queue of customers in which the
customers after service may join to lower priority queue with some probability.
Incorporation of inventory of items is also another interest of study.
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Abstract. The paper is devoted to the tail asymptotics analysis of the
steady-state waiting times in the queuing systems in which service times
have Weibull distributions. We deduce conditions under which the service
times in two different queueing systems are stochastically ordered. Then
we show that, under the same conditions, the normalizing sequences of
the stationary waiting times and their extremal indexes are ordered.
These results are then illustrated numerically for GI/G/1 queues with
different shape parameters of the Weibull service times.

Keywords: Performance analysis · Queueing system · Extremal
index · Weibull distribution

1 Introduction

The subexponential distributions form a subclass of the so-called heavy-tailed
distributions, which arise in particular, in the insurance and various queueing
applications. The tails of such distributions decrease more slowly than the expo-
nential tails. It is established that the main reason why a sum of the subexpo-
nential random variables becomes ‘large’ is that one of the components of this
sum is large. This property allows us to use the class heavy-tailed distributions
to model and then simulate the processes which can take extremely large values
with a probability that cannot be neglected [5]. For instance, it is known that in
GI/G/1 queueing systems with heavy-tailed service time the tail waiting time
asymptotics is defined by the service time distribution [1]. This property can
be applied to derive the limiting distribution of the maximum of the waiting
time based on the extreme value theory. To realize this idea, in this research we
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consider a queueing system with the Weibull service time distribution (denoted
below GI/Weibull/1) with shape parameter 0 < β < 1. In this case the dis-
tribution belongs to the subclass of subexponential distributions and it plays in
particular a significant role in the reliability theory and in the survival analysis
[5]. In this case we use the tail asymptotics of the waiting time given in [2] and
then apply the regenerative approach [10] to estimate the extremal index.

The extreme events often occur in the clusters, and their prediction is an
actual problem which however is highly difficult to be resolved in the most of
cases [16]. We note that the extreme value theory in general is applied not only
to describe the limiting distribution of a maximum but also to determine the
size of the clusters and extreme’s frequency via the so-called extremal index. This
index, denoted by θ ∈ [0, 1], evaluates the reciprocal of the average cluster size
and hence measures the degree of clustering of the extremes.

It is worth to mentioning that the idea of the predicting and mitigating
extreme values of the performance measures in queueing systems is not a new
one and has been studied, for example, in [1,3,7,8,15]. The limit theory of the
Markov chains based on the extreme value theory is deeply analyzed in the fun-
damental paper [15]. The limit theorems for the maximum actual waiting time,
maximum virtual waiting time in a GI/G/1 queueing system, for all (accept-
able) values of the traffic intensity, are obtained in the paper [8]. The extremal
properties of Markov chains and adapted algorithm for computing the extremal
index in a stable GI/G/1 system is given in [7]. The comparison of performance
measures of queueing systems with different distributions of input or service
times based on stochastic ordering or failure rate ordering has been considered
by the authors in the works [11,12]. The paper [13] considers comparison of the
extremal indexes calculated for the stationary waiting time in M/G/1 queue-
ing systems in which service times have Pareto distribution satisfying stochastic
ordering.

In the case of the Poisson input process and exponential service times the
extremal index is calculated explicitly in [3,7]. In some other cases it can be
obtained iteratively, see for instance, [7]. Provided the service time distribution is
subexponential, for example is Weibull with the shape parameter β ∈ (0, 1) (for
definition of β see (3) below), then we can use the tail asymptotic of the waiting
time from [2] to derive the limiting distribution of the maximum waiting time.
This analysis can be used to evaluate the extremal index of the strictly stationary
waiting times and to compare the extremal index values in two GI/G/1 systems.

The purpose of this research is to provide that the stochastic ordering of
the service times in two queueing systems allows to compare the normalizing
sequences of the steady-state waiting times and their extremal indexes. We
demonstrate this approach for the GI/G/1 systems with Weibull service times
with the shape parameter β ∈ (0, 1).

The paper is structured as follows. In Sect. 2, we describe the model and
discuss the tail asymptotics of the waiting time distribution which is defined by
so-called equilibrium distribution function of the remaining service time. The
limiting distribution of the maximum waiting time (in a GI/Weibull/1 sys-
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tem), based on the tail asymptotics obtained in Sect. 2, is derived in Sect. 3
(see Lemma 1). In Sect. 4, we discuss the comparison of the extremal indexes
of two random variables with Weibull distributions, in which shape parameters
are properly ordered. This analysis is further applied to compare the extremal
indexes of the stationary sequences of the waiting times in two queueing systems
with the stochastically ordered service times (Theorem 1).

2 Model Description

We consider the GI/G/1 queueing system with a renewal input, and let Ti =
ti+1−ti be the independent, identically distributed (i.i.d.) interarrival times, i ≥
0. Denote by {Si} the i.i.d. service times. It is assumed that service discipline is
FIFO (First-In-First-Out). Denote by λ = 1/ET the input rate and by μ = 1/ES
the service rate, and let ρ = λ/μ be the traffic intensity. (The serial index is
omitted when we consider the generic element of an i.i.d sequence.) Let Wi be
the waiting time of the i-th customer, and we recall that the sequence {Wi} can
be obtained by means of the Lindley recursion, which defines the accumulated
work to be done at the instants {t−n }, that is, which a new arrival meets,

Wn+1 = (Wn + Sn − Tn)+, n ≥ 1, (1)

where we assume that W1 = 0 (zero-delayed process), and (·)+ = max(0, ·).
If ρ < 1 and distribution of T is non-lattice, then there exists the stationary
waiting time, that is, Wn ⇒ W , where ⇒ denotes convergence in distribution
(see, for instance, [1]). It is well-known that such a system regenerates (in the
classic sense) when an arrival meets the system idle [10].

Denote by B(x) = P(S ≤ x) the distribution function of the service times S.
The distribution B is called subexponential if

lim
x→∞

B∗n(x)
nB(x)

= 1 for all n ≥ 2,

where B∗n(x) is the tail of n-convolution of the distribution B(x) with itself. In
particular, B(x) = 1 − B(x) is the tail of B.

It is known that if the service times have subexponential distribution B with
a finite mean, then the waiting time distribution in the GI/G/1 queueing system
has the following tail asymptotic [2]:

P(W > x) ∼ ρ

1 − ρ
P(Se > x), x → ∞, (2)

if service time S and the stationary remaining renewal time Se are subexponen-
tial. Note that Se has the equilibrium density B(x)/ES. (Relation a ∼ b in (2)
means the asymptotic equivalence, that is a/b → 1.)

Assume that the service time S has Weibull distribution

B(x) = 1 − e−xβ

, β > 0, x ≥ 0, (3)
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with the density function fB(x) = βxβe−xβ

. The equilibrium Weibull distribu-
tion function Be is then defined by

Be(x) =
1
ES

x∫

0

B(t)dt =
1

Γ (1/β)

xβ∫

0

e−yy1/β−1dy =
γ(1/β, xβ)

Γ (1/β)
, (4)

where

Γ (t) =

∞∫

0

e−yyt−1dy,

is the Gamma function and

γ(t, x) =

x∫

0

e−yyt−1dy,

is the lower incomplete gamma function. Then it is easy to check that the cor-
responding tail satisfies the following asymptotic relation

Be(x) =
Γ (1/β, xβ)

Γ (1/β)
∼ x1−βe−xβ

Γ (1/β)
, as x → ∞,

where

Γ (t, x) =

∞∫

x

e−yyt−1dy,

is the upper incomplete gamma function.
To check that the Weibull distribution B (of the service time S) and the

corresponding equilibrium distribution Be (with parameter β ∈ (0, 1)) both
belong to the class of the subexponential distributions, it is enough to verify
that B belongs to a special subclass S∗ of the subexponential distributions.
Namely, the distribution B ∈ S∗ [5] if the service time S has a finite mean
1/μ < ∞ and moreover,

lim
x→∞

x∫

0

B(x − y)
B(x)

B(y)dy =
2
μ

.

In practice, the following criteria for a distribution to belong S∗ is often applied
[5]. Denote the failure rate function

r(x) =
fB(x)
B(x)

and let R(x) = − log B(x).

Suppose that
lim

x→∞ r(x) = 0 and lim
x→∞ xr(x) = ∞.
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Then B ∈ S∗ if, additionally, one of the following (incompatible) conditions
holds [5]:

a) lim sup
x→∞

xr(x)
R(x)

< 1; (5)

b) r ∈ R(−δ) for δ ∈ (0, 1]; (6)
c) R ∈ R(δ) for δ ∈ (0, 1), (7)

where R(δ) is the class of regularly varying functions, that is a function g ∈ R(δ)
if

lim
x→∞

g(tx)
g(x)

= tδ, for all t > 0.

It is easy to verify that the failure rate of Weibull distribution (with parameter
0 < β < 1) decaying to zero, xr(x) → ∞, and condition (5) holds. More exactly,

r(x) = βxβ−1 → 0 as x → ∞;
xr(x) = βxβ → ∞ as x → ∞;
xr(x)
R(x)

= β < 1 for all x.

Hence the Weibull distribution B with parameter β ∈ (0, 1) belongs to the
subclass S∗ of the subexponential distributions. Therefore B and the equilibrium
distribution Be both belong to the class of subexponential distributions, that is
B, Be ∈ S∗. Actually, the subexponentiality of Be follows from the following
relations:

re(x) =
fBe

(x)
Be(x)

=
βe−xβ

Γ (1/β)
Γ (1/β, xβ)

∼ βΓ (1/β)
x1−β

→ 0 as x → ∞;

xre(x) ∼ βΓ (1/β)xβ → ∞ as x → ∞;
re(tx)
re(x)

→ tβ−1 = t−δ as x → ∞, δ = 1 − β < 1.

For the Weibull distribution (3), the traffic intensity is determined by the rela-
tion

ρ =
λΓ (1/β)

β
. (8)

It now follows from (2) and (4) that the waiting time tail distribution satisfies

P(W > x) ∼ λ

β − λΓ (1/β)
x1−βe−xβ

as x → ∞. (9)

3 The Limiting Distribution of the Maximum Waiting
Time

In this section we consider some basic concepts from the extreme value theory in
order to apply them in the next section to the analysis of the limiting distribution
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of the stationary waiting time maximum in a GI/G/1 queueing system with
Weibull service time.

Let {Xn, n ≥ 1} be a family of the i.i.d random variables (rv’s) with a distri-
bution function F . Then the distribution of maximum Mn = max(X1, . . . , Xn)
satisfies

P(Mn ≤ x) = Fn(x).

It is known [4,6,9,14] that if, for some sequences of the constants bn, an >
0, n ≥ 1, the normalized maximum (Mn − bn)/an has a non-degenerate limiting
distribution function G(x),

P((Mn − bn)/an ≤ x) → G(x), n → ∞, (10)

then G(x) has one of the following forms:

Type I: G(x) = exp(−e−x), −∞ < x < ∞;

Type II: G(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0, x ≤ 0;

exp(−x−η), x > 0;

Type III: G(x) =

⎧⎪⎨
⎪⎩

exp(−(−x)η)), x ≤ 0;

1, x > 0.

where parameter η > 0. Type I is called Gumbel distribution, Type II is Frechet
distribution and Type III is called the reversed Weibull distribution.

Suppose that there exists a sequence of real constants {un, n ≥ 1} such that
for some 0 ≤ τ ≤ ∞,

nF (un) → τ as n → ∞. (11)

Then it follows from [9] that

P(Mn ≤ un) → e−τ as n → ∞. (12)

Conversely, if relation (12) holds for some 0 ≤ τ ≤ ∞ then the convergence (11)
holds as well.

If condition (10) is satisfied, then convergence (12) is preserved for any linear
normalizing sequence

un(x) = anx + bn, n ≥ 1,

where x takes real values and expression (12) becomes

P(Mn ≤ un(x)) → τ(x),

where a concrete form of the function τ(x) depends on the type of the limiting
distribution.
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The sequence {un(x)} for Weibull distribution (3) can be found in the fol-
lowing form:

un(x) =
x(log n)1/β−1

β
+ (log n)1/β , (13)

in which case the maximum Mn has Gumbel distribution (in the limit as n → ∞),
that follows from the asymptotics

nF (un) = ne
−( (log n)1/β−1

β
x + (log n)1/β

)β

= ne
−log n

(
1 +

x

log n
+ o(

1
log n

)
)

→ e−x as n → ∞. (14)

The limit distribution of the maximum generated by the equilibrium Weibull
distribution has a Gumbel form with the same normalizing sequence {un(x)}
defined by (13), since

nun(x)1−βe−un(x)β
= n(log n)1/β log n−1

(
x

β log n
+ 1

) (
x

β log n
+ 1

)−β

× e
− log n

(
1 +

x

log n
+ o(1/ log n)

)
→ e−x

β
as n → ∞.

To extend (12) to a non i.i.d. strictly stationary sequence {Xn}, an additional
condition on the decay of the correlations is required (see condition D(un) in
[9]). In this case, instead of relation (12), we obtain

P(Mn ≤ un(x)) → e−θτ(x), as n → ∞, 0 < τ(x) < ∞, (15)

where parameter θ ∈ [0, 1] defines the so-called extremal index of the sequence
{Xn}. Moreover, like in the i.i.d. case, the same family of the extreme value
distributions describes the maximum of the strictly stationary sequence.

Now we go back to the GI/G/1 system described in previous section. Denote
the maximum waiting time by W ∗

n = max(W1, . . . ,Wn) for each n ≥ 1. Then
relations (9) and (14) lead to the following statement.

Lemma 1. If the service time in a GI/G/1 queueing system has Weibull dis-
tribution (3) with parameter β ∈ (0, 1) then the limiting distribution of W ∗

n has
the following Gumbel-type shape:

P (W ∗
n ≤ un(x)) → e

− λ

(β − λΓ (1/β)β
e−x

as n → ∞, (16)

with the normalized sequence

un(x) = anx + bn =
x(log n)1/β−1

β
+ (log n)1/β . (17)
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4 Comparison of the Waiting Time Extremal Indexes

In this section we return to the GI/G/1 queueing systems described in Sect. 2
and denote they by Σ(1) and Σ(2). Let T (i) be the generic interarrival time, S(i)

the generic service time, and let ET (i) = 1/λi, i = 1, 2. (The superscript (i)
relates to system i). Now we compare the steady-state waiting time processes in
the systems Σ(1) and Σ(2). At the arrival instant of customer n in the system
Σ(i), we denote by ν

(i)
n the number of customers, by Q

(i)
n the queue size and by

W
(i)
n the (actual) waiting time of this customer, n ≥ 1. Denote, when exists, the

limits (in distribution)

Q(i)
n ⇒ Q(i), ν(i)

n ⇒ ν(i), W (i)
n ⇒ W (i), n → ∞, i = 1, 2.

These limits exists, in particular, when the interarrival times T (i), i = 1, 2 are
non-lattice and ρi = λiES(i) < 1 [1]. Assume that the following stochastic rela-
tions hold:

ν
(1)
1 = ν

(2)
1 = 0, T (1)=stT

(2), S(1)≤stS
(2), (18)

where, recall, the stochastic ordering S(1)≤stS
(2) means that the corresponding

tail distributions satisfy BS(1)(x) ≤ BS(2)(x) for all x. Then it follows from [17]
that

Q(1)
n ≤st Q(2)

n , W (1)
n ≤st W (2)

n , n ≥ 1. (19)

We assume that the systems Σ(1), Σ(2) have Weibull service times distributions
in which parameters satisfy the inequalities 0 < β1, β2 < 1. If moreover the
assumption β1 ≥ β2 holds then there exists a stochastic ordering between the
service times, namely, S(1) ≤st S(2). Therefore, inequalities (19) hold and imply
the stochastic ordering of the waiting times, W

(1)
n ≤st W

(2)
n [17]. In what follows

we need the maximum waiting times which are defined as follows:

W (1)∗
n := max(W (1)

1 , . . . ,W (1)
n ), W (2)∗

n := max(W (2)
1 , . . . ,W (2)

n ), n ≥ 1.

The following lemma allows us to obtain the main theoretical result of the
research containing in Theorem 1 below.

Lemma 2. Let {Xn} and {Yn} be two stationary sequences with the correspond-
ing generic rv’s X and Y . Assume that X and Y have Weibull distributions
with parameters β1, β2, respectively, 0 < β2 ≤ β1 < 1. Then the corresponding
extremal indexes θX and θY are ordered as

θX ≥ θY . (20)

The proof of this statement mainly follows the paper [13] in which we compare
the extremal indexes of two stationary sequences {Xn} and {Yn} with different
Pareto distributions. We note that, to verify condition un(x) ≥ u′

n(x), it is
enough to check that (b′

n − bn)/(an − a′
n) ≤ 0 for all x ≥ 0. Indeed, for n ≥ 3,

b′
n − bn

an − a′
n

=
log n

(
(log n)1/β2−1/β1 − 1

)
β1β2

(
β2 − β1(log n)1/β2−1/β1

) ≤ 0. (21)
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Note that the limit distributions of W
(1)∗
n and W

(2)∗
n satisfy (16) with parame-

ters β1 and β2, respectively. Lemma 2 and discussion above imply the following
statement.

Theorem 1. Assume that in the queueing systems under consideration the traf-
fic intensities ρi < 1, i = 1, 2 and the parameters of Weibull service time distri-
butions satisfy the inequalities

1 > β1 ≥ β2 > 0.

Then the extremal indexes of the stationary waiting times in these systems are
ordered in the following way:

θW (1) ≥ θW (2) . (22)

5 Simulation Results

In this section, we discuss the extremal index estimation of the waiting times
by the block method and the regenerative approach and present some numerical
examples for described systems with Weibull service times.

The convergence (15) together with relation (11) imply the basic relation for
extremal index

θ = lim
n→∞

logP(Mn ≤ un)
n log F (un)

. (23)

The main idea of the block method is to divide the sequence X1, . . . , Xn into m
blocks of the identical size h, where n = mh. After that, it is necessary to calcu-
late the number of blocks with exceedances and the number of the exceedances of
the threshold un by the sequence X1, . . . , Xn. Then the estimate of the extremal
index is the ratio of these two quantities [4].

Regenerative approach can also be used to estimate the extremal index [8,15].
More exactly, consider a stationary regenerative sequence {Zn} with the regen-
eration instants βk, and denote by MYk

its maximum in the kth regeneration
cycle, that is,

MYk
= sup

n
{Zn, βk−1 ≤ n < βk},

and also denote by Eα the mean cycle length. Then the stationary regenerative
sequence {Zn} has the extremal index θ if and only if there exists the limit [15]

θ = lim
n→∞

P(MY1 > un)/Eα

P(Z1 > un)
, (24)

for some normalizing sequence un satisfying relation (11).
By (24), the estimate of the extremal index based on the regeneration cycles

can be constructed as follows (for n large enough):

θ̂α(n) := θ̂α =
1
α̂

log
(

1 − m̂(un)
m

)

log
(

1 − N̂(un)
n

) , (25)
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Fig. 1. The extremal indexes of the stationary waiting time in M/M/1 queue with
input rate λ = 0.4, and service rate μ = 0.5, and in M/Weibull/1 queue with λ = 0.4
and μ = 0.5

where

N̂(un) = #(i ≤ n : Zi > un), m̂(un) = #(i ≤ mα : MYi
> un),

m̂(un) is the number of the exceedances within regeneration cycle, mα is the
number of regeneration points which are detected during simulation procedure,
and α̂ is the sample mean of the cycle length.

If the input process is Poisson and the service times are exponential with
parameters λ and μ, respectively, then the following explicit form of the extremal
index is known [7]

θ = (1 − ρ)2, (26)

where ρ = λ/μ. This explicit form of the solution allows to compare it with the
numerical results obtained by the simulation.

Figure 1 demonstrates the comparison of the estimates of the waiting time
extremal indexes calculated, by the regenerative method, for the M/M/1 queue-
ing system with input rate λ1 = 0.4, and with service rate μ = 0.5, and for the
M/G/1 system with the same input rate λ2 = 0.4 and Weibull service time with
parameter β = 0.5. In both cases the traffic intensity turns out to be the same,
ρ1 = ρ2 = 0.8.
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The simulation results obtained by the regeneration method show that the
extremal index of the waiting time in M/M/1 queueing system is close to exact
value (26) which equals θ = 0.04. We recall that the smaller extremal index is
then the extreme values more often are. The extremal index in the 2nd (Weibull)
system is close to 0.015, and it is at least in 2.5 times less than that in M/M/1
system. Thus we can interpret this result in such a way that the extreme values of
the waiting times in the system with Weibull service time occur (approximately)
in 2.5 times more frequent.
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Fig. 2. The extremal indexes of the stationary waiting time in queueing systems
M/Weibull(βi)/1 with Weibull service times with input rates λ1 = λ2 = 0.4 and
parameters β1 = 0, 6; β2 = 0.5, respectively.

Now we analyze M/Weibull/1 queueing systems which are fed by the equiv-
alent Poisson input processes but have different (Weibull) service times. Figure 2
demonstrates the values of the extremal indexes of the stationary waiting times
in M/Weibull(βi)/1 systems when the input rate equals λ1 = λ2 = 0.4, while the
service times have Weibull distributions with parameters β1 = 0.6 and β2 = 0.5,
respectively. These parameters guarantee that the systems are stationary because

ρ1 =
λ1Γ (1/β1)

β1
≈ 0.6, ρ2 =

λ2Γ (1/β2)
β2

= 0.8,
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(see (8)), and this implies the stochastic ordering S(1) ≤st S(2) between service
times. Then, by Theorem 1, the extremal indexes of the corresponding waiting
times satisfy the ordering:

θW (1) ≥ θW (2) ,

and it is confirmed by the simulation as Figs. 1, 2 show. Note that β1 = 1.2β2,
while the extremal indexes differ by a factor of four. These results show that the
cluster size (extreme values) in the 2nd system occurs (about) four times more
often.

6 Conclusion

In this research we study the extreme behaviour of the stationary performance
indexes in GI/Weibull(β)/1 queueing systems with Weibull service times with
shape parameter 0 < β < 1. It is shown that if, in the two GI/Weibull(βi)/1
systems having the same renewal inputs, the shape parameters of the service
time distributions are ordered as 1 > β1 ≥ β2 > 0, then the corresponding
(strictly stationary) waiting times have the extremal indexes which are ordered
in the same way, that is θW (1) ≥ θW (2) .
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Abstract. In this paper we introduce a new queueing model with a
special kind of input processes. It is assumed that the number of arrivals
during consecutive time intervals makes an autoregressive sequence with
conditional Poisson distributions. A single server serves input flows one
by one in cyclic order with instantaneous switching. A d-limited policy
is used. The mathematical model of the queueing process takes form
of a multidimensional discrete Markov chain. The Markov chain keeps
track of the server state, recent arrival numbers and queues’ lengths.
The necessary and sufficient condition for the existence of the stationary
probability distribution is found. A possibility to give an explicit solution
for the stationary equations for the probability generating functions is
discussed.

Keywords: Autoregressive Poisson process · polling system · cyclic
service · stationarity conditions · probability generating functions

Introduction

Studies of many real flows in telecommunication networks and vehicular control
at junctions made it evident that a simple Poisson model or a renewal model [1]
are often statistically inadequate. In the last five decades models with different
kinds of dependence between some of the flow constituents. There are a least two
options to add dependence to the mode. One can think of a random arrival rate.
It leads to Cox’s doubly stochastic flows [2], Markov-modulated flows of Neuts
and Lucantoni [3]. On the other hand, dependence of the conditional probability
distribution for inter-arrival time intervals on past arrivals can be introduced
explicitely. On this way we come, for instance, to auto-regressive time series
models formed by successive inter-arrival times (see [4]). In [6] following [5], a
single-line queueing system with group arrivals is considered in which the group
sizes make a certain Markov chain. Since any of the above-mentioned models
watches after each single arrival time,

τ ′
1 � τ ′

2 � . . . , (1)
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this approach can be called local [7].
In [7] a non-classical approach was proposed and started developing. Accord-

ing to this approach, the flow is observed only at special chosen epochs. At that,
only a total random number of arrivals between two observation epochs becomes
known. This approach is called non-local. Let us cite here an appropriate defini-
tion.

Definition 1. Let 0 = τ
(obs)
0 < τ

(obs)
1 < . . . be a point sequence on the axis Ot

(here the superscript “obs” stands for “observation”), not coinciding with (1),
η
(obs)
i be a random number of requests from the flow Π during the time-interval

(
τ
(obs)
i , τ

(obs)
i+1

]
, and ν

(obd)
i be some characteristic(a mark) of those requests that

arrive during the time-interval
(
τ
(obs)
i , τ

(obs)
i+1

]
. A random vector sequence

{(
τ
(obs)
i , η

(obs)
i , ν

(obs)
i

)
; i = 0, 1, . . .

}

is called a flow of non-homogeneous requests under its incomplete(non-local)
description.

Informally speaking, our non-local auto-regressive flow is understood as a
flow with a linear form aη

(obs)
i−1 + b for the regression equation of η

(obs)
i onto

η
(obs)
0 , η

(obs)
1 , . . . , η

(obs)
i−1 . For count time-series, this kind of stochastic processes

was studied e.g. in [8].
The queueing system belongs to a class of polling systems [9]. Besides the

inputs, it differs from classical polling systems by an assumption on the service
process. Service time distributions are not known (in real queueing systems ser-
vice times can be dependent and have different probability distributions), but
the server’s sojourn time distribution for each node is given together with the
upper limit on the number of services customers. It models for example a roads
intersection controlled by a fixed-cycle traffic-light, and data transmission nodes
governed by a Round Robin algorithm.

We will demonstrate that even under simple assumptions on the queueing sys-
tem structure the equation for the stationary probability distribution generating
function is hard to solve. Still we will obtain conditions for the existence of the
stationary probability distribution in the system using the iterative-dominating
approach [10,11].

1 The Queueing System

Let us assume that all random variables and random elements in what follows
are defined on a probability space (Ω,F, P). Then E(·) denotes the mathematical
expectation with respect to the probability measure P. Set ϕ(x; a) = axe−a/x!
for a > 0 and x = 0, 1, . . . .

Consider a queueing system with m < ∞ input flows and a single server.
Customers from the j-th flow join an infinite-capacity buffer Oj . Probability
properties of the input flows will be defined later. The server spends a constant
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time T > 0 in front of each queue, and then an instant switch-over to the
next queue occurs. After the last queue the first queue is visited. The server
implements a d-limited policy: during its stay at the j-th queue the server can
provide service to d = �j customers at most from that queue, no matter when
exactly they arrived if they have arrived before the time T expired.

Let τ0, τi+1 = τi + T = (i + 1)T , i = 0, 1, . . . be the time instants when
the server switches to a next queue. Denote by Γ (r) the server state when is at
the r-th queue, i = 1, 2, . . . , m and let Γ = {Γ (1), Γ (2), . . . , Γ (m)} be the server
state space. Let a random variable Γi ∈ Γ be the server state during the time
interval (τi−1, τi] for i = 1, 2, . . . , and Γ0 ∈ Γ be the random server state at time
τ0. Let r ⊕ 1 = r + 1 for r < m and m ⊕ 1 = 1. Then Γi+1 = Γi+1(ω) = Γ (r⊕1)

for all ω ∈ Ω such that Γi = Γ (r).
Denote by ηj,i, i = 1, 2, . . . the random number of new customers arriving

from the flow Πj during the time interval (τi, τi+1], j = 1, 2, . . . , m. Let ηj,−1 be
a non-negative integer-values random variable, j = 1, 2, . . . , m. Let us assume
that the conditional probability distribution of ηj,i+1 for any given ηj,−1 = x−1,
ηj,0 = x0, . . . , ηj,i = xi is the Poisson distribution with parameter (ajxi + bj)
for some aj > 0 and bj > 0, so that the regression of ηj,i+1 on past numbers of
arrivals equals

E(ηj,i+1 | {ηj,−1 = x−1, ηj,0 = x0, . . . , ηj,i = xi}) = ajxi + bj .

We will call such an input flow an autoregressive Poisson flow. The previous
number of arrivals, ηj,i−1, can be used as a mark of requests during the time-
interval (τi, τi+1]. Then the non-local description of the autoregressive Poisson
flow Πj is a marked point process

{(τi, ηj,i, ηj,i−1); i = 0, 1, . . .}.

In particular, if the flow Πj is a classical Poisson with intensity λj then we will
have aj = 0 and bj = λjT . Further, let us assume that the stochastic sequences

{ηj,i; i = −1, 0, . . .}, j = 1, 2, . . . , m

are independent.
Denote by κj,i the random number of customers in the queue Oj at time

instant τi. Denote by ξj,i the largest number of customers which can be serviced
from Oj during the time interval (τi, τi+1]. Then the probability

P({ξ1,i = y1, ξ2,i = y2, . . . , ξm,i = ym} | {Γi = Γ (r)})

equals 0 for tyj > 0 and yk > 0 for some k �= j; it equals 1 for yr⊕1 = �j . We
have

κj,i+1 = max{0, κj,i + ηj,i − ξj,i}, i = 0, 1, . . . ; j = 1, 2, . . . ,m. (2)

The recurrent equations and probability distributions given above prove the
following claims.
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Theorem 1. For a given probability distribution of the vertor

(Γ0, κ1,0, κ2,0, . . . , κm,0, η1,−1, η2,−1, . . . , ηm,−1),

random sequences

{(Γi, κ1,i, κ2,i, . . . , κm,i, η1,i−1, η2,i−1, . . . , ηm,i−1); i = 0, 1, . . .},

{(Γi, κj,i, ηj,i−1); i = 0, 1, . . .}, j = 1, 2, . . . , m

are irreducible periodic Markov chains.

2 Analysis of the Model

The main purpose of this section is to establish necessary and sufficient condi-
tions for the existence of the stationary probability distribution of the Markov
chain {(Γi, κj,i, ηj,i−1); i = 0, 1, . . .} for j = 1, 2, . . . , m, since it is easy to prove
then, that the Markov chain

{(Γi, κ1,i, κ2,i, . . . , κm,i, η1,i−1, η2,i−1, . . . , ηm,i−1); i = 0, 1, . . .}
has a stationary probability distribution if and only if each single

{(Γi, κj,i, ηj,i−1); i = 0, 1, . . .}, j = 1, 2, . . . ,m

does. In the remainder of this section the value of the index j is fixed.
In the first place, for the existence of the stationary distributions of the

Markov chains, the inputs {ηj,i; i = 0, 1, . . .} need to have statioinary probability
distribution. This is possible only if 0 < aj < 1 for all j = 1, 2, . . . , m. We assume
so in the rest of the section.

Let us define

Qj,i(r, x, y) = P({Γi = Γ (r), κj,i = x, ηj,i−1 = y}).

Let I(·) denote the indicator random variable for the event given in the paren-
theses. Let us introduce for |z| � 1, |w| � 1 and i = 0, 1, . . . the probability
generating functions

Ψj,i(z, w; r) =
∞∑

x=0

∞∑

y=0

zxwyQj,i(r, x, y)E
(
zκj,iwηj,i−1I({Γi = Γ (r)})

)
.

Theorem 2. The following recurrent equations with respect to i = 0, 1, . . .
hold:

Ψj,i+1(z, w; r ⊕ 1) = ebj(zw−1)Ψj,i(z, eaj(zw−1); r), r ⊕ 1 �= j;

Ψj,i+1(z, w; r ⊕ 1) = z−�j ebj(zw−1)Ψj,i(z, eaj(zw−1); r)

+
�j−1∑

x=0

�j−x−1∑

n=0

( ∞∑

y=0

Qj,i(r, x, y)ϕ(n; ajy + bj)
)
(1 − zx+n−�j )wn

for r ⊕ 1 = j.
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Proof. Let r ⊕ 1 �= j. Then

Ψj,i+1(z, w; r ⊕ 1) = E[zκj,i+ηj,iwηj,iI(Γi = Γ (r))]

= E
(
E(zκj,i(zw)ηj,iI(Γi = Γ (r)) | κj,i, ηj,i−1, Γi)

)

= E[zκj,ie(ajηj,i+bj)(zw−1)I(Γi = Γ (r))]

= eb(zw−1)Ψj,i(z, ea(zw−1); r).

For r ⊕ 1 = j,

Ψj,i+1(z, w; r ⊕ 1) = E[zκj,i+ηj,i−�j wηj,iI(Γi = Γ (r))]

+ E[(1 − zκj,i+ηj,i−�j )wηj,iI(Γi = Γ (r), κj,i + ηj,i < �j)]

= z−�j ebj(zw−1)Ψj,i(z, eaj(zw−1); r)

+ E[(1 − zκ1,i+η1,i−�)wη1,iI(Γi = Γ (m), κ1,i + η1,i < �)]

= z−�eb(zw−1)Ψ1(z, ea(zw−1);m)

+
�−1∑

x=0

�−x−1∑

n=0

( ∞∑

y=0

Q1(m,x, y)
(ay + b)n

n!
e−(ay+b)

)
(1 − zx+n−�)wn.

Using methods from [10,11] we get.

Theorem 3. For the existence of the stationary probability distribution of the
Markov chain {(Γi, κj,i, ηj,i−1); i = 0, 1, . . .} it is necessary and sufficient that

bj

1 − aj
m < �j . (3)

The condition in the last theorem can be easily interpreted from a physical point
of view because the quantity mbj(1 − aj)−1 is the stationary expected number
of arrivals from the flow Πj during a complete cycle of the server.

In course of the proof of Theorem 3 the following Lemma is essential.

Lemma 1. If 0 < a < 1 then the equation w = ea(wz−1) has a unique solution

w(z) = e−a +
∞∑

n=1

zn (n + 1)n−1ane−(n+1)a

n!
,

convergent in the open disk |z| < a−1ea−1, such that w(1) = 1, |w(z)| < 1 for
|z| < 1.

Proof. Let’s fix |z| < 1. We have an estimate from below for the magnitude of
the complex quantity

|ea(zw−1)| = e−a|eazw| � e−aea|w||z| < e−aea|w|.

So, on the circle |w| = 1 we have

|ea(zw−1)| < ea(|w|−1) = 1 = |w|. (4)
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By the classical Rouchè’s theorem, for any such z there is a unique solution
w = w(z) of the equation w = ea(wz−1) such that |w(z)| � 1. It can be computed
by evaluating the integral

w(z) =
1

2πi

∫

|w|=1

w · F ′
w(z, w)

F (z, w)
dw =

1
2πi

∫

|w|=1

w − azwea(zw−1)

w − ea(zw−1)
dw,

where i =
√−1 and F (z, w) = w−wea(zw−1). We only need to prove analyticity

of w(z) in the open unit disk.
Let |w| = 1 and 0 < r < 1 be fixed. Let us consider the function w(z) in a

disk |z| � r. Since

|F (z, w)| �
∣
∣|w| − |ea(wz−1)|∣∣ � |w| − ea(|w||z|−1) � 1 − ea(r−1) > 0,

a function wF ′
w(z, w)/F (z, w) is analytic inside the open disk |z| < r and with

uniformly bounded absolute value as a ratio of two continuous functions in bath
variables in a closed set {(z, w) : |z| � r, |w| = 1}. A corollary from Vitali’s
theorem, the function w(z) is an analytic function of z in the open disk |z| < r,
and hence in the open disk |z| < 1.

From inequality (4) it follows that

∣
∣
∣
ea(wz−1)

w

∣
∣
∣ < 1,

so that the integral can be represented by a series:

1
2πi

∫

|w|=1

w − azwea(zw−1)

w − ea(zw−1)
dw =

1
2πi

∫

|w|=1

1 − azea(zw−1)

1 − ea(zw−1)

w

dw

=
∞∑

n=0

1
2πi

∫

|w|=1

(1 − azea(zw−1))
ena(wz−1)

wn
dw.

Using the Cauchy’s Integral representation, we get

1
2πi

∫

|w|=1

(1 − azea(zw−1))
ena(wz−1)

wn
dw = 0 for n = 0,

1
2πi

∫

|w|=1

(1 − azea(zw−1))
ena(wz−1)

wn
dw

=
1

(n − 1)!
dn−1

dwn−1
(1 − azea(zw−1))ena(wz−1)

∣
∣
∣
w=0

=
1

(n − 1)!
((naz)n−1e−na − az(a(n + 1)z)n−1e−(n+1)a) for n � 1.
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So,

∞∑

n=1

1
(n − 1)!

((naz)n−1e−na − az(a(n + 1)z)n−1e−(n+1)a)

= e−a +
∞∑

n=1

zn
( (n + 1)nane−(n+1)a

n!
− an(n + 1)n−1e−(n+1)a

(n − 1)!

)

= e−a +
∞∑

n=1

zn (n + 1)n−1ane−(n+1)a

n!

The convergence radius R is found from

1
R

= lim
n→∞

n

√
(n + 1)n−1ane−(n+1)a

n!
= lim

n→∞
n

√
(n + 1)nane−(n+1)a

(n + 1)!

= lim
n→∞

n

√
(n + 1)nane−(n+1)a

√
2π(n + 1)(n + 1)n+1e−(n+1)

= ae1−a.

Now let us prove that the series at z = 1 equals w(1) = 1. Any convergent
series is a continuous function inside its disk of convergence. Here we focus on
real values for z and w > 0. Then

z =
1

aw
(a + lnw),

dz

dw
=

1 − a − ln w

aw2
.

In a neighborhood of w = 1 it is a continuous monotonously increasing function
for 0 < w < e1−a and it takes on value z = 1 at w = 1. Its inverse function takes
on values w < 1 for z < 1, and it takes on value w = 1 for z = 1.

Proof (to Theorem 3). 1) Necessity. Let us assume that the stationary proba-
bility distribution exists. By substituting it in place of the initial probability
distribution we guarantee the existence of limits

lim
i→∞

Qj,i(r, x, y) = Qj(r, x, y)

equal to the stationary probabilities. Let r(j) be the solution to r ⊕ 1 = j.
To obtain equations for the time-stationary probability generating functions we
can omit indices i and i + 1 in the equations in Theorem 3. Substituting there
w = w(z) from Lemma 1 where a = aj and b = bj , and denoting

Aj(x, n) =
∞∑

y=0

Qj(r(j), x, y)ϕ(n; ajy + bj)

we get

Ψj(z, w(z); r ⊕ 1) = ebj(zw(z)−1)Ψj(z, w(z); r), r ⊕ 1 �= j; (5)
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Ψj(z, w(z); j) = z−�j ebj(zw(z)−1)Ψj(z, w(z); r(j))

+
�j−1∑

x=0

�j−x−1∑

n=0

Aj(x, n)(1 − zx+n−�j )(w(z))n. (6)

Summation of Eqs. (5), (6) with respect to r = 1, 2, . . . , m results in

m∑

r=1

Ψj(z, w(z); r) =
∑

r �=r(j)

ebj(zw(z)−1)Ψj(z, w(z); r) + z−�j ebj(zw(z)−1)

×Ψj(z, w(z); r(j)) +
�j−1∑

x=0

�j−x−1∑

n=0

Aj(x, n)(1 − zx+n−�j )(w(z))n. (7)

In the left neighborhood of z = 1 (on the real axis) we have Taylor expansions

ebj(zw(z)−1) = 1 + (bj + bjw
′(1))(z − 1) + o((z − 1))

= 1 +
bj(z − 1)
1 − aj

+ o(z − 1),

z−�j ebj(zw(z)−1) = 1 +
( bj

1 − aj
− �j

)
(z − 1) + o(z − 1),

(1 − zx+n−�j )(w(z))n =
(
�j − x − n +

naj

1 − aj

)
(z − 1) + o(z − 1).

There expansions substituted into (7), we get after collecting terms

0 =
∑

r �=r(j)

bj(z − 1)
1 − aj

Ψj(z, w(z); r) +
( bj

1 − aj
− �j

)
(z − 1)Ψj(z, w(z); r(j))

+
�j−1∑

x=0

�j−x−1∑

n=0

Aj(x, n)
(
�j − x − n +

naj

1 − aj

)
(z − 1) + o(z − 1). (8)

Divide by (z − 1) and send z to 1 from the left. We get

0 =
∑

r �=r(j)

b

1 − a
Ψj(1, 1; r) +

( b

1 − a
− �j

)
Ψj(1, 1; r(j))

+
�−1∑

x=0

�−x−1∑

n=0

Aj(x, n)
(
�j − x − n +

na

1 − a

)
. (9)

Substituting z = 1 into (5) and (6) leads to Ψj(1, 1; r) = m−1 for all r = 1, 2,
. . . , m. So, we finally come to

0 =
b

1 − a
− �j

m

+
�−1∑

x=0

�−x−1∑

n=0

( ∞∑

y=0

Q1(m,x, y)
(ay + b)n

n!
e−(ay+b)

)(
�j − x − n +

na

1 − a

)
. (10)
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Taking into account that �j − x − n + na
1−a > 0 for those x and n which occur

at summation, we draw the conclusion that for the existence of a stationary
probability distribution it is necessary that

b

1 − a
− �j

m
< 0.

2) Sufficiency. Let us assume for now that Inequality (3) is true, but no
stationary probability distribution exists. All the states of the Markov chain are
essential and belong to a single class of communicating states, one must have

lim
i→∞

Qj,i(x, y; r) = 0

for all x, y, and r, It follows then that the sequence of mathematical expecta-
tions Eκj,i i = 0, 1, . . . unboundly grows. We claim that, on the contrary, the
mathematical expectations are bounded if the condition from the theorem holds.

Let us setup the initial probability distribution so that the probability gen-
erating functions Ψj,0(z, w; r) are analytic in (z, w) ∈ C

2. Then all the next
probability generating functions Ψj,i(z, w; r), i = 1, 2, . . . can have analytical
continuations onto whole C

2. Consequently, the functions Ψj,i(z, w(z); r) will be
analytic in the disk |z| < 1 + ε < 1/(ae1−a) (i.e. inside the disk of convergence
of the series w(z)) and will satisfy equations

Ψj,i+1(z, w(z); r ⊕ 1) = z−�j ebj(zw(z)−1)Ψj,i(z, w(z); r), r ⊕ 1 �= j;

Ψj,i+1(z, w(z); j) = z−�j ebj(zw(z)−1)Ψj,i(z, w(z); r(j))

+
�j−1∑

x=0

�j−x−1∑

n=0

Aj(x, n)(1 − zx+n−�j )(w(z))n.

Let us fix a z, 1 < z < 1 + ε and let r ⊕ m = r = j. The one has (Aj(x, n) � 1):

Ψj,i+m(z, w(z); r ⊕ m) � z−�j ebj(zw(z)−1)Ψj,i+m−1(z, w(z); r ⊕ (m − 1))

+
�j−1∑

x=0

�j−x−1∑

n=0

(1 − zx+n−�j )(w(z))n

=
(
z−�j ebj(zw(z)−1)

)2
Ψj,i+m−2(z, w(z); r ⊕ (m − 2))

+
�j−1∑

x=0

�j−x−1∑

n=0

(1 − zx+n−�j )(w(z))n = . . .

=
(
z−�j ebj(zw(z)−1)

)m
Ψj,i(z, w(z); r) +

�j−1∑

x=0

�j−x−1∑

n=0

(1 − zx+n−�j )(w(z))n.

Since
d

dz

(
z−�j ebj(zw(z)−1)

)m
∣
∣
∣
z=1

= −m�j +
mbj

1 − aj
< 0,
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the sequence

Ψ+
0 = Ψj,0(z, w(z); j), Ψ+

1 = Ψj,1(z, w(z); j), . . . , Ψ+
m−1 = Ψj,m−1(z, w(z); j),

Ψ+
i+m = z−m�j embj(zw(z)−1)Ψ+

i +
�j−1∑

x=0

�j−x−1∑

n=0

(1 − zx+n−�j )(w(z))n, i = 0, 1, . . .

converges, and hence is bounded. At the same time, for all i = 0, 1, . . . we have

Ψj,i(z, w(z); r) � Ψ+
i .

It follows that all numbers (for this z) Ψj,i(z, w(z); r), r = 1, 2, . . . , m, and
i = 0, 1, . . . are bounded by some constant C > 0. Then,

E(κj,i) =
∣
∣
∣
∣

1
2πi

∫

|ζ−1|=δ

∑m
r=1 Ψj,i(z, 1; r)

(z − 1)2
dz

∣
∣
∣
∣

�
∫ 1

0

∑m
r=1 Ψj,i(1 + δ, 1 + δ; r)

δ
du � mC

δ
.

This contradiction prove the claim.

To solve Eqs. (5), (6) for the functions Ψj(z, w(z); r), r = 1, 2, . . . , m, one
needs to identify �j(�j + 1)/2 unknown constants A(x, n), 0 � x + n < �j , n, x
integers. We get

(z�j − embj(zw(z)−1))Ψj(z, w(z); r)

=
�j−1∑

x=0

�j−x−1∑

n=0

Aj(x, n)(z�j − zx+n)(w(z))n, r ⊕ 1 = j.

Case 1. If �j = 1, then the only unknown constant is Aj(0, 0). Recalling that
Ψj(z, z; r) = 1/m and expanding terms z − embj(zw(z)−1), (1 − z−1) in the left
neighborhood of z = 1, we get

(
1 − mbj

1 − aj

) 1
m

= Aj(0, 0).

Case 2. If �j > 1, we have �j(�j + 1)/2 > 1 unknown constants. Let us study
the equation

z�j − ebj(zw(z)−1) = 0.

It follows from the modified Rouché theorem [12] and the Lemma below that
it has exactly �j − 1 zeros inside the unit disk |z| < 1 when the stationarity
condition (3) is fulfilled.

Lemma 2. If inequality (3) is fulfilled, then |ebj(zw(z)−1)| < 1 for all |z| = 1,
z �= 1.
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Proof. Let z = eiu, w(z) = Reiϕ, 0 � u < 2π, 0 � ϕ < 2π. Then

Reiϕ = ea(eiu·Reiϕ−1).

Its right-hand side equals ea(Rei(u+ϕ)−1). By comparing moduli, we get

R = eaR cos(u+ϕ)−a.

We have R = 1 if and only if a cos(u + ϕ) − a = 0, whence cos(u + ϕ) = 1. But
then sin(u + ϕ) = 0 and it’s the argument value ϕ of the complex number Reiϕ.
Finally, from 1 = cos(u + ϕ) = cos u we get u = 0.

Denote these zeros by β1, β2, . . . , β�j−1.

Theorem 4. If inequality (3) is fulfilled then the following equations take place:

�j−1∑

x=0

�j−x−1∑

n=0

Aj(x, n)(�j − x − n) =
�j

m
− bj

1 − aj
,

�j−1∑

x=0

�j−x−1∑

n=0

Aj(x, n)((βk)�j − (βk)x+n)(w(βk))n = 0, k = 1, 2, . . . �j − 1.

The number of linear equations given by Theorem 4 is less than the number
of unknown constants. Still, it was to be expected, since Eqs. (5) and (6) are
not equivalent to equations of Theorem 2 and by substituting w = w(z) there
we lose evidently essential parts of information about the generating functions
of interest. Moreover, once we obtain all Aj(x, n), 0 � x + n < �j , we still need
to solve a functional equation relating Ψj(z, w; r ⊕1) to Ψj(z, eaj(zw−1); r) in the
polydisk {(z, w) : |z| � 1, |w| � 1} ⊂ C

2.
Since the main functional transform (2) for a queue length is produces a

random walk with reflection at zero, a many times studied (under a variety
of assumptions) process, it is of interest to compare the assumptions on the
input processes, such as input flows and service processes, in our work and in
other classical works. Usually (c.f. [13]) it is assumed that the sequence (in our
notation)

{ηj,i − ξj,i; i = 0, 1, . . .}
is a stationary process. In our case, it would imply not only that the input
sequence {ηj,i; i = −1, 0, 1, . . .} is stationary, but also that the initial server state,
Γ0, is random with the uniform probability distribution on Γ . Our exposition
leaves more freedom for the input flow and the initial server state.

3 Conclusion

It was shown in this work that discrete-time models of queueing systems with
auto-regressive input process may lead to a challenging problem in the domain
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of several complex variables in terms of multivariate probability generating func-
tions. This problem still wait for its solution. Nethertheless, the necessary and
sufficient conditions on the parameters of the queueing system which guarantee
the existence of the stationary probability distribution can be found by careful
analysis of these (yet unsolved) equations. For the polling queueing system under
study, these conditions are easily verifiable and have natural physical interpre-
tation in terms of mean values for the basic quantities like numbers of arrivals
and saturation flow intensity.
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Abstract. The paper considers a network of resource loss systems
(ReLS) with random resource requirements and two types of nodes. Cus-
tomers initially arrive to the first type of nodes, where they receive service
for exponentially distributed time. The service of customers can be inter-
rupted. In this case, they are rerouted to the second type of nodes, where
they receive service for an exponentially distributed time. Once the ser-
vice is completed, they return back to the original node and continue its
service. Customers require a random volume of limited resources. If there
are not enough of unoccupied resources upon the arrival of a customer,
then it is considered lost. Similarly, if an accepted customer is rerouted
to another node and finds that there are not enough of resources to
meet its requirements, then it is also lost. In this paper, we provide an
approach to analyze the stationary behavior of the considered system,
as well as establish expressions for the new customer loss probability
and the accepted customer loss probability. The developed model has
a wide range of applications in performance evaluation of fifth genera-
tion (5G) New Radio (NR) access networks. To this aim, we investigate
the response of the considered service system in detail by revealing crit-
ical dependencies and trade-offs between input system parameters and
performance measures of interest.
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Introduction

The introduction of fifth generation (5G) systems promises to deliver not only
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the air interface. This will potentially enable applications requiring extremely
high and constant bit rate (CBR) service such as augmented/virtual realities
(AR/VR), holographic telepresence, 16/8K streamed video, and tactile Internet
[11,14]. This is a principle paradigm shift as compared to fourth generation (4G)
long-term evolution (LTE) systems that require appropriate mechanisms at the
radio interface allowing to conceal the effects of wireless transmission medium.

In addition to much higher propagation losses in millimeter wave frequency
(mmWave) band, 5G New Radio (NR) systems will be subject to outages caused
by a dynamic blockage by human bodies [6] or buildings [1,5]. This behavior
heavily affects the QoS characteristics provided to users and may even cause ser-
vice interruptions. To alleviate the effect of blockage, the authors in [3] proposed
to reserve a fraction of bandwidth at the serving base station (BS). However,
this approach can only be utilized when users do not experience outage condi-
tions in case of blockage. Alternatively, one may use recently standardized 3GPP
multiconnectivity functionality [8,16]. According to it, user equipment (UE) is
allowed to maintain more than a single link to nearby BSs and switch them in
case of outage events by dynamically rerouting the traffic between locally avail-
able 5G NR BSs. Performance characterization of this mechanism as well as joint
implementation to resource reservation and multiconnectivity naturally calls for
queuing network formalism.

The first study that utilized a network of ReLS is [12], where a continuous-
time ReLS has been applied to assess the performance of 5G mmWave NR
deployments with multiconnectivity operation. Later on, a discrete variant of
ReLS has been applied in [4]. Other applications of the ReLS in 5G NR and
sixth generation (6G) systems operating in terahertz (THz) frequency band are
detailed in [9]. In [10], the general approach for the analysis of networks of
ReLS was described. In this paper, we analyze the network of ReLS that can be
used to model muticonnectivity operation in 5G NR systems, define performance
metrics, and provide an iterative approximate algorithm.

The rest of the paper is organized as follows. We introduce our model in
Sect. 1. The analysis is performed in Sect. 2. Numerical results are provided and
discussed in Sect. 3. Finally, conclusions are drawn in the last section.

1 Model Description

We consider a network of resource loss systems (ReLS) with two types of nodes.
There are N − 1 first type nodes and one node of the second type. Each node
has Ki servers and Ri resources, i = 1, 2, ..., N (see Fig. 1). Customers arrive
according to the Poisson process with intensities λ1 and λ2 to the first and
second type nodes, respectively. The service times are exponentially distributed
with parameters μ1 and μ2. Each customer requires not only a free server, but
also a random discrete volume of resources, which are determined according to
the probability distributions {f1,j} and {f2,j}. Besides, each customer currently
served at the first type of nodes is associated with a Poisson flow of signals
with intensity α that causes rerouting of the customers to the node N . Rerouted
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customers stay at node N for exponentially distributed time with parameter β
and return back to its original node, or leave the system if its service is completed.

1

. . .

1

. . .

. . .
. . .

Ki

KN
RN

Ri

λ1

λ2 μ2

μ1

Fig. 1. Illustration of the considered queuing system: there are N−1 first type of nodes
and one second type of node; the service intensity at first type of nodes is the same μ1.

To analyze this model we follow the decomposition approach, which is a
powerful methodology for queuing networks [7]. The core assumption here is
that the service process at each BS in the network is independent of the service
processes at other nodes. The relation between the service processes at the nodes
of both types is incorporated into the numerical solution algorithm, where the
characteristics of the entire network are calculated iteratively until the procedure
converges. The stability properties of this class of models were analyzed in [2].

2 Model Analysis

In this section, we analyze the presented model. We start with an analysis of the
service process at individual nodes of the first and second type and then proceed
to derive the metrics of interest.

2.1 Service Process at the First Type Nodes

Consider the first type of nodes. Due to the memoryless property of the expo-
nential distribution, the residual service time of returning sessions is also expo-
nential with the same parameter μ1. Let ϕi be the intensity of the returning
session arrivals at node i, i = 1, 2, ..., N − 1. Then the total session arrival inten-
sity to node i is thus λ1 + ϕi and the total intensity of departures is μ1 + α.
The stochastic behavior of the node i can be described by the Markov process
Xi(t) = {ξi(t), δi(t)}, where ξi(t) is the number of customers at node i at time
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t and δi(t) is the total volume of occupied resources. Denote the stationary
probabilities qi,n(r) as

qi,n(r) = lim
t→∞ P{ξi(t) = n, δi(t) = r}, n = 0, 1, 2 . . . ,Ki, (1)

r = 0, 1, 2 . . . , R, i = 1, 2, . . . , N − 1.

The process Xi(t) describes the considered ReLS. According to [15], the
stationary distribution (1) is given by

qi,0 =

(
1 +

Ki∑
n=1

ρn
i

n!

Ri∑
r=0

f
(n)
1,r

)−1

, (2)

qi,n(r) = qi,0
ρn

i

n!
f
(n)
1,r , n = 1, 2, . . . ,Ki, (3)

where ρi = (λ1 + ϕi)/(μ1 + α) and f
(n)
1,j , j ≥ 0 is the n-fold convolution of pmf

{f1,j}, j ≥ 0. Note that the probability f
(n)
1,j can be interpreted as the probabil-

ity that n sessions on a first type node totally occupy j resources. Practically,
the convolutions of discrete distributions may be evaluated using the following
iterative procedure

f
(n)
l,j =

j∑
r=0

fl,rf
(n−1)
l,j−r , l = 1, 2, j ≥ 0, n ≥ 2, (4)

where f
(1)
l,j = fl,j , j ≥ 0.

2.2 Service Process at the Second Type Node

The behavior of the second type of nodes (node N) can also be described in
terms of the queuing systems with random resource requirements. As at nodes
1, 2, ..., N − 1, there are also two types of arrivals: customers that arrive initially
to the node N with the intensity λ2 and customers that are rerouted from the
first type of nodes with intensity ϕN . However, in this case, the service times
differ from each other: the service intensity of the initially arriving customers is
μ2, and for the rerouted customers it is μ1 + β. The arrival intensity ϕN for the
rerouted customers is obtained by summing up all the rerouting intensities of
the first type nodes, i.e.,

ϕN =
N−1∑
i=1

(λ1 + ϕi)
α

μ1 + α
. (5)

In (5), the term α/(μ1 + α) refers to the probability that a customer from a
first type node is rerouted to node N before its service completion. The intensities
ϕi, i = 1, 2, ..., N − 1, of customers returning back to their original node has the
following form

ϕi = (λ1 + ϕi)(1 − πi,1)
α

α + μ1
(1 − πN,1)

β

β + μ1
, (6)
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where πi,1 is the loss probability of arriving customers at node i, i = 1, 2, ..., N
and β/(β + μ1) is the probability that a rerouted customer at node N returns
to its original node before service completion.

Observe that (6) implies that the flow of rerouted customers at node i, i =
1, 2, ..., N −1 equals to the fraction of the accepted flow, that was initially routed
to the node N with the probability α/(α + μ1), then accepted by the node N
with the probability 1 − πN,1, and finally rerouted back with the probability
β/(β + μ1).

The expression for the stationary probabilities qN,n1,n2(r1, r2) that there n1

first type of customers that totally occupy r1 resources and n2 second type of
customers occupying r2 resources also has the product form

qN,n1,n2(r1, r2) = qN,0,0

ρn1
N,1

n1!
ρn2

N,2

n2!
f
(n1)
2,r1

f
(n2)
2,r2

, (7)

qN,0,0 =

⎛
⎝1 +

∑
1≤n1+n2≤KN

ρn1
N,1

n1!
ρn2

N,2

n2!

∑
0≤r1+r2≤RN

f
(n1)
2,r1

f
(n2)
2,r2

⎞
⎠

−1

, (8)

where ρN,1 = λ2
μ2

and ρN,2 = ϕN

μ1+β .
According to [15], the ReLS with two arrival flows can be analyzed similarly

to ReLS with one aggregated arrival flow. Thus, the stationary probabilities
qN,n(r) that there are n customers of any types in the system that totally occupy
r resources have the following form

qN,n(r) = qN,0
ρn

N

n!
f
(n)
2,r , (9)

qN,0 =

(
1 +

KN∑
n=1

ρn
N

n!

RN∑
r=0

f
(n)
2,r

)−1

, ρN = ρN,1 + ρN,2, (10)

that can be evaluated numerically, see, e.g., [13].

2.3 Solution and Performance Metrics

Having obtained the stationary state probabilities for all the nodes, one may
proceed with deriving the performance metrics. Recall that our solution is iter-
ative in nature as one needs to add another layer of rerouted customers at each
iteration until a parameter converges to its stable value with a given accuracy.
The procedure is terminated once the required precision level is achieved. Par-
ticularly, at the first iteration, there are no rerouted customers, and thus ϕi = 0,
i = 1, 2, ..., N . Then, the algorithm continues as follows:

1. Based on the system parameters, new customer loss probabilities πi,1 at nodes
i = 1, 2, ..., N and arrival intensity of rerouted customers ϕN at node N are
evaluated.
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2. New values of ϕi, i = 1, 2, ..., N − 1 are calculated according to (6) by substi-
tuting their previous values into the right-hand side; if the difference between
the new and the previous value meets the required precision, the algorithm
proceeds with 3). Otherwise, it returns to 1).

3. When ϕi, i = 1, 2, ..., N − 1 converges to a stable value with the desired
accuracy, all other performance metrics are evaluated.

The iterative solution outlined above requires new session drop probabilities.
These can be evaluated as follows

πi,1 = 1 − qi,0

Ki−1∑
n=0

ρn
i

n!

Ri∑
r=0

f
(n+1)
1,r , i = 1, 2, ..., N − 1 (11)

πN,1 = 1 − qN,0

KN−1∑
n=0

ρn
N

n!

RN∑
r=0

f
(n+1)
2,r . (12)

Calculation of the probability that an accepted customer is lost is more
involved process. Let us introduce the conditional probability Πi, i = 1, 2, ..., N−
1 that a customer originally arriving and accepted at node i and is lost, given
that it is rerouted, i.e.,

Πi = πN,1 + (1 − πN,1)
β

β + μ1
πi,1, (13)

where the first term corresponds to the case of customer loss at entering the
node N , while the second term is the probability that the rerouted customer is
accepted at node N but then lost upon its return to the original node due to
insufficient amount of available resources.

The average number of accepted customers lost as a result of rerouting during
a time interval of length T is αÑiΠiT , where Ñi is the mean number of customers
at node i = 1, 2, ..., N − 1. The mean number of customers that are accepted
during the same time interval is λ1(1 − πi,1)T . Hence, the probability that a
customer, that was initially accepted at the node i, is eventually dropped is

πi,2 =
αÑiΠi

λ1(1 − πi,1)
. (14)

Finally, the average number of occupied resources bi, i = 1, 2, ..., N at node
i has the following form

bi = qi,0

Ki∑
n=1

ρn
i

(n − 1)!

Ri∑
r=0

f
(n)
1,r , i = 1, 2, ..., N − 1 (15)

bN = qN,0

KN∑
n=1

ρn
N

(n − 1)!

RN∑
r=0

f
(n)
2,r . (16)
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3 Application to the Analysis of NR/LTE Deployment

In this section, we numerically investigate the performance response of the con-
sidered system. Specifically, we investigate the behavior of new and accepted
customer drop probabilities as a function of the customer arrival intensities, the
signal arrival intensities, and the resource requirements distribution parameters.

We consider two nodes each having its own customer arrival intensity, λ1

and λ2. Customers at the first node can be interrupted by the external signals
with intensity α. Note that the scenario considered below can be interpreted as
the service process of user sessions at dual mmWave NR (or alternatively THz)
and LTE deployment, where sessions currently served at mmWave BS can be
temporarily offloaded to LTE BS when the line-of-sight (LoS) path gets blocked
to ensure session continuity. In this scenario, the service process of user sessions
on the mmWave NR BS is modeled by the first type nodes, while the second type
node models the service process at the LTE BS. The default system parameters
are provided in Table 1.

Table 1. Parameters for numerical assessment.

Parameter Value

Number of servers, Ki, i = 1, 2, ..., N 50

Number of resources Ri, i = 1, 2, ..., N 100

The intensity of the arrival of the first type of customers, λ1 [0.2, .., 0.65]

The intensity of the arrival of the priority type of customers, λ2 [0.2, .., 0.65]

Customer service intensity, μ1 = μ2 1/30

The intensity of signal, α 0.2

Interruption intensity, β 10
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Fig. 2. New and accepted customer drop probabilities.
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We start with new and accepted customer drop probabilities as a function
of arrival intensity at NR and LTE BSs as illustrated in Fig. 2(a). By analyzing
the presented data one may observe that for considered system parameters, the
new customer drop probability at both systems increases with the increase in
λ1. Logically, the increase in λ1 much heavily affects new and accepted customer
drop probability at NR as compared to LTE. However, the new customer drop
probability at LTE also increases and this is mainly caused by the temporal
offloading of customers from NR system. Analyzing the trends dictated by the
increase in λ2, we observe slightly different behavior. First of all, expectedly, the
new LTE customer drop probability increases. However, this effect causes the
increase in the accepted NR customer drop probability. The latter phenomenon
makes more resources available for newly arriving NR customers decreasing the
corresponding probability as seen in Fig. 2(b). Thus, we may conclude that the
session arriving process at the system utilized for temporal offloading (e.g., LTE)
may drastically affect user session performance of the system subject of outages
caused by blockage phenomenon (e.g., mmWave or THz).
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Fig. 3. New and accepted customer drop probabilities.

