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Abstract. Compositions of concepts from human-annotated datasets,
e.g., “chair OR table”, have been shown to approximate latent repre-
sentations of image classifiers better than single concepts. In this work,
we introduce the Close Algorithm, which improves performance accord-
ing to the IoU metric by utilizing the non-logical connectors CLOSE-
TO, WITH, and EXPAND. We consider the shortcomings of current
approaches, discuss possible causes, and review a small user study we
have run to collect evidence on this point. We also introduce a metric
that discourages the reliance on scene-level annotations. (The code to
replicate the technical results (along with additional sample images) can
be accessed at https://github.com/rafaelharth/indres).
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1 Introduction

Neural networks achieve state-of-the-art performance on many tasks but are
infamously hard to understand. Existing explainability methods typically focus
on local approximations [16,20], textual explanation modules [5,13,15], saliency
maps [2,11,22], or pointing to examples [6,21] or influential training data [19].
In contrast, scant attention has been paid to individual neurons, and almost no
work has focused on understanding and predicting neuron activations in detail.

In the context of image processing, human-annotated concepts from a densely
labeled dataset provide a possible starting point for this problem [23]. Threshold-
ing neuron activations allows computing their similarity with such concepts using
metrics for the overlap between two sets, such as Intersection over Union (IoU).
This method reveals that, e.g., the eleventh neuron in the final hidden layer of
ResNet-18 trained on places365 is most similar to the concept “highway”.

This approach can be improved by connecting several concepts into formulas
[17], e.g., “(highway OR field-cultivated) AND NOT sky”. In this work, we build
on this approach by introducing the non-logical connectors CLOSE-TO, WITH,
and EXPAND (Sect. 3). We discuss problems with IoU as a metric and suggest
an alternative (Sect. 4). We show that incorporating the three new connectors
improves accuracy according to either metric, observe that it is still poor, and
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suggest possible reasons (Sect. 5). To provide evidence on this point, we review
a small study in which two trained annotators were asked to take the role of the
algorithm in predicting neuron activations for four different neurons (Sect. 6).

2 Related Work

In [12], Gonzalez-Garcia et al. aim to answer whether “CNNs learn semantic
parts in their internal representation” using the PASCAL-Part dataset [7] as the
source of ground truth. They match bounding boxes with individual neurons or
combinations of neurons from AlexNet, finding that “34 out of the 105 semantic
part classes emerge”, which they call a “modest number”.

Using Broden, a richer dataset with 1197 annotated concepts, Zhou et al. [23]
find more promising results with their approach called “Network Dissection”.
They show that human-understandable concepts naturally emerge in hidden lay-
ers of neural networks but are lost under basis transformations of the latent
representation, making them artifacts of the specific training procedure rather
than an inevitable side-effect of discriminatory power. However, these results rely
on an inclusive notion of emergence: the similarity between annotated concepts
and neuron activations, while easily clearing the threshold for statistical signifi-
cance, is usually mild.1 Mu and Andreas [17] improve this level of similarity by
matching neurons to combinations of several human-annotated concepts. This is
the most direct predecessor of our work.

Fong and Vedaldi [10] introduce a method that learns a vector wC ∈ R
K for

each concept C, where K is the number of neurons in a specific layer. Thus, each
concept is assigned a linear combination of neurons, which improves predictive
quality substantially compared to the 1:1 mapping introduced in [23].2 Using
one-hot vectors recovers single neuron mappings as a special case.

In an attempt to unify different approaches for interpreting image classifiers,
[18] provides a rich set of visualizations showing how a network’s latent represen-
tation evolves across layers, including visualizations that combine the represen-
tations of all neurons into a single image. [9] and [3] study individual neurons in
language processing tasks. [8] provides a toolkit for analyzing individual neurons
in practice.

