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Preface

The series of scientific conferences on Information Technologies and Mathematical
Modelling ITMM) was started in 2002. In 2012, the series acquired an international
status, and selected revised papers have been published in Communications in Computer
and Information Science since 2014. The conference series was named after Alexander
Terpugov, one of the first organizers of the conference, an outstanding scientist of the
Tomsk State University and a leader of the famous Siberian school on applied probability,
queueing theory, and applications.

Traditionally, the conferences have about ten sections in various fields of
mathematical modelling and information technologies. Throughout the years, the
sections on probabilistic methods and models, queueing theory, and communication
networks have been the most popular ones at the conference. These sections gather
many scientists from different countries. Many foreign participants come to this Siberian
conference every year because of our warm welcome and serious scientific discussions.
In 2021, the 20th ITMM conference was held online due to the ongoing COVID-19
pandemic.

This volume presents selected papers from the 20th ITMM conference. The papers
are devoted to new results in queueing theory and its applications. Its target audience
includes specialists in probabilistic theory, random processes, and mathematical
modeling, as well as engineers engaged in logical and technical design and operational
management of data processing systems, communication, and computer networks.

December 2021 Alexander Dudin
Anatoly Nazarov
Alexander Moiseev
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Analysis of the Polling System with Two
Markovian Arrival Flows, Finite Buffers,
Gated Service and Phase-Type
Distribution of Service and Switching
Times

Alexander Dudin®?®9)® and Yuliya Sinyugina®

! Belarusian State University, 4 Nezavisimosti Avenue, 220030 Minsk, Belarus
dudin@bsu.by
2 Applied Mathematics and Communications Technology Institute,
Peoples’ Friendship University of Russia (RUDN University),
6 Miklukho-Maklaya St, 117198 Moscow, Russia
3 Francisk Skorina Gomel State University,
104 Sovetskaya str., 246019 Gomel, Belarus

sinyugina@gsu.by

Abstract. The polling system with two Markovian Arrival Flows, finite
buffers, gated service discipline and Phase-Type (PH) distribution of
service and switching times is considered. Stationary distribution of the
continuous-time multi-dimensional Markov chain defining the current
state of the server, number of customers in the buffers, the number of
customers that should obtain service during the residual time of service
of customers from various buffers and underlying processes of service
or switching time and of arrival process is computed. Expressions for
Laplace-Stieltjes transforms of distribution of waiting times of customers
in both buffers are obtained. Numerical results giving some insight into
performance of the system are presented.

Keywords: Polling system - Markovian Arrival Process - Phase-Type
Service Time Distribution

1 Introduction

Stochastic polling models are effectively used for performance evaluation, design
and optimization of telecommunication systems and networks, transport sys-
tems and road management systems, traffic, production systems and inventory
management systems. In the recent review of the state of art in [1] the authors
gave the extensive survey of the basic notions and existing results in polling
models. For more references see, e.g., [2-13]. In particular, in [1] the authors
separately discuss the importance of analysis and the existing in the literature
results for two-queue systems as a special case of polling systems. In our paper,
polling system with two Markovian Arrival Processes (M APs), buffers of finite

© Springer Nature Switzerland AG 2022
A. Dudin et al. (Eds.): ITMM 2021, CCIS 1605, pp. 1-15, 2022.
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capacity, gated service discipline and Phase-Type (PH) distribution of service
and switching times is considered. Consideration of such quite general arrival,
service and switching process is the main contribution of our paper. Especially,
this concerns analysis of waiting times distribution.

In Sect. 2, we describe the model under study. In Sect. 3, the continuous-time
multi-dimensional Markov chain describing behavior of the system is described.
A finite system of equations for the steady-state distribution of the chain is
derived. Short Sect. 4 contains formulas for computation of the average number
of customers and loss probabilities in the buffers. In Sect.5, analysis of the
stationary distribution of waiting times in the buffers is presented. Section 6
contains some illustrative numerical results.

2 Mathematical Model

We consider a single server polling queueing system the structure of which is
shown in Fig. 1.

PH.,

MAP, MAP,
N, 1 1 N> :

PH.,

Fig. 1. Queueing system under study

The system has two queues with finite buffers of capacities N1 and Ns, cor-
respondingly. Each queue receives its own flow of customers, which is defined by
the M AP (Markovian Arrival Process), see, e.g., [14-16]. The process of arrival
to the kth queue is defined by the irreducible continuous-time Markov chain

ut(k), t > 0, having a finite state space {0, 1,..., Wi }. The underlying process

ut(k) stays in the state v during an exponentially distributed time interval with
parameter AU, v = 0, Wy. After that, with probability pl(k)(y, ') the underlying
process transits to the state v/ with generation of | customers, [ =0, 1.

_ The behavior of the kth M AP is described by matrices D((Jk) and ng) of size
Wi = Wi 4+ 1, which are defined by formulas:

(Do(k))u,y’ = {

,)\U(k)’ V=1,

AP W), v # Y,

(D1 ®),, = \PpP w1, v =0,

The matrix D*) = Do(k) —|—D1(k) is the infinitesimal generator of the Markov

chain I/t(k). The average intensity A; of customers arrival to the kth system is
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defined by the formula A, = x*®)D™e, where x*) is the row vector of the
stationary probabilities of the Markov chain Vt(k). The vector x*) is the unique
solution to the system x*) D(*) = 0, x(¥e = 1. Here and throughout this paper,
e is a column vector of appropriate size consisting of ones, and 0 is a row vector
of appropriate size consisting of zeroes.

The service time of an arbitrary customer from the kth buffer has a PH
distribution, given by the irreducible representation (ﬁ(k),S(k)), k = 1,2, and
the underlying process nt(k)7t > 0, with the state space {1, ..., My, M} +1}, where
the state My + 1 is the absorbing one. The initial state of the process nt(k) is
chosen among the transient states in accordance with a stochastic row vector
Bk = ( ;k), ék), ey (ki). The intensities of the transition of the process nﬁk)
between transient states are defined by the matrix S*). The intensities of the
transition to the absorbing state M} + 1 is defined by the entries of the column
vector Sgk) = —S®e. More information about the PH distribution can be found
in [16,17]. Switching of the server between the queues is not instantaneous. The
switching time of the server to the service of customers located in the kth buffer
has a PH distribution given by the irreducible representation (ﬂ(fk),S(_k)),
k=1,2.

We assume the gated discipline of service. This means that the server provides
service only to those customers that are presenting in the buffer immediately
after completion of the server switching to this buffer. All customers that arrive
after completion of the switching will receive service only after the next switching
of the server to this buffer.

3 Process of System States

We describe the operation of the system by the process
gt = {Tt7jt7it(1)7it(2)7mta Vt(l)a Vt(Q)}a t Z Oa
where, at the time instant ¢,

e ;") is the number of customers at the kth buffer, k =1, 2;
e 1, characterizes the state of the server:

{k, if the server is processing the customer from the kth queue,
Ty =

—Fk, if the server is switching to the kth queue, k =1, 2;

e j; is the number of customers from the current queue that still need to be
serviced (including one in service). This component is absent in definition of
& if the server is currently switching to another queue;

e my is the state of the underlying process of PH distributed ongoing service
or switching time;

e 11,(F) | =1,2, is the state of the underlying process of the customers arrival
in the kth MAP, k =1,2.
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The process &, t > 0, is a regular irreducible continuous time Markov chain
and has a finite state space. Thus, the following limits (stationary probabilities)

exist:
7.‘_(7‘) (jﬂila i27m7 V(l)v V(2)) =

Jlim P {rt =rje =i =i1,i,® =i, my = m, 1,V = 1, ®) = u@)}.
— 00

Let us form the row vectors of these probabilities enumerated in the direct
lexicographical order of components 7y, jt, it(l), it(Q), me, Y, 1,2

W(T)(j,il, Z2) = (T((T)(jaih ig, 1, an)a ) ﬂ-(r)(jaih ig, MT? WlaWQ))7

7= (71 (1,0,0),.., 7Y (N1, N1, No), 7 (1,0,0), ..., 73 (No, N1, No)
70(0,0), ..., 7YV (N, Vo), 752 (0,0),..., 72 (N1, Ny)).

Let us denote

R(T) = IMr ® D(()l) ® IWz (1 - 6i1N1) =+ IMr @ D(1)§i1N1 ® IWQ

i1,12

+ I, @Iy, @D (1= 8iy3,) +Inr, @ Iy, ©D P, 3, + 8 @ Iy, ix = 0, Ny,

9

DY) = DY & I,y D = 15, @ D
where I is the identity matrix size of which is indicated by the suffix, ® is the
symbol of the Kronecker product of matrices, see [18] ¢;; is the Kronecker delta,
8ij =1—0;j.

The probability vector 7r satisfy the following system of linear algebraic equa-
tions, called equilibrium or Chapman-Kolmogorov equations:

7 (jir, i2) R, + 7 (j,i1 — 1, d2) (IMl ® ml)) dir0

11,12

L A < . . . NF (1)
+7r(1) (]alla 2 — 1) (IMl ® D§2)) 5i20 +7T(1) (.7 + 1,41, 7’2) 5jN1 SéDﬁ & [W1W2

_ L. _ (1) .
+ 7D (4, i2)STVB 810 @ Ly, = 0, § =1, N1,

71'(2) (j7i17 ig) RE?Q + 71'(2) (], i —1, ig) (Ilvlg ®ﬁ§1)) 51‘10

L ~ < . I (2
—|—7r(2) (4,i1, i2 — 1) (IMz ® D§2)) diz0 + 7 (G + 1,41, i2) 6jNQS(()2)B & IWle

—oy . . —2) ,(2) .
+7T( 2 (i1, J)S(() 2)18 dis0 ®IW1W2 =0, j=1,Ny

7D (i1, i) R 47D (4 — 1, 4n) (IAL1 ® Di”) 5is0

i1,12
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1)y e A < . (=1
+7T( 2 (7‘17 12 — 1) (IM*I ® Dgz)) 6i20 + 71'(2) (177*17 7*2) S(()2)B ® IW1W2

(=1)

+7D (i1, 00858 810 @ Iy, w, = O,

7 (i, i) R+ 70 (0~ 1, i) (IM_Q ® bgl)) 8ir0

_ . . ~ = . . (=2)
+ 7 (i1, ip — 1) ([M—z ® D?)) dizo + 7D (L1, i2) S8 @ Iy,

+7 (0, i2)85VB Vo0 ® Iy, w, = 0.

The matrix of the Chapman-Kolmogorov system is degenerate according to
the properties of the infinitesimal generator. In order to find the vector 7r, add the
normalization condition we = 1 and remove one of the equations of the system.
Thus, we obtain a system, the only solution of which is the vector of stationary
probabilities of the states of the system. As a numerically stable algorithm for
solving such a system, the algorithm from [19] is recommended.

4 Performance Measures

Having computed the vectors of the stationary probabilities 7r;, i > 0, defined
by the partition 7 = (mg, w1, w2, ... ), it is possible to compute a variety of the
performance measures of the system.

The average number of customers in the kth buffer, k = 1,2, is computed by

Nk

Lk = Z iﬂ'k (i)e,

i=1
where

22: i <Z" ®)(j.irin)e + 1w, 22)e>

k=112=0

2 N Ng
ma(e=30 > (30w Wl iite + 7 Hinite).
k=111 j

=0 “j=1

The probability P,iloss) that an arbitrary customer arriving to the kth buffer
k =1,2, will be lost is computed by

2
Pt= - Lyy Zw‘ G, NuyioN( g, @ DY )e + 7 (Nl,za)(IM_k@Di%e),

k=1ip=0

N1 ,Ng

P= Lyost > i, NaXiag, © D)o + - (il,Nz)(IM,k@@b%”)e)'
k=111=0
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5 Distribution of the Waiting Time

Let Vi(x), z > 0, be distribution function of the waiting time of an arbitrary
customer in the kth buffer and vy (s) be its Laplace-Stieltjes transform (LST):

vg(s) = / e *'dVy, (t), Re s > 0.
0

We assume that the customers are served in the order of their arrival into
the buffers (FCFS service discipline).

We will derive expression for the LST vy(s) by means of the method of catas-
trophes. We interpret the variable s as the intensity of some virtual stationary
Poisson flow of so-called catastrophes. It is easy to see that the LST vy(s) is
equal to probability that no one catastrophe arrives during the waiting time. The
possible scenarios of the waiting time of an arbitrary customer are as follows.

1) The customer arrives to the kth buffer and the buffer is full. In that case the
customer is lost and v (s) = 1.

2) The customer arrives when the server is switching to the kth queue. In that
case waiting time consists of the remaining switching time and the service
time of customers which arrived before the tagged customer.

3) The customer arrives when the server is servicing customers from another
queue. In that case waiting time consists of the remaining service time, the
service time of customers from another queue that still need to be serviced,
the switching time to the kth queue, the service time of customers which
arrived to the kth queue before the tagged customer.

4) The customer arrives when the server is switching to another queue. In that
case waiting time consists of the remaining switching time to another queue,
the service time of customers which have been staying in another buffer and
which arrived during the remaining switching time, the switching time to the
kth queue and the service time of customers which arrived before the tagged
customer.

5) The customer arrives when the server is servicing customers from the kth
queue. In that case, waiting time consists of the remaining service time, the
service time of customers from the kth buffer that still need to be serviced,
the switching time to another queue, the service time of customers which have
been staying in another buffer and which arrived during the switching time,
the switching time to the kth queue and the service time of customers which
arrived to this buffer before the tagged customer arrival.

Thus, to calculate the LST vy(s) of the waiting time of an arbitrary customer,
we need to analyse all the listed above scenarios.

Let us introduce the following functions: L*)(s) = (sI — S(k))_lsgk) is the
vector consisting of LST's of the remaining service time of a customer from the
kth queue, if £ = 1,2 (or of switching time to kth queue, if k = —1,—2) with a
fixed current state of the corresponding underlying process; 3*)(s) = ﬂ(k)L(k) (s)
is the LST of the full service (or switching) time; P,,(I,¢) is the matrix of
probabilities that [ customers arrive to the mth queue during time t¢.
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Lemma 1. The LST of the column vector of remaining service times of a cus-
tomer from the rth queue, r = 1,2, (or remaining switching time to the rth
buffer,—r = 1,2) during which l customers from the mth flow will arrive to the

system, is calculated as follows:

Fl(r) (m,s) = zl(r) (m,s) (S(()T) ® IWm) ,

the LST of the total service time during which I customers from the mth flow

will arrive in the system, is calculated as follows:
P(T) (m,s) = k(r) (m, s) (S(r) ® IW,”)

where
27 (m, s) = —(A(s,7) ® Iy, (s, m),

z:l(r)(m7 5)=— Z zgr)(m, s)(A(s,7) ® D(m))y'/(s7 T, m),
Ky (m,s) = —(B (A(s,7) © Iy, )P (s,r,m),
(T) Zk(r) (m,s)(A(s,7) ® D(m))W(s,r, m),

W(s,r,m) = (I+ A(s,r) @ DY), A(s,r) = (=sI + 877!

Proof. By definition we have

Fl(r) (m,s) = / e_SteS(T)tS(()T) ® Pp(l,t) Iy, dt
0

oo
:/ =15 @ P (L, )dt(SY) @ Iy, ) = 27 (m,5)(SY” @ Iy, ).
0

In turn,

2" (m, s) = /O e*teSt @ P (1, 1) dt Z/O (8" =Dt @ P, (1,t) dt
- !
= —(A(s,r) ® Ly, )d1,0 — / ST DA (s 1) @ ZPM(iat)Dl(Z)dt
0 ;

—(A(s,7) @ Iy, )81,0 — Zz< " (m, s)(A(s,r) © D™).
1=0

From where we get the formulas for Fl(r) (m, s) and zl(r) (m, s) under proof.

In a similar way, we obtain formulas for Pl(r) (m, s) and kl(T)(m, s).
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Lemma 2. The LST of the total service time of n  customers, n > 1, from
the rth queue, r = 1,2, during which | customers, I > 0, from the mth flow,
m = 1,2, will arrive to the system, is calculated as follows:

Pl(*n’r) (m,s) = hl(;z (m, s) (Féj;,) ® IWm> ,
where

—1
W mes) = = (2 (=s + 1) @ Iy, ) #(s,rmn)

h(r (m, s) Z hgtz ((SI + FT(")) ® D(m)> b(s,r,m,n),

B(s,r,m,n) = (I + (—sI + TM) ™) @ D)

Here 7. and I, qre parameters of the phase-type distribution of the
sum of n independent random wvariables having a phase-type distribution with

the irreducible representation (5(7"), S(’")), and (" = (5(7"),0,...,0>, where

0 is a null row vector of the same size as ,E)'(T), and

smsgh o ... 0
o s» s\ .o
rm=fo o sm ... 0
O O o .50

where O is a null matriz of the same dimension as S, and
W = (07,...,07,s{T.

Lemma 3. The LST of the conditional waiting time, provided that at the
moment of arrival of tagged customer to the first buffer the server is switch-
ing to the first queue and there are i1 customers in the first buffer, is calculated
by the formula:

vg_l) (s,i1) = L(*l)(s) (5(1)(8)>i1

Proof. The probability that no one catastrophe arrives during the waiting time
of the tagged customer is the product of the probability that no one catastrophe
arrives during the remaining time of switching the server to the first queue
L(=Y(s) by the probability that no one catastrophe arrives during the service

time of i; customers (5 (5))2'l

Lemma 4. The LST of the conditional waiting time, provided that at the
moment of arriwval of tagged customer to the first buffer the server is servicing
customers from the second queue, there are iy customers in the second buffer,
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and j customers from second queue still need to be serviced, and there are iy
customers in the first buffer, is calculated by the formula:

j—1
o (s, jsinyiz) = L) (82 () B 0n D (s,in).

Proof. The probability that no one catastrophe arrives during the waiting time of
the tagged customer is the product of the following probabilities: the probability
that no one catastrophe arrives during the remaining service time of the current
customer L(2)( ); the probability that no one catastrophe arrives during the

service time of j — 1 customers (83 (s))””; the probabilities of the states of
the underlying process when the server starts sw1tch1ng to the first queue ,6'( b ;

the probability that no one catastrophe arrives during the remaining from the
moment of switching start waiting time vy (=) (s,4;) .

Lemma 5. The LST of the conditional waiting time, provided that at the
moment of arrival of tagged customer to the first buffer, the server is switching
to the second buffer, which contains io customers, and the first buffer contains
i1 customers, is calculated as follows:

oo
UYQ)(S, i1,19) = Z F,572)(2, s)ﬁ(z)vlm(s, min{is + k, Nao},41,0).

k=0
Proof. The probability that no one catastrophe arrives during the waiting time
is the product of probabilities: the probability that no one catastrophe arrives
during the remaining switching time and k£ customers come to the second buffer
F ,§_2)(2, s); the probabilities of the states of the underlying process for servic-
ing the first customer from the second buffer ,6(2); the probability that no one
catastrophe will arrive in the future v?)(s, min{iz + k, Na},41,0).

Lemma 6. The LST of the conditional waiting time, provided that at the
moment of arrival of tagged customer in the first buffer, the server is servic-
ing customer from the first queue, j customers are still need to be serviced, there
are i1 customers in the first buffer, and io customers in the second buffer, is
calculated as follows:
(1) .o
Ul (57]5 Z17712)
No—ig—1 No—ig—1—m

Z Z F(2,5) P77 (2,5)8 D0 0 (s, iy, ig +m + k)

N2 7.21

+ ) Z FM(2,5) P10 (2,682 0,52 (s,4y, Ny)

m=0 k=Ny—iz—m

+ Z F1(2,5)(8M ()18 0, 2 (5,41, Ny).
m= Ng 1,2
Proof. The probability that no one catastrophe arrives during the waiting time
is the product of probabilities: the probability that no one catastrophe arrives
during the remaining service time of customer and m customers arrive to the
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second buffer F{! )(2, s); the probability that no one catastrophe arrives during
the service time of the remaining customers and k customers arrive to the second
buffer P,g*] 71’1)(2, s); the probabilities of the states of the underlying process of

switching to the second queue ﬂ(72); probability that no one catastrophe will
arrive in the future v (=2 (s, iy, s).

Theorem 1. The LST of the waiting time of customer in the first buffer has
the form

Ni—1 Na

on(s) = loss>+7 Z Z( =D (4, 4 (IM 1®D(1>)eu§ (s, 1)
11=0 i2=0
+7T(72) (il,ig) (IM_2 X Bgl)) evg_z) (S,il,ig)

N,

2 k
+ 373 7B (i, i) (IMk ® D&”) eu§’“)(s,j,i1,z‘2)).

k=1j=1
The proof follows from the above lemmas and the total probability formula.

Theorem 2. The LST of the waiting time of customer in the second buffer has
the form

Nz—1 Ni

wals) = P £ 3 Y (w0 D inia) (T © D) 0™ (s.i2)

’LQ O’Ll 0

+ 70, 02) (T, @ DEY) et (s, i1, i2)

+ ZZW (J,i1,12) (IMk ® ﬁiz)) evék)(s,j,il,ig))7

k=1 j=1

where the corresponding functions are defined similarly to the above:

v§ D (5,i0) = LE2(5)(82(s))”,
o§ (s, j, i1, i) = LO(s) (3D (s)) ' BP0 (s,4),

o0

vy V(s,inyin) = 3 BV (1, 5800 (s, minfiy + k, Ni},0,4),
k=0
’U§2) (57jai17i2)
lellfl oo .
= Z ZF},?)(L s)Plg*J*l’z)(l7 s),@'(*l)véfl)(s,min{il +m+k, N1}, i2)
m=0 k=0

+ 3 ED)(8(s)) BVl (s, Nuvia).

m:leil
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Proof. The proof follows from the above lemmas and the total probability for-
mula.

Corollary 1. The average waiting time of an arbitrary customer in the kth

d
buffer Vi, k = 1,2, is calculated by the formula Vi, = — Us(s) |s=0-
s

The average waiting time of an accepted customer in the kth buffer
is calculated by the formula Vk(accept) =Ve(1 - P,gloss))*l,

Vk(accept)

Proof. Note that the average waiting time for an arbitrary customer in the kth
buffer, k = 1,2, also takes into account lost customers, the waiting time of which
is equal to zero:

Vi, = Vk(loss)Plgloss) + Vvk(accept)13]5¢1¢:ct5pt)7

where Vk(loss) = 0 is the average waiting time for a lost customer in the kth

buffer, P,Eloss) is the probability of loss of a customer when it arrives in the kth
buffer. Note also that P{'**") + P{*“P") — 1 then

Vk(accept) _ Vk(Plgaccept))_l _ Vk(]. . P]gloss))_l.

6 Numerical Examples

Now we consider numerical examples. Let us assume that the arrival flow of
customers to the first queue M AP is defined by the following matrices:

pd _ (—10.08 0 p _ (9:9750.105
0 710003 —0.327) 7t \0.036 0.288 ) -

The average intensity of customers arrival is Ay = 2.96625. The coefficient of
correlation of successive inter-arrival times in this arrival process is cor = 0.4,
and the squared coefficient of variation of inter-arrival times is 12.39.

The arrival flow of customers to the second queue M AP, is defined by the
following matrices:

p — —5.4104 0 P _ 5.3744 0.036
U 0 —0.17564)° 7t — \0.09784 0.0778 )

The average intensity of customers arrival is Ao = 4. The coefficient of cor-
relation of successive inter-arrival times is cor = 0.2, and the squared coefficient
of variation of inter-arrival times is 12.34.

We assume that the capacity of the first buffer is N1 = 4 and the capacity of
the second buffer is Ny = 5.
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The PHs distributions characterizing the service and switching processes are
defined by the row vectors 8%) = (1, 0), k = +1,+2, and the sub-generators
S(k) _ —QCr QCg

0 —acg
parameter which we will vary.

) , where ¢y =1, co = 1.2, c.1 = 0.3, c_2 = 0.2, « is the

4.75
4.4
4.05
3.7
3.35

2.65
2.3
1.95
1.6
1.25

0.9

Fig. 2. The dependence of L; and L2 on a.

Figure 2 shows that the queue length decreases with an increase in the param-
eter o which affects the speed of growth of the service and switching rates.
Figure 3 shows that the probability of losing a customer also decreases with an
increase in the parameter a.

To illustrate the importance of account of correlation in arrival process, now
let us assume that the arrival flow of customers to the first queue M AP is
defined by the following matrices:

(1 _ [—95.252.25 ay _ (3 0
Dy = ( 3.75 —6.6) » D = (O 2.85) ’
The average intensity of customers is practically the same, as in the M AP, used
in the first example, A; = 2.94375. But the coefficient of correlation is cor = 0.
The squared coefficient of variation is 1.

The arrival flow of customers to the second queue M AP, and the PHs of
service and switching processes are the same as above.

Figure4 shows the dependence of the queue length L; on the parameter «
with various correlations in the process M AP;. Figure 5 shows the dependence
of the probability of losing a customer Pl(loss) on the parameter a with various
correlations in the process M AP;. Figures4 and 5 allow us to conclude that
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0.985
Pl(loss)

0.905

0.825+
0745+ N T~ s
0.665
0.5851
0.505 N

0.425 =
0.345 .

0.265+ -

0.185

1 4 7 10 13 16 19 22 25 28 31

«

3.9/
3.6+
3.3+

2.7+
2.4~
2.1+
1.8¢

1.2¢

0.9+

Fig. 4. The dependence of L1 on « at different correlation coefficients.

ignoring the effect of correlation can lead to an essentially incorrect assessment
of the effectiveness of a real system that may be described by the model under
consideration.
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A
0.96

0.875
0.79
0.705
0.62
0.5351
0.45
0.365
0.28

0.195

0.11

+ 4 + + +
1 4 7 10 13 16 19 22 25 28 31

Fig. 5. The dependence of P"°**) on « at different correlation coefficients.

Conclusion

Polling system with two queues is analyzed. We considered the model under
assumption that the input flows are described by the M APs and the service and
switching times have phase-type distributions. This model can be applied to
obtain the characteristics of a polling model with an arbitrary number of queues
under the general assumptions about input flows and service and switching times
distributions.
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Abstract. In this paper, a finite-source retrial queueing system is con-
sidered with impatient customers and catastrophic breakdowns. The
characteristic of the system includes collision which occurs when a new
job arrives in the system and the service facility is occupied with a job,
they will collide. Both jobs will be forwarded to the virtual waiting room
the so-called orbit. Here, the customers initiate other attempts to reach
the server after a random time. But they give up retrying after staying in
the orbit a while and leave the system which is the impatient attribute
of the customers. In case of a negative event, a catastrophic breakdown
takes place meaning that all the customers at the server and in the orbit
depart from the system. The novelty of this paper is to investigate that
feature in a collision environment with impatient customers using differ-
ent distributions of the service time.

Keywords: Simulation - Catastrophic breakdown - Retrial queuing
system -+ Collision - Impatience + Sensitivity analysis

1 Introduction

Designing info-communication systems are essential because of understanding
how to optimize a system and also how to handle increasing network traffic.
Many tools and mechanisms are available for modeling different systems, and
among them, one of the most popular ones is retrial queuing systems. To illus-
trate real-life problems arising in main telecommunication systems, like tele-
phone switching systems, call centers, computer networks, and computer sys-
tems, retrial queues can be effectively applied. In many publications, retrial-
queuing systems with repeated calls are utilized to depict their models like in
[2,5,6,9]. The specialty of retrial queuing systems relies on the orbit which is
assumed to be a virtual waiting room with enough capacity to take in every cus-
tomer. In this way, a job - whose service can not start - is not lost and may launch
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numerous attempts to get its service requirement. The source is considered to
be finite mainly because in many situations a finite number of entities partici-
pate in the operation of the system. Naturally, researchers have studied models
with an infinite source but these are not suitably describing real-life applications
in many cases. Results in connection with finite-source retrial queuing systems
can be viewed in [1,14,18,19]. Impatient behaviour is a natural characteristic of
the customers provoking earlier departure without obtaining its service demand.
This phenomenon is experienced in many fields of our life and here are some
examples: healthcare applications, call centers, telecommunication networks. Not
to mention all the papers where the behaviour of impatience is intensively exam-
ined, see for example [8,11,17]. Real-life systems tend to be subjected to random
breakdowns which can be caused by a power outage, human negligence, or other
sudden act. Thus, it is important to examine its effect on the operation of the sys-
tem and the performance measures because it alters significantly the behaviour
of a model. Many papers have studied models having service units assumed to
be available all the time which is quite unrealistic. These types of systems have
been investigated by many authors for example in [4,10,20]. In technologies, like
in Ethernet or in communication sessions where the resources are constrained,
the probability of collisions of the jobs occurs. Several individuals in the source
may commence uncoordinated attempts leading to the interference of the sig-
nals resulting in the necessity for retransmissions. Consequently, it is important
to include this phenomenon as part of the investigation creating effective poli-
cies preventing conflicts and corresponding message delays. Results that are in
connection with collisions can be found in the following publication [12,13,15].
The objective of our investigation is to carry out a sensitivity analysis using
different distributions of service times on the main performance measures while
catastrophic breakdowns eventuate. In the case of these types of events, cus-
tomers are forced to leave the system due to sudden acts which can be mechanical
failures or power outages. Until repair, it is not allowed for any customer to enter
the system and detailed studies on catastrophic breakdowns have been exam-
ined by several papers. Because we utilize different distributions for the service
time of the customers the results are obtained by our simulation program that
is based on Simpack [7]. The basic building blocks of the code are used in which
we have the opportunity to calculate any desired measure using numerous values
of input parameters. Graphical illustrations are provided depicting the effect of
different parameters and distributions on the main performance metrics.

2 System Model

A finite-source retrial queueing system of type M/G/1//N is considered with
an unreliable service unit, impatient customers, the appearance of collisions,
and blocking. This model has one service unit and a finite-source where every
individual (altogether N) may generate a request towards the system according
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to exponential law with parameter \/N meaning that the inter-arrival times are
exponentially distributed with mean A\/N. As there are no queues the service of
an arriving job starts immediately following gamma, hypo-exponential, hyper-
exponential, Pareto, and lognormal distribution with different parameters but
with the same mean and variance value. In the case of a busy server, an arriving
customer brings about a collision with the customer under service, and both
are moved into orbit. Jobs residing in the orbit after an exponentially random
time with parameter o/N initiate other tries to be engaged with the server.
Since random breakdowns emerge the failure time is also an exponential random
variable with parameter 79 when the server is occupied and with ~; if idle. Two
scenarios are distinguished:

— general breakdown: the service of a job is interrupted and it is forwarded back
to the orbit, other jobs initiated by the individuals of the source can not enter
the system until the service unit is functional.

— catastrophic breakdown: the service of a job is interrupted but instead of
arriving at the orbit it leaves the system as the others from the orbit, no
customers are allowed by the system until the server fully recovers.

The repair process starts instantly upon the failure of the service unit which
follows an exponential distribution with parameter 5. Customers are charac-
terized by impatience implicating that jobs can decide to leave the system after
spending an exponentially distributed time with parameter 7 in the orbit. These
requests return to the source being unserved. In the paper of [16] similar models
are analyzed by an asymptotic method where N tends to infinity this is why
rates A\/N and o/N are used. For example, it was proved that the number of
customers in the system follows a normal distribution. All the random variables
in the model creation are assumed to be totally independent of each other.

3 Simulation Results

3.1 First Scenario

To obtain the desired results, our self-developed simulation tool was used in
which almost all the performance measures can be estimated. Its statistics pack-
age utilizes the batch means method where the useful run is divided into a certain
number of batches. Batches are long enough in that way sample averages of the
batches are approximately independent thus we have a valid estimation. The
following article contains more information about that method [3]. The simula-
tions are performed with a confidence level of 99.9%. The relative half-width of
the confidence interval required to stop the simulation run is 0.00001. The size
of a batch used to detect the initial transient duration is 1000.

Table 1 consists of every parameter that is applied for all the following figures.
The parameters of service time of the customers can be found at Table 2, every
chosen parameter is listed resulting in the same mean and variance in every used
distribution. The reason for selecting these values is focusing on the interesting
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Fig. 1. System model

Table 1. Numerical values of model parameters

N|v | m |%2|¢/N| 7
1000.05/0.05| 1 | 0.05 | 0.001

situations and it must be noted that this model was tested with other values
as well, and in most of the cases, the same phenomenon appeared. It is totally
intentional that the squared coefficient of variation is more than one, later on in
another scenario we will run the simulations when it is less than one (Fig. 1).

Table 2. Parameters of service time of primary customers

Distribution Gamma | Hyper-exponential | Pareto | Lognormal
Parameters a = 0.054 p=0.473 a = 2.027 |m = —1.839
B8 =0.077 A1 = 1.353 k=0.355 o=1.722
A2 =15
Mean 0.7
Variance 9
Squared coefficient of variation 18.367

On Fig.2 and 3 on the X-axes ¢ represents the number of customers located
in the system, and on the Y-axes P(i) denotes the probability that exactly i
customer are situated at the server and in the orbit altogether. In both Fig. 2
and 3 the distribution of the number of customers in the system is displayed when
A/N is 0.1 using various distributions of service time. Catastrophic breakdown
feature is applied and interestingly the mean number of customers in the system
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differs from each other. In the case of the gamma distribution, customers tend
to spend less time in the system compared to Pareto distribution. It is also
noticeable that for both types of breakdowns the distribution of the number of
customers tends to follow Gaussian distribution.
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Fig. 2. Distribution of the number of customers in the system

Figure 3 depicts the comparison of different failure modes besides gamma
and hyper-exponential distributions. Naturally more customers are in the sys-
tem using the general breakdown method but the shape of the curves curiously
are slightly disparate. In case of catastrophic breakdown, the peak is not that
high and the mean number is fewer but other than that curves follow the same
tendency.

The mean response time of an arbitrary customer is presented in the function
of the arrival intensity of incoming customers in Fig.4. Even though the mean
and the variance are identical huge gaps develop among the applied distribu-
tions. With the increment of the arrival intensity, the mean response time of an
arbitrary customer increases as well until A/N equals 0.05 when the maximum is
reached then it starts to decrease. The same tendency is observable for the other
distributions, as well. The usage of gamma distribution results in a lower mean
response time compared to the others, especially versus Pareto distribution.

Figure 5 demonstrates the development of the mean response time of a suc-
cessfully served customer besides increasing arrival intensity. This measure shows
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Fig. 3. Comparison of distribution of the number of customers in the system using
different failure modes
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the average response time of those customers who do not leave the system
because of impatience or catastrophic event. As A\/N increases, the value of
this performance measure raises as well which is true for every used distribution
but the difference is quite high among them. At gamma distribution that value
is much fewer than the others especially compared to Pareto distribution.
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Fig. 5. Mean response time of a successfully served customer vs. arrival intensity using
various distributions.

3.2 Second Scenario

In this section after analysing the obtained results of the previous scenario, we
were curious to see what happens besides applying another parameter setting
on the performance measures. In scenario 1 the squared coefficient of variation
was greater than one and in this particular case, the parameters are selected
in a way that the squared coeflicient of variation is less than one. This also
implies that the hyper-exponential distribution can not be used and instead of it
we replace it with the hypo-exponential distribution. Table 3 contains the exact
values of the parameters of the service time of primary customers in the case of
this scenario, the other parameters remain unchanged which is shown in Table 1.
Basically, our intention is to check that whether we get back the same tendencies
of the previous section or it greatly changes the behaviour of the system and the
performance measures with these modified parameters of service time of the
incoming customers.
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Table 3. Parameters of service time of incoming customers

Distribution Gamma | Hypo-exponential | Pareto | Lognormal
Parameters a=1.69 pn =2 a=264 |m=—-0.589
[ =241 p2 =5 k=0435| 0 =0.682
Mean 0.7
Variance 0.29
Squared coefficient of variation 0.592

First, we will examine the figures in connection to the steady-state distribu-
tion. Analyzing the curves in more detail the obtained values are much closer
to each other. As regards the shape of the curves they correspond to normal
distribution. The mean number of customers is higher in the case of every dis-
tribution compared to the previous section. Not much difference is experienced
though. In Fig. 6 regarding the mean values, they are very close to each other as
well the shape of the curves, but in this case, the obtained graphs do not tend
to correspond to Gaussian distribution.

0,06 -

0,05 -

F"j

0,01 - M.w“

| |
L L L L L B B N R R R R N R R RN RN NN RN RN NN R RN

T
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i

+~Gamma =Hypo-exponential ~Pareto -—Lognormal

Fig. 6. Distribution of the number of customers in the system using various distribu-
tions, A = 0.1.

Figure 7 emphasizes the difference between the applied failure modes. The
results are depicted when gamma and hypo-exponential distribution are used
but it is worth mentioning that the same tendencies occur utilizing the other
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two remaining ones. The difference is quite obvious even though the peak points
are located in the same place but the value of possibility is much higher when
catastrophe does not take place.

The next two figures are related to the mean response time of an arbitrary and
a successfully served customer. First, in Fig. 8 it can be seen slight differences,
in the case of Pareto distribution the values are a little bit higher, otherwise,
the graphs almost overlap each other. Here, the same tendency develops as the
mean response time increases with the increment of arrival intensity. Obviously,
this maximum value feature is a specialty of finite-source retrial queuing systems
under a suitable parameter setting.
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Fig. 7. Distribution of the number of customers in the system using various distribu-
tions, A/N = 0.1.

Figure 9 demonstrates the comparison of the mean response time of a success-
fully served customer versus the arrival intensity. Not surprisingly after seeing
the curves of the previous figure, the difference in the obtained values are very
similar and it can be stated that the same maximum value feature appears in
every case. The lowest values are obtained when the service time follows gamma
distribution and the highest when Pareto distribution is applied.
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4 Conclusion

We simulated a retrial queueing system of type M/G/1//N with impatient cus-
tomers in the orbit and with an unreliable server using two different failure mech-
anisms when blocking is applied. Results are obtained by our program to carry
out a sensitivity analysis on different performance measures like the distribution
of the number of customers in the system. Under various parameter settings, the
most interesting measures were chosen which were graphically illustrated. When
the squared coefficient of variation is more than one significant deviation is
experienced between the distributions in almost every aspect of the investigated
measures. Consistently, it was also revealed that besides catastrophic breakdown
less customer is in the system than in the case of a normal breakdown which
is an expected phenomenon but the shape of the curves follows the same ten-
dencies. In future works, the authors aim to carry on investigating the effect of
catastrophic breakdown in other models and performing sensitivity analysis for
other variables like the failure rate or the impatience of the customers.
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Abstract. The Markov models of queuing-inventory systems with infi-
nite buffer were analyzed under different replenishment policies. Besides
traditional positive replenishment, the negative replenishment is consid-
ered after which inventory level instantly decreases. Some customers are
assumed to leave the system without acquiring an item after the service
completion. The ergodicity conditions of the introduced systems, as well
as, formulas for stationary distributions and performance measures were
developed. Total cost minimization problems were solved for the different
replenishment policies.

Keywords: Queuing-inventory systems - Markovian models - Positive
and negative replenishment - Matrix-geomteric method

1 Introduction

Systems where the serving process consists of releasing (selling) resource units
to incoming customers are called Queuing-Inventory Systems (QIS) [1]. The
reason for that naming is that such systems have properties both of Queuing
and Inventory systems. First papers on this subject are known to be [2,3]. QIS
subject has been widely studying by different authors during last three decades.
The current state of QIS theory and its applications were extensively discussed
in review paper [4].