We now proceed considering the effect of the interruption process. To this
aim, Fig. 3 illustrates the new and accepted customer drop probabilities as a
function of both intensity of signals and interruption intensity. By analyzing
the presented results, we observe that the accepted customer drop probability
is heavily affected by the signal intensity. As these sessions are offloaded onto
LTE, the corresponding new customer drop probability drastically increases.
At the same time, the new customer drop probability at NR decreases. The
overall effect is extremely negative from the QoS perspective – under high values
of α most NR sessions are accepted for service and then eventually lost. The
overall effect of the interruption intensity is also interesting. As β increases,
the NR accepted customer drop probability decreases. The rationale is that it
also results in a lower intensity of switching from one system to another and,
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thus, smaller chances to lose the session accepted for service. Logically, we also
observe that this effectively lowers the new customer drop probability at LTE and
increases the new customer drop probability at NR. However, we note that in real
deployments we cannot affect the value of β as it is given by the environmental
conditions, particularly, by the density of blockers and their movement patterns.
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Fig. 4. New and accepted customer drop probabilities.
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Fig. 5. New and accepted customer drop probabilities.

The amount of resources requested by a customer is one of the critical param-
eters for resource queuing systems. We now investigate it by analyzing the effect
of the resource requirements parameters. Specifically, Fig. 4 shows the new and
accepted customer drop probabilities for different values of the mean number of
resources E[θ1] and E[θ2] required by NR and LTE customers as a function of
arrival intensities λ1 and λ2. We consider three cases: (i) NR customers require
two times more resources than LTE, (ii) an equal amount of resources is required
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by both LTE and NR customers, and (iii) NR customers require two times less
resources. The presented results are logical – the increase in the amount of
required resources at NR increases the NR new and accepted customer drop
probabilities overall considered range of λ1. However, as λ2 increases, the situ-
ation becomes more complex as shown in Fig. 4(b). First of all, for a fixed NR
arrival intensity and smaller NR resource requirements distribution, the new NR
customer drop probability decreases. The rationale is that under this relation
between the mean amount of required resources, offloaded sessions are rarely lost
at LTE system increasing the new LTE customer drop probability. However, as
the mean value of the required resources at NR system increases, the new NR
customer drop probability increases as well.

Not only the mean value, but the type of the distribution may produce a
significant effect on performance characteristics of the session service process.
To this aim, we now consider the effect of the variance and distribution type
jointly in Fig. 5 as a function of session arrival intensities, λ1 and λ2. Specifi-
cally, we consider: (i) geometric distribution with variance σ2 = 12, (ii) binomial
distribution with variance σ2 = 0.75, and (iii) Poisson distribution with vari-
ance σ2 = 3. Note that the distribution parameters are chosen so that the mean
resource requirement is equal to 4 for all the considered distributions. The anal-
ysis of the results reveals that the best performance is produced by distributions
having smaller values of variance. Furthermore, this effect can be quite substan-
tial with the gap between new and accepted customer drop probabilities reaching
orders of magnitude. More specifically, the considered binomial distribution with
σ2 = 0.75 leads to the new NR customer drop probability of approximately 10−8

for λNR = 0.2. For the same arrival intensity, geometric distribution with a much
larger variance of σ2 = 12 results in 10−4 new NR customer drop probability.
The rationale is that higher variance leads to more variability in the customer
sizes and thus more customers are accepted at the LTE system. The same obser-
vations can be made for other metrics of interest. This trend is best highlighted
in Fig. 5(b), where these probabilities decrease as a function of λ2 and there is
a large gap between them.

Conclusion

In this paper, we considered a network of resource loss systems. Using the decom-
position approach, we derived formulas for single node characteristics, and pro-
posed an iterative algorithm to evaluate the performance measures of the whole
system, including the new customer loss probability and the accepted customer
loss probability. The proposed model can be utilized to investigate the perfor-
mance of user sessions in joint mmWave/LTE deployments with UEs supporting
inter radio access technology (RAT) multiconnectivity functionality. In these
deployments blockage of the LoS path between mmWabe BS and UE may lead
to outage conditions and LTE BS can be utilized to temporarily offload the
served sessions. More complex deployment conditions and technologies such as
mmWave and THz RATs can be considered, where a session may experience
blockage conditions at both types of RATs.
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The carried out numerical analysis allowed to make several critical observa-
tions. First of all, the session arriving process at the system utilized for tempo-
ral offloading (e.g., LTE) may drastically affect user session performance of the
system subject of outages caused by blockage phenomenon (e.g., mmWave or
THz). Higher intensity of signals negatively affects the new session drop prob-
ability at the system utilized for temporal offloading of sessions. The overall
effect is extremely negative from the QoS perspective – under high values of α
most NR sessions are accepted for service and then eventually lost. Further, the
duration of interruption has a high impact on accepted session drop probability.
The mean amount of required resources have a complex effect on performance
metrics, specifically, the ratio between mean values of resources may heavily
affect the new and accepted session drop probability. Finally, the variance of the
resource request distribution may produce an extreme impact on session service
performance with the gap between new and accepted session drop probabilities
reaching orders of magnitude.
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Abstract. The purpose of the article is to investigate the reliability of
an unmanned high-altitude module based on a mathematical model of
the k-out-of-n:G system. An analytical model of the k-out-of-n:G sys-
tem under two system failure scenarios is considered. In the first case,
the system failure occurs after (n − k + 1) elements failure. The second
one examines the system failure depending on the location of the failed
elements. The sensitivity analysis of system reliability characteristics to
the shape of the lifetime distribution function of the components has
been carried out. The impact of the coefficient of variation of the system
elements lifetime on its operating probability without failure is investi-
gated. Several machine learning methods are used to calculate reliability
characteristics for arbitrary input data based on practically significant
parameters. The accuracy of the trained models is expressed in terms of
estimated mean values.

Keywords: Telecommunication high-altitude platform · tethered
unmanned aerial vehicle · k-out-of-n:G system · system reliability ·
sensitivity analysis · coefficient of variation · simulation modeling ·
machine learning

1 Introduction and Motivation

Currently, telecommunication high-altitude platforms (THAP), which are imple-
mented on autonomous unmanned aerial vehicles (UAV), are widely developed
and used in various fields of human activity [1,2]. The main disadvantage of
UAVs is the limited operating time associated with the short service life of UAV
batteries equipped with electric motors or a limited supply of fuel for inter-
nal combustion engines. In this regard, such UAVs cannot be effectively used
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in systems that require a long operating time. The long-term operation can be
ensured by tethered THAP, in which the engines and payload equipment are
powered from ground-based energy sources [3–5]. The ability to transmit high-
power energy (10–15 kW) through a cable from the ground to the THAP’s board
allows lifting and holding at altitudes of 100–200 m of a payload telecommuni-
cation load for a long time, limited only by the reliability characteristics of the
platform [6–9]. High reliability of the tethered unmanned module is achieved
by the following ways: 1) choice of propulsion systems with a large meantime
between failures; 2) redundancy of individual elements of the control system; 3)
the usage of a multi-rotor architecture (for example, in a quadcopter, a failure
of one engine leads to a complete cessation of operation, and in an eight-rotor
version, in case of failure two motors, the copter may continue to run) and so on.

The reliability of such complex systems is effectively investigated using a
mathematical model of the k-out-of-n system [10]. Such a system has broad prac-
tical applications in various industries: telecommunications and robotics [11,12],
oil and gas [13], subsea pipeline monitoring systems [14], cryptography [15], etc.
This model has been widely studied under many assumptions about the struc-
ture of such a model, for example, the dependence and independence of the
system elements, the shape of life and repair times distributions, different recov-
ery scenarios, and others. To study various k-out-of-n systems, both analytical
methods based on multidimensional Markov processes and simulation are used
[11,16–18].

Sensitivity analysis is a significant research stage, especially for redundancy
systems like k-out-of-n system. In stochastic systems, stability is often under-
stood as the insensitivity or low sensitivity of their output characteristics to
the shape of some input distributions. The term “sensitivity” in other areas,
for example, civil engineering, can be defined differently [19]. In queuing theory,
the first results of sensitivity research are presented by Sevastyanov, Kovalenko,
Gnedenko, Soloviev, and others. Some of the latest studies see in [18] and its
references.

An additional research method considered in this paper is machine learn-
ing (ML). In queuing and reliability theories, ML methods are usually used for
studying various probabilistic and time characteristics of complex systems. They
are also useful in those cases when it is impossible to obtain results either analyti-
cally or using simulation [20]. The application of ML techniques for analyzing the
reliability of an unmanned high-altitude module is due to the following factors.

1. From a practical point of view, the system service time is often estimated by
its average value, while the shape of the lifetime distribution is unknown and
can only be assumed based on some statistical data. ML model can operate
based on the mean value without considering a specific distribution function
of the lifetime of system elements.

2. Some parameters inside the system can significantly impact its reliability.
However, from practice, this information may also be absent. The sensitivity
analysis helps identify these weaknesses, after which they will be included in
the ML model.
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3. A model built and trained using ML techniques can predict the system reli-
ability characteristics faster than a simulation model. In addition, it allows
making accurate predictions on many data simultaneously, while simulation
can only give a similar result after a lot of iterations.

4. Trained model can be useful and used by engineers at the development stage
of such modules for many aims: to determine a highly reliable system archi-
tecture (parameters k, n), select the module components, the characteristics
of which will support reliability and long-term operation of THAP (mean
lifetime a and the coefficient of variation v), and also predict how long this
unmanned module will operate with a satisfactory level of reliability.

There are many machine learning techniques. In the article, we will consider
supervised learning for some types of regressions and neural networks using a
Python programming language [21]. For this Scikit-learn [22] and TensorFlow
[23] libraries will be used.

This paper continues studies related to reliability and sensitivity and consid-
ers a hot standby non-repairable system using analytical and simulation methods.
The current paper aims to study the reliability of tethered THAP using the k-out-
of-n:G system and ML methods, which make it possible to determine a satisfac-
tory level of module reliability at different initial parameters with high accuracy.

The article is organized as follows. The next section introduces the problem
setting and some notations. In Sect. 3, reliability function of homogeneous k-out-
of-n:G system will study. Subsections 3.1 and 3.2 contain analytical results for
a simple homogeneous k-out-of-n:G system and a homogeneous k∗-out-of-n:G
system, the failure of which depends on the location of the failed elements. A
numerical example and sensitivity analysis of the considered systems are pre-
sented in Subsects. 3.3. In Sect. 4, various ML techniques for predicting the
level of reliability of unmanned module will discuss. Subsection 4.1 describes the
methods and data used in this research, which are implemented in Subsects. 4.2
and 4.3. The paper ends with a conclusion and some problems descriptions.

2 Problem Setting

Due to the multi-rotor architecture of the high-altitude module, which consists
of n identical engines, consider homogeneous k-out-of-n:G system. Such a system
consists of n elements and remains operational iff at least k out of n elements are
operational. Denote by Ai, i = 1, 2, ..., lifetimes of the system elements. Sup-
pose that these random variables are independent and identically distributed, thus
the corresponding cumulative density function is defined as A(t) = P{Ai ≤ t}.
Suppose also that instantaneous failures are impossible and their mean times are
finite:

A(0) = 0, a =
∫ ∞

0

(1 − A(t))dt.
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For the system study, introduce the random process J = {J(t), t ≥ 0} with

J(t) = number of working components in time t

with the set of states E = {j = 0, k}, where j is number of working units.
Denote also by T time to first system failure T = inf{t : J(t) ∈ E1}, where

E1 = {j = 0, k − 1} is the set of UP states. E0 = {j = k} is the set of DOWN
states. Thus, we are interesting in calculation of reliability function

R(t) = P{T > t},

and the mean time to system failure (MTTF)

m =
∫ ∞

0

R(t)dt.

3 Analytical Models and Sensitivity Analysis

3.1 Reliability Function of Homogeneous k-out-of-n:G System

Consider homogeneous k-out-of-n:G system, Ai(t) = A(t) (i = 1, n). It is well
known, the probability that exactly i elements of the system from n at time t
are in a working state has the form

P(t) = Ci
n(1 − A(t))iA(t)n−i.

Thus, the reliability function of such a system (the probability of the system
operating for a certain time t without failure) is

R(t) = P{T > t} =
n∑

i≥k

Ci
n(1 − A(t))iA(t)n−i. (1)

3.2 Reliability Function of Homogeneous k-out-of-n:G System
Taking into Account the Location of the Failed Units

To investigate the reliability function of more complex homogeneous system, the
failure of which depends on the location of its failed components, introduce a
vector description of the state of the system j = (ji, j2, ..., jn), where ji = 0 if
i-th component failed and ji = 1 if it works. Then the probability of state j in
time t equals to

pj(t) =
∏

1≤i≤n

(1 − A(t))jiA(t)1−ji .

The probabilities of the operable and failure states of the system at the time t
take the forms

P(UP ) =
∑
j∈E1

pj(t), P(DOWN) =
∑
j∈E0

pj(t).

Thus, the system reliability function is

R(t) =
∑
j∈E1

∏
1≤i≤n

(1 − A(t))jiA(t)1−ji . (2)
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3.3 Numerical Examples and Sensitivity Analysis

As a numerical example consider the case of 4-out-of-6:G system. It is supposed
that the lifetime of the system’s units have the following distributions:

– Gamma
[
Γ

(
1/v2, av2

)]
;

– Gnedenko-Weibull
[
GW

(
μ, a

Γ (1+1/μ)

)]
;

– Log-normal
[
LnN

(
ln a√

1+v2 ,
√

ln (1 + v2)
)]

,

where a is mean lifetime of the system components and v is its coefficient of
variation. μ is the shape parameter of GW distribution and selected based on
the value of v.

In our experiments we choose a = 1 and v = [0.1, 0.5, 1, 5, 10]. First, consider
the simple case of homogeneous 4-out-of-6:G system.

Fig. 1. Reliability function R(t) of homogeneous 4-out-of-6:G system

Figure 1 shows the dependence of system reliability function on the time t
calculated by formula (1). Black, red and blue colors correspond the Γ , GW , and
LnN distributions, respectively. As it can be seen from the curves, the reliability
function of the system is asymptotically insensitive to the form of the lifetime
distribution at fixed mean and coefficient of variation v ≤ 1. At the same time,
with v > 1, this insensitivity disappears, and the system loses its reliability very
quickly. We can conclude that the system behavior depends on the value v.
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Further, look at the reliability of the 4-out-of-6:G system taking into account
the location of the failed units. Denote such a system as a 4∗-out-of-6:G system.
Suppose that the system is operational as long as at least 4 out of 6 engines
are running, and two failed motors should not be located next to each other. In
other words, the system fails when two adjacent motors stop operate, or when
any three engines fail.

Due to the complexity (time and computational) of calculating the reliability
function using the formula (2) for arbitrary A(t), k, and n, here we will apply
simulation modeling to achieve our goals. The numerical example for the case of
exponential distribution of system elements lifetime can be found in paper [11].

To build a simulator Python programming was chosen. The constructed sim-
ulation model is shown graphically as a process flowchart (Fig. 2). As a result of
the algorithm, we can get the empirical reliability function R̂(t), and MTTF.

BEGIN

Checking stop condition
Is next failure near with the last one?

OR
Is it (n-k+1) element failure? 

Declaring and initializing variables and arrays

Determine next failure taking into account the 
remaining time

Simulation time update

Collect statistics

Determine time to 
system’s failure

Return simulation 
results

END

yes

no

Fig. 2. Flowchart of the simulation model of a k∗-out-of-n:G system

Figure 3 shows evaluation result using simulation. The example of both the
same system and parameters as before are used.

As can be seen from the numerical examples, the behavior of 4-out-of-6:G and
4∗-out-of-6:G system reliability functions is very similar. To see the difference
between them, consider corresponding MTTF (Table 1).

The results of the calculation of m confirm the conclusions of the sensitivity
analysis. Moreover, the 4-out-of-6:G system, without dependence on the location
of the failed elements, is efficient for a longer time than the other one.
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Fig. 3. Reliability function R(t) of homogeneous 4∗-out-of-6:G system

Table 1. Mean lifetime m of 4-out-of-6:G/4∗-out-of-6:G systems

A(t)

v
0.1 0.5 1 5 10

Γ
0.9775

0.9608

0.8445

0.7747

0.6174

0.5154

0.0077

0.0041

8 ∗ 10−5

3 ∗ 10−5

GW
0.9886

0.9693

0.8593

0.7777

0.6176

0.5177

0.0697

0.0503

0.0197

0.0136

LnN
0.9760

0.9598

0.8349

0.7743

0.6509

0.5714

0.2047

0.1621

0.1154

0.0874

4 Machine Learning Methods and Their Application
to the Task

This section presents the results of prediction THAP reliability using ML meth-
ods.

4.1 Methods and Data

As ML methods [21], we will consider the followings from scikit-learn (for regres-
sions) and TensorFlow (for neural network) libraries:

– Linear regression (LinReg),
– Polynomial regression (degree = 4) (PolyReg),
– K-nearest neighbors regression (n neighbors = 5) (KNN),
– Multi-output regression with cross-validation (scoring = MSE) based on

Ridge regression (MultiReg),
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– Artificial neural network with three hidden layers (optimizer = RMSprop(1e-
3), loss = MSE, batch size = 96) (ANN).

As it was noted in the introduction, the purpose of machine learning applica-
tion is to predict the reliability and time characteristics of a tethered unmanned
module. Therefore, the output parameters are R, t,m (Table 2). The set of
parameters, as well as their ranges, is associated with the following. The previous
section concludes some hidden parameters of the system, namely the coefficient
of variation, have a significant impact on its behavior and performance. More-
over, the system is insensitive to the shape of the lifetime distribution with v < 1.
In addition, from a practical point of view, we assume that the system is at a
satisfactory level of reliability if R(t) ≥ 0.5.

Table 2. Variables for machine learning models and their ranges

Type Variables Symbol Range

Input Total number of system’s elements n 4–10

Needed number of elements in operating states k 2 − (n − 1)

Mean lifetime a 0.1–1

Coefficient of variation v 0.01–1

Output Reliability R 0.5–1

Time to system acceptable level of R t >0

MTTF m >0

We have generated two datasets for training the models.

1. To train the model, which describes the behavior of THAP by homogeneous
k-out-of-n:G system, the dataset was generated using formula (1), in which
A(t) ∼ Γ .

2. For the second case, in which system failure depends on the location of the
failed elements, simulation results were used, here also A(t) ∼ Γ . This data
supposes that a system failure occurs either when 2 adjacent or any (n−k+1)
elements have failed.

The architecture of the selected ML models is different. Some can predict
several outputs simultaneously, while others can operate with only one outcome.
The whole process contains two phases – training and testing. Before training,
we divide the initial dataset into train and test sets with a ratio of 70% and 30%,
respectively. The learning process for LinReg, PolyReg, and KNN is structured
as follows. The first step is to predict reliability R using parameters n, k, a, v, t.
Next, the model is trained for prediction t on parameters n, k, a, v,R. The last
cycle ends with a forecast of m based on the set n, k, a, v,R, t. After each round,
the accuracy of the trained model is assessed, and testing begins on a new
data sample. For MultiReg and ANN, there is one training cycle, in which the
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model predicts R, t,m simultaneously based on n, k, a, v. These models provide
an additional phase for monitoring training, the so-called cross-validation. In
this way, the initial set is divided into 70%, 20% and 10% for train, validation
and final test.

4.2 Training and Testing Results for k-out-of-n:G System

Now move on to the results of ML techniques application for analyzing the
reliability of a tethered unmanned high-altitude module. First, consider the k-
out-of-n:G system. Table 3 shows the mean square error (MSE) for the predicted
values on the training set. The table results show the smallest prediction error
was achieved using PolyReg and KNN. The greatest error corresponds to Multi-
Reg. The closest prediction in the training phase among all methods was made
for MTTF m.

Table 3. Accuracy of training

LinReg PolyReg KNN MultiReg ANN

MSE R 0.0094 0.0028 10−4 0.0313 0.0094

t 0.0246 0.0149 0.0110 0.0322 0.0090

m 0.0093 10−4 4 ∗ 10−4 0.0123 10−4

Table 4 demonstrates MSE, mean absoulute error (MAE) as well as the coef-
ficient variation (R2) for the test set. Analyzing the results obtained, we can
note that MSE estimate for all cases lies in an acceptable interval. MAE esti-
mate shows the relative value of the prediction error. In our task, MAE ≥ 0.05
is considered unsatisfactory. Therefore, only the K-nearest neighbors regression
shows the obtained accuracy result among all the considered cases. R2 estimate

Table 4. Accuracy of testing

LinReg PolyReg KNN MultiReg ANN

MSE R 0.0094 0.0028 2 ∗ 10−4 0.0239 0.0131

t 0.0177 0.0339 0.0117 0.0344 0.0322

m 0.0107 0.0056 2 ∗ 10−6 0.0105 0.0043

MAE R 0.0708 0.0365 0.0033 0.0761 0.0746

t 0.1001 0.1125 0.0395 0.1395 0.1342

m 0.0690 0.0121 3 ∗ 10−4 0.0687 0.0273

R2 R 0.3804 0.8134 0.9894 0.1343 0.1370

t 0.6824 0.4274 0.7891 0.3807 0.4249

m 0.8934 0.9295 0.9999 0.8942 0.9571
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indicates how well the constructed model adequately describes the initial data.
The best result for this indicator is again shown by the KNN method. Note that
all methods are suitable for predicting the meantime m. The estimates MSE
and MAE are quite small, and R2 is high, which confirms the high dependence
between the input and output parameters.

Consider prediction results on the test set graphically. Figure 4, 5, 6, 7 and 8
shows the scatter diagrams for ML methods described above. For each of these
figures, 500 samples were taken at random. In reality, the test sample contains
about 200.000 values. LinReg and MultiReg demonstrate similar results for all
predicted parameters, but their accuracy is quite low. PolyReg and ANN show
acceptable prediction accuracy of m. For the other two, the prediction error is
too high. These methods present insufficient prediction accuracy. It suggests that
models do not reflect the relationship between input and output data. Predictions
for R and m using KNN are close enough to their exact values. For t, this is
not so much accurate. Nonetheless, the application of the KNN method obtains
the most accurate prediction result for all metrics among the considered ML
techniques.

a) R b) t c) m

Fig. 4. Scatter plots for LinReg

a) R b) t c) m

Fig. 5. Scatter plots for PolyReg
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a) R b) t c) m

Fig. 6. Scatter plots for KNN

a) R b) t c) m

Fig. 7. Scatter plots for MultiReg

a) R b) t c) m

Fig. 8. Scatter plots for ANN

4.3 Training and Testing Results for k∗-out-of-n:G System

The application of machine learning techniques to the task at hand has shown
that KNN most accurately predicts the reliability of an unmanned high-altitude
module, the failure of which occurs after the failure of (n − k + 1) its elements.
Therefore, for the second case of dependence of the system failure on the location
of the failed elements, we will consider only the KNN method. Consider the
learning accuracy results (Table 5). MSE is small enough and takes the desired
value.
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Table 5. Accuracy of training (MSE)

R t m

KNN 10−4 8.7 ∗ 10−3 10−4

The results on the test set are presented in Table 6 and Fig. 9. The results of
the prediction accuracy take acceptable values. MSE and MAE are small enough,
and the coefficient of determination R2 is high.

Table 6. Accuracy of testing

R t m

MSE 1.6 ∗ 10−4 8.6 ∗ 10−3 1.9 ∗ 10−6

MAE 3.6 ∗ 10−3 0.0492 3.3 ∗ 10−4

R2 0.9904 0.7545 0.9999

The graphical results show similar prediction accuracy to the k-out-of-n:G
system. The KNN model accurately reflects the dependence of R and m on the
initial data, while the prediction of t is not so accurate, MAE ≈ 5%.

a) R b) t c) m

Fig. 9. Scatter plots for KNN

5 Conclusion

The paper investigates the reliability of an unmanned high-altitude module based
on a mathematical model of the k-out-of-n system and machine learning meth-
ods. Two scenarios of the dependence of the system failure on the location of
the failed elements were considered. Analytical results and sensitivity analysis
demonstrated the dependence of the system reliability on the coefficient of vari-
ation of the lifetime for both scenarios. The application of machine learning
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methods showed that K-nearest neighbors regression describes the system relia-
bility in the best way. As future research direction, we plan to improve chosen
ML model to achieve more accurate predictions and consider other methods and
models.
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Abstract. This paper considers a retrial tandem queue with single
orbit, Poisson arrivals of incoming calls and without intermediate buffer.
The first server provides services for incoming calls for an arbitrary ran-
dom time, while the second server does for an exponentially distributed
random time. Blocked customers at either the first server or the second
server join the orbit and stay there for an exponentially distributed time
before retrying to enter the first server again. Under an asymptotic con-
dition when the mean of retrial intervals is extremely large, we derive a
diffusion limit, which is further utilized to obtain an approximation to
the number of customers in the orbit in stationary regime.

Keywords: tandem queue · retrial queue · diffusion limit

1 Introduction

The new feature of retrial queues in comparison with the conventional ones is
that blocked customers that cannot find an idle server upon arrival join the
orbit and retry for service after some random time. These models have been
extensively studied in the literature; see the books [1,2] and survey papers [3,4].
The paper [4] summarizes major analytical results on retrial queues up to 1990
for both single server and multiserver models. Reference [3] presents a careful
survey on single server retrial models with and without impatient customers.
Furthermore, a survey of recent results for retrial queues is presented in [5].

The analysis of retrial queues is more difficult in comparison with that of
counterparts with infinite buffer because each orbiting customer independently
retries leading to a total retrial rate that is proportional to the number of cus-
tomers in the orbit.

Tandem queues are simple networks of queues connected in a line topology
are widely used in many applications such as computer communication, manufac-
turing and service systems. For example, in call centers, customers first connect
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to IVR (Interactive Voice Response) unit and then to operators [6]. Some other
applications can be found in transmitting multimedia information [7], and in [8]
for modelling a multi-agent robotic system, etc.

To our knowledge, only a little attention was paid the study of on tandem
queues with retrials due to the complex of these models. In [9], the authors con-
sider a tandem system of two sequentially connected servers without an interme-
diate buffer. In this system the blocking phenomenon occurs at the first server
when a customer finishes the service a the first server but sees the second server
busy. Customers that cannot enter the first server because the server is busy
or blocked join the orbit and retry to enter the first server according to a con-
stant retrial rate policy. Furthermore, [10] presents an approximate analysis for
a tandem queue with a common orbit and constant retrial rate.

As a closely related paper, Phung-Duc [11] obtained an explicit solution for
a simple model where only blocked customers the first server joins the orbit
while blocked customers at the second server are lost. In this line, [12] presented
a matrix-analytic solution for a model with Batch Markovian Arrival Process
(BMAP) and general service time distribution at the first server and customers
from the first server are lost if the second server is busy.

Furthermore, in our recent papers, we obtained the approximation of the
stationary probability distribution of the number of calls in the orbit by methods
of asymptotic analysis [13] and asymptotic diffusion analysis [14] for a special
case with exponential distributions for service times in both servers. Further
related papers can be found in [15,16]. In [16] a fixed point approximation is
proposed for a tandem retrial queue. Pourbabai [15] investigates the tandem
behavior in telecommunication systems with finite buffer and with repeated calls
of constant retrial time. In [15], an approximation method is proposed.

In this paper, we study the two-phase tandem retrial queue system with one
orbit and arbitrary service time distribution at the first server by the method
of asymptotic diffusion analysis under the condition when the delay of calls
in the orbit is extremely large. To the best of our knowledge, this is the first
work dealing with a tandem retrial queue with classical (linear) retrial rate and
arbitrary service time distribution at the first server, where blocked customers
at the first or the second server enters orbit.

The remaining parts of the paper are organized as follows. In Sect. 2, we
present the description of the model in detail. In Sect. 3, we write down the set
of Kolmogorov differential equations while Sects. 4 and 5 show to the first order
analysis (fluid limit) and the second order analysis (diffusion limit). Section 6
shows the use of the diffusion limit to approximate queue-length distribution in
the orbit in the steady-state. Section 7 demonstrates some numerical examples.

2 Analytical Model

We consider a tandem retrial queue with two sequentially connected servers
where customers arrive at the server according to a Poisson process with rate
λ (see the Fig. 1). In this paper, customers and calls are interchangeably used.
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If the server is idle upon the arrival of a call, the call occupies it immediately
for a random time with the distribution function B(x) and then moves to the
second server. In the case that the second server is free, the call occupies it for a
random time exponentially distributed with mean 1/μ. On the other hand, if the
first server is busy upon arrival of a customer, this customer immediately goes
to the orbit staying there for a period of time which is exponentially distributed
with parameter σ and then tries to enter the first server again. Upon the service
completion at the first server, if the second server is busy, the call immediately
goes to the same orbit, staying there for a random period of time which is
exponentially distributed mean 1/σ and trying to enter the first server for service
again. This process is repeated until the call successfully receives services from
both servers and leave the system.

Fig. 1. The model

We define the following notations for further analysis.
The process k(t) - the state of servers at time t: 0, if both servers are free; 1,

if the first server is busy and the second one is free; 2, if the first server is free
and the second one is busy; 3, if both servers are busy;

The process z(t) - the remainder of service at the first server at time t;
The process i(t) - number of retrial customers in the orbit at time t.
The purpose of the study is twofold: 1) to obtain the fluid and diffusion limit

of i(t) and 2) based on the diffusion limit, to build an approximation to the
steady-state distribution of i(t).

3 Kolmogorov Backward Equations

We define probabilities

Pk(i, t) = P{k(t) = k, i(t) = i}, k = 0, 2,

Pk(i, z, t) = P{k(t) = k, i(t) = i, z(t) < z}, k = 1, 3. (1)

The process {k(t), i(t)}, k = 0, 2, {k(t), i(t), z(t)}, k = 1, 3 is a Markov chain.
Kolmogorov backward equations for (1) are given as follows.

∂P0(i, t)
∂t

= −(λ + iσ)P0(i, t) + μP2(i, t),
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∂P1(i, z, t)
∂t

=
∂P1(i, z, t)

∂z
− ∂P1(i, 0, t)

∂z
− λP1(i, z, t)

+ (i + 1)σB(z)P0(i + 1, t) + λP1(i − 1, z, t)

+λB(z)P0(i, t) + P3(i, z, t)μ,

∂P2(i, t)
∂t

=
∂P1(i, 0, t)

∂z
+

∂P3(i − 1, 0, t)
∂z

− (λ + μ + iσ)P2(i, t),

∂P3(i, z, t)
∂t

=
∂P3(i, z, t)

∂z
+

∂P3(i, 0, t)
∂z

− (λ + μ)P3(i, z, t)

+ λP3(i − 1, z, t) + λB(z)P2(i, t) + (i + 1)σB(z)P2(i + 1, t). (2)

We define partial characteristic functions, using j =
√−1

Hk(u, t) =
∞∑

i=0

ejuiPk(i, t), k = 0, 2.

Hk(u, z, t) =
∞∑

i=0

ejuiPk(i, z, t), k = 1, 3. (3)

We rewrite (2) using Hk(u, t), k = 0, 2,Hk(u, z, t), k = 1, 3 and add all the
resulted equations with z → ∞. We obtain following equations for further
research in next sections.

∂H0(u, t)
∂t

= −λH0(u, t) + jσ
∂H0(u, t)

∂u
+ μH2(u, t),

∂H1(u, z, t)
∂t

=
∂H1(u, z, t)

∂z
− ∂H1(u, 0, t)

∂z
− jσe−ju ∂H0(u, t)

∂u
B(z)

+λ(eju − 1)H1(u, z, t) + λB(z)H0(u, t) + μH3(u, z, t),

∂H2(u, t)
∂t

=
∂H1(u, 0, t)

∂z
+ eju ∂H3(u, 0, t)

∂z
+ jσ

∂H2(u, t)
∂u

− (λ + μ)H2(u, t),

∂H3(u, z, t)
∂t

=
∂H3(u, z, t)

∂z
− ∂H3(u, 0, t)

∂z
− jσe−juB(z)

∂H2(u, t)
∂u

+ (λ(eju − 1) − μ)H3(u, z, t) + λB(z)H2(u, t),

∂H(u, t)
∂t

= (eju − 1)
{

jσe−ju

(
∂H0(u, t)

∂u
+

∂H2(u, t)
∂u

)

+λ(H1(u, t) + H3(u, t)) +
∂H3(u, 0, t)

∂z

}
. (4)

We are going to solve (4) under σ → 0.



M | GI | 1 | M | 1 Tandem Queue with Retrials 135

4 Fluid Limit

By denoting σ = ε and performing substitution in (4)

τ = tε, u = εw,Hk(u, t) = Fk(w, τ, ε, ),

Hk(u, z, t) = Fk(w, z, τ, ε), (5)

we obtain

ε
∂F0(w, τ, ε)

∂τ
= −λF0(w, τ, ε) + j

∂F0(w, τ, ε)
∂w

+ μF2(w, τ, ε),

ε
∂F1(w, z, τ, ε)

∂τ
=

∂F1(w, z, τ, ε)
∂z

− ∂F1(w, 0, τ, ε)
∂z

− je−jwε ∂F0(w, τ, ε)
∂w

B(z)

+λ(ejwε − 1)F1(w, z, τ, ε) + λB(z)F0(w, τ, ε) + μF3(w, z, τ, ε),

ε
∂F2(w, τ, ε)

∂τ
=

∂F1(w, 0, τ, ε)
∂z

+ ejwε ∂F3(w, 0, τ, ε)
∂z

+ j
∂F2(w, τ, ε)

∂w
− (λ + μ)F2(w, τ, ε),

ε
∂F3(w, z, τ, ε)

∂τ
=

∂F3(w, z, τ, ε)
∂z

− ∂F3(w, 0, τ, ε)
∂z

− je−jwεB(z)
∂F2(w, τ, ε)

∂w

+ (λ(ejwε − 1) − μ)F3(w, z, τ, ε) + λB(z)F2(w, τ, ε),

ε
∂F (w, τ, ε)

∂τ
= (ejwε − 1)

{
je−jwε

(
∂F0(w, τ, ε)

∂w
+

∂F2(w, τ, ε)
∂w

)

+λ(F1(w, τ, ε) + F3(w, τ, ε)) +
∂F3(w, 0, τ, ε)

∂z

}
, (6)

which we will solve under the assumption that functions Fk(w, τ, ε), Fk(w, z, τ, ε)
and their derivatives have limits as ε → 0.

Theorem 1. We have

lim
σ→0

Mejwσi( τ
σ ) = ejwx(τ), (7)

where x = x(τ) satisfies

x′(τ) = (1 + b1(λ + x))−1

(
λb1(λ + x) − x + B∗(μ)

(λ + x)2

μ + λ + x

)
, (8)

and where b1 =
∫ ∞
0

xdB(x) and B∗(μ) =
∫ ∞
0

e−μxdB(x).
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Proof. We take the limit ε → 0 in (6)

−λF0(w, τ) + j
∂F0(w, τ)

∂w
+ μF2(w, τ) = 0,

∂F1(w, z, τ)
∂z

− ∂F1(w, 0, τ)
∂z

− j
∂F0(w, τ)

∂w
B(z)

+λB(z)F0(w, τ) + μF3(w, z, τ) = 0,

∂F1(w, 0, τ)
∂z

+
∂F3(w, 0, τ)

∂z
+ j

∂F2(w, τ)
∂w

− (λ + μ)F2(w, τ) = 0,

∂F3(w, z, τ)
∂z

− ∂F3(w, 0, τ)
∂z

− jB(z)
∂F2(w, τ)

∂w

+ (λ − μ)F3(w, z, τ) + λB(z)F2(w, τ) = 0,

∂F (w, τ)
∂τ

= jw

{
j

(
∂F0(w, τ)

∂w
+

∂F2(w, τ)
∂w

)

+λ(F1(w, τ) + F3(w, τ)) +
∂F3(w, 0, τ)

∂z

}
. (9)

We assume that (9) has a solution in the form

Fk(w, τ) = r(x)ejwx(τ), k = 0, 2, Fk(w, z, τ) = r(z, x)ejwx(τ), k = 1, 3, (10)

where x = x(τ) expresses limσ→0 σi(τ/σ). Substituting (10) into (9), we obtain

−(λ + x)r0(x) + μr2(x) = 0,

∂r1(z, x)
∂z

− ∂r1(0, x)
∂z

+ (λ + x)B(z)r0(x) + +μr3(z, x) = 0,

∂r1(0, x)
∂z

+
∂r3(0, x)

∂z
− (λ + μ + x)r2(x) = 0,

∂r3(z, x)
∂z

− ∂r3(0, x)
∂z

− μr3(z, x) + (λ + μ)B(z)r2(x) = 0, (11)

x′(τ) = λ(r1(x) + r3(x)) − x(r0(x) + r2(x)) +
∂r3(0, x)

∂z
. (12)

Summing up the first equation with the third, the second equation with the
fourth of (11), we have

∂r1(z, x)
∂z

+
∂r3(0, x)

∂z
= (λ + x)(r0(x) + r2(x))

∂r3(z, x)
∂z

− ∂r3(0, x)
∂z

+
∂r1(z, x)

∂z
− ∂r1(0, x)

∂z

+ (λ + x)B(z)(r0(x) + r2(x)) = 0. (13)
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We denote

r02(x) = r0(x) + r2(x),

r31(z, x) = r1(z, x) + r3(z, x),

r31(0, x) = r1(0, x) + r3(0, x).

Then from (13) we obtain

r31(z, x) = (λ + x)r02(x)

z∫

0

(1 − B(s))ds.

Letting z → ∞ and denoting rk(∞, x) = rk(x), k = 1, 3, we have

r1(x) + r3(x) = (λ + x)b1(r0(x) + r2(x)),

where b1 =
∫ ∞
0

xdB(x). Because r0(x)+ r1(x)+ r2(x)+ r3(x) = 1, from the last
equality we obtain

r1(x) + r3(x) =
(λ + x)b1

1 + (λ + x)b1
,

r0(x) + r2(x) =
1

1 + (λ + x)b1
.

Taking into account the first equation of (11), we write

r0(x) =
μ

λ + x
r2(x).

We write the solution of the fourth differential equation of system (11) in the
form

r3(z, x) = eμz

z∫

0

e−μs

(
∂r3(0, x)

∂z
− (λ + x)B(s)r2(x)

)
ds. (14)

Let us send z → ∞ in this equation to have

μ

∞∫

0

e−μs

(
∂r3(0, x)

∂z
− (λ + x)B(s)r2(x)

)
ds = 0.

The integrand satisfies the condition

∂r3(0, x)
∂z

= (λ + x)r2(x)B∗(μ), (15)

where B∗(μ) =
∫ ∞
0

e−μxdB(x). Solution (14), taking into account (15), we
rewrite under z → ∞ in the form

r3(x) = (λ + x)r2(x)(1 − B∗(μ)).
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We obtain equations for the stationary probability distribution rk(x), k = 0, 3
of the states of servers

r0(x) =
μ

μ + λ + x
(1 + b1(λ + x))−1,

r1(x) = (1 + b1(λ + x))−1(λ + x)
(

b1 − 1
μ

λ + x

μ + λ + x
(1 − B∗(μ))

)
,

r2(x) =
λ + x

μ + λ + x
(1 + b1(λ + x))−1,

r3(x) =
1
μ

(λ + x)2

μ + λ + x
(1 − B∗(μ)) (1 + b1(λ + x))−1. (16)

Let us substitute rk(x) into (12) in order to obtain

x′(τ) = (1 + b1(λ + x))−1

(
λb1(λ + x) − x + B∗(μ)

(λ + x)2

μ + λ + x

)
, (17)

which coincides with (8).
Since x(τ) represents the asymptotic value (ε → 0) of σi(τ/σ), (7) holds. So,

Theorem 1 is proved.

Let us denote

a(x) = x′(τ) = (1 + b1(λ + x))−1

(
λb1(λ + x) − x + B∗(μ)

(λ + x)2

μ + λ + x

)
. (18)

a(x) plays an important role for our analysis. First, as it is shown in Theorem
1, a(x) represents the dynamic of x(τ), which is the limit under σ → 0 for
σi(τ/σ). Second, as it will be shown, a(x) expresses the drift coefficient for the
diffusion process that represents a scaled version of i(t).

5 Diffusion Limit

We carry out the following substitution in (4)

Hk(u, t) = ej u
σ x(σt)H

(1)
k (u, t), k = 0, 2

Hk(u, z, t) = ej u
σ x(σt)H

(1)
k (u, z, t), k = 1, 3. (19)

For H
(1)
k (u, t) and H

(1)
k (u, z, t), k = 0, 3, considering (18), we obtain

∂H
(1)
0 (u, t)
∂t

= −(λ + jua(x) + x)H(1)
0 (u, t)

+ jσ
∂H

(1)
0 (u, t)
∂u

+ μH
(1)
2 (u, t),
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∂H
(1)
1 (u, z, t)

∂t
=

∂H
(1)
1 (u, z, t)

∂z
− ∂H

(1)
1 (u, 0, t)

∂z
− jσe−ju ∂H

(1)
0 (u, t)
∂u

B(z)

+ (λ(eju − 1) − jua(x))H(1)
1 (u, z, t) + (λ + xe−ju)B(z)H(1)

0 (u, t) + μH
(1)
3 (u, z, t),

∂H
(1)
2 (u, t)
∂t

=
∂H

(1)
1 (u, 0, t)

∂z
+ eju ∂H

(1)
3 (u, 0, t)

∂z
+ jσ

∂H
(1)
2 (u, t)
∂u

− (λ + μ + jua(x) + x)H(1)
2 (u, t),

∂H
(1)
3 (u, z, t)

∂t
=

∂H
(1)
3 (u, z, t)

∂z
− ∂H

(1)
3 (u, 0, t)

∂z
− jσe−juB(z)

∂H
(1)
2 (u, t)
∂u

+ (λ(eju − 1) − μ − jua(x))H(1)
3 (u, z, t) + (λ + xe−ju)B(z)H(1)

2 (u, t),

∂H(1)(u, t)
∂t

+ jua(x)H(1)(u, t)

= (eju − 1)

{
jσe−ju

(
∂H

(1)
0 (u, t)
∂u

+
∂H

(1)
2 (u, t)
∂u

)

−xe−ju(H(1)
0 (u, t) + H

(1)
2 (u, t))

+λ(H(1)
1 (u, t) + H

(1)
3 (u, t)) +

∂H
(1)
3 (u, 0, t)

∂z

}
. (20)

Because H(1)(u, t) is the characteristic function of i(t) − 1
σ x(σt), we make the

substitutions as follows.
By defining σ = ε2 in (20) and substituting

τ = tε2, u = wε,H
(1)
k (u, t) = F

(1)
k (w, τ, ε), k = 0, 2,

H
(1)
k (u, z, t) = F

(1)
k (w, z, τ, ε), k = 1, 3, (21)

we obtain

ε2
∂F

(1)
0 (w, τ, ε)

∂τ
= −(λ + jεwa(x) + x)F (1)

0 (w, z, τ, ε)

+ jε
∂F

(1)
0 (w, τ, ε)

∂w
+ μF

(1)
2 (w, τ, ε),

ε2
∂F

(1)
1 (w, z, τ, ε)

∂τ
=

∂F
(1)
1 (w, z, τ, ε)

∂z
− ∂F

(1)
1 (w, 0, τ, ε)

∂z

− jεe−jwε ∂F
(1)
0 (w, τ, ε)

∂w
B(z) + (λ(ejwε − 1) − jεwa(x))F (1)

1 (w, z, τ, ε)

+ (λ + xe−jwε)B(z)F (1)
0 (w, τ, ε) + μF

(1)
3 (w, z, τ, ε),

ε2
∂F

(1)
2 (w, τ, ε)

∂τ
=

∂F
(1)
1 (w, 0, τ, ε)

∂z
+ ejwε ∂F

(1)
3 (w, 0, τ, ε)

∂z
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+ jε
∂F

(1)
2 (w, τ, ε)

∂w
− (λ + μ + jεwa(x) + x)F (1)

2 (w, τ, ε),

ε2
∂F

(1)
3 (w, z, τ, ε)

∂τ
=

∂F
(1)
3 (w, z, τ, ε)

∂z
− ∂F

(1)
3 (w, 0, τ, ε)

∂z

− jεe−jwεB(z)
∂F

(1)
2 (w, τ, ε)

∂w
+ (λ(ejwε − 1) − μ − jεwa(x))F (1)

3 (w, z, τ, ε)

+ (λ + xe−jwε)B(z)F (1)
2 (w, τ, ε),

ε2
∂F (1)(w, τ, ε)

∂τ
+ jεwa(x)F (1)(w, τ, ε)

= (ejwε − 1)

{
jεe−jwε

(
∂F

(1)
0 (w, τ, ε)

∂w
+

∂F
(1)
2 (w, τ, ε)

∂w

)

−xe−jwε(F (1)
1 (w, τ, ε) + F

(1)
2 (w, τ, ε))

+λ(F (1)
1 (w, τ, ε) + F

(1)
3 (w, τ, ε)) +

∂F
(1)
3 (w, 0, ε)

∂z

}
. (22)

which we will solve under the assumption that F
(1)
k (w, τ, ε), F

(1)
k (w, z, τ, ε) and

their derivatives have limits as ε → 0.

Theorem 2. F
(1)
k (w, τ) is given by

F
(1)
k (w, τ) = Φ(w, τ)rk(x), k = 0, 3 (23)

where Φ(w, τ) satisfies

∂Φ(w, τ)
∂τ

= a′(x)w
∂Φ(w, τ)

∂w
+ b(x)

(jw)2

2
Φ(w, τ) (24)

and rk(x) is defined in (16). a(x) is defined by (18) and b(x) is given by

b(x) = a(x)+2(λ(g1(x)+g3(x))+g′
3(0, x)−x(g0(x)+g2(x)−r0(x)−r2(x))), (25)

where

g′
3(0, x) = (λ + x)B∗(μ)g2(x) + ((a(x) − λ)(λ + x)B∗′(μ) − xB∗(μ)) (26)

and gk(x), k = 0, 3 are defined by

−(λ + x)g0(x) + μg2(x) = a(x)r0(x),

(λ + x)g0(x) + ((λ + x)(B∗(μ) − 1) + μ)g2(x) + μg3(x)

= xr0(x) + (a(x) − λ)r1(x) − ((a(x) − λ)(λ + x)B∗′(μ) − a(x) + λB∗(μ))r2(x),

g1(x) + g3(x) − (λ + x)b1(g2(x) + g0(x))

=
(

(λ − a(x))(λ + x)
b2
2

− xb1

)
(r0(x) + r2(x)),

g0(x) + g1(x) + g2(x) + g3(x) = 0, (27)

and where b2 =
∫ ∞
0

x2dB(x).
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Proof. The methodology of the proof is similar to that used in paper [14] before.

As it will be shown a(x) in (18) and b(x) in (25) are coefficients of a diffusion
process. Later we will show their role in the approximation of the stationary
distribution of i(t).

Remark 1. The results in Theorem 2 show that in the heavy traffic regime (σ →
0) i(t) and the state of the servers are independent as their joint characteristic
function is decomposed as a product of the orbit part and the server part.

6 Approximation of the Stationary Distribution Based
on Diffusion Limit

In this section, we apply the diffusion limit to find the probability distribution of
i(t) under σ → 0 in our system. This general method is also used other related
work e.g. [14].

Lemma 1. Under σ → 0

y(τ) = lim
σ→0

√
σ

{
i(τ/σ) − 1

σ
x(τ)

}
, (28)

is the solution of
dy(τ) = a′(x)ydτ +

√
b(x)dw(τ). (29)

We consider
l(τ) = x(τ) + εy(τ),

where ε =
√

σ as before.

Lemma 2. The process l(τ) is the solution of

dl(τ) = a(l)dτ +
√

σb(l)dw(τ) (30)

up to an infinitesimal of order ε2.

Under the steady-state regime, we consider l(τ)

s(l, τ) = s(l) =
∂P{l(τ) < l}

∂l
. (31)

Theorem 3. The density s(l) of l(τ) is given by

s(l) =
C

b(l)
exp

⎧
⎨

⎩
2
σ

l∫

0

a(x)
b(x)

dx

⎫
⎬

⎭ , (32)

where C is some constant that satisfies the normalization condition.
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7 Numerical Examples

Let us consider G(i) in the form

G(i) =
C

b(σi)
exp

⎧
⎨

⎩
2
σ

σi∫

0

a(x)
b(x)

dx

⎫
⎬

⎭ , (33)

and define P (i) as

P (i) =
G(i)

∞∑
i=0

G(i)
. (34)

We use P (i) to approximate P{i(t) = i}.
We consider a particular case of B(x) as a Gamma distribution with param-

eters of shape α = 2 and of scale β = 2. We consider λ = 0.5 and μ = 1.
Figure 2 presents the approximation of the probability distribution of the

i(t) with different values of calls’ delay time in the orbit: P1 - the approximation
with σ = 0.5, P2 - the approximation with σ = 0.3, P3 - the approximation with
σ = 0.1.

Fig. 2. The probability distribution i(t)

This figure shows the feasibility of our proposed approach.

8 Conclusion

In this paper, we have investigated the tandem retrial queue with two connected
servers and without intermediate buffer. The first server provides services for
calls for an arbitrary random time, while the second does for an exponentially
distributed random time. Under the condition that σ → 0, we have obtained
diffusion limit of a scaled version of i(t). The stationary probability density
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distribution of this diffusion process is used to approximate the stationary dis-
tribution of i(t).

In further research, we plan to compare our approximate results with simu-
lation
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Abstract. A two-way communication system is modeled in this paper.
A retrial queueing system with a finite and an infinite sources is used
in the model. The system has two sources. The first source is finite,
the second source is infinite. Jobs from the first source are the primary
jobs (requests). They can be called as first order job, as well. Jobs from
the second source are the secondary jobs. They can be called as second
order job, as well. In case of an idle server, the second order customers
are called for service. This situation is said as a special search for cus-
tomers.

The non-reliable server is subject to random breakdowns. Two types
of breakdowns are considered: the regular breakdown, when the first or
second order customer under service is sent back to the orbit or the infi-
nite source, respectively, and the catastrophic breakdown, when all of the
requests at the server and in the orbit are sent back to the corresponding
sources. The novelty of this paper is to investigate the effect of catas-
trophic breakdown in a two-way communication environment. The goal
is to determine the steady-state probabilities and the system character-
istics. The system balance equations are formulated for different cases,
but the analytic solution is very difficult. A software tool is used instead.
Figures illustrate the effect of the system parameters on the performance
measures in scenarios of regular and catastrophic breakdowns.

Keywords: two-way communication · catastrophic breakdown · retrial
queues

Introduction

For modeling different types of infocommunication and computer sciences, the
retrial queueing systems are a useful and effective tool. Results can be found
in various publications [1–6]. Several models assume finite sources. It means,
that a finite number of population is in connection with the system. In some
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cases, these finite source models are more realistic and give a better description
of the considered application [2,7]. In addition, the considered real-life systems
are unfortunately non-reliable, that is the server can lose its efficiency or may
break down. There is a large literature on this types of system subject to random
breakdowns [1–6].

Sometimes the customers can not spend long time in the queue or in the
orbit. They leave the system. In order not to lose these customers, a two-way
communication system is built up. Here the customers can sign up for a special
service. The system in an idle period will call these customers for the service.
This field also has a literature. For the most interesting results see, [8–15].

This two-way communication principle can be considered as a special search
for customers, as well. With this outgoing call, the organization (business, com-
mercial etc.) can look for customers, send advertisement, and call them a per-
sonal encounter in case of interest. This way the efficiency of the system also
can be increased, the ratio of the idle periods can be optimized. Results can be
found, e.g. in [5,16–20].

In this paper, a special two-way communication system is considered. It is
called searching for customers. Two types of customers are in the system. The
organization has a small or large number of basic customers. They are called the
primary customers. They make calls (request) towards the business entity. It
can be considered as a server in the system. The principle of the retrial queueing
system is applied for these customers. In case of an occupied server, the cus-
tomer is not lost, it can wait and retry its request for the service. The customer
keep retrying until a successful service. The first (finite) source contains these
customers. During the idle periods of the server, outgoing calls are performed
towards the secondary clients. They are in the second (infinite) source. These
customers are the secondary customers, and they are reaching the system for
some special reasons. For example, answer some promotion or check some per-
sonal data. They are called at an idle period of the system, but in the time period
until arriving, a primary customer might be arrived. In this case the secondary
customer finds the system occupied. A called customer can not be sent away, so
it is placed in a priority (non-preemptive) buffer. For the next outgoing call this
buffer will be applied.

The non-reliable server might break down. The main interest of this paper
is to investigate the effect of a disaster event, which is called as a catastrophic
event or breakdown. The most characteristic property of this type of breakdown
is, that in case of the disaster event (or negative customer arrival) all of the
services are interrupted, the customers from the servers, orbit, priority buffer
are sent back to the corresponding source. There is a large literature on this
phenomenon. For example, these types of investigations are very effective for
describing the behavior of bank teller equipment. Here, several different disaster
event can be imagined. For example, some mechanical malfunction, loss of power
etc. Sometimes, the disaster is represented as the presence or arrival of a so called
negative client. In this case, all of the service is stopped, the system is blocked,
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and all of the clients are removed from the system. Results on disaster and
negative customers can be seen in [21–25], and reference therein.

The chapters of the paper are organized in the following way. In Sect. 1
the element of the system is given. It contains the stochastic description of
the system (Markov analysis), the working modes, scenarios, parameters etc.
Section 2 contains the system balance equations. The system probabilities can
be calculated from those equation. For calculation the Mosel-2 software is used.
From system probabilities the performance measures (mean waiting times, size
of orbit etc.) can be obtained. The paper ends with a summary and conclusion.

1 Description of the Model

The system is modeled by a single-server retrial queueing system with a finite
and an infinite sources. The functionality of the model is displayed in Fig. 1.

Fig. 1. The system model

The system has two sources. The first one is finite with the first order cus-
tomers, the number of customers is N . These customers generate a job towards
the server using the exponential law with parameter λ1. For the first order cus-
tomers, there is no queue at the server. After the service, the job goes back to
the source can generate a new request again. The service time is also exponen-
tially distributed with parameter μ1. When the server is busy, the incoming job
is transferred to the orbit. The size of the orbit is N . From the orbit the jobs
after an exponential random time interval with parameter ν retry their request
to the server until they are served.

The model has second order customers in an infinite number of sources. These
customers generate triggered requests only. The idle server makes outgoing calls
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towards this infinite source, and the second order customers generate a request to
be served. The generation is also exponential with parameter λ2. The distribution
of service times is also exponential with parameter μ2. During the generation
time interval of the second order customer, a new customer might arrive to the
server. Thus, the called and incoming second order customer may find the server
busy. In this case, the following scenarios can be investigated:

– The second order customer is sent back to the infinite source,
– The second order customer is transferred into a priority buffer. In the case

of an idle server, a second order customer is called from this buffer. The size
of the buffer is one because in the case of an idle server, there is no outgoing
call when a customer is in the buffer.

In this model the single server is unreliable, it may be subject to breakdown.
Here the regular and the catastrophic breakdowns are considered. In regular
breakdown, the server stops working. The breakdown parameters are γ0 and γ1
for idle and busy servers, respectively. γ2 is the parameter of the repair. The
behavior of the customers at the time of breakdown is described below. The
considered times are exponentially distributed. During the breakdown period,
the sources can be blocked (they are not able to generate requests) or non-
blocked. In this paper, the non-blocked case is considered. The other breakdown
mode is the catastrophic breakdown. This is the situation when a disaster event
removes all of the customers from the system (from the orbit, from the buffer,
and from the server after interrupting the service). The repair of the system
starts immediately. The breakdown parameters are γ0 and γ1 for idle and busy
servers, respectively. γ2 is the parameter of the repair. The considered times are
exponentially distributed. During the breakdown period, the sources are blocked,
they are not able to generate requests.

In case of a regular breakdown, a primary client can find the server down.
In this case, it is sent to the orbit. In this server state, a secondary client might
reach the system, as well. For this, the unoccupied server performs an outgoing
call. The infinite source has an inter arrival time (request generation). This time
has an exponential distribution. The parameter of the distribution is λ2. During
the time interval of the generation, the time between the call and the arrival of
the secondary client, the server can go wrong. Two different scenarios can be
considered here.

– The secondary client is transferred back to the infinite source,
– The secondary client is transferred into a priority buffer. In the case of an

idle server, a second order customer is called from this buffer.

In case of a catastrophic breakdown, the sources are blocked. No new request
is generated.

When the server is busy, a first order or a second order customer is under
service. A breakdown can occur in the busy sate, as well. In case of regular
breakdown, the behavior of the first order customers can be the followings:

– The primary client is transferred to the waiting facility (orbit),



148 A. Kuki et al.

– The primary client leaves the system and goes back to the source,
– The primary client remains at the system, namely, at the server. The service of

the client will be restarting or resuming when the server is up again. (because
of the memory-less property of the exponential distribution of the service
times, restarting or continuing the service has no difference).

In case of catastrophic breakdown, all of the customers in the system, thus
the customer under service are sent beck to the sources.

In case of regular breakdown, the behavior of the second order customers
there are also some cases to be investigated.

– The secondary client remains at the server. The service will start again when
the repair is finished.

– The secondary client leaves the system and goes back to the second source.

In case of catastrophic breakdown, all of the customers in the system, thus
the customer under service are sent beck to the sources.

Let us denote O(t) and S(t) the number of requests in the orbit and the state
of the server at a given time point of t:

S(t) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

0, when no job is at the server
1, when the server is working

with a primary client
2, when the server is working

with a secondary client
3, when the server is down

.
The state-space of the underlying Markovian-process (S(t), O(t)) can be

described as a set of {0, 1, 2, 3} × {0, 1, 2, ..., N} elements. Although the sys-
tem has an infinite source, the maximum number of the customers in the system
is (N + 1) (N in the orbit and one second order customer under service), there
is no stability problems regarding the system. The state space is finite.

For buffered and non-buffered models the system balance equations can be
formulated. For example, in the non-buffered case when a customer under service
is sent back to the corresponding source at a breakdown the equations are the
following.

pi,j = lim
t→∞ P (S(t) = i, O(t) = j), i = 0, 1, 2, 3 and j = 0, 1, ..N (1)

[(N − j)λ1 + λ2 + jν + γ0] p0,j = μp1,j + μp2,j + γ2p3,j (2)

[(N − j − 1)λ1 + μ + γ1] p1,j = (N − j)λ1p0,j + (j + 1)νp0,j+1 (3)

[(N − j)λ1 + μ + γ1] p2,j = λ2p0,j (4)
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[(N − j)λ1] p3,j = γ0p0,j + γ1p1,j−1 + γ1p2,j (5)

with p1,−1 = p0,N+1 = 0.
The system balance equations in the case of a catastrophic breakdown look

like this:

[(N − j)λ1 + λ2 + jν + γ0] p0,j = μp1,j + μp2,j (6)

[(N − j − 1)λ1 + μ + γ1] p1,j = (N − j)λ1p0,j + (j + 1)νp0,j+1 (7)

[(N − j)λ1 + μ + γ1] p2,j = λ2p0,j (8)

γ2p3,0 = γ0p0,j + γ1p1,j + γ1p2,j (9)

with p1,−1 = p0,N+1 = 0.
The manual solution of the Kolmogorov-equations is very hard. An alterna-

tive method has to be found. For calculating the steady-state probabilities, the
MOSEL-2 software has been used. Based on the calculated system probabilities
the usual performance measures are provided by the software. Using the system
probabilities, these measures can be calculated by the following formulas, as well.

– Utilization 1

U1 =
N∑

o=0

P (1, o) (10)

– Utilization 2

U2 =
N∑

o=0

P (2, o) (11)

– Mean number of customers in the orbit

O =
3∑

s=0

N∑

o=0

oP (s, o) (12)

– Mean number of active primary customers

M = N − O − U1 (13)

– Mean generation rate of primary customers

λ1 = λ1M (14)

– Mean time spent in orbit by using Little-formula

W =
O

λ1

(15)
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2 Numerical Results

The most important goal of these types of stochastic systems is to obtain the
performance measures and system characteristics. Usually, the throughput, uti-
lization, response times, waiting times, queue length are considered. Here the
utilization and response time are focused.

The manual solution of the Kolmogorov-equations is very hard. There exist
alternative methods for performing this task. For calculating the steady-state
probabilities, several software tools can be applied. Based on the calculated sys-
tem probabilities the usual performance measures are usually provided by the
software. Because solving directly the balance equations is rather difficult, the
MOSEL-2 tool is used. The system equations are solved by the SPNP (Stochastic
Petri Net Program). The following figures illustrate the most interesting numer-
ical results. The numerical values of the applied parameters in the model are
listed in Table 1.

Table 1. Numerical values of model parameters

Case studies

No. N λ1 λ2 μ ν γ0 γ2

Fig. 2 100 x − axes 2 3 0.05 0.1 1

Fig. 3 100 x − axes 2 3 0.05 0.01 1

Fig. 4 100 x − axes 2 3 0.05 0.2, 0.5 1

Fig. 5 100 x − axes 2 3 0.05 0.2, 0.5 1

Fig. 6 100 x − axes 2 3 0.05 0.2 1

Fig. 7 100 x − axes 2 3 0.05 0.2, 0.5 1

Fig. 8 100 x − axes 2 special 0.05 0.2 1

The table contains only the idle time breakdown parameters. For calculations,
the same values are used for the busy time breakdown parameters. The first two
figures compare two different cases for the regular breakdown:

– In case of busy state breakdown, the service of the first order and second
order customers are interrupted. The first or second order customer under
the interrupted service is sent back to the orbit or to the infinite source,
respectively.

– The service of both types of customers is interrupted. The customers are
left at the server. When the server is up again, their service will continue or
restart. Because of the exponentially distributed service time, this difference
- restart or continue - has no effect on the system characteristics.