3 Algorithmic Compositional Explanations

3.1 Setup

Following [17], we examine the 512 individual neurons (or “filters”) from the
last hidden layer of ResNet-18 [14] trained on places365 [24]. To predict neuron
activations algorithmically, we use the Broden dataset introduced in [23].
1 While mean IoU scores are not reported in the paper, [17] finds a mean of 0.059 for

ResNet in what (as far as we can tell) is an identical setting.
2 Even though this similarity is also measured by IoU, a quantitative comparison to

our results is not possible because [10] does not examine neurons from ResNet.
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In Broden, images are annotated with 1197 different classes that each belong
to one of the six categories ‘color’, ‘object’, ‘part’, ‘material’, ‘scene’, and ‘tex-
ture’, where the last two categories annotate on a per-image basis, the remain-
ing ones on the pixel level (112× 112). Annotations are non-overlapping within
each category but can overlap between categories, e.g., the same pixel can be
annotated as ‘car’ (object), ‘car dealership’ (scene), and ‘gray’ (color). Broden
combines several datasets, but only images from Ade20k [25] have been used in
this work.

Neurons from the last hidden layer of ResNet output a 7× 7 grid of numbers
for each input image. This induces a division of each image into 49 cells, and we
write C to denote the set of all cells from images in Ade20k so that each neuron
n can be viewed as a function n : C → R.

In this setting, each choice of a threshold tn ∈ R induces a binary function
fn : C → {1, 0}, where fn(c) = 1 iff n(c) > tn. We call fn the neuron mask for
n and the value 1

|C|
∑

c∈C fn(c) ∈ [0, 1] the coverage of fn. Following [23] and
[17], we choose thresholds tn such that each neuron mask has coverage 0.5%.

To make human-annotated concepts comparable with neuron masks, they
have been downsampled from their 112× 112 resolution to 7× 7 using block-
based downsampling with a threshold of 100 (i.e., for each pixel-based class,
each image is divided into 49 16× 16 blocks corresponding to the cells in C, and
the class is considered to activate on that block if it activates on at least 100 of
the 256 pixels). Image-level classes are converted to 49 or 0 activated cells, respec-
tively. Previous approaches [4,17,23] instead rescale neuron activations to the
112× 112 resolution using bilinear upsampling, but this makes the approach com-
putationally infeasible given the connectors introduced in the upcoming Section.
Given that the 7× 7 neuron activations constitute the ground truth for this task,
it is also unclear whether upsampling is desirable.

3.2 Connecting Annotated Concepts

In [17], human-annotated concepts are combined using the logical connectors
AND, OR, and AND NOT, but many non-logical connectors are also possible.

Motivated by the observation that some neurons seem to care about two con-
cepts appearing concurrently, we have introduced the binary connectors CLOSE
TO and WITH, which restrict a given neuron mask fn to cells where a second
mask fm activates within a two-cell radius (CLOSE TO) or anywhere in the
same image (WITH). Furthermore, we found that some neurons that care about
a specific concept also activate on cells adjacent to the concept. To capture this
behavior, we have introduced the unitary connector EXPAND that widens the
area of a single concept.

Formally, writing ∨,∧,¬ to denote logical connectors, fn, fm for neuron
masks, C,D,E, F ∈ C for cells, im(C) for the set of the 49 cells in the image
corresponding to C, and N(C) for the set of (at most 21) cells in the 5 × 5 square
with corners removed around C, the three connectors can be defined as follows:

– (fn WITH fm)(C) := fn(C) ∧ ∨
D∈im(C) fm(D).
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– (fn CLOSE TO fm)(C) := fn(C)∧∨
D∈N(C) fm(D). Furthermore, we define

(fn CLOSE fm) := ((fn CLOSE TO fm) OR (fm CLOSE TO fn)). Note
that (fn CLOSE fm) is treated as a formula of length 2.

– EXPAND(fn)(C) := fn(C) ∨ ∨
(D,E,F )∈adjacent3(C) fm(D) ∧ fm(E) ∧ fm(F ),

where adjacent3(C) is the set of all triples of three different cells adjacent to C
(diagonal adjacency is permitted). EXPAND is applied to singular concepts
only and does not increase formula length. We abbreviate it by the postfix
-X, e.g., we write chair-X rather than EXPAND(chair).

One thing to keep in mind is the difference between the accuracy of an
approximation (as measured by, e.g., IoU) and how much it helps a human
understand the concept. For example, we will show in Sect. 5 that increasing the
length of formulas increases IoU for either algorithm, but a formula of length
10 may still be less useful than one of length 3. We believe that the non-logical
connectors introduced above (including the abbreviation “A CLOSE B”) are
intuitively simple and thus helpful for genuine understanding.

