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Abstract. This paper considers the constrained longest common subse-
quence problem with an arbitrary set of input strings and an arbitrary set
of pattern strings as input. The problem has applications, for example,
in computational biology, serving as a measure of similarity among dif-
ferent molecules that are characterized by common putative structures.
We develop an exact A∗ search to solve it. Our A∗ search is compared to
the only existing competitor from the literature, an Automaton app-
roach. The results show that A∗ is very efficient for real-world bench-
marks, finding provenly optimal solutions in run times that are an order
of magnitude lower than the ones of the competitor. Even some of the
large-scale real-world instances were solved to optimality by A∗ search.

1 Introduction

The longest common subsequence (LCS) problem is a prominent string prob-
lem. Given is a set of input strings S = {s1, . . . , sm}, where each si consists of
letters from a finite alphabet Σ, the goal is to find a string of maximal length
that is a common subsequence of all input strings. Even though the problem is
easily stated, it is challenging to solve, as it is known to be NP–hard for an
arbitrary number (m > 1) of input strings [20]. Solutions to LCS problems are
commonly used as similarity measures in evolutionary microbiology and compu-
tational biology. Identifying LCS solutions to biological sequences (DNA, RNA,
or protein sequences) plays a significant role in the field of sequence alignment
and pattern discovery. LCS solutions may also serve for the discovery of struc-
tural or evolutionary relationships among the inputs sequences [22]. The related
literature offers numerous variants of the original LCS problem, arising from
practical applications. They are generally obtained by adding further constraints
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and requirements to the original LCS problem. These variants include, but are
not limited to, the longest common palindromic subsequence problem [3], the
repetition–free longest common subsequence problem [1], and the arc–preserving
longest common subsequence problem [17].

Another variant, the constrained longest common subsequence (CLCS) prob-
lem [24], requires a single pattern string p in addition to the set S of m input
strings as input. The aim of the CLCS problem is to find a LCS s∗ of all strings
in S that contains p as a subsequence. This problem is NP–hard as it includes
the basic LCS problem as a special case when p = ε, where ε is the empty
string. In practical applications, however, considering more than one pattern
string seems often to be required. As an example consider Tang et al. [23], in
which RNase sequences were aligned with the restriction that each of the three
active-site residues His(H), Lyn(K), and His(H) has to be a subsequence of
any valid solution. Another example from the biological context concerns [21],
in which a large set of real bacterial RNA sequences is considered, under the
restriction that solutions must contain 15 different patterns (the so-called contig
primer structures). Therefore, a generalized version of the CLCS problem, called
GCLCS (or (m, k)–CLCS), with arbitrary large sets of input strings and pattern
strings was considered in [8]. The GCLCS problem is formally defined as follows.
Given a set of m > 1 input strings (S = {s1, . . . , sm}) and a set of k ≥ 1 pattern
strings (P = {p1, . . . , pk}) the task is to find a sequence s of maximum length
that fulfills the following two conditions: (1) s is a subsequence of each string
si ∈ S, and (2) each pattern pj ∈ P is a subsequence of s. Any sequence that
fulfills these two conditions is a feasible solution.

Related Work. The basic LCS problem has been tackled both by a wide range of
exact and approximate approaches. For a fixed number of m input strings, the
LCS problem is polynomially solvable by dynamic programming (DP) [15] which
runs in O(nm) time, where n is the length of the longest input string. However,
with increasing n and/or m, the application of DP quickly turns unpractical. In
addition to DP, various parallel exact approaches were proposed. An example is
the one from [19] called FAST LCS. This algorithm is based on the use of a so-
called successors table data structure, utilizing the pruning operations to reduce
the overall computational effort. Quick-DP was introduced in [25] based on
a fast divide-and-conquer technique. More recently, the Top MLCS algorithm
was proposed in [18], based on a directed acyclic layered-graph model. The most
recent exact approach is A∗ [11]. This approach outperforms the other algorithms
in terms of memory consumption, running time, and the number of benchmark
instances solved to optimality. However, exact approaches are still quite limited
and can only solve small LCS instances (up to m = 10 and n = 100), and their
main bottleneck is an excessive memory consumption. Concerning larger LCS
problem instances, research has mostly been focused on heuristic approaches.
Among various different metaheuristic approaches, the generalized beam search
approach from [9] is currently the state-of-the-art heuristic approach.