On Fig. 2 displays the difference of the scenarios mentioned above (leave
or remain). The failure rate here is rather high, thus the difference between
the scenarios is significant. The interruption is more frequent and the first order
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Fig. 2. Mean Waiting Time vs. λ1

Fig. 3. Utilization vs. λ1

customers are sent back to the orbit more frequently, which results higher waiting
times. The waiting time of the ‘leave the system’ case is greater because the first
order jobs go to the orbit and they have to try again.
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Fig. 4. Mean Waiting Time vs. λ1

Figure 3 displays the utilization in function of the first order generation rate.
When the failure rate is small, the difference between the two scenarios is not
significant. This figure shows the situation when the failure rate is high, thus the
differences in utilization are more significant. The utilization is greater for the
‘Continue’ scenario because after the repair the server state will be immediately
busy. While for the other scenario the server will be idle, and a retrial, first or
second order generation with an exponentially distributed time interval will take
place.

Fig. 5. Mean Waiting Time vs. λ1

In Figs. 4 and 5 the running parameter is the generation rate for first order
customers, λ1, and the considered performance measure is the mean waiting time
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in the orbit. Here only the first order customers can take place. In Fig. 4 the
case of regular breakdown is displayed for two different failure rates. Comparing
the mean waiting times, a reverse effect can be observed. In case of regular
breakdown (Fig. 4) for a higher failure rate, the waiting time is higher. The
reason is that the customers spend more time in the orbit or at the server in
down periods. While in case of catastrophic breakdown (Fig. 5) the waiting time
is less for higher breakdown rates. Customers are sent to the sources in case of
a breakdown.

Fig. 6. Mean Waiting Time vs. λ1

Fig. 7. Mean Response Time vs. λ1
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Figure 6 compares the waiting time between the regular and catastrophic
breakdown at a given failure rate, γ0 = γ1 = 0.2. As it was expected, the
waiting time is much higher for the regular breakdown.

In Fig. 7 and 8 the catastrophic breakdown is applied. The running parameter
is λ = λ1, the first order generation rate. In Fig. 7 the mean response time can
be seen for two different failure rates (γ0 = γ1 in this figure). For a higher failure
rate, lower response time can be observed because the jobs are more often kicked
off to the source.

Figure 8 displays the server utilization. Here, the service rates for first (μ1)
and second order (μ2) customers are different. μ1 = 4 and μ2 = 2. This is the
reason, that the utilization is higher in the catastrophic case than in the normal
breakdown case.

Fig. 8. Server utilization vs. λ1

3 Conclusion

A special two-way communication system was investigated here. First order cus-
tomers come from a finite source, while in the case of an idle server, second order
customers can reach the system via a direct call. Different cases can be consid-
ered. Failure rates are set to be equal for idle server, for server with first order
customer, and for server with second order customer. Two different cases were
considered. The system is subject to regular breakdown and catastrophic break-
down. In case of regular breakdown, the “leave the system” and the “remain at
server” scenarios were compared. Based on the numeric result, it can be stated,
the second scenario is more effective regarding the response times, waiting times,
and utilization. When the two breakdown models were compared with different
failure rates, the expected reverse effect of the breakdown parameters can be
observed.
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Abstract. In this paper a processor-sharing queueing system is inves-
tigated. Two types of customers enter the system according a marked
Markovian arrival process. It is assumed that the number of customers
of each type simultaneously being serviced is limited. The service times
of customers have a phase type distribution the parameters of which
depend both on the type of a customer and on the number of customers
of this type in the system. The operation of the system is described in
terms of a multi-dimensional Markov chain. We calculate the stationary
probabilities, the main performance characteristics of the system and
derive the Laplace–Stieltjes transform of the sojourn time distribution.
We also present illustrative numerical examples to show the behavior
of the performance measures of the system and to solve numerically an
optimization problem.

Keywords: Processor sharing · Marked Markovian arrival process ·
Phase type distribution · Stationary distribution · Performance
measures · Sojourn time

1 Introduction

Processor sharing technology is very popular in computer systems and telecom-
munications networks. It can be found a number of examples of real processor
sharing systems and their mathematical models in the literature , see, e.g. the
papers [1–8]. Most often, it is assumed that the processor can be used by an
unlimited number of users, the input flow is stationary Poisson, and the service
times are distributed exponentially. More general systems have been considered
in the papers [9,10] where it was assumed that customers arrive into the sys-
tem according to Markovian arrival process (MAP ) and service times have a
phase type distribution. In these papers, homogeneous traffic is assumed, which
is not always suitable for describing next-generation wireless communication net-
works, implying, in particular, the use of the Internet of Things and the presence
of interaction between H2H users and M2M devices, see, e.g. [6–8]. The pres-
ence of heterogeneous requests gives rise to the need to develop new mechanisms
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to maintain the specified quality of service parameters for both H2H users and
M2M devices. At the same time, with an increase in the intensity of the proposed
load, the planners at the base station of the LTE network must determine the
optimal strategy for the allocation of radio resources based on the established
restrictions, for example, the probability of loss of requests from H2H users and
the average transmission time of data blocks from M2M devices.

The queueing system considered in this paper significantly expands the capa-
bilities of modeling real systems with processor sharing. We believe that there are
restrictions on the number of users of different types simultaneously in service,
and we do not introduce restrictive assumptions such as the homogeneity and
uncorrelated nature of the customers flow, as well as the exponential distribution
of service times for customers of different types. We assume that the input flow
to the system is correlated and described by the marked Markov arrival process
(MMAP ) introduced in the paper [11]. For a more adequate description of the
service process, we use a phase type distribution (PH) which is successfully used
to approximate an arbitrary distribution.

Thus, in this paper we consider a queueing system with processor sharing
which receives two types of customers arriving according to a MMAP . If at
the moment of a customer arrival the number of customers of this type on the
server is greater than a predetermined threshold, then the customer leaves the
system un-handled, it is considered lost. Otherwise, the customer takes up part
of the throughput of the channel and is serviced for a period of time having a
PH distribution, the parameters of which differ for customers of different types.

2 Mathematical Model

We consider a queueing system with two type of customers and processor sharing.
Customers of different types arrive into the system according to the MMAP
under control of the irreducible Markov chain νt, t ≥ 0, which takes values in
the set {0, 1, 2, . . . ,W} and is called as an underlying process of the MMAP . The
transitions of the underlying process accompanied by an arrival of a customer of
type k are stored as entries of the matrix Dk, k = 1, 2, of order W̄ × W̄ where
W̄ = W + 1 and idle transitions of this process are described by the matrix D0.

The arrival rate of customers of type k in the MMAP is given by λk =
θDke, k = 1, 2, where the vector θ, is defined as the unique solution of the
system θD(1) = 0,θe = 1. The total arrival rate is λ = λ1 + λ2.

The variance of inter-arrival times of customers of type k is calculated by the
formula

vk =

2θ(−D0 −
2∑

l=1,l �=k

Dl)−1e

λk
−

(
1
λk

)2

, k = 1, 2.

The coefficient of correlation of the lengths of two adjacent intervals between
the arrivals of customers of type k is calculated by
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c(k)cor =
[θ(D0 +

2∑

l=1,l �=k

Dl)−1

λk
Dk(D0 +

2∑

l=1,l �=k

Dl)−1e −
(

1
λk

)2]

v−1
k , k = 1, 2.

A detailed description of the MMAP can be found, for example, in [11].
In this paper we assume that the server can simultaneously serve up to N

customers of type 1 and up to R customers of type 2. If only one customer
of the kth type is serviced on the server, then its service time has the PH
distribution given by the irreducible representation (βk, Sk) and the underlying
process m

(k)
t , t ≥ 0, with the state space {1, . . . ,Mk,Mk + 1}, where the state

Mk + 1 is absorbing. The intensities of transitions to the absorbing state are
determined by the column vector S

(k)
0 = −Ske. The service rate of a customer

of type k is calculated as μk = (βk(−Sk)−1e)−1.
The customers of each type divide the throughput of the server allocated

to them equally. If the server simultaneously serves nk customers of the kth
type, then the service time of any of these customers has the PH distribution
given by the irreducible representation (βk, 1

nk
Sk) and the underlying process

m
(k)
t , t ≥ 0, with the state space {1, . . . ,Mk,Mk + 1}, where the state Mk + 1 is

absorbing. The intensities of transitions to the absorbing state are determined
by the column vector 1

nk
S

(k)
0 .

If an incoming customer of type 1 finds n < N customers on the server,
then it is sent for service. In this case, the throughput of the server allocated to
customers of the 1st type is divided equally between n+1 customers. Otherwise,
the customer leaves the system un-handled, it is considered lost. Similarly, if a
customer of the 2nd type finds r < R customers on the server, then it is sent for
service. The throughput of the server allocated to customers of type 2 is divided
equally between r + 1 customers. Otherwise, the customer is lost.

3 Process of the System States

The operation of the system is described by the regular irreducible Markov chain

ξt = {nt, rt, η
(1)
t , η

(2)
t , . . . , η

(M1)
t , τ

(1)
t , τ

(2)
t , . . . , τ

(M2)
t , νt},

where at the moment t

• nt is the number of customers of type 1 on the server, nt = 0, N ;
• rt is the number of customers of type 2 on the server, rt = 0, R;
• η

(m(1))
t is the number of customers of type 1 that are served in the phase m(1),

η
(m(1))
t = 0, nt, m(1) = 1,M1;

• τ
(m(2))
t is the number of customers of type 2 that are served in the phase m(2),

τ
(m(2))
t = 0, rt, m(2) = 1,M2;

• νt is the state of underlying process of the MMAP , νt = 0,W ,
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In the following we will also use the processes

u(1)
t = {η

(1)
t , η

(2)
t , . . . , η

(M1)
t }; u(2)

t = {τ
(1)
t , τ

(2)
t , . . . , τ

(M2)
t }.

Let us arrange the states of the considered Markov chain ξt, t ≥ 0, as follows.
We enumerate the components nt, rt in the direct lexicographic order and, for
fixed values of these components, we renumber the states of the processes u(1)

t

and u(2)
t in the reverse lexicographic order.

To further describe the transition rates of the chain, we need the matrices
Pi(·), Ai(·, ·), and Li(·, ·), which have the following probabilistic sense: the matrix
Ll(n, S̃k) contains the transition rates of the process u(k)

t , leading to the end of
servicing of one of n − l customers of the kth type; the matrix Pn(βk) contains
the transition probabilities of the process u(k)

t leading to an increase in the
number of customers of the kth type on the server from n to n + 1; the matrix
An(l, S̃k) contains the transition rates of the process u(k)

t in its state space
without increasing or decreasing the number of customers of the kth type. Here

S̃k =
(

0 O

S
(k)
0 Sl

)

, k = 1, 2. Algorithm for calculating matrices Pi(·), Ai(·, ·), and

Li(·, ·) follows from the results of V. Ramaswami and D. Lucantoni published in
the papers [12,13].

Let us introduce the notation Qn,n′ for the matrices of transition rates of the
chain from the states corresponding to the value n of the first component to the
states corresponding to the value n′ of this component, n, n′ = 0, N. We also
introduce the following notation:

• Cm
n =

(
n
m

)

= n!
m!(n−m)! ;

• diag{a1, a2, ..., an} is a block diagonal matrix in which the diagonal blocks
are equal to the elements listed in brackets, and the other blocks are zero;

• diag+{a1, a2, ..., an} (diag−{a1, a2, ..., an}) is a square block matrix in which
the off-diagonal (below-diagonal) blocks are equal to the elements listed in
brackets, and the other blocks are zero.

Lemma 1. The infinitesimal generator Q of a Markov chain ξt, t ≥ 0, has the
block three-diagonal structure

Q =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

Q0,0 Q0,1 O . . . O O
Q1,0 Q1,1 Q1,2 . . . O O
O Q2,1 Q2,2 . . . O O
...

...
...

. . .
...

...
O O O . . . QN−1,N−1 QN−1,N

O O O . . . QN,N−1 QN,N

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,
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where

Q0,0 = diag−{ 1
r LR−r(R, S̃2), r = 1, R} ⊗ IW̄

+ diag{0, 1
r Ar(R,S2), r = 1, R} ⊕ D0 + diag{OR−1∑

r=0
C

M2−1
r+M2−1

, I
C

M2−1
R+M2−1

} ⊗ D2

+ diag+{Pr(β2), r = 0, R − 1} ⊗ D2 + Δ0;

Qn,n+1 = Pn(β1) ⊗ I R∑

r=0
C

M2−1
r+M2−1

⊗ D1, 0 ≤ n ≤ N − 1;

Qn,n−1 = 1
nLN−n(N, S̃1) ⊗ I R∑

r=0
C

M2−1
r+M2−1

⊗ IW̄ , 1 ≤ n ≤ N ;

Qn,n = I
C

M1−1
n+M1−1

⊗ diag−{ 1
r LR−r(R, S̃2), r = 1, R} ⊗ IW̄

+ 1
nAn(N, S̃1) ⊕ diag{0, 1

r Ar(R,S2), r = 1, R} ⊕ (D0 + δn,ND1)

+ I
C

M1−1
n+M1−1

⊗ diag{OR−1∑

r=0
C

M2−1
r+M2−1

, I
C

M2−1
R+M2−1

} ⊗ D2

+ I
C

M1−1
n+M1−1

⊗ diag+{Pr(β2), r = 0, R − 1} ⊗ D2 + Δn, 1 ≤ n ≤ N,

where ⊗(⊕) denotes the Kronecker product (sum) of matrices, δn,N is the Kro-
necker symbol, Δn, n = 0, N, are diagonal matrices, which are constructed so
that the equality Qe = 0T holds.

Proof. The generator block Q0,0 contains the transition rates in the set of states
corresponding to the absence of customers of type 1. The corresponding transi-
tions occur when

a) one of the customers of type 2 finishes the service. The corresponding rates
are given by the matrix diag−{ 1

r LR−r(R, S̃2), r = 1, R} ⊗ IW̄ ;
b) the number of customers of type 2 that are in a certain phase of servicing

is changed or the MMAP underlying process makes an idle transition. The
corresponding rates are given by the matrix diag{0, 1

r Ar(R,S2), r = 1, R} ⊕
D0;

c) a customer of type 2 arrives and take place on the server (the matrix
diag+{Pr(β2), r = 0, R − 1} ⊗ D2) or, if all places for customers of this type
are occupied, the customer leaves the system un-handled (the matrix
diag{OR−1∑

r=0
C

M2−1
r+M2−1

, I
C

M2−1
R+M2−1

} ⊗ D2.

Block Qn,n, n = 1, N , contains the transition rates in the set of states corre-
sponding to the presence of n customers of type 1 in the system. The expression
for this block differs from the expression for the block Q0,0 only in the second
term, which in this case specifies the transition rates of the processes of servicing
customers of types 1 and 2 in their sets of states without changing their numbers
or the MMAP idle transition, or the loss of customer of type 1.

Block Qn,n+1, n = 0, N − 1, contains the rates of transitions accompanied by
the arrival of a customer of type 1 which takes up place on the server.
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Block Qn,n−1, n = 1, N , contains the rates of transitions accompanied by the
departure of the serviced customer of type 1 from the system.

All other blocks of the generator are zero matrces, since they consist of the
rates of two or more transitions of the considered Markov chain on an infinitely
small time interval.

4 Stationary Distribution. Performance Measures

In accordance with the described ordering of the states of the Markov chain
ξt, we form the row vectors pn, n = 0, N, of the stationary probabilities of the
states of the chain corresponding to the value n of the first component nt. Let
p = (p0,p1, . . . ,pN ) be the vector of steady state probabilities of the chain.
This vector is the unique solution to the system of linear algebraic equation
pQ = 0,pe = 1. If the dimension of this system is large, the solution can be
calculated using the algorithm developed in [14].

Based on the stationary distribution, we can obtain formulas for calculating
a number of stationary performance characteristics of the system. Below we
present some of them.

• Joint distribution of the number of type 1 customers on the server, the number
of type 1 customers in different service phases, and the states of the MMAP

p∗
n = pn(I

C
M1−1
n+M1−1

⊗ e R∑

r=0
C

M2−1
r+M2−1

⊗ IW̄ ), n = 0, N.

• Distribution of the number of customers of type 1 in the system pn =
p∗

ne, n = 0, N.
• Joint distribution of the number of type 2 customers on the server, the number

of type 2 customers in different service phases, and the states of the MMAP

q∗
r =

N∑

n=0

pn(I(n,r) ⊗ IW̄ ), r = 0, R,

where

I(n,r) =

⎛

⎜
⎜
⎜
⎜
⎝

O
C

M1−1
n+M1−1

r−1∑

m=0
C

M2−1
m+M2−1×C

M2−1
r+M2−1

e
C

M1−1
n+M1−1

⊗ I
C

M2−1
r+M2−1

O
C

M1−1
n+M1−1

R∑

m=r+1
C

M2−1
m+M2−1×C

M2−1
r+M2−1

⎞

⎟
⎟
⎟
⎟
⎠

.

• Distribution of the number of customers of type 2 in the system qr = q∗
re, r =

0, R.
• The probability of losing a customer of the kth type

Ploss,k =
λk − ϕk

λk
, k = 1, 2,

where λk is the arrival rate of customers of kth type, ϕk is the output rate of
customers of kth type. The value of ϕk is calculated as
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ϕ1 =
N∑

n=1
p∗

n(I
C

M1−1
n+M1−1

⊗ eW̄ ) 1
nLN−n(N, S̃1)e,

ϕ2 =
R∑

r=1
q∗

r(IC
M2−1
r+M2−1

⊗ eW̄ ) 1r LR−r(R, S̃2)e.

5 Sojourn Time Distribution

Denote by v
(1)
n (η(1), η(2), . . . , η(M1), η̃, ν, s) the Laplace-Stieltjes transform (LST )

of the virtual sojourn time distribution of a customer of type 1 for which ser-
vice began with the phase η̃, and which found n customers of the first type in
the system, the number of customers in phase m(1) equal to η(m(1)), and the
underlying process of the MMAP in the state ν, n = 0, N − 1, η(m(1)) = 0, n,
m(1) = 1,M1, ν = 0,W .

Similarly, let v
(2)
r (τ (2), . . . , τ (M2), τ̃ , ν, s) be the Laplace-Stieltjes transform

of the virtual sojourn time distribution of a customer of type 2 for which ser-
vice began with the phase τ̃ , and which found in the system r customers of
the second type, the number of customers in the phase m(2) equal to τ (m(2)),
and the underlying process of the MMAP in the state ν, r = 0, R − 1,

τ (m(2)) = 0, r, m(2) = 1,M1, ν = 0,W . First we derive formulas of the con-
ditional LST s v

(1)
n (η(1), η(2), . . . , η(M1), η̃, ν, s). Let us arrange these LST s in the

reverse lexicographic order of arguments η(1), η(2), . . . , η(M1), in the direct lexi-
cographic order of arguments η̃, ν and form the column vectors

v(1)
n (s), n = 0, N − 1, v(1)(s) = ((v(1)

0 (s))T , (v(1)
1 (s))T , . . . , (v(1)

N−1(s))
T )T .

Similarly, for customers of type 2, we form the column vectors

v(2)
r (s), r = 0, R − 1, v(2)(s) = ((v(2)

0 (s))T , (v(2
1 (s))T , . . . , (v(2)

R−1(s))
T )T .

Theorem 1. The Laplace-Stieltjes transform vector v(1)(s) is calculated as fol-
lows:

v(1)(s) = (sI − A(1))−1b(1), (1)

where

A(1) = diag{[ 1
n+1An(N,S1) + Δn] ⊕ S1 ⊕ (D0 + D2), n = 0, N − 1}

+ diag−{ 1
n+1LN−n(N, S̃1) ⊗ IM1W̄ , n = 1, N − 1}

+ diag+{Pn(β1) ⊗ IM1 ⊗ D1, n = 0, N − 2}

+ diag{O
W̄

N−2∑

n=0
C

M1−1
n+M1−1

, I
C

M1−1
N+M1−2

} ⊗ IM1 ⊗ D1},

b(1) = diag{I
C

M1−1
n+M1−1

⊗ 1
n+1S

(1)
0 ⊗ IW̄ , n = 0, N − 1}e.
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Proof. Using the probabilistic interpretation of the Laplace-Stieltjes transform,
we obtain the following equations for the vectors v(1)

n (s), n = 0, N − 1 :

v(1)
n (s) =

∞∫

0

e−ste[
1

n+1An(N,S1)+Δn]⊕S1t(I
C

M1−1
n+M1−1

⊗ 1
n + 1

S
(1)
0 ) ⊗ e(D0+D2)tdte

+

∞∫

0

e−ste[
1

n+1An(N,S1)+Δn]⊕S1t(LN−n(N, S̃1) ⊗ IM1) ⊗ e(D0+D2)tdtev(1)
n−1(s)

+

∞∫

0

(e−ste[
1

n+1An(N,S1)+Δn]⊕S1t ⊗ e(D0+D2)t)(Pn(β1) ⊗ IM1 ⊗ D1)dt

× v(1)
min{n+1,N−1}(s)e. (2)

Let us explain the meaning of the terms on the right-hand side of (2):

– the first integral (first term) is the probability that the incoming virtual
customer will be serviced before any of the n customers of type 1 that are
already on the server at the time of the virtual customer arriving, and during
the time of servicing the virtual customer there will be no catastrophe.

– the integral in the second term is the vector of probabilities that after the
arrival of the virtual customer one of the n customers of type 1 that are
already on the server at the time of the arrival of the virtual customer will
be served first, and no catastrophe will occur during the service of this first
customer. After the first of the mentioned n customers is served, the server
resource is redistributed between the remaining i customers, including the
virtual one, and the further scenario of servicing the virtual customer up to
the distribution of the MMAP states and service phases will be the same as
at the moment of the arrival of a virtual customer that found n−1 customers
in the system. By definition, the corresponding vector of LST s is v(1)

n−1(s) The
product of the integral and v(1)

n−1(s) will give the required vector of LST s of
the service time distribution of the virtual customer.

– when describing the third term, we will distinguish between the cases n <
N −1 and n = N −1. In both cases, the integral in the third term is a vector of
probabilities that after the arrival of the virtual customer, the first event that
entails a change in the number of customers on the server will be the arrival
of a customer of type 1 and no catastrophe will occur in the time before it
arrives. In the case n < N −1, after this customer arrives, the server resource
will be redistributed between n + 2 customers, including the virtual one, and
the further scenario of servicing the virtual customer up to the distribution
of the MMAP states and servicing phases will be the same as at the moment
of arrival of the virtual customer that found n + 1 customers in the system.
By definition, the corresponding vector of LST s is v(1)

n+1(s). The product of
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the integral and v(1)
n+1(s) will give the required vector of LST s of service time

of the virtual customer. In the case n = N − 1 the received customer will be
rejected, since the server already contains N customers, including the virtual
one. Then the further scenario of servicing the virtual customer, up to the
distribution of the states of the MMAP , will be the same as at the moment of
the arrival of the virtual customer that found N −1 customers in the system.
By definition, the corresponding vector of LST s is v(1)

N−1(s). The product of
the integral and v(1)

N−1(s) will give the required vector of LST s of service time
of the virtual customer.

After calculating the integrals in (2) and a number of algebraic transforma-
tions, we obtain the required formula (1).

Corollary 1. The Laplace-Stieltjes transform vector v(2)(s) is calculated as fol-
lows:

v(2)(s) = (sIW̄ − A(2))−1b(2),

where the matrix A(2) and the vector b(2) are obtained from the matrix A(1) and
the vector b(1), respectively, by replacing N by R and permutation of indices 1
and 2.

Having known the Laplace-Stieltjes transforms defined in Theorem 1 and
Corollary 1, we can find all the moments of the sojourn time, in particular, the
mean and the variance of this time.

The corresponding mean (variance) for customers of type 1 we denote as
v̄
(1)
n (η(1), η(2), . . . , η(M1), η̃, ν) (d(1)n (η(1), η(2), . . . , η(M1), η̃, ν)) and for customers

of type 2 as v̄
(2)
r (τ (1), . . . , τ (M2), τ̃ , ν) (d(2)n (τ (1), τ (2), . . . , τ (M2), τ̃ , ν)).

We renumber the values v̄
(1)
n (η(1), η(2), . . . , η(M1), η̃, ν), (v̄(1)

n (η(1), η(2), . . . ,

η(M1), η̃, ν))2 and d
(1)
n (η(1), η(2), . . . , η(M1), η̃, ν) in the lexicographic order

described above and form the corresponding column vectors

v̄(1)
n , ¯̄v(1)

n, d̄(1)
n , n = 0, N − 1.

In turn, from these vectors we form the column vectors

v̄(1) = ((v̄
(1)
0 )T , (v̄

(1)
1 )T , . . . , (v̄

(1)
N−1)

T )T , ¯̄v(1) = ((¯̄v(1)
0)

T , (¯̄v(1)
1)

T , . . . , (¯̄v(1)
N−1)

T )T ,

d(1) = ((d
(1)
0 )T , (d

(1)
1 )T , . . . , (d

(1)
N−1)

T )T .

By analogy we introduce the column vectors v̄(2), ¯̄v(2),d(2).

Corollary 2. The vector of conditional means, v̄(k), and the vector of condi-
tional variances, d(k), of the sojourn times of a customer of type k are calculated
by the following formulas:

v̄(k) = −(A(k))−1e, d(k) = 2(A(k))−2e − ¯̄v(k), k = 1, 2.
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To calculate the Laplace-Stieltjes transforms of the sojourn time distributions
of the customers of type 1 and 2 admitted into the system, we introduce into
consideration the vector p+ (q+), the components of which define the joint
distribution of the number of type 1 (type 2) customers that are in different
service phases and the states of the MMAP immediately after the moment the
customer of type 1 (type 2) has been admitted into the system. It is easy to see
that these vectors are calculated as follows:

p+ = λ−1
1 (p∗

0,p
∗
1, . . . ,p

∗
N−1)[diag{Pn(β1), n = 0, N − 1} ⊗ D1],

q+ = λ−1
2 (q∗

0,q
∗
1, . . . ,q

∗
R−1)[diag{Pr(β2), r = 0, R − 1} ⊗ D2].

Theorem 2. The Laplace-Stieltjes transformations of the sojourn time distribu-
tions of the customers of type 1 and type 2 accepted to the system are calculated
as

v(1)(s) = p+v(1)(s), v(2)(s) = q+v(2)(s).

Corollary 3. The means and variances of the sojourn times of customers of
type 1 and type 2 accepted to the system are calculated using the following for-
mulas:

v̄(1) = p+v̄(1), d(1) = p+d(1); v̄(2) = q+v̄(2), d(2) = q+d(2).

6 Numerical Results

In this section we conduct a number of numerical experiments aimed at studying
the behavior of the performance characteristics of the system depending on its
parameters and at solving optimization problems. To carry out the experiments,
a computer program was written in Python using built-in packages for process-
ing matrices, calculating complex mathematical formulas and executed in the
PyCharm 2019.3.4 (Professional Edition) program.

In Experiment 1 we analyse the dependence of the loss probabilities,
Ploss,k, k = 1, 2, and the mean sojourn times, v̄(k), k = 1, 2, on the maximum
number of channels allocated for customers of type k. In this experiment we used
the following input data.

The MMAP is specified by the matrices D0, D1, D2, where

D0 =
(−86 0.01

0.02 −2.76

)

, D1 =
(

59.5 0.693
0.14 1.778

)

, D2 =
(

25.5 0.297
0.06 0.762

)

.

With such matrices λ = 12.43, λ1 = 0.7λ and λ2 = 0.3λ, c
(1)
cor = 0.39, c

(2)
cor = 0.33.

The PH distribution of the service time of a single customer of type 1 is

given by the vector β(1) = (1, 0) and the matrix S(1) =
(−80 80

0 −80

)

. This

means that the service time has Erlang distribution of order 2 with parameter
80 and the service rate μ1 = 40.
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Fig. 1. Ploss,1 and Ploss,2 vs N under fixed number of channels N + R = 30

Fig. 2. v̄(1) and v̄(2) vs N under fixed number of channels N + R = 30

The PH distribution of the service time of a single customer of type 2 is

given by the vector β(2) = (1, 0) and the matrix S(2) =
(−20 20

0 −20

)

. This

means that the service time has Erlang distribution of order 2 with parameter
20 and the service rate μ2 = 10.

The total number of channels, into which the throughput of the servers is
divided, is N + R = 30.

It is seen from Fig. 1 that Ploss,1 decreases and Ploss,2 increases. This is due
to the fact that with an increase in N the possible number of type 1 customers in
the system increases and the smaller part of the customers will be lost. Taking
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into account the equality N + R = 30, with an increase in N the value of R
decreases and more and more customers are lost.

Figure 2 shows that v̄(1) is an increasing function of N . This is due to the fact
that with an increase in N the throughput allocated for a customer of type 1
decreases and hence the sojourn time increases. Due to the relation N + R = 30
when N increases then R decreases. That entails an increase in the throughput
available for a customer of type 2 and a decrease in the time for servicing the
customer.

Experiment 2. In this experiment, we solve numerically the optimization
problem which consists in the optimal sharing of the throughput μ = μ1 + μ2

of the server between customers of types 1 and 2 and the optimal choice of the
maximum numbers of simultaneously served customers of types 1 and 2 under
the given restrictions on the minimum throughput allocated for each customer.

As a criterion for the quality of the operation of the system, we use the
economic functional, which is the average penalty per unit of time

J = aN̄ + c1λ1Ploss,1 + c2λ2Ploss,2, (3)

where a is the penalty charged per unit of time spent by one customer of type 1
in the system, ck is the penalty charged for the lost customer of type k, k = 1, 2.

The problem is to choose the parameters μ1, N and R which provide the
minimum to criterion (3) under the following conditions:

μ1 + μ2 = μ = const, γ1 =
μ1

N
= const, γ2 =

μ2

R
= const.

Here γk is the minimum throughput of the server that can be used to provide
service to a customer of type k.

Fig. 3. N̄ vs μ1 under restrictions μ = 70, γ1 = 2, γ2 = 7
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Fig. 4. Ploss,1, Ploss,2 vs μ1 under restrictions μ = 70, γ1 = 2, γ2 = 7

In the experiment, we will use the MMAP specified in Experiment 1. The
shape of service time distributions is the same as in Experiment 1. In the course
of the current experiment, we will only change the service rates μ1 and μ2 mul-
tiplying the matrices S1, S2 by the corresponding constants. We fix the values
of μ, γ1, γ2 as μ = 70, γ1 = 2, γ2 = 7.

For these initial data, let us look at the graphs of the dependence of the
mean number of customers of the type 1, N̄ , and the probabilities of losses of
customers of different types, Ploss,1, Ploss,2, which are shown in Fig. 3 and 4.

Having calculated the dependence of N̄ , Ploss,1, Ploss,2 on μ1 we can calculate
the dependence of the cost criteria J on μ1 under different cost coefficients. Let

Fig. 5. J vs μ1 for c1 = 1, c2 = 20, a = 1, 3, 7 under restrictions μ = 70, γ1 = 2, γ2 = 7
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us consider the following cost coefficients: a = 1, 3, 7, c1 = 1, c2 = 20. The results
of calculation are presented in Fig. 5 and in Table 1.

Table 1. Values of N, R, J as functions of μ1 for c1 = 1, c2 = 20, a = 1, 3, 7 under
restrictions μ = 70, γ1 = 2, γ2 = 7

μ1 N R J, a = 1 J, a = 3 J, a = 7

2 1 9 13.09 14.60 17.64

5 2 9 12.81 14.76 18.67

10 5 8 11.69 14.91 21.34

15 7 7 9.24 13.58 22.24

20 10 7 6.54 11.40 21.11

25 12 6 3.96 8.17 16.57

30 15 5 2.45 5.58 11.83

35 17 5 2.15 4.04 7.83

40 20 4 4.13 5.32 7.72

45 22 3 8.82 9.65 11.32

50 25 2 16.99 17.62 18.89

55 27 2 22.84 23.35 24.37

60 30 1 44.79 45.22 46.07

63 31 1 50.32 50.70 51.48

It is seen from Fig. 5 and Table 1 that for input data under consideration the
server throughput is divided approximately in half between customers of types
1 and 2. In the case a = 1, 3, it is optimal to divide the throughput allocated
to customers of types 1 and 2 as 17:5. When a = 7, this proportion changes as
20:4.

7 Conclusion

We analysed a queuing system with the MMAP of customers of two types, pro-
cessor sharing and a limited number of places for customers of different types.
We described the system operation by the multi-dimensional Markov chain, cal-
culated its stationary distribution and the main performance characteristics.
The Laplace-Stieltjes transform of the sojourn time distribution is found. For-
mulas for means and variances of the sojourn time are obtained. We carried out
numerical experiments to study the behavior of the system performance charac-
teristics and to find the optimal strategy for sharing the processor throughput
between users of different types. The results obtained can be used in the study
and planning of telecommunication networks for various purposes, in particular,
the Internet of Things.
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Abstract. We consider a single-server system with energy saving inac-
tive state, non-zero setup, shutoff and hot reserve state. Matrix-analytic
method is used to obtain the steady-state performance and average power
demand, as well as study the energy-performance tradeoff in explicit way.
Numerical results illustrate the model’s properties.

Keywords: Matrix-Analytic Method · Explicit Solution · Single
Server · Energy-Performance Tradeoff

1 Introduction

Energy efficiency is one of the important subjects in the telecommunication sys-
tems development catalyzed by the dramatic increase in the energy consumption
of the ICT infrastructure in recent years [2,15,19]. There are many theoretical
and engineering approaches to these problems, including the queueing systems
analysis, which in some cases allows to derive explicit expressions for the optimal
policies.

Matrix-analytic method [6,13,18] is an efficient approach suitable for a
detailed modeling of stochastic systems using structured Markov processes. It
allows to perform a detailed study of the steady-state characteristics of the model
with the help of stochastic and algebraic approaches. While in general the pro-
cedure has to be performed numerically and suffers from the curse of dimension-
ality, in relatively rare cases there are rigorous explicit expressions which allow
to avoid numerical computation. In this paper one of such cases is studied.

To address the increasing energy demand, it is typical to introduce vari-
ous energy saving policies which allow to reduce the average steady-state energy
demand, however, at the price of the system performance degradation. In many
cases, there is an optimal trade-off between these two key system characteristics,
see e.g. [12]. In the present paper, we address such an issue in a rather simple
model of a single-server device capable of a standby regime that allows to save
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energy. Inspired by the policy studied in the work [4], we study a slightly dif-
ferent model. As opposed to the one studied in [4], our model is a single-server
model with unbounded queue and First-Come-First-Served discipline, setup and
shutoff phases, as well as an exponentially distributed idle (e.g. hot reserve)
delay before entering the shutoff in an empty system. We treat the rate of such
a delay as a management parameter and study its inference on the key system
performance/energy efficiency measures.

The paper is indeed an exercise in applying the matrix-analytic method to
a rather simplistic model. However, the main contribution of this research is
an explicit solution which allows to solve the energy/performance optimization
problem in a rigorous way. The second contribution of this research is the rather
technical yet interesting result, Lemma 1, for the computation of the steady-state
performance in the system in terms of the marginal phase probability.

The structure of the paper is as follows. We perform a very short literature
survey in Sect. 1.1 and introduce the notation in Sect. 1.2. We introduce the
matrix-analytic method and prove some interesting though technical results that
simplify subsequent analysis in Sect. 1.3. The model is stated and analyzed in
Sect. 2. The results are numerically illustrated in Sect. 3. We finalize the scope
with a conclusion.

1.1 Literature Review

There is a huge body of literature covering various aspects of energy efficiency in
the computing systems. Due to a lack of space, below we briefly enumerate some
of the papers where the results were obtained by means of applied probability
and queueing theory.

There are various energy saving mechanisms that are addressed, e.g. the
dynamic voltage and frequency scaling [3,14,21], throttling [9], energy harvest-
ing [5,22], load balancing [10], to name a few. At the same time, in many cases
simulation is used since the analytical results are hard to obtain. In particular,
a similar model of the server farms with setup costs were studied in [8], where
the results were obtained by means of approximation and asymptotic analysis.

To finalize this review, we note that explicit analysis of the energy-
performance trade-off is usually complicated due to a sophisticated nature of
the models, however, if it is possible, it allows to derive the most general con-
clusions. At the same time, such an explicit analysis can be augmented by the
simulation and technical modeling [20,21] to convert the conclusions obtained
to practical recommendations.

1.2 Notation Conventions

Vectors and matrices are highlighted with bold letters, with special notation for
a zero matrix, O, zero vector, 0, and vector of ones, 1. Being a column or a row
vector should be clear from the context.

We use ei as the vector having one at ith position and zero elsewhere, i.e. ei

is the ith row of an identity matrix I.
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1.3 Matrix-Analytic Method

In this section we briefly describe the necessary results for the matrix-analytic
method which is used to study the discrete or continuous-time discrete state
space Markov chains having a specific structure. In particular, it is useful for
the celebrated level-independent Quasi-Birth-Death (QBD) process which is a
continuous-time Markov chain living in a discrete state space E = {0,Y0} ×⋃

i≥1{i,Y} with the infinitesimal generator matrix Q having block-tridiagonal
structure [6,13]

Q =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

A0,0 A0,1 O O . . .

A1,0 A1,1 A(1) O . . .

O A(−1) A(0) A(1) . . .

O O A(−1) A(0) . . .
...

...
...

...
. . .

⎤

⎥
⎥
⎥
⎥
⎥
⎦

. (1)

The blocks A0,1,A1,0 are the (non-sqare in general) matrices of the transition
rates to/from the level zero, whereas A(i) are the square matrices defining the
transition rates from the level k ≥ 1 to k + i, i = −1, 0, 1. Finally, Ai,i are the
square matrices describing the transition rates for the phases within the level
i = 0, 1. Due to the properties of a generator matrix,

Q1 = 0. (2)

As such, the diagonal elements of the blocks Ai,i, i = 0, 1 and A(0) are non-
positive, while all the remaining elements are of Q are non-negative. The stability
criterion of such a process is given by the celebrated Neuts ergodicity condition,

αA(1)1 < αA(−1)1, (3)

where α is the stochastic vector solving the system

α(A(−1) + A(0) + A(1)) = 0. (4)

Provided the stability condition (3) holds, the steady-state probability vector
π = (π0,π1, . . . ), where π0 = ||π0,y||y∈Y0 and πi = ||πi,y||y∈Y , i ≥ 1, can be
obtained using the so-called matrix-geometric recursive solution

πi+1 = πiR. (5)

The so-called rate matrix R is the minimal (in terms of the spectre of its eigenval-
ues) non-negative solution of a matrix quadratic equation with matrix unknown,

R2A(−1) + RA(0) + A(1) = O. (6)

The vectors π0 and π1 are to be found with a boundary condition system

(π0,π1)
[
A0,0 A0,1

A1,0 A1,1 + RA(−1)

]

= 0, (7)

π01 + π1(I − R)−11 = 1. (8)
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Finally, the performance measures of the system can be obtained using the
steady-state vector π, in particular,

EXe =
∑

n≥1

nπn1 = π1(I − R)−21, (9)

where Xe is the number of customers in the system in steady state.
In general, the matrix R is obtained by one of the numerical methods [13].

However, there are nice special cases when the matrix R can be found in explicit
form, in particular, when matrix A(1) or A(−1) is of rank 1, the latter case is
considered in the following theorem.

Theorem 1. [16, Theorem 5] Let A(−1) = cr, where c is the column vector
and r is the row vector such that r1 = 1. Let the matrix G of order |Y| be the
minimal non-negative solution of the matrix quadratic equation

A(−1) + A(0)G + A(1)G2 = O. (10)

Then
G = 1r. (11)

The matrix G = ||Gi,j ||i,j∈Y is a stochastic matrix that consists of the condi-
tional probabilities Gi,j of entering the level k−1 by entering the state (k−1, j)
starting from the state (k, i), k ≥ 1 [13,16]. The matrix R can be obtained from
the matrix G using the following relation [11]

R = −A(1)(A(0) + A(1)G)−1. (12)

In particular, if (11) holds, the matrix R can be obtained from (12) in an explicit
form.

The system (7)–(8) can be simplified if the matrix (1) has a more simple
structure, namely, if

A0,1 = A(1), A1,0 = A(−1), A1,1 = A(0). (13)

In such a case, Y0 = Y and the following simplified system can be used:
{

π0(A0,0 + RA(−1)) = 0
π0(I − R)−11 = 1.

(14)

It is interesting to suggest an alternative approach to π0 calculation which avoids
the matrix inversion. Note that π0,y = P{Xe = 0, Ye = y}, y ∈ Y, where (Xe, Ye)
are the corresponding steady-state variables. Consider the marginal probability
π
(Y )
y = P{Ye = y}, y ∈ Y and note that

π(Y ) = ||π(Y )
y ||y∈Y =

∞∑

i=0

πi = π0(I − R)−1. (15)
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Then the system (14) is equivalent to
{

π(Y )(I − R)(A0,0 + RA(−1)) = 0
π(Y )1 = 1.

(16)

Using (6), we obtain from (16) an equivalent system
{

π(Y )B = 0,
π(Y )1 = 1,

(17)

where
B = A0,0 + A(1) + R(A(−1) + A(0) − A0,0).

Note that the solution of (17) can be computed without the matrix inversion.
Moreover, in some cases it is possible to use regenerative approach to obtain
π(Y ) explicitly without (17), see [17]. Finally, the vector π0 can be computed
using the expression

π0 = π(Y )(I − R). (18)

Using π(Y ), it is possible to rewrite (9), taking into account (18), into the
following expression:

EXe = π(Y )(I − R)−11 − 1. (19)

The expression (19) requires a matrix inversion, whereas the explicit expression
for R given in Theorem 1 requires one more inversion. Thus, we find it useful to
derive the following technical result.

Lemma 1. The expression (19) has the following form:

EXe = π(Y )

[

I − A(1)
(
A(0) + A(1)(G + I)

)−1
]

1 − 1.

Proof. Using (12) and denoting T = A(0) + A(1)G, transform (19):

EXe = π(Y )
[
(T + A(1))T −1

]−1

1 − 1.

Equivalently,
EXe = π(Y )T (T + A(1))−11 − 1.

Finally, adding and substracting A(1) to the multiplier T , obtain the desired
statement. ��

2 Model

We study a system with an energy-saving state referred below as the inactive
state which is common both in the IoT systems and in conventional battery-
powered devices such as the laptops/smartphones (some examples are technically
known as hibernate, sleep, suspend states etc.). In such a state, the system cannot
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Fig. 1. State transition diagram of the Markov chain {X(t), Y (t)}t�0.

serve the customers. Moreover, entering and exiting from the inactive state takes
some time during which the service is also not possible. As such, there is a decline
in the system performance which, however, may result in energy saving. Below
we study this tradeoff.

In what follows, to save the space we simultaneously describe the model and
give the necessary parameters of the distributions of random variables involved
which are in most cases exponential if not given otherwise explicitly. Let X(t)
be the number of customers in the system referred below as the level and Y (t) ∈
{1, 2, 3} =: Y be the phase of the system encoded as follows:

1 – the setup phase (exiting from the inactive phase) if X(t) > 0 and inactive
phase if X(t) = 0;

2 – the working phase;
3 – the shutoff phase (entering the inactive phase).

The transitions (Fig. 1) are possible from a fixed phase (x, y) ∈ E := Z0 × Y to
the states

– (x + 1, y) with rate λ, due to a customer arrival;
– (x − 1, y) with rate μ, if x > 0 and y = 2, due to a departure of customer;
– (x, 2) with rate α, if x > 0 and y = 1, due to a completion of the setup period;
– (x, 1) with rate β, if y = 3, due to a completion of the shutoff phase and

entering inactive phase if x = 0 or entering the setup phase if x > 0, respec-
tively;

– (0, 3) with rate γ, if y = 2 and x = 0.
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It should be noted that the phase 3 can be entered only when there are no
customers left in the system, and thus γ is the parameter of an exponentially
distributed idle period before the beginning of a shutoff. Thus, hereinafter we
consider γ as the management parameter of the system and study the dependence
of system performance on γ in a rigorous way.

Since the transitions of the system are only possible within the two adjacent
levels, the process {X(t), Y (t)}t≥0 is indeed a QBD with a generator matrix of
the form (1). Below we define the blocks of the generator Q explicitly. The fol-
lowing matrices define the transitions related to arrival/departure of a customer

A(1) = λI, A(−1) = diag(μe2), (20)

whereas the matrix A(0) gives the transition rates related to a phase change,

A(0) = −A(1) − A(−1) + A, (21)

where

A =

⎡

⎣
−α α 0
0 0 0
β 0 −β

⎤

⎦ . (22)

It is easy to see that A = A(−1) + A(0) + A(1) and, moreover, the vector α
solving (4) equals α = (0, 1, 0) which gives a rather simple and expected stability
condition

ρ :=
λ

μ
< 1. (23)

Since A(−1) = cr′, where the column vector c = (0, μ, 0) and the row vector r′ =
(0, 1, 0) follow immediately, the matrix G = 1r′ as given by (11) in Theorem 1.
Now using (12), the matrix R has the following explicit form:

R =

⎡

⎣

λ
α+λ ρ 0
0 ρ 0
βλ

(α+λ)(β+λ) ρ λ
β+λ

⎤

⎦ . (24)

To obtain the steady-state probability vector, we need to define the matrices
Ai,j , i, j ∈ {0, 1}. The matrix A0,0 defining the transitions of an idle system is
given as follows

A0,0 = −A(1) +

⎡

⎣
0 0 0
0 −γ γ
β 0 −β

⎤

⎦ . (25)

It remains to note that the condition (13) holds good, and thus the steady-state
vector π can be found in explicit form using one of the approaches introduced in
Sect. 1.3. At the same time, the steady-state performance (number of customers
in the system) is given by Lemma 1.

Now we define the steady-state energy demand to state the optimization
problem. Assume that d(0) = (d(0)1 , d

(0)
2 , d

(0)
3 ) is the (column vector of) energy
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demand at the standby/idle/“idle shutoff” state, while d = (d1, d2, d3) is the
energy demand in the setup/active/shutoff states, respectively. Note that the
“idle shutoff” state is the state of an empty system experiencing the shutoff
period preceding the standby state, whereas the “shutoff” corresponds to the
same state of a system with a non-empty queue. It is possible that some of these
quantities are identical, say, d

(0)
3 might be equal to d3, but we do not impose

such restrictions to stay general. Then the average steady-state energy demand
in the system, EEe equals

EEe(γ) = π0d
(0) + (π(Y ) − π0)d, (26)

where we stress the dependence on γ in the notation. At that, the steady-state
performance is obtained by Lemma 1 and can also be denoted EXe(γ).

Following the procedure, the expression for π(Y ) can be obtained in an
explicit form, denoting b = β + λ,

π
(Y )
1 = C−1βγ(αβ + λb)(1 − ρ), (27)

π
(Y )
2 = ρ + C−1αβλb(1 − ρ), (28)

π
(Y )
3 = C−1αγλb(1 − ρ), (29)

where
C = βγλb + α(γλ2 + β2(γ + λ) + βλb).

Moreover, the vector π0 = (π0,1, π0,2, π0,3) can also be obtained explicitly,

π0,1 = C−1αβ2γ(1 − ρ), (30)

π0,2 = C−1αβλb(1 − ρ), (31)

π0,3 = C−1αβγλ(1 − ρ), (32)

and it is clear that ρ = π
(Y )
2 − π0,2 is the busy probability. We note that work-

ing with symbolic expressions can be performed using Wolfram Cloud engine.
Finally, using (27)–(32), the expression (26) also becomes explicit.

Consider now the partial derivative which, after some algebra, can be
obtained as follows,

∂EXe(γ)
∂γ

= C−2λ2b(λb(α2 + β2) + αβ(βb + λ2)) > 0.

Similarly a second derivative can be shown to be negative, which gives the opti-
mal point at γ = 0 (that is, the server is never using the inactive phase), as
expected. Following [7], we name the case γ = 0 as NEVEROFF, while γ = ∞
can be named INSTANTOFF.

Consider now the partial derivative

∂EEe(γ)
∂γ

=C−2αβγb(β(d(0)2 − d1)λb + α(β2(d(0)2 − d
(0)
1 )

+ βλ(d(0)2 − d
(0)
3 ) + λ2(d(0)2 − d3)))(ρ − 1). (33)
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Interestingly, the derivative does not depend on the value d2. However, the sign
of the derivative depends on the exact values of the per-state energy demands.
Specifically, if

d
(0)
2 > max(d1, d3, d

(0)
1 , d

(0)
3 ),

then this partial derivative is always negative, which gives the monotone decrease
of the energy w.r.t. γ. Indeed, in such a case due to a high energy demand of
the idle regime, it is preferable to use the standby regime at earliest (that is,
INSTANTOFF would be efficient if the performance is not taken into account).
Then the optimal γ is the one satisfying the steady-state performance constraints
expressed, say, in multiplicative form

EXe(γ) ≤ (1 + ε)EXe(0), (34)

for some small ε > 0. If, on the contrast,

d
(0)
2 < min(d1, d3, d

(0)
1 , d

(0)
3 ),

then this partial derivative is always positive, which gives the optimum at γ = 0
(in such a case, the EXe is also minimal), that is, NEVEROFF is the optimal
policy. Indeed, in such a configuration, the energy demand in idle regime is less
than the demand in standby regime, and thus there is no reason for switching
to standby. This case is, however, not realistic. The most realistic assumption
would be the following,

d
(0)
1 < d

(0)
2 < min(d1, d3, d

(0)
3 ). (35)

It is clear from (33) that, since C > 0 and ρ < 1, αβγb ≥ 0, the sign of the
partial derivative depends on the expression

φ(λ) := β(d(0)2 −d1)λb+α(β2(d(0)2 −d
(0)
1 )+βλ(d(0)2 −d

(0)
3 )+λ2(d(0)2 −d3)), (36)

which is a quadratic polynomial of λ. Let us analyze this expression. Denote
φ(λ) = c2λ

2 + c1λ + c0, where

c2 = α(d(0)2 − d3) + β(d(0)2 − d1),

c1 = β2(d(0)2 − d1) + αβ(d(0)2 − d
(0)
3 ),

c0 = αβ2(d(0)2 − d
(0)
1 ).

It follows from (35) that c2 < 0 and c1 < 0, while c0 > 0. Hence D := c21 −
4c2c0 > 0 and the polynomial φ(λ) has two roots. Then φ(0) = c0 > 0. Since
−c1/(2c2) < 0, one of the two roots of φ(λ) is positive, that is, φ(λ∗) = 0, where

λ∗ =
−c1 − √

D

2c2
. (37)

As such, φ(λ) > 0 for λ < λ∗, hence it follows from (33) that the partial deriva-
tive is negative. Thus, the mean steady-state energy demand decreases with γ
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if the input rate λ < λ∗, while it increases with γ for λ > λ∗. This allows to
formulate a threshold policy which selects the INSTANTOFF or NEVEROFF
policy according to the input rate, or selects the γ using the restriction (34)
accordingly. We also note that a decision should also take into account the sta-
bility condition (23). In the next section we illustrate this most interesting case
numerically.

3 Numerical Illustration

To extend the understanding of the findings of Sect. 2, we numerically illus-
trate the model in the most interesting case (35), where the balance between
INSTANTOFF and NEVEROFF policies is attained depending on the input
rate λ.

In the following experiment we configure the constant parameters α, β, μ in
such a way that λ∗ < μ and plot the graphs of EEe(γ) and EXe(γ) vs. γ for
several values of λ s.t. λ < μ. We (arbitrarily) fix the values α = 1, β = 2, μ = 5
and select the demands of the system states according to a specification of a HP
ProBook 450 G8 Notebook PC [1] as follows (the numbers are in Watts):

d
(0)
1 = 0.384, d

(0)
2 = 2.184, d1 = d2 = d3 = d

(0)
3 = 4.164.

As such, (35) is satisfied and it follows from (37) that λ∗ ≈ 0.48732. Now we vary
λ ∈ {0.3, 0.4, λ∗, 0.6}, ceteris paribus, and depict the corresponding dependency
of EXe(γ) on γ in Fig. 2; EEe(γ) on γ in Fig. 3, for γ ∈ [0, 5].

A brief look at the Figs. 2–3 confirms the monotone dependency of EXe(γ) on
γ in steady state, and the change of convexity/concavity for λ below and above

Fig. 2. Dependency of the mean number of customers in the system, EXe(γ), given

in (19), on γ ∈ [0, 5] for d
(0)
1 = 0.384, d

(0)
2 = 2.184, d1 = d2 = d3 = d

(0)
3 = 4.164, α =

1, β = 2, μ = 5 and λ ∈ {0.3, 0.4, 0.48732, 0.6}.



182 A. Golovin and A. Rumyantsev

Fig. 3. Dependency of the mean energy demand of the system in steady state, EEe(γ),

given in (26), on γ ∈ [0, 5] for d
(0)
1 = 0.384, d

(0)
2 = 2.184, d1 = d2 = d3 = d

(0)
3 = 4.164,

α = 1, β = 2, μ = 5 and λ ∈ {0.3, 0.4, 0.48732, 0.6}.

the value λ∗. As such, for relatively large input rate λ > λ∗ the most energy
efficient state that simultaneously offers the best performance is γ = 0, i.e. the
NEVEROFF policy. For input rates smaller than λ∗ the energy savings (i.e.
the decrease of mean energy demand compared to a system with NEVEROFF
policy) for γ > 0 increase with decreasing input rate. The non-linear dependence
is also visible. It can be seen from (27)–(32) and (19), (26) that the dependency
of mean steady-state demand, as well as performance, is indeed hyperbolic on γ.

4 Conclusion

In this paper, a single-server system with energy saving inactive state, non-zero
setup, shutoff and hot reserve state was studied explicitly. The properties of the
model allowed to use the matrix-analytic method to obtain the steady-state per-
formance and average power demand, as well as study the energy-performance
tradeoff. It might be interesting to continue this research towards multiserver
systems, as well as study the system in more general case with non-exponential
distributions of the random sequences involved. However, we leave this oppor-
tunity for future research.
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Abstract. In the article the queuing system for non-ordinary Poisson
flows is described using the Lyapunov-Yablonsky’s cybernetic approach.
The system model is a multidimensional Markov chain. The analytical
properties of this Markov chain have been studied. In this work, a sim-
ulation model of the system has been studied. The transient process is
investigated and an algorithm for searching the moment of the end of the
transient process is proposed. By the numerical optimization, the quasi-
optimal parameters of the system were found according to the condition
of the minimum average waiting time for service.

Keywords: conflicting flows · cybernetic system · simulation ·
quasi-optimal parameters

1 Introduction

This work is related to the important problem of creating algorithms in intelli-
gent transport systems that control conflicting flows [1] at the intersections of
highways in large cities. An adaptive algorithm for controlling this kind of flows
is proposed. The control algorithm takes into account not only the lengths of
the queues, but also the order in which requests arrive in the system. A mathe-
matical model of such a flow control system from non-homogeneous requests has
been built and studied.

Input flows are two independent conflicting non-ordinary Poisson flows Π1

and Π2. For t0 ≥ 0, t > 0 and j = 1, 2 the probability Pj(t, k) of k requests for
the time interval [t0, t0 + t) along the flow Πj is obtained of the following form

Pj(t, k) = e−λjt

[k/2]∑

n=0

αn
j

(λjtpj)k−n

n!(k − 2n)!

+ e−λjt

[k/2]∑

n=0

αn
j

min{k−2n,n}∑

m=1

βm
j

k−2n−m∑

l=0

γl
j

(λjtpj)k−n−m−lCl
m+l−1

(n − m)!m!(k − 2n − m − l)!
, (1)

where αj , βj , γj , λj and pj = (1 + αj + αjβj/(1 − γj))−1 are distribution
parameters. The properties of such flows with non-homogeneous requests are
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studied in [2,3]. For input flow Πj , the mathematical expectation of the number
of requests at the moment of arrival is

Mj = (1 + 2αj + αjβj(
2

1 − γj
+

1
(1 − γj)2)

)pj .

The adequacy of the representation of real flows using the distribution (1) is
shown on examples of tables from [4].

2 Mathematical Model of the Control System

2.1 Cybernetic Approach of Lyapunov–Yablonsky

The cybernetic approach of Lyapunov–Yablonsky is used to construct and
describe a mathematical model of a discrete system for adaptive control of con-
flict flows and service of non-homogeneous requests [5]. The application of this
approach to the system under study is described in detail in [1].

According to the cybernetic approach, we will consider the system at random
discrete times τi or at intervals [τi, τi+1) for i = 0, 1, . . . Here the value τ0 is the
initial moment of time, and τi, i > 0 are the moments of changing the states
of the server. Let y0 = (0, 0), y1 = (1, 0), y2 = (0, 1) and X is an integer one-
dimensional non-negative lattice. Now let’s define the following random variables
and elements:

1. Γi ∈ Γ = {Γ (1), Γ (2), . . . , Γ (8)}—the state of the service device in the interval
[τi, τi+1);

2. ηj,i ∈ X—the number of requests from the flow Πj that entered the system
during the interval [τi, τi+1), and ηi = (η1,i, η2,i);

3. η′
i—a random vector taking the value y0, if no orders have been received in

the system at the i-th time step [τi, τi+1), and the value yj , if on the i-th step
the first request came (or requests) of the flow Πj ;

4. κj,i ∈ X—the number of requests of the flow Πj in the system at the moment
τi, and κi = (κ1,i, κ2,i);

5. ξj,i—the maximum possible number of requests from the flow Πj that the
system can serve on the interval [τi, τi+1), and ξi = (ξ1,j , ξ2,j).

Let us now define the sequence {τi; i > 0} moments of state change of the
server. For this purpose, we present the meaningful meaning of each state from
the set Γ . The Γ (3j−2) state corresponds to the first stage of the thread’s service
period Πj . The duration of servicing one request arriving from the queue is
equal to a constant value μ−1

j,1 . Duration of stay in Γ (3j−2) is equal to T3j−2. The
Γ (3j−1) state corresponds to the second stage of the thread’s service period Πj .
The duration of servicing one request is equal to μ−1

j,2 < μ−1
j,1 . The duration of stay

in this state is a random variable taking values in the set {kT3j−1; k = 1, nj},
where nj is the maximum number of renewals and T3j−1 is the duration of
one renewal. Renewal occurs in 2 cases: 1) the length of the queue along the
flow Πj is not less than the constant integer parameter Kj > 0, 2) at the
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previous stage of renewals, there were requests that need to be serviced. The
Γ (3j) state corresponds to the changeover mode for the Πj flow, during which
only additional servicing of the requests of the Πj flow is possible. The duration
of stay in this state is T3j . The Γ (6+j) corresponds to the first stage of the service
period of the flow Πj , in the case when an instant transition to the state Γ (3j)

is possible. The duration of stay in Γ (6+j) is a random variable. The maximum
time spent in this state is T3j−2. In this state, the queue for the serviced flow
is empty, and the server monitors the order of arrival of requests. If during the
time T3j−2 the first request of the flow Πj arrived, then in T3j−2 from the time
τi there will be a transition to the state Γ (3j−1). If a request from another thread
arrived first, then an instant transition to the state Γ (3j). And, finally, if during
this time not a single request arrives for both flows, then the server will also
switch to the state in Γ (3j). Constants Tk, k = 1, 6, it is advisable to choose in
the following form

T3j−2 = μ−1
j,1 + l3j−2θjμ

−1
j,1 , T3j−1 = l3j−1θjμ

−1
j,2 , T3j = l3jθjμ

−1
j,2 , (2)

where l3j−2 ∈ X, l3j−1, l3j ∈ {1, 2, . . .} are parameters. The value 0 < θj ≤ 1
denotes the part of service that a request needs to go through in order to start
serving the next request. In the case θj < 1 several requests can be served
simultaneously. The relations (2) means that a change in the state of the server
occurs at the moment when one of the requests is finished servicing. We get that
the maximum possible number of serviced requests is equal 1+l3j−2 for the state
Γ (3j−2), is equal to kl3j−1 for the state Γ (3j−1)and is equal to the integer part
1/θj for the state Γ (3j).

2.2 Recurrent Relations

The cybernetic approach allows us to obtain [1] the following theorem.

Theorem 1. For each i = 1, 2, . . . and j, s = 1, 2, j �= s,

Γi+1 = u(Γi, κi, η
′
i)

=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Γ (3j−2),
{[

Γi = Γ (3s)
]
& [(κj,i > 0) ∨ (κs,i ≥ Ks) ∨ (η′

i = yj)]
} ∨

∨{[
Γi = Γ (3j)

]
&[κs,i = 0]&[κj,i ≤ Kj ]&[η′

i = yj ]
}

,

Γ (3j−1),
{
Γi = Γ (3j−2)

} ∨ {[
Γi = Γ (6+j)

]
&[η′

i = yj ]
}

,

Γ (3j),
{
Γi = Γ (3j−1)

} ∨ {[
Γi = Γ (6+j)

]
&[η′

i �= yj ]
}

,

Γ (6+j),
[
Γi = Γ (3s)

]
&[κj,i = 0]&[κs,i < Ks]&[η′

i = y0];

(3)

κj,i+1 = vj(Γi, κi, ηi, ξi)

=

{
max{0, κj,i + ηj,i − ξj,i} if Γi ∈ Γ\{Γ (3), Γ (6)},

ηj,i + max{0, κj,i − ξj,i} if Γi ∈ {Γ (3), Γ (6)}.

(4)

Hereinafter in the article j, s = 1, 2, j �= s. Using the functional recurrent in
i relation (3), the adaptive algorithm for changing the states of the server can
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Fig. 1. The graph of the server state change algorithm.

be displayed by a graph in Fig. 1. Note that the state of the server at the next
step depends on the state at the previous step, the lengths of the queues, and
the order of arrival of requests.

The relations (3) and (4) allow us to consider and study the limiting proper-
ties of the vector sequence {(Γi, κi); i = 0, 1, . . .}, which is a probabilistic model
of the considered system of adaptive control of conflicting flows and service of
heterogeneous requests [1]. Here are some of the theorems on the this Markov
sequence {(Γi, κi); i = 0, 1, . . .}.

Theorem 2. If there is a limiting distribution of the vector Markov sequence
{(Γi, κi); i ≥ 0}, then

θ1λ1M1

μ1,2
+

θ2λ2M2

μ2,2
< 1.

Corollary from the Theorem 2 is

θjλjMj < μj,2, j = 1, 2.

We introduce the values

T = T1 + n1T2 + T3 + T4 + n2T5 + T6,

Lj = l3j−2 + nj l3j−1 + l3j .

