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Abstract. We propose a method for explaining the results of black
box image classifiers to domain experts and end users, combining two
example-based explanatory approaches: Firstly, prototypes as represen-
tative data points for classes, and secondly, contrastive example com-
parisons in the form of near misses and near hits. A prototype globally
explains the relevant characteristics for a entire class, whereas near hit
and near miss explain the local decision boundary of a specific prediction.
To combine both types of explanations within one framework is novel and
we propose that presenting both types of explanations is especially help-
ful for domain experts in visual domains. To improve the faithfulness of
the explanations, we investigated an unbiased, generic embedding and a
model-related (model-specific) embedding for handling the images. The
proposed approaches are evaluated regarding parameter selection and
suitability on two different data sets – the well-known MNIST and a
real-world industrial quality control data set. Finally, it is shown how
global and local example-based explanation can be combined and real-
ized within a demonstrator.

Keywords: Explainable AI · Example-based explanation ·
Prototypes · Near misses · Near hits

1 Introduction

Machine learning (ML) based image classification algorithms, such as deep neu-
ral networks, are increasingly employed in settings where transparency and com-
prehensibility of decisions are crucial such as medical diagnostics or industrial
quality control. Research on explainable artificial intelligence (XAI) is addressing
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these requirements [1] by providing techniques to support the decision making
of ML black-box models and thereby allow users to develop justified trust [14].
Many XAI methods identify the most relevant information in the input for the
classifier decision. While this information is helpful for model developers, e.g.,
to detect overfitting [13], it might be not expressive enough to explain model
decisions for domain experts such as medical experts or quality engineers [14].

Cognitive science research provides theories as well as empirical evidence
that explanations by examples are highly effective for humans to grasp complex
concepts [7,11,12]. Therefore, we consider in this paper two kinds of examples,
with the specific goal of explaining image classifier AI models to end users and
domain experts without expertise in machine learning:

1. Prototypes, representing typical representative instances of some image class
as a global explanation of the model, and

2. Near hits and misses of some given input, representing examples from the
training data similar to the input image and from the same (or opposite,
respectively) class, as local explanations.

In combination, prototypes, near hits and near misses allow users to get a bet-
ter understanding of information considered relevant as well as of the decision
boundaries of a given classification algorithm.

Numerous algorithms for computing prototypes of a given data set exist. In
this paper, we primarily use [8], a widely used state-of-the-art approach based on
Maximum Mean Discrepancy (see Subsect. 3.1 for details). ProtoDash [4] builds
on the former, but at time of writing, no adequate implementation with sufficient
adaptability for our experiments could be found. We additionally use Partition-
ing around Medoids [15] as a baseline approach for comparison; an improved
version of a simple k-Medoids clustering algorithm [6], where we interpret the
associated medoids of each cluster as prototypes.

Near hits and misses (NHM s) as relating to classified data are much less well
covered by the existing literature, especially as an explanatory tool. One notable
exception is [11], where NHMs are computed specifically for Prolog clauses to
explain classifications in the context of Inductive Logic Programming. Concep-
tually however, finding close matches of a given input according to some metric
is a ubiquitous tool in many distinct areas, such as in feature selection [17] or –
more closely related to our purposes – in content-based image retrieval [5].

For providing more faithful explanations, we differentiate between two vector
embeddings for handling images: a model-specific relying on the CNN-based clas-
sification model to be explained, and a model-agnostic allowing obtain another
embedding unbiased by our data sets and unrelated to our classification model.

In the following, we describe the algorithms used for example-based explana-
tions with focus on their evaluation for two data sets – the classic MNIST and
a real-world data set of casting manufacturing image data for industrial quality
control [2]. We start in Sect. 2 with describing the setup for our experiments,
i.e. the data sets and classifier models used, and a brief overview of the final
user-centric architecture. Sections 3 and 4 deal with prototypes and near hits
and misses, respectively, the algorithms used, their parameters and our evalua-
tions thereof. Lastly, in Sect. 5 we present our demonstrator implementation.
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2 Methodology

2.1 Data Sets

We primarily use [2] for our experiments; a data set consisting of 1100 grayscale
images of cast metal components of size 512 × 512 labelled with one of two
classes, “ok” (419 entries) and “defective” (681 entries), see Fig. 1. The entries
of the latter class show various kinds of defects, e.g., blow holes, abrasions,
scratches etc. (see Fig. 1a). Notably, the data set is highly homogeneous in that
the objects in the images are very similar to each other (except for the defects,
which are usually subtle), but differ with respect to features that are irrelevant
for purposes of classification, e.g., lighting conditions and angle (see Fig. 1b).
The data set occasionally contains multiple images from different angles of the
same object, which makes it especially interesting for the purpose of evaluating
near hits and misses.