The CLCS problem with two input strings (m = 2) and one pattern string
(k = 1) was well studied over the last two decades. Several efficient exact
approaches were proposed, including dynamic programming, sparse dynamic
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programming, and a bit-parallel algorithm [4,5,24]. As in the case of the LCS
problem, the current state-of-the-art approach for the CLCS problem is A∗ [7]. In
particular, A∗ has a run time which is about one order of magnitude lower than
the one of the second-best approach. In [6], this A∗ search was adapted to the
more general CLCS variant with an arbitrary number of m ∈ N input strings.
The algorithm was shown to scale well from small to medium sized instances
and, in some cases of a long pattern string, even to larger instances.

Finally, concerning the GCLCS problem, it is known that no approximation
algorithm can exist [14]. Moreover, the GCLCS problem with m = 2 input
strings and an arbitrary number of pattern strings is NP-hard, which can be
proven by reduction from the 3-SAT problem. This implies that the GCLCS
problem, as a generalization of the latter variant of the CLCS problem, is also
NP-hard. In [8] it was even proved that finding any feasible solution to the
GCLCS problem is NP–complete. In the same paper, the authors proposed
various heuristic approaches, such as a greedy search, a beam search and a
hybrid of variable neighbourhood search and beam search. The efficiency of these
approaches was studied along the following two lines: finding a feasible solution
and finding high-quality solutions. However, concerning exact algorithms, the
related literature only offers the Automaton approach from [12] which runs
in O(|Σ|(R + m) + nm + |Σ|Rnk) time complexity, where R is the size of the
resulting subsequence automaton which, in the worst case scenario, is O(nm).

Our Contributions. Due to the success of A∗ for related problems and due to
the lack of exact approaches for the general GCLCS problem, we develop an
A∗ search approach that employs a problem-specific node filtering technique
as one of its main features. Note that our A∗ differs from the A∗ approach
for the CLCS problem with only one pattern string in several aspects: (1) the
search is based on a different search framework, which implies the utilization
of different data structures in order to obtain an efficient search process, and
(2) it employs a problem-specific node filtering technique. The quality of our
approach is analysed on a wide range of benchmark instances, in comparison to
the Automaton approach from the literature.

We emphasise that A∗ search and the Automaton approach are built upon
different methodologies. The Automaton approach is fully constructive. It
builts numerous automata along the way: common subsequence automaton, an
intersection automaton, and finally a maximum length automaton, from which
the optimal solution can be derived. On the other hand, our A∗ search is an
informed search that generates its nodes on the fly. It is using a heuristic rule to
expand the most promising nodes at each iteration, with the hope of reaching
a complete node as soon as possible. Note that in contrast to the Automaton
approach, which provides useful information only when the maximum length
automaton is generated, our A∗ search method is able to provide a dual bound
on the optimal solution at each iteration.

The rest of the paper is organized as follows. In Sect. 2 we describe the state
graph for the GCLCS problem. Section 3 is reserved to present our A∗ search
approach. The experimental evaluation is provided in Sect. 4, while Sect. 5 offers
conclusions and outlines future work.
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2 The State Graph for GCLCS Problem

For a string s and 1 ≤ x ≤ y ≤ |s|, let s[x, y] = s[x] · · · s[y] be the contiguous
(sub)string which starts at index x and ends at index y. If x > y, s[x, y] is
the empty string ε. By convention, the first index of a string s is always 1. By
|s|a we denote the number of occurrences of letter a ∈ Σ in string s. Given a
position vector �θ, S[�θ] := {si[θi, |si|] | i = 1, . . . ,m} is the set of suffix input
strings starting from the positions of �θ. Similarly, given �λ = (λ1, . . . , λk), 1 ≤
λj ≤ |pj | + 1 for j = 1, . . . , k, denotes a position vector concerning the set of
pattern strings P , and P [�λ] := {pj [λj , |pj |] | j = 1, . . . , k} is the set of pattern
suffix strings starting at the positions of �λ.

