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Abstract. Deep CNNs have recently led to new standards in all fields
of computer vision with specialized architectures for most challenges,
including Video Object Segmentation and Pose Tracking. We extend
Space-Time Memory Networks for the simultaneous detection of multiple
object parts. This enables the detection of human body parts for multiple
persons in videos. Results in terms of F1-score are satisfactory (a score
of 47.6 with the best configuration evaluated on PoseTrack18 datatset)
and encouraging for follow-up work.
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1 Introduction

Autonomous transportation systems, in particular autonomous cars and trains,
have recently received much interest. To reach a high level grade of automation,
many specific challenges need to be addressed. For autonomous trains, without
any staff on board, both surveillance and security have to be performed automat-
ically with cameras coupled with adequate computer vision algorithms. In this
context, pose detection and tracking is a basic requirement of camera surveil-
lance, that many other applications can use as input (action recognition, people
counting, free seat detection, etc.). DeepPose [17] was the first Deep Neural Net-
work (DNN) architecture for pose estimation, formulating it as a joint regression
problem. Many works have extended it in several directions [2,6,18]. Rapidly, the
challenging case of multi-person pose estimation has emerged where the number
of persons to have their pose estimated is unknown. This is performed with either
top-down or bottom-up approaches [8]. The former detects humans at a large
scale and locates skeleton key-points at a smaller scale. The latter detects skele-
ton key-points first and skeletons parts are built from them. Bottom-up methods
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have better scaling properties which makes them more suitable for surveillance
tasks. Recently, Cao et al. have proposed [4] a bottom-up multi-stage refinement
DNN trained with intermediate supervision. Their approach produces two out-
puts: body key-point parts’ confidence maps and Part Affinity Fields (PAFs)
that are vector fields indicating both the confidence and direction of a limb that
links two body key-point parts. This approach has been extended in [10] with
the use of Part Intensity Fields (PIFs). All these advances were made possible
with the advent of new large scale datasets and benchmarks such as MC-COCO
and PoseTrack [1,11]. Once the humans’ pose skeletons have been extracted,
they have to be tracked along video frames. As for pose estimation, they can be
divided into top-down [7,13,19] and bottom-up [5,9,16] approaches. Top-down
approaches use a person detector to obtain bounding boxes in which poses are
estimated, and then track poses across time. Bottom-up approaches produce
confidence maps to detect each body parts, and then group the key-points in
frames (people skeletons) and across time. Raaj et al. have proposed an exten-
sion of PAFs with a temporal dimension, called Spatio-Temporal Affinity Fields
(STAF) [16], by performing pose tracking and key-point matching across frames.
Doering et al. [5] followed a similar direction. They built a siamese network
encoding two consecutive frames to obtain belief maps, PAFs and Temporal
Flow Fields (TFF) to track key-points among frames. Jin et al. [9] used a Spa-
tialNet to produce key-point heat maps and key-points embeddings to group the
proposals together into human pose proposals, and then used a TemporalNet to
perform temporal grouping. These methods use frame-to-frame matching and
do not maintain a long term memory of previous frames and estimated poses,
even if this could be beneficial for performance during long surveillance tasks.
At the same time, object tracking algorithms that incorporate a memory have
recently been proposed within the domain of Video Object Segmentation (VOS)
[15]. VOS takes a segmentation map of an object for the first frame of a video
and aims at performing the segmentation for the other frames. The Space-Time
Memory Networks (STM) [14] approach has recently made a breakthrough in
VOS. Using the flexible memory networks system [12], it can make use of an
arbitrary number of past images and predict the object segmentation in the
current frame, only being limited by available memory. Pre-trained on synthetic
sequences created from multiple image datasets, and then fine-tuned on video
datasets such as Youtube-VOS [20] and DAVIS-2017 [15], it achieved state of
the art performance when considering both quality and speed of tracking. How-
ever, maintaining a long term memory of skeleton parts along the frames of a
video has still not been investigated even if this could be beneficial for perfor-
mance during long surveillance tasks. In this paper, we investigate a new system
for online multi-person skeleton body part detection in videos by adapting the
STM architecture [14] for long-term tracking. In contrast to existing methods,
our approach uses a memory of previous frames and estimated skeletons parts.
This system could be integrated within most pose tracking systems by replacing
its skeleton body part detection.