In the most papers on QIS the replenishment is assumed to be positive, that
is upon its completion the inventory goes up by the given positive amount that is
defined by the accepted policy. But in practice, due to different reasons (technical
errors, human errors, etc.) the inventory level may immediately decrease. We call
such QIS with negative replenishment (like in case with negative customers).
To our best knowledge, this kind of models were not studied in the available
literature.

It should be noted that these models look similar to QIS models with per-
ishable inventory. But the main difference is that in latter models items perish
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after some time and inventory goes down, while in our models inventory level
decreases immediately due to negative replenishment. So in our paper we intro-
duce separate class of QIS models with positive and negative replenishment.

2 Model Description

We consider Markov models of QIS system with one server under one of the
three replenishment policies: (s,5), (s,Q), (S — 1,5). Besides the traditional
positive replenishment, we assume negative replenishment after which inventory
level instantly decreases due to unexpected events. The negative replenishment
events are described by Poisson point process with parameter . We assume
that negative replenishment affect the items reserved for service as well. In each
policy lead time is exponentially distributed with average v—!.

The customer income in all models are described by Poisson process with
intensity A. We assume that all customers require the identical item amount.

The customers are accepted for service if upon arrival the server is idle and
inventory level is positive, otherwise customer joins the unlimited queue. Cus-
tomers are assumed to join queue even if the inventory level is 0, i.e. according to
Bernoulli scheme customer joins queue with probability ¢; or leaves the system
with complementary probability ¢o, where ¢1 + ¢o = 1.

Customers in queue are considered impatient, when inventory level drops
down to zero, customers leave the system independently after randomly dis-
tributed time that has exponential distribution with parameter 71.

After the service completion customer according to Bernoulli scheme either
acquires the item with probability o; or leaves the system empty handed with
probability oo, where o1 + 09 = 1. Average service times for both cases have
exponential distribution with averages p; and ps accordingly.

3 Calculation of Stationary Distributions Under
the Different Replenishment Policies

First let’s consider the system under the (s, .S) replenishment policy. The system
is described with Two Dimensional Markov Chain, (2-D MC) with state vectors
(m,n), where n represents the number of customers in the queue, n =0,1,2, ...,
while m represents the inventory level, m = 0,1, ..., S. The state space is defined
as follows:

E=|]JLn)
n=0

where L(n) = {(n,0), (n,1),...,(n,S)} called the n*" level, n =0,1,2,....
Let’s rearrange state space E in lexicographical order as follows

(0,0),(0,1),...,(0,5),(1,0),(1,1),...,(1,5), ....



30 A. Melikov and M. Shahmaliyev

In that case we obtain Level Independent Quasi-Birth-Death Process (LIQBD)
with the following generator:

B Ay

| A A A
G A 4, S
All block matrices in (1) are square matrices of dimension S+1 and their elements
B =||b;;|| and Ay = HaEf)H,i,j =0,1,...,.5 are calculated as follows:

ifi<sj=39
ifi>sj=i—1
—(+ A1), ifi=j=0

v,
K

bij = 2
! —(v+r+N), f0<i<s j=i @)
—(k+ M), ifs<i<S,j=i
0, in other cases

A, ifi=j=0

al =N, ifi£0i= (3)
0, in other cases
” ifo0<i<s,j=S5
K, ifi>0,j=i—-1
all) ={ —(r+v+ A1), ifi=j=0 (4)
W+ E+ A+ o+ pgoz), if0<ij=i
0, in other cases
T ifi=4j=0
i 0i= ]
o = por, ifi#0,0=j (5)

toog, ifi>0,j=14i—1
0, in other cases

Theorem 1. Under the (s, S) replenishment policy system is ergodic if and only
if the following inequality holds true:

A1 = (1= ¢1)7(0)) <7m(0) + (p101 + p2o2)(1 — m(0)) (6)

where

70)=(1+(0+a ) (A+a) ™ =)+ (S—s—1)1+a) ",

- 14
o2t K
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Proof. Let’s designate stationary distribution corresponding to the generator
A=Ay + AL + Ay by 7 = (7(0),7(1),...,7(S)). These variables satisfies the
following system of equations:

TA=0,me=1 (7)

where 0 is null row vector of dimension S+1 and e is column vector of dimension
S + 1 that contains only 1’s. w(m),m =0, 1,..., S is the probability of the state
with inventory level equal to m,m = 0,1, ..., S.

We conclude from (3)-(5) that elements of generator A = ||ai||i,j =
0,1,...,S are calculated as follows:

—v, ifi=45=0
v, if0<i<s,57=8
Uoos + K ifi>0,j=i—1
A5 = . . . . (8)
—(pooa +K+v), f0<i<s,j=i
7(:“202+H)3 ifi > 5,5 =1
0, in other cases

We conclude from (8) that system of linear equations (7) gets the following
form:

(v + (K + p202)(1 = o)) (m) = (K + paor)m(m +1),0 <m <s;  (9)

s
(k4 p2o2)m(m) = (k+ peo2)m(m~+1)(1—dp.5) +v Z 7(1)0m,5,5+1 <m < S.
i=0
(10)
Here and in later formulas 6, , designates Kronecker symbols.

(11)

w = (I14+a)™n(0), fl<m<s+1

Yl 4+ a)5tir(0), ifs+1<m<S

where 7(0) is derived from the normalizing condition, 7 (0)+m(1)+...+x(S) = 1.
According [5] (Chapter 3, p. 81-83) LIQBD we are studying is ergodic iff:

mApe < mAze (12)

Then from (3), (5) and (11) after applying some mathematical transformations
we get (6) from (12).

Note 1. Ergodicity condition (6) has probabilistic meaning. Total summed inten-
sity of incoming requests should be smaller than total summed intensity of out-
going requests. Condition (6) could be replaced with rough but easily checked
condition: A < min(r, w101 + p20s).

Let’s replace stationary distribution corresponding to generator G with p =
(po, p1,...) where p, = (p(n,0),p(n,1),...,p(n,S)),n = 0,1,..... Assuming that
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ergodicity condition (6) holds true, stationary distributions may be calculated
as follows:
pn =poR",n=0,1,... (13)

where R is minimal nonnegative solution of the following quadratic equation:
R2A2 + RA;1 +A9=0 (14)

Probability of border states pg is calculated from the following system of equa-
tions:
po(B+ RA2) =0 (15)
po(l —R)le=1 (16)
where [ is unit matrix of size S + 1.
Now let’s consider model with (s, @) policy. State space of this model is also
given by E, but corresponding generator matrix G is determined as follows:
B A
As Ay Ag

G= 20
Ay A; Ay .

where elements of matrices B and Z; are calculated as follows:

v, ifj=i4+95—s
, ifi>0,j=i—1
By = WAl Hi=g=00 (17)
—(v+r+2A), f0<i<s,j=i
—(k+A), ifs<i<S,j=1
0, in other cases
v, if0<i<s,j=i+S—s
, ifi>0j=i-1
@) = —(r+v+Ad), ifi=j=0 (18)
—(WH K+ A+ por+pg0g), H0<ij=i
0, in other cases

Theorem 2. Under the (s, Q) replenishment policy system is ergodic if and only
if the inequality (6) holds true, where

14a)*tt —1
(1+a)

ol 5 a) —|—S—8—a_1(1—(1—|—a)_8)> .

m(0) = (14 a)~ ¢+ (
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Proof. The elements of generator A= Ay+ Ay + A, are calculated as follows:

—v, ifi=j=0
v, if0<i<s,j=i+S—s
iy = W02 + K, 1fz >Q,j zi.— 1. (19)
—(pooa+k+v), H0<i<s,j=i
—(p202 + K), ifi>s,j=1
0, in other cases

We conclude from (19) that system of linear equations (7) corresponding to
generator A has the following form:

(v + (5 + p202)(1 = 6mo))w(m) = (k + poos)(w(m +1),0 <m <s; (20)

(K + ppo2)m(m) = (k + p2oz)(w(m + 1)(1 = dm,o)
+vr(m—S+58)0m,s,s+1<m<S; (21)

Then from (24) and (21) we get:
(14 a)™ 6H7r(s+1) if0<m<s
T = 4§ m(s+ 1), ifs+1<m<S—s (22)
1-Q4a)™ENr(s+1), fS—s+1<m<S
where 7(s + 1) is calculated from normalizing condition:

(14 a)**tt -1

a(l 1) +Ssa1(1(1+a)s)> .

m(s+1)= (
Taking into consideration (3), (5) and (22) and after applying some transfor-
mations from (12) we conclude that Theorem 2 is true.
Finally, let’s consider model with (S—1,.5) policy. Elements for corresponding
generator matrix G is calculated as follows:
B Ay
G = | A2 4 4o
Ay Ay Ay

where elements of matrices B and :4v1 are calculated as follows:

(S =), ifo<i<S—-1,7=i+1
~ K, ifi>0,j=1—1
bij = —(SV—I—)\qbl), ifi=45=0

—((S=di)v+r+A), if0<i<s,j=1
0, in other cases
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(S — i)y, ifo<i<S—-1j=i+1
0 K, ifi>0,j=i—-1
a;; = —(7 4+ Sv+ A1), fi=j=0
—((S=dv+rK+ A+ po1+ pgoe), if0<i,j=i
0, in other cases

Theorem 3. Under the (S, S — 1) replenishment policy system is ergodic if and
only if the inequality (6) holds true, where

Soglgm
- (S5

Proof. The elements of generator A= Ag + Ap + Ay are calculated as follows:

—(Sv 4+ A1), ifi=j5=0
—(pgo2 + K+ (S—d)), if0<i<S,j=i

aij = { (S — i), f0<i<S—1,j=i+1 (23)
Uaos + K, ifo<i<S,j=i—-1
0, in other cases

We conclude from (23) that system of linear equations (7) corresponding to

generator A is the same as balance equations for one-dimensional birth-death
process, where death intensity is equal to psos + x and birth intensity of state
m is equal to (S — m)v,m = 0,1,...S. Therefore, we get the following;:

S!

m@nlﬂ'(o), m = 0, 17 ceey S (24)

m(m) =
where 7(0) is calculated from normalizing condition.

Then taking into consideration (3), (5) and (23) after applying some trans-
formation to (12) we conclude that Theorem 3 is true.

4 Calculation of Performance Measures

In each replenishment policy the performance measures are calculated through
corresponding state probabilities. So average inventory level S, is calculated as

follows: <
Sav = Z m Z p(n, m) (25)
m=1 n=0

Average reorder quantity Vg, under (s, S) policy:

S oo
Z manS m) (26)
=5

m —s n=0
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Note 2. Average reorder quantities under (s, Q) and (5, S — 1) policies are con-
stants and equal to @ = S — s and 1 correspondingly. Average queue length L,
under all policies is calculated as follows:

oo S
= Z n Z p(n,m) (27)

n=1 m=0

Average reorder rate RR under (s, Q) and (s, S) policies is determined as follows:

M8

RR = wp(0,5+1) + (1202 + %) > pln, s + 1) (28)

n=1

RR under (5,5 — 1) policy is calculated as follows:

S S oo
RR=r>_p(0,m)+ (p2o2+r) > > pln,m) (29)
m=1 m=1n=1

Total loss probability PL is calculated as follows:
Under (s, S) and (s, @) policies:

o T oo
PL = ¢ nz:;)p(n,o) + P nz::lp(”’ 0) (30)
Under (S — 1,.5) policy:

PL=¢y > p(n,0)+ p(n,0) (31)
n=0

T
T+¢)2)\+Sl/;

First operand in formulas (30) and (31) refers to the loss due to the empty
inventory, while the second operand refers to the loss due to customer impatience.

5 Numerical Results

In this section results of numerical experiments will be presented and discussed.
The behavior of performance measures vs s under (s,S) and (s, Q) policies are
depicted in Fig. 1 and Fig. 2.

We used the following parameters for numerical experiments:

A= 30, le = 057 ¢2 = 0-5,0’1 = 04, g9 = 06, H1 = 45,,“2 = 35,

v=8krk=6,7=20,5=20

Sav under (s, S) policy is increasing with the increase of s and is a little bit
higher than (s,@). This behavior is expected as with higher s the inventory is
replenished more frequently up to S which results in higher average inventory
level. But under (s, Q) the replenishment amount is fixed (S — s) and becomes
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SaV

—> (s.5)
-0 (5.0Q)

3.00 -

2.95

2.90

2.85

2.80

RR
—> (s5,5)
201 © (5.0)

2.2 1

1.8 1

1.6 1

1.4 1

1.2 1

0 1 2 3 4 5 6 7 8 9 s
Fig. 1. Dependence of inventory related performance measures on the reorder level s
under (s,.5), (s,Q) policies
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Lay
—> (s,5)
2.745 - -©- (5.0)
2.740
2.735 A
2.730 -
0 1 2 3 4 s 6 7 8 9s
PL
0.125 A - (5,5)
-©- (5,0)
0.100 A
0.075 A
0.050 -
0.025 -
0 1 2 3 4 ) 6 7 8 9 s

Fig. 2. Dependence of customer related performance measures on the reorder level s
under (s,.5), (s, Q) policies

lower with higher s which in turn results in lower average inventory level. Average
order size V,, is also proportional to s which is reflected in graph. We excluded
(s,Q) series from Vg, as it is fixed for given s. RR is also lower under (s,5)
policy due to higher average inventory level.

The average number of customers L, in queue is almost the same for both
policies and increase with s. Customer loss probabilities decrease for higher val-
ues of s due to higher S,,, under both policies.

Behavior of the performance measures against maximum inventory size S
under (S — 1,.5) policy is depicted in Fig. 3. The inventory related performance
measures Sy, and RR intuitively increases, while L., and PL decreases because
with larger inventory system could serve more customers.
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0 : , . . ; ; ’ .
1 7 9 s
RR
5-
m-
15 1
10
1 2 3 4 5 6 7 8 9 s
Lav
285
2.80
275
—a—=a
1 2 3 5 6 7 8 9 s
PL
0.6
0.4
0.2
Qo. T T T T T T T T
1 2 3 4 5 6 7 8 9s

Fig. 3. Performance measures vs inventory size S under (S — 1,.5) policy
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6 Conclusion

The models of queuing-inventory systems with impatient customers and infinite
buffer were studied under (s,S), (s,Q) and (S, S — 1) replenishment policies.
The negative replenishment were considered that decreases the inventory level.
Customer enters the system even when the inventory level is zero. We assume
that customers after being served according to Bernoulli scheme either leaves the
system empty handed or with an item from inventory. We used 2D Markov chains
with tridiagonal generator matrices for mathematical modeling of the system.
Ergodicity conditions were found and the algorithm for calculation of system
performance measure was developed. Numerical experiments were performed
and behavior of performance measures was analyzed under different policies.
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Abstract. In this work we analyze an open queueing network with batch
services. In more detail, the arrival process is Poissonian and each node
consists of a single server and an infinite waiting queue. Arrivals are
served in fixed-size batches: if the number of customers in a node is less
than the predefined batch size, the server remains idle, otherwise he will
select the required number of customers, which then will be served as a
unique batch with exponentially distributed service time. In this paper
we show that, under suitable conditions on the routing matrix, such
queueing network is equivalent, in terms of stationary distribution, to
a Jackson network with single-server nodes and state-dependent service
rates. Finally, the goodness of the proposed approach is confirmed by
comparing analytical and simulation results.

Keywords: Open queueing networks -+ Analysis - Batch service

1 Introduction

Queueing systems and networks with batch services attract the interest of many
researchers, since they permit to model and analyze various multi-user sys-
tems [1,2], large scale semiconductor manufacturing systems [3], cloud comput-
ing systems [4] and wireless sensor networks [5].

The analysis of any queueing network is aimed at obtaining expressions for its
stationary characteristics, the most important of which is the stationary prob-
ability distribution of the states of the system. Since the equilibrium equations
for queuing networks with batch services have a high dimensionality, the calcu-
lation of the stationary distribution as a numerical solution of these equations is
computationally difficult. Therefore, special attention has been devoted to the
search for product-form solutions.

It is worth noticing that the fundamental works on queueing networks with
batch services are relatively recent, as they were published in 1990 [6,7]. In more
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detail, in [6] a continuous-time Markov chain is introduced to model queueing
networks with simultaneous changes due to batch services, or discrete-time struc-
ture and clustering processes such as those arising in polymer chemistry. It is
shown that if multiple instantaneous state transitions of the process are allowed
and the Markov chain is reversible, then its stationary distribution has a product-
form. In [7] a discrete-time closed queueing network with batch services is con-
sidered and the state of the network is defined by a vector with dimension equal
to the number of customers. Each element of the status vector is associated with
a specific customer and indicates the node occupied by that customer. So, cus-
tomers transitions are reduced to changes of the corresponding labels, and it is
assumed that the change of a label does not depend on the status of the labels
of the other customers. It is shown that on an irreducible set of states and for
arbitrary given functions of service and routing, there is a product-form for the
stationary probability distribution of the queueing network states. Chao [8] and
Economou [9] considered networks, for which the quasi-reversibility conditions
are met and the groups of customers at the end of the service in one node always
pass to another node together.

To analyze queuing networks with batch services and an arbitrary distri-
bution of the service time that do not admit a product-form of the stationary
distribution, in [3,10] it was proposed to use the decomposition method. Finally,
in [11,12] the stationary distribution was calculated as the normalized solution
of the system of equilibrium equations.

In this paper, we consider open queueing networks with service of fixed-size
batches of customers and independent routing. It is assumed that the batch size
is significantly smaller than the number of nodes to which the customers can be
routed at the end of the service. Thus, the network nodes work independently
and this consideration permits to simplify the analysis of the queueing network,
which is reduced to the investigation of the individual queues in isolation. In
more detail it is proposed to calculate the stationary state probability distribu-
tion of the open network in a product-form, similar to the case of birth-death
processes after recalculating the transition rates. To the best of our knowledge,
this approach is new. Until now, indeed, the probability generating function
[4,13-15], the Laplace-Stieltjes transform [16], and the direct calculation of the
stationary distribution as a solution of the Kolmogorov equations [17] have been
mainly used to calculate the stationary characteristics of the queueing network.

The rest of the paper is organized as follows. Section 2 introduces the model
of the queueing network, while in Sect. 3 an equivalent (in terms of stationary dis-
tribution) Jackson network with single-server nodes is proposed. In more detail,
for such equivalent system state-dependent service rates as well as expressions
for the stationary probability distribution are derived. Then, Sect.4 compares
the values of the analytical expression with the simulation results, and analyses
the dependence of the characteristics of open queueing networks on different
system parameters (batch size, arrival rate, service rate).
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2 Statement of the Problem

Consider a continuous-time open queueing network N consisting of L nodes .5;,
i eI, I =4{1,...,L}. Customers arrive to the queueing network N from an
outside source (denoted in the following as Sy) according to a Poisson stream of
rate Ag. Customer transitions between nodes and the source are defined by the
routing matrix © = (0;;), 4,5 = 0,..., L, where 6;; is the transition probability
from node S; to node S;. The state of the network is defined by a vector s =

(s1,-..,81), where s; is the number of customers at node S;. Denote by X =
{s:s; > 0} the state space of the queueing network N.
Each node S;, i = 1,...,L, operates as an infinite capacity single-server

queue. Arriving customers are placed in the waiting queue if the server is busy.
Customers are served in batches, and let b; be the customer batch size for node
S;. The server remains idle until the required number b; of customers arrives
at the node and then the service of the batch starts immediately; otherwise, b;
customers are selected in any order for service, while the others remain in the
queue. The service times of batches at node S; are exponentially distributed
with parameter p;, ¢ = 1,..., L. After a batch finishes its service at node S;,
each customer will go, independently of the others, to node S; with probability
05,4, =0,1,...,L.

Our aim is to find the stationary distribution 7(s) = (m1(s1),...,7n(sL)),
s € X, for the queueing network N, where m;(s;) represents the stationary
distribution for node S;, s; =0,1,...,7=1,..., L, starting from the analysis of
a single node.

3 Analysis of the Model

In this paper we analyze large scale networks with individual routing of the
customers, assuming that the number of possible destinations is significantly
larger than the batch size. Hence the probability of the simultaneous arrival of
two or more customers in a node can be neglected. Therefore, we will assume
that each node in N is fed by a Poisson stream of customers.

First we will study the isolated node S;, i = 1,..., L. It is known that the
equilibrium equations for this node have the form

/\iﬂ'i(n) = ,Uiﬂ'i(bi), n = 0,
(N + pi)mi(n) = mi(n — 1) + i (b +n), n > b;.

where \; denotes the arrival rate to node S;,i=1,...,L.

We define a birth-death process &;, which will be equivalent in steady-state
probabilities to the Markov process describing the node S;. Let the process &;
be defined on a set of states {0,1,...}, let \; = X\;(n) be the transition rate of
the process &; from state n to state n+ 1, which does not depend on the state n,
n € {0,1,...}, and let f1;(n) be the transition rate of the process &; from state
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n to state n — 1, where n € {1,2,...}. The states {0,1,...} and the parameter
A; of the process &; correspond to the states {0,1,...} and the parameter A; of
node S;. Let us find the rates g;(n), n = 1,2,.... To this aim, note that the
steady-state probabilities of the birth—-death process &; are given by [18]

k=1,2,..., (2)

where

By substituting (2) in (1), we get the expressions that define i;(n), n =1,2,...,

Al
fi(n) = A\ — pi= i ,1<n<b—1,
fi(mn) i 'u,ui(n—ﬁ-l)-...-,ui(bi—i—n) <n<0o; 5
{ 3)
fi(n) = Ai + pi — pi= — ; n=> b
paln) S A O ) B A (Y
Let M; = lim g;(n); if the limit exists, then:

ATt = (N + pi — M) M

or
MPHY — (N + i) MY+ A i = 0. (4)

The existence of the equivalent birth-death process & requires that the previous
equation has a positive solution, fulfilling the stability condition for each node S;.

The answer is provided by the following theorem (without loss of generality
we denote the generic M;, for i € T by x).

Theorem 1. The equation
2 — (A4 )b + A =0 (5)
has two positive roots, the largest of which belongs to the interval

<b(/\+u) (A+u)”“/\”u>
b+1 "’ (A + p)?

Proof. Consider the function
fl@) =" — (A + e’ + 2\

for A < by and b > 1.

It is easy to verify that f(x) is continuous for any x € R and z; = X is a
root of f(x). To determine the existence of other roots let us consider the first
derivative of f(x):
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b
(@)= (b+ 12" [z — ——(A 6
fe) = 00 (o= 0w ). )
The equation f’(x) = 0 has only one positive root
. bA+p)
b1
with * > x1. Indeed,
b b — A
¥ —x = ()\ +p)— A= al >0,

b+1

since A < by and b > 1. Since f'(x) > 0 for

(b+1 )

then the function f(z) is increasing in such interval. Moreover,

(522)

and f(A+p) > 0, hence in the interval (b()‘ﬂ”) A+ p) there is a value of x such

that f(x) =0
To further refine the estimation of the root, let us note that in the above-
mentioned interval the function f(z) is convex, since

f"(x) = bz 2((b+ 1)z — (b—1)(A+p)) >0

for
b+ 1) (b= DA+ p)
b+1 b+1 '

The tangent line to f(z) at the point x = XA+ pu is

x >

y(@) = A+ A+ )’ (@ — (A + p)

and its intersection with the horizontal axis is

X

Since the function f(z) is convex, xz( is an upper bound for the roots of f(xz),
and this implies that the largest root of Eq. (5) belongs to the interval

(MA+M Q+MW“—A%>
b+1 "’ A+ p)b '
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Taking into account the previous theorem and the stability condition of the
equivalent birth-death process, Eq. (4) has a unique root, located in the interval
(Nis Ai + i), which can be determined numerically (explicit closed-for solutions
can be easily derived only for b = 1 and b = 2). From the system of Egs. (3) it
follows

fi(bs) = pi(bi + 1) = (b +2) = --- = M;,

and then the service rates fi;(b; — 1), 1;(b; —2),. .., f;(1) can be easily calculated.
Thus, the rates j1;(n) are determined for each state n of process &;.

The results obtained for the process §; can be applied to any node, and so we
can create an open queueing network N with nodes S; and service rates fi;(n),
where n is the number of customers in the node §i7 n=12...,t=1,...,L.
The other parameters of N coincide with the corresponding parameters of the
original queueing network N.

N is equivalent in stationary distribution to the queueing network N with
batch services and is a Jackson network.

The arrival rates in nodes S; are determined by the following equations

o
ANi=—Xo,i=1,...,L,
wo

where the vector of visitation rates w = (w1, ...,wy) is the solution of the equa-
tion w® = w with the normalization condition Ef:o w; = 1.

The queueing network N and its equivalent network N are stable if the
utilization coefficient in the node S;, i =1,...,L,

i
bipi

Pi = <]-7

and, under such conditions, we can compute the stationary distribution for N.
We obtain

L
m(s) = Hm(si), se X,

where
Sq A,L
ﬂ'i(si) —7Ti(0) | I ﬁl(n)

n=1
Then, the average number of customers in the node S;, ¢ =1,..., L, is given

by
5 = Z nm;(n),
n=1

the average sojourn time in the node S;, i =1,...,L, is
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and the average response time of the queueing network is

4 Numerical Examples

Numerical examples are reported in this section to verify the goodness of the
product-form approximation for complex networks and investigate the depen-
dence of their characteristics on different system parameters (batch size, arrival
rate, service rate). Although different topologies have been investigated, for sake
of brevity just one network topology is considered, focusing on overall system
performance parameters as well as on characteristics of single queues.

Consider the queueing network N with the following parameters (unless oth-
erwise stated): L = 14, b = (3, 2, 2, 3, 2, 2, 3, 3, 2, 2, 3, 2, 2, 3),
w= (0.8, 0.6, 0.9, 0.6, 0.8, 0.8, 0.9, 0.6, 0.7, 0.8, 0.9, 1.0, 0.7, 0.7), and

0.0 0.3 0.4 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.0
0.0 0.0 0.0 0.0 0.0 0.1 0.1 0.2 0.2 0.1 0.1 0.1 0.1 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.1 0.1 0.2 0.1 0.2 0.1 0.1 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.1 0.1 0.1 0.1 0.2 0.2 0.1
0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.1 0.1 0.1 0.1 0.1 0.2
0.2 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.2 0.1 0.1 0.1 0.1
©=102 0101 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.1 0.1 0.1
0.2 0.0 0.0 0.0 0.1 0.1 0.1 0.0 0.0 0.1 0.1 0.1 0.1 0.0 0.1
0.1 0.1 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.1 0.2 0.1 0.1
0.3 0.1 010.10.10.10.10.00.00.00.00.00.0010.0
0.3 0.0 0.0 0.0 0.0 0.1 0.1 0.1 0.1 0.1 0.0 0.0 0.0 0.1 0.1
0.3 0.1 0.1 0.1 0.1 0.0 0.0 0.0 0.0 0.1 0.1 0.1 0.0 0.0 0.0
0.3 0.0 0.0 0.0 0.0 0.1 0.1 0.1 0.1 0.0 0.0 0.1 0.1 0.0 0.1
0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.1 0.1 0.1 0.1 0.1 0.0

The considered network satisfies the assumptions introduced above. Indeed,
the network consists of a relatively large number of nodes, the size of the batches
that are served together is significantly less than the number of possible output
nodes and the routing probabilities are of the same order of magnitude (there is
no privileged path through the network). Hence, the Poissonian assumption can
be reasonably assumed for any node of the network.

The first two sets of tests investigated the accuracy of the developed method
by comparing the analytical values with the results of discrete-event simulation.
In more detail, in the first experiment we analysed the (overall) average response
time as a function of the input rate Ag.

Table 1 shows that the largest difference in the values of 7 is observed for
Ao = 0.1 and does not exceed 10.2%, while for the other values of )\g, the
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Table 1. Average response time of the queueing network.

Ao 0.1 0.5 1.0 1.5 2.0 2.5 2.7
Approximation | 107.32 | 27.57 | 18.29 | 16.20 | 16.76 | 20.62 | 24.06
Simulation 118.25 | 28.78 | 18.61 | 16.35 | 16.86 | 20.82 | 25.24

deviation is no more than 5%. Note that the intensity of the flow Ay = 2.7 is
almost the maximum for the network under consideration, since for such value
the stability condition for node Sy is still met.

In the second example we focused on a specific node (the queue S7), consid-
ering the average number of customers (Tables2) as well as the average sojourn
time in the node (Tables 3) for different values of the service rate pu7 with fixed
arrival rate \g = 1.5.

Table 2. Average number of customers in the node S7.

W7 0.2 |04 |06 |08 |09 |10 |1.2
Approximation | 8.722.53 | 1.89 | 1.63 | 1.56 | 1.5 | 1.41
Simulation 8.662.531.91|1.66|1.58|1.52|1.43

Table 3. Average sojourn time in the node S7.

e 0.2 04 |06 08 |09 |1.0 |1.2
Approximation | 18.26 | 5.31 | 3.95 | 3.42 1 3.26 | 3.13 | 2.95
Simulation 18.1315.30 | 3.99 | 3.47 | 3.31 | 3.18 | 3.00

The characteristics of the node S7, derived by discrete-event simulation, were
calculated in stationary conditions with a confidence interval of 0.001 and a
confidence level higher than 0.95.

In the third experiment we investigated the dependence of the stationary
characteristics of the nodes Sy, Sg and S7; on the intensity of the incoming flow
Ao (see Fig. 1 and 2). The characteristics of the other nodes are not shown in the
graphs for sake of clarity, since their behavior does not differ qualitatively form
the reported ones.

Figure 1 shows that the average number of customers in all systems mono-
tonically increases with \g. Instead, the average (node) sojourn time reaches a
minimum for some value of Ay as highlighted by Fig.2. This can be explained
as follows. When )¢ is close to zero, the device is idle for a long time, and
the customers forming an “incomplete” batch have to wait in the buffer until
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Fig. 1. Average number of customers in Fig.2. Average sojourn time in the
the nodes Sa, Sg and Si;. nodes S, S and Si1.

the last element of the batch enters the system. Instead, when the arrival rate
into the considered system approaches its service rate, the average waiting time
increases significantly. Thus, there is an optimal value of the arrival rate, at
which the average sojourn time in the node is minimal.

The fourth experiment is devoted to the study of stationary characteristics
of the nodes S7 and Sy for different sizes b of the batch in these systems. The
input rate in this experiment is again \g = 1.5.

0.4

~ =

15 <03

1.2 0.1

Fig.3. Average number of customers Fig.4. Utilization coefficient of the
in the node S7. node S7.

The minimum value of the average number of customers in both nodes is
achieved when the batch size is two (Fig. 3 and 5), while the utilization coefficient
is a monotone decreasing function of b (Fig.4 and 6), but its numerical value
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0.4
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Fig. 5. Average number of customers in Fig. 6. Utilization coefficient of the node
the node So. So.

10

:
3.5

3

Fig. 7. Average number of customers in Fig. 8. Average sojourn time in the node
the node Ss. Ss.

depends on the arrival rate at the considered node (in our example pg is almost
twice pr). It is worth noticing (see Fig. 6) that for by = 1, the utilization py of
the node Sy is close to 1 and this is confirmed by the high value of the number of
customers in the system (59 & 20 as shown in Fig. 5). When by = 2, then 59 =~ 2,
while the increment of bg leads to a slight increase in §9. Thus, the increase of the
batch size can significantly improve the basic average characteristics of service
systems. Actually, as shown by numerical experiments, the minimum value of
both the average sojourn time and average number of customers in the system
can be assumed at different values b, depending on the network topology and
the routing matrix.

Finally, we calculated the stationary characteristics of the nodes S5 and Sy
for different values of the service rate in these systems (assuming, as before,
Xo = 1.5).
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IS4

So

0.4 0.5 0.6 0.7 0.8 0.9 1 0.4 0.5 0.6 0.7 0.8 0.9 1
o Ho

Fig. 9. Average number of customers in Fig. 10. Average sojourn time in the node
the node Sy. So.

The graphs shown in Fig.7, 8, 9 and 10 decrease monotonically with the
growth of p and asymptotically tend to their limit values.

5 Conclusions

In this paper large-size open queueing networks with batch services are consid-
ered. Under the assumption that the number of output nodes is significantly
more than the batch size, it is shown that the stationary distribution of the
queueing network can be expressed in product-form. Then, the parameters of
the equivalent queueing network are derived and the goodness of the approxi-
mation is verified by means of discrete-event simulation.
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Abstract. This paper presents an optimal control policy that minimizes
the long-run cost in an (s, S) production inventory system with positive
service time. The Matrix Geometric method is used to analyze the sys-
tem. A necessary and sufficient condition for system stability is obtained.
Some significant system performance measures are defined, and the effect
of system parameters on performance measures is illustrated numerically.
The Optimal (s,S) pair is determined for the specific set of parameter
values, and the effects of the parameters on the cost function are graph-
ically illustrated.

Keywords: N-policy - Production inventory - Service time - Matrix
Geometric Method

1 Introduction

In most of the inventory models, it is crucial for the server to decide when to
start its service, as an intermittent setup can greatly increase operating costs. A
company’s inventory control policies determine how the company manages the
movement of inventory under its control. Proper inventory control policies and
procedures reduce the cost associated with the inventory. In some production
and manufacturing systems, the high switching costs associated with inactive
servers often make it uneconomical to provide service immediately after the first
customer arrives. In such cases, it is better to begin the service only when a
few customers arrive, say N, so that excessive setups can be avoided. In this
work, we introduce N policy to a production inventory with positive service
time. According to the policy, the status of the server is turned ON only when
there are N or more customers encountered in the system and the inventory
level is positive and is turned OFF when the system is empty.

Inventory with positive service time is first investigated by Berman et al.
[2] where demands and service formed two distinct deterministic processes. A
detailed review of inventory models involving positive service time is given by
Krishnamoorthy et al. [8]. Krishnamoorthy et al. [5] dealt with production inven-
tory with positive service time. The authors discussed the stochastic decompo-
sition of the system by considering the assumption that the customer does not
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join the system when the inventory level is zero. Krishnamoorthy and Jose [6]
analyzed and compared three production inventory systems with positive service
time and retrial of customers. The inter arrival time of customers, service time,
production time and inter retrial times are assumed to follow exponential distri-
butions. The authors arrive at the conclusion that overall and successful retrial
rate of customers increases with the increase of arrival rate and decreases with
the increase of production rate or service rate. Jose and Rejitha [11] analysed
a stochastic inventory system with two modes of service rate and retrials. They
derived several important performance measures of the system in the steady
state and a suitable cost function is constructed and analyzed numerically for
the expected minimum cost. Jose and Salini [4] studied a M AP/PH/1 produc-
tion inventory model with varying service rates. They assumed that, when the
inventory level decreases to s, service is given at a reduced rate and an arriving
customer who identifies the server busy or inventory level zero, proceeds to an
orbit of infinite capacity and retries from there. They computed some of the sys-
tem performance measures and constructed a suitable cost function. Jose and
Beena [3] studied a production inventory system with two heterogeneous servers
involving multiple vacations. By assuming poisson arrival rate and exponential
server vacation rate, they obtained the stability condition and performance mea-
sures of the system.

Over the past decade, an increasing attention can be seen in queuing scenario
to control the queue by applying the concept of N-policy. The concept of N-policy
is most commonly used for controlling service. This has been widely accepted due
to their applicability for modeling purposes of any production and manufacturing
system as well as computer and telecommunication system. N-policy was first
introduced in 1963 by Yadin and Naor [12] in queueing literature to minimize
the total operational cost in a cycle. Artalejo [1] compared N, T, D policies on
M/G/1 queueing system. The author showed that the D-policy is superior to
the N-policy when the cost function is based on the mean work-load, whilst the
average queue length is used to show the superiority of the N-policy over the
T-policy. The author also showed that the T-policy is the worst policy under
both cost structures and the relation between the optimum N and D policies
depends on the employed cost function. Krishnamoorthy et al. [7] was the first
to introduce N-policy in (s,.S) inventory system with positive service time. They
assumed that the lead time is zero and showed that the cost function is separately
convex in the variables S and N. They also proved that the cost is minimum at
s=0.

The technical aspects of this paper are presented in four parts. The first part
offers a description of the model. In the second part, it moves on to the steady
state analysis and computation of system performance measures. Numerical and
graphical illustrations are given in the third section. Finally, it is concluded by
computing the optimal (s, .S) pair and the optimal value of N.
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2 Description of the Model

Consider an (s,.S) production inventory system with a single server and positive
service time. Customers arrive according to the Poisson distribution with rate A
and service rate and production rate follow Exponential distributions with rate
w and 0 respectively. Each production is of 1 unit and the production process is
ON when the inventory level reaches s and is switched OFF when the inventory
level reaches S. Whenever the server is idle, it is switched off and is activated only
when N customers accumulate and when there is a positive on-hand inventory.
The following assumptions and notations are used in this model.

Assumptions

e The arrival of customers follows Poisson distribution with parameter \.

e The service pattern and production process follow exponential distributions
with parameters p and (8 respectively.

e The server is switched OFF when the system is empty and it is turned ON
at the instant when there are N customers in the waiting line; and there is a
positive on-hand inventory.

Notations

N(t) : Number of customers in the system at time ¢.

1(t) : Inventory level at time ¢.

) : {O, if server is idle at time t;

1, if server is busy at time t.

OF 0, if the production is OFF mode;
" | 1, if the production is ON mode.

e:(1,1,1,..., 1)T, column vector of appropriate dimension.

Then Z(t) = {(N(¢t),C(t), J(t),I(t)),t > 0} is a Quasi Birth Death Process
o0
on the state space S = |J L(i) and is independent for ¢ > N + 1, where,

=0
L(0) = {(0,0,0,);s + 1 < j < S} J{0,0,1,5);0 <j < S—1},
For1<i<N-—-1,
L(i) = {(5,0,0, /)5 + 1 < j < S} J4,0,1,j);0 < j < S — 1}
(G 1,0,5)5s +1 <5 < SHUG L 1L, j)1 <5< S =1},
For ¢« > N,

L(i) = (1,0,1,0) | J{(,1,0,5);s + 1 < j < S} J{(, 1, 1,51 <j < S -1}
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Arranging the states in the lexicographic order, infinitesimal generator of the
process {Z(t)|t > 0} is a block tridiagonal matrix given by,

0  [Boo Boi i
1 By AT Aj
2 A5 AT Ag
N_1 2 1 0
-~ As A Ay
. A2 A1 AO
N+1 Ay Ay Ay

where the block matrices are obtained as follows:

A, ifp=q¢; p=12,..,5 —s,
—(A+08), ifp=¢ p=5S-s5+1,..,25-s5,
[Bool(pg) = 1 5, ifp=2S—s & q=5-s,
g=p+1; p=S—s+1,.,28—s—1,
0, otherwise.

A ifp=q; p=1,2,..,25 — s,
[Bo1](pg) = ;
0, otherwise.

w, ifp=2S—-s+1 & gq=85+1,
p=2S—-s+1+q; ¢q=1,2,...,.85—s—1,

[Bro](pa) = p=2S—s+¢q; qg=S—-s+1,.25—-s—-1,
0, otherwise.
=, ifp=¢q; ¢q=1,2,...,5—s,
~(A+ 1), ifp=¢ ¢q=5-s5+1,..25 — s,
—(A+p), ifp=¢q; ¢q=25—-s+1,,...,35 —2s,
—(B+A+p), ifp=qg ¢g=35—-2s+1,,..,45 —2s—1,
[AT](pg) =< B ifg=p+1;, p=S—-s5+1,..25—-s—1,

p=2S—s & q=85-s,
g=p+1;, p=35—-2s+1,,..,45 — 25 -2,
p=4S—-2s—1 & ¢q=35—2s,

0. otherwise.