Theorem 3. For the existence of the limit distribution of the vector Markov
sequence {(Γi, κi); i ≥ 0} it suffices to satisfy inequalities

λjMjT − Lj < 0, j = 1, 2.

Theorem 4. If there is a limiting distribution of the vector Markov sequence
{(Γi, κi); i ≥ 0}, then for some j = 1, 2

λjMjT − Lj < 0.



Optimization of the Adaptive Control System for Conflict Cox-Lewis Flows 189

3 Numerical System Investigation

3.1 System Parameters

Unfortunately, it is not possible to analytically find such important characteris-
tics as the average sojourn time of an arbitrary request in the system and the
average length of queues across flows.

To solve the questions posed, a simulation model of the adaptive control sys-
tem for conflicting flows of non-homogeneous requests [7] has been implemented
in the C++ program. The simulation model allows not only to study the control
process of servicing of non-homogeneous requests, but also to obtain realizations
of the vector sequence {(Γi, κi); i ≥ 0}. Each implementation is specified using
the following inputs:

1. Input flows parameters are αj , βj , γj , λj ;
2. System parameters are T1, T2, . . . , T6, μj,1, μj,2, θj , Kj , nj ;
3. Initial values Γ (r), x1, x2 of random elements Γ0, κ1,0, κ2,0.

In contrast to the cybernetic approach, simulation allows observing the pro-
cesses in the system at each moment of time, and not only at specially selected
moments of the discrete time scale. Therefore, with the help of simulation mod-
eling, it is possible to build a model closer to the real system. The disadvantages
of simulation is the impossibility of obtaining new analytical results and the
results obtained are approximate.

In the cybernetic approach, the input pole is given by the input and satu-
ration flows. In the program, the input flows are generated before the start of
the simulation of the system operation. In this case, the intervals between the
groups of requests are modeled using the inverse function method, and the num-
ber of requests in the group is modeled using the method of modeling discrete
distributions. Saturation flows are not explicitly entered in the program. The
description of the congestion flows is specified using the parameters μj,1, μj,2

and θj , through which the duration of servicing requests and the moments of
release of the server are determined.

External memory describes the state of the queues in the system. At the same
time, the moments of arrival and the moments of the beginning of servicing of
requests are stored in the implementation of queues. These points are necessary
to calculate the numerical characteristics of the functioning of the system. The
internal memory is determined by the state of the server The program for deter-
mining the current state of the server also observes the current simulation time
and the point in time when the server becomes free to service the next request.
Modeling the operation of the studied adaptive algorithm is performed step by
step between the moments of changing the states of the server. During the sim-
ulation of one step, the moments of arrival of requests in the system and the
moments of release of the server are processed. If service is not possible during
the arrival of a request, then the request is added to the queue; otherwise, it is
sent for service. When the server is released, the first request from the queue is
sent for servicing if the queue is not empty.
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3.2 Transient Process and Stationary Mode

First of all, it is necessary to study the characteristics of the functioning of
the system in a stationary mode. Therefore, an important task is to determine
the time to reach a stationary regime and to study the transient process. In
simulation, we will consider two implementations of the Cox–Lewis adaptive
flow control process with two types of initial conditions:

1. Zero Γ (r) = Γ (1), x1 = 0, x2 = 0;
2. Shifted Γ (r) = Γ (1), x1 = K ′

1 > K1, x2 = K ′
2 > K2.

The same implementation of input flows are used. Let’s define the completion
moment of the transient process as follows. Let us denote by γ0

j (l) and γ+
j (l)

the time spent in the system by the request with the number l = 1, 2, . . . of
the flow Πj , that entered the system after the beginning of the simulation, with
zero initial conditions and with shifted initial conditions of the second type. The
values

γ0
j (n) =

1
n

n∑

l=1

γ0
j (l), γ+

j (n) =
1
n

n∑

l=1

γ+
j (l) (5)

determine the sample mean times of sojourn in the system of the first n requests
of the flow Πj under the initial conditions of the first and, accordingly, of the
second type. If the condition

∣∣γ+
j (n) − γ0

j (n)
∣∣ ≤ δγ0

j (n), (6)

is satisfied for the proximity parameter δ > 0, then at the meaningful level we
can assume that the initial conditions have ceased to affect the sample mean
residence time for the requests of the flow Πj . If a stationary regime exists in
the system, the value nj(d) determines the number of the request under which
the condition (6) is first fulfilled d times in a row, where d—is a constant natu-
ral number. Let tj—be the moment of completion of servicing the request with
the number nj(d) of the flow Πj and t∗ = max(t1, t2). We will assume that t∗

determines the moment of the end of the transient process in the system for a
given implementation of input flows. Note that the simulation model makes it
possible to find the dependence of the duration of the transient process on the
parameters δ and d. Different realizations of input flows correspond to different
values of estimates for the duration of the system’s transient process. Let’s con-
sider l independent simulations. The estimate γ∗

j of the average sojourn time for
the requests of the flow Πj is calculated by the formula

γ∗
j =

1
l

l∑

i=1

γ0
j,i(Ni).

Value γ0
j,i(Ni) is mean times from (5) for i-th simulation. request number Ni

arrives after time t∗i for i-th simulation. The estimate γ∗ of the average sojourn



Optimization of the Adaptive Control System for Conflict Cox-Lewis Flows 191

time of an arbitrary request will be calculated using the formula for the weighted
average

γ∗ =
λ1M1γ

∗
1 + λ2M2γ

∗
2

λ1M1 + λ2M2
.

Next, we determine the sample average queue length for the flow Πj . Let
the imitation of the system operation lasted for the time t. At the same time,
along the flow Πj , a queue of length k = 0, 1, . . . was observed in t

(k)
j units of

time. Then the sample average length of the queue κ∗
j along the flow Πj will be

calculated by the following formula

κ∗
j =

1
t

∞∑

k=0

kt
(k)
j .

The sample average length of the queue κ∗ for the entire system is defined as
the arithmetic mean of the sample lengths of all queues

κ∗ =
1
2
(κ∗

1 + κ∗
2).

Sample average residence times and sample average queue lengths can serve as
estimates for the respective characteristics.

3.3 Simulation Example

Let’s give an example of the results of simulation modeling with the following
set of parameters:

1. Input flow parameters are α1 = 0.8, β1 = 0.7, γ1 = 0.5, λ1 = 0.6, α2 = 0.6,
β2 = 0.5, γ2 = 0.2, λ2 = 0.3;

2. System parameters are T1 = 1, T2 = 2, T3 = 1, T4 = 1, T5 = 3, T6 = 1,
μ1,1 = 0.5, μ2,1 = 1, μ1,2 = 0.3, μ2,2 = 0.6, θ1 = 1, θ2 = 0.5, K1 = 10,
K2 = 10, n1 = 10, n2 = 10;

3. Initial values of random elements Γ0, κ1,0, κ2,0 are Γ (r) = Γ (1), x1 = 0,
x2 = 0.

Figure 2 and 3 show the dynamics of the queue length for the flow Π1 and
the dynamics of the average waiting time for servicing the requests of this flow,
provided that the stationary mode exists. The abscissa shows the number of the
algorithm step, and the ordinate shows the tracked characteristic. In this case,
the queues have steady oscillations that do not depend on the initial conditions.
The average waiting time for servicing differs significantly for different initial
conditions at the start of the simulation; later on, the characteristics converge.

Let’s increase the intensity of the input flows λ1 = 0, 8 and λ2 = 0, 7. In
this case, there is no stationary mode in the system. Figure 4 and 5 show the
dynamics of the queue length for the flow Π1 and the dynamics of the average
waiting time for servicing the requests of this flow in the absence of a stationary
mode in the system. Similarly, the abscissa shows the number of the algorithm
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Fig. 2. Dynamics of the queue length along the flow Π1 under the condition of the
existence of a stationary mode.

Fig. 3. Dynamics of the average waiting time for servicing requests of the flow Π1

under the condition of the existence of a stationary regime.

step, and the ordinate shows the tracked characteristic. In the absence of a
stationary mode, the queues tend to grow indefinitely with an increase in the
duration of the simulation. The average service wait time also increases with
long simulations.

Let us now investigate the dependence of the duration of the transient process
on the parameters d and δ in the case of a stationary regime in the system. With
a fixed value of δ = 0.05, we obtain the dependence on d of the duration of
the transient process, shown in Fig. 6. The abscissa is the parameter d, and the
ordinate is the number of the request on which the condition for reaching the
stationary was fulfilled. The blue graph corresponds to the flow Π1, the orange
one—to the flow Π2. With a fixed value of d = 10, we obtain the dependence of
the duration of the transient process on δ, shown in Fig. 7. From the graphs in
Fig. 6 and 7 we obtain that with an increase in the d parameter, the duration of
the transient process will be longer. Also, with an increase in the δ parameter,
an inverse relationship is observed.
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Fig. 4. Dynamics of the queue length along the flow Π1 in the absence of a stationary
mode.

Fig. 5. Dynamics of the average waiting time for servicing requests of the flow Π1 in
the absence of a stationary mode.

Fig. 6. Dependence of the duration of the transient process on the parameter d.
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Fig. 7. Dependence of the duration of the transient process on the parameter δ.

With parameters 1–3 of the control system, we obtain the following estimates
of the average waiting time for servicing

γ∗
1 = 7.1684, γ∗

2 = 12.8481, γ∗ = 8.6625,

and estimates for the average queue lengths

κ∗
1 = 10.4691, κ∗

2 = 6.7333, κ∗ = 8.6012.

3.4 Search for Quasi-Optimal System Parameters

Below is an example of searching for quasi-optimal parameter values. For the
system under study, the duration of the first stage of servicing cannot be arbi-
trarily changed, since it is determined by the properties of the input flow. Also,
the duration of the changeover cannot be arbitrarily changed due to the conflict-
ing flows. Insufficient changeover times can lead to accidents. Therefore, we fix
the values T1 = 1, T3 = 1, T4 = 1 and T6 = 1. Thus, the following parameters are
available for optimization T2, T5, n1, n2, K1, K2. Optimization is performed step
by step by parameter pairs (T2, T5), (n1, n2) and (K1,K2) by means of reduced
search. After searching for the optimal parameters for one of the pairs with
fixed values of the remaining parameters, the search for the optimal parameters
for the other pair is performed. The algorithm for searching for quasi-optimal
parameters ends when the next optimization fails to improve the characteristics
of the system. Using the reduced search algorithm, the following quasi-optimal
parameters were obtained

T ∗
2 = 5, T ∗

5 = 1, n∗
1 = 3, n∗

2 = 10,K∗
1 = 1,K∗

2 = 4.

The following estimates of average waiting time for servicing by flows Π1, Π2 and,
accordingly, an estimate of the average waiting time for servicing an arbitrary
request correspond to these quasi-optimal parameters:

γ∗
1 = 2.47241, γ∗

2 = 5.13818, γ∗ = 3.17367.
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The Table 1 shows the steps of the optimization algorithm.

Table 1. Search for quasi-optimal parameters.

T2 T5 n1 n2 K1 K2 γ∗
1 γ∗

2 γ∗

2 3 10 10 10 10 7.91365 12.9163 9.22965

9 6 10 10 10 10 5.10318 11.3382 6.74334

9 6 6 9 10 10 5.06648 11.4252 6.73919

9 6 6 9 3 6 3.79753 6.81921 4.59241

4 2 6 9 3 6 3.09255 5.72206 3.78427

4 2 8 9 3 6 3.01794 5.58343 3.69281

4 2 8 9 1 4 2.81271 4.77639 3.32928

5 1 8 9 1 4 2.48334 5.29321 3.2225

5 1 3 10 1 4 2.47241 5.13818 3.17367

5 1 3 10 1 8 2.48873 5.21597 3.20615

The values T2 = 2, T5 = 3, n1 = 10, n2 = 10, K1 = 10, K2 = 10 in the second
row of the table correspond to the initial parameters of the algorithm. At the
first step of the algorithm, the parameters n1 = 10, n2 = 10, K1 = 10, K2 = 10
were fixed. The pair of parameters (T2, T5) was optimized. The characteristics
of the system were calculated for T2 = 1, 2, . . . , 10 and T5 = 1, 2, . . . , 10. The
smallest value of the estimate γ∗ corresponds to T2 = 9 and T5 = 6. The found
parameters, which were optimized in the first step, are highlighted in bold in the
third line. At the second step, the parameters T2 = 9, T5 = 6, K1 = 10, K2 = 10
were fixed and a pair of parameters (n1, n2) were optimized. Values n1 = 5, 6,
. . . , 15 and n2 = 5, 6, . . . , 15 have been tested. The values n1 = 6 and n2 = 9
turned out to be optimal of the average waiting time for servicing an arbitrary
request. These parameters are marked in bold in the fourth line of the table.
The next steps are performed in a similar way for parameter pairs. At the last
two steps, it was not possible to reduce the average waiting time for servicing
an arbitrary request. Therefore, the quasi-optimal parameters are given in the
penultimate line of the table.

4 Conclusion

The results of an analytical and numerical study of the Cox-Lewis flow control
system from non-homogeneous requests were presents. The mathematical model
of the control system was built using the cybernetic approach and the apparatus
of the queuing theory. The algorithm for determining the completion moment of
the transient process was described. Numerical optimization was carried out on
the basis of a software-implemented simulation model.
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Abstract. In this paper, there is a approach to detect the results of
elements interaction in multi-channel queuing system with large load
and small queue. This method is extended to statistical estimates of
characteristics of non-uniform Poisson flow, describing distribution of
animals in some areas, a resolution of the most powerful decision rule
for constructing of technical systems “friend – foe”. Such approach gives
possibility to expand applications area and to simplify using methods of
research. These methods consists of structural analysis and construction
of upper bounds of objective functions. It permits to shorten numerical
calculations and to obtain explicit results.

Keywords: Multi-server queuing system · Almost deterministic
one-server queuing system · Most powerful decision rule

1 RQ-Queuing Systems with a Large Number of Servers

Consider an RQ-system, i.e., a queuing system with orbit in which customer,
which has not possibility to be served is directed to the orbit. When some server
is released, the customer may be directed to the server in accordance with some
protocol [1–3]. RQ-systems attract attention of specialists in queuing theory last
years (see, for example, materials of Conference ITMM 2018 in Tomsk and 12th
International Workshop on Retrial Queues and Related Topics (WRQ 2018).
But calculations of RQ-systems with large number of servers are sufficiently
complicated. To decrease a complexity of these calculations we use the theorem
on the asymptotic behaviour of an n-server queuing system for n → ∞. In
this theorem, it is proved that at T > 0 for n → ∞, the probability Pn(T )
of customers direction to the orbit during time interval [0, T ] tends to zero. So
used theorem gives possibility to change objective functions of multi-channel
RQ-system from its limit distribution to probability of customers direction to
the orbit during time interval T.

1.1 Preliminaries

Consider n - server queuing systems with the parameter n → ∞. Assume that
an intensity of input flow is proportional to n and en(t) is a number of input
c© Springer Nature Switzerland AG 2022
A. Dudin et al. (Eds.): ITMM 2021, CCIS 1605, pp. 197–207, 2022.
https://doi.org/10.1007/978-3-031-09331-9_16
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flow customers arriving until the moment t, en(0) = 0. Suppose that qn(t) is a
number of working servers at the moment t, qn(0) = 0, τj is the service time of j-
th arriving customer and τj , j ≥ 1, is a sequence of independent and identically
distributed random variables (s.i.i.d.r.v.’s) with the distribution function (d.f.)
F (t) (F = 1−F ). Here F (t) has continuous density f(t) ≤ f̄ , where 0 ≤ f̄ < ∞.
This section is based on [4, Chapter II, § 1, Theorem 1]

Theorem 1. Assume that the following conditions are true.

(1) For some a > 0 we have Een(t) = nat, t ≥ 0.
(2) There is B(n) such that A(n) = max(n1/2, B(n)) satisfies the relation for

n → ∞
B(n)
A(n)

→ B ≥ 0,

√
n

A(n)
→ K ≥ 0,

n

A(n)
→ ∞.

and max(B,K) = 1).

(3) Random processes xn(t) =
en(t) − Een(t)

B(n)
C-converges to the centred Gaus-

sian process z(t), when n → ∞.

(4) Random process ζ(t) =
∫ t

0

F (t−u)dz(u)+KΘ(t), 0 ≤ t ≤ T, where Θ(t) is

centred Gaussian process independent with z(t), and its covariance function

R(t, t + u) =
∫ t

0

F (v + u)F (v)adv and satisfies the formula P ( sup
0≤t≤T

ζ(t) >

L) → 0, L → ∞.

(5) If ρ = aEτj < 1, then for any T > 0 we have P

(
sup

0≤t≤T
qn(t) ≥ n

)
→

0, n → ∞.

Designate F1 the space of deterministic functions on the segment [0, T ] with
uniform metric ρ and denote F the set of bounded functional‘s f defined on
F1 and continuous in the metric ρ : if z = z(t), z1 = z1(t), z2 = z2(t), . . . ∈ F1

and ρ(z, zn) → 0, n → ∞, then f(zn) → f(z), n → ∞. Say that the sequence
of random processes zn = zn(t), n ≥ 1, C - converges to the random process
z = z(t) if for any functional f ∈ F we have that Ef(zn) → Ef(z), n → ∞.

1.2 Main Results

In this subsection we used the following obvious inequality for RQ-systems

Pn(T ) ≤ P

(
sup

0≤t≤T
qn(t) ≥ n

)
, n ≥ 1.

Then from Theorem 1 it is possible to prove the relation

P

(
sup

0≤t≤T
qn(t) ≥ n

)
→ 0, n → ∞ (1)

for n-channel RQ-systems with different input flows and so Pn(T ) → 0, n → ∞..
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Deterministic Input Flow of Customer Groups. Suppose that at the
moments 1, 2, . . . , groups of customers of the size η1 ≥ 0, η2 ≥ 0, . . . arrive
in the n-channel RQ system. Here η1, η2, . . . are i.i.d.r.v.‘s with integer values,
Eη1 = a, V ar β1 < ∞. Define deterministic input flow as follows by the equality

en(t) =
[nt+ψ]∑

k=1

ηk, t ≥ 0, where ψ is independent of ηk, k ≥ 1, τj , j ≥ 1, r.v.

with uniform distribution on [0, 1] and [g] is the integer part of the real number
g. For the n-channel RQ system with arbitrary protocol of customers direction
to servers after their being in orbit the relation (1) is proved in [5].

Alternating Input Flow. This flow is defined by ON and OFF periods alter-
nating with lengths X0 ≥ 0, X1 ≥ 0,X2 ≥ 0, . . . , and Y0 ≥ 0, Y1 ≥ 0, Y2 ≥
0, . . . respectively. In [6,7] a continuous random flow with ON and OFF period
is defined. Denote F1(t) = P (X1 < t), F2(t) = P (Y1 < t), t ≥ 0, and suppose
that

F 1(t) = t−α1L1(t), F 2(t) = t−α2L2(t), 1 < α1 < α2 < 2,

with L1(t) → l1 > 0, t → ∞, and L2(t) - slowly varying function and b(t) is the
inverse 1/F 1(t) : b(1/F 1(t)) = t.

Introduce i.r.v.‘s B, X, Y , and r.v. Y0 independent of Xn, Yn, n ≥ 1, so
that P (B=1) =

μ1

μ
, P (B=0) =

μ2

μ
, μ=μ1 + μ2, μ1 = EX1, μ2 = EY1,

P (X≤x) =
1
μ1

∫ x

0

F 1(s)ds, P (Y ≤x) =
1
μ2

∫ x

0

F 2(s)ds.

Then random sequence (Xk, Yk), k ≥ 0 generates the ON–OFF process W (t) as
follows

W (t) = BI[0,X)(t) +
∞∑

n=0

I[Tn,Tn+Xn+1)(t), t ≥ 0 where T0 = B(X + Y0) + (1 −

B)Y, Tn = T0 +
n∑

i=1

(Xi + Yi), n ≥ 1 and IA(t) = 1 if t ∈ A and IA(t) = 0 else.

The process W (t) satisfies equalities W (t) = 1 if t is in ON-period, W (t) = 0 if
t is in off-period, and stationary and EW (t) = μ1/μ = α.

Denote A(t) =
∫ t

0

W (s)ds, then EA(t) = αt, t ≥ 0. Let n = n(N) = NM(N),

M = M(N) = [Nγ ], γ > 0, and assume that random functions Am(t), m =

1, ...,M, are independent copies of A(t), en(t) =

[
M∑

m=1

Am(Nt) + ψ

]
For so

defined alternating input fLow the formula (1) is proved in [5].

Erlang Input Flow. Assume that En(t) is Poisson flow intensity nα and

en(t) =
[
En(t)

r
+ ψ

]
, t ≥ 0, with random variable ψ independent of ηk, k ≥

1, τj , j ≥ 1. and integer r. In [8] it is proved the formula (1) in condition
αEτj < 1.
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Consequently if the objective function of multi-channel RQ-system is Pn(T ),
then it is possible to replace complicated calculations by known asymptotic The-
orem 1.

2 Alternative Designs of High Load Queuing Systems
with Small Queue

It is well known that queuing systems in high-load mode have long queues. A
large number of publications are devoted to the study of asymptotic regimes in
such systems (see, for example, [9]. Therefore, such modes of operation of these
systems, that do not have large queues, are of great interest. These modes are
convenient from an economic point of view, since the service device is almost
fully loaded. On the other hand, this mode is also convenient for users which
waiting times become small.

Multi-channel Queuing System M |M |n|∞. Consider n – channel system
with a Poisson input flow of intensity nλ and the service time has an exponen-
tial distribution 1−exp(−μt). Such a system can be considered as an aggregation
(Fig. 1, right) of n single-channel systems M |M |1|∞ (Fig. 1, left) with Poisson
input flows of λ intensity and a similar distribution of service times. Here, aggre-
gation of n single-channel systems is understood as combining their input flows
and combining service channels into a multi-channel system. Denote ρ = λ/μ
load factor of the system M |M |n|∞ and put An the stationary average waiting
time, Bn the stationary average queue length.

Fig. 1. Transformation of n single-channel systems M |M |1|∞ into aggregated n - chan-
nel system M |M |n|∞.

The following are obtained in [10].

Theorem 2. 1) If ρ < 1, then for some c < ∞, q < 1 the relation holds
An ≤ c qn, n ≥ 1, 2) If ρ = 1 − n−α, 0 < α < ∞, then for n → ∞

An →
⎧⎨
⎩

0, α < 1,
1/μ, α = 1,
∞, α > 1.

Bn →
{

0, α < 1/2,
∞, α ≥ 1/2.
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This theorem develops and specifies the results of [11,12] in the direction of
determining the changed structure of the queuing system.

It is clear that an alternative to the described mode of operation of a queuing
system with a large load and a small queue can serve as an almost deterministic
queuing system. Such a system operates on a specific schedule and its mainte-
nance processes are almost cyclical [13]. The question arises as how to randomly
perturb cyclic processes in order to keep a small queue in them along with a large
load. Obviously, such perturbations will strongly depend on the distributions of
random fluctuations.

Almost Deterministic Single-Channel Queuing System. Despite the
importance of Theorem 2, such a queuing system design assumes its large size,
which is not always convenient from an application point of view. It is clear that
an alternative to the described mode of operation of a queuing system with a
large load and a small queue can serve as an almost deterministic one channel
queuing system (see, for example [13]).

Let’s describe the single-channel queuing system G|G|1|∞ by Lindley chain
of waiting times for the service: wi+1 = max(0, wi + ηi − τi). Here τi is the
interval between the arrival of i - th and (i + 1) - th customers, Mτi = a, and ηi

– service time of i - th customer, Mηi = b, 0 < a − b = ε. Assume that random
deviations from the distributions means are reduced as follows:

ηε
i = b + εα(ηi − b), τε

i = a + εα(τi − a)

and introduce Markov chain wε
i , i ≥ 0, wε

0 = 0, describing almost deterministic
single-channel queuing system

wε
i+1 = max(0, wε

i + ηε
i − τε

i ) = max(0, wε
i + εαδi).

Here δ0, δ1, . . . , is a sequence of independent and identically distributed random
variables, δi = ηi − τi + ε, Mδi = 0. In high load mode, when the load factor

ρ =
b

a
is close to one, the positive parameter ε = (1 − ρ)a is small: ε � 1. Value

α > 0 characterizes the rate of decreasing random perturbations with increasing
loading.

Due to known results for a single-channel queuing system G|G|1|∞ Markov
chain wε

i , i ≥ 0 has given for any ε, α : 0 < ε, 0 < α the stationary distribution
limi→∞ P{wε

i > y} = P{Wα(ε) > y}, y ≥ 0. Using [15–25] it is possible to
formulate following statements.

Statement 1. Let for some positive constants β, c < ∞ the inequality
M |δ1|2+β ≤ c takes place. Then for any y ≥ 0 we have P{εW0(ε) > y} →
e−2y/d, ε → 0.
Statement 2. If for some fixed ν, 1 < ν < 2; hν > 0, the following rela-
tions are true when y → ∞ P (η1 > y) ∼ hνy−ν ; P (τ1 > y) = o(P (η1 > y),
or P (τ1 > y) ∼ hνy−ν ; P (η1 > y) = o(P (τ1 > y). Then there is a tail
R(y) of non - degenerate distribution function and Δν(ε) ∼ cε1/(ν−1), ε → 0,
such that for any y ≥ 0 we have P{Δν(ε)W0(ε)/b > y} → R(y), ε → 0 or
P{Δν(ε)W0(ε)/a > y} → R(y), ε → 0.
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Using Statement 1 it is possible to prove Theorem 3.

Theorem 3. Assume that in a single-channel queuing system G|G|1|∞ con-
ditions of Statement 1 are true. Then the following limit relations are valid:
Wα(ε) ⇒ (convergence in distribution) + ∞, 0 ≤ α < 1/2; Wα(ε) ⇒ 0, 1/2 <
α; Wα(ε) ⇒ η, P{η > y} = e−2y/d, α = 1/2.

Using Statement 2 it is possible to prove Theorem 4.

Theorem 4. Assume that in a single-channel queuing system G|G|1|∞ con-
ditions of Statement 2 are true. Then the following limit relations are valid:
Wα ⇒ +∞, 0 ≤ α < 1/ν; Wα ⇒ 0, 1/ν < α; ε → 0.

The most simple variant of these theorems proves are based on following well
known and elementary statement [14, Exercises 15-19 on pages 184-185].

Statement 3. Suppose that Xn, n ≥ 1, is a sequence of positive real-valued
random variables that converges in distribution to a non degenerate limit random
variable X as n → ∞. Then if an are positive real numbers with an → ∞, then
it follows that anXn ⇒ ∞ and Xn/an ⇒ 0 as n → ∞.

Thus, a parameter α, characterizing either the rate of convergence of the load
factor to one in the system M |M |n|∞, or a random fluctuation in the system
G|G|1|∞, allows to detect the convergence of the stationary waiting time to
either zero or infinity.

3 Related Statistical Problems

In this section statistical estimates of characteristics of non-uniform Poisson flow,
describing distribution of animals in some areas and resolution of the most pow-
erful decision rule for constructing of technical systems discriminating “friend
– foe“. Main idea of this consideration is in a choice of convenient objective
functions for next estimates. Such objective functions may be as relative errors
of mean number of points of Poisson flow in some area so a calculation of the
most powerful decision rule in a construction of technical system for discrimi-
nating “friend – foe“. This results are based on the classification of statistical
problems proposed in the monographs [32,33] and on the ideas of testing statis-
tical hypotheses in the processing of physical and physico-technical observations
[34,35].

Estimates of the Mean Number of Poisson Flow Points in Some Area.
In geographical and geological investigations (see, for example [27]) there is a
problem to estimate mean number of points in some area and to evaluate its
quality. Let the study area is divided into m cells, and the number of points in
the cell k is nk, k = 1, . . . ,m. As we deal with Poisson flow then the random
variables n1, . . . , nm are independent with Poisson distributions which have the

parameters λ1, . . . , λm. Consequently the random variable N =
m∑

k=1

nk has a

Poisson distribution with the parameter Λ =
m∑

k=1

λk and so EN = Λ, V arN = Λ.
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Consider now random variable
N

EN
=

N

Λ
and calculate its variance

V ar
N

Λ
=

1
Λ

. Consequently the following relation is true

√
V ar

N

Λ
=

1√
Λ

.

From Chebyshev-Bienome inequality we have P

(∣∣∣∣NΛ − 1
∣∣∣∣ > Λ−1/3

)
≤ Λ−1/3 →

0, Λ → ∞. Therefore, the relative error of this estimate, constructed for non
uniform Poisson flow decreases with the growth of total Λ.

Resolution of the Most Powerful Decision Rule. In the papers [28–31],
a neural network converter ‘Biometrics access code‘is built on the basis of an
electroencephalogram. The main indicator of the effectiveness of this converter
is the probability of errors of the first α1 kind when the probability of errors of
the second kind α2 is chosen by experts to distinguish between simple hypotheses
“friend - foe”. This distinction of hypotheses is made using the most powerful
decision rule. A special role here is played by a set of sample characteristics,
with the help of which these hypotheses are distinguished.

In this paper, we introduce a characteristic A of the resolution of the most
powerful decision rule. The value of A is determined by the probability α2, by
the sample size n from independent and equally normally distributed random
variables with variance σ2 and the difference of the average a1 − a2 of these
random variables when performing alternative hypotheses. It is established that

the probability of errors of the first kind strongly (approximately as
exp(−A2)

A
√

2π
)

depends on the resolution A of the most powerful solving rule.
This work is based on the classification of statistical problems proposed in the

monographs [32,33], the Neumann-Pearson lemma and the well-known rule for
finding the most powerful solving rule by the Bayesian solving rule. An important
role here is played by the idea of testing statistical hypotheses when processing
physical and physico-technical observations [34,35]. The main characteristic that
determines the distinguishing ability of A in this statistical problem is the differ-
ence of the averages a1 − a2. This difference of parameters corresponding to the
hypotheses “friend - foe” plays an important role in the design of the technical
system that specifies the access code, thus A = A(a1 − a2, α2, n, σ).

Consider a sample x1, . . . , xn, consisting of independent random variables
having a normal distribution with an average a and a known variance σ2. From
two hypotheses H1 = (a = a1), H2 = (a = a2), a1 > a2, the most likely hypoth-
esis is selected. This choice is made under the assumption that the probability
of an error of the second kind is P (H1/H2) = α2, where the value of α2 is deter-
mined by experts (and in accordance with the requirements of GOST). In this
assumption, we are looking for a decisive rule that minimizes the probability of
a first-kind error P (H2/H1). The search for the most powerful solving rule is
based on the Neumann-Pearson lemma [32, chapter 3, § 1, 2] and is searched in
the form

1
n

n∑
i=1

xi > C ⇒ H1,
1
n

n∑
i=1

xi ≤ C ⇒ H2. (2)
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The constant C is determined by the probability of an error of the second kind
α2 from the relations

α2 = P

(
1
n

n∑
i=1

xi > C/H2

)
= P

(
1√
n

n∑
i=1

√
(xi − a2)

σ
>

√
n(C − a2)

σ
/H2

)

Let’s denote X a random variable with a normal distribution having zero mean
and unit variance. Then from the above equalities we get

α2 = P

(
X >

√
n(C − a2)

σ

)
=

∫ ∞

t(α2)

exp(−u2/2)√
2π

du, t(α2) =
√

n(C − a2)
σ

.

(3)
It follows from the formula (2) that the constant C, defining the decisive rule
(2), satisfies the equality

C = a2 +
t(α2)σ√

n
. (4)

Consequently we have

α1 = P

(
1
n

n∑
i=1

xi ≤ C/H1

)
= P

(
1√
n

n∑
i=1

√
(xi − a1)

σ
≤

√
n(C − a1)

σ
/H1

)
.

Hence the equality follows

α1 = P

(
X ≤

√
n(C − a1)

σ

)
= P

(
X ≥

√
n(a1 − C)

σ

)
=

=
∫ ∞

t(α1)

exp(−u2/2)√
2π

du, t(α1) =
√

n(a1 − C)
σ

. (5)

Substituting the formula (4) into the formula (5), we get

t(α1) = A(a1, a2, α2, n, σ), (6)

where the value

A(a1, a2, α2, n, σ) =
√

n

σ
(a1 − a2) − t(α2) (7)

defines the resolution of the most powerful decision rule (2).
Let us now consider how strong is the dependence of the probability of errors

of the first kind on this value. To do this, we calculate for t > 0

J(t) =
∫ ∞

t

exp(−u2/2)√
2π

du =
∫ ∞

t

exp(−u2/2)√
2πu

d
u2

2
≤ exp(−t2/2)

t
√

2π
,

from here we get

J(t) =
∫ ∞

t

exp(−u2/2)√
2πu

d
u2

2
≥ exp(−t2/2)

t
√

2π

(
1 − 1

t2

)
.
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Combining the obtained inequalities, we find(
1 − 1

t2

)
exp(−t2/2)

t
√

2π
≤ J(t) ≤ exp(−t2/2)

t
√

2π
, t > 0. (8)

It follows that the function J(t), determining the probabilities of errors of the
first and second kind decreases very quickly with the growth of t.

Let’s take α2 = 10−9, α1 = 7 ·10−4 as a numerical example (these values are

taken from [31]), then we can build an approximation J(t) ≈ exp(−t2/2)
t
√

2π
and

with an accuracy of 10−2, get the values t(α1) = 5.99781, t(α2) = 3.19465. As a
result, we come to equality

A(a1, a2, α2, n) =
√

n

σ
(a1 − a2) − t(α2) = 9.19246.

Since α1 = 7 · 10−4, then combined with the formula (8) from the inequality

α1 ≤ exp(−A2(a1, a2, α2, n)/2)√
A(a1, a2, α2, n)

it can be seen how much the resolution of A(a1, a2, α2, n) affects the probability
of an error of the first kind α1, which is the main indicator in this statistical
problem.

The formula (7), which determines the resolution of A(a1, a2, α2, n), specify-
ing the probability of an error of the first kind, despite its simplicity, contains a
whole series of characteristics: the difference of the averages a1−a2, variance σ2,
sample size n (and the probability of an error of the second kind α2). Therefore,
the choice of the characteristics of a1 − a2, σ2, n becomes a rather difficult task
of designing the technical system described in [30]. Moreover, a special role here
is played by the difference a1 − a2 > 0 of the average a1, a2, characterizing
the distributions of samples describing the “friend - foe“ states shared by the
technical system.

4 Conclusion

The results presented in this paper go beyond the theory of probability and queu-
ing. In these results, the main focus is not on proving probabilistic theorems of
the greatest generality, but on obtaining explicit estimates of the comparison
of queuing systems, statistical algorithms and programs before and after the
transformation of their structure. The peculiarity of such results, and it is con-
venient to call them synergetic effects, is the strong dependence of the compared
performance indicators when a certain parameter tends to zero or to infinity.
However, this circumstance in no way reduces the requirements for the accuracy
of the estimates obtained. According to the author, such estimates are most con-
venient to carry out during computational experiments. Another thing is that
it is convenient to conduct such computational experiments working with com-
plex systems if there are some analytical estimates of the marginal behavior of
performance indicators.
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Abstract. A single server queuing system with inventory is considered.
Customers arrive according to a Poisson process and service times fol-
low exponential distribution. Inventory is replenished according to (s, S)
policy with positive lead time which follows exponential distribution.
Interruption to service process and repair of interrupted service are con-
sidered, times between two interruptions and repairs both follow expo-
nential distributions. We assume that during interruption, the customer
being served waits there until his service is completed, no inventory is
lost due to interruption, no arrivals are allowed and order placed if any is
cancelled. We also assume that no arrival is entertained when inventory
level is zero. Stability of the above system is analyzed and the steady
state vector is calculated explicitly. Expressions for several system per-
formance measures such as expected number of customers in the system,
expected inventory level, expected interruption rate etc. are obtained.
Even though explicit expressions are obtained several other performance
measures are calculated numerically as well.

Keywords: (s,S) inventory model · Server interruptions · Positive lead
time · Explicit solution

1 Introduction

The pioneers in the study of queueing inventory models are Melikov and
Molchanov [12] and Sigman and Simchi- Levi [16]. In Sigman and Simchi- Levi
customers are allowed to join even when there is no inventory in the system. They
also discuss the case of non exponential lead time distribution. Later Berman
and et al. [2] considered an inventory system where a processing time is required
for serving the inventory. Here they considered deterministic service time and
the model was discussed as a dynamic programming model. Berman and Kim
[3] and Berman and Sapna [4] later discussed inventory queueing systems with
exponential service time distribution and with arbitrary distribution.
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There are several papers on inventory queueing models by Krishnamoorthy
and his co-authors [1,5–11,13]. They mainly used Matrix Analytic Methods to
study these models. In most of the models service time for providing the invento-
ried item is assumed. Schwarz et al. [15] considered a queueing inventory model
with Poisson arrivals and exponentially distributed service and lead times. They
could obtain a product form solution for the system steady state. But they
assumed that no customers join the system when the inventory level is zero.

2 Mathematical Model

The system under consideration is described as below. There is a single server
counter where inventory is served to which customers arrive for service. The
number of arrivals by time t follows a Poisson process with parameter λt. The
service times are independently and identically distributed exponential random
variables with parameter μ. Inventory is replenished according to (s, S) policy,
in the sense that whenever inventory level drops to s an order is placed, order
quantity being fixed as Q = S − s. The replenishment times follow exponential
distribution with parameter η. While a customer is being served by the server,
the service may be interrupted, the interruption rate being exponential with rate
δ1. Following a service interruption the service restarts at an exponential rate
δ2.

We make the following assumptions for the model under consideration.

i) There is no loss of inventory due to a service interruption.
ii) The customer being served when interruption occurs waits there until his

service is completed.
iii) No arrival is entertained when the inventory level is zero.
iv) An order placed if any is cancelled while the server is on interruption.
v) We also assume that there are no arrivals while the server is on interruption.

We denote by N(t) the number of the customers in the system including the one
being served (if any), L(t) the inventory level and S(t) the server status at time
t.

Let S(t) =

⎧
⎪⎨

⎪⎩

0 if the server is idle
1 if the server is busy
2 if the server is on interruption

Then Ω = X(t) = ((N(t), S(t), L(t)) will be a Markov chain. The state space of
this Markov chain can be described as E = {(0, 0, k) : 0 ≤ k ≤ S} ∪ {(i, 0, 0) :
i ≥ 1} ∪ {(i, j, k) : i ≥ 1, j = 1, 2; 1 ≤ k ≤ S}. The above state space can
be partitioned into levels L(i) where L(0) = ((0, 0, 0), (0, 0, 1), . . . , (0, 0, S)) and
L(i) = ((i, 0, 0), (i, 1, 1), (i, 1, 2), . . . , (i, 1, S), (i, 2, 1), (i, 2, 2), . . . , (i, 2, S)) ; i ≥ 1.
The Markov chain Ω described above is a level independent quasi birth death
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process whose infinitesimal generator matrix is given by

T =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

B0 B1 0 0 . . .
B2 A1 A0 0 0 . .
0 A2 A1 A0 0 . 0
0 0 A2 A1 A0 0 .

. . .
. . .

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

Here B0, B1, B2 are matrices of orders (S + 1) × (S + 1), (S + 1) × (2S + 1)
and (2S + 1) × (S + 1) respectively. All other matrices are square matrices
of order 2S + 1. The different transitions in the Markov chain Ω = X(t) =
((N(t), S(t), L(t)) are given below.

i) Transitions due to arrival of customers

(i, j, k) λ−→ (i + 1, j, k); i ≥ 0, 0 < k ≤ S, j = 0, 1

ii) Transitions due to service completion of customers

(i, j, k)
μ−→ (i − 1, j, k − 1); i > 0, 0 < k ≤ S, j = 1

iii) Transitions due to replenishment of inventory

(i, j, k)
η−→ (i, j, k + Q); i ≥ 0, 0 ≤ k ≤ S, j = 0, 1

iv) Transitions due to server interruption

(i, 1, k) δ1−→ (i, 2, k); i ≥ 1, 0 < k ≤ S

v) Transitions due to restart of service after a service interruption

(i, 2, k) δ2−→ (i, 1, k); i ≥ 1, 0 < k ≤ S

The matrix B0 contains the transition rates within level L(0), B1 records the
transition rates from L(0) level to L(1) and B2 that from L(1) to L(0). Similarly
the matrices A0.A1, A2 contains the transitions from levels L(i) to L(i+1), L(i)
to itself and L(i + 1) to L(i) for i ≥ 1.

3 Analysis of the Model

Stability condition
Define A = A0 + A1 + A2 and

π = (π(0, 0), π(1, 1), π(1, 2), . . . , π(1, S), π(2, 1), π(2, 2), . . . , π(2, S))

be the steady state vector of A. We know the QBD process with generator
matrix T is stable if and only if πA0e < πA2e [14]. That is if and only if
λ [π(1, 1) + π(1, 2) + . . . + π(1, S)] < μ [π(1, 1) + π(1, 2) + . . . + π(1, S)], that is
if and only if λ < μ.

Thus we have the following theorem for the stability of the system under
study.

Theorem 1. The Markov chain is stable if and only if λ < μ.
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4 Computation of Steady State Vector

We first consider a system identical to the above system except for service time
is negligible. For this system Ω̃ = X̃(t) = (S(t), L(t)) will be a Markov chain
where S(t) and L(t) are as defined for the original system. The state space of
this Markov chain can be described as

Ẽ = {(0, 0), (1, 1), (1, 2) . . . , (1, S), (2, 1), (2, 2), . . . , (2, S)}.

The infinitesimal generator matrix of the process is given by T̃ =
[
B̃0 B̃1

B̃2 B̃3

]

, where

B̃1 =
[

0
δ1Is

]

(S+1)×S

, B̃2 =
[
0 δ2Is

]

S×(S+1)
, B̃3 = −δ2Is, B̃0 =

[
C1 C2

C3 C4

]

Here

C1 =
[−η 0

0 −(λ + η + δ1)Is−1

]

(s+1)×(s+1)

+
[

0 0
λIs−1 0

]

(s+1)×(s+1)

, C4 = −(λ +

δ1)IQ +
[

0 0
λIQ−1 0

]

Q×Q

, C3 =
[
0 λ
0 0

]

Q×(s+1)

, C2 =
[
0 ηIs+1

]

(s+1)×Q
Let x =

(x(0, 0), x(1, 1), . . . , x(1, S), x(2, 1), . . . , x(2, S)) be the steady state probability
vector of the process Ω̃. Then xT̃ = 0 and xe = 1 gives

x(1, i) =
η

λ

(
η + λ

λ

)i−1

x(0, 0) ; 1 ≤ i ≤ s + 1

x(1, s + 1) = x(1, s + 2) = . . . = x(1, Q)
x(1, Q + i) = x(1, Q) − x(1, i) ; 1 ≤ i ≤ s

x(2, i) =
δ1
δ2

x(1, i) ; 1 ≤ i ≤ S

where x(0, 0) =
[

1 + Q
η

λ

(
η + λ

λ

)s (
δ1 + δ2

δ2

)]−1

.

Let π = (π0, π1, π2, . . .) be the steady state probability vector of
the process Ω, where π0 = (π(0, 0, 0), π(0, 0, 1), . . . , π(0, 0, S) and πi =
(π(i, 0, 0), π(i, 1, 1), π(i, 1, 2), . . . , π(i, 1, S), π(i, 2, 1), π(i, 2, 2), . . . , π(i, 2, S)); i ≥
1. Then π satisfies πT = 0 and πe = 1. We have the equations

π0B0 + π1B2 = 0
π0B1 + π1A1 + π2A2 = 0

πiA0 + πi+1A1 + πi+2A2 = 0; i ≥ 1

All the above equations are satisfied by taking

π0 = ζ(x(0, 0), x(1, 1), x(1, 2), . . . , x(1, S))

πi = ζ

(
λ

μ

)i (

x(0, 0), x(1, 1), x(1, 2), . . . ,

x(1, S),
δ1
δ2

x(1, 1),
δ1
δ2

x(1, 2), . . . ,
δ1
δ2

x(1, S)
)

; i ≥ 1
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The value of ζ is obtained from πe = 1 as ζ =
(μ − λ)δ2

δ2μ + δ1λ[1 − x(0, 0)]

5 System Performance Measures

5.1 Expected Waiting Time of a Customer in the Queue

First we compute the expected waiting time of a customer who joins the queue
as the rth person. For that consider a Markov process ψ = (N̂(t), S(t), L(t)),
where N̂(t) represent the rank of the customer in the queue, S(t) the server
status and L(t) the inventory level. The state space of the above Markov chain
is Ê = {(i, 0, 0), 1 ≤ i ≤ r − 1} ∪ {(i, j, k), 1 ≤ i ≤ r; j = 1, 2; 1 ≤ k ≤ S} ∪ Δ,
where Δ correspond to the state, the rth customer is taken for service. The

generator matrix of the Markov chain is given by Q̂ =
[
T T 0

0 0

]

, where T 0 is an

(r(2S + 1) − 1) × 1 matrix with T 0(i, 1) = μ; 2 ≤ i ≤ S + 1 and

T =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

B 0 0 0
A2 B 0 0
0 A2 B 0 0
0 0 A2 B

0 0 Â2 B̂

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

The different transitions in T are as follows.

i) (i, 0, k)
η−→ (i, 1, k + Q); 1 ≤ i ≤ r; 0 ≤ k ≤ s

ii) (i, j, k)
η−→ (i, j, k + Q); 1 ≤ i ≤ r; j = 1; 0 ≤ k ≤ s

iii) (i, 1, k) δ1−→ (i, 2, k); 1 ≤ i ≤ r; 1 ≤ k ≤ S

iv) (i, 2, k) δ2−→ (i, 1, k); 1 ≤ i ≤ r; 1 ≤ k ≤ S
v) B̂(i, j) = B(i + 1, j + 1); Â(i, j) = A2(i + 1, j)

Now the waiting time of the customer who joins as the rth customer is given by
W r = Î2S(−T−1e), where Î2S =

[
0 I2S

]

(2S)×(r(2S+1)−1)
.

So the expected waiting time of a general customer is given by E(WL) =
∞∑

r=1
π̂rW

r, where π̂r(i) = πr(i + 1). Similarly the variance of waiting time of a

general customer is also calculated numerically.
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5.2 Other Performance Measures

1. The expected number of customers in the system,

Ls =
∞∑

i=1

S∑

j=1

i {π(i, 1, j) + π(i, 2, j)} +
∞∑

i=1

iπ(i, 0, 0)

= ζ
λ

μ

(
μ

μ − λ

)2 [

1 +
δ1
δ2

(1 − x(0, 0))
]

.

2. The expected inventory level in the system,

INVmean =
∞∑

i=1

S∑

j=1

j{π(i, 1, j) + π(i, 2, j)} +
S∑

j=1

jπ(0, 0, j)

= ζ
λ

μ
Q

{

1 +
δ1
δ2

λ

μ

} (
(S + s + 1)

2
η

λ

(
η + λ

λ

)s

+

[

1 −
(

η + λ

λ

)s]
)

x(0, 0).

3. The expected rate of ordering, Eor =
∞∑

i=1

μπ(i, 1, s + 1).

4. The expected replenishment rate,

REPmean =
∞∑

i=0

s∑

j=0

η {π(i, 0, j) + π(i, 1, j)} .

5. The expected interruption rate, INTmean =
∞∑

i=1

S∑

j=1

δ1π(i, 1, j) = δ1P (busy).

6. The loss rate of customers,

LOSSmean =
∞∑

i=0

λπ(i, 0, 0) +
∞∑

i=1

S∑

j=1

λπ(i, 2, j) = λξ
μ

μ − λ
x(0, 0) + λP (int).

7. The probability that the server is busy,

Pbusy =
∞∑

i=1

S∑

j=1

π(i, 1, j) =
δ2

δ2μ + δ1(1 − x(0, 0))
λ

μ − λ
Q

η

λ

(
η + λ

λ

)s

.

8. The probability that the server is on interruption,

Pint =
∞∑

i=1

S∑

j=1

π(i, 2, j) =
δ1
δ2

P (busy).

5.3 Cost Analysis

We considered the following
Cost function Cost = CI × INVmean + CN × Ls + CR × EINTR + (K + (S −
s)K1) × EOR + CL × Lossmean, where
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CI : Cost of holding Inventory
CN : Cost of holding customers
CR : Cost incurred due to interruption of service
K : Fixed cost of ordering
K1 : Cost of a single inventory
CL : Cost incurred due to loss of customers when inventory level drops to zero.
The effect of various parameters on the cost were studied.

6 Numerical Illustration

Eventhough we have explicit expressions for most of the system performance
measures we provide numerical illustration of the effect of different parameters
on the system performance measures in this section.

6.1 Effect of Arrival Rate λ

In Table 1 we see that as arrival rate increases, there is an increase in both
P (busy), P (int) and Ls. The increase in server busy probability is as expected
since when arrival rate increases the mean number of customers in the system
obviously increases and so the probability that server is busy increases. P (int)
is also seen to increase which may be due to the fact that an interruption to
service occurs only when the server is busy. Also the decrease in INVmean is due
to the fact that the more customers get service when P (busy) increases. Also
notice the increase in mean waiting of a customer in the system due to increase
in mean number of customers in the system.

6.2 Effect of Service Rate μ

In Table 2 we see that as service rate increases, P (busy), P (int), Ls and
WAITmean all decrease. As the service rate increases, customers leave the sys-
tem after getting service at a faster rate. Hence the mean waiting time in the
system clearly decreases. Also the probability that the server is idle increases
with increase in service rate and so P (busy), P (int) and Ls all decrease. It is
seen from the tables that μ has no effect on INVmean.

6.3 Effect of Interruption Rate δ1

In Table 3 we see that as interruption rate increases, P (busy) increases whereas
P (int), WAITmean and Ls decrease. The reason for decrease in the mean number
of customers in the system is due to our assumption that when the server is on
interruption no arrivals are entertained. The decrease in mean waiting time of a
customer in the system is due to the increase in P (busy). Also as mean number
of customers in the system decreases, probability that server is idle increases and
so P (int) decreases. The interruption rate seems to have no effect on average
inventory level in the system.



An Inventory Model with Positive Lead Time and Server Interruptions 215

6.4 Effect of Reorder Level S

In Table 4 we see that s has no considerable effect on the system performance
measures P (busy), P (int) and LS . The expected inventory level in the system
increases with increase in re order level is as expected since orders are placed
early with increase in s (Table 5, 6, 7, 8, 9 and Figs. 1, 2, 3, 4, 5).

Table 1. Effect of arrival rate on various performance measures μ = 10 η = 2 δ1 = 6
δ2 = 7 s = 5 S = 12

λ P (busy) P (int) INVmean REPmean Ls EOR WAITmean WAITvar

2 0.18749 0.06249 8.7142 0.2678 0.3125 0.2678 0.1597 0.0675

2.2 0.20496 0.06832 8.6856 0.2928 0.3504 0.2928 0.1643 0.0715

2.4 0.2222 0.074 8.6571 0.3174 0.3899 0.3174 0.1693 0.0761

2.6 0.2392 0.0797 8.6284 0.3417 0.4311 0.3417 0.1747 0.0812

2.8 0.2561 0.0853 8.5999 0.3658 0.4742 0.3658 0.1806 0.0868

3 0.2726 0.0909 8.5713 0.3895 0.5194 0.3895 0.187 0.0931

Table 2. Effect of service rate on various performance measures λ = 3 η = 2 δ1 = 6
δ2 = 7 s = 5 S = 12

μ P (busy) P (int) INVmean REPmean Ls EOR WAITmean WAITvar

9 0.2999 0.0999 8.5713 0.3856 0.5999 0.3856 0.2191 0.1256

9.2 0.2941 0.098 8.5713 0.3865 0.5819 0.3865 0.2118 0.1178

9.4 0.2884 0.0961 8.5713 0.3873 0.5649 0.3873 0.205 0.1107

9.6 0.2829 0.0943 8.5713 0.388 0.5489 0.3881 0.1986 0.1043

9.8 0.2777 0.0926 8.5713 0.3888 0.5337 0.3888 0.1927 0.0984

10 0.2727 0.0909 8.5713 0.3896 0.5195 0.3895 0.187 0.0931

Table 3. Effect of interruption rate on various performance measures λ = 3 μ = 9 η = 2
δ2 = 7 s = 5 S = 12

δ1 P (busy) P (int) INVmean REPmean Ls EOR WAITmean WAITvar

6 0.2726 0.1818 8.5714 0.3506 0.6818 0.3506 0.2918 0.2219

6.2 0.2743 0.1769 8.5714 0.3526 0.6769 0.3526 0.2862 0.2128

6.4 0.2758 0.1723 8.5714 0.3546 0.6723 0.3546 0.281 0.2044

6.6 0.2772 0.168 8.5714 0.3564 0.668 0.3564 0.2761 0.1968

6.8 0.2786 0.1639 8.5714 0.3582 0.6639 0.3582 0.2716 0.1898

7 0.2799 0.1599 8.5714 0.3599 0.6599 0.3599 0.2673 0.1833
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Table 4. Effect of reorder level on various performance measures λ = 3 μ = 9 η = 2
δ1 = 6 δ2 = 7 S = 21

s P (busy) P (int) INVmean REPmean Ls EOR WAITmean WAITvar

5 0.2999 0.0999 13.071 0.1687 0.5999 0.1687 0.2197 0.1265

6 0.2999 0.0999 13.571 0.1799 0.5999 0.1799 0.2197 0.1265

7 0.2999 0.0999 14.071 0.1928 0.5999 0.1928 0.2196 0.1264

8 0.2999 0.0999 14.571 0.2076 0.5999 0.2076 0.2196 0.1263

9 0.2999 0.0999 15.071 0.2249 0.5999 0.2250 0.2195 0.1262

10 0.2999 0.0999 15.571 0.2454 0.5999 0.2454 0.2195 0.1261

Table 5. Effect of arrival rate on Cost

CI = 40 CN = 30 CR = 75 K = 500 K1 = 35 CZ = 750

μ = 10 η = 2 δ1 = 6 δ2 = 7 s = 5 S = 12

λ 2 2.2 2.4 2.6 2.8 3

Cost 566 586 605 624 643 662

Table 6. Effect of service rate on Cost

CI = 40 CN = 30 CR = 75 K = 500 K1 = 35 CZ = 750

λ = 3 η = 2 δ1 = 6 δ2 = 7 s = 5 S = 12

μ 9 9.2 9.4 9.6 9.8 10

Cost 663.47 663.26 663.06 662.89 662.73 662.59

Table 7. Effect of interruption rate on Cost

CI = 40 CN = 30 CR = 75 K = 500 K1 = 35 CZ = 750

λ = 3 η = 2 μ = 9 δ2 = 7 s = 5 S = 12

δ1 6 6.2 6.4 6.6 6.8 7

Cost 663.47 663.87 664.26 664.62 664.96 665.29
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Table 8. Effect of repair rate on Cost

CI = 40 CN = 30 CR = 75 K = 500 K1 = 35 CZ = 750

λ = 3 η = 2 μ = 9 δ1 = 6 s = 5 S = 12

δ2 6 6.2 6.4 6.6 6.8 7

Cost 663.47 663.91 664.34 664.74 665.12 665.49

Table 9. Effect of reorder level on Cost

CI = 40 CN = 30 CR = 75 K = 500 K1 = 35 CZ = 750

λ = 3 η = 2 μ = 9 δ1 = 6 δ2 = 7 S = 21

s 5 6 7 8 9 10

Cost 734 760 786 814 842 873

Fig. 1. Arrival rate versus Cost
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Fig. 2. Service rate versus Cost

Fig. 3. Interruption rate versus Cost
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Fig. 4. Repair rate versus Cost

Fig. 5. Reorder level versus Cost
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7 Conclusion

We studied a single server queueing model with positive service time, positive
lead time and service interruptions. We could arrive at an explicit expression for
the steady state probability vector. We wish to extend this model by considering
retrials as well.
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Abstract. The paper considers the transmission of messages with
demultiplexing over two communication channels with different through-
put capacities. The channel with the highest throughput receives the
largest chunks of messages resulting from the demultiplexing, and the
channel with the smallest throughput receives the smallest chunks. The
problem of calculating the optimal channels throughputs is solved by
taking into account the characteristics of the transmitted traffic.

Keywords: data flow distribution · communication channel
throughput · demultiplexing · multiplexing · secret sharing scheme

1 Introduction

Due to the self-isolation and quarantine regimes implemented during the current
COVID-19 pandemic, there is an increased demand for Internet connection ser-
vices, data transfer speeds augmentation, throughput expansion, and additional
communication channels purchase [1–3]. The most popular transmitted content
is video data, for example, online broadcasts of cinemas, educational webinars.
Broadcasting is carried out using client-server applications, in which the con-
tent can be pre-transformed using any algorithms, and only then transmitted
to the user. The preliminary content transformation can be carried out in order
to compress it, in other words, to reduce the transmitted traffic, as well as to
ensure confidentiality, i.e., to perform cryptographic transformations. In such
situations, even the choice of optimal cryptographic algorithms can lead to sig-
nificant delays in the playback of the video data stream due to the fact that the
reverse cryptographic conversion must be performed on the client side. The use
of an additional communication channel makes it possible to organize distributed
data transmission, which allows to solve the problem of ensuring confidentiality,
but there arise some questions related to the efficiency of the use of computing
resources, optimization of channel throughput, synchronization of transmitted
streams, etc.
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2 Problem Statement

Let the sender (a person or an automatic device) transmit to the receiver a high-
quality uncompressed media stream, which is a sequence of images (frames).
The transmission is carried out over the Internet, and it is required that no
one except the recipient can access the contents of the transmitted data. To
meet this requirement, it is possible to organize secure media data streaming
using cryptographic methods. However, when using such methods, there may
arise problems related to ensuring the stability of the selected algorithms and,
accordingly, with the availability of sufficiently powerful computing resources on
the receiving side to guarantee timely data decryption. In such a situation, it
is advisable to consider the possibility of using other methods of information
protection that are not related to classical cryptography, e.g., secret sharing
schemes (SSS) [4], demultiplexing.

Algorithms for dividing video data into unequal shares are proposed in [5–7]
which will allow the sender and receiver to carry out the separation of the trans-
mitted TCP / IP traffic over these channels, using two communication channels
with different throughput, as, for example, it is described in [8–11]. Further, we
will assume that SSS for unequal shares can be used not only for transmitting
video frames, but also for transmitting streams of any messages, and all the trans-
formations described in [5–7] are performed directly on the bit representation of
these messages. When messages are divided into unequal shares, a smaller share
of each message is transmitted over a lower throughput channel, while a larger
share is transmitted over a higher throughput channel. Such message transmis-
sion from the sender to the recipient is carried out at the transport level of the
seven-level OSI network model [12], where the TCP protocol provides guaran-
teed data delivery. When using two communication channels at the same time,
there arise questions related to the efficiency of computing resources, optimiza-
tion of channel throughput, synchronization of transmitted streams, buffering.
These issues can be solved by implementing appropriate client-server applica-
tions and optimizing the throughput of communication channels. It is advisable
to optimize the throughput capacities according to cost minimization criteria,
one part of which is associated with message delays in the network (the growth of
which leads to a delay in the recipient’s response to messages and corresponding
losses), the other part is related to the payment for channel throughput, which
increases with throughput growth.

As a mathematical model for optimizing a two-channel SSS, a network with
splitting requests (S-network) with two single-channel queuing systems (QS) is
proposed (see Fig. 1). In terms of queuing theory (QT), we will call messages and
their parts requests, demultiplexing messages - splitting requests, multiplexing
messages assembling requests. Two requests corresponding to two parts of the
same divided message will be referred to as conjugate requests. We define the
discipline of servicing queues in front of the channels as FIFO (first in - first out)
discipline. Requests are transmitted over two channels with different throughputs
C1, C2 measured, for example, in Kbit/s. Unlike traditional QS networks, at
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Fig. 1. Network with splitting requests. S - split point, A - assemble point

Point S, the request does not go to one of the branches, but is split into two
requests, one of which arrives at QS1 and the other goes to QS2. At Point A, two
conjugate requests “merge” and turn into one request. Accordingly, the incoming
Traffic F (Kbit/s) is divided into two parts F1 and F2, where F1 + F2 = F . The
moment of entry of the request into the network is simultaneously the moment of
its splitting and the moment of entry of the resulting conjugate requests into each
of the two branches of the network (into each of the two QSs). Consequently, the
Intensities λ, λ1 and λ2 of the request flows entering the network are the same
in QS1 and in the QS2, respectively, and all three request flows are described
by the same probabilistic law. Another feature of the considered S-network, not
shown in Fig. 1, is that before Point A, two more queues are formed (one on each
branch) - synchronization queues. At the moment of exit from the first (second)
channel, the request enters the first (second) synchronization queue before Point
A, where it remains until its conjugate “half” is found in another synchronization
queue. In other words, one of the two conjugate requests that arrived first at
Point A waits for the second conjugate request to arrive. At the moment of its
arrival, both conjugate requests are merged into one request leaving the network,
and the transfer of the request is completed.

Note that all requests arrive in each synchronization queue in the same
sequence that they enter the network. Therefore, if at least one request is pend-
ing in one synchronization queue, the other synchronization queue is empty. At
any finite time interval, either the first synchronization queue is empty, or the
second, or both queues are empty. Both of these queues can be non-empty at
the same time only at one point in time: when the condition “at the selection
point there is a pair of requests conjugated with each other” is fulfilled. It follows
from this that of the two conjugate requests, the one that arrives later is not
delayed in the synchronization queue. Consequently, the Time u of the message
transmission (in terms of QT, the time the request is in the network, i.e., the
time elapsed from the moment the request arrives in Point S until the moment
it leaves Point A) is determined by the formula:

u = max(u1, u2), (1)

where u1 is the time the request was in QS1:

u1 = w1 + x1, (2)
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u2 is the sojourn time of the conjugate request in QS2:

u2 = w2 + x2, (3)

w1 is the request waiting time in Queue 1, x1 is the request service time in
Channel 1, w2 is the waiting time of the conjugate request in queue 2, x2 is the
service time of the conjugate request in Channel 2.

The average Time U of staying in the S-network, according to (1), is expressed
by the formula:

U = M [max(u1, u2)] = M [max(w1 + x1, w2 + x2)] . (4)

Time U depends on the Throughputs C1, C2:

U = U(C1, C2).