Preprocessing Data Structures. We make extensive use of the following data
structures constructed during preprocessing in order to establish an efficient
search. For each i = 1, . . . ,m, l = 1, . . . , |si|, and c ∈ Σ, Succ[i, x, c] stores the
minimal index y such that (1) x ≥ y and (2) si[y] = c, that is, the position of
the next occurrence of letter c in string si starting from position x. If no such
letter c exists in si, then Succ[i, x, c] := −1. This data structure can be built in
O(m · n · |Σ|) time. Further, table Embed[i, x, j] for all i = 1, . . . , m, j = 1, . . . , k,
and x = 1, . . . , |pj | + 1 stores the right-most (highest) position y of si such that
pj [x, |pj |] is a subsequence of si[y, |si|]. Note that when x = |pj | + 1 it follows
that pj [x, |pj |] = ε. In this case Embed[i, x, j] is set to |si| + 1.

The State Graph. In this section we describe the state graph for the GCLCS
problem in the form of a rooted, directed, acyclic graph. In particular, the state
graph consists of nodes v = (�θv, �λv, lv), where

– �θv is a position vector regarding the input strings;
– �λv is a position vector regarding the pattern strings;
– lv is the length of a partial solution that induces node v as explained in the

following.

We say that a partial solution sv induces a node v = (�θv, �λv, lv) as follows.

– Position vector �θv is defined such that si[1, θvi − 1] is the shortest possible
prefix string of si of which sv is a subsequence, for all i = 1, . . . ,m.

– Position vector �λv is defined such that pj [1, λv
j − 1] is the longest possible

prefix string of pj which is a subsequence of sv, for all j = 1, . . . , k.
– lv := |sv|
Note that such a node v may represent several different partial solutions. The
root node of the state graph is r = ((1, . . . , 1), (1, . . . , 1), 0), induced by the empty
partial solution ε, where 0 = |ε|. By Σnd

v we denote the set of non-dominated
letters that can be used to extend any of the partial solutions represented by
a node v. The term extending a partial solution refers hereby to appending a
(suitable) letter to the end of the respective partial solution that induces node
v. The way of deriving this set of letters (Σnd

v ) is described as follows. A letter
c belongs to the set Σv ⊇ Σnd

v iff the following two conditions are fulfilled:
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1. Letter c appears in each of the suffix strings si[θvi , |si|], i = 1, . . . ,m.
2. Let Icov := {j ∈ {1, . . . , k} | λv

j ≤ |pj | ∧ pj [λv
j ] = c} and Incov := {1, . . . , k}\

Icov. For all i = 1, . . . , m, the following must hold:
– For all j ∈ Icov it holds that θi + Succ[i, θvi , c] + 1 ≤ Embed[i, λv

j + 1, c];
– For all j ∈ Incov it holds that θvi + Succ[i, θvi , c] + 1 ≤ Embed[i, λv

j , c].

Note that Condition 1 may be checked in O(m) time, whereas Condition 2 may be
checked in O(km) time. The set Σv is further reduced by removing dominated
letters. We say that letter a ∈ Σ dominates letter b ∈ Σ iff Succ[i, θvi , a] ≤
Succ[i, θvi , b], for all i = 1, . . . ,m. By removing dominated letters from Σv, we
finally obtain set Σnd

v . Now, for each letter c ∈ Σnd
v , a successor node w of v is

generated in the following way.

– θwi ← Succ[i, θvi , c] + 1, for all i = 1, . . . ,m;
– If pj [λv

j ] = c then λw
j ← λv

j + 1; λw
j ← λv

j otherwise;
– lw ← lv + 1.

Moreover, a directed arc vw is added from node v to node w and is labeled with
letter c, that is, �(vv′) = c.