A ifp=¢q; q=1,2,...,45 — 25 — 1,
0, otherwise.

[Ao]*(pq) = {
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p, ifp=2S—s+1andqg=35—s,
g=p—1;, p=25—5+2,..358—2s,
[A3](pq) = p=35S—2s+1; g=S—s+1,
p=q—1; p=3S—25+2.45 —2s—1,

0, otherwise.

A, ifg=p+1; p=1,2,...,5 —s,
p=S—s+1 & q¢=1,
[Ao]**(pq) = q=p, p=S—-s5+2,..,25 — s,
g=p—(2S—-s—-1); p=2S—-s+1,..,45 —-2s -1,

0, otherwise.

p, ifp=2 & ¢=35-s5,
q:2S—8—2—|—p; p:3,47._.75’_8+17
[A571(pg) = p=S—-s5+2 & qg=S-s+1,
q=2S—5-2+p, p=S—5+3,..,25—s,

0, otherwise.

A, ifp=¢q, p=1,2,..25 —s,
A =
Aol (pa) {0 otherwise.
7()‘+ﬂ)7 lfp:qil,
—(A+ ), ifp=¢q; p=2,3,..8—s+1,
—(B+X+p), ifp=¢ p=S—-5+2,,..,25—s,
[A1](pg) = 1 B, ifp=1 & ¢=S5—-s5+2,

g=p+1,p=S—-s+2,..,285 —s5—1,
p=25—-s5s & ¢q=8-s5+1,

0, otherwise.

w o ifp=2 & ¢g=5+41,

g=p—1, p=3,4,...,5 —s+1,
[A2)(pg) = p=S-5+2 & q=1,
p=q—1;, p=S—5+3,..,25 — s,

0, otherwise.

3 Steady State Analysis

Let A be the generator matrix Ayg + A; + As. The entries of A is given below:
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—B, ifp=q=1,
— L, ifp=q¢; p=2,3,...5—-s+1,
—(B+up), ifp=¢ p=S—-s5+2,,..,25—s,
8, ifp=1 & ¢g=5S—-s+2,
g=p+1;, p=S—-5+2,..,25-s—-1,
[A](pq) = p=2S—-5 & ¢=8-s+1,
I ifp=2 & ¢=85+1,
g=p—1, p=3,4,...,5 —s+1,
p=S—-s+2 & qg=1,
p=q—1, p=S—-s5+3,..,25 — s,
0, otherwise.
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Theorem 1. The steady state probability vector ma = (w1, T2, ..., Tag—s) COTTE-
sponding to the generator matriz A = Ay + A1 + A is given by
T = Y;Ts_s41, where

pj =

(1-5)*

and Ts—s+1 = Gy B (5P (5177

Proof: We have myA =0 and m4e = 1.

From the equation m4 A = 0, we obtain the following system of equations.

B+ pums—sy2 =0,

—pm + prgg1 = 0,

—UTS_s41 + Pras_s = 0,

—(u+ B)s—sq2 + B + pms_sy3 =0,
=+ B)Tx + Br—1 + pmgy1 = 0,

(1 + BT + pma + s + prsy2 = 0,
—(p+ B)T) + Bre—1 + pmpg1 = 0,

—(p+ B)mas—s + Prag—s—1 = 0.

WD o,

1 j=2,..,8—s+1,
<%)S+2*i’<j;(%)s’s> j=8—-54+2,..,5+1,
<au4@fﬂ“ﬂ i=S+2..25—s—1,
% 0 j=28—s.

k=S—s+3,..5.

k=S+2,..25—s—1.
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Solving the system of Egs. (1) and using the normalising condition m4e = 1, we
obtain the required result.

Theorem 2 (Stability condition). The process {Z(t)|t > 0} is stable if and
only if X < (1 —m1)p, where

(51 - (50 -§)
(

Proof: Since the process {Z(t)|t > 0} is a level independent QBD, it will be
stable if and only if mgqAge < waAse(see Neuts [10]). Here myAge = A and
maAre = (1 — 71)u. Using Theorem 1 we get the required result.

3.1 The Steady State Probability Vector of G

Let the steady state probability vector x of G can be partitioned according to
the levels as
X= (39(0),:8(1), ,(ﬂ(N - 1)ax(N)a ),

where z(i),1 < i < N — 1 contain 45 — 2s — 1 elements and all other sub
vectors contains 2S5 — s elements. The QBD process Z(t) is state independent
for ¢ > N + 1. Therefore the steady state solution is of the form (see Latouche
and Ramaswami [9].)

TNy14j =N R > 1
where R is the minimal nonnegative solution of the matrix quadratic equation
R?As + RA; + Ap = 0. R can be calculated from the iterative procedure (refer
Neuts [10])

Rnj1 = —(R2 Az + Ag)Ar .

Also x satisfies the equations xG =0 and x e=1.

Thus we obtain the following system of equations

z(0)Boo + (1) B1o = 0,
2(0)Boy + (1) A% + (2) A5 — 0,

w(i— DAL+ 2() AT +2(i+1)A3 =0, 2<i<N—2.
2(N — 2)A% + o(N — 1)A* + 2(N)A5* = 0,
2(N — 1)AZ + 2(N) Ay + 2(N + 1) As = 0,

x(N)AO + x(N + 1)(A1 + RAQ) = O7

N-1
x(0)e + Z z(i)e+x(N)e+2(N+1)(I —R)le=1. (3)

Solving Egs. (2) and (3) we get x.
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3.2 System Performance Measures

The steady state probability vector for the system allows us to calculate the
system’s measures of effectiveness. We partition the components of the steady
state probability vector x as

z(0) = (2(0,0,0,k),2(0,0,1,5));k =s+1..5;7=0,1....5 — 1.
For1<i< N —1,
z(i) = (2(4,0,0,k),z(4,0,1,5),x(i, 1,0, k), z(i, 1,1, n)),

k=s+1.5 57=01.5-1, n=12..5-1.
For i > N,

x(i) = (2(4,0,1,0),2(4,1,0,5),2(:, 1, 1,k)j =s+1,...,S;k=1,...,5 — 1.

With the above notation, we obtain the following system performance measures.

1. Expected Number of customers in the system,

EC =37 ix(i)e

= Zz 1 ia(i)e + Na(N)e+ 372 v ix(i)e

= Zl 1 Yiz(i)e + No(N)e + x(N +1)(N(I — R~ + (I — R)2)e.

2. Expected Inventory Level.

S S—1
EI= Y jz(0,0,0,5) + Y _ jz(0,0,1, )
j=s+1 j=0
N—-1 S S—1 S
Z (,0,0,4) + Y ja(i,0,1,5) + Y ja(i,1,0,5)
i=1 j=0 j=s+1

S—1 S—1
+ ) (i, 1,1,5)) +Z Z]xz,l,OJ +> g, 1,1, ).
j=1 Jj=1

= i=N j=s+1
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. Probability that the server is idle,

S—1

< .
e+z > (@(3,0,0,5) + > 2(3,0,1,5))
j=0

i=1 j=s+1

+Z i,0,1,0).

. Expected Number of customers in the system when the server is busy.

N-1 S —

EChyusy = Zz( Z (4,1,0,7) Z (1,1,1,5))

=1 j=s+1 j=1

S—1

+Z Z 2(i,1,0,5) + Y (i, 1,1,5))

i=N j=s+1 j=1

. Expected Number of customers in the system when the server is idle,

N-—-1 S S—1
ECige = Y _i( Y (2(i,0,0,5) + Y x(i,0,1, )
i=1  j=s+1 =0

(oo}
+ > ix(i,0,1,0).

. Expected inventory in the system when the server is busy,

S—1
Elpusy = Z Zym ,0,0) + > ja(i,1,1,5))
j=1

=1 j=s+1

S—1
+Z Z Jo(i,1,0,5) + Y ja(i 1,1, ).
j=1

=N j=s+1
Expected inventory in the system when the server is idle,

s S—1
ELge = () j©(0,0,0,5) + Y jz(0,0,1,))
j=s+1 §=0
N— 5-1
Z ijzOOJ—&—Z]sz -
=1 j=s+1 7=0
. Expected number of items produced,
S—1 N—1 5—1 S-1
EP =3({>_=(0,0,1,5) + > (> x(i,0,1,5) + Y _ (i, 1,1,5))
7=0 =1 45=0 j=1
5—1

+Z 2(i,0,1,0) + Y x(i,1,1,5)}).

Jj=1



N-Policy for a Production Inventory System with Positive Service Time 61

9. Expected Switching Rate for production,
ESy =p» x(i,1,0,5+1).
i=1

10. Expected Switching Rate for service,

S S—1
BESy =AY @(N-1,0,0,5)+ > (N —1,0,1,5)).
j=s+1 Jj=0

11. Expected Number of departures after completing the service,

S—1 S

ED = /L Z Z Z 1,1 ])“l‘ Z LU(%].,O,])))

j=s+1

3.3 Cost Analysis

Now, we develop the following cost function by means of some of important
performance measures given in Subsect. 3.2. The expected total cost per unit
time,

ETC = cgES| + 1 EP + coESy + c3EI + ¢4, EC + cs ED,

where,

co: fixed cost for production,

¢1: production cost/item/unit time,

co: reward cost of customer when the server is idle/customer/unit time,
cs: holding cost of inventory/unit/unit time,

cq:holding cost of customer /unit time,

¢5: cost of service/item/unit time.

4 Numerical and Graphical Illustrations

This section provides the details of numerical experiments that have been car-
ried out for studying the effects of variation of different parameters on various
performance measures. Figure 1l shows the plots of variation of expected total
cost with respect to the different parameters S,s, N, A\, 8 and p. Table1 shows
the effect of A, 8 and p on performance measures.
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Fig. 1. Variation of ETC with respect to various parameters

From Table 1(a), it is clear that when the arrival rate A increases, the expected
number of customers, expected production rate and expected departure rate
increases, while the mean on-hand inventory level decreases. As the mean arrival
rate increases, more items are taken by customers from the inventory and hence
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Table 1. Effect of parameters on performance measures

Table 1(a). Effect of A on performance measures
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Table 1(b). Effect of u on Performance measures
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Table 1(c). Effect of 8 on performance measures
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S=45s=13,N =4, =15 =2.
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the on-hand inventory level EI decreases. Furthermore, as this inventory level
decreases, the fraction of the time that the production process is switched ON
will increase and hence the mean production rate EP also increases. It is observed
from Table1(b) that expected inventory and expected number of customers
decrease with the increase of u, while the expected production rate and expected
switching rate for service increases. This can be explained as follows. When the
service rate increases, more customers are served and hence the inventory and
number of customers in queue reduces. A decrease in the number of customers
may result in the system being empty. So there may be more chances for the
server to take a vacation which leads to an increase in the expected switching
rate for service. In Table1(c), one can see that the expected production rate,
expected inventory level and expected departure rate increase with the increas-
ing of the production rate 3, while the expected number of customers decreases.
This agrees with our intuition that as the production rate increases, more items
are produced and replenished to the inventory which results in an increase of
the mean production rate EP and the mean on-hand inventory level EI and a
decrease in the expected number of waiting customers.

Optimal (s, S) Pair

The variation of the expected total cost with respect to (s, S) is shown in Table 2
and Fig. 2. The optimum value of (s,.S) pair and N are obtained by considering
suitable parameter values. For the set of parameters S = 45,5 =13, N =4, =
15,0 =2,8=2,¢0 =10,¢1 = co = ¢3 = ¢5 = 1, ¢4 = 8, the optimal(s, S) pair is
found to be (13,45) and optimum value of N is 4. The minimum cost is obtained
as 43.0784

Table 2. Variation of ETC with respect to (s, S)

10 11 12 13 14 15

42 43.0833 43.0822 43.0815 43.0812 43.0812 43.0815
43 43.0816 43.0806 43.0800 43.0797 43.0798 43.0800
44 43.0804 43.0795 43.0790 43.0788 43.0788 43.0791
45 43.0798 43.0790 43.0785 43.0784 43.0784 43.0786
46 43.0803 43.0790 43.0787 43.0785 43.0786 43.0788
47 43.0816 43.0797 43.0794 43.0792 43.0793 43.0795

N:4,A=1.5,M=2,ﬂ=2,002107012022632652170428
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Fig. 2. Variation of ETC with respect to (s, .S)

5 Conclusion

In this paper, we studied a production inventory system with N— policy and
positive service time. The production process added items one by one exponen-
tially to the inventory and is governed by an (s,.S) policy. Matrix Geometric
Method is used to find the stationary probability vector, which makes it easy to
obtain some key performance measures. The results are numerically and graphi-
cally illustrated to show the effect of various parameters on system performance
measures. A suitable cost function is constructed and the optimal (s,.S) pair is
obtained. The optimal value of N is also obtained. This work can be extended
in the future for multi-server production models.
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Abstract. This paper considers the analysis of discrete-time priority
queues formed due to the customer’s induced interruption during ser-
vice. The customers who interrupted during service are moved to a lower
priority queue. Both preemptive and non-preemptive disciplines for the
service are considered. The Matrix-Analytic Method extended to the infi-
nite phase is used to analyze the model. The stability condition for the
system is derived. The marginal distributions of both higher and lower
priority queue lengths in each discipline are studied. Numerical exper-
iments are incorporated to illustrate the calculation of the rate matrix
and queue lengths.

Keywords: Discrete-time queue + Peemptive - Non-preemptive -
Markovian arrival process + Discrete phase-type distribution -
Matrix-Analytic Method

1 Introduction

The concept of priority in queues was introduced by White and Christie [16]
in 1958. The main classification of priority queues are i) Preemptive and ii)
Non-preemptive. In preemptive priority, the service of the lower priority is inter-
rupted on the arrival of high priority customer during the service whereas in
non-preemptive, the arriving high priority customer during the service of the
lower priority customer gets service only after the completion of the undergoing
service. Jaiswal [10] discussed the service on non-priority unit when preemption
occurred. The service is started at the point where it was interrupted. Further
Jaiswal [9] described the development of priority queues until 1968. Recent works
of Gated Batch Priority Queues and reservation in priority queues are found in
Takagi [1]. A survey of priority queues is analysed by Brodal [5]. The author
tried to list some of the directions research on priority queues that has gone over
the last 50 years. Matrix-geometric method for discrete-time priority queue is
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discussed by Alfa [2] in which arrivals two classes are modeled by Markovian
Arrival Process in which correlation of inter-arrival time within each class and
between two classes of jobs are considered and service time of each class follows
a phase-type distribution with different parameters. The author extended the
structure of the rate matrix R obtained by Miller [14] to the discrete case.

The creation of high priority or low priority customers may occur during the
service due to an emergency or interruption. The self-generated priority queue
with MAP arrivals and phase-type service time distribution is analysed by Krish-
namoorthi et al. [11] in which priority customer accommodating capacity is one
and remaining generated priority customers are assumed to be lost. Interruption
in a queue occurs due to many reasons such as server breakdowns, servers tak-
ing emergency breaks, and customers having incomplete information or getting
distracted. Krishnamoorthy et al. [13] look at both continuous and discrete-time
queueing models with interruptions in service. Jacob et al. [8] investigated an
infinite capacity queueing system with a single server to which customers arrive
according to a Poisson process and the service time follows an exponential distri-
bution. The customer interruption occurs according to a Poisson process and the
interruption duration follows an exponential distribution. The self-interrupted
customers will enter a buffer of finite size and any interrupted customer, finding
the buffer full, is considered to be lost. Dudin et al. [6] generalized the model
with MAP arrivals and phase-type service in which two multi-server service
systems are considered. Primary customers arrive at a multi-server queueing
system-1 having an infinite buffer. An interruption removes one of the primary
customers from the service and with some probability, the interrupted primary
customer moves for service to system-2 and after completing this service, this
customer becomes a priority customer. The ergodicity and various performance
measures are analysed. The concept of self interruption infinite buffer for lower
priority in continuous time was analysed by Krishnamoorthy and Manjunath
[12]. Anillumar and Jose [4] generalized this model to discrete-time cases with
MAP arrivals and phase-type service processes. A discrete-time priority queue-
ing inventory model with customer-induced interruption was also analyzed by
Anilkumar and Jose [3]. In this paper, we discus the generalized self-induced
service interruption.

2 Modeling

We consider infinite capacity single server discrete-time queue in which arrival
of customers is modeled by Markovian arrival process having n phases with rep-
resentation (Dg, D1). Then the arrival rate A = ¢ D;e, where v is the stationary
probability vector of (Do + D7) and e is the column vector of 1’s having dimen-
sion n x 1. There are two types of priority queues P; and Ps. The customer who
arrives in the system first enters into the high priority queue. During his service,
he may or may not interrupt the service. The time taken for primary service is
considered to be the time till absorption of a discrete-time Markov chain that has
two absorbing states which are represented by the transition probability matrix
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S(1) §°(1) 5%(1)
T=10 1 0
o o0 1

with initial probability 5(1) and transient matrix S(1) having dimension m;. If
a customer interrupts the service, he is transferred to a low priority queue Ps.
The same server serves customers in these two queues one at a time according
to their priority. Once an interrupted customer in P, receives service, he will
have no further interruptions during service (except when P; customers arrive
in the preemptive case). After completing the service customers in both queues
leave the system. A customer in P, is taken for service only when no customer is
present in P; and no customer in Py ahead of him. The arrival of customers in P
during the service of P, may or may not affect the service. In other words, service
P is either according to preemptive or non-preemptive discipline. We study
this separately. The processing time of customers in Ps is discrete phase-type
distributed random variables with parameters (6(2),.5(2)) with dimension ms.

Notations
(i) Ni(n): Number of P; customers in the system at an epoch n.
) Na(n): Number of Py customers waiting for service an epoch n
ii) I(n): The arriving phase of a customer
v) J(n): The service phase
v)a=1—awhere0<a<1
)
)
)
)

ii

oy =

(
(i
(i
(

Is]
|

(vi) e: Column vector of 1’s of appropriate order
(vii) e(k): Column vector of 1’s of order k

=
jart

(vii) S°(2) =e— S(2)e
(ix) For an m x n matrix Z given by Z = [Z1, Za, ... Zy] where Z; is the ji
column of Z, Vec(Z) is the mn x 1 column vector defined by,
Z1
Zo
Vece(Z) =
Zn,

3 Preemptive Priority

We assume that the priority of service in P is in the preemptive discipline. That
is the service of nonpriority customers affects the arrival of customers in P;. Now,
{(N1(n), Na(n),I(n), J(n)),n = 1,2,3,...} is a Level Independent Quasi-Birth
Death process (LIQBD) on the state space Ay U Ay U Ag, where

Ar=A{(0,j);1 <j <n},

Ay = {(OviQajka);iQ >0,1<j<n,1< ke < mQ}a

A3 = {(i13i25j7k1);i1 Z 177:2 Z 071 S] S n, 1 S kl S m1}~
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The transition probability matrix P of this process is given by

Boo Bor 0
By A1 Ay
Ay Ay Ay

where the elements of P are square matrices of order S and are given by

By ByY
BlO Bl BQ Bl
P B |7 B0,
00 Bgo By ) 01 Bj: By )
mim, e
Biy B A A
By — YRy |, Ay= alay |
10 P1io 3 A
A} AY Ag
Ap AY Ag

A= alay | A= a4

BEY = Do, B = Do ® S°(2), Bjy = Do ® S(2), By = Do ® 5°(2)53(2),

By = D1 ® (1), B, = D1 ® S°(2)8(1), By, = D1 ® S(2)eB(1),

B} = Dy ® 5°(1), BYy = Dy ® S*%(1)5(2), By = Do ® S°(1)3(2).

Al = (Dy® S(1) + D; ® S°(1)53(1)), A} = Dy ® S92(1)3(1), A} = D1 ® S(1),
A = Dy ® S°(1)5(1), A = Dy ® S°%(2)5(1).

3.1 Stability

Theorem 1. The system is stable if and only if

AB(L)(I - S(1) e+ AB(L)(I - S(1)>S2(1A2) (I - 5(2) e <1 (1)



Self-induced Service Interruption Discrete-Time Queue 71

Proof. The proof can follow using an intuitive argument. The server is always
available to high priority job. Hence the portion of time the priority queue is
empty is

AB(L)(I —S(1) e

Now the arrival rate to low priority queue is
MBI — S(1)728%(1).
Hence the portion of time the low priority queue is nonempty is
AB(L)(I = 5(1))252(1)B(2) (I - 5(2)) " e.
Therefore, the portion of time both queues is nonempty is
AB(L(T = 5(1)) " + AB()(I = S(1))25(1)8(2) (I - S(2)) " e.

The system is stable if and only if this portion of time is less than 1.

3.2 Steady-State Analysis

Since the matrix P has the structure of quasi-birth and death process and the
individual phases are infinite, we can use the generalization of matrix geometric
method of Neuts [15] to the case of infinite submatrix by Miller [14]. For this,
first find the minimal nonnegative solution R of the matrix quadratic equation,

R2A2 + RA1+A) =R,

in which spectral radius is less than 1. Since Ag, A1 and A, are of upper trian-
gular structure, the rate matrix R also has the upper triangular structure which
is given by,
Ry Ry Re Rs ...
Ro Ry Ry ...
R— Ry Ry ...
Ry ...

Then,

(R R® RY R ...
RS R R ...

R RrR{Y R .

R(()2) o

where R§2) = 1:0 R;jR;_, for j > 0.
Substituting in (1), we get

R(()Q)Aé + RoAq + A(l) = Ry,
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R A+ RO AL+ Ry, AY + RjAL = Ry for j > 1.

Ry is the minimal non negative solution of Ry = (A} + R2)(I — A})~!, which
can be calculated using the iterative method.
Now from (2), we have,

j—1
ZRRJ v— 1A2+ZR R; ’UA2+R] 1A0+R Al = R;, for j > 1.
v=0 v=0

Which can be re written as,
Gj + RoRjGQ = RjGo, (2)

where G; = R;_1 A + Zf};é RyRj_,1A3 + ZJ YR, R;_,A}, forj>1, Gy =
A} and

Go=1- Al — RyAL.
Using the property of kronecker product (see [7]), (2) is equivalent to
Vee(Gj) + (GF @ Ry)Vec(R;) = (GE @ I)Vec(R;), for j > 1.

Vec(R;) = (GF @ I) — (G ® Ry)) 'Vec(G), for j > 1. (3)

In order to compute R, first calculate Ry, then successively find Ry, Ro, ...
recursively using (3).

Since, under stability condition (R,);; — 0, one can truncate R. That is,
we need only to consider low priority queue to a certain level. This generates a
QBD having a finite set of phases, which can be easily analysed.

3.3 Steady-State Probability Vector

Let x = (xg,x1,x2,...) be the steady state probability vector of P. That is
xP = x and xe = 1, where e is the infinite column vector of 1’s

Then z;41 = 2; R, for i > 1.

To find the boundary probability vectors(zg,x1). For this consider the fol-
lowing system of equations

zoBoo + x1B1o = o,

zoBo1 + x1(A1 + RAy) = 1.
From the second equation, we have
T = 930301(] — Al — RAQ)il

Substituting this in the normalizing condition, zpe +z1(I — R)~'e = 1, one can
solve for zg and z7.
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3.4 Marginal Probability Distributions

Let 5(v) be the probability that there are ¢ jobs of in the queue P, for v =
i>0
pi(1) = x;e, )
Pi(2) = 2o—1y€(nm2) + 21 (I — R)™'p;.

where (3; is an infinite column matrix whose (inmj + 1) to (i 4+ 1)nmi" entries
are one and remaining values are zeros.

Let E(v) be the expected number jobs in the queue P, for v = 1,2

Then

E(1) = 0zpe + lz1e + 220 + . ..
=2, (1+2R+3R*+...)e
=a21(I - R)™?
and E(2) = igi(2)
lzgre(nmsa) + 2zp2e(nms) + . ..
+1z1(I = R)"'B1+221(I—R) " 'Ba+...
=zov1 +21(I — R) 'y2

Where 41 = {igéag)} vy = B‘ze@(&zﬁﬂ and ¢ = [123..].

4 Non-preemptive Self Generated Interruption

Here we assume all the previous assumptions except that the arrival of P; cus-
tomer does not interrupt the service of P, customer who is already in ser-
vice. In addition to above notation, let S(n) denote the status of server at
an epoch n which takes the value 1 and 2 according as server serve Py and
P2 customer respectively. Then {(Ni(n), N2(n),S(n),I(n),JJ(n));n > 1} is a
discrete time quasi birth and death process with state space {(0,4);1 < i <
n}U{(0,n9,%4,5);ne > 1,1 <i<n, 1 <j<mo}U{(n1,na,s,i,j);n > 1,ng >
0,s = 1,2&1 < j < m,}. The transition probability matrix P’ describing this
QBD is given by

Boo Bo1 0

Bio A1 Ao

P/ _ A2 Al AO

where By is the same as in matrix P, Ay, A1, and As possess subsquare matrix
as above but whose values block matrices given by
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Al — [ Dy ®5(1) 0 } 40 — {Dl ® S9%(2)B(1) 0}
07 [D1@S°(2)8(1) Dy S(2)" Tt 0 0]’
Al (D1 ® S°(1)B(1) + Do S(1)) 0 4l [Po® S9(1)p(1) 0
= Dy ® S°(2)5(1) Dy®S(2)|" "2~ 0 o’
a0 — [Do® $%(2)8(1) o]
2 0 ol’
Bgl BikO B(I)O
Bgt 0 Biy BY

Ba = *k Bin = 1 0
01 By y D10 By By )

Bj, = [D1®B(1) 0], Bsi = [D1© 5°(2)B(1) D1 ® S(2)],

Bi, = [Do ®OS°(1)]7 BY, — {Do ® 505(1)5(2)]’ Bl = {Do ® SO(l)ﬂ(Q)] _

4.1 Stability

The condition for stability is the same as that of the preemptive case. Hence the
above QBD is stable if and only if

MBI = S(1) e+ ABL)U — S(1)725P(1)5(2) (I~ S(2)) e <1 (5)

4.2 Computation of Rate Matrix and Steady-state Probability
Vector

The rate matrix R possesses an upper triangular structure as in the preemptive
case with the only difference is that each R; is block lower triangular having
order n(mi + msz) of the form

.0

21 1122
The (i,7)!" entries of the rate matrix R is the expected number of visits into
state (k + 1, j), starting from the state (k, i), until the first return to level k,

k > 1. Since the structure of A}, A9 has second column blocks zeros, we can
conclude that

Ry =0, fori > 1.

This can also be verified recursively by substituting the values in the Eq. (3).
Let x = (xg, 1,2, ...) be the steady-state probability vector of P’ where x; =
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(2i0(1), 21 (1), 241 (2), £i2(1), 2:2(2),...) for i > 1 and x( as in above preemptive
case. Then here also
Tiy1 = z;R,for ¢ > 1.

The marginal probability density functions are calculated as in the previous case
with the exception that for ¢ = 0, §; is an infinite column matrix whose first nm,
entries are one and the remaining entries are zeros and for ¢ > 1, it is infinite
column matrix whose (nmq + (i — 1)n(my +ms) + 1) to (nmq +in(my +ms))"
entries are one and remaining entries are zeros.

5 Numerical Illustrations
For a given model, we consider both preemptive and non-preemptive case for
the computation of the rate matrix R. One can observe that R;, the entries of

R tends to zero as i — oo.
Consider the parameters of the model as

0.40.4 0.10.1
Do = {0.3 0.4] » D= {0.1 0.2] ’

S = 0303 50 = g5)]- 70 = 53] 5@ = [3303]

p1=[0.20.8] and 8, = [0.20.8] .

Computed values of R; in Preemptive case

[0.0217 0.0383 0.0238 0.0424] [0.0030 0.0068 0.0037 0.0087 |
Ry — 0.0515 0.0653 0.0555 0.0734 Ry = 0.0056 0.0127 0.0069 0.0163
0.0272 0.0473 0.0409 0.0743 | ’ 0.0047 0.0105 0.0058 0.0137| ’
10.0619 0.0826 0.0987 0.1268 | 10.0087 0.0195 0.0108 0.0255 |
[0.0009 0.0020 0.0011 0.0025] [0.0003 0.0007 0.0004 0.0009
Ry — 0.0017 0.0037 0.0020 0.0047 Ry — 0.0006 0.0014 0.0007 0.0017
0.0014 0.0031 0.0017 0.0039 | ’ 0.0005 0.0012 0.0006 0.0014 |’
10.0026 0.0058 0.0031 0.0073 | 10.0010 0.0022 0.0012 0.0027 |
0.0001 0.0003 0.0002 0.0004 0.0001 0.0001 0.0001 0.0002
R 0.0003 0.0006 0.0003 0.0007 Ry — 0.0001 0.0003 0.0001 0.0003
0.0002 0.0005 0.0003 0.0006 | ’

0.0001 0.0002 0.0001 0.0003
0.0004 0.0009 0.0005 0.0011 0.0002 0.0004 0.0002 0.0005



76

M. P. Anilkumar and K. P. Jose

Computed values of R; in Non-Preemptive case

Ry

Ry

Ry

R3

Ry

[0.02167 0.03830 0.02378 0.04241 0.00000 0.00000 0.00000 0.00000 |
0.05151 0.06527 0.05548 0.07344 0.00000 0.00000 0.00000 0.00000
0.02724 0.04725 0.04088 0.07431 0.00000 0.00000 0.00000 0.00000
0.06186 0.08261 0.09874 0.12676 0.00000 0.00000 0.00000 0.00000
0.05737 0.13296 0.06498 0.14874 0.01510 0.02819 0.01584 0.02938
0.05477 0.12659 0.06260 0.14370 0.02819 0.04328 0.02938 0.04523
0.07797 0.17003 0.10475 0.25234 0.01734 0.03178 0.02870 0.05397
0.07609 0.16803 0.09896 0.23628 0.03178 0.04912 0.05397 0.08268

[0.00302 0.00680 0.00372 0.00874 0.00000 0.00000 0.00000 0.00000 |
0.00562 0.01266 0.00693 0.01628 0.00000 0.00000 0.00000 0.00000
0.00467 0.01048 0.00580 0.01368 0.00000 0.00000 0.00000 0.00000
0.00870 0.01955 0.01082 0.02550 0.00000 0.00000 0.00000 0.00000
0.01242 0.02806 0.01518 0.03559 0.00000 0.00000 0.00000 0.00000
0.01360 0.03077 0.01655 0.03876 0.00000 0.00000 0.00000 0.00000
0.01907 0.04301 0.02344 0.05506 0.00000 0.00000 0.00000 0.00000
0.02082 0.04706 0.02543 0.05962 0.00000 0.00000 0.00000 0.00000

[0.00089 0.00201 0.00108 0.00252 0.00000 0.00000 0.00000 0.00000 |
0.00165 0.00374 0.00201 0.00470 0.00000 0.00000 0.00000 0.00000
0.00138 0.00313 0.00168 0.00393 0.00000 0.00000 0.00000 0.00000
0.00258 0.00583 0.00313 0.00733 0.00000 0.00000 0.00000 0.00000
0.00404 0.00917 0.00490 0.01145 0.00000 0.00000 0.00000 0.00000
0.00464 0.01053 0.00561 0.01312 0.00000 0.00000 0.00000 0.00000
0.00625 0.01416 0.00756 0.01768 0.00000 0.00000 0.00000 0.00000
0.00715 0.01621 0.00864 0.02020 0.00000 0.00000 0.00000 0.00000

[0.00033 0.00075 0.00040 0.00093 0.00000 0.00000 0.00000 0.00000 |
0.00061 0.00139 0.00074 0.00173 0.00000 0.00000 0.00000 0.00000
0.00051 0.00116 0.00062 0.00144 0.00000 0.00000 0.00000 0.00000
0.00096 0.00217 0.00115 0.00269 0.00000 0.00000 0.00000 0.00000
0.00158 0.00358 0.00190 0.00444 0.00000 0.00000 0.00000 0.00000
0.00185 0.00420 0.00223 0.00520 0.00000 0.00000 0.00000 0.00000
0.00244 0.00554 0.00294 0.00686 0.00000 0.00000 0.00000 0.00000
0.00285 0.00648 0.00343 0.00801 0.00000 0.00000 0.00000 0.00000

[0.00014 0.00031 0.00017 0.00039 0.00000 0.00000 0.00000 0.00000 |
0.00026 0.00059 0.00031 0.00072 0.00000 0.00000 0.00000 0.00000
0.00022 0.00049 0.00026 0.00060 0.00000 0.00000 0.00000 0.00000
0.00040 0.00091 0.00048 0.00113 0.00000 0.00000 0.00000 0.00000
0.00068 0.00155 0.00082 0.00191 0.00000 0.00000 0.00000 0.00000
0.00081 0.00184 0.00097 0.00227 0.00000 0.00000 0.00000 0.00000
0.00106 0.00240 0.00127 0.00296 0.00000 0.00000 0.00000 0.00000

10.00125 0.00284 0.00150 0.00350 0.00000 0.00000 0.00000 0.00000 |
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[0.00006 0.00014 0.00008 0.00018 0.00000 0.00000 0.00000 0.00000 |
0.00012 0.00027 0.00014 0.00033 0.00000 0.00000 0.00000 0.00000
0.00010 0.00022 0.00012 0.00027 0.00000 0.00000 0.00000 0.00000
0.00018 0.00042 0.00022 0.00051 0.00000 0.00000 0.00000 0.00000
0.00032 0.00072 0.00038 0.00088 0.00000 0.00000 0.00000 0.00000
0.00038 0.00086 0.00045 0.00106 0.00000 0.00000 0.00000 0.00000
0.00049 0.00111 0.00059 0.00137 0.00000 0.00000 0.00000 0.00000

10.00058 0.00132 0.00070 0.00163 0.00000 0.00000 0.00000 0.00000 |

Rs

For these parameter values, the entries of R; decrease with the increase of
7 in both preemptive and non-preemptive cases. The traffic intensity, which is
the expression on the left side of Eq. (1), is 0.7957 and hence the system is
stable. The entries of R; become negligible as i becomes large. In this example,
we can neglect R; for ¢ > 6. This truncation leads to the truncation of the lower
priority queue and hence the rate matrix R will become as a finite matrix. Now
the boundary probability g and x; can be easily calculated using formulas in
Sect. 3.3. Using the set of Egs. (4), The marginal probability density functions
are calculated for both preemptive and non-preemptive cases and are expressed
graphically in the following Figs. 1 and 2 respectively.
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Fig. 1. Marginal probability distributions in preemptive discipline
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Fig. 2. Marginal probability distributions in non-preemptive discipline

6 Concluding Remarks

This paper looked at discrete-time, self-interrupting priority queues of MAP
arrivals and service as the time till absorption. The absorbing Markov chain has
two absorbing states through which a customer leaves the system after service
or the interrupted customer moved to lower priority queue. The matrix-Analytic
Method is used to analyze the model. The marginal probability distribution of
queue length is discussed. For future studies, one can consider the chance of
abandoning the service if interruption happened. A similar self-generated pri-
ority can be generated through a feedback queue of customers in which the
customers after service may join to lower priority queue with some probability.
Incorporation of inventory of items is also another interest of study.
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Abstract. The paper is devoted to the tail asymptotics analysis of the
steady-state waiting times in the queuing systems in which service times
have Weibull distributions. We deduce conditions under which the service
times in two different queueing systems are stochastically ordered. Then
we show that, under the same conditions, the normalizing sequences of
the stationary waiting times and their extremal indexes are ordered.
These results are then illustrated numerically for GI/G/1 queues with
different shape parameters of the Weibull service times.

Keywords: Performance analysis + Queueing system - Extremal
index - Weibull distribution

1 Introduction

The subexponential distributions form a subclass of the so-called heavy-tailed
distributions, which arise in particular, in the insurance and various queueing
applications. The tails of such distributions decrease more slowly than the expo-
nential tails. It is established that the main reason why a sum of the subexpo-
nential random variables becomes ‘large’ is that one of the components of this
sum is large. This property allows us to use the class heavy-tailed distributions
to model and then simulate the processes which can take extremely large values
with a probability that cannot be neglected [5]. For instance, it is known that in
GI/G/1 queueing systems with heavy-tailed service time the tail waiting time
asymptotics is defined by the service time distribution [1]. This property can
be applied to derive the limiting distribution of the maximum of the waiting
time based on the extreme value theory. To realize this idea, in this research we
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consider a queueing system with the Weibull service time distribution (denoted
below GI/Weibull/1) with shape parameter 0 < # < 1. In this case the dis-
tribution belongs to the subclass of suberponential distributions and it plays in
particular a significant role in the reliability theory and in the survival analysis
[5]. In this case we use the tail asymptotics of the waiting time given in [2] and
then apply the regenerative approach [10] to estimate the extremal index.

The extreme events often occur in the clusters, and their prediction is an
actual problem which however is highly difficult to be resolved in the most of
cases [16]. We note that the extreme value theory in general is applied not only
to describe the limiting distribution of a maximum but also to determine the
size of the clusters and extreme’s frequency via the so-called extremal index. This
index, denoted by 6 € [0, 1], evaluates the reciprocal of the average cluster size
and hence measures the degree of clustering of the extremes.

It is worth to mentioning that the idea of the predicting and mitigating
extreme values of the performance measures in queueing systems is not a new
one and has been studied, for example, in [1,3,7,8,15]. The limit theory of the
Markov chains based on the extreme value theory is deeply analyzed in the fun-
damental paper [15]. The limit theorems for the maximum actual waiting time,
maximum virtual waiting time in a GI/G/1 queueing system, for all (accept-
able) values of the traffic intensity, are obtained in the paper [8]. The extremal
properties of Markov chains and adapted algorithm for computing the extremal
index in a stable GI/G/1 system is given in [7]. The comparison of performance
measures of queueing systems with different distributions of input or service
times based on stochastic ordering or failure rate ordering has been considered
by the authors in the works [11,12]. The paper [13] considers comparison of the
extremal indexes calculated for the stationary waiting time in M/G/1 queue-
ing systems in which service times have Pareto distribution satisfying stochastic
ordering.

In the case of the Poisson input process and exponential service times the
extremal index is calculated explicitly in [3,7]. In some other cases it can be
obtained iteratively, see for instance, [7]. Provided the service time distribution is
subexponential, for example is Weibull with the shape parameter 8 € (0, 1) (for
definition of 3 see (3) below), then we can use the tail asymptotic of the waiting
time from [2] to derive the limiting distribution of the maximum waiting time.
This analysis can be used to evaluate the extremal index of the strictly stationary
waiting times and to compare the extremal index values in two GI/G/1 systems.

The purpose of this research is to provide that the stochastic ordering of
the service times in two queueing systems allows to compare the normalizing
sequences of the steady-state waiting times and their extremal indexes. We
demonstrate this approach for the GI/G/1 systems with Weibull service times
with the shape parameter 8 € (0, 1).