Let the price of the throughput of any channel, calculated for the network
operation time, be equal to m c.u./(Kbit/s). Then the problem of optimizing
Throughputs C1, C2 of the S-network channels (or, in other words, the problem
of optimizing the S-network) can be formulated as follows:

f = lU (C1, C2) + mC1 + mC2 → min
C1,C2

, (5)

{
C1 ≥ F1,

C2 ≥ F2,
(6)

where U(C1, C2) = M [max(u1, u2)], l (c.u./s) is the cost of the average network
delay per second. Cost Coefficient l is equal to losses (arising from waiting for
applications) calculated for the period of network operation.

Thus, the problem (5), (6) is posed as the problem of minimizing the average
costs over the network operation time. A network with optimal channel capacity
will be called optimal.

The non-triviality of the problem posed is due to the absence in the QT of
explicit formulas that allow, directly or by means of appropriate transformations,
to accurately calculate the average Time U of requests in the S-network under
some general and natural assumptions about the incoming flow of requests and
methods for their splitting. To solve this problem, it is necessary to develop
appropriate exact or approximate methods. Further development and research
of such methods is ongoing.

3 Exponential Network with Independent Branches

3.1 Problem Statement

Consider a network with independent branches (Fig. 2), which makes sense to
study as a simplified first approximation of the S-network shown in Fig. 1.
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Fig. 2. S-network with independent branches

In this network with independent branches, QS1 and QS2 operate indepen-
dently, each serving its own stream of requests. Each of these QSs is individually
equivalent to the corresponding QS in an S-network, but a pair of QSs in a net-
work with independent branches (Fig. 2) is not equivalent to a pair of QSs in an
S-network (Fig. 1). In a network with independent branches, the QSs function
independently; in an S-network the processes in one and the other QS are sta-
tistically dependent. Statistical independence of the network branches in Fig. 2
simplifies its analysis.

The dashed lines in Fig. 2 show a single passage through the network of a
single request, divided into parts, in a stationary mode of network operation
at a random time. At the moment of its arrival, the conjugate parts of the
split request arrive at the corresponding QSs, then pass through the queues
and service, and are assembled into one request, as described above. The travel
time of the split request through the network is expressed by formula (1), the
optimization problem for such a network is posed in the form (5), (6). In order
to solve this problem by analytical methods, let us express M [max(u1, u2)], in
terms of Channel Throughputs C1, C2.

3.2 Network with Independent Branches Optimization

The calculation of the system in Fig. 2 contains the following steps. First, we
can find the distribution functions of the sojourn time of entire requests in QS1,
QS2. Since these QSs are exponential, the required distribution functions are
known. Since Quantities u1 and u2 are independent, we find the distribution of
the maximum of these quantities, and through it the desired M [max(u1, u2)].

The distribution function of the sojourn time in QS1 has the form [13]:

P (u1 ≤ t) = 1 − e−μ1(1−ρ1)t, (7)

similarly in QS2 it is described as:

P (u2 ≤ t) = 1 − e−μ2(1−ρ2)t, (8)

where μ1, μ2 are the service intensity in the first and second channels, ρ1, ρ2 are
the load factors of the first and second channels.

We find the Distribution Function max(u1, u2) as the probability of simul-
taneous occurrence of two independent events: as the probability that the first
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value does not exceed t and that the second value does not exceed t:

P [max(u1, u2) ≤ t] =
[
1 − e−μ1(1−ρ1)t

] [
1 − e−μ2(1−ρ2)t

]
. (9)

Using the well-known formula for calculating the mathematical expectation of a
positive random variable (without calculating the probability density), we find

M [max (u1, u2)] =
∫ ∞

0

[
1 −

(
1 − e−μ1(1−ρ1)t

) (
1 − e−μ2(1−ρ2)t

)]
dt =

=
1

μ1(1 − ρ1)
+

1
μ2(1 − ρ2)

− 1
μ1(1 − ρ1) + μ2(1 − ρ2)

. (10)

The resulting expression can be substituted into the problem (5), (6) to solve it
for a network with independent branches by analytical methods. Before doing
this, let us move on to the expression (10) and the parameters used in the problem
(5), (6): ρ1 = F1/C1, ρ2 = F2/C2, μ1 = C1/H1, μ2 = C2/H2. Moving on to these
designations in the expression (10) and substituting it into the problem (5), (6),
we obtain:

f =
lH1

(C1 − F1)
+

lH2

(C2 − F2)
− l

H−1
1 (C1 − F1) + H−1

2 (C2 − F2)
+mC1 + mC2 → min

C1,C2
,

(11)

{
C1 ≥ F1,
C2 ≥ F2.

(12)

The point (C1, C2) of the local minimum of this positive function can be found
from the system of equations

∂f

∂C1
= 0,

∂f

∂C2
= 0,

that is, from the equations

− lH1

(C1 − F1)2
+

lH−1
1(

H−1
1 (C1 − F1) + H−1

2 (C2 − F2)
)2 + m = 0, (13)

− lH2

(C2 − F2)2
+

lH−1
2(

H−1
1 (C1 − F1) + H−1

2 (C2 − F2)
)2 + m = 0. (14)

Let us denote C1 − F1 by x and C2 − F2 by y. As a result, the system (13), (14)
takes the following form, which is well solved by numerical methods:

− lH1

x2
+

lH−1
1(

H−1
1 x + H−1

2 y
)2 + m = 0, (15)
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− lH2

y2
+

lH−1
2(

H−1
1 x + H−1

2 y
)2 + m = 0. (16)

One of the main methods for reducing the delay time of conjugate requests in syn-
chronization queues is to introduce the maximum positive correlation between
the processes of moving conjugate requests along the network branches. This
method is explored in the following sections of the article.

4 S-Networks with Synchronous Branches

4.1 Fundamentals

Definition. Consider an S-network in which each incoming request has a random
size h (Kbit) and is split into two conjugate requests so that the same proportion
is always maintained between their sizes h1 and h2 (where h1 + h2 = h):

h2/h1 = γ = const. (17)

If, in this case, the throughput of the channels is connected by the condition

C2 = γC1, (18)

then the service time x1 of the request in Channel 1 and the Service Time x2 of
the conjugate request in Channel 2 coincide:

x1 = h1/C1,

x2 = h2/C2 =(γh1)/(γC1) = h1/C1 = x1. (19)

Since the equality (19) is satisfied for each pair of conjugate requests, then in
each pair both conjugate requests enter the queues to the channels, into the
channels, and to the assembly point simultaneously. We call such a network an
S-network with synchronous branches or an Ss-network.

It is easy to see that in the Ss network, C2 = γC1 implies C = (1 + γ)C1,
where C = C1 + C2 is the total throughput of the channels. Similarly, from
h2/h1 = γ it follows that Traffic F2 entering the second branch and all Traffic
F entering the network are expressed in terms of F1 by the relations F2 = γF1,
F = (1 + γ)F1.

Ss-Network Optimization Problem . The problem (5), (6) of optimizing an S-
network with synchronous branches can be solved exactly for any flow of requests
for which both QSs in the branches can be calculated using exact QT methods.

Indeed, since Sojourn Time u1 of any request in QS1 and Sojourn Time u2 of
the corresponding conjugate request in QS2 in the Ss-network coincide, then in
(1) we have u = max(u1, u2) = u1 and, therefore, in (4) U = M [max(u1, u2)] =
M [u1] = U1, where U1 is the average sojourn time of the request in QS1. Per-
forming the substitutions U(C1, C2) = U1(C1), C2 = γC1 and F2 = γF1 in the
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problem (5), (6), we obtain its equivalent formulation using only one variable
parameter C1:

f = lU1(C1) + m(1 + γ)C1 → min
C1

, (20)

C1 ≥ F1. (21)

Note that after these substitutions are performed, the second constraint in (6)
becomes equivalent to the first and, therefore, is absent in the constraints (21).

The solution to the problem (20), (21) of optimization of the Ss-network
determines the optimal throughput C1 of the first channel and, at the same
time, the corresponding throughput C2 = γC1 and C = (1 + γ)C1.

4.2 Ss-Network with Regular Incoming Flow and Fixed Order Size

Optimization. With a regular incoming flow, Time τ between arrivals of requests
to the network (and, therefore, to each of the two branches) is constant: τ =
const.The size of requests arriving in QS1 is also fixed (h1 = const), so the
service time x1 = h1/C1 is also fixed in QS1. It follows from the restriction
C1 ≥ F1 that x1 ≤ τ1, i.e., each request arriving in QS1 is serviced before the
next one arrives. Therefore, the queue in front of Channel 1 is not formed, and
the average sojourn time of the request in U1 = x1 = h1/C1. Substituting this
expression for U1 in (20), (21) instead of U1(C1), we obtain the problem

f = l
h1

C1
+ m(1 + γ)C1 → min

C1
, (22)

C1 ≥ F1, (23)

whose solution is reduced to solving the algebraic equation

∂f(C1)
∂C1

= 0 or − l
h1

C2
1

+ m(1 + γ) = 0,

determining the point of the local minimum

C1 =

√
lh1

m(1 + γ)
. (24)

If the obtained value C1 satisfies the constraint C1 ≥ F1, then (24) is the solution
to problem (22), (23). Otherwise, the solution to this problem is the smallest
value C1 closest to the point (24) that satisfies the constraint C1 ≥ F1, i.e.,
value C1 = F1.

Comparison with the Single-Channel Version. The two-channel implementa-
tion of the SSS, compared to the single-channel implementation, significantly
increases the security of the transmitted data from unauthorized use. To esti-
mate the losses due to which this is achieved, let us compare the costs obtained
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in the optimal Ss-network with the costs characterizing the corresponding basic
single-channel optimal system.

In the considered case of a regular incoming flow and a fixed size of requests,
the average Time U of message transmission over one channel for C ≥ F is
equal to the average request service time (since there is no queue in front of
the channel). I.e. U = h/C, where h = h1 + h2 = const is the size of requests.
Therefore, the optimization problem for a basic single-channel system takes the
form

f = lh/C + mC → min
C

, (25)

C ≥ F. (26)

The local minimum of the objective function (25) is attained at the point

C =

√
lh

m
. (27)

Theorem 1. Transmission of a regular flow of fixed-size requests through the
optimal Ss-network leads to the same costs as transmission through the opti-
mal single-channel system. In this case, the total throughput of the optimal
Ss-network is equal to the throughput of the optimal single-channel system.

Proof of the Theorem. To prove the theorem, it suffices to note that the state-
ment of the problem (22), (23) for optimizing the Ss-network differs from the
statement of the problem (25), (26) for optimizing a single-channel system only
due to the formulation of the problem (22), (23) in terms of the optimal choice
of throughputs abilities C1. But since any of the parameters C1, C2, and C
uniquely determine the other two parameters in the Ss-network, the problem of
its optimization can be formulated in terms of the optimal choice of any of these
three parameters. When choosing the variable C as a variable parameter - the
total throughput of the channels - the formulation of the Ss-network optimiza-
tion problem becomes equivalent to the formulation of the optimization problem
for a single-channel system.

Indeed, in the problem (22), (23) C1 = C/(1 + γ), F1 = F/(1 + γ) and
h1 = h/(1 + γ). Carrying out the corresponding changes in the problem (22),
(23), we obtain its formulation

f = l
h/(1 + γ)
C/(1 + γ)

+ m(1 + γ)C/(1 + γ) → min
C

,

C/(1 + γ) ≥ F/(1 + γ).

equivalent to the formulation of the problem (25), (26). From the equivalence of
the formulations of the two fundamentally different problems under considera-
tion, the numerical coincidence of their solutions follows. The theorem is proved.

The two problems under consideration are optimization problems for two
different systems, the Ss-network and a single-channel system. The formal coin-
cidence of their solutions means that the transmission of a regular incoming flow
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with a fixed request size through the optimal Ss-network leads to exactly the
same costs as its transmission through the optimal single-channel system.

4.3 Ss-Network with an Arbitrary Incoming Flow of Requests

Theorem 1 is generalized by the following theorem.

Theorem 2. The transmission of any request flow through the optimal Ss-
network leads to the same costs as its transmission through the optimal single-
channel system. In this case, the total throughput of the optimal Ss-network is
equal to the throughput of the optimal single-channel system.

The proof of the theorem is based on a comparison of the processes of passing
through the Ss-network and through a single-channel system of the same imple-
mentation of the incoming request flow. Then, provided that the throughput
of the single-channel system is equal to the throughput of the Ss-network, the
advancement of requests in each branch of the Ss-network occurs synchronously
with the advancement of requests in the single-channel system. Therefore:

– the equivalence of the network optimization problem and the optimization
problem for a single-channel system (including when they are considered inde-
pendently, i.e. when independent implementations of the same request flow
are fed to the network input and to the single-channel system input);

– the coincidence of the total throughput of the optimal network channels with
the throughput of the optimal single-channel system;

– the coincidence of the costs calculated for the period of operation of the
optimal Ss-network and the costs of the optimal single-channel system for
the same period.

A detailed presentation of the proof is beyond the scope of this article.

4.4 Example of Exponential Ss Network Optimization

Definition. An Ss network is said to be exponential if it includes a Poisson request
flow and the request sizes are distributed exponentially. Accordingly, both QSs
in such a network are M/M/1 systems. Their calculation is carried out according
to the well-known formulas [13].

Ss-Network Optimization. The average Sojourn Time U1 in QS1 of the expo-
nential Ss-network is [13]:

U1 =
1/μ1

1 − ρ1
=

1
μ1 − λ1

=
H1

H1μ1 − H1λ1
=

H1

C1 − F1
, (28)

where μ1 is the intensity of servicing requests in the QS1, ρ1 = λ1/μ1 = F1/C1−
is the load factor of QS1, H1 = M(h1) is the average size of requests arriving in
QS1.
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Therefore, the problem (20), (21) as applied to the exponential Ss-network is
specified as follows:

f = l
H1

C1 − F1
+ m(1 + γ)C1 → min

C1
, (29)

C1 ≥ F1. (30)

The only minimum of objective function (29), determined from the equation

∂f

∂C1
= − lH1

(C1 − F1)2
+ m(1 + γ) = 0 (31)

is reached at the point

C1 = F1 +

√
lH1

m(1 + γ)
(32)

and is the solution to the problem (29), (30),since it satisfies the constraint (30).
Substituting the throughput (32) into the objective function expression (29),

we find the costs of using the optimal exponential Ss-network:

f = l
H1√

lH1
m(1+γ)

+ m(1 + γ)

√
lH1

m(1 + γ)
= 2

√
(1 + γ)mlH1. (33)

Optimization of a Single-Channel Exponential System. The flow of requests
included in the considered exponential Ss-network has intensity λ = F/H =
F1/H1 and average request size H = (1 + γ)H1. When this stream is trans-
mitted over a single-channel system, the average request transmission time is
U = 1/μ

1−ρ = H
C−F . The optimization problem for such a single-channel QS has

the form
f(C) = l

H

C − F
+ mC → min

C
, (34)

C ≥ F (35)

and determines the throughput

C = F +

√
lH

m
, (36)

at which the average total costs (33) are minimal and amount to

f(C) = l
H√

lH
m

+ m

(
F +

√
lH

m

)
= 2

√
mlH + mF. (37)
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Comparison of the Optimal Exponential Ss-Network and the Corresponding
Single-Channel QS. To compare the solution (32) to the problem (29), (30) with
the solution (36), we rewrite the solution (32) in terms of the total throughput of
the Ss-network. Carrying out the substitutions C1 = C/(1+ γ), F1 = F/(1+ γ),
H1 = H/(1 + γ) in (32) equivalent for any Ss-network, we obtain the expression

C

1 + γ
=

F

1 + γ
+

√
lH

m(1 + γ)2
, (38)

and, simplifying it, we find the total throughput of the optimal exponential
Ss-network

C = F +

√
lH

m
,

coinciding, as we see, with the throughput (35) of the optimal single-channel
exponential QS.

Similarly, performing the replacement H1 = H/(1 + γ) in (33) equivalent for
Ss-networks, we make sure that the costs associated with the use of the opti-
mal exponential Ss-network coincide with the costs associated with the use of
the optimal single-channel exponential system. Thus, the solutions to the expo-
nential Ss-network optimization problem, and the optimization problem for the
corresponding single-channel exponential QS, obtained in general form, confirm
and illustrate Theorem 2 formulated above, proved for any request flow.

5 Networks with Splitting Requests in Constant
Proportion

5.1 Fundamentals

Definition. S-networks in which the condition h2/h1 = γ = const is satisfied
when splitting requests, but the condition C2 = γC1 is not imposed, we will call
networks with split requests in equal proportions, or Se-networks. Thus, the Ss-
networks considered above are a subset of Se-networks in which both conditions
(17), (18) are satisfied.

Optimization of Se-Networks. The optimization problem for Se-networks has
certain specific features. It is written, like the general problem (5), (6) of opti-
mization of S-networks, in the form

f = lU(C1, C2) + mC1 + mC2 → min
C1,C2

, (39)

{
C1 ≥ F1,

C2 ≥ F2,
(40)

(where U(C1, C2) = M [max(u1, u2)], and inherits the property (as opposed to
the network with independent branches, see Fig. 2) that in the general case,
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in an elementary function, the inexpressible dependence of the mathematical
expectation M [max(u1, u2)] on the variable parameters C1, C2 is determined
here on stochastically interdependent random variables u1, u2 (sojourn time in
QS1 and QS2).

In contrast to the optimization problem for Ss-networks, the variable param-
eters C1, C2 in (39), (40) are independent and not related by the condition
C2 = γC1, therefore, both inequalities are preserved in the constraints (40). And
so, the progress of requests in the network branches is generally asynchronous
here, which makes it difficult to find an explicit formula that accurately expresses
time in terms of U(C1, C2) = M [max(u1, u2)] network parameters.

At the same time, it is very important to find the exact solution to the
problem (39), (40). This is due to the following considerations. The previously
considered problem This is due to the following considerations. The previously
considered problem (20), (21) of optimizing Ss-networks is the problem of find-
ing the conditional minimum of the objective function (39), since it connects
the arguments of function (39) with an additional condition C2 = γC1, i.e.
limits in the coordinate system (C1, 0, C2) the search area for the minimum f
to a one-dimensional set of points of the straight line C2 = γC1. And when
solving the problem (20), (21), we found the solution on this straight line that
does not increase the costs of a two-channel SSS implementation in comparison
with a single-channel implementation. And if in the two-dimensional region of
feasible solutions to the problem (39), (40) the only minimum point of the objec-
tive function (39) is outside Straight Line C2 = γC1, then the solution to the
problem (39), (40) will be better than the solution to the problem (20), (21).
The substantive meaning of such a solution will be to discover the possibility
of switching to a two-channel SSS implementation not only without increasing
costs (see Theorem 1), but also with their accompanying decrease.

In the next two sections, it is established that such a possibility is excluded
in the class of Se-networks: the optimal solutions of the problem (39), (40) with
independent throughputs always lie on Straight Line C2 = γC1.

5.2 Se-Network with Regular Incoming Flow and Fixed Request
Size

Theorem 3. The Se-network that is optimal for transmitting a regular flow of
fixed-size requests is an Ss-network, i.e., when transmitting a regular flow of
requests of a fixed size, the optimal solution to the problem (39), (40) always
lies on Straight Line C2 = γC1.

Proof of the Theorem. Taking into account the condition h2/h1 = γ = const
which defines the Se-network, we represent the domain of feasible solutions to
the problem (39), (40) in the form of a union of two domains, R1 and R2 (Fig. 3).

Domain R1 is determined by conditions C1 ≥ F1, C2 ≥ γC1, Domain R2

is determined by conditions C2 ≥ F2, C2 ≤ γC1. Line C2 = γC1 for C1 ≥ F1

belongs to both domains. The point (F1, F2) lies on this line, since F2/F1 =
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Fig. 3. Domain of feasible solutions to problem (39), (40)

λh2/λh1 = γ (the coordinates of the point satisfy the equation of the line).
Any point (C1, C2) belonging to the domain of feasible solutions determines
the service time of requests x1 = b1 = h1/C1 ≤ h1/F1 = τ1 for QS1, i.e., the
constant service time of requests in the first branch of the network does not
exceed the constant period τ1 of the arrival of requests in this branch. There is
no queue to the channel in the first branch, Time u1 of the sojourn of requests
in QS1 is constant and equal to h1/C1. Similarly, we find that there is no queue
to the channel in the second branch of the network, and Time u2 of the sojourn
of requests in QS2 is equal to constant h2/C2.

We use the method of proof by contradiction and assume that the least value
of objective function (39) is attained at Point C = (C1, C2), which does not lie
on Straight Line C2 = γC1. Then the required point lies either in Domain R1

and above this line, or in Domain R2 and to the right of this line.
In the first case, the coordinates of Point C which lies in the domain of

feasible solutions and delivers the smallest value of the objective function, have
the form (C1, C2) = (C1, γC1+ε), where ε > 0. In this case, the periodic process
of servicing requests in QS1 is characterized by the Service Time x1 = h1/C1, in
QS2 - by the Service Time x2 = h2/C2 = γh1/(γC1 + ε) = h1/(C1 + ε/γ) < x1.
Each request in the first branch and its conjugate request in the second branch
starts to be served at the same time. The request in the second branch is served
earlier and waits for the completion of the service of the conjugate request,
which should come from QS1. As a result, Time u spent by the request to the
network (until the moment of assembly) becomes equal to x1 = h1/C1. But we
get the same sojourn time at Point C

∗
= (C1, γC1), at which x2 = x1. And,

since at Point C
∗

with the same sojourn time and the same throughput C1,
the throughput of C2 is lower than at Point C , we get f(C

∗
) < f(C) (39).

The resulting contradiction excludes the possibility of finding a solution to the
problem (39), (40) in Domain R1 outside Straight Line C2 = γC1.

A similar contradiction is caused by the assumption that it is possible to
find the required minimum point in Domain R2 outside Straight Line C2 = γC1

leads to a similar contradiction.
Thus, the solution to the problem (39), (40) always lies on Straight Line

C2 = γC1. With the optimal choice of throughput, the considered Se-network
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(with a regular flow of fixed-size requests) becomes an Ss-network. The optimal
throughput of such a network is found in Sect. 3.2 of the article. It was also
shown there that the transmission of such a stream through the optimal Ss-
network leads to exactly the same costs as its transmission through the optimal
single-channel system. Now the corresponding conclusion also applies to optimal
Se-networks.

5.3 Se-Network with Arbitrary Incoming Flow of Requests

Theorem 4. The Se-network that is optimal for transmitting any flow of requests
is an Ss-network; Optimal Throughputs C1, C2 of the Se-network lie on Straight
Line C2 = γC1.

The Proof of the Theorem is based on the comparison of the Se-network request
processes passing through its branches and establishing the fact that if C1, C2 are
not connected by condition C2 = γC1, i.e., if the service time of two conjugate
requests does not coincide, then the random sojourn time ui = max(ui

1, u
i
2) of

the i-th request in the Se-network is determined by the formula

ui = max(ui
1, u

i
2) =

{
ui
1, if C2 ≥ γC1,

ui
2, if C2 ≤ γC1.

(41)

For C2 = γC1 for all i we obtain ui
1 = ui

2.
Averaging the sojourn time (41) over all requests, we obtain an expression

that is valid for any Se-networks:

U =
{

U1, if C2 ≥ γC1,
U2, if C2 ≤ γC1.

(42)

And then we complete the establishment of the validity of Theorem 4 by proving
it by contradiction (by analogy with the proof of Theorem 3).

We note two important corollaries of Theorem 4:

– for any incoming flow, the Ss-network is the optimal Se-network;
– the optimal two-channel SSS implementation in the form of a Se-network does

not increase operating costs in comparison with the optimal (and, therefore,
compared to any) single-channel SSS implementation.

Theorem 4 greatly simplifies the solution of the complex problem of nonlinear
optimization of Se-networks, since it reduces the search for the optimal values
of two variable parameters C1, C2, which provide the minimum of the function
of two variables, to the search for the optimal value of one variable parameter,
e.g., C1 (the other is determined from the relation C2 = γC1), that provides
the minimum of the objective function. This is especially important when it is
necessary to use simulation modeling to calculate the objective function, e.g.,
when QS in the network branches belongs to G/G/1 class systems for which
there are no exact formulas in QT that express the average sojourn time in QS
in terms of its parameters.
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The average delay in both synchronization queues is zero. Hence it follows
that for C2 = γC1 in Se-networks u1 = u2 and is determined by the formula (4)
U = U1. Consequently, the optimal value of C1 and the minimum cost (5) can
be easily calculated analytically if QS1 is, for example, a system of class M/M
/1, M/G/1, etc.

6 Discussion of Research Results (Conclusion)

The article introduces and investigates a mathematical model for the transmis-
sion of messages, divided into smaller and larger shares, transmitted over differ-
ent channels with different throughput. In terms of queuing theory, a network
with split requests (S-network) is defined as such a model. This network takes
into account the transmission of a split request over two different channels, the
formation of queues in front of the channels, and the assembly of split requests on
the receiving side of the channel. The mathematical problem of optimizing the
throughput of two channels of the S-network is posed in a general form. Meth-
ods for solving this problem (methods for optimizing S- network) are formulated
and investigated. Analytical methods have solved the problem of optimizing an
exponential S-network with independent branches. In practice, the solution to
this problem can be used to optimize S-networks, in which the transmission of
split requests constitutes a small part of the total traffic transmitted over two
channels.

Special methods are used to study optimization problems for such S-networks,
in which the transmission of split requests constitutes the main load transmit-
ted over two channels. Four theorems are proved, which makes it possible to
reduce two-dimensional optimization problems of such S-networks (i.e.,. prob-
lems with two variable parameters) to one-dimensional ones. Several S-networks
with sequentially more complex properties are considered, as a result of which
the possibility of reducing a two-dimensional optimization problem to a one-
dimensional one for S-networks with the most general assumptions regarding
the type of flow of requests arriving in the S-network and the distribution laws
of the sizes of requests has been established.

All analytical solutions presented in the article have been verified and con-
firmed by simulation modeling.
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Abstract. We consider two input-output applied probability models
which can arise in such applications as insurance, inventory, telecommu-
nications, finance, population dynamics and many others. Giving another
interpretation to input and output processes one is able to pass from one
applied domain to another. For certainty, the models description is given
in terms of insurance being the oldest domain among the above men-
tioned. The first (periodic-review) model treats an insurance company
using non-proportional reinsurance and bank loans. In the framework of
cost approach we obtain the model optimal control and limit behavior.
The model stability with respect to small fluctuations of underlying dis-
tribution is also established. The second model is a generalization of the
classical Cramér-Lundberg model. The company has several branches
of insurance. Premiums, as well as claims, are random. Their flows are
described by generalized Poisson processes. Investment in risky- and non-
risky assets is also implemented. Analog of the Lundberg inequality for
the ultimate ruin probability is obtained using the martingale technique.

Keywords: Limit behavior · Stability · Optimization · Reliability

1 Introduction

In order to study a real process or system one has to choose an appropriate
mathematical model. It is well known that the most frequently used models in
such applied probability domains as insurance, inventory, telecommunications,
finance, population dynamics and many others are of input-output type. They
are described by the six-tuple (T,Z, Y, U, Ψ,L) (see, [9]). Here T is the plan-
ning horizon, Z = (Z(t), t ∈ [0, T ]) is input process and Y = (Y (t), t ∈ [0, T ])
is output process. These processes can be not only one-dimensional but multi-
dimensional as well. Moreover, their dimensions are sometimes different. The
system may be deterministic, stochastic or mixed. That means, either both pro-
cesses are deterministic (stochastic) or one of the processes is stochastic and
the other one is deterministic. Giving different interpretations to input and out-
put we can study the systems from different applied domains using the same
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model. The system state X = Ψ(Z, Y, U) depends on input, output and con-
trol U = (U(t), t ∈ [0, T ]) via functional Ψ describing the system structure
and performance mode. The control may be applied to input Z, output Y or
system structure Ψ . Control is used to exclude or minimize the risk associated
with system performance. According to the choice of the objective function (risk
measure, target or criterium) LT (U), there exist different approaches, see, e.g.,
[10,27]. Our work is employing only two of them. In the framework of the first
(cost) approach we calculate either the (expected) costs entailed by system func-
tioning and try to minimize them, or the (expected) profit and maximize it. In
the second one (reliability approach) the aim is to minimize the probability of
system failure (ruin) or maximize the time of uninterrupted system performance,
see, e.g., [2,29,31].

Definition 1. A control U∗
T = {U∗(t), t ∈ [0, T ]} is called optimal if

LT (U∗
T ) = inf

UT ∈UT

LT (UT ), (or LT (U∗
T ) = sup

UT ∈UT

LT (UT )), (1)

where UT is a class of all feasible controls. Furthermore, U∗ = {U∗
T , T ≥ 0} is

called an optimal policy (or strategy).

If the extremum in (1) cannot be attained one has to use either the ε-optimal
or asymptotic optimal policies.

Below we consider two models in order to take into account different situa-
tions. Since insurance is the oldest applied probability domain we describe the
models in terms of insurance company functioning. Constructing an insurance
company model one has to take into account its two-fold nature. Originally all
insurance societies were designed for risk sharing. Hence, their primary task is
policyholders indemnification. Nowadays, for the most part they are joint stock
companies. Thus, the secondary but very important task is dividend payments to
shareholders, see, e.g. [7]. The modern period in actuarial sciences is character-
ized by investigation of complex systems, including dividends payment, reinsur-
ance, tax, bank loans and investment. Interplay of actuarial and finance methods,
in particular, unification of reliability and cost approaches is another feature of
the last twenty years, see, e.g., [10,12]. Discrete-time models recently became
popular, because they turned out to be more appropriate for description of some
aspects of insurance company performance, see, e.g., [19,20,22–24]. Moreover,
discrete-time models can be used for approximation of continuous-time ones, see,
e.g., [25].

The paper is arranged as follows. Section 2 deals with a mixed-type model,
namely, discrete-time model of insurance company using non-proportional rein-
surance and bank loans. The premium inflow is deterministic, whereas the claim
amounts are stochastic and identically distributed. The models of such type have
already been studied however with different additional assumptions. So, in [8]
and [11], the asymptotic analysis was carried out for the systems with bank
loans. The problem of investment was treated in [15,16] in the framework of
reliability approach, see also [32]. Discrete-time models with dividends and rein-
surance are treated in [17]. Optimization of discrete-time insurance model with
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capital injections and reinsurance is presented in [18]. Non-homogeneous claim
flows are considered, e.g., in [1,3,4,19] and [36]. Reviews of discrete-time models
one can also find in [9] and [30].

The investigation is carried out as follows. First of all, we prove that the
optimal loan policy is characterized by a sequence of critical levels. After that
we establish the system stability using the Kantorovich metric, then prove the
strong law of large numbers (SLLN) and central limit theorem (CLT) for the
company surplus.

In Sect. 3 a generalization of the classical Cramér-Lundberg model is con-
sidered. The company is supposed to issue several types (say, n) of policies.
Premiums, as well as claims, are random. Their flows are described by gener-
alized Poisson processes. The reliability approach is employed. More precisely,
the ruin probability is calculated using the martingale technique. Analog of the
Lundberg inequality is also obtained.

2 Non-proportional Reinsurance and Bank Loans

2.1 Model Description

Suppose that the claims arriving to insurance company are described by a
sequence of independent identically distributed (i.i.d.) non-negative random vari-
ables (r.v.’s) {Xi, i ≥ 1}. Here Xi is the claim amount during the i-th period
(year, month or day). Let F (x) be its distribution function (d.f.) having den-
sity ϕ(x) and finite expectation. The company uses non-proportional reinsurance
with retention a and bank loans. If a loan is taken at the beginning of period
(before the claim arrival) the rate is b1, whereas the emergency loan after the
claim arrival is taken at the rate b2 with b2 > b1. Our aim is to choose the loans
in such a way that the additional payments entailed by loans are minimized.
Denote by M the premium acquired by direct insurer (after reinsurance) during
each period. Clearly,

M = (1 + β1)EX − (1 + β2)E(X − a)+.

Here β1 and β2 are the safety loadings of insurer and reinsurer, respectively,
usually β1 < β2.

If x is the initial capital and y is the capital after the bank loan, then f1(x),
the minimal expected additional cost during one period, is given by

f1(x) = min
y≥x

[b1(y − x) + b2E(min(X, a) − (y + M))+]. (2)

Clearly, (2) can be rewritten in the form:

f1(x) = −b1x + min
y≥x

G1(y), G1(y) = b1y + b2E[min(X, a) − (y + M)]+.

Now let fn(x) be the minimal expected costs during n periods and α the discount
factor for future expenses. Then, using the dynamic programming, see, e.g., [5],
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one easily obtains the following relation:

fn(x) = −b1x + min
y≥x

Gn(y), Gn(y) = G1(y) + αEfn−1(y + M − min(X, a)).

It is not difficult to prove by induction the main optimization result.

Theorem 1. Let F (M) < 1 − b1
b2

< F (a), then there exists an increasing
sequence of critical levels {yn}n≥1 such that

fn(x) = −b1x +
{

Gn(yn), if x ≤ yn,
Gn(x), if x > yn.

The sequence is bounded by ȳ satisfying the equation H(y) = 0 where H(y) =
G′

1(y) − b1α.

Proof. Obviously, E[min(X, a)− z]+ =
∫ a

z
F̄ (s) ds with F̄ (s) = 1−F (s). There-

fore, G′
1(y) = b1 − b2F̄ (y + M) for y + M < a and G′

1(y) = b1 > 0 other-
wise. If we assume additionally that F̄ (M) > b1/b2 > F̄ (a) then there exists
y1 = F−1(1 − b1/b2) − M > 0 such that G′

1(y1) = 0. (The other cases are more
intricate and will be treated later.) Thus, we have

f1(x) = −b1x +
{

G1(y1), if x ≤ y1,
G1(x), if x > y1,

and

f ′
1(x) =

{−b1, if x ≤ y1,
−b2F̄ (x + M), if x > y1.

In other words, f ′
1(x) < 0 for all x. Further proof is carried out by induction.

Since
G′

2(y) = G′
1(y) + α

∫ ∞

0

f ′
1(y + M − min(s, a))ϕ(s) ds

and G′′
2(y) ≥ 0, it is not difficult to get G′

2(y) ≤ G′
1(y) for all y, that is, y2 ≥ y1.

Moreover,
G′

2(y) ≥ G′
1(y) − b1α = H(y).

That entails inequality y2 ≤ ȳ. It follows immediately that expression of f2(x) is
similar to that of f1(x) with y2 instead of y1 and f ′

2(x) < 0 for all x. Assuming
the same is true for n we can write

f ′
n(x) − f ′

n−1(x) =

⎧⎨
⎩

0, x ≤ yn−1,
−G′

n−1(x), yn−1 < x ≤ yn,
G′

n(x) − G′
n−1(x), yn < x.

Thus, it is clear that yn ≤ yn+1 ≤ ȳ, ending the proof.

Corollary 1. If M = 0 then limn→∞ yn = ȳ.

For M > 0 such statement is not valid. To verify this fact the numerical analysis
was carried out using Python, for other method see, e.g., [21].
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2.2 Stability

In order to establish the model stability to small perturbations of the underlying
distribution we are going to use the probability metrics, see, e.g., [33]. Suppose
that we have two different sequences of claims {Xn} and {Yn} with distribution
functions FX and FY , respectively.

The corresponding minimal n-step costs are denoted by fn,X and fn,Y , other
functions and constants depending on distribution will be marked by subscripts
X and Y , as well.

The distance between distributions will be measured in terms of the Kan-
torovich metric.

Definition 2. Let random variables X and Y , defined on the same probability
space, possess finite expectations. The distance based on the Kantorovich metric
is given as follows:

κ(X,Y ) =
∫ ∞

−∞
|FX(t) − FY (t)| dt

where FX and FY are the respective distribution functions of X and Y .

The distance between the cost functions is measured in terms of the Kolmogorov
uniform metric. Thus, we are going to study

Δn = sup
x

|fn,X(x) − fn,Y (x)|.

To this end we need the following

Lemma 1. Let functions gi(y), i = 1, 2, be such that |g1(y) − g2(y)| < δ for
some δ > 0 and any y, then supx | infy≥x g1(y) − infy≥x g2(y)| < δ.

Proof. Fix x and put Ci = infy≥x gi(y). Then, according to definition of infimum,
for any ε > 0 there exists such y1(ε) ≥ x that g1(y1(ε)) < C1 + ε. Therefore

g2(y1(ε)) < g1(y1(ε)) + δ < C1 + ε + δ

implying C2 < g2(y1(ε)) < C1 + ε + δ. Letting ε → 0 one gets immediately
C2 < C1 + δ. In a similar way one establishes C1 < C2 + δ, thus obtaining the
desired result |C1 − C2| < δ.

Now we are able to estimate Δ1.

Lemma 2. Assume κ(X,Y ) = ρ, then Δ1 ≤ b2ρ.

Proof. According to Lemma 1 we need to estimate |G1,X(y) − G1,Y (y)| for any
y. The definition of these functions gives G1,X(y) − G1,Y (y) = b2

∫ a

y+M
(F̄X(s) −

F̄Y (s)) ds. As usually, F̄X(s) = 1−FX(s). This leads immediately to the desired
estimate.

To formulate the main result demonstrating the model stability put Dn =
b2(1−αn)

1−α + b1(α−αn)
1−α .
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Theorem 2. If κ(X,Y ) = ρ, then Δn ≤ Dnρ.

Proof. As in Lemma 2 we begin by estimating for all y

|Gn,X(y) − Gn,Y (y)| ≤ |G1,X(y) − G1,Y (y)| + αΔn−1(X,Y )

with

Δn−1(X,Y ) = |
∫ ∞

0

fn−1,X(y + M − min(s, a)) dFX(s)

−
∫ ∞

0

fn−1,Y (y + M − min(s, a)) dFY (s)|.

Adding and subtracting
∫ ∞
0

fn−1,X(y+M−min(s, a)) dFY (s) in expression under
the sign of module and rewriting this integral in the form fn−1,X(y + M) −∫ a

0
f ′

n−1,X(y + M − s)F̄X(s) ds, we obtain the recurrent relation

Δn ≤ Δ1 + α(Δn−1 + b1ρ),

since |f ′
n−1(y)| ≤ b1 for any y. The desired statement is obvious.

2.3 Limit Theorems

The last problem for this model is the limit behavior of the company surplus as
the planning horizon n tends to ∞. Let x be the initial capital. Since we use the
reinsurance treaty with retention level a at each step, put X

(a)
k = min(Xk, a)

where Xk denotes the claim amount in the k-th period.
According to Theorem 1 the optimal policy of insurer is characterized by

the sequence of critical levels yn as follows. At the first step of n-step process
it is necessary to raise the initial capital to level yn if x ≤ yn and take no loan
otherwise. Thus, if Z

(n)
k is the surplus at the k-th step of the n-step process then

Z
(n)
0 = x and for k ≥ 1

Z
(n)
k =

{
yn+1−k + M − X

(a)
k , Z

(n)
k−1 ≤ yn+1−k,

Z
(n)
k−1 + M − X

(a)
k , Z

(n)
k−1 > yn+1−k.

(3)

Theorem 3 (SLLN for surplus). For x > a − M with probability 1

Z
(n)
n

n
→ δ(a) = M − EX(a), as n → ∞.

Proof. It easily follows from (3) that for x > a − M

Z(n)
n = x + nM −

n∑
k=1

X
(a)
k , (4)

hence, according to the SLLN for a sequence of i.i.d. r.v’s with a finite mean the
statement of the theorem is true.
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Thus, we can formulate the following

Corollary 2. The ultimate ruin probability is equal to 1 if δ(a) ≤ 0.

It is also possible to establish the asymptotical normality of surplus. Namely,

Theorem 4 (CLT for surplus). For x > a − M

Z
(n)
n − EZ

(n)
n√

V arZ
(n)
n

d→ N , as n → ∞,

here N has Gaussian distribution with parameters (0, 1) and d→ signifies conver-
gence in distribution.

Proof. The assertion easily follows from CLT for i.i.d. r.v’s. According to (4)

Z
(n)
n − EZ

(n)
n√

V arZ
(n)
n

= −
∑n

k=1 X
(a)
k − ∑n

k=1 EX
(a)
k√∑n

k=1 V arX
(a)
k

.

So one uses the properties of convergence in distribution (see, e.g., [6]) and the
properties of Gaussian distributions to derive the asymptotic normality.

Hence, it is not difficult to obtain the bounds on the size of surplus with proba-
bility 1 − ε for small ε > 0 and choose the appropriate values of retention level
a and safety loadings βi, i = 1, 2.

3 Generalized Cramér-Lundberg Model

3.1 Model Description

In order to make the model more realistic, we consider n categories (branches)
of insurance (not a single one), replace the compound Poisson process by a gen-
eralized Poisson process and include the investment. Based on these conditions,
a risk model is set up to find (by the martingale methods) the formula of ruin
probability and its upper bound. Thus, we put

U(t) = u1 + (u1 − u2 − u3)(b − c + d) + S(t),

S(t) = u2r1t + u3(r2t + aB(t)) +
n∑

j=1

Nj(t)∑
i=1

X
(j)
i −

n∑
j=1

Mj(t)∑
i=1

Y
(j)
i .

Here U(t) is the surplus (capital) of insurance company and S(t) is the gain at
time t, u1 is the initial reserve of insurance company, u2 is invested in a non-risky
asset, u3 is used in a venture investment, r1 is rate of return of u2, u3(r2t+aB(t))
is income from investment of u3 in a Brownian motion with parameters r2, a
(r2 is drift parameter, a is volatility, B(t) is a standard Brownian motion), b is
interest rate, c is inflation rate, d is exchange rate. Clearly, parameters satisfy
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the following inequalities t ≥ 0, u1 > 0, u2 > 0, u3 > 0, r1 > 0, r2 > 0, a > 0.
It is interesting to mention that the models including Brownian motion were
studied in [26,28,35] for one-dimensional case.

Furthermore, Nj(t) and Mj(t) are Generalized Poisson processes providing
inhomogeneity of premium and claim flows, X

(j)
i represents the ith premium,

while Y
(j)
i is the ith claim amount for the jth insurance branch. All r.v.’s possess

finite means and variances.
More precisely, Nj(t) =

∑nj(t)
i=1 Z

(j)
i , where nj(t) is a Poisson process with

intensity λj and Z
(j)
i is the number of insurance policies belonging to the jth

insurance branch at the time of the ith jump of nj(t). Then

n∑
j=1

Nj(t)∑
i=1

X
(j)
i =

n∑
j=1

F (j)(t) with F (j)(t) =
nj(t)∑
k=1

G
(j)
k , (5)

where
G

(j)
k = X

(j)

1+
∑k−1

i=1 Z
(j)
i

+ X
(j)

2+
∑k−1

i=1 Z
(j)
i

+ . . . + X
(j)
∑k

i=1 Z
(j)
i

,

and its distribution function is Hj(x).
Mj(t) =

∑mj(t)
i=1 Z

′(j)
i , where mj(t) is a Poisson process with parameter λ′

j

and Z
′(j)
i is the number of claims of the jth insurance branch at the time of the

ith incident, then

n∑
j=1

Mj(t)∑
i=1

Y
(j)
i =

n∑
j=1

F ′(j)(t) with F ′(j)(t) =
mj(t)∑
k=1

G
′(j)
k , (6)

where
G

′(j)
k = Y

(j)

1+
∑k−1

i=1 Z
′(j)
i

+ Y
(j)

2+
∑k−1

i=1 Z
′(j)
i

+ . . . + Y
(j)
∑k

i=1 Z
′(j)
i

,

and its distribution function is H ′
j(x).

It is also assumed that the sequences {Z
(j)
i , i ≥ 1} and {Z

′(j)
i , i ≥ 1}, j = 1, n,

are independent, each consisting of integer-valued non-negative i.i.d. r.v.’s.
Next, we put EX(j) = μ(j), V arX(j) = (σ(j))2, EZ(j) = μ

(j)
1 , V arZ(j) =

(σ(j)
1 )2, EY (j) = μ′(j), V arY (j) = (σ′(j))2, EZ ′(j) = μ

′(j)
1 , V arZ ′(j) = (σ′(j)

1 )2.
It is not difficult to see that

EG
(j)
k = μ(j)μ

(j)
1 and EG

′(j)
k = μ′(j)μ′(j)

1 .

Since the company needs to keep running, an analog of net-profit condition
should be satisfied. In other words, we suppose

s3 +
n∑

j=1

λjμ
(j)μ

(j)
1 −

n∑
j=1

λ′
jμ

′(j)μ′(j)
1 > 0 (7)

with s3 = u2r1 + u3r2.
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Lemma 3. If condition (7) holds then U(t) → ∞ a.s., as t → ∞.

Proof. In fact, we need to establish SLLN for the process {U(t), t ≥ 0}. Since

lim
t→∞

U(t)
t

= lim
t→∞

[
u1 + (u1 − u2 − u3)(b − c + d)

t
+

au3B(t)
t

+ s3

+

∑n
j=1

∑Nj(t)
i=1 X

(j)
i

t
−

∑n
j=1

∑Mj(t)
i=1 Y

(j)
i

t

]
, (8)

we have to obtain the limit (as t → ∞) of each summand on the right-hand side.
First of all, it is clear, that au3B(t)/t ∼ N(0, a2u2

3/t), hence, for any ε > 0,
according to Chebyshev’s inequality

P (|au3B(t)/t| < ε) ≥ 1 − (a2u2
3/tε2).

That means, au3B(t)/t
p→ 0, furthermore, using the Law of Iterated Logarithm

for the Brownian motion, we can obtain

lim
t→∞ au3B(t)/t = 0, a.s. ,

leading to zero limit for the first two terms. Next, we use the relations (5) and
(6). Obviously, representation

1
t
F (j)(t) =

1
t

nj(t)∑
k=1

G
(j)
k =

nj(t)
t

· 1
nj(t)

nj(t)∑
k=1

G
(j)
k

and a similar relation for the last term in (8) leads to conclusion that the last
two terms give the limit equal to

n∑
j=1

λjμ
(j)μ

(j)
1 −

n∑
j=1

λ′
jμ

′(j)μ′(j)
1 .

Due to condition (7), it follows immediately that limt→∞ U(t) = +∞ a.s.

Lemma 4. Surplus process {U(t), t ≥ 0} has stationary independent incre-
ments.

Proof. Taking 0 = t0 < t1 < · · · < tn and denoting

s1(t) =
n∑

j=1

Nj(t)∑
i=1

X
(j)
i , s2(t) =

n∑
j=1

Mj(t)∑
i=1

Y
(j)
i

we can write the following equality U(ti) − U(ti−1)

= au3[B(ti) − B(ti−1)] + [s1(ti) − s1(ti−1)] − [s2(ti) − s2(ti−1)] + s3(ti − ti−1).
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Since the standard Brownian motion has stationary independent increments, as
well as the generalized Poisson process, and they are independent of each other,
it is clear that {S(t), t ≥ 0} has also stationary independent increments.

Lemma 5. There exists a function h(r) satisfying the relation

E[exp(−rS(t))] = exp(th(r)).

Here

h(r) = −rs3 +
a2u2

3r
2

2
+

n∑

j=1

λj [

∞∑

m=1

Mm
X(j)(−r)P (j)

m −1]+

n∑

j=1

λ′
j [

∞∑

m=1

Mm
Y (j)(r)P

′(j)
m −1],

MX(j)(r) = E exp(rX(j)), MY (j)(r) = E exp(rY (j)),

P
(j)
m is the probability that the number of MX(j) is m and P

′(j)
m is the probability

that the number of MY (j) is m.

Proof. It is not difficult to obtain the following chain of equalities

E exp[−rS(t)] = E exp[−rs3t − rau3B(t) − r
n∑

j=1

Nj(t)∑

i=1

X
(j)
i + r

n∑

j=1

Mj(t)∑

i=1

Y
(j)
i ]

= exp[−rs3t] · E exp[−r(au3B(t))] · E exp[−r
n∑

j=1

Nj(t)∑

i=1

X
(j)
i ] · E exp[r

n∑

j=1

Mj(t)∑

i=1

Y
(j)
i ]

= E exp{t[−rs3 +
a2u2

3r
2

2
+

n∑

j=1

λj(MG(j)(−r) − 1) +
n∑

j=1

λ′
j(MG′(j)(r) − 1)]}. (9)

Obviously,

MG(j)(r) =
∞∑

m=1

P (j)
m Mm

X(j)(r), and MG′(j)(r) =
∞∑

m=1

P ′(j)
m Mm

Y (j)(r),

so
E exp[−rS(t)] = exp[th(r)]

with h(r) defined in the statement of lemma.

Lemma 6. Equation h(r) = 0 has only one positive root R.

Proof. Using (9), we get

h′(r) = −s3 + a2u2
3r −

n∑

j=1

λjE[G(j) exp(−rG(j))] +
n∑

j=1

λ′
jE[G′(j) exp(rG′(j))],

h′′(r) = a2u2
3 +

n∑

j=1

λjE[(G(j))2 exp(−rG(j))] +
n∑

j=1

λ′
jE[(G′(j))2 exp(rG′(j))] > 0.



248 E. Bulinskaya

Due to (7)

h′(0) = −s3 −
n∑

j=1

λjE[G(j)] +
n∑

j=1

λ′
jE[G′(j)]

= −{s3 +
n∑

j=1

λjμ
(j)μ

(j)
1 −

n∑
j=1

λ′
jμ

′(j)μ′(j)
1 } < 0,

so, equation h(r) = 0 has at most two nonnegative roots, moreover, h(0) = 0.
Thus, there is only one positive root R which is called the adjustment coefficient.

3.2 Ruin Probability

Now we are going to choose an objective function. Instead of the additional costs
entailed by the system functioning we consider the ruin probability, that is, use
the reliability approach. We introduce the following

Definition 3. Ruin time T of the insurance system under consideration is the
first moment when the company capital U(t) becomes negative, that is,

T = inf{t > 0 : U(t) < 0}.

We define the ultimate ruin probability as P (T < ∞). Note that under assump-
tion (7) this probability is not equal 1 according to Lemma 3.

In order to use the martingale technique for evaluation of ruin probability
we establish the following result.

Lemma 7. The process V (t) = exp[−rU(t) − th(r)], t ≥ 0, with h(r) defined in
Lemma 5, is a martingale.

Proof. Introduce Ft = σ{S(s), s ≤ t}, t ≥ 0. Since the process S(t) has inde-
pendent increments, it is obvious that

E[V (t)|Fs] = E[V (s) exp(−r(S(t) − S(s)) − (t − s)h(r))|Fs] = V (s).

Theorem 5. For the Generalized Poisson multiple risk model, the upper bound
of ultimate ruin probability is given by

P (T < ∞) ≤ exp[−R(u1 + (u1 − u2 − u3)(b − c + d))].

Here R is the unique positive root of the equation h(r) = 0.

Proof. By the Stopping-time Theorem, for any fixed t0 < ∞
EV (T ∧ t0) = EV (0) = exp(−r[u1 + (u1 − u2 − u3)(b − c + d)]).

According to the total expectation formula

EV (T ∧ t0) = E(V (T ∧ t0)I(T ≤ t0)) + E(V (T ∧ t0)I(T > t0))
≥ E(V (T ∧ t0)I(T ≤ t0)) = E(V (T )I(T ≤ t0)),
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where I(A) is the indicator of event A. If T < ∞, then

U(T ) = u1 + (u1 − u2 − u3)(b − c + d) + S(T ) < 0.

Thus, we have the following inequalities

E(V (T )I(T ≤ t0)) ≥ Ee−Th(r)I(T ≤ t0) ≥ inf
0≤t≤t0

e−th(r) · P (T ≤ t0).

Hence

P (T ≤ t0) ≤ exp(−r[u1 + (u1 − u2 − u3)(b − c + d)]) · sup
0≤t≤t0

eth(r).

Letting t0 → ∞ we get

P (T < ∞) ≤ exp(−r[u1 + (u1 − u2 − u3)(b − c + d)]) · sup
t≥0

exp[th(r)].

Since the adjustment coefficient R = supr>0{r : h(r) ≤ 0}, we finally obtain

P (T < ∞) ≤ exp(−R[u1 + (u1 − u2 − u3)(b − c + d)]).

4 Conclusion

Two new insurance models were studied. The first one is a discrete-time model
of insurance company using non-proportional reinsurance and bank loans. The
aim is minimization of expected additional costs associated with loans during
n periods. It is proved that the optimal policy is determined by an increasing
bounded sequence of critical levels. The model stability is established in terms
of Kantorovich metric. For the optimal company surplus SLLN and CLT are
proved. Further investigation directions are treatment of incomplete information,
see, [13], and non-homogeneous flows, as well as, the choice of optimal reinsurance
treaty.

The second model describes a company having several business lines. The
model is doubly stochastic and uses investment in risky and non-risky assets.
Moreover, the input (premiums flow) and output (claims flow) are generalized
Poisson processes (not compound ones). The properties of company surplus are
studied. This model illustrates the reliability approach, providing the ruin proba-
bility. Next step is investigation of system stability and choice of optimal param-
eters, as in [14], see also [8,34].
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Abstract. In the paper, a multi-server retrial queueing system with
MMPP arrivals is considered. The service and retrial times are expo-
nentially distributed. The two-dimension stochastic process of number
of calls in the orbit and states of service unit is analyzed. The system
of Kolmogorov differential equations is composed. The matrix form of
the equations in steady-state regime for partial characteristic functions
is written. The method of asymptotic analysis under the heavy load
condition for its solving is proposed. It is proved that the asymptotic
characteristic function of the number of calls in the orbit has the gamma
distribution with obtained parameters. Some numerical examples of com-
parison asymptotic and simulate distributions are presented.

Keywords: Retrial queue · MMPP · Heavy load · Asymptotic analysis

1 Introduction

Retrial queueing systems are mathematical models widely used in telecommu-
nication networks, computer systems, call centers, etc. [1–5]. The distinguishing
feature of such models is that an arriving call, which can not be served, does
not join a queue and does not leave the system immediately (as in classical
queueing systems). It joins to an orbit (virtual place), where a call waits some
random time and then it tries to be served. Now a large number of publications
are devoted to retrial queues. The most detailed description, the comparison of
classical queueing systems and retrial queues and detailed overviews up to 2008
are contained in monographs of J. Artalejo and A. Gómez-Corral [6], G. Falin
and J. Templeton [7].

In most papers devoted retrial queues with MAP (or MMPP), authors use
truncation methods [6,8–11] or matrix methods [12–14] and further numerical
analysis. While explicit formulas for probability distributions or performance
characteristic of complex retrial queues (e.g. with MMPP arrivals, several orbits,
non-exponential retrial or service times) cannot be usually obtained. But some
approximations or asymptotic solutions can be proposed. One of approximate
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methods is the method of diffusion approximation of retrial queue proposed in
[15,16], etc.

In this paper, the asymptotic analysis method [17,18] is used for the multi-
server retrial queue with MMPP arrivals. This method is developed in Tomsk and
has different modifications for different types of queueing models and queueing
networks. It consists of a derivation of some asymptotic equations determin-
ing models characteristics and further getting formulas for asymptotic functions
under some limit condition. In previous papers [19,20], we have obtained asymp-
totic solutions under the heavy load condition for different types of single-server
retrial queues: M/M/1, M/GI/1 and even MMPP/M/1, MMPP/GI/1. So
here, we are going to generalize our results to more complex RQ: the multi-server
system with MMPP arrivals. Retrial queues with non-Poisson arrival processes
are also studied in [1,10,12,21].

The paper is organized as follows. In Sect. 2, the considered mathematical
model is described and the stochastic process under study is defined. Section 3 is
devoted to method of asymptotic analysis and study of the retrial queue under
a limit condition of heavy load. The theorem about the gamma form of the
asymptotic characteristic function is proved and parameters of the distribution
are obtained. In Sect. 4, numerical examples of the comparison of the asymp-
totic distributions with simulation ones are shown. The last section contains
conclusions.

2 Mathematical Model

Let us describe the model under study. We consider a multi-server retrial queue-
ing system MMPP/M/N . Primary calls arrive at the system according to
Markovian Modulated Poisson Process (MMPP) defined by matrices D0 and
D1 [22,23]. If a primary call finds a server free, it starts service with exponen-
tially distributed service time with rate μ′. If all servers is busy, the call goes to
an orbit, where it stays during random time distributed by the exponential law
with rate σ. After the delay, the call makes an attempt to get service again. If
any server is free, the call gets the service, otherwise, the call instantly returns
to the orbit. The arrival process, the service times, the retrial times are assumed
to be mutually independent. The system structure is presented in Fig. 1.

The MMPP underlying process n(t) is a Markov chain with continuous time
and finite set of states n = 1, 2, . . . , W . Matrix Q = D0 + D1 = (qmv) is a
generator of the process n(t), where m, v = 1, 2, . . . , W . Matrix D1 is diagonal
with elements λn (n = 1, 2, . . . , W ). Further, we will use denotation D1 = Λ =
diag{λn}.

Let us denote a stationary probability distribution of n(t) by r, which is
row-vector uniquely determined by the following system

{
rQ = 0,
re = 1,

(1)

where e = {1, 1, . . . , 1}T and 0 = {0, 0, . . . , 0}.
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Fig. 1. Retrial queueing system MMPP/M/N

Obviously, that the fundamental rate of the arrival process is λ = r · Λ · e.
Let process i(t) define the number of calls in the orbit and k(t) define the

service unit state in the following way

k(t) =

⎧⎪⎪⎨
⎪⎪⎩

0, if all servers are free,
1, if one server is busy,
...,
N, if all servers are busy.

The aim of the study is to obtain the stationary probability distribution of
the number of calls in the orbit.

Because of process i(t) is not Markovian, we consider the multi-dimensional
process {k(t), n(t), i(t)}, which is a continuous time Markov chain.

Denote P (k, n, i, t) = P{k(t) = k, n(t) = n, i(t) = i}. The system of Kol-
mogorov equations is written for i > 0, n = 1,W as follows:
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂P (0, n, i, t)

∂t
= −(λn + iσ − qnn)P (0, n, i, t) + μ′P (1, n, i, t) +

∑

v �=n

P (0, v, i, t)qvn,

∂P (k, n, i, t)

∂t
= −(λn + kμ′ + iσ − qnn)P (k, n, i, t) + λnP (k, n, i − 1, t)

+ λnP (k − 1, n, i, t) + (i + 1)σP (k − 1, n, i + 1, t)

+ (k + 1)μ′P (k + 1, n, i, t) +
∑

v �=n

P (k, v, i, t)qvn for 1 ≤ k ≤ N − 1,

∂P (N, n, i, t)

∂t
= −(λn + Nμ′ − qnn)P (N, n, i, t) + λnP (N, n, i − 1, t)

+ λnP (N − 1, n, i, t) + (i + 1)σP (N − 1, n, i + 1, t) +
∑

v �=n

P (N, v, i, t)qvn.

(2)
In steady-state regime, we have

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−(λn + iσ − qnn)P (0, n, i) + μ′P (1, n, i) +
∑
v �=n

P (0, v, i)qvn = 0,

−(λn + kμ′ + iσ − qnn)P (k, n, i) + λnP (k, n, i − 1)
+λnP (k − 1, n, i) + (i + 1)σP (k − 1, n, i + 1)
+ (k + 1)μ′P (k + 1, n, i) +

∑
v �=n

P (k, v, i)qvn = 0 for 1 ≤ k ≤ N − 1,

−(λn + Nμ′ − qnn)P (N,n, i) + λnP (N,n, i − 1)
+λnP (N − 1, n, i) + (i + 1)σP (N − 1, n, i + 1) +

∑
v �=n

P (N, v, i)qvn = 0,

(3)
where P (k, n, i) = lim

t→∞ P (k, n, i, t).

Let us introduce row-vectors Pk(i) = {P (k, 1, i), P (k, 2, i), . . . , P (k,W, i)}.
Then System (3) can be written in matrix form as follows:⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

−P0(i)(Λ + iσI − Q) + μ′P1(i) = 0,
−Pk(i) (Λ + kμ′I + iσI − Q) + Pk−1(i)Λ
+σ(i + 1)Pk−1(i + 1) + (k + 1)μ′Pk+1(i) = 0 for 1 ≤ k ≤ N − 1,
−PN (i) (Λ + Nμ′I − Q) + PN−1(i)Λ
+σ(i + 1)PN−1(i + 1) + PN (i − 1)Λ = 0.

(4)

where I is the identity matrix.
Denoting partial characteristic functions by Hk(u) =

∑
i

ejuiPk(i), where

k = 0, 1, ..., N and j =
√−1, System (4) is rewritten as follows⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

H0(u)(Q − Λ) + jσH′
0(u) + μ′H1(u) = 0,

Hk(u) (Q − Λ − kμ′I) + jσH′
0(u) + Hk−1(u)Λ

−jσe−juH′
k−1(u) + (k + 1)μ′Hk+1(u) = 0 for 1 ≤ k ≤ N − 1,

HN (u) (Q − Λ − Nμ′I) + HN−1(u)Λ + HN (u)Λeju

−jσe−juH′
N−1(u) = 0,

(5)

System (5) can not be exactly solved. Thus, we propose the method of asymp-
totic analysis under the heavy load condition [19,20] for its solution.
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3 Asymptotic Analysis Under Heavy Load Condition

Let us introduce load parameter ρ = (rΛe)/(Nμ′). Denoting μ = ρNμ′ (such as
μ = rΛe), System (5) is rewritten as

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

H0(u)(Q − Λ) + jσH′
0(u) +

μ

ρN
H1(u) = 0,

Hk(u)
(
Q − Λ − kμ

ρN
I
)

+ jσH′
0(u) + Hk−1(u)Λ

−jσe−juH′
k−1(u) +

(k + 1)μ
ρN

Hk+1(u) = 0 for 1 ≤ k ≤ N − 1,

HN (u)
(
Q − Λ − Nμ

ρN
I
)

+ HN−1(u)Λ + HN (u)Λeju

−jσe−juH′
N−1(u) = 0,

(6)

Let us prove the following theorem.

Theorem 1. The limit characteristic function h(u) of the process of the number
of calls in the orbit in the MMPP/M/N retrial queueing system in the steady-
state regime under the heavy load condition has the gamma distribution form

h(u) = lim
ρ→1

E
{

ejw(1−ρ)i(t)
}

=
(

1 − ju

(1 − ρ)β

)−γ

,

with parameters
β =

μ

vΛe + μ
, γ = 1 +

μ

Nσ
β, (7)

where vector v is a solution of the following system
{

vQ = r(μI − Λ),
ve = 0.

Proof. The proof consists of two parts: deriving of asymptotic equations and its
solving.