(a) defective. (b) ok.

Fig. 1. Some examples from the casting data set [2].

For comparison, we additionally use the MNIST data set of handwritten dig-
its [9]. Since the casting data set is restricted to two classes, we correspondingly
restrict MNIST to two classes – namely “1” and “7” (each consisting of 7877
and 7293 entries, respectively), which are uniformly white digits on black back-
ground, but differ significantly in their shapes within their respective classes.

2.2 Models and Embeddings

For each of our two data sets, we trained a small standard convolutional neural
network (CNN) with three convolutional and two fully connected layers on the
respective classification tasks, with resulting accuracies of 96.82% and 99.72%
respectively.

These models actually serve two purposes: Firstly, they naturally serve as
toy classifier models to be explained by our overall approach. Secondly, we can
use feature extraction on the models to obtain embeddings for our images, which
should be sensitive to those aspects of an image that relate to its inferred class.
We consequently expect these embeddings to map images with similar class-
relevant features near each other, leading to more informative near hits and
misses. However, it should be noted that by using embeddings depending on the
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classifier model, our approach is model-specific. That is, it is required that the
model to be explained is a neural network (or otherwise induces a suitable vector
embedding). We therefore additionally use a generic state-of-the-art image classi-
fication model (VGG16 [16]) to obtain a second embedding unbiased by our data
sets and unrelated to our classifier model, allowing us to remain model-agnostic.
We refer to the embedding obtained via feature extraction on our classifier mod-
els as EC , and the one using VGG16 as EVGG. We will occasionally use the raw
image vectors for comparison, which we denote as the (trivial) embedding E0.

2.3 Architecture Overview

Figure 2 shows our approach as envisioned in practice. A user selects an image,
for instance, of an industrial manufacturing component, which is classified by
a CNN (or other black-box model). The inferred label is used to obtain a set
of prototypes with the same label from the training data set. Both the label
and the input image – under some vector embedding – are used to select a
number of comparable near hits and misses from the training set. All three
combined are provided to the user, allowing to better comprehend both the
returned classification by comparing it to prototypical samples and the most
similar (ground-truth labelled) elements from the training data (near hits), as
well as the decision boundary in a contrastive manner via the near misses.

Fig. 2. Overview of the implemented architecture.
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3 Prototype Selection

3.1 Prototype Selection Using Maximum Mean Discrepancy

Kim et al. [8] propose an approach for prototype selection based on Maximum
Mean Discrepancy (MMD), a similarity measure on distributions, rather than
individual data points: Given (finite approximations for) distributions X,Y , then
the expression

MMD2(X,Y ) :=
1

|X|2
∑

x1,x2∈X

k(x1, x2) +
1

|Y |2
∑

y1,y2∈Y

k(y1, y2)

− 2
|X| · |Y |

∑

x∈X,y∈Y

k(x, y)

approaches 0, as X and Y become more similar with respect to a Hilbert space of
testing functions with reproducing kernel k. For our purposes, we use the radial
basis kernel function k(x, y) := e−γ||x−y|| for a real-valued scaling parameter γ.
We can use this for selecting prototypes as follows:

Given a set of embedded data points X with |X| = n and a kernel function
k : X × X → R, our objective is to find a subset S ⊆ X with |S| = m such that
MMD2(X, ∅) − MMD2(X,S) is maximized, which can be simplified to the following
cost function:

J(S) :=
2

nm

∑

x∈X,s∈S

k(x, s) − 1
m2

∑

s1,s2∈S

k(s1, s2)

The remaining aspects of the selection algorithm are straight-forward (see
Algorithm 1).