The paper is organized as follows. Section 2 presents our adapted STM archi-
tecture and dedicated training strategy. Section 3 presents experiments that
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establish the ability of STM to detect skeleton body parts and provides results
with our proposed network architecture. Last section concludes.

2 STM Multi-person Skeleton Body Part Detection

2.1 STM Architecture

The original STM architecture is one of the fastest running algorithms when it
comes to single object VOS. It is also suited for the VOS task on the DAVIS-
2017 dataset, in which the videos contain at most a few objects to track. It
is illustrated in Fig. 1 and described in detail in [14]. Nevertheless, the STM
architecture is not built to scale up easily to any number of objects, as each
object has to be processed independently with a dedicated STM. This causes
slower processing times and larger memory requirements when the number of
objects to track increases. In this paper, we propose an adaptation of STM for
detecting skeleton key-points and edges.

Fig. 1. Original STM architecture.

2.2 STM-skeletons Architecture

In order to adapt the STM architecture for multi-person skeleton body part detec-
tion, we have made several modifications to the original STM architecture so that
several skeletons can be processed within a single inference. First, to be efficient,
the proposed architecture must be able to produce several outputs in contrast to
STM that produces only one segmentation map. Second, as we want to detect and
track skeletons parts, we have to represent them by specific channels. This new
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Fig. 2. Our proposed STM-skeletons architecture.

architecture is illustrated in Fig. 2. The first modifications do concern the encoder
inputs. The classical STM takes an RGB frame and its segmentation probability
map as concatenated inputs. The proposed architecture, called STM-skeletons,
represents skeletons by both their key-points and the edges joining two key-points.
The skeleton key-points and edges are each represented in dedicated confidence
maps: one per skeleton key-point for all persons and one per skeleton edge for all
persons. The value provides the belief that a skeleton key-point or edge of one per-
son (among all those that appear) is present at this pixel. Therefore, we consider
four different kinds of inputs that are concatenated:

– The input RGB frame (as in STM),
– A segmentation probability map for all the persons that appear in the frame

(it was for only one person in the original STM),
– NK confidence maps that represent the probability of occurence of a given

skeleton key-point for all the persons,
– NE confidence maps that represent the probability of occurence of a given

skeleton edge for all the persons.

The confidence maps for the edges do not contain any orientation information
as in PAFs [4] and are more likely to be called as Part Affinity Maps (PAMs). With
such a modification, the encoder can deal with the simultaneous encoding of the
skeleton key-points and edges of several persons. This makes the STM-skeletons
model more suitable for tracking multi-person key-points and edges. As for the
original STM, for the memory encoder, the input channels can either be given from
a ground-truth or estimated from previous predictions. The memory encoder has
its first layer of the backbone ResNet modified to be adapted to the new dimension-
ality of the input. For the decoder, a similar configuration to STM is kept, except
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for the last layer that now produces several prediction maps instead of a single one
(that was a segmentation map). Therefore, the last layer produces:s

– A segmentation probability map for all the persons that appear in the frame,
– NK skeleton key-point confidence maps,
– NE skeleton edge confidence maps.

This new architecture slightly sacrifices the generality of the trained model.
Indeed, each output channel is specialized for one particular skeleton key-point
or edge, and cannot be reused to track another person’ key-points. However, this
change drastically reduces the memory usage and the computation time when
detecting and tracking many persons’ key-points, which makes it necessary for
real-world and real-time usage.

2.3 Training

Confidence Maps for Key-Points and Edges. To evaluate the performance
during the training, the loss function needs a comparison with a ground-truth.
We construct it in a similar manner to [4]. The ground truth confidence maps are
constructed from ground truth key-points and edges. For a body part key-point j
in a given skeleton k at location xj,k ∈ R

2, the value of the key-point confidence

map Sj,k at pixel location p is Sj,k(p) = exp
(‖p−xj,k‖

σ

)
where σ controls the

spread of the peak around the key-point. We proceed similarly for edges Ei,j,k

joining two key-points i and j in the skeleton k and generate a spread along the
edge line and its extremities. The predicted confidence maps of key-points or
edges are aggregated with a max operator. Ground-truth are obtained from two
well know datasets: MS-COCO [11] and PoseTrack18 [1].