The paper is structured as follows. In Sect. 2, we describe the model and
discuss the tail asymptotics of the waiting time distribution which is defined by
so-called equilibrium distribution function of the remaining service time. The
limiting distribution of the maximum waiting time (in a GI/Weibull/1 sys-
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tem), based on the tail asymptotics obtained in Sect.2, is derived in Sect. 3
(see Lemmal). In Sect.4, we discuss the comparison of the extremal indexes
of two random variables with Weibull distributions, in which shape parameters
are properly ordered. This analysis is further applied to compare the extremal
indexes of the stationary sequences of the waiting times in two queueing systems
with the stochastically ordered service times (Theorem 1).

2 Model Description

We consider the GI/G/1 queueing system with a renewal input, and let T; =
t;+1—t; be the independent, identically distributed (i.i.d.) interarrival times, ¢ >
0. Denote by {S;} the i.i.d. service times. It is assumed that service discipline is
FIFO (First-In-First-Out). Denote by A = 1/ET the input rate and by 4 = 1/ES
the service rate, and let p = A\/u be the traffic intensity. (The serial index is
omitted when we consider the generic element of an i.i.d sequence.) Let W; be
the waiting time of the i-th customer, and we recall that the sequence {W;} can
be obtained by means of the Lindley recursion, which defines the accumulated
work to be done at the instants {t,, }, that is, which a new arrival meets,

Wn+1 = (Wn + Sn - Tn>+a n = 1; (1)

where we assume that W; = 0 (zero-delayed process), and (-)" = max(0,-).
If p < 1 and distribution of T is non-lattice, then there exists the stationary
waiting time, that is, W,, = W, where = denotes convergence in distribution
(see, for instance, [1]). It is well-known that such a system regenerates (in the
classic sense) when an arrival meets the system idle [10].

Denote by B(z) = P(S < z) the distribution function of the service times S.
The distribution B is called subexponential if

B (x)

=1 foralln > 2,

where B*"(x) is the tail of n-convolution of the distribution B(x) with itself. In
particular, B(xz) = 1 — B(x) is the tail of B.

It is known that if the service times have subexponential distribution B with
a finite mean, then the waiting time distribution in the GI/G/1 queueing system
has the following tail asymptotic [2]:

P(W>x)~1LP(se>x), z — o0, (2)

if service time S and the stationary remaining renewal time S, are subexponen-
tial. Note that S, has the equilibrium density B(x)/ES. (Relation a ~ b in (2)
means the asymptotic equivalence, that is a/b — 1.)

Assume that the service time S has Weibull distribution

Bx)=1—¢"", >0, 2 >0, (3)
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with the density function fz(z) = Bzf e==”. The equilibrium Weibull distribu-
tion function B, is then defined by

xi zP zﬁ
Be(z) = ELS /B(t)dt = F(ll/ﬂ) /efyyl/ﬁfldy - 7(11{15/@) ()
0 0

where

r(t) = / vyt ldy,
0

is the Gamma function and
xT

v(t, x) = /e_yyt‘ld%
0

is the lower incomplete gamma function. Then it is easy to check that the cor-
responding tail satisfies the following asymptotic relation

B

0 pl=Be—w
By = P0/5.2)

ra/p -~ ra/s)

as T — 00,

where
oo

I(t,x) = /e’yytfldy,

is the upper incomplete gamma function.

To check that the Weibull distribution B (of the service time S) and the
corresponding equilibrium distribution B, (with parameter 5 € (0, 1)) both
belong to the class of the subexponential distributions, it is enough to verify
that B belongs to a special subclass S* of the subexponential distributions.
Namely, the distribution B € S* [5] if the service time S has a finite mean
1/u < oo and moreover,

. [ Bz —1y)— 2
lim | ——==B(y)dy = —.
) "B (W)dy ==

In practice, the following criteria for a distribution to belong S&* is often applied
[5]. Denote the failure rate function

f(x)

r(x) = Br) and let R(x) = —log B(x).

Suppose that

lim r(z) =0 and lim zr(z) = co.
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Then B € S* if, additionally, one of the following (incompatible) conditions
holds [5]:

a) ligrErLsOLip Z((;C)) <1; (5)

b) r e R(-4) for § € (0,1]; (6)

c) ReR(S) for 6 € (0,1), (7)
where R(9) is the class of regularly varying functions, that is a function g € R(9)
if

lim g(tz) =%, forall t > 0.

z—o0 g(x)

It is easy to verify that the failure rate of Weibull distribution (with parameter
0 < B < 1) decaying to zero, zr(z) — oo, and condition (5) holds. More exactly,

r(z) =Bz~ -0 as z — oo;

zr(z) = fzP — 0o as x — oo;
ar(x)

R(x)
Hence the Weibull distribution B with parameter 8 € (0, 1) belongs to the
subclass §* of the subexponential distributions. Therefore B and the equilibrium
distribution B, both belong to the class of subexponential distributions, that is

B, B, € §*. Actually, the subexponentiality of B, follows from the following
relations:

= <1 for all z.

fp.x) _ Be™'I(1/B) _ BI(1/B)

i e B NV R
zreo(z) ~ Br(1/B8)z” — oo as x — oo;
re(tx)

-t =t asxr—o00, 6=1—03<1.

re(x)

For the Weibull distribution (3), the traffic intensity is determined by the rela-
tion

AL(1/5)
=1 8
p 3 (8)
It now follows from (2) and (4) that the waiting time tail distribution satisfies
P(WW >uz) ~ #xlfﬂeizﬁ as  — 0o. (9)
B—=Ar1/p)

3 The Limiting Distribution of the Maximum Waiting
Time

In this section we consider some basic concepts from the extreme value theory in
order to apply them in the next section to the analysis of the limiting distribution
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of the stationary waiting time maximum in a GI/G/1 queueing system with
Weibull service time.

Let {X,,, n > 1} be a family of the i.i.d random variables (rv’s) with a distri-
bution function F'. Then the distribution of maximum M,, = max(Xy,...,X,)
satisfies

P(M, <zx)=F"(x).

It is known [4,6,9,14] that if, for some sequences of the constants b, a, >
0, n > 1, the normalized maximum (M,, —b,)/a, has a non-degenerate limiting
distribution function G(z),

P(M, —bn)/an <) — G(z), n— oo, (10)
then G(z) has one of the following forms:
Type I: G(z) = exp(—e™™), —oo <z < 00;
0, z < 0;

Type II. G(z) = exp(—z7) o0

Type III:  G(z) =
1, z > 0.

where parameter n > 0. Type I is called Gumbel distribution, Type II is Frechet
distribution and Type III is called the reversed Weibull distribution.

Suppose that there exists a sequence of real constants {u,, n > 1} such that
for some 0 < 7 < o0,

nF(u,) — Tasn — oo. (11)

Then it follows from [9] that
P(M, <u,)—e 7 asn— 0. (12)

Conversely, if relation (12) holds for some 0 < 7 < 0o then the convergence (11)
holds as well.
If condition (10) is satisfied, then convergence (12) is preserved for any linear
normalizing sequence
Up () = anz + by, n > 1,

where z takes real values and expression (12) becomes
P(M, <un(z)) — 7(2),

where a concrete form of the function 7(x) depends on the type of the limiting
distribution.
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The sequence {u,(z)} for Weibull distribution (3) can be found in the fol-
lowing form:
1 1/8-1
nle) = “EEL s (g ), (13)

in which case the maximum M,, has Gumbel distribution (in the limit as n — c0),
that follows from the asymptotics

B (logn)*/P—1 1 1/8\8
Flu)mne & 5ot loem )

logn ©

~logn(1+
= ne

(=)

logn™ _, ¢=% a5 n — oo. (14)

The limit distribution of the maximum generated by the equilibrium Weibull
distribution has a Gumbel form with the same normalizing sequence {u,(z)}
defined by (13), since

-8
Ny, ()17 u"(x)ﬁ = n(l /810 ! +1 +1
un(@) e (log ) &n Blogn Blogn

X

—logn (1 +— +0(1/logn)> —a
< e logn ¢

as 1 — OQ.

To extend (12) to a non i.i.d. strictly stationary sequence {X,}, an additional
condition on the decay of the correlations is required (see condition D(u,,) in
[9]). In this case, instead of relation (12), we obtain

P(M,, < up(z)) — e 7@ asn — 0o, 0 < 7(z) < o0, (15)

where parameter 6 € [0, 1] defines the so-called extremal index of the sequence
{X,}. Moreover, like in the i.i.d. case, the same family of the extreme value
distributions describes the maximum of the strictly stationary sequence.

Now we go back to the GI/G/1 system described in previous section. Denote
the maximum waiting time by W) = max(Wy,...,W,,) for each n > 1. Then
relations (9) and (14) lead to the following statement.

Lemma 1. If the service time in a GI/G/1 queueing system has Weibull dis-
tribution (3) with parameter B € (0, 1) then the limiting distribution of W} has
the following Gumbel-type shape:
A e
PWy <wup(x)) —e (6 =AI(1/B)B as n — 0o, (16)

with the normalized sequence

z(logn)/P-1

5 + (logn)'/5. (17)

Up () = anx + b, =
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4 Comparison of the Waiting Time Extremal Indexes

In this section we return to the GI/G/1 queueing systems described in Sect. 2
and denote they by (M) and X?). Let T() be the generic interarrival time, S
the generic service time, and let ET() = 1/)\;, i = 1,2. (The superscript (4)
relates to system ). Now we compare the steady-state waiting time processes in
the systems X1 and X(). At the arrival instant of customer n in the system
Y@ we denote by m(f) the number of customers, by ng ) the queue size and by
Wfll) the (actual) waiting time of this customer, n > 1. Denote, when exists, the
limits (in distribution)

QD = 0O, ) = 0 W 5w o, 1,2

These limits exists, in particular, when the interarrival times 79, i = 1,2 are
non-lattice and p; = \ES® < 1 [1]. Assume that the following stochastic rela-
tions hold:

1/51) = 1/52) =0, TW=,1®, sW< 3 (18)

where, recall, the stochastic ordering S MW <,,5® means that the corresponding
tail distributions satisfy Bga)(x) < Bge (x) for all . Then it follows from [17]
that

QY <a QP WiV < W, n>1. (19)

We assume that the systems X1, () have Weibull service times distributions
in which parameters satisfy the inequalities 0 < 1, B2 < 1. If moreover the
assumption (3; > (2 holds then there exists a stochastic ordering between the
service times, namely, S() < ; S, Therefore, inequalities (19) hold and imply
the stochastic ordering of the waiting times, W <, Wi [17]. In what follows
we need the maximum waiting times which are defined as follows:

W,(ll)* = maux(Wl(l)7 e WT(LU), WT(LQ)* = rnax(VVl(z)7 cee, W,gQ)), n > 1.

The following lemma allows us to obtain the main theoretical result of the
research containing in Theorem 1 below.

Lemma 2. Let {X,} and {Y,} be two stationary sequences with the correspond-
ing generic rv’s X and Y. Assume that X and Y have Weibull distributions
with parameters P, B2, respectively, 0 < By < B < 1. Then the corresponding
extremal indexes Ox and Oy are ordered as

Ox > Oy. (20)

The proof of this statement mainly follows the paper [13] in which we compare
the extremal indexes of two stationary sequences {X,,} and {Y,,} with different
Pareto distributions. We note that, to verify condition u,(x) > ul,(x), it is
enough to check that (b), — b,,)/(an — a,) <0 for all z > 0. Indeed, for n > 3,

b, —b,  logn((logn)'/P=1/0 1)
an—al,  B1f2(B2 — Bi(logn)l/B—1/Br)

<0. (21)
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Note that the limit distributions of W"* and W,{?* satisfy (16) with parame-
ters (1 and (2, respectively. Lemma 2 and discussion above imply the following
statement.

Theorem 1. Assume that in the queueing systems under consideration the traf-
fic intensities p; < 1, i = 1,2 and the parameters of Weibull service time distri-
butions satisfy the inequalities

1> 812> 62 >0.

Then the extremal indexes of the stationary waiting times in these systems are
ordered in the following way:

Ow )y > Oy (22)

5 Simulation Results

In this section, we discuss the extremal index estimation of the waiting times
by the block method and the regenerative approach and present some numerical
examples for described systems with Weibull service times.

The convergence (15) together with relation (11) imply the basic relation for
extremal index

6 — fim 108P(Mn < un) (23)

n—oo nlOgF(un)

The main idea of the block method is to divide the sequence Xi,..., X, into m

blocks of the identical size h, where n = m h. After that, it is necessary to calcu-

late the number of blocks with exceedances and the number of the exceedances of

the threshold u,, by the sequence X1, ..., X,. Then the estimate of the extremal
index is the ratio of these two quantities [4].

Regenerative approach can also be used to estimate the extremal index [8,15].
More exactly, consider a stationary regenerative sequence {Z,,} with the regen-
eration instants (j, and denote by My, its maximum in the kth regeneration
cycle, that is,

My, = sup{Z,, Br—1 <n < By},
n

and also denote by Ea the mean cycle length. Then the stationary regenerative
sequence {Z,} has the extremal index 6 if and only if there exists the limit [15]

0= lim P(My, > uy)/Ea
n—oo  P(Zy > uy)

, (24)

for some normalizing sequence u,, satisfying relation (11).
By (24), the estimate of the extremal index based on the regeneration cycles
can be constructed as follows (for n large enough):

0o (n) := 04 = 1 o <1 . m(m“”)> (25)

%g(l_f\f(#n))
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Fig. 1. The extremal indexes of the stationary waiting time in M/M/1 queue with
input rate A = 0.4, and service rate g = 0.5, and in M/Weibull/1 queue with A = 0.4
and p=0.5

where

Nup) =#0 <n:Z; >uy), m(up) =#0 <mq: My, > uy),

m(uy,) is the number of the exceedances within regeneration cycle, m, is the
number of regeneration points which are detected during simulation procedure,
and & is the sample mean of the cycle length.

If the input process is Poisson and the service times are exponential with
parameters A and p, respectively, then the following explicit form of the extremal
index is known [7]

0=(1-p)> (26)

where p = \/pu. This explicit form of the solution allows to compare it with the
numerical results obtained by the simulation.

Figure1 demonstrates the comparison of the estimates of the waiting time
extremal indexes calculated, by the regenerative method, for the M/M /1 queue-
ing system with input rate A\; = 0.4, and with service rate p = 0.5, and for the
M/G/1 system with the same input rate Ay = 0.4 and Weibull service time with
parameter § = 0.5. In both cases the traffic intensity turns out to be the same,

p1=p2=0.8.
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The simulation results obtained by the regeneration method show that the
extremal index of the waiting time in M/M/1 queueing system is close to exact
value (26) which equals § = 0.04. We recall that the smaller extremal index is
then the extreme values more often are. The extremal index in the 2nd (Weibull)
system is close to 0.015, and it is at least in 2.5 times less than that in M/M/1
system. Thus we can interpret this result in such a way that the extreme values of
the waiting times in the system with Weibull service time occur (approximately)
in 2.5 times more frequent.

0.08
|

—— Weibull(B)
--— Weibull(B,)

Extremal index
0.04 0.06
| |

0.02
|

0.00
|

I I I I I I I I I
90% 91% 92% 93% 94% 95% 96% 97% 98%

Percentile

Fig. 2. The extremal indexes of the stationary waiting time in queueing systems
M /Weibull(3;)/1 with Weibull service times with input rates A1 = A2 = 0.4 and
parameters 51 = 0,6; (B2 = 0.5, respectively.

Now we analyze M /Weibull/1 queueing systems which are fed by the equiv-
alent Poisson input processes but have different (Weibull) service times. Figure 2
demonstrates the values of the extremal indexes of the stationary waiting times
in M/Weibull(;)/1 systems when the input rate equals A\; = Ay = 0.4, while the
service times have Weibull distributions with parameters 81 = 0.6 and G2 = 0.5,
respectively. These parameters guarantee that the systems are stationary because

g MLOIB) o L0/

B1 B2
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(see (8)), and this implies the stochastic ordering S() < ; S between service
times. Then, by Theorem 1, the extremal indexes of the corresponding waiting
times satisfy the ordering:

0wy > Oy,

and it is confirmed by the simulation as Figs. 1, 2 show. Note that 8, = 1.20,,
while the extremal indexes differ by a factor of four. These results show that the
cluster size (extreme values) in the 2nd system occurs (about) four times more
often.

6 Conclusion

In this research we study the extreme behaviour of the stationary performance
indexes in GI/Weibull(3)/1 queueing systems with Weibull service times with
shape parameter 0 < § < 1. It is shown that if, in the two GI/Weibull(5;)/1
systems having the same renewal inputs, the shape parameters of the service
time distributions are ordered as 1 > (3, > f2 > 0, then the corresponding
(strictly stationary) waiting times have the extremal indexes which are ordered
in the same way, that is Oy,a) > Oy .
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Abstract. In this paper we introduce a new queueing model with a
special kind of input processes. It is assumed that the number of arrivals
during consecutive time intervals makes an autoregressive sequence with
conditional Poisson distributions. A single server serves input flows one
by one in cyclic order with instantaneous switching. A d-limited policy
is used. The mathematical model of the queueing process takes form
of a multidimensional discrete Markov chain. The Markov chain keeps
track of the server state, recent arrival numbers and queues’ lengths.
The necessary and sufficient condition for the existence of the stationary
probability distribution is found. A possibility to give an explicit solution
for the stationary equations for the probability generating functions is
discussed.

Keywords: Autoregressive Poisson process - polling system - cyclic
service - stationarity conditions - probability generating functions

Introduction

Studies of many real flows in telecommunication networks and vehicular control
at junctions made it evident that a simple Poisson model or a renewal model [1]
are often statistically inadequate. In the last five decades models with different
kinds of dependence between some of the flow constituents. There are a least two
options to add dependence to the mode. One can think of a random arrival rate.
It leads to Cox’s doubly stochastic flows [2], Markov-modulated flows of Neuts
and Lucantoni [3]. On the other hand, dependence of the conditional probability
distribution for inter-arrival time intervals on past arrivals can be introduced
explicitely. On this way we come, for instance, to auto-regressive time series
models formed by successive inter-arrival times (see [4]). In [6] following [5], a
single-line queueing system with group arrivals is considered in which the group
sizes make a certain Markov chain. Since any of the above-mentioned models
watches after each single arrival time,
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this approach can be called local [7].

In [7] a non-classical approach was proposed and started developing. Accord-
ing to this approach, the flow is observed only at special chosen epochs. At that,
only a total random number of arrivals between two observation epochs becomes
known. This approach is called non-local. Let us cite here an appropriate defini-
tion.

Definition 1. Let 0 = TéObS) < TI(ObS) < ... be a point sequence on the awxis Ot

(here the superscript “obs” stands for “observation”), not coinciding with (1),

nEObS) be a random number of requests from the flow II during the time-interval

(Ti(Obs),Ti(fiS)} , and VZ-(Obd) be some characteristic(a mark) of those requests that

arrive during the time-interval (Ti(ObS),Ti(ikl)S)], A random vector sequence

{0, ) 0,1,

7 (3 7

is called a flow of non-homogeneous requests under its incomplete(non-local)
description.

Informally speaking, our mon-local auto-regressive flow is understood as a
(obs) obs)

flow with a linear form an;_;’ + b for the regression equation of 771( onto
n(()Obs), ng()bs), ceey ni(ibis). For count time-series, this kind of stochastic processes

was studied e.g. in [8].

The queueing system belongs to a class of polling systems [9]. Besides the
inputs, it differs from classical polling systems by an assumption on the service
process. Service time distributions are not known (in real queueing systems ser-
vice times can be dependent and have different probability distributions), but
the server’s sojourn time distribution for each node is given together with the
upper limit on the number of services customers. It models for example a roads
intersection controlled by a fixed-cycle traffic-light, and data transmission nodes
governed by a Round Robin algorithm.

We will demonstrate that even under simple assumptions on the queueing sys-
tem structure the equation for the stationary probability distribution generating
function is hard to solve. Still we will obtain conditions for the existence of the
stationary probability distribution in the system using the iterative-dominating
approach [10,11].

1 The Queueing System

Let us assume that all random variables and random elements in what follows
are defined on a probability space (£2,F,P). Then E(-) denotes the mathematical
expectation with respect to the probability measure P. Set ¢(z;a) = a®e™*/z!
fora>0andxz=0,1,....

Consider a queueing system with m < oo input flows and a single server.
Customers from the j-th flow join an infinite-capacity buffer O;. Probability
properties of the input flows will be defined later. The server spends a constant
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time T > 0 in front of each queue, and then an instant switch-over to the
next queue occurs. After the last queue the first queue is visited. The server
implements a d-limited policy: during its stay at the j-th queue the server can
provide service to d = ¢; customers at most from that queue, no matter when
exactly they arrived if they have arrived before the time T expired.

Let 79, Tix1 =7+ T = (i1 + 1)T,4 =0, 1, ... be the time instants when
the server switches to a next queue. Denote by I'") the server state when is at
the r-th queue, i = 1, 2, ..., mand let I' = {I'M), 7@ 1™} be the server
state space. Let a random variable I; € I' be the server state during the time
interval (7,1, 7] fori = 1,2, ..., and Iy € I' be the random server state at time
0. Let r@l=r+1forr<mand m@1=1 Then I, = [j;(w) = [T
for all w € 2 such that I; = I'(").

Denote by 7;,:;, i = 1, 2, ... the random number of new customers arriving
from the flow II; during the time interval (7;, 7i41], 5 = 1,2, ..., m. Let n; _1 be
a non-negative integer-values random variable, 7 = 1, 2, ..., m. Let us assume
that the conditional probability distribution of n; ;41 for any given n; 1 = z_1,
Njo = X0, ---, Nj,i = x; is the Poisson distribution with parameter (a;z; + b;)
for some a; > 0 and b; > 0, so that the regression of n; ;11 on past numbers of
arrivals equals

E(mjit1 [ {nj,—1=2-1,m0 = 20, ..., mji = xi}) = a;x; +b;.

We will call such an input flow an autoregressive Poisson flow. The previous
number of arrivals, 1;,-1, can be used as a mark of requests during the time-
interval (7;, 7;4+1]. Then the non-local description of the autoregressive Poisson
flow II; is a marked point process

{(7i,m5,0:m5,i-1);1=0,1,...}.

In particular, if the flow II; is a classical Poisson with intensity A; then we will
have a; = 0 and b; = A\;T. Further, let us assume that the stochastic sequences

{nji;i=-1,0,...}, i=12....m

are independent.

Denote by k;; the random number of customers in the queue O; at time
instant 7;. Denote by ; ; the largest number of customers which can be serviced
from O; during the time interval (7;, 7;,11]. Then the probability

P({gl,i = ylv&?,i =Y2,... 7§m,i = ym} ‘ {Fz = F(T)})

equals 0 for ty; > 0 and y, > 0 for some k # j; it equals 1 for y,g1 = £;. We
have

Hj,iJrl :maX{07I€j’i+’l7j77;—£j,i}, ZZO,].,,_] = 1,2,...,m. (2)

The recurrent equations and probability distributions given above prove the
following claims.
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Theorem 1. For a given probability distribution of the vertor
(FO7 J{1,07 J{2,07 vy J{’1”1’7,,()7 771,717 772,717 cee 777m,71)7
random sequences

{(Fi7 K1,y K235+ -y Bm,is T ,i—1512,i—15 - - - anm,i—l);i = 07 17 .. '}7
{(Fm%j,i?nj,ifl);i:0717"'}7 j:172u"'7m

are irreducible periodic Markov chains.

2 Analysis of the Model

The main purpose of this section is to establish necessary and sufficient condi-
tions for the existence of the stationary probability distribution of the Markov
chain {(I, ,:,mji-1);1=0,1,...} for j =1, 2, ..., m, since it is easy to prove
then, that the Markov chain

{5 K1,is K235 -+ s Bmis M im1, M2,i—15 -« -, Mmyi—1); 8 = 0,1, ...}

has a stationary probability distribution if and only if each single

{(Fia}fj,hnj,ifl);i:0717"°}7 j:1727"'7m

does. In the remainder of this section the value of the index j is fixed.

In the first place, for the existence of the stationary distributions of the
Markov chains, the inputs {7, ;;¢ = 0,1, ...} need to have statioinary probability
distribution. This is possible only if 0 < a; < 1forallj =1, 2, ..., m. We assume
so in the rest of the section.

Let us define

Qji(r,a,y) =PI =T kj; = 2,mj-1 = y}).

Let I(-) denote the indicator random variable for the event given in the paren-
theses. Let us introduce for |z| < 1, |w| < 1 and ¢ = 0, 1, ... the probability
generating functions

oo oo

W i(z,w;r) ZZZ w!Qji(r,x, y)E(2" wh i [({I; = F(T)})).

=0 y=0

Theorem 2. The following recurrent equations with respect to i = 0, 1, ...
hold:

Ui i1 (z,w;r @ 1) = b1 Gv= Dy, (5, 0G0 gy r®1#7;
Wi (z,wir @ 1) = 2z biebi (0= 1)& i(z,e% 0D )

—14j—z—1 oo

+ Z Z (ZQ” r oz, y)e(n; ajy—i—bj))(l — 2ot

z=0 n=0 y=0

forrel=j.
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Proof. Let r &1 # j. Then
;i1 (z,w;r @ 1) = B[zt [([; = 10)]
= E(E(z" (zw) I(I; = T'") | K4, mji-1, 1))
- E[znj,ie(ajnj,ﬂrbj)(zwfl)](pi — p(r))]
— eb(zw_l)y'/j’i(z, e(zw=1), ).

Forr® 1=y,
Ui i1 (z,wir @ 1) = [zt by [(I; = 1))

+ E[(1 = 2=l yyii [(T; = TM ks 4 nj.0 < 45)]

— ebj(zw—l)g/j’i(z, eaj(zw—l); r)
+ E[(1 — 250ty (0 = T ks 411 < 0)]

— Z—éeb(zw—l)uvll (Z, ea(zw—l); m)

l—1l—2—1 o0

+ Z Z (Z Ql(m’x’y)wef(agﬂrb))(l _ Zernfé)wn.

=0 n=0 y=0
Using methods from [10,11] we get.

Theorem 3. For the existence of the stationary probability distribution of the
Markov chain {(I;,;4,1;:-1);1 =0,1,...} it is necessary and sufficient that

b
1—aj

m < Ej. (3)

The condition in the last theorem can be easily interpreted from a physical point
of view because the quantity mb;(1 — a;)~! is the stationary expected number
of arrivals from the flow II; during a complete cycle of the server.

In course of the proof of Theorem 3 the following Lemma is essential.

Lemma 1. If 0 < a < 1 then the equation w = e >~ has a unique solution

n—lane—(n+1)a

w(z) =e 4+ Z " (n+1)

n=1

)

n!
convergent in the open disk |z| < a='e®!, such that w(1l) = 1, |w(z)| < 1 for
|z < 1.

Proof. Let’s fix |z| < 1. We have an estimate from below for the magnitude of
the complex quantity

|ea(zw—1)| — e—a|eazw| < e—aea|w\|z| < e—aea|w|.

So, on the circle |w| = 1 we have

|ea(zw—1)| < ea(\w|—1) =1= |w| (4)
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By the classical Rouche’s theorem, for any such z there is a unique solution
w = w(z) of the equation w = ¢***~1 such that |w(z)| < 1. Tt can be computed
by evaluating the integral

L F,(z,w) 1 w — azwedZw—1)
w(z) . / w F(z,w) w Gy / w — ealzw—1) w,
|w]=1 |w]=1

where i = /=1 and F(z,w) = w —we***~1), We only need to prove analyticity
of w(z) in the open unit disk.

Let jw| =1 and 0 < 7 < 1 be fixed. Let us consider the function w(z) in a
disk |z| < r. Since

|F(z,w)] > [|Jw| — [e*™= V]| > |w| — e2PIFI7D) > 1 — ealr=1) 5,

a function wF), (z,w)/F(z,w) is analytic inside the open disk |z| < r and with
uniformly bounded absolute value as a ratio of two continuous functions in bath
variables in a closed set {(z,w): |z| < r,|w| = 1}. A corollary from Vitali’s
theorem, the function w(z) is an analytic function of z in the open disk |z| < 7,
and hence in the open disk |z| < 1.

From inequality (4) it follows that

ea(wzfl)

<1,
w

so that the integral can be represented by a series:

dw

1 / w — azwetFw=1) 1 / 1 — qzes(zw=1)
dw = — _—
w — ea(zw=1) 2mi 1—

|lw|=1 Jw|=1

ea(zw—1)

27i

e 1 na(wz—1)
= E o1 / (1- azea(zwfl))ein dw.
"0 1 w

|lw|=1

Using the Cauchy’s Integral representation, we get

1 na(wz—1)
o / (1- aze“(zwfl))ein dw=20 for n =0,
m w
Jw|=1
1 na(wz—1)
2ri / (- &Zea(ZW7l))eT dw
T
Jw|=1
o 1 dn—1 (1 a(zw—l)) na(wz—1)
(n—1)! dwn—1 aze € we0
1
= m((naz)"*le*”“ —az(a(n+ 1)z)" " te~(nHa) for n > 1.
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So,

> (s e —as(atn + )2l 40

n=1

0 1)ngne—(nt1l)a n 1)n—1 —(n+1)a
ey B (e RS
— n! (n—1)!

nflanef(n+1)a

> 1
zefa_‘_z:zn(n+ )
n=1

n!
The convergence radius R is found from
1 " 1)n—1gne—(nt+l)a 1ngre—(nt+l)a
1 \/(n+) ame — fim o (n+ 1nare
n—o0 n! n—o0 (n+1)!
1)ngne—(nt+l)a
= lim ¢ (n+ Drare ael ™

n— o0 /271-(n + 1)(n + 1)n+16—(n+1) =

Now let us prove that the series at z = 1 equals w(1) = 1. Any convergent
series is a continuous function inside its disk of convergence. Here we focus on
real values for z and w > 0. Then

1( +nw) dz l—a—Inw
z=—(a+Inw), — =
aw dw aw?
In a neighborhood of w = 1 it is a continuous monotonously increasing function
for 0 < w < e'~% and it takes on value z = 1 at w = 1. Its inverse function takes
on values w < 1 for z < 1, and it takes on value w = 1 for z = 1.

Proof (to Theorem 3). 1) Necessity. Let us assume that the stationary proba-
bility distribution exists. By substituting it in place of the initial probability
distribution we guarantee the existence of limits

hm Qj,i(ra x, y) = Qj (Ta x, y)

71— 00
equal to the stationary probabilities. Let r(j) be the solution to r & 1 = j.
To obtain equations for the time-stationary probability generating functions we

can omit indices ¢ and ¢ + 1 in the equations in Theorem 3. Substituting there
w = w(z) from Lemma 1 where a = a; and b = b;, and denoting

Aj(x,n) =Y Q;i(r(j), x,y)p(n; ajy + b;)
y=0

we get

Ui(z,w(z)ir @ 1) = YOV w(z)ir),  rel#j; ()
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(2, w(2); ) = 20D (2, w(2);1(5)

Zj—l Zj—z—l
33 Ae ) - ) ()" (6)
=0 n=0
Summation of Egs. (5), (6) with respect to r =1, 2, ..., m results in
ZWJ‘(Z,U)(Z Z eb (zw(z)— 1)@ (Z w( ) )+z_ZJeb j(zw(z)—1)
r=1 r#1(3)
Li—1L;—x—1
<Wi(zw(z)ir(D)+ Y Y Ajla,n)(1 - ") w)" (7)
=0 n=0

In the left neighborhood of z = 1 (on the real axis) we have Taylor expansions

T =1 (b + b/ (1)(2 = 1) + o((z — 1))
bj(z—1)
1-— Q;

b,
L=t i (2w (2)— 1):1+(1 j

=1+ +o(z—1),

—éj)(z— 1) +o(z—1),

J

(1 — 2243 (w(2))" = (ej —r—n+ 1”a

J )(z—l)Jro(z—l).

J

There expansions substituted into (7), we get after collecting terms

0= 3 Uy w@in + (72 ) - 0z ()

r#1(5) J L=a
li—1Lj—x—1
naj
+z§oj ;o: A xn(e —a— 17%)(2—1)—&-0(2—1). (8)

Divide by (z — 1) and send z to 1 from the left. We get

b b :
0= 3 g Bt (7=~ ) B Lr0)
r#r(j)
—140—z—1

S SIS TR g

=0 n=0

Substituting z = 1 into (5) and (6) leads to ¥;(1,1;7) = m~"! for all r = 1, 2,
, m. So, we finally come to
b 4
l—a m
l—1l—2—1 o0

+Z (ZQl m, y)% ,(a%b)) (g —r—n+g aa)' (10)

z=0 n=0 y=0
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Taking into account that ¢; —z —n + %% > 0 for those z and n which occur
at summation, we draw the conclusion that for the existence of a stationary
probability distribution it is necessary that

b 4

— = <0.
l1—a m

2) Sufficiency. Let us assume for now that Inequality (3) is true, but no
stationary probability distribution exists. All the states of the Markov chain are
essential and belong to a single class of communicating states, one must have

lim Q;(z,y;r) =0
11— 00

for all z, y, and r, It follows then that the sequence of mathematical expecta-
tions Erx;; ¢ = 0, 1, ... unboundly grows. We claim that, on the contrary, the
mathematical expectations are bounded if the condition from the theorem holds.

Let us setup the initial probability distribution so that the probability gen-
erating functions ¥, o(z,w;r) are analytic in (z,w) € C% Then all the next
probability generating functions ¥, ;(z,w;r), ¢ = 1, 2, ... can have analytical
continuations onto whole C2. Consequently, the functions ¥; ;(z, w(z);r) will be
analytic in the disk 2] < 1+ < 1/(ae’~?) (i.e. inside the disk of convergence
of the series w(z)) and will satisfy equations

Ui (z,w(z)irel) = 2 ebf(zw(z)*l)%,i(z, w(z);r), r®1+#j;
)1 (z,w(2); §) = 29D (2,w(2);7(7))

Li—1L;—x—1
+ Z Z Aj(z,n)(1— z“'"_ef)(w(z))”.
=0 n=0

Letusfix a 2,1 < 2 < 1+¢ and let r&@m =r = j. The one has (4;(z,n) < 1):

Viitm(z,w(z);m ®@m) < P ebf(zw(z)_l)llfj)wm,l(z, w(z);r @ (m—1))

li—1L;—x—1
+Y 0> (=) (w(z)"
z=0 n=0
_ (Z—Zjebj(Zw(Z)—l))QQj’i+m72(Z,w(z);r @ (m—2))
fj—l Zj—w—l
+30 3T a2t (w()" =
x=0 n=0
éj—l Zj—LE—l
= (27t et GvE=INT g (2w (z)r) + 1 — 254 (w(2)™.
( (2, w(z);r) ( )(w(2))
z=0 n=0

Since
4 (2t ba ) =Dy ™
4

b.:
= —méj + m J < 07
z=1 1-— Q.
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the sequence

![/0+ :lpj’o(sz(zﬁj% !ler :!pj,l(sz(z);j)v ...7347;71 :!‘pj,mfl(sz(z);j%
li—1Lj—x—1

U = 27RO S Y (1= w(z)", =01,
z=0 n=0

converges, and hence is bounded. At the same time, for all i =0, 1, ... we have

U, i(z,w(z);r) < W;r.

It follows that all numbers (for this z) ¥ ;(z,w(z);r), r =1, 2, ..., m, and
1=0,1, ... are bounded by some constant C' > 0. Then,

1 m lp‘i ,1;
E(Kj7 ) _ / erl Js (ZQ 7") dZ
27i lc—1]=6 (z—1)
/ Z:‘nl 311+51+5T)du<m70
)
This contradiction prove the claim.
To solve Egs. (5), (6) for the functions ¥;(z,w(z);r), r =1, 2, ..., m, one

needs to identify ¢;(¢; 4+ 1)/2 unknown constants A(z,n), 0 <z +n < {;, n, z
integers. We get

(Zej _ mb (zw(z)— 1)) (Z w(z) 7“)

Zj—lfj—z 1
=3 3 A )b - ) w(z)", rel=j
z=0 n=0

Case 1. If ¢; = 1, then the only unknown constant is A4;(0,0). Recalling that
W,(z,2;7) = 1/m and expanding terms z — ™% G =D (1 — »=1) in the left
neighborhood of z = 1, we get

(1 _ _mb; )% = A4,(0,0).

1—aj

Case 2. If £; > 1, we have £;(¢; + 1)/2 > 1 unknown constants. Let us study

the equation
Zej — ebj(zw(z)_l) — 0'

It follows from the modified Rouché theorem [12] and the Lemma below that
it has exactly ¢; — 1 zeros inside the unit disk |2| < 1 when the stationarity
condition (3) is fulfilled.

Lemma 2. If inequality (3) is fulfilled, then |e% )=V < 1 for all |z| = 1,
z# 1.
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Proof. Let z = e, w(z) = Re'?, 0 < u < 2m, 0 < ¢ < 27. Then
Reigp _ ea(ei“~Rei“"—1).

Rei(ute)

Its right-hand side equals e®( —1). By comparing moduli, we get

R= 6aRcos(u+gp)fa'
We have R =1 if and only if a cos(u + ¢) — a = 0, whence cos(u + ¢) = 1. But

then sin(u + ¢) = 0 and it’s the argument value ¢ of the complex number Re*?.
Finally, from 1 = cos(u + ¢) = cosu we get u = 0.

Denote these zeros by 51, B2, ..., Be;-1-
Theorem 4. If inequality (3) is fulfilled then the following equations take place:
li—10;—x—1

> > Aj(mvn)(‘gj—l'—n):ﬁ_L

)
m 1—a

=0 n=0
Li—1L;—x—1
SN A ) (B — (BT (w(B)) =0, k=1,2,...6 1
z=0 n=0

The number of linear equations given by Theorem 4 is less than the number
of unknown constants. Still, it was to be expected, since Egs. (5) and (6) are
not equivalent to equations of Theorem 2 and by substituting w = w(z) there
we lose evidently essential parts of information about the generating functions
of interest. Moreover, once we obtain all A;(x,n), 0 <z +n < {;, we still need
to solve a functional equation relating ¥; (z, w;r & 1) to ¥;(z, e%=v=1):1) in the
polydisk {(z,w): |z| < 1,|w| < 1} c C2.

Since the main functional transform (2) for a queue length is produces a
random walk with reflection at zero, a many times studied (under a variety
of assumptions) process, it is of interest to compare the assumptions on the
input processes, such as input flows and service processes, in our work and in
other classical works. Usually (c.f. [13]) it is assumed that the sequence (in our
notation)

{nji — &30 =0,1,...}

is a stationary process. In our case, it would imply not only that the input
sequence {n; ;¢ = —1,0,1,...} is stationary, but also that the initial server state,
Iy, is random with the uniform probability distribution on I'. Our exposition
leaves more freedom for the input flow and the initial server state.