We call a node v non-extensible if Σnd
v = ∅. Moreover, it is feasible iff λv

j =
|pi| + 1, for all j = 1, . . . , k, which means that the respective solution contains
all pattern strings as subsequences. A longest path (in terms of the number of
arcs) from the root node to a non-extensible and feasible node represents an
optimal solution to respective problem instance. An example of the state graph
of an GCLCS problem instance is shown in Fig. 1. In general, it is infeasible to
produce the whole state graph before running an algorithm. Instead, the state
graph is discovered step-by-step and searched on the fly. In the next section,
based on the above state graph description, we develop an A∗ search algorithm
for the GCLCS problem.

3 A* Search for the GCLCS Problem

We make use of the previously explained state graph for defining an A∗ search
approach. A∗ was introduced as a general concept by Hart et al. [16]. Since
then it has been successfully applied to numerous hard optimization problems
that can be phrased in terms of finding a best path in a graph. A∗ search is an
informed search as it utilizes a heuristic as guidance. It works in a best-first-
search manner by always expanding a most promising not-yet-expanded node.
In order to evaluate nodes v we make use of a function f(v) = g(v)+h(v) where
(1) g(v) represents the length of the longest path from the root node to node v;
and (2) h(v) represents an estimation of the length of the longest path from v to
a goal node, a node that is feasible and non-extensible. Note that h() is a dual
bound. In this work we set h() = UB(), where UB() calculates the tightest LCS
upper bound known from literature; see [2,9,25] for details.

In the following, we introduce the data structures necessary to make A∗ an
efficient graph search approach in the context of GCLCS problem. In essence,
A∗ search maintains two sets of nodes:
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Fig. 1. The full state graph for GCLCS instance (S = {s1 = bcaacbad, s2 =
cbccadcb}, P = {cb, ba}, Σ = {a, b, c, d}). It contains three non-extensible solutions.
Two of them (marked by light-gray color) correspond to a feasible solution. Solution

s = bcacb is optimal. It is represented by node v = (�θv = (7, 9), �λv = (3, 3), lv = 5).
The corresponding path is displayed in blue. (Color figure online)

– The set of all nodes encountered during the search is realized by means of a
hash map N . Each key (�θv, �λv) of N is mapped to the length of the currently
longest path found from the root node to node v. The two position vectors
together define a node v as previously described. Note again that there may
exist more than one such path to the same node and, thus, the same node
may represent several (partial) solutions, which helps saving memory and
computational effort.

– The set of discovered, but not-yet-expanded (open) nodes Q ⊆ N . This set is
realized by means of a priority queue whose nodes are prioritized according
to their f -values; nodes with higher f -values are preferred.

With the help of these two sets, the required queries can be efficiently resolved.
For example, the question if there was already a node encountered during the
search defined by position vectors �θ and �λ can be determined in constant time.
Moreover, the node with the highest priority—that is, the one with the high-
est f -value—can be retrieved from Q in constant time. Note that after such a
node-retrieval, Q must be reorganized. This process can efficiently be done in
O(log(|Q|)) time.

The pseudo-code of our A∗ search is given in Algorithm 1. Data structures
N and Q are initialized with the root node r. At each iteration, the algorithm
retrieves a highest-priority node v from queue Q. Then, it is first checked if v
corresponds to a feasible, non-extensible solution. If so, the search is terminated
since a proven optimal solution has been found. Otherwise, the upper bound
UB(v) of v is calculated and—in case UB(v) ≥ lv + max{|pi| − λv

i + 1 | i =
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Algorithm 1. A∗ search for the GCLCS problem.
1: Data structures: N , the hash map containing the generated combinations of

position vectors �θ and �λ; N [�θ, �λ] holds the length of the currently longest path for
this combination; Q, priority queue with all open nodes

2: Create root node r = ((1, . . . , 1), (1, . . . , 1), 0)

3: �θr ← (1, . . . , 1) (length m), �λr ← (1, . . . , 1) (length k)