Algorithm 1. Prototype selection algorithm, adapted from [8].
Input: m, X

S = ∅

while |S| < m do
foreach: x ∈ X \ S, jx = J(S ∪ {x}) − J(S) do

S = S ∪ {argmax {jx|x ∈ X}}
end while

Return: S

Surprisingly, [8] suggests using raw image data as input for the algorithm.
While this works well for some data sets, e.g., MNIST, we agree with [10] that
feature embeddings should yield better results in general. Nevertheless, we com-
pare both variants.
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3.2 Parameter Selection

Algorithm 1 depends on two parameters: The number m of desired prototypes
and the scaling factor γ of the kernel function. To determine the optimal value
for the latter, [10] suggests training a 1-Nearest-Neighbour (1-NN) algorithm on
the selected prototypes to classify an test set. Additionally, we used a k-fold
cross-validation averaged for robustness. Notably, the best value for γ seems to
depend on both the underlying data set and the embedding used (see Fig. 3).

(a) EC on casting data. (b) EVGG on casting data. (c) EVGG on MNIST data.

Fig. 3. γ-Values plotted against recall on two data sets and two embeddings while
using 1-NN.

Regarding m, the natural but expensive approach would be a survey on end-
users. Instead, we opt for an analytical approach by considering two methods:

1. We perform an Elbow method based on a k-Means algorithm, plotting the
distortion (i.e. the sum of square distances from each point to its assigned
cluster center) wrt. the number of clusters/prototypes (see Fig. 4a).

2. We use the fact that MMD2(X,S) gives us a measure of how “representative”
the elements of S are with respect to our full data set X. We therefore consider
a Scree plot (see Fig. 4b) of the MMD2-value against m.

We applied both methods on all three embeddings E0, EC and EVGG, and on
both data sets, and observe at which values the respective curves flatten. In all
cases, this happens noticeably at a value of about m = 3, which strongly suggests
that more than three prototypes do not convey significantly more information.
However, note that the optimal number should vary depending on the specific
data set under consideration.

3.3 Evaluation

Similarly to our strategy for selecting parameters, we evaluate the resulting
prototypes using a 1-NN approach with respect to the training data set. We
additionally use an off-the-shelf Partitioning around Medoids [15] k-Medoids
clustering algorithm as a baseline approach. The results are shown in Table 1.

Overall, the MMD-based approach performs mostly better than k-Medoids,
although the difference is surprisingly small. As expected, the embedding EC
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(a) Elbow method. (b) Scree Plot.

Fig. 4. Representative plots using an Elbow method (a) and a Scree plot (b).

Table 1. Results of 1-NN algorithm trained selected prototypes, evaluated with respect
of the embedding based on accuracy (best performance in bold).

Casting MNIST

E0 EC EVGG E0 EC EVGG

MMD 0,6682 0,9273 0,6591 0,9649 0,9995 0,9750

k-Medoids 0,6864 0,9136 0,6136 0,9598 0,9995 0,9653

obtained via feature extraction on the classifier model itself shows consis-
tently better results than the alternative embeddings. Surprisingly, the unbi-
ased embedding (EVGG) is also superior to the raw data (E0) on the casting data
set, while not on MNIST - probably due to the simple structure and uniform
background.

Figure 5 shows the resulting prototypes of our primary data set. Notably, the
defective prototypes using EC cover exactly the three primary kinds of defects
occurring in the data set - a blowhole in the first, abrasions in the second, and a
scratch in the third, whereas the EVGG based prototypes are noticeably less diverse

Fig. 5. Selected prototypes of the casting data set.
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in that respect. Like the corresponding data samples themselves, the prototypes
for the “ok” class are largely very similar, regardless of the embedding used.

4 Near Miss and Hit Selection

Regarding NHMs, our algorithm is conceptually straight-forward (see Algo-
rithm2). Given a data sample e, we choose as a subset X of our training data
either those samples with the same inferred label as e (near hits) or those with a
different label (near misses). Then we compare each element of X to e by some
given metric m : R

n × R
n → R: (i) The euclidean metric

√∑
i(xi − yi)2, (ii)

the manhattan metric
∑

i |xi − yi| and (iii) the cosine metric 1 − x · y/‖x‖ · ‖y‖,
again using all three of our embeddings.