Hyper-parameters and Tuning. Training is done using one Nvidia Tesla
V100 GPU with a batch size of 1. The used optimizer is Adam, with a learn-
ing rate of 10−6. The considered losses are the MSE, the Pearson Correlation
Coefficient and the Focal losses [3]. The official weights (obtained from a pre-
training on several image datasets and fine-tuned on DAVIS 2017 as in [14]) are
used for initialization of both STM and STM-skeletons. For the later only the
layers in common with the original STM architecture are initialized with the
official weights. Moreover, for all experiments the batch normalization layers are
disabled as in [14].

Pre-training on Synthetic Data. The PoseTrack18 dataset features a large
amount of video sequences, but the diversity of persons and contexts are inferior
to large-scale image datasets such as MS-COCO. In order to leverage the large
quantity of images in MS-COCO key-points for pose tracking, we created syn-
thetic video sequences from singular images. A given sample image is translated,
rotated, scaled, sheared at random N times in a cumulative way for the creation
of a sequence of N frames (see Fig. 3). In the rest of the paper, pre-trainings
have a duration of 5 epochs on the MS-COCO Train set.
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Fig. 3. Synthetic sequence created from a single image from MS-COCO key-points.

Fine-Tuning on Real Video Sequences. We fine-tune our models on the
PoseTrack18 Train set that contains real video sequences. Training samples are
created by choosing a video at random, and then taking a subset of N frames
in the video sequence, keeping their ordering. We consider 30 epochs for the
fine-tuning training schedule.

Data Augmentation for Refinement. For the long-term tracking, the algo-
rithm needs to be able to correct the mistakes it can have made in the previous
memorized frames in order to be able to “refine” them. Ideally, its prediction
at frame T should be better than its prediction at frame T − 1. However, the
samples shown to the model during training contain ground-truth annotations,
which do not feature many mistakes. In order to prepare the model to deal with
these mistakes, we conceived a method similar to [6]. It consists in implementing
a data augmentation scheme for refinement, where during the construction of
the key-point and edge confidence maps for the memory frames, random trans-
formations are applied. These transformations are: i) small random displacement
of the ground truth key-points positions (called jitter), ii) randomization of the
size, shape and orientation of the key-points’ or edges’ Gaussian peaks (called
rand), iii) Key-points or edges false positives added to the confidence maps
(called baits), iv) Randomization of the intensity of the Gaussian peaks by mul-
tiplication with a random factor in the interval [0, 1] (called dull clouds). This
data augmentation scheme is illustrated in Fig. 4. In Sect. 3 we will examine the
impact of these options on tracking performance.

Cyclic Training. When being used for long-term tracking, the memorization
mode of our model will take as input the prediction it has made for the previous
frames. However, in the normal training procedure, the confidence maps that
are shown to the model are created from the ground-truth annotations. This
difference between the way it is trained and the way it is meant to be used
for long-term tracking might lead to worse performance. We therefore created
a specific training procedure that we call “cyclic”. In the latter, for a sample
sequence, the model is initialized by memorizing the ground truth annotation for
the first few frames, and then, for the last few frames, detects the skeletons’ parts
independently, based on the memory of its own predictions. In this procedure,
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Fig. 4. Confidence maps for skeleton key-points and edges before and after data aug-
mentation. Each key-point or edge type is shown in a particular color.

the model can produce predictions for multiple frames, therefore the training
loss is the sum of the loss of each prediction.