Derivation of Asymptotic Equations
First of all, we introduce the notations:

ε = 1 − ρ, u = εw,

H0(u) = εNF0(w, ε),H1(u) = εN−1F1(w, ε), ...,HN (u) = FN (w, ε).
(8)

The condition of heavy load is defined as ρ ↑ 1 (or ε ↓ 0).
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System of Eqs. (6) can be rewritten in Notations (8) as follows⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

εNF0(w, ε)(Q − Λ) + jσεN−1 ∂F0(w, ε)
∂w

+
μ

(1 − ε)N
εN−1F1(w, ε) = 0,

εN−kFk(w, ε)
(
Q − Λ − kμ

(1 − ε)N
I
)

+ jσεN−k−1 ∂Fk(w, ε)
∂w

+ εN−(k−1)Fk−1(w, ε)Λ − jσe−jεwεN−(k−1)−1 ∂Fk−1(w, ε)
∂w

+
(k + 1)μ
(1 − ε)N

εN−(k+1)Fk+1(w, ε) = 0 for 1 ≤ k ≤ N − 1,

FN (w, ε)
(
Q − Λ − μ

(1 − ε)
I
)

+ εFN−1(w, ε)Λ

+FN (w, ε)Λejεw − jσe−jεw ∂FN−1(w, ε)
∂w

= 0,

After some transformations, we obtain⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ε(1 − ε)F0(w, ε)(Q − Λ) + jσ(1 − ε)
∂F0(w, ε)

∂w
+

μ

N
F1(w, ε) = 0,

εFk(w, ε)
(

(Q − Λ)(1 − ε) − kμ

N
I
)

+ jσ(1 − ε)
∂Fk(w, ε)

∂w

+ ε2(1 − ε)Fk−1(w, ε)Λ − jσe−jεwε(1 − ε)
∂Fk−1(w, ε)

∂w

+
(k + 1)μ

N
Fk+1(w, ε) = 0 for 1 ≤ k ≤ N − 1,

FN (w, ε) ((Q − Λ)(1 − ε) − μI) + ε(1 − ε)FN−1(w, ε)Λ

+ (1 − ε)ejεwFN (w, ε)Λ − jσ(1 − ε)e−jεw ∂FN−1(w, ε)
∂w

= 0,

(9)

First of all, in System (9) we make limit ε → 0 .⎧⎪⎪⎨
⎪⎪⎩

jσF′
0(w) +

μ

N
F1(w) = 0,

jσF′
k(w) +

(k + 1)μ
N

Fk+1(w) = 0,

FN (w) (Q − μI) − jσF′
N−1(w) = 0,

(10)

where Fk(w) = lim
ε→0

Fk(w, ε).

Let us consider expansions of functions Fk(w, ε) in the form

Fk(w, ε) = Fk(w) + εfk(w) + O(ε2), (11)

where O(ε2) is an infinitesimal value of order ε2.
Substituting Expansions (11) into System (6) and making some transforma-

tions, we obtain the following system of equations in limit ε → 0⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

F0(w)(Q − Λ) − jσF′
0(w) + jσf ′

0(w) +
μ

N
f1(w) = 0,

Fk(w)
(
Q − Λ − kμ

N
I
)

− jσF′
k(w)

+ jσf ′
k(w) − jσF′

k−1(w) +
(k + 1)μ

N
fk+1(w) = 0 for 1 ≤ k ≤ N − 1,

−FN (w)Q + fN (w) (Q − μI) + FN−1(w)Λ
+ jwFN (w)Λ + jσ(1 + jw)F′

N−1(w) − jσf ′
N−1(w) = 0.

(12)
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In addition, we sum up all equations of System (6) and multiply the result by
vector e.

FN (w, ε)ejwεΛe + jσ

N−1∑
k=0

εN−k−1 ∂Fk(w, ε)
∂w

e = 0.

Substituting Expansions (11) and writing equalities for members with equal
powers of ε, we obtain two additional scalar equations

{
FN (w)Λe + jσF′

N−1(w)e = 0,
jwFN (w)Λe + fN (w)Λe + jσF′

N−2(w)e + jσf ′
N−1(w)e = 0.

(13)

Thus, we have System (10), (12), (13) of 2(N + 1) matrix and two scalar differ-
ential equations.

Analysis of the Equations
The partial characteristic function of the number of calls in the orbit is calculated
as follows

H(u) = E
{

ejui(t)
}

=
N∑

k=0

Hk(u)e.

Under the heavy load condition, the asymptotic characteristic function h(u)
can be written as

h(u) = lim
ρ→1

E
{

ejw(1−ρ)i(t)
}

= FN

(
u

1 − ρ

)
e + O(ε). (14)

Therefore, it is necessary to find only scalar function FN (w)e from Equations
(10), (12), (13). We make it in three steps.

Step 1. By using Equations (10), we obtain that

− jσF′
k(w) =

(k + 1)μ
N

Fk+1(w) for k < N. (15)

Comparing the equation for k = N in (10) and the equation for k = N − 1
of (15), we get

FN (w)Q = 0.

Taking into account (1), function FN (w) can be written as the following product:

FN (w) = r · Φ(w), (16)

where Φ(w) is an unknown scalar function.
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Step 2. From Eqs. (12) and Equalities (15), it can be written that
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

jσf ′
0(w) = −F0(w)(Q − Λ) − μ

N
F1(w) − μ

N
f1(w),

jσf ′
k(w) = −Fk(w)(Q − Λ − kμ

N
I)

− (k + 1)μ

N
Fk+1(w) − kμ

N
Fk(w) − (k + 1)μ

N
fk+1(w) for 1 ≤ k ≤ N − 2,

jσf ′
N−1(w) = −FN−1(w)(Q − Λ − N − 1μ

N
I)

− (N)μ

N
FN (w) − N − 1μ

N
F(N−1)(w) − (N)μ

N
fN (w),

jσf ′
N−1(w) = −fN (w)(Q − μI) + FN−1(w)Λ + jwFN (w)Λ − (1 + jw)μFN (w).

(17)
Subtracting the two last equations of System (17), we obtain

(FN−1(w) + fN (w))Q = FN (w)Q + jwFN (w)(Λ − μI).

Substituting Formula (16), we have the following equation

(FN−1(w) + fN (w))Q = −jwΦ(w)r(Λ − μI). (18)

Let us introduce the following notation:

FN−1(w) + fN (w) = −jwΦ(w)v, (19)

where vector v is a solution of the equation

vQ = r(μI − Λ). (20)

For Eq. (20) solution existence, it is necessary that ranks of the system matrix
and augmented one will be equal. Because r(μI − Λ)e = 0, that it is true.

Matrix Eq. (20) has infinitely many solutions. We can present the general
solution as follows

v = Cr + v0,

where C = const and v0 is a particular solution, for example, v0e = 0.
Step 3. Substituting (10), (15), (17) into the last equation of System (13),

we obtain the following equation:

2jwFN (w)Λe + fN (w)Λe − (N − 1)μ
N

FN−1(w)e

−μfN (w)e + FN−1(w)Λe − (1 + jw)μFN (w)e = 0.

Taking into account Equality (19), we have

jwΦ(w)(2rΛe + v(Λe − μe) − μ) − μΦ(w) +
μ

N
FN−1(w)e = 0. (21)

The we differentiate this equation. Taking into account (15), we obtain the
following differential equation

jΦ(w)
(
v(Λe − μe) + μ +

μ2

Nσ

)
− Φ′(w) (μ − jw(v(Λe − μe) + μ)) = 0.

(22)
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Let us divide (22) by (vΛe − μve + μ) and introduce denotations

β =
μ

vΛe − μve + μ
, γ = 1 +

μ

Nσ
β.

Thus Eq. (22) is rewritten as

Φ′(w)(β − jw) = jγΦ(w).

Clearly, the solution of this equation has the form

Φ(w) = C0

(
1 − jw

β

)−γ

.

From formula (16), we obtain

FN (w) = r · C0

(
1 − jw

β

)−γ

.

Taking into account v = Cr + v0, it is easy to show that the parameters β and
γ do not depend on C. Choosing a solution v0 such as

{
v0Q = r(μI − Λ),
v0e = 0,

we can write that
β =

μ

v0Λe + μ
, γ = 1 +

μ

Nσ
β,

Returning to characteristic function (14), we can write that

h(u) = C0

(
1 − ju

β

)−γ

,

where C0 = 1 due to the normalisation requirement.
Thus, we have proved that the asymptotic characteristic function of the prob-

ability distribution of the number of calls in the orbit under the heavy load
condition has the gamma distribution form.

4 Numerical Analysis

In this section, we present some numerical examples and make conclusions about
the asymptotic method applicability area. First of all, we denote the probability
distribution function of the gamma distribution with parameters (7) as Γ (x).
We will calculate of the discrete probability distribution of the number of calls
in the orbit p(i) as follows

p(i) = Γ (i + 1) − Γ (i).
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Further, we present the comparison of asymptotic and simulated distributions
for different values of the retrial queuing system parameters.

In the first example, let the retrial queue have three server (N = 3), and the
arrival MMPP have three states and be defined by following matrices

Λ =

⎡
⎣1 0 0

0 2 0
0 0 3

⎤
⎦ , Q =

⎡
⎣ -0.5 0.2 0.3

0.1 -0.3 0.2
0.3 0.6 -0.9

⎤
⎦ .

The retrial rate is σ = 1, the service rate equals μ =
rΛe
Nρ

, then the load

parameter ρ has values 0 < ρ < 1.
In Fig. 2, the comparison of the asymptotic and simulated distributions is

presented for ρ = 0.90 and ρ = 0.95, where dashed lines are the asymptotic
distributions and solid lines are simulated ones.

Fig. 2. Comparison of the asymptotic and the simulated distributions for MMPP/M/3
with a) ρ = 0.90 and b) ρ = 0.95

In the second example, let us consider a particular cases of the retrial queue
- the single-server retrial queue with following values of parameters

N = 1, σ = 1, μ =
rΛe
ρ

,

the comparison of the asymptotic and simulated distributions is presented in
Fig. 3 and 4.

Also we demonstrate a numerical example for multi-server retrial queue with

Poisson arrival process (Fig. 4), where λ = 1, N = 10, σ = 1, μ =
λ

Nρ
(Fig. 5).

In this example, the main difference between asymptotic and the simulation
distributions is in point i = 0.
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Fig. 3. Comparison of the asymptotic and the simulated distributions for the single-
server retrial queue with a) ρ = 0.90 and b) ρ = 0.95

Fig. 4. Comparison of the asymptotic and the simulated distributions for the single-
server retrial queue ρ = 0.97

Fig. 5. Comparison of the asymptotic and the simulated distributions for Poisson
arrival process with a) ρ = 0.95 and b) ρ = 0.97
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For the method accuracy estimation, we use Kolmogorov distance between
respective distribution functions:

d = max
i≥0

∣∣∣∣∣
i∑

l=0

[p̃(l) − p(l)]

∣∣∣∣∣,

where p(l) is an asymptotic probability distribution and p̃(l) is a simulated one.
In Table 1, there are values of the Kolmogorov distance for all presented numer-
ical examples.

Table 1. Kolmogorov distances d for various values of the parameter ρ

N = 1 N = 3 N = 10, λ = 1

ρ = 0.90 0.070 0.070 0.068

ρ = 0.95 0.043 0.043 0.040

ρ = 0.97 0.036 0.038 0.035

Note, we have obtained the same results of the numerical analysis for dif-
ferent arrivals and number of servers. For our purpose, the asymptotic analysis
method under the heavy load condition can be applied for ρ ≥ 0.95, where
the Kolmogorov distance between asymptotic and the simulation distributions
d ≤ 0.05.

5 Conclusions

In the paper, the multi-server retrial queueing system with MMPP arrivals has
been studied by the asymptotic analysis method under the heavy load condition.
We have proved that the asymptotic characteristic function of the number of calls
in the orbit has the gamma distribution form, as for single-server retrial queue.
In this way, we generalize our results for more complex model. By means of the
numerical analysis, we have shown a good accuracy of the proposed approxima-
tion in the applicability area ρ ≥ 0.95.
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Abstract. The paper continues our research carried out earlier, in which
we applied the queuing theory for modeling the operation of railway sta-
tions. The mathematical model is constructed as a multiphase queuing
system with Batch Markovian Arrival Process. Its stationary charac-
teristics are determined numerically. It is known that there exist cases
when stationary characteristics are not enough for a profound study of
the operation of those technical systems. Therefore, it is required to
consider the properties of the transient processes that occur in railway
stations. In the paper, we apply the proposed approach to construct the
model of the operation of the typical freight railway station. We com-
pose and study the Kolmogorov ordinary differential equations system
that describes the dependence of the probabilities of system states on
time. Its solution allows us to determine the transients’ behavior and
convergence rate to the stationary mode.

Keywords: Queuing system · BMAP · Kolmogorov equations ·
Freight railway station · Transient process

1 Introduction

Queuing theory is an effective tool in studying technical device operations in
fields of information and telecommunication systems [1–4], mass manufacture [5,
6], and trade [6]. The distinctive features of models based on queuing theory are
the random nature of the request arrivals and their non-deterministic processing.
These features make it possible to apply the developed mathematical apparatus
in the field of transport, in particular, railway. Here, queuing theory is one of
the relevant scientific directions. It allows evaluating the efficiency, stability,
and reliability of railway stations, taking into account the influence of random
factors [7].
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Models based on queuing theory have been used in the field of railway trans-
port since the 70s. As a rule, single-phase Markov and semi-Markov queuing
systems describe the operation of railway stations and other elements of railway
infrastructure [8,9]. In particular, the researchers use a queuing system (QS)
with batch arrival of requests or service [10]. Today, we need more complex and
accurate models due to the development and complexity of transport systems.
In paper [11], the authors use queuing systems with a loss and a finite queue to
describe the process of the train disbanding by a hump. The paper [12] presents
the stochastic model that allows determining train delays on railway sections
without regard to the schedule. The model is based on a special type semi-
Markov QS. In [13,14], the reliability models of railway stations in which the
arrival, service, and repair times have a phase-type distribution are presented.
The researchers also use queuing theory to model larger systems that are railway
sections [15–17]. They use queueing networks with infinite queues.

However, all the models have shortcomings associated either with a coarsen-
ing of the system structure or an insufficiently adequate and accurate description
of the incoming traffic flow. Previously, we proposed the approach for modeling
freight and marshaling railway stations (RS) to overcome the shortcomings [18–
21]. It uses of queueing networks [19,20] and multiphase queuing systems [18,21]
with batch service of requests and final queues. The distinctive feature of the
approach is the use of the Batch Markovian Arrival Process (BMAP ), which
is usually applied to describe data flow in telecommunication systems [4,22].
This allows us to describe a few traffic flows with different characteristics as an
integral structure in detail.

We studied the operation of the RS in the stationary mode in the previous
papers [18,21]. However, RS are dynamic systems, and their parameters change
over time. In particular, incoming traffic flows have daily or seasonal deviations.
As a result, transients occur in the operation of RS. In this case, we need to
determine the following properties of the processes. The first property is the
duration of transients. That is, how long will it last before the system reaches a
stationary mode? The second property is the value of the deviation of a system’s
performance measures in a transient mode from similar parameters in a station-
ary mode. In this paper, we design the model of the freight railway operation
in the form of the three-phase QS and find the probabilities of system states as
a function of time. Then, based on results obtained, we draw conclusions about
the properties of transients in the considered railway system.

2 The Object of the Study

Freight railroads carry out loading, unloading, and shunting work to bring cars
to the cargo fronts and withdrawal them. The typical scheme of the freight RS
includes a receiving and departure yard (RDY), a sorting bowl (SB), a cargo yard
(CY), and a departure yard (DY). RDY can be separated into two subsystems at
large stations. At the same time, DY can not exist on a station. The neighboring
RS can perform functions of DY if it is required.
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Trains arrive at RS from two or more directions and can be accepted only
at an RDY or a receiving yard. Then the trains are served at the SB and trans-
ferred to the CY for loading or unloading. After that, cars return to the RDY
for departure from the station. The subsystems have different parameters, par-
ticularly the capacity of the cars, the number of service devices, and the type
of operations performed. In addition, subsystems have a batch service of cars.
Batch sizes are determined by the type of operations performed.

In the RDY the main device is a hump; in the SB are diesel locomotives,
which rearrange the cars to the next subsystem; in the CY are loading or unload-
ing fronts. Incoming train traffic and the operation of subsystems are affected
by many random factors, as a rule, negative. For example, they can be equip-
ment breakdowns, personnel errors, and weather conditions. This leads to the
operation rhythm of a station being a disruption. Therefore, we need to use
probabilistic models.

3 Mathematical Model of the Transients at a Freight
Railway Station

The study of transients at a freight railway station includes four stages:

1. designing the model in the form of a QS;
2. composing the ordinary differential equations system (Kolmogorov equa-

tions);
3. performing an numerical analysis of the Kolmogorov equations;
4. interpretation of the results obtained in terms of the object studied.

Stage 1. According to the proposed approach [19–21], we use models of differ-
ent types to describe the flow of the arriving trains and the process of station
operation. We assume that a car is a request and a train is a batch. We described
an arrival flow by BMAP [4,22].

BMAP is a generalization of the batch Poisson process, allowing the change
in the intensity of the arrival of request batches. The intensity of arrival request
batches λv depends on the state number of the Markov chain vt with continuous
time and state space {0, 1, . . . ,W}. The residence time in each state is exponen-
tially distributed with parameter λv. With probability pk(v, v′) the chain can
go to state v′. This generates a batch of random size k ≥ 0. The normalization
condition is satisfied:

∞∑

k=0

W∑

v=0

pk(v, v′) = 1.

The transitions intensities are written in matrix form

(D0)v,v = −λv, v = 0,W ,

(D0)v,v′ = λvp0 (v, v′) , v, v′ = 0,W ,

(Dk)v,v′ = λvpk (v, v′) , v, v′ = 0,W , k ≥ 1.
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We use a multiphase QS for modeling car service at the railway station. It
allows us to take into account the structural features of the object considered. A
separate QS describes each subsystem and form a phase. The number of service
devices determines the number of channels, and the queue length is the total
capacity of the cars in the subsystem. Each QS serves requests in batches. Next,
it is assumed that at each phase, requests are selected from the queue according
to FIFO (first in, first out). We use channel locks to avoid the loss of requests
between phases.

We consider only one direction of cars moving: form the RDY to the SB, then
to the CY. Such the direction includes the main operations with trains: receiving,
processing in the SB, and loading or unloading. The operations for the departure
of trains are performed much faster and do not affect the operations of other sub-
systems. Thus, in terms of queuing theory, the model of a freight railway station
is a three-phase QS BMAP/MX1/n1/m1 → ∗/MX2/n2/m2 → ∗/MX3/n3/m3,
where Xi is the distribution of requests in batches which selecting for service in
the channel in phase i.

Stage 2. To study transient processes in the QS, we consider the Kolmogorov
equations [5,23]. The unknown functions are the probabilities of the states of
the system pi (t) , i = 0, ...,K, where K is the maximum number of requests,
and the independent variable is time. The initial data is the state of the system
at zero time. Earlier, we constructed formulas that allow us to compose the
Kolmogorov equations for a three-phase QS with BMAP [21]. Note that it can
be applied to a QS, in which the flows between phases are Poisson flows. Here
we consider a special type of a QS. First, the intensity of incoming flow is lower
than the intensity of service at all phases. It means that almost all requests will
be served. Second, the time between the arrival of requests, the service time
in phases, and the time of channels locking obeys an exponential distribution.
In this case, we can simplify model and use formulas from [21] to obtain the
Kolmogorov equations.

The number of channels in subsystems can be measured in tens and the
queue length in hundreds of units. Therefore, Kolmogorov equations can consist
of one or more million equations. To reduce the dimension of the Kolmogorov
equations, we assume that the arriving train is one service request.

Stage 3. The Kolmogorov equations include more than a hundred equations
even after simplifying of the model. Therefore, we use numerical methods to solve
it. The most popular method is the Runge-Kutta method [24]. The solution to
the Kolmogorov equations is the transition probabilities of states, that is, the
probabilities of the system states depending on time. Base on these probabilities,
we can determine the performance measures for the considered QS [1,5], that is
the purpose of modeling.

Stage 4. We interpret the results obtained in terms of the object studied. The
most important for railway stations is an assessment of the duration of such
processes and their deviations from stationary parameters.
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4 Study of a Freight Railway Station Operation

We consider the freight railway station Sukhovskaya, which is located on the
East Siberian Railway (Russia). It was selected for the following reasons. First,
Sukhovskaya is a standard station on the Russian Railway. Second, we managed
to obtain statistics on arriving train traffic and information about its structure.
Note that we have already considered this station [18,21]. However, firstly, we
have not studied the properties of transient processes when the intensity of
the incoming train traffic changes. Secondly, the data on the operation of the
subsystems and incoming train traffic was updated at the end of 2021.

Figure 1 shows the station scheme, where the arrows indicate the directions
of train movement. Sukhovskaya includes the receiving yard with the hump, the
sorting bowl, the cargo yard, and the receiving and departure yard.

Fig. 1. Scheme of freight Sukhovskaya

The receiving yard has one hump and a capacity of 5 trains. The sorting bowl
has two diesel locomotives and a capacity of 8 trains. The cargo yard has ten
fronts, which can process three trains in parallel. In the cargo yard, we assume
that ten service devices and their tracks is three channels. It allows us to fit
the whole train into the channel. Therefore, we have three channels working
in the cargo yard, and there is no queue. In terms of queuing theory, we have
the three-phase QS BMAP/M/1/5 → ∗/M/2/8 → ∗/M/3/0. Figure 2 shows
its scheme, where the arrows indicate the directions of requests movement, and
dotted arrows are feedback.

We obtained the service time distributions from field observations. The data
include statistics on 124 trains that arrived at the station in the period from 10
June 2021 to 4 July 2021. The service parameters of the channels of each phase
are following: μ1 = 0.74, μ2 = 0.222, μ3 = 0.083 trains per hour, respectively.
We do not consider the receiving and departure yard in the model.
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Fig. 2. Scheme of the three-phase QS

The station receives on average three trains per day from even and two trains
from odd directions. The BMAP matrices have the form

D0 =
(−0.204 0

0 −0.212

)
, D1 =

(
0.114 0.08
0.083 0.129

)
, D2 =

(
0.01 0
0 0

)
. (1)

The Kolmogorov system for the three-phase QS includes

(K1 + 1)(K2 + 2)(K3 + 3) − K2 = 408

equations. Here Ki is the maximum number of requests on phase i. We present
only a part of the resulting system since it is cumbersome.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

P ′
000(t) = D0P000(t) + Iµ3P001(t),

P ′
001(t) = (D0 − Iµ3)P001(t) + Iµ2P010(t) + 2Iµ3P002(t),

P ′
002(t) = (D0 − 2Iµ1)P002(t) + Iµ2P011(t) + 3Iµ3P003(t),

P ′
003(t) = (D0 − 3Iµ1)P003(t) + Iµ2P012(t) + 3Iµ3P004(t),

...

P ′
ijz(t) =

(

D0 +
min(1, 6−i)∑

k=1

Dk − Iµ1 − min(j, 1)Iµ2 − min(z, 1)Iµ3

)

Pijz(t)+

+
min(1, i)∑

k=1

DkPi−k,j,z(t) + Iµ1Pi+1,j−1,z(t) + min(j + 1, 1)Iµ2Pi,j+1,z−1(t)+

+ min(z + 1, 1)Iµ3Pi,j,z+1(t), i = 0, 6, j = 0, 11, z = 0, 4.

(2)
System (2) has a high dimension to be analytically analyzed.

5 Numerical Experiment

We use the fourth-order Runge-Kutta method with the step h = 0.05 in the
numerical experiment.
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Experiment 1. We consider the Kolmogorov Eqs. (2) with parameters μ1 =
0.74, μ2 = 0.222, μ3 = 0.083 and incoming BMAP (1). The initial probability
distribution gives the Cauchy conditions p000(0) = 1, pi,j,z(0) = 0, i = 0, 6, j =
0, 11, z = 0, 4, where i, j and z are the number of requests in phases 1, 2, and
3, respectively. States pi,11,z(t) and pi,j,4(t) mean locking of channels of phases
1 and 2. As a result, we obtain the transition probabilities of states and, on its
basis, the transient of performance measures for the QS considered.

The following figures show graphs of changes in the loss probability depending
on t and the initial state of the system. Lines 1–6 correspond to p1,9,3(0) = 1
(the phase 2 and 3 is full loaded), p000(0) = 1 (requests are absent), p2,5,0(0) = 1
(the system is half loaded, the phase 1 and 2 work), p3,5,1(0) = 1 (the system is
half loaded, the third phase is empty), p5,11,3(0) = 1 (locking phase 1 channels),
and p6,10,1(0) = 1 (the system is full loaded without locking), respectively.

Fig. 3. Results of experiment 1. Loss probability depending on the initial state and
t = [0, 200]

Table 1 shows the limiting or stationary performance measures of the con-
sidered QS. Here Ploss is a loss probability, k is an average number of working
channels, L is a queue length, Plock is a probability of locking.

Table 1. The stationary performance measures of the three-phase QS

Ploss k L Plock Plock (Phase 1 and 2)

0.0319 Phase 1 0.453 0.576 0.067 0.108

Phase 2 1.678 3.628 0.294

Phase 3 2.491 − −
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Analysis of transition probabilities shows the following. Its behavior and the
rate of convergence to stationary parameters significantly depend on the initial
state of the system. First, the minimum time required for the transition proba-
bilities to converge to the stationary ones with a deviation of ±5% is achieved
at the average system load and the maximum time at the lowest or the high-
est. For example, the convergence time is t = 97.5 (hours) for the initial state
p3,5,0(0) = 1. For p0,0,0(0) = 1 or p6,10,1(0) = 1, the time t = 200. Second, there
are local extremes on the graph of the loss probability with an average load of
the system (see Fig. 3, lines 3 and 4). Besides, there is a special case. The global
maximum appears if phase 1 is free, and phase 2 and 3 are loaded at t = 0,
in particular if p1,9,3(0) = 1. Its value can be twice the stationary parameters
(line 1).

It is known that fluctuations of various types can appear in railway trans-
port traffic flows. We can mention daily, seasonal, and other deviations [7,8].
Sukhovskaya is mainly subject to daily deviations. We registered the case when
six trains arrived in 25 h. It is 15% above the daily average value. The BMAP
matrices for the period of increased intensity have the form

D0 =
(−0.235 0

0 −0.244

)
, D1 =

(
0.132 0.092
0.096 0.148

)
, D2 =

(
0.011 0

0 0

)
. (3)

The location of this period on the time axis has a significant impact on the
properties of transients. We show below two of the most illustrative cases.

Experiment 2. The incoming BMAP is set by matrices (3) on the interval
t = [5; 29], and by matrices (1) on the rest of the time in contrast to experiment 1.
Figure 4 shows graphs of changes in the loss probability depending on t = [0, 250]
and the initial state of the system.

An increase in the intensity of the arrival of requests at the initial time
moment leads to the following changes. The local extrema of the loss probability
graph arise in contrast to experiment 1 (see Fig. 4 lines 1, 3, and 4). The extremes
observed in experiment 1 increase their values by 59% on average. In particular,
the global maximum increases 1.7 times in comparison with the same extremum
in experiment 1 for the special case p1,9,3(0) = 1 (line 1).

Experiment 3. The incoming BMAP is set by matrices (3) on the interval
t = [50; 74] in contrast to experiment 1. Figure 5 shows graphs of changes in the
loss probability depending on t = [0, 250] and the initial state of the system.

The transient processes have the following features in this experiment (see
Fig. 5). First, the global extrema appear on the graph (lines 1, 3, and 4) in
contrast to experiment 1, where the loss probability is monotonic and increasing.
Their values are on average 31% higher than stationary ones (lines 3 and 4).
Second, special cases are critical to system performance. The global maximum for
the initial state p1,9,3(0) = 1 (line 1) increased by 39% compared to experiment 1.
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Fig. 4. Results of experiment 2. Loss probability depending on the initial state and
t = [0, 250]

Fig. 5. Results of experiment 3. Loss probability depending on the initial state and
t = [0, 250]

In experiments 2 and 3, the average time that requires the transition prob-
abilities to converge to the stationary ones with the deviation ±5% increased
by 12.5% an average. The increase of the intensity of the requests flow by 15%
for t ≥ 85 leads to results similar to experiment 3. Thus, the loss probability on
average exceeds the stationary parameters by 31%.



On the Analysis of Transients of a Freight Railway Station 275

6 Interpretation of Numerical Results

This section interprets the results obtained in terms of the Sukhovskaya freight
station. First, the duration of transients is a significant factor for this type of
station. More than four days required the station to transit to stationary mode.
Secondly, we need to take into account the system load at the initial moment to
estimate its capacity. In particular, we considered the operation of the station
after the removal of an accident in the cargo yard. It corresponds to the total
loading of phases 2 and 3 in the model. In this case, the recovery period for
the station operation is more than five days, and the loss probability is doubles
compared to the stationary ones. Third, as a rule, an increase in the volume
of train traffic can be compensated by the system capacity if it is insignificant
and has a relatively short duration. However, such an increase after accidents
on the station leads to a rapid overflow of the receiving yard and the system
as a whole. We present this case in experiments 2 and 3, where the maximum
value of the loss probability is more than three times higher than the stationary
parameter. Obviously, we see that an increase in the volume of train traffic leads
to an increase in the time to converge the system to stationary mode.

Thus, we can ignore the transient processes in the following cases. The first
is when a railway station has been just established or restarted; that is, the
system is almost empty. The second is during periods of unbroken operating
with minimal fluctuations in the volume of incoming traffic. In other cases, we
should analyze transients for completeness of the study.

7 Conclusions

We have performed the analysis of transient processes for the three-phase QS
that describes the operation of the freight railway station. As a result, we have
found that the initial states of the systems substantially determine the rate of
convergence and behavior of transients to stationary mode. Moreover, it is neces-
sary to take into account the influence of transients at an average or maximum
station load at the initial moment of time. The analysis of transients can be
neglected when predicting the system operation in the case of minimal load.

The proposed approach has the following advantages. First, models in the
form of a QS can be adapted to different railway stations with minimal effort.
Researchers can use such models to study transient processes at other types of
stations, in particular, marshaling stations. Second, we can use the approach
to predict the operation of stations with a lack of information. For example, to
simulate an increase in the traffic volume for the future, when the train schedule
is unknown.

We point out the following possible directions for further research. First, the
development of a procedure that makes it possible to compose the Kolmogorov
equations for a queueing network with four nodes. Second, the adaptation and
applying the proposed approach to the study of other types of transport systems,
in particular, ports and transport hubs.
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Abstract. This article deals with a special class of algorithms with feed-
back. Such algorithms are designed to control the traffic and the pedes-
trian flows at the intersection. A specific feature of the traffic control
system is changing the probability structure of input flows under the
influence of random factors such as accident or worsening weather con-
ditions. The purpose of this research is optimization of the system work
for the different types of flows such as Poisson and Bartlett input flows.
Using the simulation method, in this work is studied the influence of
the probability structure of input flows and the average batch size on
work of the system. The influence of the Bartlett flow parameters on
the quasi – optimal control parameters and the minimal value of the
average sojourn time of a random customer at the intersection is con-
sidered. Using of the control parameters allows to regulate traffic at the
intersection and reduce the traffic load.

Keywords: Traffic control · Conflict flows · Bartlett flow · Poisson
flow · Traffic flow · Pedestrian flow · Intensity of the input flow ·
Average batch size · Optimal control parameters · Transport batch

1 Introduction

Everyday traffic seems to get worse on the roads. The traffic load is increas-
ing in cities throughout the world. Study of the transport systems is becoming
increasingly relevant in that regard. At the same time many problems and tasks
are considered, such as road safety improvement [1], congestion combating that
could reduce the negative environmental impact [2]. Among others, the solution
of the traffic and pedestrian flows control problem at the intersection is of con-
siderable interest [3–5]. By applying various algorithms for the transport system
control it is possible to reduce the traffic load, which in turn has a positive effect
on both safety and the environmental situation.

2 Problem Statement

The article is based on a queuing system with a wait. It’s a T – junction inter-
section that schematically depicted in Fig. 1.
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Fig. 1. The intersection diagram.

The system receives three independent input flows Π1,Π2,Π3 where Π1 and
Π2 are the traffic flows, and Π3 is the flow of pedestrians. Their simultaneous
service is impossible so the flows are pairwise conflict [6].

The automatic traffic light acts as the server. It has eight modes of work-
ing Γ (1), Γ (2), . . . , Γ (8). The traffic flows Π1 and Π2 are serviced in the modes
Γ (1) and Γ (3) respectively, Γ (5) and Γ (7) are responsible for servicing the pedes-
trian flow Π3. The modes Γ (2), Γ (4), Γ (6) and Γ (8) correspond to the yellow
traffic light. They are called the orientation – changeover modes, and the flows
are not serviced in them. These modes are necessary for the road safety. Each
mode Γ (r) lasting for a fixed time Tr, r = 1, 8. Herewith, the duration of yellow
traffic light is selected based on the road safety. Parameters T5 and T7 are also
considered as constant. The duration of the traffic service modes T1 and T3 are
control parameters of the system.

The scheme of the server operation modes is shown in the Fig. 2. The modes
switching Γ (1) → Γ (2), Γ (3) → Γ (4), Γ (5) → Γ (6), Γ (6) → Γ (3), Γ (7) → Γ (8),
Γ (8) → Γ (1) are uniquely determined. Let’s consider the switch from modes Γ (2)

and Γ (4). At the end of Γ (2) the server switches to Γ (3) if there are no more
than N1 pedestrians at the intersection. Otherwise, the Γ (5) mode is activated.
Similarly, at the end of Γ (4) mode the system switches to Γ (1) if there are no
more than N2 pedestrians at the intersection. Otherwise, Γ (7) mode is activated.

Fig. 2. Graph of the server operation modes.
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The described algorithm is close to cyclic, so it’s easy to implement it in
practice. At the same time, it is a feedback algorithm because it takes into
account the entrance and the service of the pedestrian flow Π3 customers.

One of the most important criteria of the work of the system with a wait is
the average sojourn time γ of a random customer at the intersection. This article
focuses on the looking for the quasi – optimal control parameters. That is those
parameters in which the average sojourn time γ is minimal. The optimization
problem is achieved numerically using the simulation method. Two types of the
input flows are considered: flows with independent movement of customers and
the batch flows.

The mathematical model of the flow with independent customer movement
is the Poisson flow with the intensity λ. In this article the pedestrian flow Π3 is
always assumed Poisson. This is due to the peculiarity of pedestrian movements.
Their speed is relatively small and the external factors have small impact on
their margin for manoeuvre.

The second type of the flows are the flows that have a batch structure. The
emergence of batches is caused by limited overtaking capacities when the fast
cars are built up after the slow one. The mathematical model of the such struc-
ture flows is the Bartlett flow. These flows are described non-locally using a
vector random sequence {(τi, ηi), i ≥ 0} [7,8]. The observe moments τi, i ≥ 0
are considered to be the entering moments of the first customers in the batches.
Random variables ηi describe the number of customers in the i-th batch and
have the following distribution:

⎧
⎪⎨

⎪⎩

P (ηi = 1) = 1 − r

P (ηi = k) = r · (1 − g) · gk−2, k ≥ 2,

(1)

where r, g—parameters of the distribution, 0 < r, g < 1.
The average customers count in the i-th batch is calculated by the following

way:

Mηi
= 1 + r/(1 − g) (2)

In the Formula 1, the parameter r is the probability that a batch of two or
more customers will enter the system. The parameter g is related to the average
size of the batch (see Formula 2). By converting the Formula 2, the following
equation can be obtained:

r = (Mηi
− 1) · (1 − g) (3)

It is easy to see that if the average size of the batch is fixed, then as the value
of the parameter r grows, the value of the parameter g decreases.

3 Numerical Study

In this research is numerically studied the influence of the probability structure
of the input flows and the average size of the batch on the work of the system.
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It is established that as the mathematical expectation of customers count in
a batch grows, the quasi – optimal control parameters increases. The minimal
value of the average sojourn time γ also increases. In addition, it has been able
to establish that the change of the probability structure of the input flows also
affects the quasi – optimal control parameters and the minimal value of the
average sojourn time γ.

To illustrate this conclusion, consider the following example. Let the intensity
of the flows Π1,Π2 and Π3 coincide: λ1 = λ2 = λ3 = 0, 1 (customers per
second). Critical values for queue lengths of the pedestrian flow Π3 are assumed
to be zero: N1 = N2 = 0 (customers). The duration of the pedestrian service
modes T5 = T7 = 30 (s). In case of the Poisson input flows Π1,Π2 and Π3

the following quasi – optimal control parameters are obtained: T1 = 16 (s),
T3 = 15 (s). The minimal value of the average sojourn time γ is 33, 72 (s). Now
let’s consider two cases of the Bartlett traffic flows Π1 and Π2. For the average
size of the batch Mηj,i

= 2 (customers) the following quasi – optimal parameters
are obtained: T1 = 41 (s), T3 = 42 (s). The minimal value of the average sojourn
time γ of a random customer at the intersection is 52.51 (s). For the value
Mηj,i

= 11 (customers) the following quasi – optimal control parameters are
obtained: T1 = 49 (s), T3 = 51 (s). The minimal value of the average sojourn
time γ is 60.62 (s). To compare the results obtained, see Table 1.

Table 1. The influence of the parameter Mηj,i , j = 1, 2 on the system work.

All input flows
are Poisson

Mηj,i = 2 (customers)
gj = 0, 91
rj = 0, 09, j = 1, 2

Mηj,i = 11 (customers)
gj = 0, 91
rj = 0, 9, j = 1, 2

T1 = 16 (s) T1 = 41 (s) T1 = 49 (s)

T3 = 15 (s) T3 = 42 (s) T3 = 51 (s)

γ = 33, 72 (s) γ = 52, 51 (s) γ = 60, 62 (s)

In Table 1, the top row is responsible for the input flows parameters. The first
column represents the case of the Poisson input flows and the next two columns
represent the Bartlett traffic flows Π1 and Π2. The bottom row is responsible for
the results obtained. Table 1 shows that in the case of the Poisson input flows the
system copes much better with customers service. Compared the results of the
first two columns, it can be seen that the difference between the minimal values of
the average sojourn time γ is 18, 79 (s). The quasi – optimal control parameters
have more than doubled. A comparison of the second and the third columns
confirms that increase of the average batch size for the traffic flows affects the
system work. The minimal value of the average sojourn time γ increased —
the difference is 8, 11 (s). In doing so, the quasi – optimal control parameters
are also increased. These conclusions about the relationship between the system
work and the probability structure of the input flows and the average batch
size are consistent with the results obtained in the article [9] for another control
algorithm.
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Further research is carried out to find out the influence of the Bartlett distri-
bution parameters gj and rj , j = 1, 2 on the quasi – optimal control parameters
and the minimal value of the average sojourn time γ of a random customer at the
intersection. It’s found out that changing the ratio between the parameters gj

and rj , j = 1, 2 significantly affects the system work. It’s established that as the
parameter gj , j = 1, 2 grows, the quasi – optimal control parameters increases.
The minimal value of the average sojourn time γ also increases.

The following example illustrates this fact. Let the intensity of the flows
Π1,Π2 and Π3 coincide: λ1 = λ2 = λ3 = 0, 1 (customers per second). Critical
values for queue lengths of the pedestrian flow Π3 are assumed to be zero:
N1 = N2 = 0 (customers). The duration of the pedestrian service modes T5 =
T7 = 30 (s). The pedestrian flow is Poisson, and the traffic flows Π1 and Π2 are
Bartlett flows with the average batch size Mηj,i

= 2 (customers).

Table 2. The influence of the gj and rj parameters on the system work, j = 1, 2.

gj = 0, 91
rj = 0, 09, j = 1, 2

gj = 0, 95
rj = 0, 05, j = 1, 2

T1 = 40 (s) T1 = 52 (s)

T3 = 45 (s) T3 = 54 (s)

γ = 52, 47 (s) γ = 65, 38 (s)

Table 2 shows that as the parameter gj , j = 1, 2 for the traffic flows grows,
the minimal value of the average sojourn time γ increases from 52, 47 (s) to
65, 38 (s), so the difference is 12, 91 (s). At the same time, the quasi – optimal
control parameters also increases.

Based on results of the two examples (Table 1 and Table 2), the smallest
values of the control parameters and the average sojourn time γ were obtained
in the case of the Poisson input flows. In addition to this, increasing of the average
batch size from 2 to 11 customers does not have such effect on the system work
as changing the ratio between the parameters gj and rj , j = 1, 2 with the fixed
mathematical expectation of customers count in a batch.

To understand why changing the ratio between the parameters gj and rj , j =
1, 2 affects the system work so much, let’s consider two figures. The first one is
the figure of the minimal value of the average sojourn time γ against the value
of the parameter gj , j = 1, 2. The second one is the figure of the average value
of the control parameters T1 and T3 against the value of the parameter gj , j =
1, 2. Let the intensity of the flows Π1,Π2 and Π3 coincide: λ1 = λ2 = λ3 =
0, 1 (customers per second). Critical values for queue lengths of the pedestrian
flow Π3 are assumed to be zero: N1 = N2 = 0 (customers). The duration of
the pedestrian service modes T5 = T7 = 30 (s). The pedestrian flow is Poisson,
and the traffic flows Π1 and Π2 are Bartlett flows with the average batch size
Mηj,i

= 2 (customers). The value of the parameter gj , j = 1, 2 will be varied
from 0, 1 to 0, 99. At the interval [0, 1; 0, 9) it will be increased to 0, 1 by one
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step, and at the interval [0, 9; 0, 99)—to 0, 01. The parameter rj , j = 1, 2 will be
varied according to Formula 2. Also for comparison there is a plot for the case
of the Poisson input flows in the Fig. 3.

Fig. 3. The plots of the average sojourn time γ against the value of the parameter
gj , j = 1, 2.

The Fig. 3 shows that in the case of the Poisson input flows (line II), the
minimal value of the average sojourn time γ of a random customer at the inter-
section is 33, 72 (s). In this case 100% of customers are entered the system one
at a time. In doing so, the curve I shows that despite the fact that the average
batch size remains constant, the ratio between the parameters gj and rj , j = 1, 2
significantly affects the minimal value of the average sojourn time γ. Let’s con-
sider the leftmost point of the curve I. In this point parameter gj = 0, 1 and
rj = 0, 9, j = 1, 2. The value of the parameter rj = 0, 9, j = 1, 2 indicates that
on average only 10% of the entering the system batches consists of one cus-
tomer. Calculations show that the minimal value of the average sojourn time γ
is very close to the case of the Poisson input flows and equal to 34, 72 (s). For
the rightmost point of the curve I, the parameters take the following values:
gj = 0, 99, rj = 0, 01, j = 1, 2. That is, the probability of a single customer
entering the system is equal to 0, 99. In doing so, the average sojourn time γ is
161, 41 (s). Despite the fact, that in the second case the flows Π1 and Π2 are
almost identical with the Poisson ones, there is a sharp increase of the aver-
age sojourn time γ. The results shows that as the parameter gj , j = 1, 2 grows,
the minimal value of the average sojourn time γ of a random customer at the
intersection increases. And starting from the level gj = 0, 8, j = 1, 2 there is a
significant difference between cases of the Bartlett and the Poisson input flows.
Based on this, it can be assumed that the main parameter, that affects the mini-
mal value of the average sojourn time γ of a random customer at the intersection
is gj , j = 1, 2.



284 S. Lembrikov and E. Kuvykina

The following figure represents of the average value of the control parame-
ters T1 and T3 against the value of the parameter gj , j = 1, 2 with the same
input parameters. The average value of the control parameters T1 and T3 are
considered, because the system is symmetric under the input flows Π1 and Π2.

Fig. 4. The plots of the average value of the control parameters T1 and T3 against the
value of the parameter gj , j = 1, 2.

The Fig. 4 shows that the ratio between the parameters gj and rj , j = 1, 2
affects not only the minimal value of the average sojourn time γ of a random cus-
tomer at the intersection, but also the average value of the control parameters T1

and T3. For curve I and line II the quasi – optimal control parameters are selected
as the parameters T1 and T3. With the same input parameters, depending on
the specific implementation the different quasi – optimal control parameters T1

and T3 can be obtained in modeling. Nevertheless, the curve I shows that as the
parameter gj , j = 1, 2 grows, the average value of the quasi – optimal control
parameters T1 and T3 tends to increase. For example, if we compare the oppo-
site points of the curve I, when the parameter gj , j = 1, 2 takes the values 0, 1
and 0, 99 respectively, we can see that the average value of the quasi – optimal
control parameters T1 and T3 increases from 19, 5 (s) to 88, 5 (s). Let’s choose
the parameters T1 and T3 another way to reduce the fluctuations and get a more
illustrative picture. Let’s find the range of the control parameters at which the
average sojourn time γ differs from the minimal one by no more than one sec-
ond. The parameters T1 and T3 are taken from this area, so that their sum is
minimal. These values are called close to optimal. Thus, in the Fig. 4 curve III
and line IV are plotted. Obviously, the two given plots lies no higher than curve
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I and line II respectively. Choosing the parameters T1 and T3 close to optimal
allows to minimize random deviations and see that as the parameter gj , j = 1, 2
grows, the average value of the close to optimal control parameters T1 and T3

increases. And starting from the level gj = 0, 8, j = 1, 2 there is a significant dif-
ference between cases of the Bartlett and the Poisson input flows. Based on this,
it can be assumed that the main parameter, that affects the average value of the
quasi – optimal and close to them control parameters T1 and T3, is gj , j = 1, 2.

Consider the second equality of the Formula 1. It describes the probability of
a batch with a k size entering the system, k ≥ 2. Let Mηj,i

= 11 (customers), j =
1, 2. Let’s plot two curves describing the values of the customers count in a batch
probability for two following sets of the Bartlett parameters: gj = 0, 91, rj = 0, 9
in the first case and gj = 0, 99, rj = 0, 1 in the second, j = 1, 2.

Fig. 5. The plots of a batch entering probability against its size.

The Fig. 5 shows that initially curve I lies higher than curve II. This is due
to the value of the parameter rj , j = 1, 2, because it’s the probability of a
batch of two or more customers entering the system. Indeed, for the curve I the
probability of a single customer entering the system is equal to 0, 1 and for the
curve II this value is equal to 0, 9. This shows that the batches count with a size
greater than one is higher in the first case. For example, for the first parameters
set the probability P (ηj,i = 2) = rj · (1− gj) · g(0)j = 0, 081, and for the second—
P (ηj,i = 2) = 0, 001, j = 1, 2. But according to the Formula 1, the probability
of a batch with a k size, k ≥ 2 entering the system is the power function of gj

parameter, 0 < gj < 1, j = 1, 2. That’s why with an increasing k, the first curve
decreases much faster than the second one. In this regard, for large values of k,
the probability that a k size batch will enter the system is higher for the second
parameters set. This leads to a situation where the system starts working worse:
the minimal value of the average sojourn time γ and the quasi – optimal control
parameters T1 and T3 increases.

It follows from the Formula 1 that the parameters rj , gj ∈ (0; 1), j = 1, 2. But
changing the average batch size leads to changing the range of the gj parameter,
j = 1, 2. For example, when Mηj,i

= 2 (customers), the parameter gj , j = 1, 2
is really ranged from zero to one. But if Mηj,i

= 11 (customers) the value of
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gj ∈ (0, 9; 1), j = 1, 2. Thus, the large values of the gj , j = 1, 2 parameter
corresponds to the big batch size. That’s why increasing the average batch size
leads to rising of the minimal value of the average sojourn time γ and the quasi –
optimal parameters T1 and T3. Of course, not only the parameter gj , j = 1, 2
affects the result, but nevertheless it’s a fundamental factor.

Consider the following example. Let the intensity of the flows Π1,Π2 and
Π3 coincide: λ1 = λ2 = λ3 = 0, 1 (customers per second). Critical values for
queue lengths of the pedestrian flow Π3 are assumed to be zero: N1 = N2 = 0
(customers). The duration of the pedestrian service modes T5 = T7 = 30 (s). The
pedestrian flow is Poisson. And the traffic flows Π1 and Π2 are the Bartlett flows
with the same average batch size: Mη1,i = Mη2,i . To study the dependence of the
average sojourn time γ on the average batch size and the parameter gj consider
the following values Mηj,i

: Mηj,i
= 2, Mηj,i

= 3, Mηj,i
= 5 and Mηj,i

= 11
(customers), j = 1, 2. Also for each of these values the parameter gj , j = 1, 2 will
be ranged from 0, 91 to 0, 99 with a step 0, 01.

Fig. 6. The plots of the average sojourn time γ against the value of the parameter gj

for a different Mηj,i , j = 1, 2.

For each value of the average batch size, as the parameter gj , j = 1, 2 grows,
the minimal value of the average sojourn time γ increases. For example, when
Mηj,i

= 2, j = 1, 2 (curve IV), the average sojourn time increases more than 100
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seconds. In addition, if the parameter gj , j = 1, 2 is fixed, then as the mathe-
matical expectation of customers count in a batch grows, the minimal value of
the average sojourn time γ of a random customer at the intersection increases.
For example, when gj = 0, 91, j = 1, 2, the average sojourn time γ increases by
about 10 s. Thus, Fig. 6 shows that by changing the parameter gj , j = 1, 2 with
a smaller batch size, a much larger minimal value of the average sojourn time γ
of a random customer at the intersection can be got.

Let’s plot the influence of the average values of the quasi – optimal control
parameters to the parameter gj , j = 1, 2.

Fig. 7. The plots of the average value of the control parameters T1 and T3 against the
value of the parameter gj , j = 1, 2 for a different Mηj,i , j = 1, 2.

The plots in Fig. 7 allow to confirm that as the parameter gj , j = 1, 2 grows,
the average value of the quasi – optimal parameters T1 and T3 increases. For
example, when gj = 0, 91, j = 1, 2, the average value of the parameters T1 and
T3 varies from 40, 5 (s) to 51 (s). In this way, the average batch size increases
from 2 to 11 (customers). Let’s consider the curve IV. Calculations shows that
the average value of the parameters T1 and T3 varies from 40, 5 (s) to 88, 5 (s).
Thus, by changing the parameter gj , j = 1, 2 with a smaller batch size a much
larger average value of the quasi – optimal control parameters T1 and T3 can be
got.
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Similar results are obtained if the bigger values of the traffic input flows
intensities are considered. Let’s plot two figures similar to graphics in Fig. 6 and
Fig. 7 with λj = 0, 2 (customers per second), j = 1, 2 using the same other
parameters as in the previous example (λ3 = 0, 1 (customers per second), N1 =
N2 = 0 (customers), T5 = T7 = 30 (s)). The first one is the figure of the minimal
value of the average sojourn time γ against the value of the parameter gj , j = 1, 2.
The second one is the figure of the average value of the control parameters T1

and T3 against the value of the parameter gj , j = 1, 2.

Fig. 8. The plots of the average sojourn time γ against the value of the parameter gj

for a different Mηj,i , j = 1, 2.

Comparing Fig. 6 and Fig. 8, it can be seen that with a higher value of the
intensity the spread of the minimal values of the parameter γ becomes stronger
with changing the average batch size Mηj,i

, j = 1, 2. For example, when gj =
0, 91, in the case of lower intensity λj = 0, 1 (customers per second) the spread
of the average sojourn time γ is 10, 11 (s), j = 1, 2. And in the case of higher
intensity λj = 0, 2 (customers per second), this spread is increased to 15 (s),
j = 1, 2. In the second case when the value of the parameter gj = 0, 99, the
area of the stationary mode existence could be found only for Mηj,i

= 2, j = 1, 2
(curve IV). For other values of the average batch size for traffic flows the system
not worked with any control parameters. At the same time, it’s easy to see that
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the parameter gj , j = 1, 2 affects the minimal value of the average sojourn time γ
of a random customer at the intersection mainly.

The same results are observed for the influence of the average value of the
quasi – optimal control parameters T1 and T3 to the value of the parameter
gj , j = 1, 2.

Fig. 9. The plots of the average value of the control parameters T1 and T3 against the
value of the parameter gj , j = 1, 2 for a different Mηj,i , j = 1, 2.

Comparing Fig. 7 and Fig. 9, it can be seen that with a higher value of
the intensity the spread of the average values of the quasi – optimal control
parameters T1 and T3 becomes stronger with changing the average batch size
Mηj,i

, j = 1, 2, and the random fluctuations between nearby points increases. For
example, when Mηj,i

= 3 (customers), j = 1, 2 with increasing the parameter
gj , j = 1, 2 from 0, 92 to 0, 93 the average value of the quasi – optimal control
parameters T1 and T3 decrease from 85 (s) to 77 (s). Nevertheless, the general
trend of increasing the average value of the quasi – optimal control parameters
T1 and T3, as the parameter gj , j = 1, 2 grows, still remains unchanged.

4 Conclusion

The paper considers a transport system of the Bartlett conflict traffic flows
control process in the class of algorithms with a pedestrian mode. The problem of
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determining the optimal control parameters in which the average sojourn time γ
of a random customer at the intersection is minimal is achieved numerically
using the simulation method for cases of Poisson and Bartlett input flows. The
results showed that the probability structure of the input flows significantly
affects the system work. The influence of the Bartlett flow parameters with a
batch structure on the optimal system control is also studied. In practice, such
indicators as the average batch size and the probability of a single customer
entering the system are often used to characterize the batch flows. However, the
conducted studies allows to infer that despite the fact these indicators affect the
optimal system control this effect is relatively small compared to the influence of
the Bartlett distribution parameter g. It is established that the optimal control
parameters mostly depend on g. As the parameter g grows there is a significant
increase in both the optimal control parameters and the minimal value of the
average sojourn time γ of a random customer at the intersection. That’s why
with the growth of g the system starts working worse.
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Abstract. In this paper, we establish the PASTA property for the lim-
iting distribution of the remaining service time in stable and non-stable
multiclass M/G/1 queueing systems. Our asymptotic analysis heavily
exploits the regenerative property of the queueing system. The proof is
first given for the stable system. A key observation for non-stable systems
is that while the basic processes diverge to infinity, a proper time-average
limit of the remaining service time exists. Some numerical results demon-
strating the PASTA property are included as well.
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1 Introduction

In this section, we describe the problem we address in the paper and present
in brief the existing results in the area. The remaining service time plays quite
important role in the regenerative stability analysis of a wide class of queueing
systems [5,11]. More exactly, the proof of the tightness of the remaining service
time process is an important stage in the stability analysis both single-server
and multiserver classic queueing systems as well in the stability analysis of the
retrial systems, see [4–6,10].

By an evident reason, the basic queueing processes such as queue size and
workload (remaining work), as a rule, are the main object of the correspond-
ing research, while the research of the remaining service time attracted much
less attention. In this regard, we mention a few following papers [2,7–9,12,13]
where the remaining service time is the main object of research. In particular,
the tightness of the remaining service time in a wide class of classic queueing
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systems has been proved in the paper [9] based on the construction given in [4].
It is worth mentioning that the tightness property of the remaining service time
holds regardless of whether the underlying queueing system is stable (positive
recurrent) or not. (Below we give exact definition of the stable/unstable system.)
At that, while the proof for the stable system is straightforward and based on
the tightness of the remaining regeneration time, the proof of the tightness for
the unstable system is the most challenging case [10,11].

In this paper, we continue to study the remaining service time process with
focus on the property PASTA. This research complements our previous work [12]
where some explicit results related to the stationary remaining service time in
classic and retrial queueing systems have been obtained. Moreover, the limiting
distribution of the remaining service time in the unstable systems has also been
found in [12] by the regenerative method. We emphasize the importance the
PASTA property in the discrete-event simulation and also in the analysis of the
multiclass systems, because this property allows to show that some important
performance indexes are independent of the customer’s class.

The main contribution of this paper is a direct proof of the property PASTA
for the remaining service time both in stable and unstable M/G/1 queueing
system. To the best of our knowledge, the proof of PASTA for the unstable
system is performed for the first time because in the known works it is based
on the stationary distribution of a basic process describing the system [1]. Some
numerical results demonstrating the PASTA property are included as well.

The paper is organized as follows. In Sect. 1 we summarize the main previous
results directly related to the subject of this research. In particular, we give
the explicit expressions for the stationary remaining service time distribution
in the stable systems (both classic multiclass multiserver and retrial), and also
for the limiting distribution (being the corresponding time-average limit) in the
unstable system. In Sect. 2, we present the direct proof of the property PASTA
for the stable multiclass system M/G/1. This proof has an independent interest
and also can be used in other analogous settings. In Sect. 3, the proof of PASTA
for the unstable system is given. An important observation is that in this case the
mean fraction of the idle time of server is asymptotically negligible. As a result,
PASTA in this case holds in the form of the ”convergence in mean”. In Sect. 4, we
give a few numerical examples which illustrate the obtained theoretical results.

2 Description of the System and Previous Results

In this section, we first consider a classical multiclass M/G/1-type queueing
system with N classes of customers which follow independent stationary Poisson
input processes with rates λi, i = 1, . . . , N . Denote by λ =

∑
i λi the rate of

the superposed (Poisson) input, and by {tn, n ≥ 1} the instants of this input,
with t1 := 0. Also let τ denote the generic interarrival time in the merged
Poisson input. The service times {S

(i)
n , n ≥ 1} of class-i customers are assumed

to be iid with generic element S(i), service rate μi = 1/ES(i) and distribution
function Fi, i = 1, . . . , N . To describe the regenerative structure of the system,
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we denote by Q(t) the total number of customers in the system at instant t−,
and let Q(tk) = Qk be the number of customers just before the kth arrival. (All
continuous-time processes are assumed to be right-continuous with left-hand
limits [5].) Then the regeneration instants {Tn} of the process {Q(t), t ≥ 0} are
recursively defined as

Tn+1 = inf
k

(tk > Tn : Qk = 0), n ≥ 0, (1)

where we put T0 := 0. We call the case Q1 = 0, t1 = 0 zero initial state when
the 1st customer arrives at the empty system at instant t1 = 0. The generic
regeneration period, the distance between two regeneration points, is denoted
by T . We call the regenerative process {Q(t)} (and the queueing system) pos-
itive recurrent (stable) if the mean regeneration period is finite, ET < ∞. (If
ET = ∞ then the system is called null-recurrent or unstable.) It is well-known
that positive recurrence of this system implies stability, that is the existence of
the stationary distribution of Q(t) as t → ∞. (The underlying theory of the
regenerative processes can be found in [1,3].)

Denote by Si(t) the remaining service time of class-i customer at instant
t, where by definition, Si(t) = 0 if the server either empty or serves class-k
customer, k �= i. Also denote, when exists, the weak limit (in distribution)

Si(t) ⇒ Si, t → ∞, i = 1, . . . , N,

where Si is the stationary remaining service time of class-i customer, and let

ρi = λiES(i) and ρ =
∑

i

ρi.

It is well-known that if ρ < 1 then the system is positive recurrent (for instance,
see [10,11]). The following result has been proven in [12]:

P(Si > x) = P
(i)
B μi

∫ ∞

x

(1 − Fi(u))du, (2)

where the limit with probability 1 (w.p.1)

lim
t→∞

1
t

∫ t

0

1(Si(u) > 0)du =: P(i)
B = ρi, i = 1, . . . , N, (3)

is the stationary probability that the server is occupied by a class-i customer
and 1(·) denotes indicator function. Thus, expression (2) becomes

P(Si > x) = λi

∫ ∞

x

(1 − Fi(u))du, (4)

in turn implying the expression (3) for the stationary busy probability if x = 0.
(Indeed, the analysis in [12] has been performed for each server in a far more
general multiserver M/G/m system with the identical servers.)

Below we give another proofs of these results and also the proof of the cor-
responding versions of PASTA property. In turn this allows further to establish
PASTA for the remaining service time is an unstable queueing system.
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3 PASTA in Positive Recurrent Case

In this section, we give a simple proof of the PASTA property for the above
described M/G/1 system, under assumption ρ < 1. Alternatively, we could refer
to the established property PASTA [1]. However the independent proof is useful
because then we apply the same idea to prove PASTA in the null-recurrent
systems, in which case we can not appeal to the stationary distributions at the
arbitrary and ’embedded’ instants.

First of all, we have the following balance equation, connecting the class-i
work Vi(t) arrived in the interval [0, t] with the remaining class-i work Wi(t) at
instant t and the busy time Bi(t) of server in [0, t] when it is occupied by class-i
customers:

Vi(t) = Wi(t) + Bi(t), t ≥ 0, (5)

where, by the positive recurrence, Wi(t) = o(t) w.p.1 as t → ∞ [11]. Denote by
Ai(t) the number of class-i arrivals in the interval [0, t], then

Vi(t) =
Ai(t)∑

k=1

S
(i)
k , t ≥ 0,

and, it follows from (5) by the Strong Law of Large Numbers that, w.p.1,

lim
t→∞

Vi(t)
t

= lim
t→∞

Vi(t)
Ai(t)

Ai(t)
t

= λiES(i) = ρi. (6)

It now follows in the limit from the balance equation (5) that, w.p.1,

lim
t→∞

Bi(t)
t

= P
(i)
B = ρi,

and it corresponds to expression (3). We stress that the probability P
(i)
B is

obtained as the time-average limit which is also a weak limit, that is

P
(i)
B = lim

t→∞P(Si(t) > 0) = P(Si > 0).

Now we obtain this probability as the customer-average limit, establishing the
PASTA property for P

(i)
B . Denote by θ the number of arrivals during a regener-

ation cycle of the system, and let θi be the number of class-i customers arrived
within a cycle, that is the (stochastic) equality θ =st

∑N
i=1 θi holds. We note

that each customer entering server belongs to class i with the probability λi/λ. It
then easy to see that, by the property of (the assumed) FIFO service discipline,

Eθi

Eθ
=

λi

λ
, i = 1, . . . , N. (7)

Denote by τi the interarrival time between i-class arrivals. Because the mean
regeneration cycle length ET = EθEτ , then equality (7) can be also written in a
more intuitive form as

EθiEτi = EθEτ = ET,
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meaning that the mean regeneration cycle length can be also expressed, for each
i, as the mean sum of interarrival times between θi class-i arrivals within the
cycle. Also we denote by α

(i)
k the number of arrivals (of all classes) during service

of the kth class-i customer (within a cycle), so all such customers meet server
busy. Note that {α

(i)
n , n ≥ 1} are iid variables with generic element α(i). Then

it is easy to find from the regenerative theory and Wald’s identity [1] that

lim
n→∞

1
n

n∑

k=1

1(Si(tk) > 0) =
E

∑θi

k=1 α
(i)
k

Eθ
=

EθiEα(i)

Eθ
=

λiEα(i)

λ
. (8)

Note that we can apply Wald’s identity to the sum E
∑θi

k=1 α
(i)
k because θi is a

stopping time with respect to the summands [4]. It is left to find Eα(i). Because
the superposed Poisson input has rate λ, we easily find that the mean number
of arrivals during a class-i service time satisfies

Eα(i) =
∫ ∞

0

λxdFi(x) = λES(i).