3 Conclusion

It was shown in this work that discrete-time models of queueing systems with
auto-regressive input process may lead to a challenging problem in the domain
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of several complex variables in terms of multivariate probability generating func-
tions. This problem still wait for its solution. Nethertheless, the necessary and
sufficient conditions on the parameters of the queueing system which guarantee
the existence of the stationary probability distribution can be found by careful
analysis of these (yet unsolved) equations. For the polling queueing system under
study, these conditions are easily verifiable and have natural physical interpre-
tation in terms of mean values for the basic quantities like numbers of arrivals
and saturation flow intensity.
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Abstract. The paper considers a network of resource loss systems
(ReLS) with random resource requirements and two types of nodes. Cus-
tomers initially arrive to the first type of nodes, where they receive service
for exponentially distributed time. The service of customers can be inter-
rupted. In this case, they are rerouted to the second type of nodes, where
they receive service for an exponentially distributed time. Once the ser-
vice is completed, they return back to the original node and continue its
service. Customers require a random volume of limited resources. If there
are not enough of unoccupied resources upon the arrival of a customer,
then it is considered lost. Similarly, if an accepted customer is rerouted
to another node and finds that there are not enough of resources to
meet its requirements, then it is also lost. In this paper, we provide an
approach to analyze the stationary behavior of the considered system,
as well as establish expressions for the new customer loss probability
and the accepted customer loss probability. The developed model has
a wide range of applications in performance evaluation of fifth genera-
tion (5G) New Radio (NR) access networks. To this aim, we investigate
the response of the considered service system in detail by revealing crit-
ical dependencies and trade-offs between input system parameters and
performance measures of interest.

Keywords: Resource loss system - queuing network - loss
probability - wireless networks + 5G NR - multiconnectivity

Introduction

The introduction of fifth generation (5G) systems promises to deliver not only
extraordinary access rates but also the quality of service (QoS) guarantees to
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the air interface. This will potentially enable applications requiring extremely
high and constant bit rate (CBR) service such as augmented/virtual realities
(AR/VR), holographic telepresence, 16/8K streamed video, and tactile Internet
[11,14]. This is a principle paradigm shift as compared to fourth generation (4G)
long-term evolution (LTE) systems that require appropriate mechanisms at the
radio interface allowing to conceal the effects of wireless transmission medium.

In addition to much higher propagation losses in millimeter wave frequency
(mmWave) band, 5G New Radio (NR) systems will be subject to outages caused
by a dynamic blockage by human bodies [6] or buildings [1,5]. This behavior
heavily affects the QoS characteristics provided to users and may even cause ser-
vice interruptions. To alleviate the effect of blockage, the authors in [3] proposed
to reserve a fraction of bandwidth at the serving base station (BS). However,
this approach can only be utilized when users do not experience outage condi-
tions in case of blockage. Alternatively, one may use recently standardized 3GPP
multiconnectivity functionality [8,16]. According to it, user equipment (UE) is
allowed to maintain more than a single link to nearby BSs and switch them in
case of outage events by dynamically rerouting the traffic between locally avail-
able 5G NR BSs. Performance characterization of this mechanism as well as joint
implementation to resource reservation and multiconnectivity naturally calls for
queuing network formalism.

The first study that utilized a network of ReLsS is [12], where a continuous-
time ReLS has been applied to assess the performance of 5G mmWave NR
deployments with multiconnectivity operation. Later on, a discrete variant of
ReLS has been applied in [4]. Other applications of the ReLS in 5G NR and
sixth generation (6G) systems operating in terahertz (THz) frequency band are
detailed in [9]. In [10], the general approach for the analysis of networks of
ReLS was described. In this paper, we analyze the network of ReLS that can be
used to model muticonnectivity operation in 5G NR systems, define performance
metrics, and provide an iterative approximate algorithm.

The rest of the paper is organized as follows. We introduce our model in
Sect. 1. The analysis is performed in Sect. 2. Numerical results are provided and
discussed in Sect. 3. Finally, conclusions are drawn in the last section.

1 Model Description

We consider a network of resource loss systems (ReLS) with two types of nodes.
There are N — 1 first type nodes and one node of the second type. Each node
has K; servers and R; resources, ¢ = 1,2,..., N (see Fig.1). Customers arrive
according to the Poisson process with intensities A\; and Ao to the first and
second type nodes, respectively. The service times are exponentially distributed
with parameters p; and ps. Each customer requires not only a free server, but
also a random discrete volume of resources, which are determined according to
the probability distributions {f1;} and {f2 ;}. Besides, each customer currently
served at the first type of nodes is associated with a Poisson flow of signals
with intensity a that causes rerouting of the customers to the node N. Rerouted
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customers stay at node N for exponentially distributed time with parameter 3
and return back to its original node, or leave the system if its service is completed.

@ ) e
M— : o —
%)
p—
&
7\«2_> > C M —»
@ ]
Ry

Fig. 1. Illustration of the considered queuing system: there are N —1 first type of nodes
and one second type of node; the service intensity at first type of nodes is the same ;.

To analyze this model we follow the decomposition approach, which is a
powerful methodology for queuing networks [7]. The core assumption here is
that the service process at each BS in the network is independent of the service
processes at other nodes. The relation between the service processes at the nodes
of both types is incorporated into the numerical solution algorithm, where the
characteristics of the entire network are calculated iteratively until the procedure
converges. The stability properties of this class of models were analyzed in [2].

2 Model Analysis

In this section, we analyze the presented model. We start with an analysis of the
service process at individual nodes of the first and second type and then proceed
to derive the metrics of interest.

2.1 Service Process at the First Type Nodes

Consider the first type of nodes. Due to the memoryless property of the expo-
nential distribution, the residual service time of returning sessions is also expo-
nential with the same parameter pq. Let ¢; be the intensity of the returning
session arrivals at node i, 72 = 1,2, ..., N — 1. Then the total session arrival inten-
sity to node i is thus A; + ¢; and the total intensity of departures is pu; + a.
The stochastic behavior of the node ¢ can be described by the Markov process
Xi(t) = {&(¢),8:(t)}, where &;(¢) is the number of customers at node ¢ at time
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t and 0;(t) is the total volume of occupied resources. Denote the stationary
probabilities g; »(r) as

qi,n(r) :tll)nolop{fl(t) :n,éi(t) :T}, n=0,1,2...,KZ‘, (1)
r=0,1,2...,R, i=12,...,N—1.

The process X;(t) describes the considered ReLS. According to [15], the
stationary distribution (1) is given by
K; pn R (n) -t
wo- (1425 30) @
n=1 r=0
qi,n(r) :qi,()% 1(7;)7 n = 1727"'7Ki7 (3)

where p; = (A1 + ¢;) /(1 + @) and fl(z),j > 0 is the n-fold convolution of pmf

{f1,;},3 > 0. Note that the probability fl(z) can be interpreted as the probabil-
ity that n sessions on a first type node totally occupy j resources. Practically,
the convolutions of discrete distributions may be evaluated using the following
iterative procedure

J
n n—1 .
fl(,j):Zfl,T l(,jf'r)’ l:172a]20an227 (4)
r=0
where £ = fi;,5 > 0.

2.2 Service Process at the Second Type Node

The behavior of the second type of nodes (node N) can also be described in
terms of the queuing systems with random resource requirements. As at nodes
1,2,...,N — 1, there are also two types of arrivals: customers that arrive initially
to the node N with the intensity Ay and customers that are rerouted from the
first type of nodes with intensity @n. However, in this case, the service times
differ from each other: the service intensity of the initially arriving customers is
w2, and for the rerouted customers it is p; + 8. The arrival intensity ¢ for the
rerouted customers is obtained by summing up all the rerouting intensities of
the first type nodes, i.e.,

N1
ON = Z (M1 + i) (5)

pr+a

In (5), the term /(1 + «) refers to the probability that a customer from a
first type node is rerouted to node IV before its service completion. The intensities
pi,t=1,2,..., N — 1, of customers returning back to their original node has the
following form

0 = (M + ) (1 = mi1)——(1 = Tw,1) (6)

a+ RN
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where 7; 1 is the loss probability of arriving customers at node ¢, ¢ = 1,2, ..., N
and /(8 + p1) is the probability that a rerouted customer at node N returns
to its original node before service completion.

Observe that (6) implies that the flow of rerouted customers at node i, ¢ =
1,2, ..., N —1 equals to the fraction of the accepted flow, that was initially routed
to the node N with the probability «/(« + p1), then accepted by the node N
with the probability 1 — mx 1, and finally rerouted back with the probability
B/ (B + p1).

The expression for the stationary probabilities gy n, n, (71, 72) that there ng
first type of customers that totally occupy 71 resources and ny second type of
customers occupying ro resources also has the product form

PN 1 PN 2
Ao (11, 72) = o0 ) 1) (7)
-1

p”Ii/ll pnN22 (n1) p(n2)

. s s 1 2
4gN,0,0 = 1+ Z ! 1! Z f2 fz ) (8)

1<ni4+ns<Kn 0<r1+r2<RxNn
where py 1 = % and py 2 = 55,

According to [15], the ReLS with two arrival flows can be analyzed similarly
to ReLS with one aggregated arrival flow. Thus, the stationary probabilities
gn n(r) that there are n customers of any types in the system that totally occupy
r resources have the following form

() = ano 277, (9)

-1
qn,o = <1 + Z & Z (n)> yPN = PN,1 T PN,2, (10)
that can be evaluated numerically, see, e.g., [13].

2.3 Solution and Performance Metrics

Having obtained the stationary state probabilities for all the nodes, one may
proceed with deriving the performance metrics. Recall that our solution is iter-
ative in nature as one needs to add another layer of rerouted customers at each
iteration until a parameter converges to its stable value with a given accuracy.
The procedure is terminated once the required precision level is achieved. Par-
ticularly, at the first iteration, there are no rerouted customers, and thus ¢; = 0,
t=1,2,..., N. Then, the algorithm continues as follows:

1. Based on the system parameters, new customer loss probabilities 7; ; at nodes
i =1,2,...,N and arrival intensity of rerouted customers ¢y at node N are
evaluated.
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2. New values of ;, i = 1,2,..., N — 1 are calculated according to (6) by substi-
tuting their previous values into the right-hand side; if the difference between
the new and the previous value meets the required precision, the algorithm
proceeds with 3). Otherwise, it returns to 1).

3. When ¢;, i« = 1,2,..., N — 1 converges to a stable value with the desired
accuracy, all other performance metrics are evaluated.

The iterative solution outlined above requires new session drop probabilities.
These can be evaluated as follows

i1 —1—%0 Z pZ Zf(n+l)7 7"'7N_1 (11)

KNln

1 =1—qno Z pNZf("“). (12)

Calculation of the probability that an accepted customer is lost is more
involved process. Let us introduce the conditional probability IT;,i = 1,2, ..., N —
1 that a customer originally arriving and accepted at node ¢ and is lost, given
that it is rerouted, i.e.,

I =7ng+ (1 —7n1) i1y (13)

_B_
B+
where the first term corresponds to the case of customer loss at entering the
node N, while the second term is the probability that the rerouted customer is
accepted at node N but then lost upon its return to the original node due to
insufficient amount of available resources.

The average number of accepted customers lost as a result of rerouting during
a time interval of length 7" is aNiHiT, where N; is the mean number of customers
at node ¢ = 1,2,..., N — 1. The mean number of customers that are accepted
during the same time interval is A\q(1 — m; 1)7T. Hence, the probability that a
customer, that was initially accepted at the node i, is eventually dropped is

OéNlHZ
T2 =~ 7 -
2 )\1(1 - 71'1'71)

Finally, the average number of occupied resources b;, i = 1,2, ..., N at node
i has the following form

(14)

qloz 'Zf“, i=1,2,.,N—1 (15)

bv =anyo Z I Z (n)~ (16)

nl
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3 Application to the Analysis of NR/LTE Deployment

In this section, we numerically investigate the performance response of the con-
sidered system. Specifically, we investigate the behavior of new and accepted
customer drop probabilities as a function of the customer arrival intensities, the
signal arrival intensities, and the resource requirements distribution parameters.

We consider two nodes each having its own customer arrival intensity, A;
and Ay. Customers at the first node can be interrupted by the external signals
with intensity . Note that the scenario considered below can be interpreted as
the service process of user sessions at dual mmWave NR (or alternatively THz)
and LTE deployment, where sessions currently served at mmWave BS can be
temporarily offloaded to LTE BS when the line-of-sight (LoS) path gets blocked
to ensure session continuity. In this scenario, the service process of user sessions
on the mmWave NR BS is modeled by the first type nodes, while the second type
node models the service process at the LTE BS. The default system parameters
are provided in Table 1.

Table 1. Parameters for numerical assessment.

Parameter Value
Number of servers, K;,i =1,2,...., N 50
Number of resources R;, i =1,2,..., N 100
The intensity of the arrival of the first type of customers, A [0.2, .., 0.65]
The intensity of the arrival of the priority type of customers, Az | [0.2, .., 0.65]
Customer service intensity, @1 = p2 1/30
The intensity of signal, « 0.2
Interruption intensity, 3 10
1 1
z 10" b E z 10"
f:_ 102 % 102
2 g —=— T, (new)
g _g —4— Ty, (new)
5 107 —=— T, (new) 5 107 —— T (accepted) |
£ e Ty (new) E
5 - —e— TT;, (accepted) 1 é -
]075 ]075 L L L L L

I I I I I I I I I I I
02 025 03 035 04 045 05 055 0.6 0.65 02 025 03 035 04 045 05 055 0.6 0.65

Customer arrival intensity, A Customer arrival intensity, A,

(a) Customer drop probabilities, A2 = 0.3 (b) Customer drop probabilities, Ay = 0.3

Fig. 2. New and accepted customer drop probabilities.
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We start with new and accepted customer drop probabilities as a function
of arrival intensity at NR and LTE BSs as illustrated in Fig.2(a). By analyzing
the presented data one may observe that for considered system parameters, the
new customer drop probability at both systems increases with the increase in
1. Logically, the increase in A\; much heavily affects new and accepted customer
drop probability at NR as compared to LTE. However, the new customer drop
probability at LTE also increases and this is mainly caused by the temporal
offloading of customers from NR system. Analyzing the trends dictated by the
increase in Ao, we observe slightly different behavior. First of all, expectedly, the
new LTE customer drop probability increases. However, this effect causes the
increase in the accepted NR customer drop probability. The latter phenomenon
makes more resources available for newly arriving NR customers decreasing the
corresponding probability as seen in Fig. 2(b). Thus, we may conclude that the
session arriving process at the system utilized for temporal offloading (e.g., LTE)
may drastically affect user session performance of the system subject of outages
caused by blockage phenomenon (e.g., mmWave or THz).

2 2z
2 10k —a— T, mew) H Z 10" T
=] =]
e —— Ty, (new) 2
i —e— TT;, (accepted) S —&— T, (new)
g 2 —&— Ty, (new)
s = —e— TT,, (accepted)
g .
g 107k 4 3 10°f b
3 3
|8} @]

10° I I I I I I I I 10% I I I I I I I I

0.1 0.15 02 025 03 035 04 045 05 055 5 7 9 11 13 15 17 19 21 23
Intensity of signals, « Interruption intensity,
(a) )\1 = 05, AQ =04 (b) )\1 = 05, AQ =04

Fig. 3. New and accepted customer drop probabilities.

We now proceed considering the effect of the interruption process. To this
aim, Fig. 3 illustrates the new and accepted customer drop probabilities as a
function of both intensity of signals and interruption intensity. By analyzing
the presented results, we observe that the accepted customer drop probability
is heavily affected by the signal intensity. As these sessions are offloaded onto
LTE, the corresponding new customer drop probability drastically increases.
At the same time, the new customer drop probability at NR decreases. The
overall effect is extremely negative from the QoS perspective — under high values
of a most NR sessions are accepted for service and then eventually lost. The
overall effect of the interruption intensity is also interesting. As (3 increases,
the NR accepted customer drop probability decreases. The rationale is that it
also results in a lower intensity of switching from one system to another and,
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thus, smaller chances to lose the session accepted for service. Logically, we also
observe that this effectively lowers the new customer drop probability at LTE and
increases the new customer drop probability at NR. However, we note that in real
deployments we cannot affect the value of 8 as it is given by the environmental
conditions, particularly, by the density of blockers and their movement patterns.

Customer drop probability

Customer drop probability
3
" T
bt
i /
i

—&— LT (new), MOy = 6 —e— LT, pted), M0 =3
107 [ —*— 27 (new), MOy =4 2:70,5(accepted),M02 = 4 | |
— 3T, (new), MOy = 3 — = 3:,(accepted), M0 = 6
100 F T o— N
~
o H—=— 17, mew), MOy =6 —e— 170 (accepted), M0 = 3 . ~
10 —de— 27T, (new), MOy = 4 ccepted), M0, = 4 107 e E
-+ — 30,(new), MO; =3 —  — 3.7, (accepted) MO, = 6 T
10°% N N N N N N N N 10°% . . . . . . R
02 025 03 035 04 045 05 055 0.6 0.65 02 025 03 035 04 045 05 055 0.6 0.65
Customer arrival intensity, M Customer arrival intensity, A»

(a) Customer drop probabilities, A = 0.3 (b) Customer drop probabilities, A1 = 0.3

Fig. 4. New and accepted customer drop probabilities.
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Fig. 5. New and accepted customer drop probabilities.

The amount of resources requested by a customer is one of the critical param-
eters for resource queuing systems. We now investigate it by analyzing the effect
of the resource requirements parameters. Specifically, Fig.4 shows the new and
accepted customer drop probabilities for different values of the mean number of
resources E[f;] and E[fs] required by NR and LTE customers as a function of
arrival intensities A\; and Ay. We consider three cases: (i) NR customers require
two times more resources than LTE, (ii) an equal amount of resources is required
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by both LTE and NR customers, and (iii) NR customers require two times less
resources. The presented results are logical — the increase in the amount of
required resources at NR increases the NR new and accepted customer drop
probabilities overall considered range of A;. However, as Ay increases, the situ-
ation becomes more complex as shown in Fig.4(b). First of all, for a fixed NR
arrival intensity and smaller NR resource requirements distribution, the new NR
customer drop probability decreases. The rationale is that under this relation
between the mean amount of required resources, offloaded sessions are rarely lost
at LTE system increasing the new LTE customer drop probability. However, as
the mean value of the required resources at NR system increases, the new NR
customer drop probability increases as well.

Not only the mean value, but the type of the distribution may produce a
significant effect on performance characteristics of the session service process.
To this aim, we now consider the effect of the variance and distribution type
jointly in Fig.5 as a function of session arrival intensities, A; and As. Specifi-
cally, we consider: (i) geometric distribution with variance o2 = 12, (ii) binomial
distribution with variance o2 = 0.75, and (iii) Poisson distribution with vari-
ance o2 = 3. Note that the distribution parameters are chosen so that the mean
resource requirement is equal to 4 for all the considered distributions. The anal-
ysis of the results reveals that the best performance is produced by distributions
having smaller values of variance. Furthermore, this effect can be quite substan-
tial with the gap between new and accepted customer drop probabilities reaching
orders of magnitude. More specifically, the considered binomial distribution with
0% = 0.75 leads to the new NR customer drop probability of approximately 10~8
for Axyg = 0.2. For the same arrival intensity, geometric distribution with a much
larger variance of o2 = 12 results in 10~* new NR customer drop probability.
The rationale is that higher variance leads to more variability in the customer
sizes and thus more customers are accepted at the LTE system. The same obser-
vations can be made for other metrics of interest. This trend is best highlighted
in Fig.5(b), where these probabilities decrease as a function of Ay and there is
a large gap between them.

Conclusion

In this paper, we considered a network of resource loss systems. Using the decom-
position approach, we derived formulas for single node characteristics, and pro-
posed an iterative algorithm to evaluate the performance measures of the whole
system, including the new customer loss probability and the accepted customer
loss probability. The proposed model can be utilized to investigate the perfor-
mance of user sessions in joint mmWave/LTE deployments with UEs supporting
inter radio access technology (RAT) multiconnectivity functionality. In these
deployments blockage of the LoS path between mmWabe BS and UE may lead
to outage conditions and LTE BS can be utilized to temporarily offload the
served sessions. More complex deployment conditions and technologies such as
mmWave and THz RATSs can be considered, where a session may experience
blockage conditions at both types of RATs.
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The carried out numerical analysis allowed to make several critical observa-
tions. First of all, the session arriving process at the system utilized for tempo-
ral offloading (e.g., LTE) may drastically affect user session performance of the
system subject of outages caused by blockage phenomenon (e.g., mmWave or
THz). Higher intensity of signals negatively affects the new session drop prob-
ability at the system utilized for temporal offloading of sessions. The overall
effect is extremely negative from the QoS perspective — under high values of «
most NR sessions are accepted for service and then eventually lost. Further, the
duration of interruption has a high impact on accepted session drop probability.
The mean amount of required resources have a complex effect on performance
metrics, specifically, the ratio between mean values of resources may heavily
affect the new and accepted session drop probability. Finally, the variance of the
resource request distribution may produce an extreme impact on session service
performance with the gap between new and accepted session drop probabilities
reaching orders of magnitude.
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Abstract. The purpose of the article is to investigate the reliability of
an unmanned high-altitude module based on a mathematical model of
the k-out-of-n:G system. An analytical model of the k-out-of-n:G sys-
tem under two system failure scenarios is considered. In the first case,
the system failure occurs after (n — k + 1) elements failure. The second
one examines the system failure depending on the location of the failed
elements. The sensitivity analysis of system reliability characteristics to
the shape of the lifetime distribution function of the components has
been carried out. The impact of the coefficient of variation of the system
elements lifetime on its operating probability without failure is investi-
gated. Several machine learning methods are used to calculate reliability
characteristics for arbitrary input data based on practically significant
parameters. The accuracy of the trained models is expressed in terms of
estimated mean values.

Keywords: Telecommunication high-altitude platform - tethered
unmanned aerial vehicle * k-out-of-n:G system - system reliability -
sensitivity analysis + coefficient of variation - simulation modeling -
machine learning

1 Introduction and Motivation

Currently, telecommunication high-altitude platforms (THAP), which are imple-
mented on autonomous unmanned aerial vehicles (UAV), are widely developed
and used in various fields of human activity [1,2]. The main disadvantage of
UAVs is the limited operating time associated with the short service life of UAV
batteries equipped with electric motors or a limited supply of fuel for inter-
nal combustion engines. In this regard, such UAVs cannot be effectively used

Supported by the Russian Foundation for Basic Research, project no. 19-29-06043 and
the RUDN University Strategic Academic Leadership Program.
© Springer Nature Switzerland AG 2022

A. Dudin et al. (Eds.): ITMM 2021, CCIS 1605, pp. 117-130, 2022.
https://doi.org/10.1007/978-3-031-09331-9_10


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-09331-9_10&domain=pdf
http://orcid.org/0000-0002-6593-5881
http://orcid.org/0000-0001-7373-4847
https://doi.org/10.1007/978-3-031-09331-9_10

118 N. Ivanova and V. Vishnevsky

in systems that require a long operating time. The long-term operation can be
ensured by tethered THAP, in which the engines and payload equipment are
powered from ground-based energy sources [3-5]. The ability to transmit high-
power energy (10-15 kW) through a cable from the ground to the THAP’s board
allows lifting and holding at altitudes of 100-200 m of a payload telecommuni-
cation load for a long time, limited only by the reliability characteristics of the
platform [6-9]. High reliability of the tethered unmanned module is achieved
by the following ways: 1) choice of propulsion systems with a large meantime
between failures; 2) redundancy of individual elements of the control system; 3)
the usage of a multi-rotor architecture (for example, in a quadcopter, a failure
of one engine leads to a complete cessation of operation, and in an eight-rotor
version, in case of failure two motors, the copter may continue to run) and so on.

The reliability of such complex systems is effectively investigated using a
mathematical model of the k-out-of-n system [10]. Such a system has broad prac-
tical applications in various industries: telecommunications and robotics [11,12],
oil and gas [13], subsea pipeline monitoring systems [14], cryptography [15], etc.
This model has been widely studied under many assumptions about the struc-
ture of such a model, for example, the dependence and independence of the
system elements, the shape of life and repair times distributions, different recov-
ery scenarios, and others. To study various k-out-of-n systems, both analytical
methods based on multidimensional Markov processes and simulation are used
[11,16-18].

Sensitivity analysis is a significant research stage, especially for redundancy
systems like k-out-of-n system. In stochastic systems, stability is often under-
stood as the insensitivity or low sensitivity of their output characteristics to
the shape of some input distributions. The term “sensitivity” in other areas,
for example, civil engineering, can be defined differently [19]. In queuing theory,
the first results of sensitivity research are presented by Sevastyanov, Kovalenko,
Gnedenko, Soloviev, and others. Some of the latest studies see in [18] and its
references.

An additional research method considered in this paper is machine learn-
ing (ML). In queuing and reliability theories, ML methods are usually used for
studying various probabilistic and time characteristics of complex systems. They
are also useful in those cases when it is impossible to obtain results either analyti-
cally or using simulation [20]. The application of ML techniques for analyzing the
reliability of an unmanned high-altitude module is due to the following factors.

1. From a practical point of view, the system service time is often estimated by
its average value, while the shape of the lifetime distribution is unknown and
can only be assumed based on some statistical data. ML model can operate
based on the mean value without considering a specific distribution function
of the lifetime of system elements.

2. Some parameters inside the system can significantly impact its reliability.
However, from practice, this information may also be absent. The sensitivity
analysis helps identify these weaknesses, after which they will be included in
the ML model.
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3. A model built and trained using ML techniques can predict the system reli-
ability characteristics faster than a simulation model. In addition, it allows
making accurate predictions on many data simultaneously, while simulation
can only give a similar result after a lot of iterations.

4. Trained model can be useful and used by engineers at the development stage
of such modules for many aims: to determine a highly reliable system archi-
tecture (parameters k, n), select the module components, the characteristics
of which will support reliability and long-term operation of THAP (mean
lifetime a and the coefficient of variation v), and also predict how long this
unmanned module will operate with a satisfactory level of reliability.

There are many machine learning techniques. In the article, we will consider
supervised learning for some types of regressions and neural networks using a
Python programming language [21]. For this Scikit-learn [22] and TensorFlow
[23] libraries will be used.

This paper continues studies related to reliability and sensitivity and consid-
ers a hot standby non-repairable system using analytical and simulation methods.
The current paper aims to study the reliability of tethered THAP using the k-out-
of-n:G system and ML methods, which make it possible to determine a satisfac-
tory level of module reliability at different initial parameters with high accuracy.

The article is organized as follows. The next section introduces the problem
setting and some notations. In Sect. 3, reliability function of homogeneous k-out-
of-n:G system will study. Subsections 3.1 and 3.2 contain analytical results for
a simple homogeneous k-out-of-n:G system and a homogeneous k*-out-of-n:G
system, the failure of which depends on the location of the failed elements. A
numerical example and sensitivity analysis of the considered systems are pre-
sented in Subsects. 3.3. In Sect.4, various ML techniques for predicting the
level of reliability of unmanned module will discuss. Subsection 4.1 describes the
methods and data used in this research, which are implemented in Subsects. 4.2
and 4.3. The paper ends with a conclusion and some problems descriptions.

2 Problem Setting

Due to the multi-rotor architecture of the high-altitude module, which consists
of n identical engines, consider homogeneous k-out-of-n:G system. Such a system
consists of n elements and remains operational iff at least k£ out of n elements are
operational. Denote by A;, i = 1,2, ..., lifetimes of the system elements. Sup-
pose that these random variables are independent and identically distributed, thus
the corresponding cumulative density function is defined as A(t) = P{A4; < t}.
Suppose also that instantaneous failures are impossible and their mean times are
finite:
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For the system study, introduce the random process J = {J(t), t > 0} with
J(t) = number of working components in time ¢

with the set of states E = {j = 0,k}, where j is number of working units.

Denote also by T time to first system failure T' = inf{t : J(¢) € E;}, where
E, ={j =0,k — 1} is the set of UP states. Ey = {j = k} is the set of DOWN
states. Thus, we are interesting in calculation of reliability function

R(t) = P{T > t},
and the mean time to system failure (MTTF)

e

3 Analytical Models and Sensitivity Analysis

3.1 Reliability Function of Homogeneous k-out-of-n:G System

Consider homogeneous k-out-of-n:G system, A4;(t) = A(t) (i = 1,n). It is well
known, the probability that exactly ¢ elements of the system from n at time ¢
are in a working state has the form

P(1) = CL (L~ A()) A1)
Thus, the reliability function of such a system (the probability of the system
operating for a certain time ¢ without failure) is

R(t)=P{T >t} = Zn: Cl(1—A(t) A" (1)

i>k

3.2 Reliability Function of Homogeneous k-out-of-n:G System
Taking into Account the Location of the Failed Units

To investigate the reliability function of more complex homogeneous system, the
failure of which depends on the location of its failed components, introduce a
vector description of the state of the system j = (ji, j2, .-+, jn), Where j; = 0 if
i-th component failed and j; = 1 if it works. Then the probability of state j in
time ¢ equals to

p;(t) = H (1= A(t))* A(t)'

The probabilities of the operable and failure states of the system at the time ¢

take the forms
= > pi(t), P(DOWN)=>" p;(t)
JEEL JEEL

Thus, the system reliability function is

=> I @A) A (2)

JEE; 1<i<n
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3.3 Numerical Examples and Sensitivity Analysis

As a numerical example consider the case of 4-out-of-6:G system. It is supposed
that the lifetime of the system’s units have the following distributions:

— Gamma [I" (1/v?, av?)];
— Gnedenko-Weibull [GW (,u7 W)},

— Log-normal [LnN (ln \/ﬁ7 \/m)} )

where a is mean lifetime of the system components and v is its coefficient of
variation. y is the shape parameter of GW distribution and selected based on
the value of v.

In our experiments we choose a = 1 and v = [0.1,0.5,1, 5, 10]. First, consider
the simple case of homogeneous 4-out-of-6:G system.

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

Fig. 1. Reliability function R(t) of homogeneous 4-out-of-6:G system

Figure 1 shows the dependence of system reliability function on the time ¢
calculated by formula (1). Black, red and blue colors correspond the I', GW, and
LnN distributions, respectively. As it can be seen from the curves, the reliability
function of the system is asymptotically insensitive to the form of the lifetime
distribution at fixed mean and coefficient of variation v < 1. At the same time,
with v > 1, this insensitivity disappears, and the system loses its reliability very
quickly. We can conclude that the system behavior depends on the value v.
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Further, look at the reliability of the 4-out-of-6:G system taking into account
the location of the failed units. Denote such a system as a 4*-out-of-6:G system.
Suppose that the system is operational as long as at least 4 out of 6 engines
are running, and two failed motors should not be located next to each other. In
other words, the system fails when two adjacent motors stop operate, or when
any three engines fail.

Due to the complexity (time and computational) of calculating the reliability
function using the formula (2) for arbitrary A(t), k, and n, here we will apply
simulation modeling to achieve our goals. The numerical example for the case of
exponential distribution of system elements lifetime can be found in paper [11].

To build a simulator Python programming was chosen. The constructed sim-
ulation model is shown graphically as a process flowchart (Fig.2). As a result of
the algorithm, we can get the empirical reliability function I%(t), and MTTF.

BEGIN

Declaring and initializing variables and arrays

Checking stop condition
Is next failure near with the last one?
OR
s it (n-k+1) element failure?

Determine time to
system’s failure

!

Determine next failure taking into account the Return simulation
remaining time results
| Simulation time update | END

'

| Collect statistics |

Fig. 2. Flowchart of the simulation model of a k*-out-of-n:G system

Figure 3 shows evaluation result using simulation. The example of both the
same system and parameters as before are used.

As can be seen from the numerical examples, the behavior of 4-out-of-6:G and
4*-out-of-6:G system reliability functions is very similar. To see the difference
between them, consider corresponding MTTF (Table1).

The results of the calculation of m confirm the conclusions of the sensitivity
analysis. Moreover, the 4-out-of-6:G system, without dependence on the location
of the failed elements, is efficient for a longer time than the other one.
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R(t)

Fig. 3. Reliability function R(t) of homogeneous 4*-out-of-6:G system

Table 1. Mean lifetime m of 4-out-of-6:G/4"-out-of-6:G systems

v 0.1 0.5 10
A(t)
r 0.9775 0.8445 0.6174 0.0077 8% 1077
0.9608 0.7747 0.5154 0.0041 3%107°
ow | 0-9886 0.8593 0.6176 0.0697 0.0197
0.9693 0.7777 0.5177 0.0503 0.0136
Iy | 09760 0.8349 0.6509 0.2047 0.1154
0.9598 0.7743 0.5714 0.1621 0.0874

4 Machine Learning Methods and Their Application
to the Task

This section presents the results of prediction THAP reliability using ML meth-

ods.

4.1 Methods and Data

As ML methods [21], we will consider the followings from scikit-learn (for regres-

sions) and TensorFlow (for neural network) libraries:

— Linear regression (LinReg),

— Polynomial regression (degree = 4) (PolyReg),

— K-nearest neighbors regression (n_neighbors = 5) (KNN),

— Multi-output regression with cross-validation (scoring = MSE) based on

Ridge regression (MultiReg),
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— Artificial neural network with three hidden layers (optimizer = RMSprop(le-
3), loss = MSE, batch size = 96) (ANN).

As it was noted in the introduction, the purpose of machine learning applica-
tion is to predict the reliability and time characteristics of a tethered unmanned
module. Therefore, the output parameters are R,t,m (Table2). The set of
parameters, as well as their ranges, is associated with the following. The previous
section concludes some hidden parameters of the system, namely the coefficient
of variation, have a significant impact on its behavior and performance. More-
over, the system is insensitive to the shape of the lifetime distribution with v < 1.
In addition, from a practical point of view, we assume that the system is at a
satisfactory level of reliability if R(¢) > 0.5.

Table 2. Variables for machine learning models and their ranges

Type | Variables Symbol | Range
Input | Total number of system’s elements n 4-10
Needed number of elements in operating states | k 2—(n—-1)
Mean lifetime a 0.1-1
Coefficient of variation v 0.01-1
Output | Reliability R 0.5-1
Time to system acceptable level of R t >0
MTTF m >0

We have generated two datasets for training the models.

1. To train the model, which describes the behavior of THAP by homogeneous
k-out-of-n:G system, the dataset was generated using formula (1), in which
Aty ~T.

2. For the second case, in which system failure depends on the location of the
failed elements, simulation results were used, here also A(t) ~ I'. This data
supposes that a system failure occurs either when 2 adjacent or any (n—k+1)
elements have failed.

The architecture of the selected ML models is different. Some can predict
several outputs simultaneously, while others can operate with only one outcome.
The whole process contains two phases — training and testing. Before training,
we divide the initial dataset into train and test sets with a ratio of 70% and 30%,
respectively. The learning process for LinReg, PolyReg, and KNN is structured
as follows. The first step is to predict reliability R using parameters n, k, a, v, t.
Next, the model is trained for prediction ¢ on parameters n, k, a,v, R. The last
cycle ends with a forecast of m based on the set n, k, a,v, R,t. After each round,
the accuracy of the trained model is assessed, and testing begins on a new
data sample. For MultiReg and ANN, there is one training cycle, in which the
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model predicts R, ¢, m simultaneously based on n, k, a,v. These models provide
an additional phase for monitoring training, the so-called cross-validation. In
this way, the initial set is divided into 70%, 20% and 10% for train, validation
and final test.

4.2 Training and Testing Results for k-out-of-n:G System

Now move on to the results of ML techniques application for analyzing the
reliability of a tethered unmanned high-altitude module. First, consider the k-
out-of-n:G system. Table 3 shows the mean square error (MSE) for the predicted
values on the training set. The table results show the smallest prediction error
was achieved using PolyReg and KNN. The greatest error corresponds to Multi-
Reg. The closest prediction in the training phase among all methods was made
for MTTF m.

Table 3. Accuracy of training

LinReg | PolyReg | KNN MultiReg | ANN
MSE | R | 0.0094 |0.0028 |10~* 0.0313 | 0.0094
0.0246 |0.0149 | 0.0110 |0.0322 | 0.0090
m | 0.0093 | 1074 4%107*10.0123 1074

~

Table 4 demonstrates MSE, mean absoulute error (MAE) as well as the coef-
ficient variation (R?) for the test set. Analyzing the results obtained, we can
note that MSE estimate for all cases lies in an acceptable interval. MAE esti-
mate shows the relative value of the prediction error. In our task, MAE > 0.05
is considered unsatisfactory. Therefore, only the K-nearest neighbors regression
shows the obtained accuracy result among all the considered cases. R? estimate

Table 4. Accuracy of testing

LinReg | PolyReg | KNN MultiReg | ANN

MSE | R |0.0094 |0.0028 |2%10*0.0239 0.0131
t 10.0177 /0.0339 |0.0117 |0.0344 0.0322

m 0.0107 |0.0056 |2#107°%/0.0105 0.0043

MAE | R |0.0708 |0.0365 |0.0033 |0.0761 0.0746
t 10.1001 |0.1125 |0.0395 |0.1395 0.1342

m [0.0690 |0.0121 | 3%107*|0.0687 0.0273

R? R |0.3804 [0.8134 |0.9894 |0.1343 0.1370
t 10.6824 | 0.4274 |0.7891 |0.3807 0.4249

m | 0.8934 |0.9295 |0.9999 |0.8942 0.9571
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indicates how well the constructed model adequately describes the initial data.
The best result for this indicator is again shown by the KNN method. Note that
all methods are suitable for predicting the meantime m. The estimates MSE
and MAE are quite small, and R? is high, which confirms the high dependence
between the input and output parameters.

Consider prediction results on the test set graphically. Figure4, 5, 6, 7 and 8
shows the scatter diagrams for ML methods described above. For each of these
figures, 500 samples were taken at random. In reality, the test sample contains
about 200.000 values. LinReg and MultiReg demonstrate similar results for all
predicted parameters, but their accuracy is quite low. PolyReg and ANN show
acceptable prediction accuracy of m. For the other two, the prediction error is
too high. These methods present insufficient prediction accuracy. It suggests that
models do not reflect the relationship between input and output data. Predictions
for R and m using KNN are close enough to their exact values. For ¢, this is
not so much accurate. Nonetheless, the application of the KNN method obtains
the most accurate prediction result for all metrics among the considered ML
techniques.

05 06 07 08 09 10 0.0 02 0.4 06 08 10 12 00 02 04 06 08 10 12 14

a) R b) ¢ c)m

Fig. 4. Scatter plots for LinReg
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Fig. 5. Scatter plots for PolyReg
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Fig. 8. Scatter plots for ANN

4.3 Training and Testing Results for k*-out-of-n:G System

The application of machine learning techniques to the task at hand has shown
that KNN most accurately predicts the reliability of an unmanned high-altitude
module, the failure of which occurs after the failure of (n — k + 1) its elements.
Therefore, for the second case of dependence of the system failure on the location
of the failed elements, we will consider only the KNN method. Consider the
learning accuracy results (Table 5). MSE is small enough and takes the desired
value.
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Table 5. Accuracy of training (MSE)

t

m

KNN |1074

871073

1074

The results on the test set are presented in Table 6 and Fig. 9. The results of
the prediction accuracy take acceptable values. MSE and MAE are small enough,
and the coefficient of determination R? is high.

Table 6. Accuracy of testing

R t m
MSE [1.6%107%|8.6%1073/1.9%10°°
MAE | 3.6 % 1072 | 0.0492 3.3%107%
R?  10.9904 0.7545 0.9999

The graphical results show similar prediction accuracy to the k-out-of-n:G
system. The KNN model accurately reflects the dependence of R and m on the
initial data, while the prediction of ¢ is not so accurate, MAE ~ 5%.