4: N [(�θr, �λr] ← 0
5: Q ← {r}
6: while time ∧ memory limit are not exceeded ∧ Q �= ∅ do
7: v ← Q.pop()
8: if UB(v) ≥ lv + max{|Pi| − λv

i + 1 | i = 1, . . . , k} then
9: Determine Σnd

v (non-dominated letters)
10: if Σnd

v = ∅ then
11: Derive the solution s represented by v
12: if s is a feasible non-extensible solution then return provenly optimal

solution s end if
13: else
14: for c ∈ Σnd

v do
15: Generate node v′ from node v via extension by letter c
16: if (�θv′

, �λv′
) ∈ N then

17: if N [(�θv′
, �λv′

)] < lv
′
then // a better path found

18: N [(�θv′
, �λv′

)] ← lv
′

19: Update priority value of node v in Q
20: end if
21: else // a new node

22: fv′ ← lv
′
+ UB(v′)

23: Insert v′ into Q with priority value fv′

24: Insert v′ into N
25: end if
26: end for
27: end if
28: end if
29: end while
30: return empty solution ε

1, . . . , k}—node v is expanded with all possible letters from Σnd
v as explained

in Sect. 2. Further, for each generated child node v′ of node v, it is checked if
N already contains a corresponding key (�θv

′
, �λv′

). If not, v′ is added to N and
Q. Otherwise, it is checked if a longer path than the currently known one from
the root node to node v′ was discovered. If this is the case, the value of the
corresponding key in N is updated accordingly, node v′ is added in Q and the
outdated entry is removed from Q. The above steps are repeated until either (1)
an optimal solution is found as described above, or (2) Q becomes empty or (3)
the memory or time limit is exceeded.

From a theoretical perspective, A∗ possesses some important characteristics.
First, function h is consistent, that is, it never underestimates the length of the
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longest path from any node to a goal node (i.e., the optimum of the corresponding
subproblem). This implies that a provenly optimal solution is found when the
node retrieved from Q is a goal node. Second, the utilized upper bound UB
is monotonic, which means that the difference in the values for any pair of
parent/child nodes is never smaller that the weight of the respective arc, i.e.,
one in our case. As a consequence, no re-expansions of already expanded nodes
are required during the search. Thus, a minimum number of node expansions is
performed in order to find an optimal solution, concerning all search approaches
that rely on the same state graph and the same heuristic guidance.

A∗ search time complexity. The number of visited nodes is bounded by O(nm+k).
Concerning the time complexity of lines 7–28 of Algorithm1, operation pop() is
executed in constant time. Subsequently, a necessary rearrangement of p.q. Q is
executed in O(log(|Q|)) = O(log(nm+k)) = O((m + k) log(n)) time. Line 9, for
generating set Σnd

v , takes O(|Σ|(m + km)) + O(|Σ|2m) time. Lines 14–26 are
executed in O(|Σ|(m + k + log(|Q|))) = O(|Σ|(m + k + (m + k) log(n))) time.
Thus, the overall time complexity of A∗ search is equal to O(nm+k((|Σ|+1)(m+
k) log(n) + |Σ|((|Σ| + k + 2)m + k))).

4 Experimental Evaluation

For the experimental evaluation we consider, apart from our A∗ approach, the
Automaton approach from [12]. A∗ was implemented in C++ using GCC 7.4
for compilation, and the experiments were conducted on a machine with an Intel
Xeon E5-2640 processor with 2.40 GHz and a memory limit of 16 GB. Note that
the implementation of the Automaton approach was adapted to use the same
amount of memory (16 Gb) as A∗. Moreover, both algorithms were tested on the
same machine. The maximal CPU time allowed for each run of both algorithms
was set to 180 min.