Substituting this result in (8), we arrive to the relation

lim
n→∞

1
n

n∑

k=1

1(Si(tk) > 0) = ρi = P
(i)
B , (9)

which, together with the time-average limit (3), establishes PASTA property for
the busy probability P

(i)
B , i = 1, . . . , N .

Now we obtain the PASTA for the entire stationary distribution of the
remaining service time. First of all we calculate the limiting distribution as the
time-average limit using construction from [12]: collecting together all θi service
times {S

(i)
k , k = 1, . . . , θi} of class-i customers served within a regeneration cycle

and then shifting the obtained busy period Bi :=
∑θi

k=1 S
(i)
k to the beginning of

the cycle. Combining approach based on a regenerative argument and previous
analysis we obtain the following relations:

lim
t→∞

1
t

∫ t

0

1(Si(u) > x)du =
E

∫ Bi

0
1(Si(u) > x)du

ET

=
E

∑θi

k=1

∫ S
(i)
k

0
1(Si(u) > x)du

Eθ Eτ
= λ

EθiE
∫ S(i)

0
1(Si(u) > x)du

Eθ
. (10)

where also the Wald’s identity ET = Eθ Eτ is applied. Now we calculate the
generic term

E

∫ S(i)

0

1(Si(u) > x)du =
∫ ∞

0

P(Si(u) > x, S(i) > u)du

=
∫ ∞

0

P(S(i) > u + x)du =
∫ ∞

x

(1 − Fi(u))du, (11)
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where we use the equality Si(u) = S(i) − u, provided u ≤ S(i). Substituting (11)
in (10) implies

lim
t→∞

1
t

∫ t

0

1(Si(u) > x)du =
Eθi

Eθ
λ

∫ ∞

x

(1 − Fi(u))du = λi

∫ ∞

x

(1 − Fi(u))du,

and hence the stationary remaining service time Si has the (tail) distribution
(4) obtained in [12].

To prove PASTA, we must obtain the same result considering the embedded
process at the arrival instants {tn} (and also at the arrival instants {t

(i)
n } of class-

i customers only). Denote by Bik the set of numbers of arrivals during service of
the kth class-i customer. Note that the capacity |Bik| = α

(i)
k . By analogy with

(8), for an arbitrary fixed x ≥ 0, we can write

lim
n→∞

1
n

n∑

k=1

1(Si(tk) > x) =
E

∑θi

k=1

∑
j∈Bik

1(Si(tj) > x)
Eθ

=
EθiE

∑α(i)

j=1 1(Si(tj) > x)
Eθ

, (12)

where
∑α(i)

j=1 1(Si(tj) > x) denotes the generic number of arrivals, during service
time of a class-i customer, which observe the remaining service time bigger than
x. It can be realized by taking an independent Poisson process of arrivals during
a generic class-i service time. It is easy to calculate, using integration by parts,
that

E
α(i)
∑

j=1

1(Si(tj) > x) =
∫ ∞

x

λ(u − x)dFi(u) = λ

∫ ∞

x

(1 − Fi(u))du. (13)

Inserting (13) into (12) we arrive to (4), and it proves PASTA.
Now denote by θ̂i the number of class-i arrivals during a type-i regeneration

cycle which is started by a class-i customer arriving in an empty system. (The
corresponding regeneration instants can be easily constructed by analogy with
(1).) We stress that now we only observe the remaining class-i service time
which a class-i arrival meets. Denote by βik the set of numbers of i-arrivals
during service of the kth class-i customer. (Notice a difference between βik and
Bik.) We note that the capacity of these sets are iid with generic element denoted
by βi. Then, with a minor modification of the analysis above, we obtain

lim
n→∞

1
n

n∑

k=1

1(Si(t
(i)
k ) > x) =

E
∑̂θi

k=1

∑
j∈βik

1(Si(t
(i)
j ) > x)

Eθ̂i

= E

βi∑

j=1

1(Si(t
(i)
j ) > x), (14)
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where
∑βi

j=1 1(Si(t
(i)
j ) > x) is a generic number of class-i arrivals, during a

generic class-i service time, which observe the remaining service time bigger
than x. As above we obtain

E

βi∑

j=1

1(Si(t
(i)
j ) > x) =

∫ ∞

x

λi(u − x)dFi(u) = λi

∫ ∞

x

(1 − Fi(u))du, (15)

proving PASTA in this case as well. It is straightforward to obtain the same
result for the attained service time of a class-i customer at instant t, denoted by
Ŝi(t). Note only that Ŝi(tk) ≤ tk for each tk. Then, by analogy with (14), (15)
and for arbitrary fixed x we again obtain that,

lim
n→∞

1
n

n∑

k=1

1(Ŝi(tk) > x)du = λi

∫ ∞

x

(1 − Fi(u))du.

This result expresses the well-known fact that the attained and remaining
(renewal) times have the same equilibrium limit.

The analysis developed above can be easily extended to some other positive
recurrent systems, for instance, to retrial systems with constant retrial rate stud-
ied in [12]. In these systems specific of structure of a system is reflected in the
value of stationary busy probability (3), while the integral term of the stationary
distribution of the remaining service time and the proof of PASTA remain the
same.

Remark 1. The results given above can be directly extended to m-server
M/G/m system with identical servers, because, by FCFS discipline, the struc-
ture of the input in each server remains the same as in the single-server case,
only with the rates λ, λi replaced by λ/m, λi/m, respectively.

4 Null-Recurrent System

Assume now that the N -class system M/G/1 is non-positive recurrent (or null-
recurrent), that is ET = ∞. Because, by Wald’s identity, λET = Eθ, then we
also have Eθ = ∞. (In this identity, both sides either finite or infinite simulta-
neously, see [4].) Then, by assumption, the number of customers Q(t) ⇒ ∞ (in
probability) and hence,

lim
t→∞P(Q(t) > k) = 1,

for each k ≥ 0, implying in particular, that (unconditional) remaining service
time S(t) satisfies

lim
t→∞P(S(t) > 0) = 1, (16)
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see for instance, [11]. Then the idle time of the server in the time interval [0, t],

I(t) =
∫ t

0

1(S(u) = 0)du,

satisfies

lim
t→∞

EI(t)
t

= lim
t→∞

1
t

∫ t

0

P(S(u) = 0)du = 0. (17)

Denote by S̃i(t) the remaining class-i service time at instant t in the process
generated by the service times realized in the server. We denote such a process
(being a combination of differently distributed renewal intervals) as Z̃. As above,
S̃i(t) = 0 if the server serves class-k customer, k �= i. We stress that this service
process has no idle periods. Denote by V (t) =

∑N
i=1 Vi(t) the total workload

arrived in the system in [0, t]. It has been proved in [12] (also see [5]) that the
limiting probability P̂

(i)
B that the server is occupied by a class-i customer in the

service process Z̃ satisfies

P̂
(i)
B = lim

t→∞
Vi(t)
V (t)

=
ρi

ρ
, (18)

and that, w.p.1,

lim
t→∞

1
t

∫ t

0

1(S̃i(u) ≤ x)du =
ρi

ρ
μi

∫ x

0

(1 − Fi(u))du

=
λi

ρ

∫ x

0

(1 − Fi(u))du (19)

Recall that Si(t) is the remaining service time (at instant t) in the real service
process (in which the mean idle time satisfies (17)). It then easy to see that the
following inequalities hold for all t:

∫ t

0

1(S̃i(u) ≤ x)du ≤
∫ t

0

1(Si(u) ≤ x)du ≤ I(t) +
∫ t

0

1(S̃i(u) ≤ x)du. (20)

Because, for each i,
1
t

∫ t

0

1(S̃i(u) ≤ x)du ≤ 1,

then by the dominated convergence theorem [4], we obtain from (19) that

lim
t→∞

1
t
E

∫ t

0

1(S̃i(u) ≤ x)du =
λi

ρ

∫ x

0

(1 − Fi(u))du.

Now (20) and (17) imply

lim
t→∞

1
t
E

∫ t

0

1(Si(u) ≤ x)du =
λi

ρ

∫ x

0

(1 − Fi(u))du

=
ρi

ρ
μi

∫ x

0

(1 − Fi(u))du. (21)
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This result has a clear intuitive interpretation and states that in the null-
recurrent case the time-average limit of the remaining service time distribution,
with probability P̂

(i)
B = ρi/ρ, equals the distribution of the stationary remaining

renewal time in the renewal process generated by class-i service times. Note that
we can not claim the weak convergence Si(t) ⇒ Si in the non-positive recurrent
case.

Remark 2. In the single-class M/G/1 system, with service time distribution
F and service rate μ = 1/ES, expression (21) becomes

lim
t→∞

1
t

∫ t

0

P(S(u) ≤ x)du = μ

∫ x

0

(1 − F (u))du, x ≥ 0 ,

and is the distribution of the stationary remaining renewal time in the corre-
sponding renewal process.

Now we establish PASTA property for this system considering the remain-
ing service time in the process Z̃ at the arrival instants of the original input
process. To this end, we denote by T

(i)
n the departure time of the nth class-i

customer, and define i-type regeneration cycle as the interval (T (i)
n , T

(i)
n ], with

generic length T (i). In other words, this regeneration period contains exactly one
class-i service time, and a new cycle starts just after class-i customer leaves the
system. First of all, it is easy to understand, that, for each i, the lengths of such
constructed periods indeed form an iid sequence. This definition first allows eas-
ily to calculate the mean regeneration period length in continuous-time setting.
Namely, it follows by construction and by regenerative argument, that w.p.1,

lim
t→∞

1
t

∫ t

0

1(S̃i(u) > 0)du =
ES(i)

ET (i)
. (22)

On the other hand, it follows from (18) that the limit (22) must also be equal
to ρi/ρ, implying equality ET (i) = ρ/λi. Moreover, denoting by Di the number
of all arrivals during i-type regeneration cycle, we have from Wald’s identity

EDi = λET (i) = λρ/λi. (23)

(We note that in general Di �= θi because these quantities relate to differently
defined regeneration cycles.) Using a coupling, we remain distributions of all
processes unchanged if take the arrival instants during each service time in the
original system the same as the arrival instants during the same service time in
the process Z̃. (It is easy to do using memoryless property of exponential distri-
bution.) Denote by Zn the number of arrivals meeting server idle within interval
[0, tn]. The coupling of service times allows to obtain the following stochastic
inequalities:

n∑

k=1

1(S̃i(tk) ≤ x) ≤st

n∑

k=1

1(Si(tk) ≤ x) ≤st

n∑

k=1

1(S̃i(tk) ≤ x) + Zn. (24)
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Note that

Zn =
n∑

k=1

1(S(tk) = 0),

and that P(S(tk) = 0) → 0 as k → ∞ by assumption Eθ = ∞. (In the opposite
case, assuming P(S(tk) = 0) �→ 0, we obtain a contradiction: Eθ < ∞, see [11].)
It immediately implies that EZn = o(n). On the other hand, using (13) we obtain
from regenerative argument applied to the process Z̃ (with regeneration periods
with length Di) that, w.p.1,

1
n

n∑

k=1

1(S̃i(tk) > x) → λ

EDi

∫ ∞

x

(u − x)dFi(u) =
λ

EDi

∫ ∞

x

(1 − Fi(u))du.

By the dominated convergence theorem, the convergence in mean in the lat-
ter relation holds as well. Because, from (21), EDi = λρ/λi then, after taking
expectation in all inequalities in (24), dividing by n, we obtain

lim
n→∞

1
n
E

n∑

k=1

1(Si(tk) ≤ x) =
λi

ρ

∫ x

0

(1 − Fi(u))du.

Now comparing the latter result with (21), we conclude that PASTA in mean
holds in the non-positive recurrent system.

5 Simulation Results

In this section we verify the theoretical results obtained above, using stochastic
(discrete-event) simulation and software R. We model a queueing system with
N = 2 classes of Poisson customers with rate λ1 = λ2 = 1. We consider both
positive recurrent case and null-recurrent case, and in both scenarios we use
Weibull and Pareto service time, denoted by Weibull(k, λ), Pareto(x0, α), with
distribution function,

Fi(x) = 1 − e(−λx)k , x ≥ 0,

Fi(x) = 1 −
(x0

x

)α

, x ≥ x0,

respectively.

Positive recurrent case. In the first two experiments, we use service times
Weibull(2, 1/2) and Weibull(3, 1/3) for classes 1,2, respectively. It is easy to
calculate that

ρ1 + ρ2 = 0.443 + 0.298 = 0.74 < 1,

and stability criteria is fulfilled.
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(a) Stable system: Weibull service time
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(b) Stable system: Pareto service time

Fig. 1. An illustration of PASTA for the 1st class customers: Weibull(2, 1/3) (left) and
Pareto(1/5, 2) (right).

Figure 1 shows how fast the fraction of the 1st class arrivals which meet server
busy approaches the line expressing the 1st class busy probability ρ1 (vs. the
number of arrivals K), for the Weibull and Pareto service time distributions,
respectively. (The plots for the 2nd class are quite similar and omitted.)
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(a) Weibull service time
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Fig. 2. Comparison of the actual cumulative distribution function (CDF), obtained
numerically, and ECDF of the class-1 remaining service time observed by all customers;
K = 1000 arrivals, averaging over N = 100 simulation runs.

In the next experiment we again consider a two-class stable system. It is
worth mentioning that in modelling, instead of the actual remaining service
time, we compute the attained service time which converges to the same limit
[5]. By this reason and because we discuss the limiting results, we remain the
term ’remaining time’ (instead of ’attained’ time). More specifically, to construct
empirical distribution function (ECDF) of the 1st class remaining service time,
we record the attained service time at the moments of all arrivals which meet
server occupied by class-1 arrival. We run the simulation with Weibull and Pareto
distributions, with the same parameters as above, and with K = 1000. Figure 2
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shows a remarkable proximity between the theoretical distribution and ECDF
in both cases. (The results for the 2nd class remaining service time are similar.)

Null-recurrent case. In the final experiments, we verify the results obtained in
Sect. 4 for the null-recurrent (unstable) system in which case ρ ≥ 1. We compute
the ECDF of the remaining service time and compare it with the theoretical
distribution function (CDF) constructed numerically. In these experiments we
choose the following parameters: Weibull(2, 1) and Weibull(1/2, 1) implying ρ =
2.9 > 1, and Pareto(1, 2) and Pareto(1/2, 3) implying ρ = 2.75 > 1. CDF and
ECDF are shown on the Fig. 3 again demonstrate a perfect agreement between
theoretical and empirical curves for the 1st class remaining service time observed
by all arrivals. (The results for the 2nd class remaining service time are quite
similar.)
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Fig. 3. Unstable system: comparison of CDF and ECDF of the 1st class remaining
service time observed by all arrivals: (a) Weibull(2, 1) service time and (b) Pareto(1, 2)
service time; K = 1000, averaging over N = 100 simulation runs.

6 Conclusion

In this research we consider a multiclass queuing system with Poisson inputs
and give a direct proof of the PASTA property for the remaining service time.
The proof first is applied to the positive recurrent (stable) system, when PASTA
means the equality w.p.1 limits of the continuous-time sample mean and discrete-
time sample mean. Then this result is extended to the null-recurrent system, in
which case the corresponding limits in mean coincide. Some numerical results
are included as well.
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Abstract. This review is the first to propose the systematic presenta-
tion of a new approach to the study of queuing systems and networks.
The concept of the new approach is based on a combination of traditional
methods of queuing theory with various machine learning algorithms.
The detailed description and justification of the possibility of applying
the approach are given on the example of a combination of simulation
with artificial neural networks. The analysis of publications allows us
to conclude that the application of machine learning methods is highly
effective, promising for further research, as well as for the possible sepa-
ration of this new approach into an independent direction in the field of
solving complex problems of the theory of queues.

Keywords: queuing theory · queuing system · simulation · data
mining · machine learning · artificial neural networks

1 Introduction

Mathematical models of networks and systems based on the queuing theory are
widely used in the design of modern telecommunication networks, including anal-
ysis of the characteristics of existing and future network protocols, optimization
of routing algorithms and network topological structure, etc. Starting with the
pioneering works of A. Erlang, A. Hinchin, L. Kleinrock, and up to the present,
a huge number of articles have been published on the study of various systems
and queuing networks and their application in telecommunication networks.

In recent years, the interest of researchers in the field of queuing theory
has shifted towards the analysis of queuing systems with correlated input flows
(MAP, BMAP, MMAP) since such flows are typical for modern computer net-
works [1,2]. The formation and development of this scientific direction were
facilitated by the work of N. Newts, G.P. Basharin, D. Lucantoni, A.N. Dudin,
V.I. Klimenok, and others.

Traditionally, the primary attention in the study of complex queuing systems
(QS) is directed to the analysis of the stationary mode of operation, the con-
struction of a multidimensional Markov chain, the derivation of the Kolmogorov
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system of differential equations, and their solution using the Laplace-Stieltjes
transformation apparatus and/or generating functions. However, a significant
number of unsolved problems in the queuing theory (QT) still remain, the ana-
lytical and numerical solution of which is either difficult or completely impossible
by traditional methods. Examples of such tasks are the investigation of multi-
server priority queuing systems with correlated input flows (MMAP) and a buffer
of limited size; analysis of the characteristics of networks and of multiphase QS
of large dimension with incoming BMAP-flow and general functions of service
distribution on phases; the study of adaptive dynamic polling systems and of the
fork-join QS, as well as a number of problems of the theory of reliability of the k-
out-of-n-type, etc. The lack of new methods and approaches to the analytical and
numerical solution of such problems hinders the practical application of queuing
theory models in the performance evaluation and design of telecommunication
networks.

In this paper, we propose one of the new approaches based on a combination
of machine learning and simulation methods. A brief description of the new
approach, the features of its application on specific examples, and, consequently,
the possible prospects for its separation into an independent direction in further
research in the field of queuing theory are given. Although the development and
implementation of this new approach began relatively recently, this review also
considers early publications in which this topic was only indirectly touched upon.
These publications deserve attention since they allow tracing the development
of a new method from its starting point to the current state. At the same time,
the strict formulation of the proposed approach and the demonstration of its
effectiveness in the study of various models of queuing are reflected mainly in
the recent works of the authors of this review.

2 Artificial Neural Networks and Queuing Theory

There are three main types of problems that can be solved by using various
machine learning algorithms: classification, clustering, and forecasting. The last
task is to predict the behavior of the system from its previous reactions, which
actually reduces to the problem of approximating a function of several variables.
In what follows, we will be interested in the use of artificial neural networks
(ANN) and other machine learning methods in the context of solving this prob-
lem, since, for example, neural networks are considered one of the best tools for
approximating functions [3].

Currently, several types of ANN structures are known; however, in most
studies on the subject of QT, a perceptron is used, characterized by one or more
hidden layers and direct signal propagation. On each neuron, the products of
the input data and the corresponding weight coefficients are summed up, which,
after passing through the activation function as an argument, then become the
input data for the neurons of the next layer.

According to theorems on approximation of functions given in [4], as well as
in the review [3], any continuous function can be represented as a combination
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of linear operations and a single nonlinear element, which allows them to be
applied to a multilayer perceptron, where as nonlinear element is an activation
function.

There are many approaches to learning neural networks, which, in turn, affect
the approximation process. Learning is understood as the process of finding the
optimal weight coefficients that would fully reflect the relationship between the
input values and the output of the neural network. One of the most famous and
common learning methods is the backpropagation method.

Other widely used ANN learning methods include the Levenberg-Markart
algorithm, the scaled conjugate gradient algorithm, and the Bayesian regular-
ization algorithm. The question of choosing a specific algorithm from the entire
set of existing ones can be solved experimentally when implementing a specific
task. In this case, for example, one can be guided by the optimal ratio of such
characteristics as the accuracy and labor intensity of the algorithms selected for
comparison or by special metrics for machine algorithms.

The work [5] can be attributed to one of the first mentions of the application
of machine learning methods, in particular, the algorithm for constructing a
decision tree, to solving QT problems. It speaks in general about the potential
of machine learning methods and discusses some new (thanks to these methods)
possibilities of modeling the behavior of complex systems and the advantages
of their use in the implementation of expert systems. The proposed approach is
illustrated by the example of a simulation of one queuing system.

The work [6] presents the comparative analysis of the telecommunication
network response time estimation, obtained using the classical methods of queu-
ing theory (the analysis of the M |M |2 model) and the estimation obtained the
neural network training based on the backpropagation method for the set of real
data collected while monitoring the operation of the network under investiga-
tion. Naturally, the neural network gave a better estimate in the context of a
lower value of the mean square error of the model. This was due to the simplicity
of the proposed analytical model.

Existing works (articles) can be divided into several categories depending on
the purpose of applying machine learning methods. On the one hand, machine
learning can be directly used to simulate the operation of real queuing systems.
On the other hand, their application is possible for the analysis of complex
queuing models, for which the calculation of estimates of the characteristics is
not always possible in a closed form, and numerical methods are not always
productive. Let us analyze the available thematic publications in more detail
in order to reflect one of the advantages of using machine learning, namely the
variety of problems that can be solved using its methods.

3 An Approach to Solving Problems of Queuing Theory
Using Machine Learning Methods

Despite the presence of articles in which machine learning methods are applied
in solving various kinds of problems lying to one degree or another in the plane
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of the QT, none of them fully formulated the concept of a new methodology. All
publications on this topic are rather scattered. It is rather difficult to identify
some general idea from them and even more so to single it out as a separate new
direction in solving complex problems of QT on a par with classical methods.

The main provisions of applying the new approach in the form that allows it
to be used in the analysis of queuing models of any complexity were formulated
in the works of the authors of this review. These publications, which outline the
fundamental principles of the new approach, will be described below.

The main idea of the proposed approach is to combine traditional queuing
theory methods with various data mining methods. In particular, we are talking
about a combination of simulation and artificial neural networks. Simulation is
one of the ways to obtain highly accurate estimates of the performance measures
of queuing models. However, the time taken to obtain one value of the model
characteristic can range from a few seconds to several minutes. It depends on the
complexity of the modeled QS, software environment for simulation, hardware
of the computing system.

The simulation time to obtain the required number of estimates to form a
complete picture of their behavior can exceed all reasonable limits. Therefore,
if using simulation to get a set of values of the characteristics of interest for
individual values of the input parameters within a given numerical interval, then
it is possible to train a neural network on the obtained data, which, with the
required degree of accuracy, will provide an estimate already for any intermediate
values of the input parameters from the same intervals without any restrictions
on their number.

As a result, it will be necessary to spend time on simulation modeling not for
all the required values of the input parameters but for their limited number, as
well as on direct training of the neural network or some other intelligent model.
The forecasting process itself does not actually require time.

As for the construction of a simulation model, there are several options.
You can use specialized software applications developed for this purpose. Some
of the more popular applications are GPSS World, AnyLogic, and Arena [7].
As an alternative to ready-made options, you can develop your own simulation
model, for example, in the Python software environment with a fairly wide range
of capabilities and many ready-made libraries, including for training artificial
neural networks.

Summarizing, let us highlight the following main stages of the approach using
machine learning methods:

1. obtaining, using simulation, the values of the characteristics of the analyzed
system for a finite set of values from the given numerical intervals for the
input parameters, on which the system performance depends;

2. training of an intelligent model on the data obtained by simulation using one
of the machine learning methods to solve the forecasting problem;

3. almost instantaneous estimation of the required performance characteristics
for any other intermediate values of the input parameters at the same numer-
ical intervals using a trained, intelligent model.
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The specifics of building simulation models of queuing systems can be found,
for example, in [8]. However, the question of the length of the model run remains
difficult, i.e., in this case, it means the number of requests that must be passed
through the system to obtain one output value (or one set of output values). It
should be noted that the data obtained during the implementation of one run
to estimate the average value of almost any investigated random variable are
correlated, which leads to the need for a significant increase in the number of
realizations in comparison with the case of independent random variables. In
addition, the run length is not a fixed value but is determined individually for
each set of input parameters, which additionally increases the simulation time.

If a computational algorithm is developed for assessing the probabilistic-
temporal characteristics of a certain network or queuing system, but it requires
too much time and computational costs, then similarly using this algorithm, you
can first obtain estimates of characteristics for a limited set of input parameters,
and then train a neural network and solve the forecasting problem.

4 Review of Publications on the Application of Machine
Learning Methods to Solving Problems of QT

Although machine learning methods and algorithms have found wide application
in various fields of science and technology [9], including the study of modern
broadband wireless networks of a new generation [10–13], their application in
the queuing theory is weak reflected in world literature.

Physical queuing is a reality in many areas of human life, particularly in
the service or sales industry. Therefore, research in this area aimed at reducing
the waiting time and, accordingly, increasing service efficiency remains relevant
today. the classical methods of the queuing theory remain one of the main tools
for assessing the waiting time of a client in a queue (in a bank, a medical institu-
tion). Recently, however, there has been a lot of research on predicting queuing
times using machine learning methods [14–17].

Works [18,19] are devoted to the construction of a model of the classical
queuing system M |M |1 using an artificial neural network and the analysis of
the adequacy of this simulation. In [18], the neural network was developed using
a backpropagation algorithm with one hidden layer. Experiments have shown
that the values simulated using the neural network coincide with the calculated
values obtained by the classical mathematical approach.

In [19], an artificial neural network model was also developed to simulate the
QS M |M |1. The input layer of neurons included such values as the intensity of
the incoming flow and the intensity of service. The output layer consisted of eight
neurons, which corresponded to the values of the probability of system downtime,
the average number of requests in the queue and in the system, the average
waiting time for the start of service and stay in the system, and others. The
resulting model was tested, and the verification showed that the neural network is
highly consistent with the analytical model and can predict the target parameters
for the given input data with minimal insignificant error. In [20], similarly, a
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neural network simulating the classical QS is used to plan and optimize the
queue at the airport runway.

The use of neural networks for the analysis of non-Markov QSs seems to be
one of the most promising areas of research in the field of QT. At the moment,
there is a small number of publications devoted to this topic. Nevertheless, this
gap is beginning to be filled, including by the authors of this work, since it is
through non-Markov systems that most real physical systems and processes in
them are modeled, and their study using classical methods does not always give
a satisfactory result.

One of the first works that touched on the application of the apparatus of
neural networks to the analysis of non-Markov QS models is the article [21].
Here the non-Markov QS with a “warm-up” [22] is investigated, and this QS
can be used to simulate the activation process of an empty system in the event
that it receives the first request after a break in its operation. This system is
successfully “markovized” by approximating it by means of the QS with the
phase-type distribution of the incoming flow or the service time, which, as is
known, can be used as an approximating function of general distribution. How-
ever, already in the case of QS with “warm-up” of the form H2|M |M |3 and
M |H2|M |3, the numerical algorithms for calculating the stationary probabili-
ties of states turn out to be very time-consuming and resource-consuming. The
use of neural networks, in this case, made it possible to significantly reduce the
complexity without losing the accuracy of the calculations.

A two-layer perceptron was chosen as the structure of the neural network. At
the input of the neural network, the intensities of the incoming and serving flows,
as well as the “warm-up” and the coefficient of variation, were fed. The output
parameters in the case of the QS H2|M |M |3 were the stationary distribution
of the number of customers, and for M |H2|M |3, the average waiting time for
servicing and the average sojourn time in the system. Three algorithms were
used to train the ANN: the Levenberg-Markart algorithm, the scaled conjugate
gradient algorithm, and the Bayesian regularization method. The latter turned
out to be the most accurate in the sense of the minimum mean square error of
the approximation.

The article [23] examines the priority QS with a marked Markovian arrival
process (MMAP). The system under consideration is multi-server with a finite
capacity; the service time on the servers has a phase-type distribution, the
parameters of which differ for customers belonging to different priority classes.
The priorities are relative; in addition, probabilities, with which the customer
can either stay in the system, taking its place in the queue, or leave it imme-
diately, are specified for customers of different classes, depending on the total
number of customers in the system.

MMAP is used to describe the processes occurring in modern information and
computing systems since it allows modeling the correlation properties of traffic
and for the case of an arbitrary number of priorities. However, there are not so
many works devoted to the study of QS with MMAP due to the complexity of
such an analysis.
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In [23], an algorithm was presented for finding the stationary probabilities of
states of the described QS MMAP |PH|M |N with two priority classes (R = 2),
including matrix calculations. At the same time, with an increase in the number
of devices in the system, in particular at M = 5, the dimension of the matrices
can be so large that even modern computers may not have enough power to
calculate the main performance measures of the QS. Therefore, to analyze QS
with a large number of priorities (R > 2), an approach based on a combination
of simulation modeling with various machine learning methods (decision trees,
random forest, gradient boosting, neural networks, etc.) was used. The results
of numerical analysis for the response time and the loss probability indicate in
favor of the new approach due to a significant reduction in the computation time
(of the order of 105 in comparison with the analytical algorithm) without any
loss in their accuracy.

In the paper [24] the end-to-end delay of a multiphase queuing network (QN)
is investigated, in which the first node is the QS G|G|1, and the subsequent
(K−1) nodes are systems of the form ·|G|1. There are no exact analysis methods
for such networks, so approximate ones are used. One of the main approaches
to studying such networks is the decomposition method together with diffusion
approximation, which implies the estimation of the parameters of incoming flows
(coefficients of variation). There are several variants of the formulas known to
determine the coefficients of variation, as a result of which several estimates
were obtained for the average end-to-end delay [8,25]. But all of them can give
a relatively low accuracy of the approximation.

For a comparative analysis of the results of applying the decomposition
method and a new approach using ANN, two types of service time distribu-
tion are considered—uniform and Pareto distributions. The value of the mean
absolute percentage error (MAPE) for the mean end-to-end delay predicted by
the neural network does not exceed 1%, while in the case of four variants of
analytical formulas for determining the coefficient of variation, which, in turn,
is involved in the analytical expression for the mean end-to-end delay latency,
this value varies from 2.321% in the best case to 6.387% in the worst case,
respectively.

In the articles [26,27] a new method is used to study the mean response time
and its standard deviation (variance) for a fork-join QS. The main idea of the
functioning of this system is as follows: at the moment of arrival, the request
is split into several sub-requests, after which each of them enters the queue for
service to the corresponding server. The time spent in the QS is the maximum
of the times spent in the sub-system of each of its sub-requests. The complexity
of analyzing the response time in a fork-join system lies in the correlation of the
sojourn times due to their identical moments of appearance in the system.

In [26] the fork-join system with K subsystems of the type M |M |1 is consid-
ered. Five approximate formulas for the average response time E[RK ] estimation
of such a system are best known, and one of them gives the smallest error at
K ≤ 32. For the variance of the average response time V ar[RK ] not so many
formulas are known; basically, one [26] is used. The values of the average rela-
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tive error of MAPE approximations calculated on the test sample in the case
of estimating the average response time and its standard deviation using a neu-
ral network are approximately 0.739% and 0.364% versus 1.592% and 6.896%
calculated by the corresponding analytical formulas.

In [27] a fork-join system is also investigated, but with K subsystems like
M |G|1. One of the main approaches for the average response time and its second
moment estimations is based on the theory of order statistics, but the approxi-
mation is much poorer than the situation with an exponential distribution. The
service time on the servers has a Pareto distribution with the α parameter. Thus,
the number of indicators affecting the probabilistic-temporal characteristics of
the system includes the load ρ, the number of subsystems M |G|1—K, and the
value α. As a result, the MAPE values for the mathematical expectation and the
standard deviation of the time spent in the fork-join of the QS are approximately
24.425% and 18.702% in the case of calculations using analytical formulas and
0.708% and 3.355% in the case of using a neural network.

On the example of the presented works, various measures of approximation
errors when using machine learning methods take smaller values compared to the
results of using analytical formulas, which testifies in favor of the new approach.
However, it is also of interest what lies behind these average characteristics, i.e.,
how large the scatter of the specific values of the errors included in the averaged
expressions can be, because they are more intuitive and more descriptive in the
context of comparative analysis.

In work [28], the result of applying neural networks to the analysis of a
closed QN is elucidated. Since simulation modeling can be time-consuming, for
the detailed research of a significant number of elements that make up MAPE,
the exponential closed QN was chosen, for the characteristics of which the exact
analytical expressions are known. This allows, nevertheless, following all stages
of the approach, to check a larger number of estimates. The well-known ana-
lytical expressions are the formulas for stationary probabilities of states, which
include a normalizing constant. For its non-trivial calculation, Busen’s algorithm,
programmed in Python, is used.

To carry out the declared detailed analysis, by using the trained neural net-
work and analytical formulas, the average number of customers Ni and the
average time spent vi in each of the five network nodes are calculated for sets
of service intensities μi. A total of 59049 such sets are obtained. The structure
of the relative errors of approximations for a set of almost sixty thousand input
elements is such that in the worst case, the relative error does not exceed 5%,
and for a small amount of data.

The new technique was applied to a wide class of stochastic polling systems
[29]. Polling systems are QS with several queues and only one server. According
to a certain rule, the server visits the queues and serves the requests located
in them. Despite a significant number of works in this area, many unsolved
problems remain, particularly the study of systems with correlated input flows
or systems with limited queuing disciplines. The machine learning method using
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ANN was first applied to calculate the characteristics of polling systems in the
article [30].

For example, [30] describes machine learning results for polling systems like
M |M |1 with cyclic polling, MAP |M |1 with correlated input flow, as well as
systems like M |M |1 with adaptive cyclic polling. The results of analytical cal-
culations of performance characteristics were used to train a machine model
of a polling system of type M |M |1, and for other systems, for which it was
not possible to develop an algorithm for calculating performance characteristics
by known methods, the results of the simulation were used. Extensive compu-
tational experiments have shown that the ANN training results coincide with
high accuracy with the results of analytical or simulation calculations, while the
machine model can significantly reduce the time for calculating the characteris-
tics of polling systems in comparison with simulation.

In article [31] the system k-out-of-n : F , k < n from the point of view of reli-
ability is studied. It is a repairable system with a single repair unit. The failure
of this system occurs in the case of failure of k elements, each of which begins to
be repaired immediately after the termination of functioning and after the com-
pletion of the reparation begins to work again. It is assumed that the lifetime
of the system components has an exponential distribution with the parameter
α, and the repair time has a general distribution with an average value of b.
The described closed QS can be denoted in terms of Kendall’s classification as
〈Mk<n|G|1〉. The set of states of a given system is described by a two-dimensional
Markov process. As a result, after compiling the Kolmogorov system of differ-
ential equations and its subsequent solution, expressions were obtained for the
stationary probabilities of the states of the QS in terms of the Laplace trans-
form. Since here an exact solution was obtained for the stationary probabilities
of the system, which allows one to evaluate the most important characteristic
of the reliability of its operation, called the availability factor, the neural net-
work was trained not on simulation data but on data calculated using analytical
expressions.

Further, to test the new method’s performance within the framework of a
numerical experiment, the comparative analysis of the learning outcomes of the
neural network and analytics is carried out. As the structure of the neural net-
work, the two-layer perceptron with two input neurons corresponding to the
average lifetime and the average repair time was chosen; at the output of the
neural network, there is one neuron that produces the system availability val-
ues, the hidden layer contains 16 neurons, and the hyperbolic tangent acts as
activation functions and its derivative, the neural network learning algorithm is
Adam’s method. The results of the neural network operation on the test dataset
indicate a good quality approximation of the availability factor, which opens
up new perspectives in the study of system availability of a more general form
〈Gk<n|G|1〉.

In [32], neural networks are used to find the optimal distribution policy for
customers in a multi-server QS with an unlimited storage capacity, heteroge-
neous servers, and operating costs. The system receives a Poisson flow of cus-
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tomers with intensity λ, the service time of a customer on the jth server has
an exponential distribution with the parameter μj , and the servers are ordered
in increasing order of the average service time. In addition, the system assumes
costs, namely: the holding cost of waiting in the queue is equal to c0 > 0, and
the operating cost of servicing a customer on the jth server are cj per unit of
time, that is, on average cjμ

−1
j is consumed per one request when servicing on

the jth server. The system has a controller, which, based on information about
the state of the system, makes a decision on the distribution of requests between
servers in accordance with some policy f . The controller at the time of a new
request arrival in the system or at the time of the end of service of the request
on the device can either send the first request in the queue for service or leave
it in the queue. The optimal policy for distributing requests between servers in
terms of minimizing long-term average costs for such a system has a threshold
form.

In order to determine the optimal thresholds, the policy-iteration algorithm
[33] is used, since the minimizing the average cost function directly may turn out
to be too time-consuming. However, this algorithm also has some drawbacks. In
particular, difficulties arise with its convergence under conditions of high system
load, and there are also restrictions on the state space of the process under study.
Therefore, the article proposes two ways to solve this difficult task. On the one
hand, a heuristic solution for finding threshold levels has been formulated. On the
other hand, a neural network-based solution is presented. The values λ, μj , c0,
cj , j = 1,K arrive at the input of the neural network, and the sought optimal
thresholds are at the output of the neural network. The neural network (six-
layer perceptron) was trained on 70% of the data obtained using the iterative
algorithm, using the Adam method in the Mathematica software environment
(Wolfram Research). A check on the remaining 30% of the data showed a low
approximation error, which indicates a high potential for solving optimization
problems in the field of QT.

5 Conclusion

The article describes the new, promising approach to the study of queuing sys-
tems and queuing networks based on a combination of machine learning and sim-
ulation methods. A review of works published in the world literature is given,
where this method is effectively used to find the numerical characteristics of
complex QS with a significant reduction in the complexity and computation
time.

It is shown that the new method is promising for further research of unsolved
QT problems, such as the analysis of priority QS or multiphase systems of large
dimension with incoming correlated flows (BMAP), the study of queuing net-
works that do not satisfy the BCMP theorem [1]. Therefore, the new approach,
due to its versatility, can generate considerable interest and provoke much new
research in the field of queuing theory.
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Abstract. Today, the research community and standardization bodies
seek for a systematic answer to address the effects of temporal variability
in mobile traffic. One of a viable option for mitigating the impact of traf-
fic fluctuations is offloading in unlicensed bands. In this paper, we have
described model of offloading customers on unlicensed frequency range
of wireless network. We proposed three offloading strategies and evalu-
ated the effectiveness of their use. We obtained the resource requirement
distribution of offloading customers onto unlicensed band.

Keywords: Wireless network · queuing theory

Introduction

5G New Radio (NR) technology, standardized as a part of 3GPP efforts, promises
drastic boost in the access rate at the last mile [1]. This is specifically the case for
NR operating in millimeter wave frequency band, where a large set of resources
has been made available worldwide [2]. Similarly to the respective LTE speci-
fications, NR-U documentation has been extended to include the possibility of
operation over the unlicensed bands.

The unlicensed band can be used to boost bitrate of NR sessions, therefore,
a number of ongoing studies have been devoted to its use. Most of the recent
studies has considered the question of designing NR and WiGig coexistence in
the unlicensed band including the duty cycle and pure random access.

The concept of integration between licensed and unlicensed mmWave bands
was considered in [3,4]. The authors studied the coexistence of the two systems in
terms of the downlink data rate, by comparing three different scenarios: WiGig
only, coexistence of WiGig and NR-U, and NR-U only. The results indicated that
the use of unlicensed bands by NR-U user equipment (UE) may dramatically
degrade the performance of WiGig UEs in terms of their data rate.
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Since NR-U operation may also increase the levels of interference, recent stud-
ies focused on the effective coexistence mechanisms between NR-U and WiGig
systems [5,6], including the duty cycle and random access considerations.

In [7] the study further addressed the coexistence of NR-U and WiGig tech-
nologies in 60 GHz bands. In particular, the authors focused on determining
whether NR-U fulfills its coexistence objective in terms of the fairness criterion.
In [8], the authors studied the coexistence of cellular and WiGig users around
60 GHz bands. They proposed a sensing-based adaptive unlicensed channel shar-
ing protocol. In [9] inspected the downlink performance of NR-U and WiGig tech-
nologies under inter-technology interference from each other in 60 GHz bands.
Under a small-cell setting, that paper offered models for signal-to-interference-
plus-noise ratio (SINR) and data rate.

In our previous study [10], we developed the model for collocated NR-U
design explicitly capturing the random access behavior in unlicensed band and
characterizing the NR-U customer loss probability. However, we utilized very
simple M/M/K/0 queuing model to capture the specifics of resource allocation
in the licensed band. In [11], we suggested a more accurate model of the service
process in the licensed band. However, we described only a simple offloading
strategy, where customer offloading onto unlicensed spectrum was determined
by an only insufficient amount of resources in the licensed band. In this study,
we propose a strategy in which, in addition, resource-intensive customers can be
initially redirected to the unlicensed range based on their “weight”.

1 Offloading Schemes

In this section, we describe three different strategies for offloading tasks to the
unlicensed band. For the first considered strategy, called baseline, UE try to
associate with the nearest base station (BS) and utilize licensed band. The task
is redirected to the unlicensed band if there are no sufficient amount of resources
in the licensed band to accept it for service, and it is dropped if the current data
rate provided to the offloaded task in this band is less than the transmission
rate threshold Rmin. The analysis of this strategy was presented in our previous
study [11].

Then, we consider 2 strategies of offloading, based on the weight of incoming
tasks, called “fat” and “slim” strategies. In the case of “fat” offloading, the task
is directed to licensed or unlicensed band based on the amount of resources,
needed to satisfy the minimum rate requirements Rmin. If the resources exceed
the threshold R1, the task is directed to the unlicensed band. In the other case,
the task is initially sent to the licensed band and only if there is insufficient
amount of resources it is offloaded to the unlicensed band. In contrast to the
previous one, “slim” offloading assumes that if the amount of resources needed
to achieve the minimum rate Rmin is bellow the threshold R2, then the task is
directed to the unlicensed band.

Since the coverage radii of the licensed and unlicensed bands are different
we consider two types of customers. The first type of customer can be served in
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the licensed band only. Therefore, if there is not enough resources to service this
customer, the customer is lost. The second type of customers can be potentially
offloaded to the unlicensed band.

The system receives customers arrival flow with rate λ, which can be repre-
sented as λ = λ1 + λ2, where λ1 and λ2 are the arrival rates of first and second
types of customers, respectively.

For “weight” based offloading strategies (Fig. 1) the probability mass func-
tions (pmfs) of resource requirements at BS depend on the threshold: R1 for the
fat strategy, and R2 for the slim strategy, respectively. The arrival flow of the
second type customers is divided according to the “weight” of the customer. For
fat strategy, “heavier” customers are initially directed to the unlicensed band
with a probability π2,1, and with probability (1 − π2,1) “lighter” customers are
directed to licensed band. For the slim strategy, the principle of offloading is
similar, but instead of heavy ones, light customers are initially directed to the
licensed band. Thus, the overall rate of both types of customers to the licensed
band is λ1 + λ2 (1 − π2,1) .

Observe, that the second type customers arrive to the unlicensed band in
two cases: (i) when the “weight” of the customer is more than a threshold R1

for “fat” strategy, or less than a threshold R2 for “slim” strategy, respectively,
(ii) when there are no sufficient amount of resources or servers available for a
customer that has been initially routed to licensed band. The probability π1,2

that the second type customer will be directed to the unlicensed spectrum is
the sum of the probability π2,1 that the customer is sent on a licensed spectrum
according to its weight, i.e. it’s “heavy” for fat strategy and is “light” for another
one, and the probability π2,2 that a customer cannot be handled at the licensed
band and thus offloaded to unlicensed one, i.e.,

π2 = π2,1 + (1 − π2,1)π2,2. (1)

In this way, the arrival rate to the unlicensed part of BS can be calculated
as λ2π2.

Fig. 1. Illustration of the queuing model.
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2 Model Description

To model the customer service process in the licensed band we apply the frame-
work of resources queuing systems [12–14]. For this purpose, consider a multi-
server queuing system with K < ∞ servers and R < ∞ resource units, where K
denotes the maximum number of UEs in the system, i.e., the maximum number
of customers that can be simultaneously served in the licensed band. Customers
of two types arrive to the system, both according to the Poisson processes with
arrival rates λ1 for the first type and λ2 for the second one. Thus, the total arriv-
ing flow is Poisson with parameter λ = λ1 + λ2. The service time distribution is
exponential with the rate μ.

Service process of each customer requires a server and a random amount of
resources, 0 ≤ r ≤ R. The distributions of resource requirements for considered
customer types are given by {pl,j}j≥0, l = 1, 2, where pl,j is the probability
that a customer of type l requires j resources. According to [12] resource-based
queuing system with two flows can be analyzed as a system with one aggregated
flow assuming the following

p̃j,1 =
ρ∗
1

ρ∗ p1,j +
ρ∗
2

ρ∗ p̃j,1,2, (2)

where ρ∗ = ρ∗
1 + ρ∗

2, ρ∗
1 = λ1/μ, ρ∗

2 = λ2(1−π2,1)/μ, and p̃j,1,2 is the probability
that the second type customer requires j resources in the licensed band. .

The system operates as follows. An arriving customer is accepted to the
system if at the moment of arrival there are sufficient amount of resources avail-
able. Alternatively, an arriving customer is dropped. In this case, a first type
of customer is lost while the customer of the second type is being redirected to
the unlicensed band. When the service time of a customer is over, it leaves the
system releasing all the occupied resources.

Denote by Pk(r) the stationary probability that there are k customers in
the system that totally occupy r resources. According to [15], the stationary
distribution is given by

Pk(r) = P0
ρi

k!
p̃
(k)
r,1 , k = 1, 2, . . . ,K,

P0 =

(
1 +

K∑
k=1

ρk
s

k!

R∑
r=0

p̃
(k)
r,1

)−1

, (3)

where {p̃
(k)
r,1}r≥0 is k-fold convolution of pmf {p̃r,1}r≥0.

The probability that the second type customer requires j resources in the
licensed band for the “fat” strategy is given by

p̃j,1,2 =

(
R1∑
i=0

p2,i

)−1

p2,j , 0 ≤ j ≤ R1, (4)

and for the “slim” strategy is given in a similar way by the following formula
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p̃j,1,2 =

(
1 −

R2∑
i=0

p2,i

)−1

p2,j , 0 ≤ j ≤ R1, (5)

The probability that there is no sufficient amount of resources in the licensed
band to serve a session of the first type is

π1 = 1 − P0

K−1∑
k=0

(ρ∗)k

k!

R∑
r=0

p̃
(k+1)
r,1 . (6)

In the case of large values of K and R according to (6) calculations are
computationally demanding. For this reason, we can adopted a recurrent com-
putational algorithm proposed in [13]. Let us introduce an auxiliary function
G(K,R) as

G(n, r) =
n∑

i=0

(ρ∗)i

i!

r∑
j=0

p̃
(i)
j,1, P0 = G−1(K,R). (7)

According to it, the the probability π1 from (6) can be rewritten as

π1 = 1 − G−1(K,R)
R∑

i=0

p1,iG(K − 1, R − i). (8)

3 Resource Requirement Distribution of Offloading
Customers

In this section, we will specify the probability distribution of resource require-
ments and the intensities of second type customer offloads to the unlicensed
band.

3.1 Fat Strategy

The customer is considered “heavy” if it requires more than R1 resources, and
is thus originally routed to the unlicensed spectrum. Then the probability π2,1

that the customer is “heavy”, can be calculated as follows

π2,1 = 1 −
R1∑
i=0

p2,i, (9)

The probability π2,2 that a “light” customer cannot be served in the licensed
band and thus offloaded to the unlicensed band is calculated similarly to (6) as

π2,2 = 1 − P0

K−1∑
k=0

(ρ∗)k

k!

R∑
r=0

p̃
(k+1)
r,1 . (10)



322 A. Daraseliya and E. Sopin

By analogy to (8), the probability π2,2 (10) can be written using a recurrent
algorithm as

π2,2 = 1 − G−1(K,R)
R∑

i=0

p̃i,2G(K − 1, R − i). (11)

The probability that the customer requires j resources in the unlicensed band
needs to be calculated separately for two cases: when a customer is “heavy” and
thus initially routed to the unlicensed band, and when a customer is first routed
to the licensed band but there are not enough of resources available for its service.
Reflecting on these cases we arrive at

1 − π2,1

π2
p2,j

⎛
⎝ R∑

r=0

PK(r) +
K−1∑
k=0

R∑
r=R−j+1

Pk(r)

⎞
⎠, j ≤ R1,

1
π2

p2,j , j > R1. (12)

After substituting the function G(n, r) into (12), the probability that the
customer requires j resources in the unlicensed band is

p̃j,2 =

{
1−π2,1

π1,2
p2,j

G(K,R)−G(K−1,R−j)
G(K,R) , j ≤ R1,

1
π2

p2,j , j > R1.
(13)

3.2 Slim Strategy

For this strategy, the customer is considered “light” if it requires less than R2

resources, and is thus originally routed to the unlicensed spectrum. Then, the
probability π2,1 that the customer is “light” can be calculated by the following
formula

π2,1 =
R2∑
i=0

p2,i. (14)

The probability π2,2 that a “heavy” customer is offloaded to the unlicensed
band due to lack of resources on the licensed one is found similarly to the formula
is be calculated as (11) for the previous strategy.

Similarly to (12), the probability p̃2,j that the customer requires j resources
in the unlicensed band is

p̃2,j =

⎧⎪⎪⎨
⎪⎪⎩

1−π2,1
π2

p2,j

⎛
⎝ R∑

r=0

PK(r) +
K−1∑
k=0

R∑
r=R−j+1

Pk(r)

⎞
⎠, j ≥ R2,

1
π2

p2,j , j < R2.

(15)

After applying the recurrent algorithm, the formula (15) for calculating the
probability p̃2,j can be represented as

p̃2,j =

{
1−π2,1

π2
p2,j

G(K,R)−G(K−1,R−j)
G(K,R) , j ≥ R2,

1
πSU

p2,j , j < R2.
(16)
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Fig. 2. State transition diagram of the Markov model.

4 Evaluation of the Efficiency of Offloading on Unlicensed
Spectrum

NR-U UE sessions offloaded to the unlicensed band compete for transmission
resources with WiGig UEs. Denote ζ as the collision probability and ψ as the
probability that the LoS path is blocked. Then, the probability of successful
transmission is the probability that there was no collision or LoS blocking and
can be writen as

θ = (1 − ζ)(1 − ψ). (17)

The behavior of system can be described by a Markov chain {Xn, n =
0, 1, . . . , T}, where Xn = n denotes transmission attempt when the back-off
counter is in [0, 2nW − 1]. According to the state transition diagram shown in
Fig. 2, the formula for calculating stationary probabilities can be written as

qi =
θ

1 − (1 − θ)T+1
(1 − θ)i, i = 0, 1, ..T (18)

Let now π1 and π2 be the probabilities that the NR-U and WiGig UEs
transmit in arbitrarily chosen slots. Then, if there are n NR-U and m WiGig
competing sessions, the collision probability is

ζ = 1 − (1 − π1)
n (1 − π2)

m
. (19)

The unknowns π∗
1 and π∗

2 can be established by considering the LBT access
procedure. Since UEs transmit only in states Xj = j, the transmission probabil-
ity π∗

1 can be calculated as a fraction of slot time divided by the mean number
of time slots UE spends in any state. Thus, to find the probability that UE per-
forms the transmission attempt, we need to sum up the mean number of time
slots bj that UE spends in state j, multiplied by probability qj that UE is in the
state j, i.e.,

π∗
1 =

[
T∑

i=0

qjbj

]−1

, (20)
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where the mean number of slots bj in state j is given by

bj =
2jW∑
i=1

1
2jW

i =
2jW + 1

2
, j = 0, 1, .., T. (21)

Finally, substituting (18), (21) into (20), and using simple algebraic manip-
ulations, the transmission probability π1 can be written in the following form

π∗
1 =

[
θW

(
1 − 2T+1 (1 − θ)T+1

)
2 (1 − (1 − θ)T+1) (2θ − 1)

+
1
2

]−1

. (22)

Having obtained the probability of transmission π1 (22), we can determine
the average successful transmission probability as a function of the number of
NR and WiGig UEs competing for transmission, respectively, i.e.,

Π∗
1 =

∞∑
i=1

(ρ�
1)

i

i!
e−ρ�

1

∞∑
j=0

(ρ�
2)

j

j!
e−ρ�

2π∗
1(i, j)θ(i, j), (23)

where ρ�
1 = λ2/μ and ρ�

2 are the total offered load on the licensed and unlicensed
bands.

Let η be a random variable of data rate on an unlicensed frequency range.
The transmission and successful transmission probabilities for WiGig UE are
calculated similarly. The random value v of the transmission rate in the unli-
censed frequency range is a linear function of the random value of the spectral
efficiency with the distribution p̃j,1 can be represented as ηj is given by

v = Π∗
1Bη. (24)

Then, the expected value of the data rate achieved by UE in the unlicensed
band is

E[v] =
R∑

j=0

p̃2,jΠ∗
1Bηj , (25)

The rate achieved by WiGig UEs is obtained similarly.
To determine the eventual NR-U session loss probability we define Q̃ to be

NR-U UE session loss probability, i.e., the probability that the minimum rate
Rmin is not satisfied in the unlicensed band.

By using v, (25) becomes limited by rate threshold Rmin and the sought
metric is given by

Q̃ = π2P{v < Rmin} = π2

∑
j:Π∗

1Bηi<Rmin

p̃2,j (26)
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Fig. 3. Successful transmission probability as a function of arrival intensity.

5 Numerical Results

Now we are in position to proceed with comparison of the considered offloading
strategies. To this aim, below we consider three variants of the strategies: (i)
baseline, where a customer is offloaded when no resources are available at the
licensed band, (ii) fat strategy in which “heavier” customers are initially directed
to the unlicensed band , and (iii) slim strategy n which“lighter” customers are
initially directed to the unlicensed band.

The parameters used for the calculation are provided in Table 1.
Figure 3 illustrates the successful transmission probability for all considered

strategies and two different maximum numbers of sessions that can be simul-
taneously served in the licensed band, K = 6 and K = 50. Note that baseline
and fat strategies give approximately the same probability of a successful data
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Fig. 4. Data rate achieved by UE in the unlicensed band as a function of arrival
intensity.

transfer, approximately the same. For a small total offered load, all three strate-
gies give approximately the same result, with an increase in the load, the gain
remains for the base and fat strategies.

Figure 4 illustrates the data rate achieved by UE in the unlicensed band for
all considered strategies. Here the situation is the opposite. The greatest gain
in the rate is achieved with the slim strategy mainly for light loads. Note that
this gain gradually disappears with increasing load along with a drop in the
transmission rate.

Figure 5 illustrates the eventual session loss probability for all considered
strategies. By analyzing the presented results one may observe that the baseline
strategy, where a session is offloaded onto unlicensed band when no resources
for its service are available in the licensed one, is associated with the minimal
values of the eventual session drop probabilities. At the same point, offloading
heavy sessions to the unlicensed band leads to the greatest gain stably for the
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Table 1. Default system parameters.

Parameter Value

Initial contention window, CW 16

Maximum number of customers, K 50

Number of retransmissions, T 10

Service rate, μ 0.02

Minimum requested session rate, Rmin 50 Mbps

LoS blockage probability, ψ 0.166

Fig. 5. The eventual session loss probability as a function of arrival intensity.

entire considered offered load interval, while “fat” strategy, where “heavy” ses-
sions are offloaded onto unlicensed band is characterized by drastically the worse
performance.
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6 Conclusion

In this paper, by utilizing the tools of queuing theory we have described resource
model with the “weight” based strategies of offloading customers onto unlicensed
band and obtained a resource requirement distribution of offloaded customers.
We have proposed and compared 3 offloading strategies: baseline, in which the
session is offloaded when no resources are available at the licensed band, fat
strategy in which “heavier” sessions are initially directed to the unlicensed band,
and the slim strategy in which “lighter” sessions are initially directed to the
unlicensed band. For the parameters presented in the numerical analysis, it was
noted that the most gainful offloading strategy for this case is the slim strategy.
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Abstract. We consider a single server retrial queue with general distri-
bution of service times, collisions and r-persistent customers. The last
phenomena describes the behaviour of customers that are leaving the
system immediately if the server is busy upon arrival. We consider the
system with customers, which leave the system without servicing with
constant probability r. We provide the numerical stability analysis in
such system using the following approach. First, we build the diffusion
limit for the number of customers in the orbit and then analyze its drift
coefficient. For different system parameters, we have different stability
conditions.

Keywords: retrial queue · collisions · r-persistent customers ·
diffusion approximation

Introduction

Retrial queues arose as models of communication systems. The basic phe-
nomenon of such systems is the retrial behavior of customers: if the server is
busy upon arrival, the customer enters the orbit and repeats the attempt to
access the server after a random amount of time.

There are several modifications of retrial queues that reflect the system
features such as collisions and non-persistent customers, which appear in vari-
ous switching communication systems and CSMA-based networks [1]. In recent
years, queueing systems with collisions are of interest due to the reborn of IEEE
802.11 wireless LANs. In papers [8,9], authors describe the markovian retrial
queue with collisions and shows applications of persistence to modeling CSMA-
CD protocols. In paper [6], the author consider similar markovian model and
takes into account the impatience of customers.

Nazarov and Sztrik with their research group have considered several models
of finite-source retrial queues with collisions [7,13,14,17–19]. The phenomena of
non-persistent customers in retrial queues was considered by [4,5]. Lakaour and
his colleagues have considered markovian models with collisions, transmission
errors and unreliable server [10,11].
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Retrial queues with collisions and impatient customers were considered in
[2,3,16]. The phenomena of impatient customers is similar to the r-persistence
due to the fact that a customer, which have not received the service upon arrival
can leave the system. However, there is some difference, because non-persistent
customers leave the system immediately with some probability and never join
the orbit.

Another model of queueing system with collisions is considered by Phung-
Duc and Fiems [15]. The model is markovian and has two phases of service. The
authors study how the division into phases affects queueing performance.

We consider retrial queue with arbitrary distribution of service times, colli-
sions and r-persistent customers. We build diffusion approximation for the num-
ber of customers in the orbit and construct the approximation of its probability
distribution under the limit condition of growing delay in the orbit. Considering
different sets of parameters, we show the numerical examples of system stability
using the obtained approximation.

The rest of the paper is organized as follows. In Sect. 1, we describe the model
structure and derive the equations for the probability distribution of system
states. Section 2 is devoted to the asymptotic-diffusion analysis of the system
under consideration. The approach is described in the paper [12]. After that, we
show the results of numerical experiments in Sect. 3. Section 4 is dedicated to
the conclusion.

1 Model Description and Problem Definition

We consider a retrial queue with an arbitrary distribution of service times defined
by the distribution function B(x). The input is stationary Poisson process with
rate λ. If the server is idle upon arrival, the incoming customer occupies it for
service. Otherwise, the collision occurs and one of the customers joins the orbit.
The other customer can also join the orbit with probability r or leave the system
with probability (1 − r).

At the orbit, a customer waits for some random time and tries again to occupy
the server. The duration of delay follows an exponential distribution with rate
σ.

Let k(t) denote the state of the server at instant t: 0, if the server is idle;
1, if the server is busy. Let i(t) denote the number of customers in the orbit at
instant t. We also introduce process z(t), which represents the residual service
time. Thus, process {k(t), i(t), z(t)} has variable number of components and
exhaustively describes the system state. We denote the probability distribution
of process {k(t), i(t), z(t)} as follows:

P0(i, t) = P{k(t) = 0, i(t) = i}, P1(i, z, t) = P{k(t) = 1, i(t) = i, z(t) < z},

and introduce the partial characteristic functions

H0(u, t) =
∞∑

i=0

ejuiP0(i, t), H1(u, z, t) =
∞∑

i=0

ejuiP1(i, z, t),
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where j is the imaginary unit. The Kolmogorov system of differential equations
for the partial characteristic functions has the following form:

∂H0(u, t)
∂t

= −λH0(u, t) + jσ
∂H0(u, t)

∂u
+

∂H1(u, 0, t)
∂z

+λeju(1 + r(eju − 1))H1(u, t) − jσ(1 + r(eju − 1))
∂H1(u, t)

∂u
,

∂H1(u, z, t)
∂t

=
∂H1(u, z, t)

∂z
− ∂H1(u, 0, t)

∂z
− λH1(u, z, t)

+ jσ
∂H1(u, z, t)

∂u
+ λH0(u, t)B(z) − jσe−ju ∂H0(u, t)

∂u
B(z).

(1)

After that, we sum up the equations of system (1). Taking the limit by
z → ∞, we obtain

∂H(u, t)
∂t

= (eju − 1)

×
{

jσe−ju ∂H0(u, t)
∂u

+ λ(1 + reju)H1(u, t) − jσr
∂H1(u, t)

∂u

}
.

(2)

Solving system (1) and equation (2) in the limit by σ → 0, we derive drift
and diffusion coefficients of approximating diffusion process.

2 Asymptotic-Diffusion Analysis

In system (1) and equation (2), we introduce the following notations:

σ = ε, u = εw, τ = εt,

H0(u, t) = F0(w, τ, ε), H1(u, z, t) = F1(w, z, τ, ε),
(3)

and obtain the system of equations

ε
∂F0(w, τ, ε)

∂τ
= −λF0(w, τ, ε) + j

∂F0(w, τ, ε)
∂w

+
∂F1(w, 0, τ, ε)

∂z

+λejwε(1 + r(ejwε − 1))F1(w, τ, ε) − j(1 + r(ejwε − 1))
∂F1(w, τ, ε)

∂w
,

ε
∂F1(w, z, τ, ε)

∂τ
=

∂F1(w, z, τ, ε)
∂z

− ∂F1(w, 0, τ, ε)
∂z

− λF1(w, z, τ, ε)

+ j
∂F1(w, z, τ, ε)

∂w
+ λF0(w, τ, ε)B(z) − je−jwε ∂F0(w, τ, ε)

∂w
B(z),

ε
∂F (w, τ, ε)

∂τ
= (ejwε − 1)

×
{

je−jwε ∂F0(w, τ, ε)
∂w

+ λ(1 + rejwε)F1(w, τ, ε) − jr
∂F1(w, τ, ε)

∂w

}
.