Fig. 9. Scatter plots for KNN

5 Conclusion

The paper investigates the reliability of an unmanned high-altitude module based
on a mathematical model of the k-out-of-n system and machine learning meth-
ods. Two scenarios of the dependence of the system failure on the location of
the failed elements were considered. Analytical results and sensitivity analysis
demonstrated the dependence of the system reliability on the coefficient of vari-
ation of the lifetime for both scenarios. The application of machine learning
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methods showed that K-nearest neighbors regression describes the system relia-
bility in the best way. As future research direction, we plan to improve chosen
ML model to achieve more accurate predictions and consider other methods and
models.
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Abstract. This paper considers a retrial tandem queue with single
orbit, Poisson arrivals of incoming calls and without intermediate buffer.
The first server provides services for incoming calls for an arbitrary ran-
dom time, while the second server does for an exponentially distributed
random time. Blocked customers at either the first server or the second
server join the orbit and stay there for an exponentially distributed time
before retrying to enter the first server again. Under an asymptotic con-
dition when the mean of retrial intervals is extremely large, we derive a
diffusion limit, which is further utilized to obtain an approximation to
the number of customers in the orbit in stationary regime.

Keywords: tandem queue - retrial queue -+ diffusion limit

1 Introduction

The new feature of retrial queues in comparison with the conventional ones is
that blocked customers that cannot find an idle server upon arrival join the
orbit and retry for service after some random time. These models have been
extensively studied in the literature; see the books [1,2] and survey papers [3,4].
The paper [4] summarizes major analytical results on retrial queues up to 1990
for both single server and multiserver models. Reference [3] presents a careful
survey on single server retrial models with and without impatient customers.
Furthermore, a survey of recent results for retrial queues is presented in [5].

The analysis of retrial queues is more difficult in comparison with that of
counterparts with infinite buffer because each orbiting customer independently
retries leading to a total retrial rate that is proportional to the number of cus-
tomers in the orbit.

Tandem queues are simple networks of queues connected in a line topology
are widely used in many applications such as computer communication, manufac-
turing and service systems. For example, in call centers, customers first connect
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to IVR (Interactive Voice Response) unit and then to operators [6]. Some other
applications can be found in transmitting multimedia information [7], and in [8]
for modelling a multi-agent robotic system, etc.

To our knowledge, only a little attention was paid the study of on tandem
queues with retrials due to the complex of these models. In [9], the authors con-
sider a tandem system of two sequentially connected servers without an interme-
diate buffer. In this system the blocking phenomenon occurs at the first server
when a customer finishes the service a the first server but sees the second server
busy. Customers that cannot enter the first server because the server is busy
or blocked join the orbit and retry to enter the first server according to a con-
stant retrial rate policy. Furthermore, [10] presents an approximate analysis for
a tandem queue with a common orbit and constant retrial rate.

As a closely related paper, Phung-Duc [11] obtained an explicit solution for
a simple model where only blocked customers the first server joins the orbit
while blocked customers at the second server are lost. In this line, [12] presented
a matrix-analytic solution for a model with Batch Markovian Arrival Process
(BMAP) and general service time distribution at the first server and customers
from the first server are lost if the second server is busy.

Furthermore, in our recent papers, we obtained the approximation of the
stationary probability distribution of the number of calls in the orbit by methods
of asymptotic analysis [13] and asymptotic diffusion analysis [14] for a special
case with exponential distributions for service times in both servers. Further
related papers can be found in [15,16]. In [16] a fixed point approximation is
proposed for a tandem retrial queue. Pourbabai [15] investigates the tandem
behavior in telecommunication systems with finite buffer and with repeated calls
of constant retrial time. In [15], an approximation method is proposed.

In this paper, we study the two-phase tandem retrial queue system with one
orbit and arbitrary service time distribution at the first server by the method
of asymptotic diffusion analysis under the condition when the delay of calls
in the orbit is extremely large. To the best of our knowledge, this is the first
work dealing with a tandem retrial queue with classical (linear) retrial rate and
arbitrary service time distribution at the first server, where blocked customers
at the first or the second server enters orbit.

The remaining parts of the paper are organized as follows. In Sect. 2, we
present the description of the model in detail. In Sect. 3, we write down the set
of Kolmogorov differential equations while Sects. 4 and 5 show to the first order
analysis (fluid limit) and the second order analysis (diffusion limit). Section 6
shows the use of the diffusion limit to approximate queue-length distribution in
the orbit in the steady-state. Section 7 demonstrates some numerical examples.

2 Analytical Model

We consider a tandem retrial queue with two sequentially connected servers
where customers arrive at the server according to a Poisson process with rate
A (see the Fig.1). In this paper, customers and calls are interchangeably used.
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If the server is idle upon the arrival of a call, the call occupies it immediately
for a random time with the distribution function B(x) and then moves to the
second server. In the case that the second server is free, the call occupies it for a
random time exponentially distributed with mean 1/u. On the other hand, if the
first server is busy upon arrival of a customer, this customer immediately goes
to the orbit staying there for a period of time which is exponentially distributed
with parameter o and then tries to enter the first server again. Upon the service
completion at the first server, if the second server is busy, the call immediately
goes to the same orbit, staying there for a random period of time which is
exponentially distributed mean 1/ and trying to enter the first server for service
again. This process is repeated until the call successfully receives services from
both servers and leave the system.

Y

Fig. 1. The model

We define the following notations for further analysis.

The process k(t) - the state of servers at time & 0, if both servers are free; 1,
if the first server is busy and the second one is free; 2, if the first server is free
and the second one is busy; 3, if both servers are busy;

The process z(t) - the remainder of service at the first server at time ¢;

The process i(t) - number of retrial customers in the orbit at time ¢.

The purpose of the study is twofold: 1) to obtain the fluid and diffusion limit
of i(t) and 2) based on the diffusion limit, to build an approximation to the
steady-state distribution of ().

3 Kolmogorov Backward Equations

We define probabilities
Py(i,t) = P{k(t) = k,i(t) =i}, k = 0,2,
Pr(i,z,t) = P{k(t) = k,i(t) = i,2(t) < 2z}, k =1, 3. (1)
The process {k(t),i(t)}, k = 0,2, {k(t),i(t), 2(t)}, k = 1,3 is a Markov chain.
Kolmogorov backward equations for (1) are given as follows.

aP%i(tz,t) = — (A +i0)Po(i, t) + uPs(i,t),
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8P1(i,2,t) _ apl(ivz,t) . apl(zaoat)
ot N 0z 0z
+ (i 4+ 1)oB(2)Poli + 1,8) + APy (i — 1, 2, 1)
+ )‘B(Z)PO(Z7 t) + P3(i7 2, t)M,
OPa(i,t) _ OPi(i,0.1) | OPs(i—1,0,t)
ot 0z 0z
8P3(i,2’,t) - 8P3(i,z,t) + 6P3(’i70,t)
ot N 0z 0z
F AP (i — 1,2,8) + AB(2)Pa(i,t) + (i + 1) B(2) Pa(i + 1,1).

— )\Pl(l, Z,t)

()\ + H+ iU)PQ(i,t),

- ()‘ +N)P3(ivzvt)

We define partial characteristic functions, using j=+/—1
o0

Hy(u,t) =Y e/ Py(i,t), k= 0,2,
i=0
oo

Hy(u,z,t) = Zej“iPk(i,z,t), k=1,3.
i=0

(2)

3)

We rewrite (2) using Hy(u,t),k = 0,2, Hi(u,z,t),k = 1,3 and add all the
resulted equations with z — oo. We obtain following equations for further

research in next sections.

6H0(u,t) . . (')Ho(u,t)
T = —)\HO(U,t) +jO-T + ,U/H2(’U/7t),
OHy(u,z,t)  OHi(u,2,t) OHi(u,0,t) . _; OHo(u,t)
a0z 0z 7€ ou 2

+ A€M — 1)H, (u, z,t) + AB(2)Ho(u, t) + pHs(u, z,t),
aHg(u,t) - 8H1(u,0,t) ju (‘3H3(u,0,t) . 8H2<’U,,t)
ot N 0z te 0z tJe ou B
8H3(U,Z,t) _ 8H3(U7Z,t) _ aHf)(uaOat) _
ot N 0z 0z
+ (M€ = 1) — p)Hs(u, z,t) + AB(2)Ha (u, 1),

OH (u,t) ju . _ju ((OHo(u,t) = OH>(u,t)
o e 1){]“ ou | oa

(’)Hg(u, O7 t)
0z '

8H2 (’LL, t)
ou

joe " B(z)

+ )\(Hl(u,t) + H3<u,t)) +

We are going to solve (4) under o — 0.

()‘ + M)HQ(u7t)a
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4 Fluid Limit

By denoting 0 = ¢ and performing substitution in (4)

T =te,u = ew, Hg(u,t) = Fx(w,T,¢,),

Hy(u,z,t) = Fi(w, z,T,€), (5)
we obtain
F F
578 o(w,m,e) _ —\Fo(w, T,¢) +j76 o(w, 7,¢) + pFs(w, T,€),
or ow
OFy(w,z,7,e)  OF(w,2,7,6) OFi(w,0,7,6) . . OFy(w,7,¢€)
— _ _ weZ” O\ =) p
c or 0z 0z Je ow (2)

+ A(ewa - 1)F1(w? 2, T, E) + )\B(Z)Fo(w, T, 5) + /’(‘F?)(wa 2T, 5)7
E6‘F2(w,7, €) _ OF (w,0,7,¢) L e OF3(w,0,7,¢)

or 0z 0z
+j% — (At p)Fa(w,7,e),
OF3(w,z,7,6)  OF3(w,z2,7,6)  OF3(w,0,7,6) . . . OFy(w, 1,¢)
c or B 0z 0z Je B(z) ow

+ ()\(ejws - 1) - M)FS(U)7 2, T, E) + )‘B<Z)F2(w77-a 5)7
€8F(w,7,5) — (6jwe _ 1) {jejwa (8Fo(w,7,5) + 6F2(w77—75)>

or ow ow

OF5(w,0,71,¢)
o )

which we will solve under the assumption that functions Fy(w, 7, ¢), Fi(w, z, T, €)
and their derivatives have limits as ¢ — 0.

+A(F1(w, 7€) + F3(w,7,€)) +

Theorem 1. We have

lim Mejwai(g) — ejwr(q—), (7)

o—0
where x = x(T) satisfies
)2
(1) =1+b(A+2)"" (Ab1(A+x)x+B*(u)m> , (8)

and where by = [ xdB(z) and B*(p) = [, e "*dB(x).
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Proof. We take the limit & — 0 in (6)

AFo(w,7) + 2T B,y = 0,
ow
OF (w,z,7)  OFi(w,0,7) . O0Fp(w,T)
0z 0z J ow B(2)

+ AB(2)Fo(w, T) + pFs(w, z,7) = 0,
8F1(;u;0,7') N 8F3(;u;0,7') +jaF2(f§Z’T)
0F3(gz,z,7) B 8F3(1aué0,7) B2 8F28(Z)),7)
+ (A= Fs(w,2,7) + AB(2) Fy(w, 7) = 0,
GFS:,T) —w {j (6Foa(z}1,r) N 8F255’7)>

OF53(w,0,7)
0z '

- A+ p)Fa(w,7) =0,

+ A(Fi(w, ) + F3(w, 7)) + (9)
We assume that (9) has a solution in the form
Fr(w, 1) = r(x)e’™* ™k =10,2, Fy(w,z,7) =r(z,z)e"* ™ k=13, (10)
where = x(7) expresses lim,_q ci(7/0). Substituting (10) into (9), we obtain
—(A+a)ro(z) + pra(x) = 0,
ori(z,z)  9ri(0,)

+ (A4 2)B(2)ro(z) + +prs(z,z) = 0,

82; 32’
8T1(0, .’L‘) 67’3(07 .’IJ) =
5, T~ (Wt a)n(n) =0,
Oratz.o)  Ons(0.2) o)+ vk wB(Ira(e) =0, (11)
0z 0z
9rs(0, )

(1) = A(ri(z) + r3(x)) — z(ro(x) + ra(2)) + (12)

0z

Summing up the first equation with the third, the second equation with the
fourth of (11), we have

ori(z,x) N ors(0, )

= (A +z)(ro(x) + r2(x))

0z 0z
87'3(2’71') o 87’3(0,%) + 87"1(2,(E> _ 87"1(0,%)
0z 0z 0z 0z

+ (A4 2)B(2)(ro(z) + r2(x)) = 0. (13)
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We denote
roz2(w) = ro(x) + r2(x),
ra1(z,x) = ri(z,z) + r3(z, z),
r31(0,2) = r1(0,2) 4+ r3(0, ).

Then from (13) we obtain

r31(z,x) = (A + z)roa(z /
0

Letting z — oo and denoting r(co, ) = ri(z), k = 1,3, we have

ri(x) + r3(z) = (A + 2)b1(ro(z) + r2(x)),

137

where by = [~ 2dB(z). Because ro(x) 4+ r1(z) +r2(z) + r3(z) = 1, from the last

equality we obtain

n) 1) = 0
1
TQ($)+T2($) = m

Taking into account the first equation of (11), we write

ro(x) = )\ixm(z).

We write the solution of the fourth differential equation of system (11) in the

form 3
r3(z,x) = et* /6_“5 (W - A+ .T)B(S)T’Q(l‘)) ds. (14)
0
Let us send z — oo in this equation to have
,u/ef“s (81"35(;@) - (A + x)B(s)rg(x)) ds = 0.
0

The integrand satisfies the condition

or3(0,z "

Do) (rt a)ra) B (), (15)
where B*(u) = [;° e **dB(x). Solution (14), taking into account (15), we

rewrite under z — oo in the form

r3(x) = (A +x)ra(z)(1 = B (n))-
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We obtain equations for the stationary probability distribution rg(x), k = 0,3
of the states of servers

ro(z) = ﬁa +o(A )7
r(2) = (1+ (A +2) " (A + 2) <b1 - %Mi% (1- B*(p))) ,
ro(z) = Mi%u +bi(A+2)7,
ra(z) = ;M(l—B*(u)) (14 by (A + ) (16)
Let us substitute 7y, (z) into (12) in order to obtain
(1) =1 +b(N+x) " ()\bl(A +z)—x+ B*(u)m> , (17)

which coincides with (8).
Since z(7) represents the asymptotic value (¢ — 0) of oi(7 /o), (7) holds. So,
Theorem 1 is proved.

Let us denote

)2
a(z) =2'(1) = (1 +by(A+ :U))*1 <)\b1()\ +a)—z+ B*(u)M) . (18)

a(z) plays an important role for our analysis. First, as it is shown in Theorem
1, a(x) represents the dynamic of z(7), which is the limit under ¢ — 0 for
oi(t/o). Second, as it will be shown, a(z) expresses the drift coefficient for the
diffusion process that represents a scaled version of i(t).

5 Diffusion Limit
We carry out the following substitution in (4)
Hy(u,t) = ej%"c(at)Hlil)(u,t), k=0,2
Hy(u,2,t) = 5O H D (0, 2, 1),k = 1,3. (19)
For H,gl)(u,t) and H]il)(u, z,t), k = 0,3, considering (18), we obtain

(1)
O 1) — (x ot jua(e) + ) ()
~OHM (u,t)

1
tio—o. + pHSY (u, ),
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OHM (u,z,t)  OH(u,2,t)  9HV(u,0,t) fjuwg( )
ot o 0z 0z ¢ du ’

+ (A€ —1) — jua(@))H™M (u, 2, 8) + (A + e 7 B(2) HS (u, t) + pHSY (u, 2, 1),

OHS (u,t)  OHM (u,0,1) . 0 OHSY (w,0,1) L oHM (u,t)
ot - 0z € 0z d ou

— A+ o+ jua(z) + 2 H (u, ),
(“)Hél)(u,z,t) B 8H§1)(u7z,t) B 8H?()1)(u,0,t) B (“)H2(1)(u,t)
ot - 0z 0z ou
+ N = 1) = — jua(@)HY (u, 2,) + (A + ze7)B(2) HV (u, 1),
OHW (u,t)
ot

(1) (1)
_ (ehu 1 joeiu 0H; " (u,t) n OHy "’ (u,t)
ou ou

joe ' B(z)

+ jua(z)HW (u,t)

— ze 4 (H (u,t) + H (u, 1))

OHY (u,0,t
+ AHP (u, 1) + H{P (u, 1)) + a(u)} ' 2

Because H(u,t) is the characteristic function of i(t) — Lz(ot), we make the
substitutions as follows.
By defining o = 2 in (20) and substituting

T=te?, u= we,H,gl)(u,t) = F,gl)(w,T,e), k=0,2,

H (w,2,6) = FP(w, z,7,¢), k= 1.3, (21)
we obtain
e
2O LTE) (3t jewale) + ) B w, 7, 7,9)
. aFo(l)(w,na) (1)
—i—yaT + pFy(w, T, €),

EzaFfl)(w,z,T,s) B 8F1(1)(w,z,7', £) B 8F1(1)(w,0,7', £)

or N 0z 0z
) ,

— jeedwe 20 2 07 8(:1)(}’ T 6)B(Z) + (A" —1) — jewa(az:))Fl(l)(w7 Z,T,€)

+ (A + 2e 79 B(2)Fy Y (w, 7€) + pFY (w, 2,7, €),

2 3F2(1)(w,7', €) _ 6F1(1)(’w,0,7', €) e aFél)(w,O,T,E)

or 0z 0z
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8F2(1) (w, T,¢€)

et — (At jewa(w) + @) By (w, 7€),
QaFél)(u}, 2,7, €) aF?El)(w,z,T, €) 8F?S1)(w, 0,7,¢)
€ = _
or 0z 0z
(1)
. I _
e B() LTy (v 1) jewa(e)) FE 7,7, 2)

+ (A + e ) B(2) F) (w, 7, ¢),

oF()
e? OF(w,m¢) + jewa(x)FW (w, 7, ¢)

or
, , 8F(1)(w T,€) 8F(1)(w T,€)
_ Jwe s, —JwE 0 ) 2 )
(e 1) {]56 ( 0 + 0
- ane_jw‘E(Fl(l)(w7 T,€) + Fél)(w, T,€))
(1)
F.
PAFL (w,r,e) + FP(w, 7)) + s (0.0:€) g;’ 0.) } . (22)

which we will solve under the assumption that F]gl)(w, T,€), F,gl)(m z,T,€) and
their derivatives have limits as ¢ — 0.

Theorem 2. F,El)(w,T) is given by

F,gl)(w,T) = &(w, 7)ri(x), k=0,3 (23)
where P(w, T) satisfies
o0d(w,7) 0D (w, ) (jw)?
5 — O (x)w 5w + b(x) 5 &(w, ) (24)

and ri(x) is defined in (16). a(x) is defined by (18) and b(x) is given by
b(x) = a(x)+2(Mg1 () +gs(x))+95(0,2) =z (go(x) +g2(x) —ro(x) —r2())), (25)
where
95(0,2) = (A + 2)B"(n)g2(z) + ((a(x) — \)(A + 2)B” (1) — xB* (1)) (26)
and gg(x), k = 0,3 are defined by
—(A+)g0(x) + pga2(z) = alz)ro(),

)
A+ 2)go(2) + (A +2)(B* (1) = 1) + p)ga(x) + pgs(x)
= aro(x) + (a(z) = Nri(2) — ((alx) = M)A+ 2)B™ (1) — a(z) + AB*(1))ra(x),
(

)+ g3(z) — (A4 2)b1(g2(2) + go(z))
@)\ -+0)'g = b ) (rale) + 7a(o),

9o(z) + g1(x) + g2(z) + g3(x) = 0, (27)
and where by = fo r2dB(x)

g1(z
= (&
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Proof. The methodology of the proof is similar to that used in paper [14] before.

As it will be shown a(x) in (18) and b(x) in (25) are coefficients of a diffusion
process. Later we will show their role in the approximation of the stationary
distribution of (t).

Remark 1. The results in Theorem 2 show that in the heavy traffic regime (o —
0) i(t) and the state of the servers are independent as their joint characteristic
function is decomposed as a product of the orbit part and the server part.

6 Approximation of the Stationary Distribution Based
on Diffusion Limit

In this section, we apply the diffusion limit to find the probability distribution of
i(t) under o — 0 in our system. This general method is also used other related
work e.g. [14].

Lemma 1. Under o — 0
1
i) = tim V& {i(r/o) - Za(r)}. (28)
1s the solution of

dy(7) = d'(z)ydT + \/b(z)dw(T). (29)

We consider
Ur) = z(1) +ey(r),

where € = /o as before.

Lemma 2. The process I(T) is the solution of

dli(t) = a(l)dr + +/ob(l)dw(T) (30)
up to an infinitesimal of order €2.
Under the steady-state regime, we consider (1)

_oP{in) <1}

s(l,7) = s(1) 5l (31)
Theorem 3. The density s(l1) of I(T) is given by
!
_C 2 [ a(x)
s(l) = Mexp ;/mdx , (32)
0

where C' is some constant that satisfies the normalization condition.
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7 Numerical Examples

Let us consider G(i) in the form

and define P(7) as
P = 0 (3)
> G(i)
=0
We use P(i) to approximate P{i(t) = i}.
We consider a particular case of B(z) as a Gamma distribution with param-
eters of shape a = 2 and of scale 8 = 2. We consider A = 0.5 and p = 1.
Figure2 presents the approximation of the probability distribution of the
i(t) with different values of calls’ delay time in the orbit: P1 - the approximation
with o = 0.5, P2 - the approximation with o = 0.3, P3 - the approximation with
oc=0.1.

A
0.0656
0.069-
0.062
0.046 A
0.039 P1 (’l,)
0.033 S
0.026 .
0.02 P2 (Z)
0.013

0.007 P3 ('L)

0 -
C v 5 5 >

Fig. 2. The probability distribution ()

This figure shows the feasibility of our proposed approach.

8 Conclusion

In this paper, we have investigated the tandem retrial queue with two connected
servers and without intermediate buffer. The first server provides services for
calls for an arbitrary random time, while the second does for an exponentially
distributed random time. Under the condition that o — 0, we have obtained
diffusion limit of a scaled version of i(¢). The stationary probability density
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distribution of this diffusion process is used to approximate the stationary dis-
tribution of i(t).

In further research, we plan to compare our approximate results with simu-
lation
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Abstract. A two-way communication system is modeled in this paper.
A retrial queueing system with a finite and an infinite sources is used
in the model. The system has two sources. The first source is finite,
the second source is infinite. Jobs from the first source are the primary
jobs (requests). They can be called as first order job, as well. Jobs from
the second source are the secondary jobs. They can be called as second
order job, as well. In case of an idle server, the second order customers
are called for service. This situation is said as a special search for cus-
tomers.

The non-reliable server is subject to random breakdowns. Two types
of breakdowns are considered: the regular breakdown, when the first or
second order customer under service is sent back to the orbit or the infi-
nite source, respectively, and the catastrophic breakdown, when all of the
requests at the server and in the orbit are sent back to the corresponding
sources. The novelty of this paper is to investigate the effect of catas-
trophic breakdown in a two-way communication environment. The goal
is to determine the steady-state probabilities and the system character-
istics. The system balance equations are formulated for different cases,
but the analytic solution is very difficult. A software tool is used instead.
Figures illustrate the effect of the system parameters on the performance
measures in scenarios of regular and catastrophic breakdowns.

Keywords: two-way communication * catastrophic breakdown - retrial
queues

Introduction

For modeling different types of infocommunication and computer sciences, the
retrial queueing systems are a useful and effective tool. Results can be found
in various publications [1-6]. Several models assume finite sources. It means,
that a finite number of population is in connection with the system. In some
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cases, these finite source models are more realistic and give a better description
of the considered application [2,7]. In addition, the considered real-life systems
are unfortunately non-reliable, that is the server can lose its efficiency or may
break down. There is a large literature on this types of system subject to random
breakdowns [1-6].

Sometimes the customers can not spend long time in the queue or in the
orbit. They leave the system. In order not to lose these customers, a two-way
communication system is built up. Here the customers can sign up for a special
service. The system in an idle period will call these customers for the service.
This field also has a literature. For the most interesting results see, [8-15].

This two-way communication principle can be considered as a special search
for customers, as well. With this outgoing call, the organization (business, com-
mercial etc.) can look for customers, send advertisement, and call them a per-
sonal encounter in case of interest. This way the efficiency of the system also
can be increased, the ratio of the idle periods can be optimized. Results can be
found, e.g. in [5,16-20].

In this paper, a special two-way communication system is considered. It is
called searching for customers. Two types of customers are in the system. The
organization has a small or large number of basic customers. They are called the
primary customers. They make calls (request) towards the business entity. It
can be considered as a server in the system. The principle of the retrial queueing
system is applied for these customers. In case of an occupied server, the cus-
tomer is not lost, it can wait and retry its request for the service. The customer
keep retrying until a successful service. The first (finite) source contains these
customers. During the idle periods of the server, outgoing calls are performed
towards the secondary clients. They are in the second (infinite) source. These
customers are the secondary customers, and they are reaching the system for
some special reasons. For example, answer some promotion or check some per-
sonal data. They are called at an idle period of the system, but in the time period
until arriving, a primary customer might be arrived. In this case the secondary
customer finds the system occupied. A called customer can not be sent away, so
it is placed in a priority (non-preemptive) buffer. For the next outgoing call this
buffer will be applied.

The non-reliable server might break down. The main interest of this paper
is to investigate the effect of a disaster event, which is called as a catastrophic
event or breakdown. The most characteristic property of this type of breakdown
is, that in case of the disaster event (or negative customer arrival) all of the
services are interrupted, the customers from the servers, orbit, priority buffer
are sent back to the corresponding source. There is a large literature on this
phenomenon. For example, these types of investigations are very effective for
describing the behavior of bank teller equipment. Here, several different disaster
event can be imagined. For example, some mechanical malfunction, loss of power
etc. Sometimes, the disaster is represented as the presence or arrival of a so called
negative client. In this case, all of the service is stopped, the system is blocked,
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and all of the clients are removed from the system. Results on disaster and
negative customers can be seen in [21-25], and reference therein.

The chapters of the paper are organized in the following way. In Sect. 1
the element of the system is given. It contains the stochastic description of
the system (Markov analysis), the working modes, scenarios, parameters etc.
Section 2 contains the system balance equations. The system probabilities can
be calculated from those equation. For calculation the Mosel-2 software is used.
From system probabilities the performance measures (mean waiting times, size
of orbit etc.) can be obtained. The paper ends with a summary and conclusion.

1 Description of the Model

The system is modeled by a single-server retrial queueing system with a finite
and an infinite sources. The functionality of the model is displayed in Fig. 1.

Catastrophic breakdown

1r-

Sources

Ont

Server

Fig. 1. The system model

The system has two sources. The first one is finite with the first order cus-
tomers, the number of customers is N. These customers generate a job towards
the server using the exponential law with parameter \;. For the first order cus-
tomers, there is no queue at the server. After the service, the job goes back to
the source can generate a new request again. The service time is also exponen-
tially distributed with parameter p;. When the server is busy, the incoming job
is transferred to the orbit. The size of the orbit is N. From the orbit the jobs
after an exponential random time interval with parameter v retry their request
to the server until they are served.

The model has second order customers in an infinite number of sources. These
customers generate triggered requests only. The idle server makes outgoing calls



Catastrophic Breakdowns in a Two-Way Communication System 147

towards this infinite source, and the second order customers generate a request to
be served. The generation is also exponential with parameter Ay. The distribution
of service times is also exponential with parameter us. During the generation
time interval of the second order customer, a new customer might arrive to the
server. Thus, the called and incoming second order customer may find the server
busy. In this case, the following scenarios can be investigated:

— The second order customer is sent back to the infinite source,

— The second order customer is transferred into a priority buffer. In the case
of an idle server, a second order customer is called from this buffer. The size
of the buffer is one because in the case of an idle server, there is no outgoing
call when a customer is in the buffer.

In this model the single server is unreliable, it may be subject to breakdown.
Here the regular and the catastrophic breakdowns are considered. In regular
breakdown, the server stops working. The breakdown parameters are vy and v,
for idle and busy servers, respectively. 7, is the parameter of the repair. The
behavior of the customers at the time of breakdown is described below. The
considered times are exponentially distributed. During the breakdown period,
the sources can be blocked (they are not able to generate requests) or non-
blocked. In this paper, the non-blocked case is considered. The other breakdown
mode is the catastrophic breakdown. This is the situation when a disaster event
removes all of the customers from the system (from the orbit, from the buffer,
and from the server after interrupting the service). The repair of the system
starts immediately. The breakdown parameters are -y and ; for idle and busy
servers, respectively. 5 is the parameter of the repair. The considered times are
exponentially distributed. During the breakdown period, the sources are blocked,
they are not able to generate requests.

In case of a regular breakdown, a primary client can find the server down.
In this case, it is sent to the orbit. In this server state, a secondary client might
reach the system, as well. For this, the unoccupied server performs an outgoing
call. The infinite source has an inter arrival time (request generation). This time
has an exponential distribution. The parameter of the distribution is As. During
the time interval of the generation, the time between the call and the arrival of
the secondary client, the server can go wrong. Two different scenarios can be
considered here.

— The secondary client is transferred back to the infinite source,
— The secondary client is transferred into a priority buffer. In the case of an
idle server, a second order customer is called from this buffer.

In case of a catastrophic breakdown, the sources are blocked. No new request
is generated.

When the server is busy, a first order or a second order customer is under
service. A breakdown can occur in the busy sate, as well. In case of regular
breakdown, the behavior of the first order customers can be the followings:

— The primary client is transferred to the waiting facility (orbit),
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— The primary client leaves the system and goes back to the source,

— The primary client remains at the system, namely, at the server. The service of
the client will be restarting or resuming when the server is up again. (because
of the memory-less property of the exponential distribution of the service
times, restarting or continuing the service has no difference).

In case of catastrophic breakdown, all of the customers in the system, thus
the customer under service are sent beck to the sources.

In case of regular breakdown, the behavior of the second order customers
there are also some cases to be investigated.

— The secondary client remains at the server. The service will start again when
the repair is finished.
— The secondary client leaves the system and goes back to the second source.

In case of catastrophic breakdown, all of the customers in the system, thus
the customer under service are sent beck to the sources.

Let us denote O(t) and S(t) the number of requests in the orbit and the state
of the server at a given time point of ¢:

0, when no job is at the server

1, when the server is working
with a primary client

2, when the server is working
with a secondary client

3, when the server is down

The state-space of the underlying Markovian-process (S(t),O(t)) can be
described as a set of {0,1,2,3} x {0,1,2,..., N} elements. Although the sys-
tem has an infinite source, the maximum number of the customers in the system
is (N +1) (N in the orbit and one second order customer under service), there
is no stability problems regarding the system. The state space is finite.

For buffered and non-buffered models the system balance equations can be
formulated. For example, in the non-buffered case when a customer under service
is sent back to the corresponding source at a breakdown the equations are the
following.

piy = Jim P(S(t)=1,0(0) = 7),i=0,1,23and j =0,1,.N (1)
(N = j)A1 4+ X2+ jv + 0] po,j = pp1,j + 1025 + V23,5 (2)
(N =j—=DM+p+mlpr; =N —j)Apo,; + (5 + 1)vpoj+1 (3)

(N —)Ai 4+ p+7]p2,; = Xapo,; (4)
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(N = 7)Ailp3,; = vopo,; + 71P1,j—1 + V1D2,j (5)

with p1,—1 = po,n+1 = 0.
The system balance equations in the case of a catastrophic breakdown look
like this:

(N = 3)A1 4+ A2+ jv + 0] poj = pp1,; + pp2,; (6)
(N=j—DM+p+mlp,; =N —=j)\po,; + (G + 1)vpoj+1 (7)
(N = 5)A1 4+ p+7]p2; = Aapo,j (8)

Y2P3,0 = YoPo,; + V1P1,j5 + 11P2,5 9)

with p1, 1 = po,n41 =0.

The manual solution of the Kolmogorov-equations is very hard. An alterna-
tive method has to be found. For calculating the steady-state probabilities, the
MOSEL-2 software has been used. Based on the calculated system probabilities
the usual performance measures are provided by the software. Using the system
probabilities, these measures can be calculated by the following formulas, as well.

Utilization 1

Ux :ZP(LO) (10)

Utilization 2

N
Uy = ZP(Q,O) (11)
0=0

— Mean number of customers in the orbit

. 3 N
0=> > oP(s,o) (12)
o=0

s=0

— Mean number of active primary customers
M=N-0-U; (13)
— Mean generation rate of primary customers
A =MM (14)
— Mean time spent in orbit by using Little-formula

w9
N
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2 Numerical Results

The most important goal of these types of stochastic systems is to obtain the
performance measures and system characteristics. Usually, the throughput, uti-
lization, response times, waiting times, queue length are considered. Here the
utilization and response time are focused.

The manual solution of the Kolmogorov-equations is very hard. There exist
alternative methods for performing this task. For calculating the steady-state
probabilities, several software tools can be applied. Based on the calculated sys-
tem probabilities the usual performance measures are usually provided by the
software. Because solving directly the balance equations is rather difficult, the
MOSEL-2 tool is used. The system equations are solved by the SPNP (Stochastic
Petri Net Program). The following figures illustrate the most interesting numer-
ical results. The numerical values of the applied parameters in the model are
listed in Table 1.

Table 1. Numerical values of model parameters

Case studies

No. N A1 A2 1% v Yo Y2

Fig.2]100 | x — azes | 2 3 0.05| 0.1 1
Fig.3|100 |z — axes | 2 3 0.05| 0.01 |1
Fig. 4100 | x — azes | 2 3 0.05/0.2,0.5| 1
Fig.5 /100 | z — azes | 2 3 0.05/0.2,0.5| 1
Fig.6|100 |z — axes | 2 3 0.05| 0.2 1
Fig.7|100 |z — azes | 2 3 0.05/0.2,0.5| 1
Fig.8 100 | x — azes | 2 | special |0.05| 0.2 1

The table contains only the idle time breakdown parameters. For calculations,
the same values are used for the busy time breakdown parameters. The first two
figures compare two different cases for the regular breakdown:

— In case of busy state breakdown, the service of the first order and second
order customers are interrupted. The first or second order customer under
the interrupted service is sent back to the orbit or to the infinite source,
respectively.

— The service of both types of customers is interrupted. The customers are
left at the server. When the server is up again, their service will continue or
restart. Because of the exponentially distributed service time, this difference
- restart or continue - has no effect on the system characteristics.

On Fig.2 displays the difference of the scenarios mentioned above (leave
or remain). The failure rate here is rather high, thus the difference between
the scenarios is significant. The interruption is more frequent and the first order
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customers are sent back to the orbit more frequently, which results higher waiting
times. The waiting time of the ‘leave the system’ case is greater because the first
order jobs go to the orbit and they have to try again.
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Fig. 4. Mean Waiting Time vs. A1

Figure 3 displays the utilization in function of the first order generation rate.
When the failure rate is small, the difference between the two scenarios is not
significant. This figure shows the situation when the failure rate is high, thus the
differences in utilization are more significant. The utilization is greater for the
‘Continue’ scenario because after the repair the server state will be immediately
busy. While for the other scenario the server will be idle, and a retrial, first or
second order generation with an exponentially distributed time interval will take
place.

Mean Waiting Time - Catastrophic
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~=e=Cat Failure rate: 0.2

e Cat Failure rate: 0.5

e

05

0,01 0,06 0,11 0,16 0,21 0,26 0,31 0,36 0,41 046 0,51 0,56 0,61 0,66 0,71 0,76 0,81 0,86 0,91 0,96 1,01

A

Fig. 5. Mean Waiting Time vs. A1

In Figs.4 and 5 the running parameter is the generation rate for first order
customers, A1, and the considered performance measure is the mean waiting time
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in the orbit. Here only the first order customers can take place. In Fig.4 the
case of regular breakdown is displayed for two different failure rates. Comparing
the mean waiting times, a reverse effect can be observed. In case of regular
breakdown (Fig.4) for a higher failure rate, the waiting time is higher. The
reason is that the customers spend more time in the orbit or at the server in
down periods. While in case of catastrophic breakdown (Fig.5) the waiting time
is less for higher breakdown rates. Customers are sent to the sources in case of
a breakdown.

Mean Waiting Time
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Fig. 6. Mean Waiting Time vs. A1
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Fig. 7. Mean Response Time vs. A1
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Figure 6 compares the waiting time between the regular and catastrophic
breakdown at a given failure rate, 79 = 1 = 0.2. As it was expected, the
waiting time is much higher for the regular breakdown.

In Fig. 7 and 8 the catastrophic breakdown is applied. The running parameter
is A = A1, the first order generation rate. In Fig. 7 the mean response time can
be seen for two different failure rates (9 = 71 in this figure). For a higher failure
rate, lower response time can be observed because the jobs are more often kicked
off to the source.

Figure 8 displays the server utilization. Here, the service rates for first (u1)
and second order (uz2) customers are different. p; = 4 and pe = 2. This is the
reason, that the utilization is higher in the catastrophic case than in the normal
breakdown case.

Utilization

0,7

0,65

06

== Regular

05 sire= Catastrophic
0,45

04

0,01 006 011 0,16 021 026 031 036 041 046 051 056 061 066 071 076 0,81 0,86 091 096 1,01

A

Fig. 8. Server utilization vs. A1

3 Conclusion

A special two-way communication system was investigated here. First order cus-
tomers come from a finite source, while in the case of an idle server, second order
customers can reach the system via a direct call. Different cases can be consid-
ered. Failure rates are set to be equal for idle server, for server with first order
customer, and for server with second order customer. Two different cases were
considered. The system is subject to regular breakdown and catastrophic break-
down. In case of regular breakdown, the “leave the system” and the “remain at
server” scenarios were compared. Based on the numeric result, it can be stated,
the second scenario is more effective regarding the response times, waiting times,
and utilization. When the two breakdown models were compared with different
failure rates, the expected reverse effect of the breakdown parameters can be
observed.
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Abstract. In this paper a processor-sharing queueing system is inves-
tigated. Two types of customers enter the system according a marked
Markovian arrival process. It is assumed that the number of customers
of each type simultaneously being serviced is limited. The service times
of customers have a phase type distribution the parameters of which
depend both on the type of a customer and on the number of customers
of this type in the system. The operation of the system is described in
terms of a multi-dimensional Markov chain. We calculate the stationary
probabilities, the main performance characteristics of the system and
derive the Laplace—Stieltjes transform of the sojourn time distribution.
We also present illustrative numerical examples to show the behavior
of the performance measures of the system and to solve numerically an
optimization problem.

Keywords: Processor sharing - Marked Markovian arrival process *
Phase type distribution - Stationary distribution - Performance
measures * Sojourn time

1 Introduction

Processor sharing technology is very popular in computer systems and telecom-
munications networks. It can be found a number of examples of real processor
sharing systems and their mathematical models in the literature , see, e.g. the
papers [1-8]. Most often, it is assumed that the processor can be used by an
unlimited number of users, the input flow is stationary Poisson, and the service
times are distributed exponentially. More general systems have been considered
in the papers [9,10] where it was assumed that customers arrive into the sys-
tem according to Markovian arrival process (M AP) and service times have a
phase type distribution. In these papers, homogeneous traffic is assumed, which
is not always suitable for describing next-generation wireless communication net-
works, implying, in particular, the use of the Internet of Things and the presence
of interaction between H2H users and M2M devices, see, e.g. [6-8]. The pres-
ence of heterogeneous requests gives rise to the need to develop new mechanisms
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to maintain the specified quality of service parameters for both H2H users and
M2M devices. At the same time, with an increase in the intensity of the proposed
load, the planners at the base station of the LTE network must determine the
optimal strategy for the allocation of radio resources based on the established
restrictions, for example, the probability of loss of requests from H2H users and
the average transmission time of data blocks from M2M devices.