Benchmark Instances. The following three benchmark sets were used. Bench-
mark Random contains ten randomly generated instances per each combina-
tion of the following parameters: m ∈ {2, 5, 10}, k ∈ {2, 5, 10}, p ∈ {20, 50},
|Σ| ∈ {2, 20} and n = 100. In total, Random consists of 360 problem instances.
As a reminder, m refers to the number of input strings, k to the number of
pattern strings, and |Σ| to the alphabet size. Moreover, p refers to the fraction
between n and the length of the pattern strings (all pattern strings are of equal
length n = 100). The second benchmark set Real is composed of 12,681 bac-
terial 16S rRNA gene sequences. The whole set is divided into 49 classes (i.e.,
instances), where each class contains the sequences from one bacterial phylum.
More detailed information about each class can be found in [8]. The third bench-
mark set (called Farhana-real) was used for the evaluation of Automaton
in [12]. It consists of real-world instances generated on the basis of the NCBI
database (see Table 2). This set contains 32 instances subdivided into the follow-
ing four groups: Rnase, Protease, Kinase, and Globin. This division is made
on the basis of a different set of pattern strings for each group. In particular,
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Table 1. Results for instances from benchmark set Random

(a) Instances with |Σ| = 2

Instance group A* Automaton

m p k |s| t[s] opt [%] |s| t[s] opt [%]

10 20 10 51.2 133.29 80 0.0 – 0

10 20 2 0.0 – 0 0.0 – 0

10 20 5 11.7 72.66 20 0.0 – 0

10 50 10 11.8 28.35 20 0.0 – 0

10 50 2 0.0 – 0 0.0 – 0

10 50 5 11.9 67.80 20 0.0 – 0

2 20 10 82.3 0.02 100 82.3 12.01 100

2 20 2 78.2 0.06 100 78.2 2.74 100

2 20 5 79.3 0.06 100 79.3 6.21 100

2 50 10 78.5 0.05 100 78.5 11.88 100

2 50 2 77.6 0.07 100 77.6 2.82 100

2 50 5 78.4 0.06 100 78.4 6.25 100

5 20 10 69.3 54.64 100 0.0 – 0

5 20 2 64.0 39.51 100 0.0 – 0

5 20 5 65.5 47.67 100 0.0 – 0

5 50 10 58.5 77.23 90 0.0 – 0

5 50 2 64.6 37.38 100 0.0 – 0

5 50 5 57.4 137.19 90 0.0 – 0

(b) Instances with |Σ| = 20

Instance group A* Automaton

m p k |s| t[s] opt [%] |s| t[s] opt [%]

10 20 10 50.0 0.03 100 0.0 – 0

10 20 2 10.6 0.16 100 0.0 – 0

10 20 5 25.0 0.05 100 0.0 – 0

10 50 10 20.0 0.13 100 0.0 – 0

10 50 2 7.7 0.10 100 0.0 – 0

10 50 5 10.6 0.15 100 0.0 – 0

2 20 10 53.1 0.01 100 5.2 141.37 10

2 20 2 31.8 0.60 100 31.8 3.09 100

2 20 5 36.4 5.05 100 36.4 8.18 100

2 50 10 35.2 0.25 100 35.2 21.14 100

2 50 2 32.7 0.06 100 32.7 3.06 100

2 50 5 33.2 0.07 100 33.2 7.28 100

5 20 10 50.0 0.02 100 4.1 53.87 10

5 20 2 13.7 2.13 100 13.7 6.12 100

5 20 5 25.1 0.21 100 25.1 11.37 100

5 50 10 20.4 2.81 100 20.4 20.56 100

5 50 2 12.7 1.24 100 12.7 6.11 100

5 50 5 13.4 2.50 100 13.4 10.64 100

in the case of Rnase the set of pattern strings is {H, K, HKSH, HKSTH}; for group
Protease it is {P, L, DGTG, IIGL}; for the group Kinase it is {G, KEL, DFG, PEDR};
and for group Globin it is {P, KF, HGLSLH, LVLA}. Apart from these four groups,
there is one additional problem instance called Input100 with m = 100 input
strings of different lengths (ranging from 41 to 100) and having only one pattern
string of length one, which is S.

Results for Benchmark Set Random. Tables 1 and 2 report the results of the
two competitors on Random and Farhana-real benchmarks, respectively. The
first block of columns shows the name of the respective instance group, together
with the number of instances in that group. The following three columns are
reserved for the results of A∗ search. The first column provides the average solu-
tion quality delivered upon termination (t[s]). The second one shows the average
running time, for those instances/runs for which an optimal solution could be
found (t[s]). Finally, the third column indicates the percentage of instances for
which an optimal solution was found (opt [%]). The last three table columns
report the results of Automaton in the following way: the average solution
quality (|s|), the average running time (t[s]) and the percentage of instances
solved to optimality (opt [%]).