Algorithm 2. Near Miss/Hit Algorithm.
Input: e data sample, X data set, m metric

L = ∅

foreach: x ∈ X \ {e} do
L = L ∪ {〈x, m(x, e)〉}

sort L by second component
Return: L

4.1 Evaluation

Evaluating the accuracy of NHMs analytically is considerably difficult in that no
objective measure of similarity – especially with respect to those features that
are relevant for classification – exists, which could serve as a baseline compari-
son. While this applies equally to prototypes, this problem becomes a lot more
prominent here, where comparisons between individual pairs of data samples
need to be considered. Ideally, we would evaluate the possible vector embeddings
and metrics in a large-scale user study. In lieu of that, we opted for manually
inspecting random samples of NHMs on both data sets with varying parameters.

One clear and unsurprising result is the superiority of the classifier embedding
EC . This is particularly noticeable with near misses on the MNIST data set.
Figure 6 shows some near misses for the class “7” for both embeddings. Notably,
the near misses obtained using EC all have something resembling a corner at the
upper end, which could indicate a number 7, whereas using EVGG quickly yields
plain lines, much more reminiscent of a 1.

Furthermore, the near misses using EC seem to differ much more rarely
depending on the metric used, or even the input image used. This makes sense,
assuming the data samples are distributed such that near misses reduce to those
data samples which most closely resemble the opposite class. For example, Fig. 7
shows the first five near hits for an image of class “1”, which are notably similar
for all three metrics and for several input images.
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Fig. 6. Near misses for an input of class “7”.

Fig. 7. Regularly occurring near hits for the class “1”.

The advantage of EC over EVGG is much less noticeable on the casting data set
(see Fig. 8), however. We conjecture that the homogeneity of the data set allows
for either embedding to primarily focus on the relevant differences, i.e. exactly
the defects, since even generic embeddings should largely be able to abstract
from rotation, angle and similar unimportant variations.

With respect to the metric used, different choices yield different, but very
similar results (equal in only ≈30% of cases). In fact, we could not notice a clear
advantage of either over the others, regardless of the choice of embedding, with
possibly a slight advantage of euclidean and manhattan distances over cosine.

Fig. 8. EC-based NHMs exhibits more striking features regarding the example input
image, to indicate faster this misclassified image of class “defective”

5 Demonstrator

We implemented a web-based interactive demonstrator (see Fig. 9). A user can
choose a model-specific (EC) or model-agnostic (EVGG) embedding, one of our
two example data sets, a metric (cosine, euclidean, manhattan), the number



428 M. Herchenbach et al.

of near hits and misses to show, and an input image from the test sets. The
system then displays the input image itself, its classification according to the
CNN, the corresponding probability, prototypes for the classes and near hits
and misses with their corresponding distances according to the metric chosen.
The demonstrator, and all code relating to our evaluations is available online1.

Fig. 9. Screenshot of our XAI demonstrator.

6 Conclusion and Future Work

We presented an example-based XAI approach for image classification models
providing prototypes as global explanation, as well as near misses and hits to
explain the local decision boundary of a prediction. Our experiments showed
that model-specific embeddings are more informative with respect to decision
boundaries than model-agnostic ones. In a next step, more advanced prototype

1 https://gitlab.cc-asp.fraunhofer.de/sees/vis-ml2022-mh.

https://gitlab.cc-asp.fraunhofer.de/sees/vis-ml2022-mh
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selection algorithms can be evaluated, e.g., re-implementing the ProtoDash algo-
rithm from [4].

Although there already exists some empirical evidence showing that humans
can profit from these types of example-based explanations [7,11], we plan to con-
duct user studies to evaluate the helpfulness of our demonstrator for the visual
quality control task. Performance accuracies for predictions of class decisions
of the CNN models will be compared for (a) visual highlighting, (b) prototype
explanations, (c) near hit and miss explanations, and both prototype and near
hit/miss explanations. Another useful enhancement could be highlighting the
dissimilarities or similarities between the test image and the near miss or hit by
using saliency maps – e.g. similarity based saliency maps stemming from CBIR
[3] – to enable much more precise and faster indication of the decision bound-
aries to the domain expert. Finally, the user interface of the demonstrator can
be improved with respect to intuitive interaction, ease of information acquistion,
and positive user experience.
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