The queueing system considered in this paper significantly expands the capa-
bilities of modeling real systems with processor sharing. We believe that there are
restrictions on the number of users of different types simultaneously in service,
and we do not introduce restrictive assumptions such as the homogeneity and
uncorrelated nature of the customers flow, as well as the exponential distribution
of service times for customers of different types. We assume that the input flow
to the system is correlated and described by the marked Markov arrival process
(M M AP) introduced in the paper [11]. For a more adequate description of the
service process, we use a phase type distribution (PH) which is successfully used
to approximate an arbitrary distribution.

Thus, in this paper we consider a queueing system with processor sharing
which receives two types of customers arriving according to a MMAP. If at
the moment of a customer arrival the number of customers of this type on the
server is greater than a predetermined threshold, then the customer leaves the
system un-handled, it is considered lost. Otherwise, the customer takes up part
of the throughput of the channel and is serviced for a period of time having a
PH distribution, the parameters of which differ for customers of different types.

2 Mathematical Model

We consider a queueing system with two type of customers and processor sharing.
Customers of different types arrive into the system according to the MM AP
under control of the irreducible Markov chain v, ¢ > 0, which takes values in
theset {0,1,2,..., W} and is called as an underlying process of the MM AP. The
transitions of the underlying process accompanied by an arrival of a customer of
type k are stored as entries of the matrix Dy, k = 1,2, of order W x W where
W = W +1 and idle transitions of this process are described by the matrix Dy.

The arrival rate of customers of type k in the MMAP is given by A\ =
ODre, k = 1,2, where the vector 0, is defined as the unique solution of the
system @D(1) = 0,0e = 1. The total arrival rate is A = A1 + Ao.

The variance of inter-arrival times of customers of type k is calculated by the
formula

2
20(-Do— > Di)'e

1=1,1k 1)°
_ =1, (=) . k=102
(% )\k ()\k) ) )

The coefficient of correlation of the lengths of two adjacent intervals between
the arrivals of customers of type k is calculated by
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A detailed description of the M M AP can be found, for example, in [11].

In this paper we assume that the server can simultaneously serve up to N
customers of type 1 and up to R customers of type 2. If only one customer
of the kth type is serviced on the server, then its service time has the PH
distribution given by the irreducible representation (3, Sx) and the underlying
process mgk), t > 0, with the state space {1,..., My, M}y + 1}, where the state
My, + 1 is absorbing. The intensities of transitions to the absorbing state are
determined by the column vector Sék) = —Sie. The service rate of a customer
of type k is calculated as puy, = (B, (—Sk) te)~ L.

The customers of each type divide the throughput of the server allocated
to them equally. If the server simultaneously serves nj customers of the kth
type, then the service time of any of these customers has the PH distribution
given by the irreducible representation (3, %Sk) and the underlying process

mgk), t > 0, with the state space {1,..., My, My + 1}, where the state M + 1 is
absorbing. The intensities of transitions to the absorbing state are determined
by the column vector n—lk.S'(()k).

If an incoming customer of type 1 finds n < N customers on the server,
then it is sent for service. In this case, the throughput of the server allocated to
customers of the 1st type is divided equally between n+ 1 customers. Otherwise,
the customer leaves the system un-handled, it is considered lost. Similarly, if a
customer of the 2nd type finds 7 < R customers on the server, then it is sent for
service. The throughput of the server allocated to customers of type 2 is divided
equally between r 4+ 1 customers. Otherwise, the customer is lost.

3 Process of the System States

The operation of the system is described by the regular irreducible Markov chain

gt = {ntaTt7nt(1)7n§2)a cee 77]§Ml)7 Tt(l)aTt(2)7 e 77—15(1\/12)7 Vt}7

where at the moment ¢

e n, is the number of customers of type 1 on the server, ny = 0, N;
e 7; is the number of customers of type 2 on the server, r; = 0, R;

(1
) nt(m ) is the number of customers of type 1 that are served in the phase m),
Wy _
ém ) :Oanh m(l) = luMl;
(2
° Tt(m ) is the number of customers of type 2 that are served in the phase m(?,

e _ _
Tt( ) = O7Tt7 m(2) = 17M2;
e 1, is the state of underlying process of the MM AP, v, =0, W,
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In the following we will also use the processes

= 3w A
Let us arrange the states of the considered Markov chain &,t > 0, as follows.
We enumerate the components n;,r; in the direct lexicographic order and, for
fixed values of these components, we renumber the states of the processes ugl)
and u§2) in the reverse lexicographic order.
To further describe the transition rates of the chain, we need the matrices
Pi(+), A;(+,), and L;(+, -), which have the following probabilistic sense: the matrix

Li(n, Sk) contains the transition rates of the process ugk), leading to the end of
servicing of one of n — [ customers of the kth type; the matrix P,,(3;) contains
the transition probabilities of the process ugk) leading to an increase in the
number of customers of the kth type on the server from n to n + 1; the matrix
An(l,gk) contains the transition rates of the process ugk) in its state space

without increasing or decreasing the number of customers of the kth type. Here

~ 0 O

Sk = <S(k) g ) , k =1,2. Algorithm for calculating matrices P;(-), A;(:,-), and
0 l

L;(-,-) follows from the results of V. Ramaswami and D. Lucantoni published in

the papers [12,13].

Let us introduce the notation @, - for the matrices of transition rates of the
chain from the states corresponding to the value n of the first component to the
states corresponding to the value n’ of this component, n,n’ = 0, N. We also
introduce the following notation:

m o_ n _ n! .
d Cn - <m> — ml(n—-m)l’

e diag{ay,as,...,a,} is a block diagonal matrix in which the diagonal blocks
are equal to the elements listed in brackets, and the other blocks are zero;

o diagt{ai,as,...,a,} (diag~{ai,as,...,a,}) is a square block matrix in which
the off-diagonal (below-diagonal) blocks are equal to the elements listed in
brackets, and the other blocks are zero.

Lemma 1. The infinitesimal generator @ of a Markov chain &,t > 0, has the
block three-diagonal structure

Qo0 Qo1 O ... 0 0
Q10 Q11 Qi ... 0 o)
0]

O Q21Q22 ... 0

O O O ...QNn-1N-1QNn-1N
O O O OnnN-1 QNN
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where

Qo0 = diag~{1Lp_.(R,S>),r = 1,R} ® Iy

—|—diag{0,lAr(R, SQ),’/’ :ﬁ} @ Dy —|—diag{OR_1 A vy }®D2
T = i‘%&iil Crinmg—1
+diagt{P-(B5),7 =0, R — 1} ® Dy + Ay;

Qn,n-{-l:Pn(/Bl)@IR May—1 ®D1,0STLSN—1;
7‘20 r+Mog—1

Qnin-1= 2Ly _n(N, S ® If ® Iy, 1 <n < N;

Mgy—1
2 Gy -1
Qnn = Ichf1 ®diag_{%LR_,.(R, Sa),r = 1,R}®IW
ntMp—1

+LA,(N,S1) @ diag{0, LA, (R, S5),r = T, R} ® (Do + 6,y D1)

+IC,I\/11—1 ®diag{OR,1

ntMy—1

7ICM2—1 }®D2

Mg —1 R4 My —1

A Yy -1
+ 11 @diagt{P.(By),r =0,R—1} ® Da + A,, 1 <n <N,
ntMp—1
where @(®) denotes the Kronecker product (sum) of matrices, on n is the Kro-
necker symbol, A,,n = 0, N, are diagonal matrices, which are constructed so
that the equality Qe = 07 holds.

Proof. The generator block (g o contains the transition rates in the set of states
corresponding to the absence of customers of type 1. The corresponding transi-
tions occur when

a) one of the customers of type 2 finishes the service. The corresponding rates
are given by the matrix diag™{1Lp_,(R,S2),r =1, R} @ Iyy;

b) the number of customers of type 2 that are in a certain phase of servicing
is changed or the M M AP underlying process makes an idle transition. The
corresponding rates are given by the matrix diag{0, %AT(R, Sa2),r=1,R} &
Dy;

c) a customer of type 2 arrives and take place on the server (the matrix
diagt{P.-(B5),r = 0, R — 1} ® Ds) or, if all places for customers of this type
are occupied, the customer leaves the system un-handled (the matrix
diag{ORil s [Cl\lgfl } ® Ds.

R+My—1
r=

Mo—1
r+My—1

Block Qp n,n = 1, N, contains the transition rates in the set of states corre-
sponding to the presence of n customers of type 1 in the system. The expression
for this block differs from the expression for the block Qg only in the second
term, which in this case specifies the transition rates of the processes of servicing
customers of types 1 and 2 in their sets of states without changing their numbers
or the M M AP idle transition, or the loss of customer of type 1.

Block Qp nt1,n =0, N — 1, contains the rates of transitions accompanied by
the arrival of a customer of type 1 which takes up place on the server.
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Block Qy.n—1,n = 1, N, contains the rates of transitions accompanied by the
departure of the serviced customer of type 1 from the system.

All other blocks of the generator are zero matrces, since they consist of the
rates of two or more transitions of the considered Markov chain on an infinitely
small time interval.

4 Stationary Distribution. Performance Measures

In accordance with the described ordering of the states of the Markov chain
&, we form the row vectors p,,n = 0, N, of the stationary probabilities of the
states of the chain corresponding to the value n of the first component n;. Let
p = (Po,P1,---,Pn) be the vector of steady state probabilities of the chain.
This vector is the unique solution to the system of linear algebraic equation
pQ = 0,pe = 1. If the dimension of this system is large, the solution can be
calculated using the algorithm developed in [14].

Based on the stationary distribution, we can obtain formulas for calculating
a number of stationary performance characteristics of the system. Below we
present some of them.

e Joint distribution of the number of type 1 customers on the server, the number
of type 1 customers in different service phases, and the states of the M M AP

p; = pn(Ichfl ®er . ®IW), n=0,N.

My —1 2—
n+Mj ZOCT+M271
=

e Distribution of the number of customers of type 1 in the system p, =
p.e,n=0,N.

e Joint distribution of the number of type 2 customers on the server, the number
of type 2 customers in different service phases, and the states of the M M AP

N
q =Y pa(I™" @ Iy),r =0,R,

n=0

where

—1
My—1 " Mg —1 Mg—1
Crir,—1 EOCerMQﬂXCrJrMQq
"=
[(nﬂ“): e -1 QI mp1
Crgar -1 C -
o4 M e Mg —1
0]

R

Mp—1 My—1 My—1

Coitry—1 2 Cning-1%Ciu,—1
me=rtl

e Distribution of the number of customers of type 2 in the system ¢, = qje,r =
0, R.
e The probability of losing a customer of the kth type
Ak

— Yk
—— k=12
)\k. ) )=

I)loss,k: =

where Ay is the arrival rate of customers of kth type, @i is the output rate of
customers of kth type. The value of ¢y is calculated as
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N
1= E p:z(ICM1*1 ® eVV)%LN—TL(Na Sl)ev
n=1

ntMy—1

R
2= qi(I -1 @ey)ELr (R, Ss)e.
r=1

rfMy—1

5 Sojourn Time Distribution

Denote by vi” (n®, 5@, ... ,n™1) i v, 5) the Laplace-Stieltjes transform (LST)
of the virtual sojourn time distribution of a customer of type 1 for which ser-
vice began with the phase 7, and which found n customers of the first type in
the system, the number of customers in phase m) equal to n(m(l)), and the
underlying process of the MM AP in the state v, n = 0, N — 1, n(mm) =0,n,
mM =1, M, v=0,W.

Similarly, let U,EQ)(T@), ., mM2) 7 s) be the Laplace-Stieltjes transform
of the virtual sojourn time distribution of a customer of type 2 for which ser-
vice began with the phase 7, and which found in the system r customers of
the second type, the number of customers in the phase m® equal to T(m(2)),
and the underlying process of the MMAP in the state v, r = 0,R—1,
rm®) 0,r,m? = 1,M,, v = 0,W. First we derive formulas of the con-
ditional LST's 1)7(11)(77(1), n@ . M) § o, s). Let us arrange these LST's in the
reverse lexicographic order of arguments 7", ... (1) in the direct lexi-
cographic order of arguments 77, v and form the column vectors

T 1 1
vil(s). n=0N =T v(s) = (v ()", (17 ()" (R ()
Similarly, for customers of type 2, we form the column vectors

v (s), r=0,R—1, v®(s) = (v’ ()T, (vF(s)T,..., (vi ()T

Theorem 1. The Laplace-Stieltjes transform vector v(l)(s) is calculated as fol-
lows:
v (s) = (sT — AM)~1pM), (1)

where

AW = diag{[77An(N, 51) + An] & S1 & (Do 4 Da),n =0, N — 1}
+diag_{%+1LN_n(N, 51) ®IM1V_[/7n =1,N — 1}
+dlag+{Pn(161) ®IM1 ®D1,TL = OaN - 2}

,Icl\ll—l } @ Ing, ® D1},

N+Mp—2

+diag{O ~_
w

n=0

2 cMi-1
ntMy—1

b — diag{I o= ® L8V @ Iy,n=0,N —1Je.
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Proof. Using the probabilistic interpretation of the Laplace-Stieltjes transform,
we obtain the following equations for the vectors v( )( ),n=0,N—1

vi(s) =

/e st [n+1 N51)+An]®31t(1 o1 ® 1 Sél))®e(D°+D2)tdte

n4+Myp—1 n—+1

0
+/€ st [n+1A (N Sl)+An]®Slt(LN (N’ 5’1) ® IMl) ® e(D0+D2)fdtev 1) ( )
0

+/(efste[%“An(N,Sl)JrAn]EBSlt ® 6(D0+D2)t)(Pn(ﬂ1) ® IM1 ® Dl)dt
0

1
X ani)n{n+1,N—1}(s)e' (2)
Let us explain the meaning of the terms on the right-hand side of (2):

— the first integral (first term) is the probability that the incoming virtual
customer will be serviced before any of the n customers of type 1 that are
already on the server at the time of the virtual customer arriving, and during
the time of servicing the virtual customer there will be no catastrophe.

— the integral in the second term is the vector of probabilities that after the
arrival of the virtual customer one of the n customers of type 1 that are
already on the server at the time of the arrival of the virtual customer will
be served first, and no catastrophe will occur during the service of this first
customer. After the first of the mentioned n customers is served, the server
resource is redistributed between the remaining ¢ customers, including the
virtual one, and the further scenario of servicing the virtual customer up to
the distribution of the M M AP states and service phases will be the same as
at the moment of the arrival of a virtual customer that found n — 1 customers
in the system. By definition, the corresponding vector of LST's is v( ) 1(s) The

product of the integral and vn 1( ) will give the required vector of LST's of
the service time distribution of the virtual customer.

— when describing the third term, we will distinguish between the cases n <
N—1and n = N—1. In both cases, the integral in the third term is a vector of
probabilities that after the arrival of the virtual customer, the first event that
entails a change in the number of customers on the server will be the arrival
of a customer of type 1 and no catastrophe will occur in the time before it
arrives. In the case n < N — 1, after this customer arrives, the server resource
will be redistributed between n + 2 customers, including the virtual one, and
the further scenario of servicing the virtual customer up to the distribution
of the M M AP states and servicing phases will be the same as at the moment
of arrival of the virtual customer that found n 4+ 1 customers in the system.

By definition, the corresponding vector of LSTs is ngl_il(s) The product of
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the integral and villl (s) will give the required vector of LST's of service time
of the virtual customer. In the case n = N — 1 the received customer will be
rejected, since the server already contains N customers, including the virtual
one. Then the further scenario of servicing the virtual customer, up to the
distribution of the states of the M M AP, will be the same as at the moment of
the arrival of the virtual customer that found NV — 1 customers in the system.
By definition, the corresponding vector of LST's is Vg\}ll(s) The product of

the integral and VE\})_l (s) will give the required vector of LST's of service time
of the virtual customer.

After calculating the integrals in (2) and a number of algebraic transforma-
tions, we obtain the required formula (1).

Corollary 1. The Laplace-Stieltjes transform vector v(2)(s) is calculated as fol-
lows:
V(Q)(S) = (sIy — A(Q))‘lb@),

where the matriz A®) and the vector b are obtained from the matriz A1) and
the vector bW | respectively, by replacing N by R and permutation of indices 1
and 2.

Having known the Laplace-Stieltjes transforms defined in Theorem 1 and
Corollary 1, we can find all the moments of the sojourn time, in particular, the
mean and the variance of this time.

The corresponding mean (variance) for customers of type 1 we denote as

s (D @ ) i) (dD (W, @, ) 5 1)) and for customers
of type 2 as 0{2 (r(V . 7 OM2) 7 1) (dP(+ D), 7@ 702 7 L))

We renumber the values 177(11)(77(1), @, M) Gy, (17,(3)(77(1), n@, ...,
nM) 7 v))? and clgll)(n(l)7 n@,...,n™M) 7 v) in the lexicographic order
described above and form the corresponding column vectors

v sW, dW n=0,N—1.

n

In turn, from these vectors we form the column vectors

v = ((v(()l))T, ({,gl))T’ o (vg\}il)T)T7 s = ((‘:,(1)0)T7 (‘:,(1)1)T7 o (‘:,(1)N71)T)T7
d® = ()", (@), (@i )"

By analogy we introduce the column vectors v(2), v(2), d(®).

Corollary 2. The vector of conditional means, v\¥), and the vector of condi-

tional variances, d(k), of the sojourn times of a customer of type k are calculated
by the following formulas:

v = — (AR ~le d®) = 2(4))2e — W)k =1,2.
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To calculate the Laplace-Stieltjes transforms of the sojourn time distributions
of the customers of type 1 and 2 admitted into the system, we introduce into
consideration the vector p* (q7), the components of which define the joint
distribution of the number of type 1 (type 2) customers that are in different
service phases and the states of the M M AP immediately after the moment the
customer of type 1 (type 2) has been admitted into the system. It is easy to see
that these vectors are calculated as follows:

p+ = )‘fl(pgapiﬂa .. 7p7\[71)[dlag{Pn(ﬂ1)>n = OaN - 1}' ® Dl]a
at =X (ah.df - aR ) [diag{P,(B,),r = 0,R — 1} @ Dal.

Theorem 2. The Laplace-Stieltjes transformations of the sojourn time distribu-
tions of the customers of type 1 and type 2 accepted to the system are calculated

as
v(l)(s) = p+v(1)(s), 0(2)(8) = q+v(2)(s).

Corollary 3. The means and variances of the sojourn times of customers of
type 1 and type 2 accepted to the system are calculated using the following for-
mulas:

50 = ptv® dO = ptd®.  §® = gtv@ 4@ = q+d®@.

6 Numerical Results

In this section we conduct a number of numerical experiments aimed at studying
the behavior of the performance characteristics of the system depending on its
parameters and at solving optimization problems. To carry out the experiments,
a computer program was written in Python using built-in packages for process-
ing matrices, calculating complex mathematical formulas and executed in the
PyCharm 2019.3.4 (Professional Edition) program.

In Experiment 1 we analyse the dependence of the loss probabilities,
Pioss.i, k = 1,2, and the mean sojourn times, 7%k = 1,2, on the maximum
number of channels allocated for customers of type k. In this experiment we used
the following input data.

The M M AP is specified by the matrices Dy, Dy, Do, where

—86 0.01 59.5 0.693 25.5 0.297
Do = <0.02 —2.76)’ D1 = <0.14 1.778)’ D2 = <0.06 0.762) '

With such matrices A = 12.43, \; = 0.7A and Ay = 0.3), 5. = 0.39, (2. = 0.33.

The PH distribution of the service time of a single customer of type 1 is
given by the vector /6(1) = (1, 0) and the matrix S = —gO _820 . This
means that the service time has Erlang distribution of order 2 with parameter
80 and the service rate p; = 40.
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Fig. 1. Pioss,1 and Ploss,2 vs N under fixed number of channels N + R = 30
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Fig. 2. 3" and ® vs N under fixed number of channels N + R = 30

The PH distribution of the service time of a single customer of type 2 is
. . —20 2 .

given by the vector 8 = (1, 0) and the matrix S = ( 00 30> . This
means that the service time has Erlang distribution of order 2 with parameter
20 and the service rate ps = 10.

The total number of channels, into which the throughput of the servers is
divided, is N + R = 30.

It is seen from Fig. 1 that Pj,.s,1 decreases and Pj,ss,2 increases. This is due
to the fact that with an increase in IV the possible number of type 1 customers in
the system increases and the smaller part of the customers will be lost. Taking
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into account the equality N + R = 30, with an increase in N the value of R
decreases and more and more customers are lost.

Figure 2 shows that (1) is an increasing function of N. This is due to the fact
that with an increase in N the throughput allocated for a customer of type 1
decreases and hence the sojourn time increases. Due to the relation N + R = 30
when N increases then R decreases. That entails an increase in the throughput
available for a customer of type 2 and a decrease in the time for servicing the
customer.

Experiment 2. In this experiment, we solve numerically the optimization
problem which consists in the optimal sharing of the throughput u = @1 + uo
of the server between customers of types 1 and 2 and the optimal choice of the
maximum numbers of simultaneously served customers of types 1 and 2 under
the given restrictions on the minimum throughput allocated for each customer.

As a criterion for the quality of the operation of the system, we use the
economic functional, which is the average penalty per unit of time

J = aN + Cl)\lljloss,l + 02)\2Ploss,27 (3)

where a is the penalty charged per unit of time spent by one customer of type 1
in the system, ci is the penalty charged for the lost customer of type k, k =1, 2.

The problem is to choose the parameters py, N and R which provide the
minimum to criterion (3) under the following conditions:

H1 H2
= | = const, = — = const, = — = const.
M1+ 2 =p N=y Y2 R

Here ~; is the minimum throughput of the server that can be used to provide
service to a customer of type k.

2.57

2.0

1.5

=
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H

Fig. 3. N vs w1 under restrictions p = 70,v1 = 2,72 =7
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In the experiment, we will use the M M AP specified in Experiment 1. The
shape of service time distributions is the same as in Experiment 1. In the course
of the current experiment, we will only change the service rates pu; and po mul-
tiplying the matrices S, 52 by the corresponding constants. We fix the values
of p,v1,v2 as p=70,v1 = 2,72 =T7.

For these initial data, let us look at the graphs of the dependence of the
mean number of customers of the type 1, N, and the probabilities of losses of
customers of different types, Pjoss,1, Ploss,2, which are shown in Fig. 3 and 4.

Having calculated the dependence of N, Pioss,15 Pioss,2 on 1 we can calculate
the dependence of the cost criteria J on py under different cost coefficients. Let

50{ ———— a=1 //

40

30

20

101

0 10 20 30 40 50 60
H

Fig.5. J vs p1 for ¢4 =1, c2 =20, a = 1,3, 7 under restrictions pp = 70,71 = 2,72 =7
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us consider the following cost coefficients: a = 1,3,7,¢; = 1, co = 20. The results
of calculation are presented in Fig.5 and in Table 1.

Table 1. Values of N, R, J as functions of puq for ¢4 = 1, co = 20, a = 1,3,7 under
restrictions p = 70,y1 = 2,72 =7

pi| N | R Jja=1|J,a=3|J,a="7
1 19 13.09 14.60 17.64
2 |9 1281 14.76 18.67
105 |8 11.69 14.91 21.34
157 |7 19.24 13.58 22.24
20/10|7 |6.54 11.40 21.11
251216 |3.96 8.17 16.57
30|15|5 | 2.45 5.58 11.83
35|17|5 | 2.15 4.04 7.83
40120(4 |4.13 5.32 7.72
45122|3 | 8.82 9.65 11.32
50(25|2 |16.99 17.62 18.89
55272 |22.84 23.35 24.37
60|30|1 |44.79 |45.22 46.07
63 |31|1 |50.32 50.70 51.48

It is seen from Fig.5 and Table 1 that for input data under consideration the
server throughput is divided approximately in half between customers of types
1 and 2. In the case a = 1, 3, it is optimal to divide the throughput allocated
to customers of types 1 and 2 as 17:5. When a = 7, this proportion changes as
20:4.

7 Conclusion

We analysed a queuing system with the M M AP of customers of two types, pro-
cessor sharing and a limited number of places for customers of different types.
We described the system operation by the multi-dimensional Markov chain, cal-
culated its stationary distribution and the main performance characteristics.
The Laplace-Stieltjes transform of the sojourn time distribution is found. For-
mulas for means and variances of the sojourn time are obtained. We carried out
numerical experiments to study the behavior of the system performance charac-
teristics and to find the optimal strategy for sharing the processor throughput
between users of different types. The results obtained can be used in the study
and planning of telecommunication networks for various purposes, in particular,
the Internet of Things.
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Abstract. We consider a single-server system with energy saving inac-
tive state, non-zero setup, shutoff and hot reserve state. Matrix-analytic
method is used to obtain the steady-state performance and average power
demand, as well as study the energy-performance tradeoff in explicit way.
Numerical results illustrate the model’s properties.

Keywords: Matrix-Analytic Method - Explicit Solution * Single
Server * Energy-Performance Tradeoff

1 Introduction

Energy efficiency is one of the important subjects in the telecommunication sys-
tems development catalyzed by the dramatic increase in the energy consumption
of the ICT infrastructure in recent years [2,15,19]. There are many theoretical
and engineering approaches to these problems, including the queueing systems
analysis, which in some cases allows to derive explicit expressions for the optimal
policies.

Matrix-analytic method [6,13,18] is an efficient approach suitable for a
detailed modeling of stochastic systems using structured Markov processes. It
allows to perform a detailed study of the steady-state characteristics of the model
with the help of stochastic and algebraic approaches. While in general the pro-
cedure has to be performed numerically and suffers from the curse of dimension-
ality, in relatively rare cases there are rigorous explicit expressions which allow
to avoid numerical computation. In this paper one of such cases is studied.

To address the increasing energy demand, it is typical to introduce vari-
ous energy saving policies which allow to reduce the average steady-state energy
demand, however, at the price of the system performance degradation. In many
cases, there is an optimal trade-off between these two key system characteristics,
see e.g. [12]. In the present paper, we address such an issue in a rather simple
model of a single-server device capable of a standby regime that allows to save
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energy. Inspired by the policy studied in the work [4], we study a slightly dif-
ferent model. As opposed to the one studied in [4], our model is a single-server
model with unbounded queue and First-Come-First-Served discipline, setup and
shutoff phases, as well as an exponentially distributed idle (e.g. hot reserve)
delay before entering the shutoff in an empty system. We treat the rate of such
a delay as a management parameter and study its inference on the key system
performance/energy efficiency measures.

The paper is indeed an exercise in applying the matrix-analytic method to
a rather simplistic model. However, the main contribution of this research is
an explicit solution which allows to solve the energy/performance optimization
problem in a rigorous way. The second contribution of this research is the rather
technical yet interesting result, Lemma 1, for the computation of the steady-state
performance in the system in terms of the marginal phase probability.

The structure of the paper is as follows. We perform a very short literature
survey in Sect.1.1 and introduce the notation in Sect.1.2. We introduce the
matrix-analytic method and prove some interesting though technical results that
simplify subsequent analysis in Sect.1.3. The model is stated and analyzed in
Sect. 2. The results are numerically illustrated in Sect.3. We finalize the scope
with a conclusion.

1.1 Literature Review

There is a huge body of literature covering various aspects of energy efficiency in
the computing systems. Due to a lack of space, below we briefly enumerate some
of the papers where the results were obtained by means of applied probability
and queueing theory.

There are various energy saving mechanisms that are addressed, e.g. the
dynamic voltage and frequency scaling [3,14,21], throttling [9], energy harvest-
ing [5,22], load balancing [10], to name a few. At the same time, in many cases
simulation is used since the analytical results are hard to obtain. In particular,
a similar model of the server farms with setup costs were studied in [8], where
the results were obtained by means of approximation and asymptotic analysis.

To finalize this review, we note that explicit analysis of the energy-
performance trade-off is usually complicated due to a sophisticated nature of
the models, however, if it is possible, it allows to derive the most general con-
clusions. At the same time, such an explicit analysis can be augmented by the
simulation and technical modeling [20,21] to convert the conclusions obtained
to practical recommendations.

1.2 Notation Conventions

Vectors and matrices are highlighted with bold letters, with special notation for
a zero matrix, O, zero vector, 0, and vector of ones, 1. Being a column or a row
vector should be clear from the context.

We use e; as the vector having one at ¢th position and zero elsewhere, i.e. e;
is the ith row of an identity matrix I.
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1.3 Matrix-Analytic Method

In this section we briefly describe the necessary results for the matrix-analytic
method which is used to study the discrete or continuous-time discrete state
space Markov chains having a specific structure. In particular, it is useful for
the celebrated level-independent Quasi-Birth-Death (QBD) process which is a
continuous-time Markov chain living in a discrete state space E = {0,)p} %
U;>1{%, Y} with the infinitesimal generator matrix @ having block-tridiagonal
structure [6,13]
400 491 o O
AY0 AN AL O L
Q=| 0 A"V A© AW 1 (1)
o o0 AUY A0

The blocks A%, A*° are the (non-sqare in general) matrices of the transition
rates to/from the level zero, whereas A are the square matrices defining the
transition rates from the level £ > 1 to k + 4, i = —1,0, 1. Finally, A" are the
square matrices describing the transition rates for the phases within the level
i =0, 1. Due to the properties of a generator matrix,

Q1=0. (2)

As such, the diagonal elements of the blocks A%*i = 0,1 and A are non-
positive, while all the remaining elements are of @ are non-negative. The stability
criterion of such a process is given by the celebrated Neuts ergodicity condition,

aAV1 < aAV1, (3)
where « is the stochastic vector solving the system
a(ATY + A0 L AWy = . (4)

Provided the stability condition (3) holds, the steady-state probability vector
w™ = (o, T1,...), where wo = ||moy||lyey, and m; = ||7;yllyey,i > 1, can be
obtained using the so-called matrix-geometric recursive solution

wip1 = mi R (5)

The so-called rate matriz R is the minimal (in terms of the spectre of its eigenval-
ues) non-negative solution of a matrix quadratic equation with matrix unknown,

R*’AY + RAO + AW = 0. (6)
The vectors 7y and 71 are to be found with a boundary condition system

A0,0 AO,]
A0 AN 4 RATY

mol+m (I -R)™'1=1. (8)

(o, 71) =0, (7)
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Finally, the performance measures of the system can be obtained using the
steady-state vector 7, in particular,

EX. =) nm,1=m(I-R)1, (9)

n>1

where X, is the number of customers in the system in steady state.

In general, the matrix R is obtained by one of the numerical methods [13].
However, there are nice special cases when the matrix R can be found in explicit
form, in particular, when matrix AW or A i of rank 1, the latter case is
considered in the following theorem.

Theorem 1. [16, Theorem 5] Let AY = cr, where ¢ is the column vector
and 7 is the row vector such that r1 = 1. Let the matriz G of order |Y| be the
minimal non-negative solution of the matriz quadratic equation

ATY 4+ A0OG 1+ AVG? = 0. (10)

Then
G=1r. (11)
The matrix G = ||G; jl]i jey is a stochastic matrix that consists of the condi-

tional probabilities G; ; of entering the level k —1 by entering the state (k—1, 5)
starting from the state (k,7),k > 1 [13,16]. The matrix R can be obtained from
the matrix G using the following relation [11]

R=-AMAD £ AWG)~, (12)

In particular, if (11) holds, the matrix R can be obtained from (12) in an explicit
form.

The system (7)—(8) can be simplified if the matrix (1) has a more simple
structure, namely, if

APt =AW AN =AY AN = A0 (13)

In such a case, Yy = )Y and the following simplified system can be used:

{ﬂ-o(AO’O +RATY) =0 (14)

7T()(I — R)_ll =1.

It is interesting to suggest an alternative approach to 7 calculation which avoids
the matrix inversion. Note that 79 , = P{X. =0,Y. =y}, y € Y, where (X, Y?)
are the corresponding steady-state variables. Consider the marginal probability
ﬂg(,y) =P{Y. =y}, y € Y and note that

w0 =l llyey = 3 mi = mo(T = R) (1)
=0
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Then the system (14) is equivalent to

7)1 - R)(A™ + RATY) =0
71 = 1. 16)
Using (6), we obtain from (16) an equivalent system
~¥Y)B =0,
{ﬁml 1, (17

where

B=A" 1+ AW L R(ATY + A® — A%0),

Note that the solution of (17) can be computed without the matrix inversion.
Moreover, in some cases it is possible to use regenerative approach to obtain
wY) explicitly without (17), see [17]. Finally, the vector o can be computed
using the expression

mo =) (I - R). (18)

Using w(Y), it is possible to rewrite (9), taking into account (18), into the
following expression:
EX, =TI -R)™'1-1. (19)

The expression (19) requires a matrix inversion, whereas the explicit expression
for R given in Theorem 1 requires one more inversion. Thus, we find it useful to
derive the following technical result.

Lemma 1. The expression (19) has the following form:
-1
EX, = 7(¥) [1 AW (A<°> + AV I)) ] 1-1.
Proof. Using (12) and denoting T = A + AW @G, transform (19):

1
EX, = (¥ [(T + A<1>)T—1] 1-1.

Equivalently,
EX, = 71T + AM)" 11— 1.

Finally, adding and substracting AW to the multiplier T, obtain the desired
statement. O

2 Model

We study a system with an energy-saving state referred below as the inactive
state which is common both in the IoT systems and in conventional battery-
powered devices such as the laptops/smartphones (some examples are technically
known as hibernate, sleep, suspend states etc.). In such a state, the system cannot



Energy Efficiency of a Single-Server with Inactive State 177

Fig. 1. State transition diagram of the Markov chain {X(t), Y (¢) }:>0.

serve the customers. Moreover, entering and exiting from the inactive state takes
some time during which the service is also not possible. As such, there is a decline
in the system performance which, however, may result in energy saving. Below
we study this tradeoff.

In what follows, to save the space we simultaneously describe the model and
give the necessary parameters of the distributions of random variables involved
which are in most cases exponential if not given otherwise explicitly. Let X (t)
be the number of customers in the system referred below as the level and Y (t) €
{1,2,3} =: Y be the phase of the system encoded as follows:

1 — the setup phase (exiting from the inactive phase) if X (¢) > 0 and inactive
phase if X (t) = 0;

2 — the working phase;

3 — the shutoff phase (entering the inactive phase).

The transitions (Fig. 1) are possible from a fixed phase (z,y) € E := Zy X ) to
the states

(z + 1,y) with rate A, due to a customer arrival;

(z — 1,y) with rate u, if z > 0 and y = 2, due to a departure of customer;
(x,2) with rate a, if > 0 and y = 1, due to a completion of the setup period;
(z,1) with rate 8, if y = 3, due to a completion of the shutoff phase and
entering inactive phase if x = 0 or entering the setup phase if x > 0, respec-
tively;

— (0, 3) with rate 7, if y =2 and 2 = 0.
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It should be noted that the phase 3 can be entered only when there are no
customers left in the system, and thus « is the parameter of an exponentially
distributed idle period before the beginning of a shutoff. Thus, hereinafter we
consider «y as the management parameter of the system and study the dependence
of system performance on 7 in a rigorous way.

Since the transitions of the system are only possible within the two adjacent
levels, the process {X(t),Y (¢)}+>0 is indeed a QBD with a generator matrix of
the form (1). Below we define the blocks of the generator @ explicitly. The fol-
lowing matrices define the transitions related to arrival/departure of a customer

A — M, AL = diag(pes2), (20)

whereas the matrix A gives the transition rates related to a phase change,

AO =AM _ AED 4 4, (21)
where
—aa 0
A=1]100 0 |. (22)
B 0-p

It is easy to see that A = ACD 4 A0 L 4 and, moreover, the vector «
solving (4) equals e = (0, 1,0) which gives a rather simple and expected stability

condition N
pi=—<L1l (23)

i
Since A(—1) = ¢r’, where the column vector ¢ = (0, u, 0) and the row vector 7/ =
(0,1,0) follow immediately, the matrix G = 1’ as given by (11) in Theorem 1.

Now using (12), the matrix R has the following explicit form:

ax p 0

R= 0 p 0. (24)
BA A
[(CESVIEESY R EBY

~To obtain the steady-state probability vector, we need to define the matrices
A" i j € {0,1}. The matrix A® defining the transitions of an idle system is
given as follows

00 0
A% =AW 40—y 4 |. (25)
g0 —p

It remains to note that the condition (13) holds good, and thus the steady-state
vector 7 can be found in explicit form using one of the approaches introduced in
Sect. 1.3. At the same time, the steady-state performance (number of customers
in the system) is given by Lemma 1.

Now we define the steady-state energy demand to state the optimization
problem. Assume that d® = (dgo),dgo),dgo)) is the (column vector of) energy
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demand at the standby/idle/“idle shutoft” state, while d = (dy,ds,ds) is the
energy demand in the setup/active/shutoff states, respectively. Note that the
“idle shutoff” state is the state of an empty system experiencing the shutoff
period preceding the standby state, whereas the “shutoff” corresponds to the
same state of a system with a non-empty queue. It is possible that some of these
quantities are identical, say, dgo) might be equal to ds, but we do not impose
such restrictions to stay general. Then the average steady-state energy demand
in the system, EE, equals

EE.(7) = wod® + (7)) — 70)d, (26)

where we stress the dependence on « in the notation. At that, the steady-state
performance is obtained by Lemma 1 and can also be denoted EX. (7).

Following the procedure, the expression for w(*) can be obtained in an
explicit form, denoting b = 3 + A,

" = C By(aB+ Ab)(1 - p), (27)
Wéy) =p+Claprb(1 - p), (28)
Wéy) = C layb(1 — p), (29)

where
C = ByAb+ a(yA2 + B2(y + ) + BAb).

Moreover, the vector o = (mg,1, To,2, To,3) can also be obtained explicitly,

0,1 = C_laﬁQ'y(l - ), (30)
r02 = O~ aBAN(1 — p). (31)
mo,3 = ClaByA(1 - p), (32)

and it is clear that p = wéy) — T2 is the busy probability. We note that work-

ing with symbolic expressions can be performed using Wolfram Cloud engine.
Finally, using (27)—(32), the expression (26) also becomes explicit.

Consider now the partial derivative which, after some algebra, can be
obtained as follows,

OEX.(v)

G = C2N2b(Ab(e® + B°) + aB(Bb + A?)) > 0.

Similarly a second derivative can be shown to be negative, which gives the opti-
mal point at v = 0 (that is, the server is never using the inactive phase), as
expected. Following [7], we name the case ¥ = 0 as NEVEROFF, while v = 0o
can be named INSTANTOFF.
Consider now the partial derivative
OEE.(7)

" =C B — d)Nb+ a(Bh(d - )

+BAAY) — d) + N2(dS” — ds)))(p — 1). (33)
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Interestingly, the derivative does not depend on the value dy. However, the sign
of the derivative depends on the exact values of the per-state energy demands.
Specifically, if
A > max(dy, ds, d\”, d),

then this partial derivative is always negative, which gives the monotone decrease
of the energy w.r.t. 7. Indeed, in such a case due to a high energy demand of
the idle regime, it is preferable to use the standby regime at earliest (that is,
INSTANTOFF would be efficient if the performance is not taken into account).
Then the optimal - is the one satisfying the steady-state performance constraints
expressed, say, in multiplicative form

EX.(7) < (1 +¢)EX.(0), (34)
for some small € > 0. If, on the contrast,
d) < min(dy, ds,d\”,d),

then this partial derivative is always positive, which gives the optimum at v =0
(in such a case, the EX, is also minimal), that is, NEVEROFF is the optimal
policy. Indeed, in such a configuration, the energy demand in idle regime is less
than the demand in standby regime, and thus there is no reason for switching
to standby. This case is, however, not realistic. The most realistic assumption
would be the following,

d? < d) < min(dy, ds, d"). (35)

It is clear from (33) that, since C' > 0 and p < 1, afyb > 0, the sign of the
partial derivative depends on the expression

O(N) 1= B(dy” — )N+ a(B(dy” — i) + BNy — i) + N (df” — ds)), (36)
which is a quadratic polynomial of A. Let us analyze this expression. Denote
d(\) = 2% + 1\ + ¢, where

co = a(dy” — ds) + B(dy” — dy),
e = B(dy) — i) +aB(dy” —dy”),
co = ap’(dy” — d”).