3 Results

In this section, we experimentally show that STM architecture, without modifi-
cation, can be used for the task of detecting and tracking skeleton body parts.
These experiments also enable to compare different training parameters and pro-
cedures and to define the best ones. The metrics used for these experiments are
precision, recall and F1-score. We can not use, at this stage, MOTA and mAP
metrics generally used for a complete tracking system because we propose in
this paper a component of such a system. Then, we provide results with our
proposed architecture better adapted for the multi-person case. When we refer
to validation datasets, these have not been used during training.

3.1 Video Skeleton Segmentation

First, we aim at showing the ability of STM to detect and track several people
skeletons simultaneously. The object probability map that STM takes as input
for memory frames (and produces as output for query frames) is considered to
be a map that provides the belief for a pixel to belong to the skeleton of one
person with possibly several persons’ skeletons in the image. The STM was not
intended for that as it was designed for segmenting a single object. As the output
we want to predict is not binary (in contrast to the classical STM that outputs
a binary segmentation map), we examine the impact of different loss functions
on the performance: the Pearson Correlation Coefficient (CC) and focal losses
(see [3] for an overview of these losses). The training procedure is the following.
From the official STM weights, we do a pre-training on the synthetic MS-COCO
videos (detailed in the previous section). We evaluate the trained model on the
validation subset of MS-COCO key-points. We initialize the tracking with a
ground truth for the first frame, and use STM to obtain the skeletons confidence
map for the rest of the video sequences. We binarize the predictions with a
threshold of 0.5 and compute classical performance metrics: precision, recall,
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and F1-score. Table 1 presents the quantitative results. We can notice that the
different losses functions led to similar results with a small advantage to the
focal loss in terms of F1-score. We therefore keep the focal loss for our next
experiments. On the synthetic MS-COCO Validation the skeletons are mostly
well detected. This shows that the STM architecture is able to process confidence
maps instead of segmentation masks. The pre-trained model has then been used
as is on the PoseTrack18 Validation. As expected the results are worse, as it
was not fine-tuned on PoseTrack18 Train, but as shown in Fig. 5 the predictions
results are good nevertheless, even if not very precisely located. This validates
the interest of STM for detection tasks instead of segmentation.

Table 1. STM performances for producing a multi-person skeleton confidence map.

Precision Recall F1-score

MS-COCO Validation

CC-loss 80.7 64.6 71.8

MSE loss 79.1 67.4 72.8

Focal loss 77.8 70.8 74.1

PoseTrack18 Validation

CC-loss 48.0 26.7 34.3

MSE loss 46.8 27.5 34.6

Focal loss 44.3 32.1 37.2

Fig. 5. STM detection results for producing a multi-person skeleton confidence map.

3.2 Video Skeleton Edge Prediction

Second, we now consider our proposed STM-skeletons architecture but to predict
only edge skeleton confidence maps (i.e., the NK confidence maps are discarded).
The aim of this experiment is to show that the modification that we propose
enables to detect different skeleton parts instead of a single skeleton confidence
map. In addition, this will enable us to perform a fine-tuning of the model on
PoseTrack18 Train. We ran multiple pre-training and fine-tuning and evaluated
the resulting models on MS-COCO Validation, and PoseTrack18 Validation.
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Table 2 presents the quantitative results. Figure 6 shows some detection results,
where every skeleton edge is assigned a particular color. On MS-COCO the
results are better than with the original STM (in the first experiment) and
shows the benefit of our approach of multi-person multi-part detection. On Pose-
Track18, fine-tuning the model provides some improvement but the results are
still low. This shows that the training of our model, especially for long and dif-
ficult sequences, such as these of PoseTrack18 needs a more carefully designed
training.

Fig. 6. Edges skeleton detection results by STM-skeletons. Top row: prediction, Bottom
row: ground truth.

3.3 Video Pose Estimation

For this third experiment, we investigate more deeply different training proce-
dures and data augmentation options for STM-skeletons to enhance the results
on PoseTrack18. This time we consider the full STM-skeletons architecture that

Table 2. Proposed STM-skeletons performances for detecting multi-person edges’
skeleton confidence maps.