(4)

We solve system (4) in the limit by ε → 0 and formulate the following theorem.
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Theorem 1. In considered retrial queue, under the limit condition σ → 0, the
following equality holds:

lim
σ→0

Eejwσi( τ
σ ) = ejwx(τ),

where x(τ) is a solution of differential equation

x′(τ) = −x(τ)r0 + [λ + (λ + x(τ))r]r1, (5)

values r0, r1 have the following form:

r0 =
1

2 − B∗(λ + x)
, r1 =

1 − B∗(λ + x)
2 − B∗(λ + x)

. (6)

Here B∗(s) is the Laplace-Stieltjes transform (LST) of the distribution function
of the service times B(x).

Proof. We assume that lim
ε→0

Fk(w, z, τ, ε) = Fk(w, z, τ) and consider system (4)
in the limit by ε → 0. After that, we seek the solution in the form

F0(w, τ) = r0e
jwx(τ), F1(w, z, τ) = r1(z)ejwx(τ),

which give us the following system:

−(λ + x)r0 + r′
1(0) + (λ + x)r1 = 0,

r′
1(z) − r′

1(0) − (λ + x)r1(z) + (λ + x)r0B(z) = 0,
x′(τ) = −x(τ)r0 + [λ + (λ + x(τ))r]r1.

(7)

Here r1 = r1(∞). The last equation of system (7) coincides with (5). From the
first equation of system (7), we have

r′
1(0) = (λ + x)(r0 − r1).

Substituting the equality into the second equation yields

r′
1(z) − (λ + x)(r0 − r1) − (λ + x)r1(z) + (λ + x)r0B(z) = 0.

We apply the Laplace-Stieltjes transform to the obtained differential equation
and obtain

r∗
1(s)(λ + x − s) = (λ + x)r1 − (λ + x)r0(1 − B∗(s)).

If we set s = λ + x in the last equation, we can write

(λ + x)r1 − (λ + x)r0(1 − B∗(λ + x)) = 0,

which we finally consider as system together with the normalization condition
r0 + r1 = 1. We have

r0 =
1

2 − B∗(λ + x)
, r1 =

1 − B∗(λ + x)
2 − B∗(λ + x)

,

which coincides with (6).
We note that r0 and r1 depend on τ since they depend on x. We omit the

arguments to simplify the expressions.
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From (5), we denote function

a(x) = −xr0 + (λ + (λ + x)r)r1. (8)

For the second step of analysis, we make the following substitutions in equa-
tions (1)–(2):

H0(u, t) = ej u
σ x(σt)H

(2)
0 (u, t), H1(u, z, t) = ej u

σ x(σt)H
(2)
1 (u, z, t).

Thus, we obtain the equations for the partial characteristic functions of cen-
tered number of customers in the orbit. After that, we introduce the following
substitutions:

σ = ε2, u = wε, τ = tε2,

H
(2)
0 (u, t) = F

(2)
0 (w, τ, ε), H

(2)
1 (u, z, t) = F

(2)
1 (w, z, τ, ε),

(9)

and obtain the system of equations

ε2
∂F

(2)
0 (w, τ, ε)

∂τ
+ jwεa(x)F (2)

0 (w, τ, ε) = −(λ + x)F (2)
0 (w, τ, ε)

+ jε
∂F

(2)
0 (w, τ, ε)

∂w
+

∂F
(2)
1 (w, 0, τ, ε)

∂z

+ (λejwε + x)(1 + r(ejwε − 1))F (2)
1 (w, τ, ε)

− jε(1 + r(ejwε − 1))
∂F

(2)
1 (w, τ, ε)

∂w
,

ε2
∂F

(2)
1 (w, z, τ, ε)

∂τ
+ jwεa(x)F (2)

1 (w, z, τ, ε) =
∂F

(2)
1 (w, z, τ, ε)

∂z

− ∂F
(2)
1 (w, 0, τ, ε)

∂z
− (λ + x)F (2)

1 (w, z, τ, ε) + jε
∂F

(2)
1 (w, z, τ, ε)

∂w

+ (λ + xe−jwε)F (2)
0 (w, τ, ε)B(z) − jεe−jwε ∂F

(2)
0 (w, τ, ε)

∂w
B(z),

ε2
∂F (2)(w, τ, ε)

∂τ
+ jwεa(x)F (2)(w, τ, ε)

= (ejwε − 1)

{
jεe−jwε ∂F

(2)
0 (w, τ, ε)

∂w
− xe−jwεF

(2)
0 (w, τ, ε)

+ (λ + r(λejwε + x))F (2)
1 (w, τ, ε) − jεr

∂F
(2)
1 (w, τ, ε)

∂w

}
.

(10)

Solving system (10) in the limit by ε → 0, we present Theorem 2.
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Theorem 2. Function lim
ε→0

F
(2)
k (w, τ, ε) = F

(2)
k (w, τ) has the following form:

F
(2)
k (w, τ) = Φ(w, τ)rk,

where rk is given by (6), function Φ(w, τ) is the solution of equation

∂Φ(w, τ)
∂τ

= w
∂Φ(w, τ)

∂w
a′(x) +

(jw)2

2
Φ(w, τ)b(x). (11)

Function a(x) is defined by (8), b(x) is determined as follows:

b(x) = a(x) + 2[−(λ + x)(1 + r)g0 + xr0 + rλr1], (12)

where

g0 =
(a(x) + x)(1 − B∗(λ + x)) + (λ + x)a(x)B∗′(λ + x)

(λ + x)(2 − B∗(λ + x))2
.

Proof. Making the following substitutions in the system (10):

F
(2)
0 (w, τ, ε) = Φ(w, τ){r0 + jwεf0} + O(ε2),

F
(2)
1 (w, z, τ, ε) = Φ(w, τ){r1(z) + jwεf1(z)} + O(ε2), (13)

we obtain the system of equations for f0 and f1(z).

− (λ + x)f0 + f ′
1(0) + (λ + x)f1

= a(x)r0 − ∂Φ(w, τ)/∂w

wΦ(w, τ)
r0 − (λ + r(λ + x))r1 +

∂Φ(w, τ)/∂w

wΦ(w, τ)
r1,

f ′
1(z) − f ′

1(0) − (λ + x)f1(z) + (λ + x)f0B(z)

= a(x)r1(z) − ∂Φ(w, τ)/∂w

wΦ(w, τ)
r1(z) + xr0B(z) +

∂Φ(w, τ)/∂w

wΦ(w, τ)
r0B(z),

(14)

We solve system (14) using the following substitutions:

f0 = Cr0 + g0 − ∂Φ(w, τ)/∂w

wΦ(w, τ)
ϕ0,

f1(z) = Cr1(z) + g1(z) − ∂Φ(w, τ)/∂w

wΦ(w, τ)
ϕ1(z),

which yield three systems of equations. The first system coincide with the system
for r0 and r1(z). It is easy to see that the second system for ϕ0 and ϕ1(z) can be
obtained by differentiating of system (7). Thus, we can conclude that ϕk = r′

k(x).
The last system is given by

−(λ + x)g0 + g′
1(0) + (λ + x)g1 = a(x)r0 − (λ + r(λ + x))r1,

g′
1(z) − g′

1(0) − (λ + x)g1(z) + (λ + x)g0B(z) = a(x)r1(z) + xr0B(z).
(15)
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We add an additional condition g0+g1 = 0 and obtain the solution of the system
in the following form:

g0 =
(a(x) + x)(1 − B∗(λ + x)) + (λ + x)a(x)B∗′(λ + x)

(λ + x)(2 − B∗(λ + x))2
, g1 = −g0.

During the analysis, we also obtain equation for Φ(w, τ):

∂Φ(w, τ)
∂τ

= w
∂Φ(w, τ)

∂w
a′(x) +

(jw)2

2
Φ(w, τ)b(x),

which coincide with (11). Here a(x) and b(x) are given by (8) and (12), respec-
tively.

Here equation (11) is the Fourier transform of the Fokker-Planck equation for
the process approximating the number of customers in the orbit of considered
retrial queue. If we make the inverse Fourier transform, we can see that the drift
coefficient of the obtained diffusion limit is a(x) and diffusion coefficient if b(x).

Discrete function PD(i) is the approximation of the probability distribution
of the number of customers in the orbit and has the following form:

PD(i) =
D(iσ)

∞∑
n=0

D(nσ)
, (16)

where

D(z) =
1

b(z)

z∫

0

2
σ

a(x)
b(x)

dx.

We have briefly prooven theorems 1 and 2. The approach is widely described
in [12]. In this paper, we concentrate at analysis of drift coefficient of the diffusion
limit a(x), which is given by (8).

3 Numerical Examples

3.1 Bistability Case

For the numerical examples, we show the analysis of the drift coefficient a(x).
Based on the number of roots of the equation a(x) = 0, we can consider several
modes of stability. The first case occurs (Fig. 1) when the parameters of the
system are as follows:

λ = 0.258, α = 2, β = α, σ = 0.1, r = 0.98,

where α and β are the shape and scale parameters of Gamma distribution of
the service times. We note that in all cases we show graphics of a(σx), because
the number of calls in the orbit is normalized by σ. When a(x) > 0 the number
of customers in the orbit grows. On the other hand, if a(x) < 0, the number of
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Fig. 1. Drift coefficient a(x)

customers in the orbit decreases. Here we have two stability areas around roots
of equation a(x) = 0, when the sigh of a(x) turns from plus to minus. In such
case, the distribution of the number of customers in the orbit is bimodal (Fig. 2).
We also note that if a(x) < 0 when x → ∞, then the system is stable. If not,
the steady state does not exist for the current set of parameters.

3.2 Standard Stability Case

The next case occurs when the parameters of the system are as follows:

λ = 0.258, α = 1.8, β = α, σ = 0.1, r = 0.98,

where α and β are the shape and scale parameters of Gamma distribution. In
Fig. 3, we show that equation a(x) = 0 have only one root. Here we have the
standard distribution with only one mode (Fig. 4) and a(x) < 0 when x grows
to the infinity. Thus, the system is stable with such set of parameters.

3.3 Mixed Bistability Case

Another case occurs when the parameters of the system are as follows:

λ = 0.312, α = 2, β = α, σ = 0.1, r = 0.96,

where α and β are the shape and scale parameters of Gamma distribution. Here
we also can observe the bistability phenomena (Fig. 5), but the modes are too
close and affect on each other (Fig. 6).
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Fig. 2. Diffusion approximation of distribution of the number of customers in the orbit

Fig. 3. Drift coefficient a(x)

3.4 Stabilization Area in Unstable System

The last case (Fig. 7) arise when the parameters of the system are given by

λ = 0.2, α = 2, β = α, σ = 0.1, r = 1,
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Fig. 4. Diffusion approximation of distribution of the number of customers in the orbit

Fig. 5. Drift coefficient a(x)

where α and β are the shape and scale parameters of Gamma distribution.
Even if a(x) > 0 when x grows to the infinity, the distribution has a stability
area around the point where a(x) = 0. The process can spend a lot of time
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Fig. 6. Diffusion approximation of distribution of the number of customers in the orbit

Fig. 7. Drift coefficient a(x)

before leaving the stability area. Thus, if we use zero of the function a(x) as the
truncation point, we can build an approximation (Fig. 8) for the distribution of
the number of customers in the orbit using formula (16).
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Fig. 8. Diffusion approximation of distribution of the number of customers in the orbit

4 Conclusion

We have considered the retrial queue with collisions and r-persistent customers.
For the number of customers in the orbit, we have derived the approximation of
the probability distribution (16). The analysis was prepared to show that there
are several stability phenomena arise in such system. We show the numerical
examples and the cases of stability for some sets of parameters based on the
analysis of drift coefficient a(x) of the obtained diffusion limit. For the future
study, we plan to investigate the transition time between stability points in
bistable retrial queue with collisions.
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Abstract. A queuing system with repeated calls, one server, collisions
(conflicts) of calls, H-persistence and rejections is considered. A call that
found the device free occupies it, and service begins, which ends success-
fully if no other requests were received during it. If the server is busy,
then a conflict (collision) arises between the call that have come for ser-
vice and the ones being serviced, and in the general case, both calls
instantly go to the orbit and repeat the attempt to successfully serve
after a random time. In this article, in the event of a collision, one of
the calls, for example, which was in service (on the device), goes into the
orbit with probability H1, the other goes into orbit with probability H2,
and with probability (1 − H1) and (1 − H2) respectively refuses service
and leaves the system. The problem is to find asymptotic probabilities
distribution of the calls number in the orbit.

Keywords: Retrial queueing system · Collisions · Rejections ·
Persistent calls · Asymptotic analysis

1 Introduction

Retrial queueing systems are characterized by the fact that incoming claims
(calls, customers) that find a busy server join a given group of blocked clients’
connections, called an orbit, to retry their requests in a random order and at
random intervals. In modern networks such queueing systems, in which cus-
tomers are allowed to make repeated attempts, are widely used to simulate many
practical problems in telephone switching systems, telecommunication networks.
Detailed overviews of the reconsideration queues can be found in [1–3].

This work is a natural continuation of the results obtained in [4], but it is a
study of the probabilistic characteristics of a more complex system and is devoted
to finding the probability distribution of the number of calls in the orbit of a
queueing system with repeated calls M/M/1 with non-persistent calls, collisions
and rejections.
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Conflicts in the model, as a rule, arise in the problem of studying commu-
nication networks and presuppose the occurrence of situations when during the
transmission of one message another arrives. Such messages collide, are consid-
ered garbled and go into orbit, from where they again turn to the device for
service after a random delay [4–7,12].

In real life, an impatience to wait (or persistence in trying to get a service)
is the most noticeable feature of people, when they want to receive service,
we always feel anxiety and impatience during a long wait for a service in real
life. To characterize the behavior of impatient customers, the term “(1 − H)-
non-persistence” is used, understood as a decision with a certain probability
(1−H) not to join the line (device) after an unsuccessful attempt to get service
followed by leaving the system (the problem can also be formulated in terms of
“H - persistence”. In [11–15], the authors use the terms “non-persistence” (non-
persistence), “balking” (refusal to enter the queue), “reneging” (decision to leave
the queue before the start of service).“Balking” and “reneging” are fundamental
concepts in foreign literature on queuing theory, introduced by scientists Anker,
Gafarian [16], Haight [17] and Bareer [18], as well as [19–23]. A fairly broad
overview of systems with repeated calls with impatient calls is presented in [24].
Taking into account such features significantly complicates the mathematical
model and limits the possibility of obtaining analytical expressions, therefore, to
find the characteristics, numerical and approximation methods are used.

In the literature, the main methods for studying RQ-systems are matrix
methods, numerical methods, and simulation, since exact analytical formulas can
be obtained only for the simplest models. The Tomsk Scientific School develops
asymptotic methods for studying queueing systems and networks [27] of vari-
ous configurations, including for RQ-systems. Such methods make it possible to
obtain asymptotic expressions acceptable for practice for the desired character-
istics of the system in cases when their pre-limiting study is impossible. Various
asymptotic methods and approaches in queuing theory are described in [4,7–10]
and others.

2 Mathematical Model

We consider an RQ-system with one server, at the input of which the simplest
flow of calls with intensity arrives λ. A call that found the server free takes it up
for service during a random time, exponentially distributed with a parameter μ.
If the server is busy, then the arriving and being on the server claims enter into
a conflict (collision), and the call that was in service (on the device) goes into
orbit with probability H1, and the call that arrived at the server and caused
the conflict with probability H2 goes into orbit, and with probability (1 − H1)
and (1 − H2), respectively, claims refuse service and leave the system. In the
orbit, each of the calls independently of each other carries out a random delay,
the duration of which has an exponential distribution with a parameter σ, after
which it again turns to the device with a repeated attempt to get service.
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The problem is to find the stationary distribution of the number of calls in the
orbit for the described system. To solve the problem, the method of asymptotic
analysis is used, namely: its modification under the asymptotic condition of a
large delay of calls in the orbit, which is consistent with the urgency of the
problem. The research result is formulated for the case when H1 = 1, and H2

takes an arbitrary value from 0 to 1.
Let us i(t), i(t) = 0, 1, . . . , is the number of calls in the orbit at the time t.

The random process i(t) is not Markov, therefore, we introduce an additional
process k(t), which characterizes the state of the server at the moment of time t

k(t) =

{
0, if the device is free,
1, if the server is busy serving a request.

The two-dimensional process {i(t), k(t)} forms a Markov chain with contin-
uous time. We will assume that there is a stationary distribution of the proba-
bilities of the states of this process.

We denote P{i(t) = i, k(t) = k} = Pk(i, t) as the probability that at the
time t the device is in state k, k = {0; 1}, and there is i, i = 0, 1, . . . , calls in the
orbit.

2.1 The System of Kolmogorov Equations

For the probability distribution P (i, t) =
1∑

k=0

Pk(i, t) of states of the considered

RQ-system (1), we compose a Kolmogorov system of differential equations (2).
Using the formula for total probability, we obtain the system of equalities.⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

P0(i, t + Δt) = P0(i, t)(1 − λΔt)(1 − iσΔt) + P1(i, t)μΔt

+P1(i − 2, t)λH2Δt + P1(i−1, t)λ(1−H2)Δt

+P1(i−1, t)(i−1)σH2Δt + P1(i, t)iσ(1−H2)Δt+o(Δt),
P1(i, t + Δt) = P1(i, t)(1 − λΔt)(1 − μ1Δt)(1 − iσΔt)+
P0(i, t)λΔt + P0(i + 1, t)(i + 1)σΔt + o(Δt),

(1)

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∂P0(i, t)
∂t

= −(λ + iσ)P0(i, t) + μP1(i, t) + λH2P1(i − 2, t)

+λ(1 − H2)P1(i − 1, t) + (i − 1)σH2P1(i − 1, t) + iσ(1 − H2)P1(i, t),
∂P1(i, t)

∂t
= −(λ + μ + iσ)P1(i, t) + λP0(i, t) + λP0(i, t)

+(i + 1)σP0(i + 1, t).

(2)

We denote πk(i) = lim
t→inf

Pk(i, t), k = {0; 1}, as stationary probabilities of the

process {i(t), k(t)} then (2) can be written as
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⎧⎪⎨
⎪⎩

−(λ + iσ)π0(i) + μπ1(i) + λH2π1(i − 2) + λ(1 − H2)π1(i − 1)
+(i − 1)σH2π1(i − 1) + iσ(1 − H2)π1(i) = 0,
−(λ + μ + iσ)π1(i) + λπ0(i) + λπ0(i) + (i + 1)σπ0(i + 1) = 0.

(3)

2.2 The Characteristic Functions

We introduce the partial characteristic functions as follows

hk(u) =
∞∑

i=0

ejuiπk(i, t), k = 0, 1, (4)

where j =
√−1.

Using (4) and h′
k(u)=

dhk(u)
du

= j
∞∑

i=0

iejuiπk(i), k = {0, 1}, we can write the

system (3) as⎧⎪⎨
⎪⎩

−λh0(u) +
(
μ + λ(1 − H2)eju + H2e

2ju
)
h1(u)

+jσh′
0(u) − jσ

(
(1 − H2) + H2e

ju
)
h′
1(u) = 0,

λh0(u) − (μ + λ)h1(u) − jσe−juh′
0(u) + jσh′

1(u) = 0.
(5)

Let us add to the system (5) one more equation obtained by summing the first
equation and the second one, multiplied by eju. After simple transformations we
have

λh0(u) − (
μ − λH2e

ju
)
h1(u) + jσ(1 − H2)h′h1(u) = 0. (6)

3 Asymptotic Analysis Method

The method of asymptotic analysis in queuing theory is the method of research
of the equations determining some characteristics of an queuing system under
some limit (asymptotic) condition, which is specific for any model and solving
problem. To find the solution of system of equations we propose another approach
by using the method of asymptotic analysis under the assumption that there is
a long delay between customers from the orbit, i.e. when ε → 0. We summarize
the results of our study in the next Theorem 1

Theorem 1. The stationary distribution of the number of calls in orbit in the
RQ-system M/M/1 with non-persistent customers and collisions with the Pois-
son arrival process of intensity λ, exponential servicing distribution with param-
eter μ, exponential distribution law of the random delay with parameter σ is an
asymptotically normal distribution with mean κ1/σ and variance κ2/σ, where

κ1 =
μr1

(1 − 2r1)
− λ, (7)
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κ2 = − (κ1 + λ)g0 − κ1r0 − (λ + μ + κ1)g1
r1 − r0

, (8)

r1 and r0 are the probabilities that the device is occupied or free respectively in
the stationary mode of system operation, which are determined by equations{

(1 + ρ)r21 − (1 + 2ρ)r1 + ρ = 0, ρ = λ/μ,

r0 + r1 = 1,
(9)

g1 and g0 are defined as follows

⎧⎪⎪⎨
⎪⎪⎩

(κ1 + λ)g0 − κ1r0 − (κ1 + λ)r0
r1

g1

r1 − r0
=

λg0 − λr0
r1

g1 + λH2r1

(1 − H2)r1
,

g0 + g1 = 0.

(10)

The Theorem 1 proving will carried out in two stages.

3.1 Stage 1. Finding First-Order Asymptotic

In the basic system (3) and (4), we make the substitutions

σ = ε, u = wε, hk(u) = fk(w, ε), k = 0, 1, (11)

where ε is infinitesimal value (ε → 0).

Since according (11) h′
k(u) =

1
ε

∂fk(w, ε)
∂w

, k = {0, 1}, the equations system

(5) and (6) can be written as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

−λf0(w, ε) +
(
μ + λ(1 − H2)ejεw + H2e

2jεw
)
f1(w, ε) + j

∂f0(w, ε)
∂w

−j
(
1 − H2(1 − ejεw)

) ∂f1(w, ε)
∂w

= 0,

λf0(w, ε) − (μ + λ) f1(w, ε) − je−jεw ∂f0(w, ε)
∂w

+ j
∂f1(w, ε)

∂w
= 0,

λf0(w, ε) − (
μ − λH2e

jεw
)
f1(w, ε) + j(1 − H2)

∂f1(w, ε)
∂w

= 0.

(12)

We will find the solution fk(w), k = {0, 1}, of the (12) in the form

fk(w) = rkΦ(w), k = {0, 1} , (13)

where r0+r1 = 1, rk = hk(0) = fk(0), k = {0, 1}, and Φ(w) is unknown function.
Substituting (13) in (12) we have a system of differential equations with

respect to the function Φ(w)⎧⎪⎪⎪⎨
⎪⎪⎪⎩

λr0Φ(w) − (μ + λ) r1Φ(w) − jr0
∂Φ(w)

∂w
+ jr1

∂Φ(w)
∂w

= 0,

λr0Φ(w) − (μ − H2λ) r1Φ(w) + j(1 − H2)r1
∂Φ(w)

∂w
= 0,

r0 + r1 = 1.

(14)
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The solution to the system (14) is the function Φ(w) = exp{jwκ1}, where κ1

is defined by (7) and r1 is the positive root of the (9).
Let us return to the original characteristic function by means of inverse

changes and put ε = σ. Then

hk(u) = fk(w, ε) = fk(w) + o(ε) ≈ fk(w) = fk

(u

ε

)
= rk exp

{κ1

σ
ju

}
, (15)

.
Taking into account the normalization condition r0 + r1 = 1, we have that

the asymptotic characteristic function of the first order has the form

h(1)(u) = h0(u) + h1(u) = exp
{κ1

σ
ju

}
. (16)

The resulting value
κ

σ
(5) determines the asymptotic average value of the

number of calls in an orbit in a shared access system with collisions and rejec-
tions.

3.2 Stage 2. Finding the Second-Order Asymptotic

In the basic system of Eqs. (3) and (4) with (16) we let

h
(2)
k (u) = exp

{κ1

σ
ju

}
h
(2)
k (u), k = {0, 1} , (17)

and the equations system (3) and (4) can be formulated as

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−(λ+κ1)h
(2)
0 (u)+

(
μ+λ(1−H2)eju + H2e

2ju+
+

(
(1−H2)+H2e

ju
)
κ1

)
h
(2)
1 (u) + jσh′

0
2(u)

−jσ
(
(1 − H2) + H2e

ju
)
h′
1
(2)(u) = 0,

(λ + κ1e
−ju)h(2)

0 (u) − (μ + λ + κ1) h
(2)
1 (u) − jσe−juh′

0
2(u)

+jσh′
1
(2)(u) = 0,

λh
(2)
0 (u) +

(
λH2e

ju − μ − (1 − H2)κ1

)
h
(2)
1 (u)

+jσ(1 − H2)h′
1
(2)(u) = 0.

(18)

In the system (18) we make the substitutions (19)

σ = ε2, u = wε, h
(2)
k (u) = f

(2)
k (w, ε), k = 0, 1, (19)

where ε is infinitesimal value (ε → 0), and obtain

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−(λ + κ1)f
(2)
0 (ε, w)

+
(
μ + λ(1 − H2)ejwε + H2e

2jwε +
(
(1 − H2) + jεf ′

0
2((ε, w))+

+H2e
jwε

)
κ1

)
f
(2)
1 (ε, w) − jε

(
(1 − H2) + H2e

jwε
)
f ′
1
(2)(ε, w) = 0,

(λ+κ1e
−jwε)f (2)

0 (ε, w)−(μ+λ+κ1) f
(2)
1 (ε, w)−jσe−jwεf ′

0
2(ε, w)

+jεf ′
1
(2)(ε, w)=0,

λf
(2)
0 (ε, w) +

(
λH2e

jwε − μ − (1 − H2)κ1

)
f
(2)
1 (ε, w)

+jε(1 − H2)f ′
1
(2)(ε, w) = 0.

(20)
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We substitute into the system (20) the decomposition (21)

f
(2)
k (w) = (rk + jεgk)Φ2(w) + o

(
ε2

)
, k = {0, 1} , (21)

where gk, k = {0, 1}, are some constants.
Using (21) in (20) we have
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−(λ + κ1) (r0 + jεg0) Φ2(w) +
(
μ + λ(1 − H2)ejwε + H2e

2jwε

+
(
(1 − H2) + H2e

jwε
)
κ1

)
(r1 + jεg1) Φ2(w) + jε ((r0 + jεg0) Φ′

2(w)
+jεg0Φ2(w))
−jε

(
(1−H2)+H2e

jwε (r1 + jεg1) Φ′
2(w)) + jεg1Φ2(w)

)
=o

(
ε2

)
,(

λ + κ1e
−jwε

)
(r0 + jεg0) Φ2(w) − (μ + λ + κ1) (r1 + jεg1) Φ2(w)

−jεe−jwε ((r0 + jεg0) Φ′
2(w)) + jεg0Φ2(w)) + jε ((r1 + jεg1) Φ′

2(w))
+jεg1Φ2(w)) = o

(
ε2

)
,

λ (r0 + jεg0) Φ2(w) +
(
λH2e

jwε − μ − (1 − H2)κ1

)
(r1 + jεg1) Φ2(w)

+jε(1 − H2) ((r1 + jεg1) Φ′
2(w)) + jεg1Φ2(w)) = o

(
ε2

)
.

(22)
The solution of system (22) has the form

Φ2 (w) = exp

{
κ2

(jw)2

2

}
, (23)

where κ2 is the same in (8).
Using the same transformation as for the first-order asymptotic and addi-

tional conditions g1 + g0 = 0 we finally obtain expressions of system solution
(20) existence.

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

−(λ + κ1)g0 + (λ(1 + H2) + H2κ1) r1) + (μ + λ + κ1)g1
= (r1 − r0) κ2,

(λ + κ1) g0 − (μ + λ + κ1) g1 = − (r1 − r0) κ2,

λg0 + (λH2 − μ − (1 − H2)κ1) g1 + λH2r1 = − (1 − H2) r1κ2,

g1 + g0 = 0.

(24)

Making the reverse substitutions in (21) with (24) we get

h
(2)
k (u) = f

(2)
k (w, ε)=(rk+jwεgk) exp

{
κ2

(jw)2

2

}
+o

(
ε2

) ≈ Rk exp

{
κ2

σ

(ju)2

2

}
,

(25)
then using (25) expressions (17) can be written as

h
(2)
k (u) = exp

{κ1

σ
ju

}
h
(2)
k (u) ≈ Rk exp

{
κ1

σ
ju +

κ2

σ

(ju)2

2

}
, k = {0, 1} .

(26)
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Taking into account (26), the characteristic function h(2)(u) = h
(2)
0 (u) +

h
(2)
1 (u), provided that the customers in orbit have long delays and the patience

is high, is a Gaussian

h
(2)
2 (u) = exp

{
κ1

σ
ju +

κ2

σ

(ju)2

2

}
. (27)

The Theorem 1 is proved.

4 Numerical Results

To accompany the theoretical conclusions, numerical results are obtained show-
ing the convergence of asymptotic results to pre-limit ones (obtained using the
recurrent algorithm), and the boundaries of the field of application of the pre-
sented approximation are determined depending on the values of the system
parameters.

Asymptotic distributions of the probabilities of the number of calls in the
orbit for the given service parameters μ = 1 and the persistence probability H1

for different values of the intensity λ of the incoming flow of calls, the persistence
probability H2 and the delay parameter of calls σ are constructed; they are
compared with the pre-limit probability distributions obtained by the recurrent
method.

Figures 1, 2 show the implementations for the cases λ = 0.4, H2 = 0.9 and
σ = 0.1, σ = 0.01 respectively.

Fig. 1. Asymptotic (blue line) and pre-limit (red line) probability distributions of the
number of claims in the orbit for σ = 0.1 (Color Figure Online)
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Fig. 2. Asymptotic (blue line) and pre-limit (red line) probability distributions of the
number of claims in the orbit for σ = 0.01 (Color Figure Online)

Figures 3, 4 show the implementations for the cases λ = 0.9, σ = 0.1 and
H2 = 0.4,H2 = 0.95 respectively.

Figures 5, 6 show the implementations for the cases λ = 0.4, H2 = 0.4 and
σ = 0.1, σ = 0.01 respectively.

As can be seen from the figures, the asymptotic distribution already at σ <
0.1 rather well approximates the pre-limit distribution at a high load of the
system ρ = λ/μ and high persistence of calls H2. For a small load ρ < 0.5, the
Gaussian approximation gives a good result at σ = 0.01.

As a criterion for the proximity of distributions (asymptotic and pre-limit),
the Kolmogorov distance was measured (28)

Δ = max
n≥0

∣∣∣∣∣
n∑

i=0

Prequrrent(i) −
n∑

i=0

Pasympt(i)

∣∣∣∣∣, (28)

where Prequrrent(i) is the probability distribution of the number of calls in the
orbit obtained using the recurrent algorithm, and Pasympt(i) is the probabil-
ity distribution of the number of calls in the orbit obtained by the method of
asymptotic analysis.

Table 1 shows that the value of the Kolmogorov distance decreases with an
increase in the delay time of claims in orbit (σ → 0) at a fixed value of the
system load λ/μ. For a fixed value of the delay time of claims in the orbit,
the Kolmogorov distance grows with increasing system load, but remains in the
admissible (< 0.05) range for using the approximation
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Fig. 3. Asymptotic (blue line) and pre-limit (red line) probability distributions of the
number of claims in the orbit for H2 = 0.4 (Color Figure Online)

Fig. 4. Asymptotic (blue line) and pre-limit (red line) probability distributions of the
number of claims in the orbit for H2 = 0.95 (Color Figure Online)



Asymptotic Analysis of Retrial Queueing System M/M/1 353

Fig. 5. Asymptotic (blue line) and pre-limit (red line) probability distributions of the
number of claims in the orbit for σ = 0.1 (Color Figure Online)

Fig. 6. Asymptotic (blue line) and pre-limit (red line) probability distributions of the
number of claims in the orbit for σ = 0.1 (Color Figure Online)

Table 1. Distance values of Kolmogorov

λ/μ, H2 σ = 0.5 σ = 0.1 σ = 0.05 σ = 0.01

λ/μ = 0.4, H2 = 0.9 0.218 0.015 0.007 0.0013

λ/μ = 0.4, H2 = 0.5 0.287 0.042 0.019 0.0035

λ/μ = 0.9, H2 = 0.9 0.0062 0.0013 0.0006 0.0001

λ/μ = 0.9, H2 = 0.4 0.052 0.0094 0.0048 0.0009

λ/μ = 2.0, H2 = 0.4 0.016 0.0030 0.0015 0.0003
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5 Conclusion

In the present paper, retrial queueing system of M/M/1 type with collisions and
H1,H2-persistence, collisions and rejections is considered. It is proved that the
probability distribution of the customers number in the orbit can be approx-
imated by the Gaussian distribution under a long delay of customers in orbit
condition.
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Abstract. In this paper, we study a single-server retrial queueing sys-
tem with arrival Markov Modulated Poisson Process and an exponential
law of the service time on an unreliable server. If the server is idle, an
arrival customer occupies it for the servicing. When the server is busy, a
customer goes into the orbit and waits a random time distributed expo-
nentially. It is assumed that the server is unreliable, so it may fail. The
server’s repairing and working times are exponentially distributed. The
method of asymptotic analysis is proposed to find the stationary dis-
tribution of the number of customers in the orbit. It is shown that the
asymptotic probability distribution under the condition of a long delay
has the Gaussian form with obtained parameters.

Keywords: Retrial queue · Markov Modulated Poisson Process ·
Asymptotic analysis · Unreliable server · Long delay

1 Introduction

Retrial queueing systems are widely used as models of call centers, cellular net-
works and random access protocols in local networks [1,2]. A characteristic fea-
ture of such models is the presence of repeated attempts to get service after
unsuccessful one. Such situations can be caused not only by the lack of free
servers at the arrival time, but also by technical reasons [3,4].

The most complete description of retrial queueing systems and their detailed
comparison with classical queuing systems was published in [3–5]. The authors
in [6–14] describe the main results for various retrial queue, as well as various
methods for studying such systems.

Sometimes networks are overloaded, so servers may fail. Numerous break-
downs and limited repair options have a significant impact on networks perfor-
mance. The identification and analysis of such aspects allow us to construct and
optimize networks for minimizing the delay time and reducing the loss of calls.

Nowadays, a large number of works is devoted to the study of queuing sys-
tems with unreliable servers, the review is given in [15]. At the same time, the
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disadvantage of most works is very strict assumptions about the exponential dis-
tribution of all describing the system behavior characteristics (the time between
the arrival moments of customers and breakdowns, the service time, the duration
of the server repair). In [16–19], various types of retrial queues with impatient
calls, collisions and unreliable servers are studied.

In this paper, we study a retrial queueing system with an unreliable server and
arrival Markov Modulated Poisson process. Section 2 is devoted to the descrip-
tion of the considered model and the process under study. In Sect. 3, the system
of Kolmogorov equations in the steady-state regime is written. In Sect. 4, the
first order asymptotic method is proposed for the equation system solving. The
theorem about the asymptotic mean of the number of customers in the orbit in
the considered retrial queueing system under the limiting condition of the long
delay is proved. In Sect. 5, the second order asymptotics is derived. The Gaus-
sian form of the asymptotic distribution of the number of customers in the orbit
under the long delay condition is proved. In Sect. 6, there are numerical analysis
of the results in a particular case and the comparison of asymptotic and exact
probability distributions. In Sect. 7, there is a conclusion.

2 Description of the Mathematical Model

Let’s consider a single-server retrial queueing system with an unreliable server
(see Fig. 1) and arrival Markov Modulated Poisson Process of customers
(MMPP). A customer is serviced during random time distributed exponentially
with parameter μ1. We assume that the server is unreliable. An unreliable server
may be in the following states: idle, busy or under repair. If the server is idle, and
customer arrives, then the servicing immediately begins. If the server is busy at
an arrival moment, then the customer goes into the orbit and waits a random
time distributed exponentially with parameter σ, and then the customer tries
to occupy the server again. The working time is distributed exponentially with
parameter γ1, if server is idle and with parameter γ2, if the server is busy. As
soon as a breakdown occurs, the server is sent to repair and the servicing cus-
tomer goes into the orbit. During repairing, all incoming customers go into the
orbit. The recovery time is distributed exponentially with parameter μ2. The
goal of the research is to find a stationary probability distribution of the number
of customers in the orbit.

Fig. 1. Model of MMPP/M/1 retrial queueing system with unreliable server
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Let i(t) be the number of customers in the orbit at time t, n(t) be the under-
lying process of the arrival MMPP and k (t) determine the state of the server as
follows

k (t) =

⎧
⎪⎨

⎪⎩

0, if the server is idle,
1, if the server is busy,
2, if the server is under repair.

The MMPP is given by generator Q= [qνn] and diagonal matrix Λ =
diag [λn] of conditional rates λn, where n = 1, N . Three-dimensional random
process {i(t), k(t), n(t)} is the Markov chain with continuous time.

Denote the probability that at time t the server is in state k, there are
i customers in the orbit and the underlying process n(t) takes value n by
Pk (i, n, t) = P {i(t) = i, k(t) = k, n(t) = n}, where k = {0, 1, 2}, i = 0,∞,
n = 1, N .

3 Kolmogorov Equations

Let us compose the system of Kolmogorov equations for probabilities Pk (i, n, t)
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂P0 (i, n, t)
∂t

= − (λn + iσ + γ1) P0 (i, n, t) + μ1P1 (i, n, t)

+ μ2P2 (i, n, t) +
∑

ν

P0(i, ν, t) · qνn,

∂P1 (i, n, t)
∂t

= − (λn + μ1 + γ2) P1 (i, n, t) + λnP0 (i, n, t)

+ (i + 1) σP0 (i + 1, n, t) + λnP1 (i − 1, t) +
∑

ν

P1(i, ν, t) · qνn,

∂P2 (i, n, t)
∂t

= − (λn + μ2) P2 (i, n, t) + γ1P0 (i, n, t)

+ γ2P1 (i − 1, n, t) + λnP2 (i − 1, n, t) +
∑

ν

P2(i, ν, t) · qνn.

(1)

Denoting Pk(i, n) = lim
t→∞ Pk(i, n, t) in the steady-state regime, we can rewrite

System (1) in the following form:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

− (λn + iσ + γ1) P0 (i, n) + μ1P1 (i, n) + μ2P2 (i, n)

+
∑

ν

P0(i, ν) · qνn = 0,

− (λn + μ1 + γ2) P1 (i, n) + λnP0 (i, n) + (i + 1) σP0 (i + 1, n)

+ λnP1 (i − 1, n) +
∑

ν

P1(i, ν) · qνn = 0,

− (λn + μ2) P2 (i) + γ1P0 (i, n) + γ2P1 (i − 1, n) + λnP2 (i − 1, n)

+
∑

ν

P2(i, ν) · qνn = 0.

(2)
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Introducing the partial characteristic function

Hk (u, n) =
∞∑

i=0

ejuiPk (i, n) ,

where j =
√−1, System (2) can be rewritten as

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

− λnH0 (u, n) + σj
∂H0(u, n)

∂u
− γ1H0 (u, n) + μ1H1 (u, n)

+ μ2H2 (u, n) +
∑

ν

H0 (u, ν) · qνn = 0,

− λnH1 (u, n) − μ1H1 (u, n) − γ2H1 (u, n) + λnH0 (u, n)

− jσ · e−ju ∂H0(u, n)
∂u

+ λn · ejuH1 (u, n) +
∑

ν

H1 (u, ν) · qνn = 0,

− λnH2 (u, n) − μ2H2 (u, n) + γ1H0 (u, n) + γ2 · ejuH1 (u, n)

+ λn · ejuH2 (u, n) +
∑

ν

H2 (u, ν) · qνn = 0.

(3)

We denote row-vector Hn(u) = {Hn(u, 1),Hn(u, 2), . . . ,Hn(u,N)}.
Then we rewrite System (3) in the matrix form as

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

H0 (u) (Q − Λ − γ1I) + jσ
∂H0(u)

∂u
+ μ1H1 (u) + μ2H2 (u) = 0,

H0 (u) Λ + H1 (u)
[
(Q − (1 − eju)Λ) − (μ1 + γ2)I

]

− jσe−ju ∂H0(u)
∂u

= 0,

γ1H0 (u) I + γ2e
juH1 (u) + H2 (u)

[
Q − (1 − eju)Λ − μ2I

]
= 0,

(4)

where I is the identity matrix.
We sum up all equations of System (4) and multiply the result by unit

column-vector e.
After some transformation and taking into account that

Qe = 0, Ie = e,

we obtain the following additional equation

− H1 (u) (Λ + γ2I)e − H2 (u) Λe − jσe−ju ∂H0(u)
∂u

e = 0. (5)

We will find a solution of System (4) and Eq. (5) under the condition of long
delay of customers in the orbit (σ → 0.) .



360 N. M. Voronina et al.

4 First Order Asymptotics

Theorem 1. Let i(t) be the number of customers in the orbit in MMPP/M/1
retrial queueing system with unreliable server. Then, for a sequence of charac-
teristic functions, the following limiting equality holds

lim
σ→0

M {exp {jwσi(t)}} = exp {jwG1} ,

where

G1 = λ(μ1γ1 + γ1γ2 + γ2μ2 + λμ2 + λγ2)/(μ1μ2 − λμ2 − λγ2) (6)

and

λ = Λ · R · e,
vector R is the row-vector of the stationary distribution of the underlying pro-
cess n(t) determined by the following equations

RQ = 0, Re = 1.

Proof. In System (4) and Eq. (5), we introduce the following substitutions

σ = ε, u = εw, Hk(u) = Fk(w, ε)

in order to obtain the following system of equations

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

F0 (w, ε) (Q − Λ − γ1I) + j
∂F0 (w, ε)

∂w
+ μ1F1 (w, ε) + μ2F2 (w, ε) = 0,

F0 (w, ε) Λ + F1 (w, ε)
[
(Q − (1 − ejwε)Λ) − (μ1 + γ2)I

]

− je−jwε ∂F0 (w, ε)
∂w

= 0,

γ1F0 (w, ε) + γ2e
jwεF1 (w, ε) + F2 (w, ε)

[
Q − (1 − ejwε)Λ − μ2I

]
= 0,

− F1 (w, ε) (Λ + γ2I)e − F2 (w, ε) Λe − j
∂F0 (w, ε)

∂w
e = 0.

(7)

Let us consider System (7) in a limit form for ε → 0.
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

F0 (w) (Q − Λ − γ1I) + j
∂F0 (w)

∂w
+ μ1F1 (w)

+ μ2F2 (w) = 0,

F0 (w) Λ + F1 (w) [Q − (μ1 + γ2)I] − j
∂F0 (w)

∂w
= 0,

γ1F0 (w) + γ2F1 (w) + F2 (w) [Q − μ2I] = 0,

− F1 (w) (Λ + γ2I)e − F2 (w) Λe − j
∂F0 (w)

∂w
e = 0.

(8)
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We assume the solution of System (8) be in the following form

Fk(w) = Φ(w)Rk, k = 0, N,

where Rk is the stationary probability distribution two-dimensional process
{k(t), n(t)}.

Substituting Fk(w) in System (8), we obtain
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Φ (w)R0(Q − Λ − γ1I) + jΦ′(w)R0 + Φ (w)R1μ1I + Φ (w) μ2R2 = 0,

Φ (w)R0Λ + Φ (w)R1 [Q − (μ1 + γ2)I] − jΦ′(w)R0 = 0,

Φ (w) γ1R0 + Φ (w) γ2R1 + Φ (w)R2 [Q − μ2I] = 0,

− Φ (w)R1(Λ + γ2I)e − Φ (w)R2Λe − jΦ′(w)R0e = 0.
(9)

Dividing equations of System (9) by Φ (w), we have the following system

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

R0(Q − Λ − γ1I) + j
Φ′(w)
Φ (w)

R0 + μ1R1 + μ2R2 = 0,

R0Λ + R1 [Q − (μ1 + γ2)I] − j
Φ′(w)
Φ (w)

R0 = 0,

γ1R0 + γ2R1 + R2 [Q − μ2I] = 0,

− R1(Λ + γ2I)e − R2Λe − j
Φ′(w)
Φ (w)

R0e = 0.

(10)

Since expression
Φ′(w)
Φ (w)

does not depend on w, function Φ (w) can be

expressed as
Φ (w) = exp {jwG1} ,

where G1 is an unknown variable.

Taking into account that j
Φ′(w)
Φ (w)

= −G1, we rewrite System (10) in the

following form
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

R0(Q − Λ − γ1I) − G1R0 + μ1R1 + μ2R2 = 0,

R0Λ + R1 [Q − (μ1 + γ2)I] + G1R0 = 0,

γ1R0 + γ2R1 + R2 [Q − μ2I] = 0,

− R1(Λ + γ2I)e − R2Λe + G1R0e = 0.

(11)

Let us multiply all equations of System (11) by unit column-vector e. Then
we have the following system of equation

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

− R0Λe − γ1R0e − G1R0e + μ1R1e + μ2R2e = 0,

R0Λe − μ1R1e − γ2R1e + G1R0e = 0,

γ1R0e + γ2R1e − μ2R2e = 0,

− R1Λe − γ2R1e − R2Λe + G1R0e = 0.

(12)
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Let us write down the condition for the consistency of multivariate distribu-
tions for the stationary distribution of the states of the server

2∑

k=0

Rk = R,

where R is the row-vector of the stationary distribution of the underlying pro-
cess n(t) determined by the following equations

RQ = 0, Re = 1.

Denoting R0e = r0,R1e = r1,R2e = r2 in System (12), we can find expres-
sions for r0, r1, r2, G1:

r0 =
μ1μ2 − λμ2 − λγ2

μ1 (γ1 + μ2)
, r1 =

λ

μ1
, r2 =

μ1γ1 − λγ1 + λγ2
μ1 (γ1 + μ2)

,

G1 = λ(μ1γ1 + γ1γ2 + γ2μ2 + λμ2 + λγ2)/(μ1μ2 − λμ2 − λγ2).

So Theorem 1 is proved.
In case of the probabilities r0, r1, r2 must be positive, inequalities μ1 > λ

and μ2 >
λγ2

μ1 − λ
must be true. This is condition of the asymptotic analysis

application.
Theorem 1 determines the asymptotic average of the number of customers

in the orbit in the studied retrial queueing system under the limiting condition
of a long delay of customers in the orbit.

Let us consider the second-order asymptotics for more complete study.

5 Second Order Asymptotics

Theorem 2. Let i(t) be the number of customers in the orbit in MMPP/M/1
retrial queueing system with unreliable server, then for a sequence of character-
istic functions, the following limiting equality holds

lim
σ→0

M
{
exp

{
jw

√
σ (i(t) − G1/σ )

}}
= exp

{
(jw)2

2
G2

}

,

where

G2 = (r0G1I − G1u0 + Λu1 + γ2u1 + Λu2)(G1z0 − Λz2 + r0I)
−1 (13)

and

z0 = −r0(Λ + G1I)
−1

, z2 =
−r0γ1(Λ + G1I)

−1

μ2
,

u0 =
[

r0G1I − r1λ1I − (μ1 + γ2)(r1γ2I + r2λ2I − r0G1I)
μ1

]

(Λ + G1I)
−1

,

u1 =
(−r1γ2I − r2λ2I + r0G1I)

μ1
,u2 =

(r1γ2I + r2λ2I + γ1u0 + γ2u1)
μ2

.
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Proof. In System of Eq. (12), we substitute the characteristic function in the
following form

Hk(u) = eju
G1
σ H(2)

k (u).

Then we reduce all equations by a common multiplier eju
G1
σ and after some

transformation, we have the following system
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

H(2)
0 (u)(Q − Λ − γ1I) − G1H

(2)
0 (u) + jσ

∂H(2)
0 (u)
∂u

+ μ1H
(2)
1 (u)

+ μ2H
(2)
2 (u) = 0,

H(2)
0 (u)Λ + H(2)

1 (u)
[
(Q − (1 − eju)Λ) − (μ1 + γ2)I

]
+ e−juG1H

(2)
0 (u)

− jσe−ju ∂H(2)
0 (u)
∂u

= 0,

γ1H
(2)
0 (u) + γ2e

juH(2)
1 (u) + H(2)

2 (u)
[
Q − (1 − eju)Λ − μ2I

]
= 0,

− H(2)
1 (u)(Λ + γ2I)e − H(2)

2 (u)Λe + G1e
−juH(2)

0 (u)e

− jσe−ju ∂H(2)
0 (u)
∂u

e = 0.

Let us introduce the following substitutions

σ = ε2, u = εw, H(2)
k (u) = F(2)

k (w, ε).

We have the following equations for functions F(2)
k (w, ε):

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

F(2)
0 (w, ε)(Q − Λ − γ1I − G1I) + jε

∂F(2)
0 (w, ε)
∂w

+ μ1F
(2)
1 (w, ε)

+ μ2F
(2)
2 (w, ε) = 0,

F(2)
0 (w, ε)(Λ + e−jwεG1I) + F(2)

1 (w, ε)((Q − (1 − ejwε)Λ)

− (μ1 + γ2)I) − jεe−jwε ∂F(2)
0 (w, ε)
∂w

= 0,

γ1F
(2)
0 (w, ε) + γ2e

jwεF(2)
1 (w, ε) + F(2)

2 (w, ε)(Q − (1 − ejwε)Λ
− μ2I) = 0,

− F(2)
1 (w, ε)(Λ + γ2I)e − F(2)

2 (w, ε)Λe + G1e
−jwεF(2)

0 (w, ε)e

− jεe−jwε ∂F(2)
0 (w, ε)
∂w

e = 0.

(14)

We will find a solution of System (14) in the form

Fk(w, ε) = Φ2(w) {Rk + jwεfk} + O(ε2).
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Substituting this expression into System (14), we obtain
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Φ2(w)R0(Q − Λ − γ1I − G1I) + jwεΦ2(w)f0(Q − Λ − γ1I − G1I)
+ jεjεΦ2(w)f0 + Φ′

2(w) (jεR0 + jεjwεf0) + μ1Φ2(w)R1

+ jwεμ1Φ2(w)f1 + μ2Φ2(w)R2 + jwεμ2Φ2(w)f2 = 0,

Φ2(w)R0

(
Λ + e−jwεG1I

)
+ jwεΦ2(w)f0

(
Λ + e−jwεG1I

)

− jεe−jwεjεΦ2(w)f0 − Φ′
2(w)

(
jεe−jwεR0 + jεe−jwεjwεf0

)

+ Φ2(w)R1

[
(Q − (1 − ejwε)Λ) − (μ1 + γ2)I

]

+ jwεΦ2(w)f1
[
(Q − (1 − ejwε)Λ) − (μ1 + γ2)I

]
= 0,

γ1Φ2(w)R0 + jwεγ1Φ2(w)f0 + γ2e
jwεΦ2(w)R1 + jwεγ2e

jwεΦ2(w)f1
+ Φ2(w)R2

[
Q − (1 − ejwε)Λ − μ2I

]

+ jwεΦ2(w)f2
[
Q − (1 − ejwε)Λ − μ2I

]
= 0,

− Φ2(w)R1(Λ + γ2I)e − jwεΦ2(w)f1(Λ + γ2I)e − Φ2(w)R2Λe

− jwεΦ2(w)f2Λe + e−jwεG1Φ2(w)R0e + jwεe−jwεG1f0Φ2(w)e

− jεe−jwεjεΦ2(w)f0e − Φ′
2(w)

(
jεe−jwεR0 + jεe−jwεjwεf0

)
e = 0.

(15)

Using Taylor’s series in System (15), we have

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Φ2(w)R0(Q − Λ − γ1I − G1I) + jwεΦ2(w)f0(Q − Λ − γ1I − G1I)

− ε2Φ2(w)f0 + Φ′
2(w)

(
jεR0 − wε2f0

)
+ μ1Φ2(w)R1 + jwεμ1Φ2(w)f1

+ μ2Φ2(w)R2 + jwεμ2Φ2(w)f2 = 0,

Φ2(w)R0 (Λ + (1 − jwε)G1I) + jwεΦ2(w)f0 (Λ + (1 − jwε)G1I)

+ ε2(1 − jwε)Φ2(w)f0 − Φ′
2(w) (jε(1 − jwε)R0 + jε(1 − jwε)jwεf0)

+ Φ2(w)R1 [(Q + jwεΛ) − (μ1 + γ2)I]
+ jwεΦ2(w)f1 [(Q + jwεΛ) − (μ1 + γ2)I] = 0,

γ1Φ2(w)R0 + jwεγ1Φ2(w)f0 + γ2(1 + jwε)Φ2(w)R1

+ jwεγ2(1 + jwε)Φ2(w)f1 + Φ2(w)R2(Q + jwεΛ − μ2I)
+ jwεΦ2(w)f2(Q + jwεΛ − μ2I) = 0,

− Φ2(w)R1(Λ + γ2I)e − jwεΦ2(w)f1(Λ + γ2I)e − Φ2(w)R2Λe

− jwεΦ2(w)f2Λe + G1(1 − jwε)Φ2(w)R0e + jwεG1(1 − jwε)Φ2(w)f0e

+ ε2(1 − jwε)Φ2(w)f0e − Φ′
2(w)(jε(1 − jwε)R0 − wε2(1 − jwε)f0)e = 0.
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Let us write equations for terms with ε1.
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

jwεΦ2(w)f0(Q − Λ − γ1I − G1I) + jεΦ′
2(w)R0 + jwεμ1Φ2(w)f1

+ jwεμ2Φ2(w)f2 = 0,

− jwεG1Φ2(w)R0 + jwεΦ2(w)f0 (Λ + G1I) − jεΦ′
2(w)R0

+ jwεΦ2(w)R1Λ + jwεΦ2(w)f1 [Q − (μ1 + γ2)I] = 0,

jwεγ1Φ2(w)f0 + jwεγ2Φ2(w)R1 + jwεγ2Φ2(w)f1 + jwεΦ2(w)R2Λ

+ jwεΦ2(w)f2(Q − μ2I) = 0,

− jwεΦ2(w)f1(Λ + γ2I)e − jwεΦ2(w)f2Λe − jwεG1Φ2(w)R0e

+ jwεG1Φ2(w)f0e − jεΦ′
2(w)R0e = 0.

Dividing by expression jwεΦ2(w), we obtain the following system of equa-
tions in case of ε → 0

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f0(Q − Λ − γ1I − G1I) +
Φ′

2(w)
wΦ2(w)

R0 + μ1f1 + μ2f2 = 0,

− R0G1I + f0 (Λ + G1I) − Φ′
2(w)

wΦ2(w)
R0 + R1Λ

+ f1 [Q − (μ1 + γ2)I] = 0,

γ1f0 + γ2R1 + γ2f1 + R2Λ + f2(Q − μ2I) = 0,

− f1(Λ + γ2I)e − f2Λe − G1R0e + G1f0e − Φ′
2(w)

wΦ2(w)
R0e = 0.

(16)

Note that expression
Φ′
2(w)

wΦ (w)
in System (16) does not depend on w, so we

can write function Φ2 (w) as

Φ2 (w) = exp

{
(jw)2

2
G2

}

,

where G2 is an unknown variable .

Taking into account that
Φ′

2(w)
wΦ2(w)

= −G2, we have

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

f0(Q − Λ − γ1I − G1I) − G2R0 + μ1f1 + μ2f2 = 0,

− G1R0 + f0 (Λ + G1I) + G2R0 + R1Λ + f1 [Q − (μ1 + γ2)I] = 0,

γ1f0 + γ2R1 + γ2f1 + R2Λ + f2(Q − μ2I) = 0,

− f1(Λ + γ2I)e − f2Λe − G1R0e + G1f0e + G2R0e = 0.

(17)

Let us multiply the first, the second and the third equations of System (17)
by e:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

− f0Λe − γ1f0e − G1f0e − G2R0e + μ1f1e + μ2f2e = 0,

− G1R0e + f0Λe + G1f0e + G2R0e + R1Λe − μ1f1e − γ2f1e = 0,

γ1f0e + γ2R1e + γ2f1e + R2Λe − μ2f2e = 0,

− f1Λe − γ2f1e − f2Λe − G1R0e + G1f0e + G2R0e = 0.
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System (17) is heterogeneous, but it is similar to homogeneous System (11).
Therefore, the solution of this system can be written in the form: fk = CRk +
G2gk + yk, so we obtain the following equations

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(−Λe − γ1e − G1e) [CR0 + G2g0 + y0] + μ1e [CR1 + G2g1 + y1]
+ μ2e [CR2 + G2g2 + y2] = G2R0e,

(Λe + G1e) [CR0 + G2g0 + y0]
− (μ1e + γ2e) [CR1 + G2g1 + y1] = R0G1e − R0G2e − R1Λe,

γ1e [CR0 + G2g0 + y0] + γ2e [CR1 + G2g1 + y1]
− μ2e [CR2 + G2g2 + y2] = −R1γ2e − R2Λe,

G1e [CR0 + G2g0 + y0] − (Λe + γ2e) [CR1 + G2g1 + y1]
− Λe [CR2 + G2g2 + y2] = G1R0e − G2R0e.

(18)

In System (18), the terms with C are reduced.
Let us combine the coefficients with different degrees of G2 into two systems:

for gk:
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

g0(−Λe − γ1e − G1e) + μ1g1e + μ2g2e = R0e,

g0(Λe + G1e) − g1(μ1e + γ2e) = −R0e,

γ1g0e + γ2g1e − μ2g2e = 0,

G1g0e − g1(Λe + γ2e) − g2Λe = −R0e.

(19)

and for yk:
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

y0(−Λe − γ1e − G1e) + μ1y1e + μ2y2e = 0,

y0(Λe + G1e) − y1(μ1e + γ2e) = G1R0e − R1Λe,

γ1y0e + γ2y1e − μ2y2e = −γ2R1e − R2Λe,

G1y0e − y1(Λe + γ2e) − y2Λe = G1R0e.

(20)

Also we write additional conditions for both systems as follows

N∑

k=0

gke = 0,

N∑

k=0

yke = 0.

In System (19), we denote g0e = z0, g1e = z1, g2e = z2, then we obtain

z0 = −r0(Λ + G1I)
−1

, z1 = 0, z2 =
−r0γ1(Λ + G1I)

−1

μ2
.

In System (20), we denote y0e = u0, y1e = u1, y2e = u2. So we obtain

u1 =
(−r1γ2I − r2λ2I + r0G1I)

μ1
.
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From the second equation of the system (20), we express u0

u0 =
[

r0G1I − r1λ1I − (μ1 + γ2)(r1γ2I + r2λ2I − r0G1I)
μ1

]

(Λ + G1I)
−1

.

By substituting u0 and u1 into the third equation of System (20), we find
that

u2 =
(r1γ2I + r2λ2I + γ1u0 + γ2u1)

μ2
.

We express G2 from the fourth equation of System (20) as follows

G2 = (r0G1I − G1u0 + Λu1 + γ2u1 + Λu2)(G1z0 − Λz2 + r0I)−1.

Theorem 2 is proved.
Theorem 2 shows that the distribution of the number of customers in the

orbit has variance G2/σ.
Combining the results of the first and the second order asymptotics, we have

obtained that the asymptotic probability distribution of the number of customers
in the orbit in studied retrial queue under the a long delay condition has the
Gaussian form

h(u) = exp
{

ju
G1

σ
+

(ju)2

2
G2

σ

}

.

6 Numerical Example

For the numerical analysis, let us consider a particular case of the considered
model—a retrial queue with Poisson arrivals. Then Q = 0,Λ = λ in obtained
expressions.

So we have the following formulas for the parameters:

R0 =
μ1μ2 − μ2λ − γ2λ

μ1μ2 + μ1γ1
, R1 =

λ

μ1
, R2 =

μ1γ1 + γ2λ − λγ1
μ1μ2 + μ1γ1

,

G1 =
λ(γ2μ2 + μ1γ1 + γ1γ2 + μ2λ + γ2λ)

μ1μ2 − μ2λ − γ2λ
,

G2 =
G1R0 + (G1 + γ1 + λ)f0 − μ1f1 − μ2f2

R0
,

where

f0 = (−G1R0γ2 − G1R0μ2 − R1γ2λ − R1λμ2 − R2γ2λ − 2R2λμ1

+ R2λμ2)/[2(G1γ2 + G1μ2 + γ1γ2 + γ1μ1 + γ2λ + γ2μ2 + λμ2 + μ1μ2)],

f1 = (G1R0γ1 + G1R0μ2 − 2G1R2λ + R1γ1λ + R1λμ2 − R2γ1λ − 2R2λ
2

− R2λμ2)/[2(G1γ2 + G1μ2 + γ1γ2 + γ1μ1 + γ2λ + γ2μ2 + λμ2 + μ1μ2)],
f2 = (−G1R0γ1 + G1R0γ2 + 2G1R2λ − R1γ1λ + R1γ2λ + R2γ1λ

+ R2γ2λ + 2R2λ
2 + 2R2λμ1)/[2(G1γ2 + G1μ2 + γ1γ2 + γ1μ1 + γ2λ

+ γ2μ2 + λμ2 + μ1μ2)].
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All these expressions coincide with [20].
Let us compare the probability distribution of the number of customers in

the orbit obtained by the matrix method [20] with the results of asymptotic
analysis.

In a numerical example, we take μ1 = 5, μ2 = 2, γ1 = 0.01, γ2 = 0.01, λ = 3.
Figure 2 shows a comparison of the asymptotic and the exact (calculated by

matrix method) probability distributions of the number of customers for σ = 0.1
and σ = 0.01.

Let us study the range of applicability of the asymptotic method based on
numerical analysis.

To determine the accuracy of the method, we use the Kolmogorov distance:

Δ = max
0≤k≤N

∣
∣
∣
∣
∣

k∑

i=0

[Pmatrix(i) − Pasimp(i)]

∣
∣
∣
∣
∣
,

where Pmatrix(i) is a distribution obtained by the matrix method and Pasimp(i)
is a distribution obtained by the asymptotic method.

Table 1. Kolmogorov distance.

σ 0.5 0.1 0.05 0.01

Δ 0.289 0.039 0.033 0.024

In Table 1, there are values of Kolmogorov distance for different values of
parameter σ. As you can see Kolmogorov distance decreases with decreasing
of σ. We conclude that the proposed asymptotic method has good accuracy for
σ < 0.1.

Fig. 2. Asymptotic and exact probability distributions comparison
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7 Conclusion

In this paper, we consider the retrial queueing system with an unreliable server.
During the study, the asymptotic characteristic function of the distribution of
the number of customers in the orbit was obtained in a long delay condition. It
is shown that the stationary probability distribution of the number of customers
in the orbit can be approximated by the Gaussian distribution with obtained
parameters. The numerical analysis is presented.
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