It follows from (35) that co < 0 and ¢; < 0, while ¢y > 0. Hence D := ¢§ —
4cocp > 0 and the polynomial ¢(A) has two roots. Then ¢(0) = ¢g > 0. Since
—c1/(2¢2) < 0, one of the two roots of ¢(A) is positive, that is, ¢(\*) = 0, where

—Cl—\/ﬁ

262

A* = (37)

As such, ¢(A) > 0 for A < A*, hence it follows from (33) that the partial deriva-
tive is negative. Thus, the mean steady-state energy demand decreases with ~y
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if the input rate A < \*, while it increases with v for A > A\*. This allows to
formulate a threshold policy which selects the INSTANTOFF or NEVEROFF
policy according to the input rate, or selects the v using the restriction (34)
accordingly. We also note that a decision should also take into account the sta-
bility condition (23). In the next section we illustrate this most interesting case
numerically.

3 Numerical Illustration

To extend the understanding of the findings of Sect.2, we numerically illus-
trate the model in the most interesting case (35), where the balance between
INSTANTOFF and NEVEROFF policies is attained depending on the input
rate A.

In the following experiment we configure the constant parameters «, 3,y in
such a way that \* < p and plot the graphs of EE.(y) and EX,(v) vs. v for
several values of A s.t. A < p. We (arbitrarily) fix the valuesa =1,=2,4=5
and select the demands of the system states according to a specification of a HP
ProBook 450 G8 Notebook PC [1] as follows (the numbers are in Watts):

d” =0.384,d") =2.184,d, = dy = ds = d”) = 4.164.

As such, (35) is satisfied and it follows from (37) that A* = 0.48732. Now we vary
A €{0.3,0.4,\*,0.6}, ceteris paribus, and depict the corresponding dependency
of EX.(y) on v in Fig.2; EE.(v) on v in Fig. 3, for v € [0, 5].

A brief look at the Figs. 2-3 confirms the monotone dependency of EX, () on
~ in steady state, and the change of convexity/concavity for A below and above

EX.(7)

0.7

0.6

0.5 — A=06
----- A® = 0.48732

oal [/ T e A=04
------- A=03

0.3

o2l

0.1

1 2 3 4 5 v

Fig. 2. Dependency of the mean number of customers in the system, EX.(v), given
in (19), on v € [0,5] for d\” = 0.384,d”) = 2.184,dy = dy = d3 = d\”) = 4.164,0 =
1,8=2,p=5and A € {0.3,0.4,0.48732,0.6}.
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E&e(v)
26 /”-
24
—— A=06
----- A® =0.48732
2.2 L e e A=04
S L e — —mmee A=03
3
\
2.0
1 2 3 4 5 v

Fig. 3. Dependency of the mean energy demand of the system in steady state, EE.(7),
given in (26), on v € [0,5] for d\”) = 0.384,d\") = 2.184,dy = dy = ds = d) = 4.164,
a=1,8=2,pup=>5and X € {0.3,0.4,0.48732,0.6}.

the value A*. As such, for relatively large input rate A > A* the most energy
efficient state that simultaneously offers the best performance is v = 0, i.e. the
NEVEROFF policy. For input rates smaller than \* the energy savings (i.e.
the decrease of mean energy demand compared to a system with NEVEROFF
policy) for v > 0 increase with decreasing input rate. The non-linear dependence
is also visible. It can be seen from (27)—(32) and (19), (26) that the dependency
of mean steady-state demand, as well as performance, is indeed hyperbolic on .

4 Conclusion

In this paper, a single-server system with energy saving inactive state, non-zero
setup, shutoff and hot reserve state was studied explicitly. The properties of the
model allowed to use the matrix-analytic method to obtain the steady-state per-
formance and average power demand, as well as study the energy-performance
tradeoff. It might be interesting to continue this research towards multiserver
systems, as well as study the system in more general case with non-exponential
distributions of the random sequences involved. However, we leave this oppor-
tunity for future research.
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Abstract. In the article the queuing system for non-ordinary Poisson
flows is described using the Lyapunov-Yablonsky’s cybernetic approach.
The system model is a multidimensional Markov chain. The analytical
properties of this Markov chain have been studied. In this work, a sim-
ulation model of the system has been studied. The transient process is
investigated and an algorithm for searching the moment of the end of the
transient process is proposed. By the numerical optimization, the quasi-
optimal parameters of the system were found according to the condition
of the minimum average waiting time for service.

Keywords: conflicting flows - cybernetic system - simulation -
quasi-optimal parameters

1 Introduction

This work is related to the important problem of creating algorithms in intelli-
gent transport systems that control conflicting flows [1] at the intersections of
highways in large cities. An adaptive algorithm for controlling this kind of flows
is proposed. The control algorithm takes into account not only the lengths of
the queues, but also the order in which requests arrive in the system. A mathe-
matical model of such a flow control system from non-homogeneous requests has
been built and studied.

Input flows are two independent conflicting non-ordinary Poisson flows 1Ty
and IT,. For tyg > 0, t > 0 and j = 1,2 the probability P;(¢, k) of k requests for
the time interval [to, to +t) along the flow IT; is obtamed of the following form

[k/2]
_ (\jtp)*—
At Ajtpj)~
Pi(t, k) = e Z af n, - 2n)
[k/2] min{k—2n,n} k—2n—m k—n—m—Ill
oAt m 1 (Ajtpy) Crnti—1
Za Zl b ZZ i = m)imih = —m = Y
m= =0

where «j, B3, v;, A; and p; = (1 + aj + a;8;/(1 — ;)" are distribution
parameters. The properties of such flows with non-homogeneous requests are
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studied in [2,3]. For input flow IT;, the mathematical expectation of the number
of requests at the moment of arrival is

2 1
Mj = (1 —|—2aj +ajﬁj(1 —; + (1 —’Yj)2))pj.

The adequacy of the representation of real flows using the distribution (1) is
shown on examples of tables from [4].

2 Mathematical Model of the Control System

2.1 Cybernetic Approach of Lyapunov—Yablonsky

The cybernetic approach of Lyapunov—Yablonsky is used to construct and
describe a mathematical model of a discrete system for adaptive control of con-
flict flows and service of non-homogeneous requests [5]. The application of this
approach to the system under study is described in detail in [1].

According to the cybernetic approach, we will consider the system at random
discrete times 7; or at intervals [7;,7;41) for ¢ = 0,1,... Here the value 79 is the
initial moment of time, and 7;, ¢ > 0 are the moments of changing the states
of the server. Let yo = (0,0), y1 = (1,0), y2 = (0,1) and X is an integer one-
dimensional non-negative lattice. Now let’s define the following random variables
and elements:

L. el ={r®W r@ .. r®} thestate of the service device in the interval
[Tis Tit1);

2. n;,; € X—the number of requests from the flow II; that entered the system
during the interval [, 741), and 1n; = (91,4, M2,4);

3. nj—a random vector taking the value yo, if no orders have been received in
the system at the i-th time step [7;, 7;41), and the value y;, if on the i-th step
the first request came (or requests) of the flow II;;

4. K;; € X—the number of requests of the flow II; in the system at the moment
Ti, and K = (K14, K2,i);

5. §;—the maximum possible number of requests from the flow II; that the
system can serve on the interval [r;,7;11), and & = (&1,5,62,5)-

Let us now define the sequence {7;;¢ > 0} moments of state change of the
server. For this purpose, we present the meaningful meaning of each state from
the set I". The I'37=2) state corresponds to the first stage of the thread’s service
period II;. The duration of servicing one request arriving from the queue is
equal to a constant value ,uj_ll Duration of stay in I"®7=2) is equal to T3;_2. The

I'3i=1) gtate corresponds to the second stage of the thread’s service period IT;.
The duration of servicing one request is equal to uj_Ql < #;11 The duration of stay
in this state is a random variable taking values in the set {kT5;_1;k = 1,n,},
where n; is the maximum number of renewals and T3;_; is the duration of
one renewal. Renewal occurs in 2 cases: 1) the length of the queue along the
flow II; is not less than the constant integer parameter K; > 0, 2) at the
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previous stage of renewals, there were requests that need to be serviced. The
I'9) state corresponds to the changeover mode for the IT ; flow, during which
only additional servicing of the requests of the II; flow is possible. The duration
of stay in this state is T3;. The I'(6+9) corresponds to the first stage of the service
period of the flow II;, in the case when an instant transition to the state @)
is possible. The duration of stay in I"(6*7) is a random variable. The maximum
time spent in this state is 73;_». In this state, the queue for the serviced flow
is empty, and the server monitors the order of arrival of requests. If during the
time T3;_o the first request of the flow II; arrived, then in 75;_o from the time
7; there will be a transition to the state "= If a request from another thread
arrived first, then an instant transition to the state I'®/). And, finally, if during
this time not a single request arrives for both flows, then the server will also
switch to the state in I"®7). Constants T}, k = 1, 6, it is advisable to choose in
the following form

Tsjo =1 +lsjo0us 1, Tsj1 =ls 10055, Tsj=1ls0;p55, (2)

where l3;_9 € X, l3;_1, l3; € {1,2,...} are parameters. The value 0 < §; < 1
denotes the part of service that a request needs to go through in order to start
serving the next request. In the case §; < 1 several requests can be served
simultaneously. The relations (2) means that a change in the state of the server
occurs at the moment when one of the requests is finished servicing. We get that
the maximum possible number of serviced requests is equal 14-13;_5 for the state
(3i=2) ig equal to klsj_; for the state I'Gi=Dand is equal to the integer part
1/6; for the state I'(37).

2.2 Recurrent Relations

The cybernetic approach allows us to obtain [1] the following theorem.

Theorem 1. For eachi=1,2,... and j,s=1,2, j # s,

Iy = U(Fiﬂfivng)
r@i=2 L0 =T & [(kji > 0) V (ke > K, )

(m; = J)]}v
V[ = rBD] &lkg; = 0)&[k;,: < K;]&n] = y;]} 3)
= P01 = PG v {1 = D] &) = y,]}
@i, {Fi = F(3j71)} V. {[Fz = F(6+j)] [n) # yﬂ}

re+) =169 &k = 01&[ks,i < K)&n = yol;

Rji+1 = Uj (Fiy RiyNiy fl)

. max{O, Rji + N — §j,i} ’Lf Fi S F\{F(B), F(G)}, (4)
g+ max{0, k= &} if I e {0, 1O}

Hereinafter in the article j, s = 1,2, j # s. Using the functional recurrent in
i relation (3), the adaptive algorithm for changing the states of the server can
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Fig. 1. The graph of the server state change algorithm.

be displayed by a graph in Fig. 1. Note that the state of the server at the next
step depends on the state at the previous step, the lengths of the queues, and
the order of arrival of requests.

The relations (3) and (4) allow us to consider and study the limiting proper-
ties of the vector sequence {(I5,k;);i = 0,1,...}, which is a probabilistic model
of the considered system of adaptive control of conflicting flows and service of
heterogeneous requests [1]. Here are some of the theorems on the this Markov
sequence {([;,k;);i=0,1,...}.

Theorem 2. If there is a limiting distribution of the vector Markov sequence
{(I3,k);3 > 0}, then
01 My O30 M.
My O2AeMy

H1,2 H2,2

1.

Corollary from the Theorem 2 is
Hj)\ij < Wj.2, j=12.
We introduce the values

T=T+nmTs+ T35+ Ty +nTs + Tg,
Lj = l3j72 + ’njl3j71 + lgj.

Theorem 3. For the existence of the limit distribution of the vector Markov
sequence {(I;, k;);i > 0} it suffices to satisfy inequalities
NM;T —L; <0, j=1,2.

Theorem 4. If there is a limiting distribution of the vector Markov sequence
{(I%, ki);% > 0}, then for some j = 1,2

)\J‘MjT — Lj < 0.
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3 Numerical System Investigation

3.1 System Parameters

Unfortunately, it is not possible to analytically find such important characteris-
tics as the average sojourn time of an arbitrary request in the system and the
average length of queues across flows.

To solve the questions posed, a simulation model of the adaptive control sys-
tem for conflicting flows of non-homogeneous requests [7] has been implemented
in the C++ program. The simulation model allows not only to study the control
process of servicing of non-homogeneous requests, but also to obtain realizations
of the vector sequence {(I3, k;);¢ > 0}. Each implementation is specified using
the following inputs:

1. Input flows parameters are o, 35, V5, Aj;
2. System parameters are 11, To, ..., D¢, w1, ty2, 05, Kj, nj;
3. Initial values I'("), 21, x5 of random elements I, K1,0, K2,0-

In contrast to the cybernetic approach, simulation allows observing the pro-
cesses in the system at each moment of time, and not only at specially selected
moments of the discrete time scale. Therefore, with the help of simulation mod-
eling, it is possible to build a model closer to the real system. The disadvantages
of simulation is the impossibility of obtaining new analytical results and the
results obtained are approximate.

In the cybernetic approach, the input pole is given by the input and satu-
ration flows. In the program, the input flows are generated before the start of
the simulation of the system operation. In this case, the intervals between the
groups of requests are modeled using the inverse function method, and the num-
ber of requests in the group is modeled using the method of modeling discrete
distributions. Saturation flows are not explicitly entered in the program. The
description of the congestion flows is specified using the parameters p; 1, f;,2
and 60;, through which the duration of servicing requests and the moments of
release of the server are determined.

External memory describes the state of the queues in the system. At the same
time, the moments of arrival and the moments of the beginning of servicing of
requests are stored in the implementation of queues. These points are necessary
to calculate the numerical characteristics of the functioning of the system. The
internal memory is determined by the state of the server The program for deter-
mining the current state of the server also observes the current simulation time
and the point in time when the server becomes free to service the next request.
Modeling the operation of the studied adaptive algorithm is performed step by
step between the moments of changing the states of the server. During the sim-
ulation of one step, the moments of arrival of requests in the system and the
moments of release of the server are processed. If service is not possible during
the arrival of a request, then the request is added to the queue; otherwise, it is
sent for service. When the server is released, the first request from the queue is
sent for servicing if the queue is not empty.
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3.2 Transient Process and Stationary Mode

First of all, it is necessary to study the characteristics of the functioning of
the system in a stationary mode. Therefore, an important task is to determine
the time to reach a stationary regime and to study the transient process. In
simulation, we will consider two implementations of the Cox—Lewis adaptive
flow control process with two types of initial conditions:

1. Zero I'" = F(l), 1 =0, 2o = 0;
2. Shifted I'™) = 'V 2y = K| > Ky, 2o = K5 > K.

The same implementation of input flows are used. Let’s define the completion
moment of the transient process as follows. Let us denote by 7?(l) and W;T(l)
the time spent in the system by the request with the number [ = 1, 2, ... of
the flow II;, that entered the system after the beginning of the simulation, with
zero initial conditions and with shifted initial conditions of the second type. The
values

R TOEED SIS RS SEAT) )
=1 =1

determine the sample mean times of sojourn in the system of the first n requests
of the flow II; under the initial conditions of the first and, accordingly, of the
second type. If the condition

7 (n) =37 (n)| < 577 (n), (6)

is satisfied for the proximity parameter § > 0, then at the meaningful level we
can assume that the initial conditions have ceased to affect the sample mean
residence time for the requests of the flow II;. If a stationary regime exists in
the system, the value n;(d) determines the number of the request under which
the condition (6) is first fulfilled d times in a row, where d—is a constant natu-
ral number. Let ¢;—be the moment of completion of servicing the request with
the number n;(d) of the flow II; and t* = max(t1,t2). We will assume that ¢*
determines the moment of the end of the transient process in the system for a
given implementation of input flows. Note that the simulation model makes it
possible to find the dependence of the duration of the transient process on the
parameters § and d. Different realizations of input flows correspond to different
values of estimates for the duration of the system’s transient process. Let’s con-
sider [ independent simulations. The estimate 7 of the average sojourn time for
the requests of the flow II; is calculated by the formula

Value 79 ,;(N;) is mean times from (5) for i-th simulation. request number N;
arrives after time ¢ for i-th simulation. The estimate 7* of the average sojourn
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time of an arbitrary request will be calculated using the formula for the weighted
average
MM+ A Movs
N A My + Ao My

Next, we determine the sample average queue length for the flow II;. Let
the imitation of the system operation lasted for the time ¢. At the same time,

—*

along the flow II;, a queue of length £ =0, 1, ... was observed in tgk) units of
time. Then the sample average length of the queue ¥} along the flow II; will be
calculated by the following formula

—%

o~ | =

i ktl).
k=0

The sample average length of the queue ®* for the entire system is defined as
the arithmetic mean of the sample lengths of all queues

1
' = - (R] +FRy).
2
Sample average residence times and sample average queue lengths can serve as
estimates for the respective characteristics.

3.3 Simulation Example

Let’s give an example of the results of simulation modeling with the following
set of parameters:

1. Input flow parameters are a; = 0.8, 1 = 0.7, 77 = 0.5, A\; = 0.6, ay = 0.6,
ﬂg =0.5, 12 =0.2, Ao = 0.3;

2. System parameters are 177 = 1,15 =2, T3 =1, Ty =1, T5 = 3, Ts = 1,
Hi1 = 0.5, H2,1 = 1, Hi12 = 0.3, H22 = 0.6, 0, = 1, 65 = 0.5, K; = 10,
Kg = 10, ny = 10, Nng = 10;

3. Initial values of random elements Iy, k1,0, k2,0 are ro = F(l), 1 = 0,
To = 0.

Figure2 and 3 show the dynamics of the queue length for the flow II; and
the dynamics of the average waiting time for servicing the requests of this flow,
provided that the stationary mode exists. The abscissa shows the number of the
algorithm step, and the ordinate shows the tracked characteristic. In this case,
the queues have steady oscillations that do not depend on the initial conditions.
The average waiting time for servicing differs significantly for different initial
conditions at the start of the simulation; later on, the characteristics converge.

Let’s increase the intensity of the input flows Ay = 0,8 and Ay = 0,7. In
this case, there is no stationary mode in the system. Figure4 and 5 show the
dynamics of the queue length for the flow II; and the dynamics of the average
waiting time for servicing the requests of this flow in the absence of a stationary
mode in the system. Similarly, the abscissa shows the number of the algorithm
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Fig. 2. Dynamics of the queue length along the flow II; under the condition of the
existence of a stationary mode.
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Fig. 3. Dynamics of the average waiting time for servicing requests of the flow IT;
under the condition of the existence of a stationary regime.

step, and the ordinate shows the tracked characteristic. In the absence of a
stationary mode, the queues tend to grow indefinitely with an increase in the
duration of the simulation. The average service wait time also increases with
long simulations.

Let us now investigate the dependence of the duration of the transient process
on the parameters d and § in the case of a stationary regime in the system. With
a fixed value of § = 0.05, we obtain the dependence on d of the duration of
the transient process, shown in Fig. 6. The abscissa is the parameter d, and the
ordinate is the number of the request on which the condition for reaching the
stationary was fulfilled. The blue graph corresponds to the flow IT;, the orange
one—to the flow IT;. With a fixed value of d = 10, we obtain the dependence of
the duration of the transient process on 9, shown in Fig. 7. From the graphs in
Fig. 6 and 7 we obtain that with an increase in the d parameter, the duration of
the transient process will be longer. Also, with an increase in the § parameter,
an inverse relationship is observed.
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Fig. 4. Dynamics of the queue length along the flow II; in the absence of a stationary
mode.
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Fig. 5. Dynamics of the average waiting time for servicing requests of the flow IT; in
the absence of a stationary mode.
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Fig. 6. Dependence of the duration of the transient process on the parameter d.
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Fig. 7. Dependence of the duration of the transient process on the parameter §.

With parameters 1-3 of the control system, we obtain the following estimates
of the average waiting time for servicing

¥ =7.1684, 75 =12.8481, 7" = 8.6625,
and estimates for the average queue lengths

FP=10.4691, %, =6.7333, &* =8.6012.

3.4 Search for Quasi-Optimal System Parameters

Below is an example of searching for quasi-optimal parameter values. For the
system under study, the duration of the first stage of servicing cannot be arbi-
trarily changed, since it is determined by the properties of the input flow. Also,
the duration of the changeover cannot be arbitrarily changed due to the conflict-
ing flows. Insufficient changeover times can lead to accidents. Therefore, we fix
the values T3 = 1,73 =1, Ty = 1 and T = 1. Thus, the following parameters are
available for optimization T, T, n1, na, K1, Ko. Optimization is performed step
by step by parameter pairs (T, 7T5), (n1,n2) and (K7, K2) by means of reduced
search. After searching for the optimal parameters for one of the pairs with
fixed values of the remaining parameters, the search for the optimal parameters
for the other pair is performed. The algorithm for searching for quasi-optimal
parameters ends when the next optimization fails to improve the characteristics
of the system. Using the reduced search algorithm, the following quasi-optimal
parameters were obtained

The following estimates of average waiting time for servicing by flows I1;, IT> and,
accordingly, an estimate of the average waiting time for servicing an arbitrary
request correspond to these quasi-optimal parameters:

i =247241, 73 =5.13818, ~* = 3.17367.
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The Table 1 shows the steps of the optimization algorithm.

Table 1. Search for quasi-optimal parameters.

Ty | Ts |n1 | ne | K1 | Ko | 7] 5 F*

2 |3 |10]10 |10 |10 |7.91365|12.9163 | 9.22965
9 |6 [10/10 10 |10 |5.10318 |11.3382 | 6.74334
9 |6 |6 |9 |10 |10 |5.06648 | 11.4252 | 6.73919
9 |6 |6 |9 |3 |6 [3.79753|6.81921|4.59241
4 12 |6 |9 |3 |6 |3.09255]5.72206  3.78427
4 12 |8 |9 |3 |6 |3.01794|5.58343 | 3.69281
4 12 8 |9 |1 |4 |2.81271]4.77639 | 3.32928
5 |1 |8 |9 |1 |4 |2.48334|5.293213.2225

5 |1 |3 |10/1 |4 |2.47241|5.13818|3.17367
5 1 |3 |10 |1 |8 |2.48873|5.21597 | 3.20615

The values Ty, = 2, T5 = 3, ny = 10, no = 10, K; = 10, K5 = 10 in the second
row of the table correspond to the initial parameters of the algorithm. At the
first step of the algorithm, the parameters n; = 10, no = 10, K; = 10, K = 10
were fixed. The pair of parameters (T3, T5) was optimized. The characteristics
of the system were calculated for T, =1, 2, ..., 10 and 75 =1, 2, ..., 10. The
smallest value of the estimate 7* corresponds to 75 = 9 and 75 = 6. The found
parameters, which were optimized in the first step, are highlighted in bold in the
third line. At the second step, the parameters To = 9, T5 = 6, K3 = 10, K2 = 10
were fixed and a pair of parameters (n1,ng) were optimized. Values ny = 5, 6,
..., 1band ny =5, 6, ..., 15 have been tested. The values ny = 6 and n, = 9
turned out to be optimal of the average waiting time for servicing an arbitrary
request. These parameters are marked in bold in the fourth line of the table.
The next steps are performed in a similar way for parameter pairs. At the last
two steps, it was not possible to reduce the average waiting time for servicing
an arbitrary request. Therefore, the quasi-optimal parameters are given in the
penultimate line of the table.

4 Conclusion

The results of an analytical and numerical study of the Cox-Lewis flow control
system from non-homogeneous requests were presents. The mathematical model
of the control system was built using the cybernetic approach and the apparatus
of the queuing theory. The algorithm for determining the completion moment of
the transient process was described. Numerical optimization was carried out on
the basis of a software-implemented simulation model.
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Abstract. In this paper, there is a approach to detect the results of
elements interaction in multi-channel queuing system with large load
and small queue. This method is extended to statistical estimates of
characteristics of non-uniform Poisson flow, describing distribution of
animals in some areas, a resolution of the most powerful decision rule
for constructing of technical systems “friend — foe”. Such approach gives
possibility to expand applications area and to simplify using methods of
research. These methods consists of structural analysis and construction
of upper bounds of objective functions. It permits to shorten numerical
calculations and to obtain explicit results.

Keywords: Multi-server queuing system - Almost deterministic
one-server queuing system + Most powerful decision rule

1 RQ-Queuing Systems with a Large Number of Servers

Consider an RQ-system, i.e., a queuing system with orbit in which customer,
which has not possibility to be served is directed to the orbit. When some server
is released, the customer may be directed to the server in accordance with some
protocol [1-3]. RQ-systems attract attention of specialists in queuing theory last
years (see, for example, materials of Conference ITMM 2018 in Tomsk and 12th
International Workshop on Retrial Queues and Related Topics (WRQ 2018).
But calculations of RQ-systems with large number of servers are sufficiently
complicated. To decrease a complexity of these calculations we use the theorem
on the asymptotic behaviour of an n-server queuing system for n — oco. In
this theorem, it is proved that at T > 0 for n — oo, the probability P, (T)
of customers direction to the orbit during time interval [0, 7] tends to zero. So
used theorem gives possibility to change objective functions of multi-channel
RQ-system from its limit distribution to probability of customers direction to
the orbit during time interval T.

1.1 Preliminaries

Consider n - server queuing systems with the parameter n — co. Assume that
an intensity of input flow is proportional to n and e,(¢) is a number of input
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flow customers arriving until the moment ¢, e, (0) = 0. Suppose that g, (t) is a
number of working servers at the moment ¢, ¢, (0) = 0, 7; is the service time of j-
th arriving customer and 7;, j > 1, is a sequence of independent and identically
distributed random variables (s.i.i.d.r.v.’s) with the distribution function (d.f.)
F(t) (F =1-F). Here F(t) has continuous density f(t) < f, where 0 < f < oco.
This section is based on [4, Chapter II, § 1, Theorem 1]

Theorem 1. Assume that the following conditions are true.

(1) For some a > 0 we have Ee,(t) = nat, t > 0.
(2) There is B(n) such that A(n) = max(n'/?, B(n)) satisfies the relation for

T B i
Am) P20 apy K

and max(B,K) =1).

n
>0, —— — o0.

Aln) = AW

en(t) — Fen(t)

C-converges to the centred Gaus-
B(n)

(8) Random processes xy(t) =
sian process z(t), when n — oo.

(4) Random process ((t) = /t F(t—u)dz(u)+ KO(t), 0 <t < T, where O(t) is
centred Gaussian pmcessoindependent with z(t), and its covariance function
R(t,t+u) = /t F(v+u)F(v)adv and satisfies the formula P( sup ((t) >
L)y—0, L— ooo e

(5) If p = aET; < 1, then for any T > 0 we have P (OiltlEan(t) > n) —

0, n — oo.

Designate F; the space of deterministic functions on the segment [0,7] with
uniform metric p and denote F the set of bounded functional‘s f defined on
F1 and continuous in the metric p : if 2 = 2(t), 21 = 21(t), 22 = 22(t),... € F1
and p(z,z,) — 0, n — oo, then f(z,) — f(2), n — oo. Say that the sequence
of random processes z, = z,(t), n > 1, C - converges to the random process
z = z(t) if for any functional f € F we have that Ef(z,) — Ef(z), n — oo.

1.2 Main Results

In this subsection we used the following obvious inequality for RQ-systems

PT)< P ( sup gn(t) > n> ,n> 1

0<t<T

Then from Theorem 1 it is possible to prove the relation

P(Sup qn(t)zn>—>o,n—>oo (1)

0<t<T

for n-channel RQ-systems with different input flows and so P,(T) — 0, n — co..
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Deterministic Input Flow of Customer Groups. Suppose that at the
moments 1,2,..., groups of customers of the size n; > 0,72 > 0,... arrive
in the n-channel RQ system. Here 11,13, ... are i.i.d.r.v.‘'s with integer values,

En = a, Var 1 < co. Define deterministic input flow as follows by the equality
[nt+]
en(t) = Z Nk, t > 0, where ¢ is independent of ny, & > 1, 75, j > 1, r.v.
k=1
with uniform distribution on [0, 1] and [g] is the integer part of the real number
g. For the n-channel RQ system with arbitrary protocol of customers direction
to servers after their being in orbit the relation (1) is proved in [5].

Alternating Input Flow. This flow is defined by ON and OFF periods alter-
nating with lengths X > 0, X; > 0,X5 >0,...,and Y5 >0, Y7 >0, Y5 >
0,... respectively. In [6,7] a continuous random flow with ON and OFF period
is defined. Denote Fi(t) = P(X; < t), Fa(t) = P(Y1 < t), t > 0, and suppose
that
Fi(t) =t Ly(t), Fo(t) =t"*2Ly(t), 1 < a1 < ap < 2,

with L1(t) — I3 > 0, ¢ — 00, and Lz (t) - slowly varying function and b(¢) is the
inverse 1/F(t): b(1/F1(t)) =t.

Introduce i.r.v.'s B, X, Y, and r.v. Yy independent of X,,, Y,,, n > 1, so
that P(B=1) = % P(B=0) = % p=pu1 + oy i = EX1, ps = EYA,

P(X<z) = " /Ox Fi(s)ds, P(Y<z) = i /OJC Fo(s)ds.

Then random sequence (X, Yz), k > 0 generates the ON-OFF process W (t) as
follows

W(t) = Blox)(t) + > _ i, 14 x000) (), t > 0 where Ty = B(X +Yp) + (1 —

n=0

B)Y, T, =To+ Y (Xi+Y;), n>1and Is(t) = 1if t € A and Ia(t) = 0 else.
i=1
The process W (t) satisfies equalities W (t) = 1 if ¢ is in ON-period, W (¢t) = 0 if
t is in off-period, and stationary and EW (t) = pu1/p = .
¢
Denote A(t) = / W (s)ds, then EA(t) = at, t > 0. Let n = n(N) = NM(N),

0
M = M(N) = [N7], v > 0, and assume that random functions A,,(t), m =

> Ap(Nt) + 4

m=1

defined alternating input fLow the formula (1) is proved in [5].

1,..., M, are independent copies of A(t), e,(t) = For so

Erlang Input Flow. Assume that E,(t) is Poisson flow intensity na and
E,(t . . .
en(t) = [() + w] , t > 0, with random variable 1 independent of ng, k >
r
1, 75, j > 1. and integer 7. In [8] it is proved the formula (1) in condition

abr; < 1.
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Consequently if the objective function of multi-channel RQ-system is P, (T),
then it is possible to replace complicated calculations by known asymptotic The-
orem 1.

2 Alternative Designs of High Load Queuing Systems
with Small Queue

It is well known that queuing systems in high-load mode have long queues. A
large number of publications are devoted to the study of asymptotic regimes in
such systems (see, for example, [9]. Therefore, such modes of operation of these
systems, that do not have large queues, are of great interest. These modes are
convenient from an economic point of view, since the service device is almost
fully loaded. On the other hand, this mode is also convenient for users which
waiting times become small.

Multi-channel Queuing System M |M|n|oco. Consider n — channel system
with a Poisson input flow of intensity nA and the service time has an exponen-
tial distribution 1—exp(—p). Such a system can be considered as an aggregation
(Fig. 1, right) of n single-channel systems M |M|1|oo (Fig. 1, left) with Poisson
input flows of A intensity and a similar distribution of service times. Here, aggre-
gation of n single-channel systems is understood as combining their input flows
and combining service channels into a multi-channel system. Denote p = A/
load factor of the system M|M|n|oo and put A, the stationary average waiting
time, B,, the stationary average queue length.

S5)— —®—

n An .

Ho— —@

Fig. 1. Transformation of n single-channel systems M |M|1|co into aggregated n - chan-
nel system M|M |n|co.

NV

The following are obtained in [10].

Theorem 2. 1) If p < 1, then for some ¢ < oo, g < 1 the relation holds
A <cq*,n>1,2)Ifp=1—-n"% 0< a < oo, then for n — o0

0, ax<l
’ o7 0, a<1/2,
An" 1/Maa_la BnH{OO,Oé21/2

oo, a>1.
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This theorem develops and specifies the results of [11,12] in the direction of
determining the changed structure of the queuing system.

It is clear that an alternative to the described mode of operation of a queuing
system with a large load and a small queue can serve as an almost deterministic
queuing system. Such a system operates on a specific schedule and its mainte-
nance processes are almost cyclical [13]. The question arises as how to randomly
perturb cyclic processes in order to keep a small queue in them along with a large
load. Obviously, such perturbations will strongly depend on the distributions of
random fluctuations.

Almost Deterministic Single-Channel Queuing System. Despite the
importance of Theorem 2, such a queuing system design assumes its large size,
which is not always convenient from an application point of view. It is clear that
an alternative to the described mode of operation of a queuing system with a
large load and a small queue can serve as an almost deterministic one channel
queuing system (see, for example [13]).

Let’s describe the single-channel queuing system G|G|1|oco by Lindley chain
of waiting times for the service: w;11 = max(0,w; + 7n; — 7;). Here 7; is the
interval between the arrival of ¢ - th and (¢ 4+ 1) - th customers, M7; = a, and »;
— service time of 7 - th customer, Mn; = b, 0 < a — b = . Assume that random
deviations from the distributions means are reduced as follows:

n; =b+e*(n; —b), 77 =a+e%(1; —a)
and introduce Markov chain w§, 7 > 0, w§ = 0, describing almost deterministic
single-channel queuing system

wi, = max(0,w; + 0§ —77) = max(0,w§ + £%6;).

Here 6g, 01, ..., is a sequence of independent and identically distributed random
variables, §; = n; — 7, + ¢, Md; = 0. In high load mode, when the load factor

p = — is close to one, the positive parameter € = (1 — p)a is small: € < 1. Value

o> 8 characterizes the rate of decreasing random perturbations with increasing
loading.

Due to known results for a single-channel queuing system G|G|1|oco Markov
chain w§, ¢ > 0 has given for any €, : 0 < ¢, 0 < « the stationary distribution
lim; oo P{ws > y} = P{Wa(e) > y}, y > 0. Using [15-25] it is possible to
formulate following statements.

Statement 1. Let for some positive constants (3, ¢ < oo the inequality
M]|6,?*# < c takes place. Then for any y > 0 we have P{eWy(e) > y} —
e 2/d ¢ 0.

Statement 2. If for some fixed v, 1 < v < 2; h, > 0, the following rela-
tions are true when y — oo P(m > y) ~ hyy™"; P(n > y) = o(P(m > y),
or P(mm > y) ~ hyy™"; P(m > y) = o(P(r1 > y). Then there is a tail
R(y) of non - degenerate distribution function and A, () ~ ce/¥=Y ¢ — 0,
such that for any y > 0 we have P{A,(e)Wy(e)/b > y} — R(y), € — 0 or
P{A,(e)Wo(e)/a >y} — R(y), € — 0.
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Using Statement 1 it is possible to prove Theorem 3.

Theorem 3. Assume that in a single-channel queuing system G|G|1|oo con-
ditions of Statement 1 are true. Then the following limit relations are valid:
Wa(e) = (convergence in distribution) + oo, 0 < o < 1/2; Wyo(e) = 0, 1/2 <
a; Wole)=n, P{n>y}=e 2/ a=1/2.

Using Statement 2 it is possible to prove Theorem 4.

Theorem 4. Assume that in a single-channel queuing system G|G|l|oco con-
ditions of Statement 2 are true. Then the following limit relations are valid:
Wy =400, 0<a<l/y; Wou=0,1/v<a; e—0.

The most simple variant of these theorems proves are based on following well
known and elementary statement [14, Exercises 15-19 on pages 184-185].

Statement 3. Suppose that X,, n > 1, is a sequence of positive real-valued
random variables that converges in distribution to a non degenerate limit random
variable X as n — oo. Then if a,, are positive real numbers with a,, — oo, then
it follows that a, X, = oo and X,,/a, = 0 as n — oo.

Thus, a parameter «, characterizing either the rate of convergence of the load
factor to one in the system M|M|n|oco, or a random fluctuation in the system
G|G|1|oo, allows to detect the convergence of the stationary waiting time to
either zero or infinity.

3 Related Statistical Problems

In this section statistical estimates of characteristics of non-uniform Poisson flow,
describing distribution of animals in some areas and resolution of the most pow-
erful decision rule for constructing of technical systems discriminating “friend
— foe“. Main idea of this consideration is in a choice of convenient objective
functions for next estimates. Such objective functions may be as relative errors
of mean number of points of Poisson flow in some area so a calculation of the
most powerful decision rule in a construction of technical system for discrimi-
nating “friend — foe“. This results are based on the classification of statistical
problems proposed in the monographs [32,33] and on the ideas of testing statis-
tical hypotheses in the processing of physical and physico-technical observations
[34,35].

Estimates of the Mean Number of Poisson Flow Points in Some Area.
In geographical and geological investigations (see, for example [27]) there is a
problem to estimate mean number of points in some area and to evaluate its
quality. Let the study area is divided into m cells, and the number of points in
the cell kis ni, kK = 1,...,m. As we deal with Poisson flow then the random

variables nq,...,n,, are independent with Poisson distributions which have the
m

parameters Aq,...,A,. Consequently the random variable N = an has a
k=1

Poisson distribution with the parameter A = Z A andso EN = A, VarN = A.
k=1
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Consider now random variable N - A and calculate its variance
N 1 N 1
Varj =T Consequently the following relation is true VWZ = \ﬁ

N
From Chebyshev-Bienome inequality we have P <‘A - 1‘ > A7 3) <AV

0, A — oco. Therefore, the relative error of this estimate, constructed for non
uniform Poisson flow decreases with the growth of total A.

Resolution of the Most Powerful Decision Rule. In the papers [28-31],
a neural network converter ‘Biometrics access code‘is built on the basis of an
electroencephalogram. The main indicator of the effectiveness of this converter
is the probability of errors of the first a; kind when the probability of errors of
the second kind «s is chosen by experts to distinguish between simple hypotheses
“friend - foe”. This distinction of hypotheses is made using the most powerful
decision rule. A special role here is played by a set of sample characteristics,
with the help of which these hypotheses are distinguished.

In this paper, we introduce a characteristic A of the resolution of the most
powerful decision rule. The value of A is determined by the probability as, by
the sample size n from independent and equally normally distributed random
variables with variance o? and the difference of the average a; — as of these
random variables when performing alternative hypotheses. It is established that

eX72
p(A))

AV21
depends on the resolution A of the most powerful solving rule.

This work is based on the classification of statistical problems proposed in the
monographs [32,33], the Neumann-Pearson lemma and the well-known rule for
finding the most powerful solving rule by the Bayesian solving rule. An important
role here is played by the idea of testing statistical hypotheses when processing
physical and physico-technical observations [34,35]. The main characteris