Precision Recall F1-score

MS-COCO Validation

Focal loss pre-trained 88.1 74.3 80.7

Focal loss fine-tuned 30 epochs 88.5 65.1 75.0

PoseTrack18 Validation

Focal loss pre-trained 35.2 16.1 22.1

Focal loss fine-tuned 30 epochs 29.0 31.2 30.1
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predicts both key-points and edges. We analyze the impact of different choices
of training configurations, and different options for data augmentation as pre-
sented in Sect. 2.3. The models are pre-trained during 5 epochs on MS-COCO
key-points, and fine-tuned during 50 epochs on PoseTrack18 Train. The evalua-
tion is done on PoseTrack18 Validation and we use for this a dedicated metric
more suited to evaluate the accuracy of the key-points prediction. We match
every key-point with its closest corresponding prediction, and consider it as a
True Positive if the prediction is within a radius of 10 pixels from the ground
truth. Edges are not considered in the evaluation results. Results are shown
in Table 3. Several data augmentation configurations are considered and each
checkmark tells which one is considered. We also look at the influence of fine-
tuning. When comparing the same configurations, before and after fine-tuning,
we notice a systematic improvement, this shows the importance of fine-tuning on
the real video sequences from PoseTrack18 Train. If we compare Configurations
1 and 2 with the others, we can see that cyclic training provides a significant
improvement, and on its own is almost enough to replace data augmentation.
This shows that it is important to perform memorization not only with the
ground truth but also with predictions. The augmentations rand, baits, and jit-
ter can be considered as useful options that show a consistent improvement, in
particular when cyclic training is disabled. These options are required to obtain
the best performance measured in terms of F1-score, obtained after fine-tuning
with Configuration 5.

Table 3. Performances of STM-skeletons with different pre-training procedures, and
different data augmentation options.

Cyclic rand baits jitter dull clouds Precision Recall F1-score

Without fine-tuning PoseTrack18 Validation

Configuration 1 82,6 6.1 11.4

Configuration 2 � � � 57.4 25.9 35.7

Configuration 3 � 67.3 25.7 37.2

Configuration 4 � � 46.9 28.2 35.2

Configuration 5 � � � � 52.1 31.0 38.9

Configuration 6 � � � � � 48.7 27.3 35.0

With fine-tuning PoseTrack18 Validation

Configuration 1 81.3 17.9 29.4

Configuration 2 � � � 73.1 31.8 44.4

Configuration 3 � 70.9 35.0 46.8

Configuration 4 � � 62.3 36.4 46.0

Configuration 5 � � � � 69.8 36.2 47.6

Configuration 6 � � � � � 69.8 32.2 44.0

The precision, recall and F1-score are good aggregate metrics to compare
the performance of different training procedures, however, they do not inform us
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on whether the differences are in long-term or short-term tracking. In order to
make sure that our training procedure is advantageous for long term tracking,
we compare in Fig. 7 the evolution of recall scores over time, on sequences from
PoseTrack18 Validation. We can see that the differences in the first few frames
are negligible, and that they increase over time. This shows that fine-tuning on
PoseTrack18 Train and cyclic training improve long-term rather than short-term
tracking performance.

Finally, to obtain better detection results, the proposed multi-person skeleton
body part detection has to be included within a complete tracking system as in
[4] where the detection is processed with non-maximum suppression, body part
detection association and skeleton matching across frames. This will obviously
further enhance the predictions our architecture gives.

Fig. 7. Evolution of recall over time depending on model training configuration.

4 Conclusion

We have proposed a new algorithm for multi-person skeleton body part detection.
Building up on the recent Video Object Segmentation architecture called Space-
Time Memory Networks, we have modified it so that it is adapted to multi-
person skeletons key-points and edge prediction. We have designed a two-stage
pre-training/fine-tuning procedure for this architecture that aims at improving
the capacities of the model. In addition we use a specific data augmentation
and a cyclic training scheme. The impact of these different elements has been
evaluated on the PoseTrack18 dataset. While at this stage the results cannot
yet be compared to the state-of-the-art of skeleton pose estimation in videos (as
several additional steps for filtering and matching have to be done), we have
shown that our method can be interesting. In particular, in contrast to existing
approaches, the proposed architecture can make use of a long-term memory.
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