Concerning instances |Σ| = 2, Table 1a allows the following observations.
A∗ was able to solve almost all instances (118 out of 120 problem instances)
with m ≤ 5 to optimality. In contrast, the Automaton approach was successful
only for the instances with m = 2. Concerning the instances with m = 10, 16
out of 60 instances were solved by A∗ and none by the Automaton approach.
Finally, concerning the computation times for those instances for which both
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Table 2. Results for the real-world benchmark set Farhana-real from [12].

Instance group #inst A* Automaton

|s| t[s] opt [%] |s| t[s] opt [%]

Rnase 3 68.33 0.12 100 68.33 4.78 100

Protease 15 55.60 0.70 100 55.60 4.71 100

Kinase 3 111.00 0.10 100 111.00 13.40 100

Globin 10 84.10 0.11 100 84.10 7.80 100

Input100 1 2.00 0.06 100 2.00 48.38 100

approaches were successful in finding an optimal solution, A∗ search is the clear
winner exhibiting computation times about two orders of magnitude lower than
those of Automaton (around 100 times faster). The following observations can
be made from Table 1b (for the instances with |Σ| = 20). First, A∗ was able
to solve all instances (180 out of 180 problem instances) to optimality. The
Automaton approach was competitive on the instances with m ≤ 5 by solving
102 out of 120 instances, but none of the instances with m = 10 were solved.
Second, the running times of A∗ (limited to those instances which both algorithm
could solve) appear to be much shorter than those of Automaton.

Results for Benchmark Set Real. A∗ was able to solve four (out of 49) real-
world problem instances to proven optimality. This is quite notable since similar
problems for real-world instances are rarely solved to optimality in the literature.
Moreover, in three out of four cases, A∗ requires only a fraction of a second to
prove optimality. In particular, instance Aminicenantes (result: 1365) was solved
in 11.51 s, instance Atribacteria (result: 1499) in 0.12 s, instance Ignavibacteriae
(result: 1354) in 0.12 s, and instance WPS-1 (result: 1358) in 0.1 s. In contrast,
Automaton was not able to deliver any optimal solutions since it was—in all
cases—running out of time. This is because Automaton was not able to finish
its intermediate step of constructing the intersection automaton within the given
time limit. Finally, for the instances not solved by A∗, the reason of not doing
so, was memory limit exceeding.

Results for Benchmark Set Farhana-real; see Table 2. The following observa-
tions can be made. First, both algorithms were able to find optimal solutions
for all 32 instances. Second, in comparison to Automaton, A∗ required sub-
stantially less time; about an order of magnitude less. Finally, for the largest
instance (Input100 ), the runtime is more than 500 times in favor of A∗.

5 Conclusions and Future Work

In this paper we presented an A∗ approach for solving the generalized longest
common subsequence problem with an arbitrary number of pattern strings. Our
algorithm utilizes a problem-specific node filtering technique in order to exclude
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suboptimal solutions from the search. The experimental evaluation shows that
A∗ is efficient in solving all instances with two input strings based on rather small
alphabet sizes (up to four) to optimality. Moreover, A∗ search is also well-suited
for instances with shorter input strings (up to n = 100), even when there is a
larger number of patterns given as input. In comparison to the exact Automa-
ton approach from the literature, it turns out that A∗ can find proven optimal
solutions in an order of magnitude faster than Automaton when applied to
real-world instances.

In the future work it seems promising to focus on developing tight upper
bounds for the GCLCS problem and utilizing them in our A∗ approach. Con-
cerning anytime algorithms based on A∗ [10], it would be interesting to obtain
heuristic solutions in combination with dual bounds for large-sized instances
(when classical A∗ search fails to prove optimality due to time or memory restric-
tions). Moreover, studying problems related to the GCLCS problem, such as the
restricted LCS problem [13], might be a promising research direction.
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