Throughout the paper, we refer to the algorithm using the new connectors
as the “Close Algorithm” and the algorithm relying exclusively on AND, AND
NOT, and OR as the “standard algorithm”. We refer to masks produced by
formulas from either algorithm as “label masks”.

4 Locality and the ImRoU Metric

As mentioned in Sect. 3.1, Broden contains both pixel- and scene-level annota-
tions. Scene-level annotations are made on a per-image basis, meaning that each
image is either annotated fully or not at all. When optimizing for IoU with for-
mula length 3, the standard algorithm finds a set of formulas in which over half
of all primitive labels are scene-level.

At first glance, one may suspect that this reflects behaviors exhibited by
the corresponding neuron masks. However, Fig. 1 shows that even neuron masks
whose formula contains three scene-level annotations predominantly activate on
small parts of their images (red graph), if they activate at all. This makes the
algorithm’s reliance on scene-level annotations intuitively undesirable. Further-
more, comparing them to neuron masks whose formulas contain zero scene-level
annotations (blue graph) shows only marginal differences.

One way to discourage scene-level annotations is to add a penalty term
that disproportionately affects false positives in images where neurons activate
strongly. Given two masks fn, fm : C → {0, 1} (think of one neuron-, and
one label mask), let N and M be the sets of cells on which they activate, i.e.,
N = {c ∈ C : fn(c) = 1}. One can compute a “random intersection” for each
image I, which is equal to the expected size of the intersection N ∩ M if all
cells of M were chosen uniformly at random out of I (see Fig. 2 for an example).
Based on this, we introduce the metric ImRoUr (Intersection minus Random
Intersection over Union), which is computed by subtracting r times the random
intersection (summed over all images) before dividing by the union. Formally,
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Fig. 1. Relative frequencies of images where neurons activate on exactly n cells, for
different values of n, averaged across all neurons with zero (blue) and three (red) scene-
level annotations in the formula of length three found by the standard algorithm. Most
images (94.5% and 94.7% for the blue and red group, respectively) have no activations
at all; the percentages shown are of only the set of images with nonzero activations.
This was done to make the graphs readable. (Color figure online)

ImRoUnot-normalized
r (N,M) =

∑
I∈I |N ∩ M ∩ I| − r · 1

|I| · |M ∩ I| · |N ∩ I|
|N ∪ M | .

(1)

where I is the set of all images. Normalized ImRoUr is obtained by dividing the
above expression by the maximally achievable score for a given neuron mask.3

We write ImRoUr to refer to normalized ImRoUr throughout the paper.

Fig. 2. An example illustrating the concept of random intersection. A neuron mask
(red) and label mask (blue) intersect at 7 cells (purple). As the neuron mask covers 14
cells, choosing 21 cells in this grid at random would lead to an expected intersection of
6 cells, which means that the label mask achieves an intersection of 7 against a random
intersection of 6. With r = 0.75, this leads to a value of 2.5 (as supposed to 6) in the
respective summand in the nominator of (1). (Color figure online)

Choosing a value for r is non-trivial. With r = 1, every scene-level annotation
achieves a score of 0 regardless of neuron behavior as the real intersection is
always equal to the random intersection, which is intuitively undesirable. Thus,

3 If the neuron mask is N , this can be computed as (|N | − (r/|I|) ∑
I∈I |N ∩ I|2)/|N |.
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we have used r = .75 for all results reported on in this paper. Figure 3 compares
masks found by the Close Algorithm optimizing for ImRoU.75 with masks found
by the standard algorithm optimizing for IoU.

5 Results

5.1 Scene-Level Annotations

When the standard algorithm is optimized for IoU, it finds (52, 146, 196, 118)
formulas using (0, 1, 2, 3) scene-level annotations, whereas the Close Algorithm
finds (120, 197, 136, 59). When ImRoU.75 is optimized for instead, the numbers
change to (331, 153, 23, 5) and (398, 100, 14, 0), respectively. While it will come
as no surprise that ImRoU.75 discourages scene-level annotations, it is also worth
noting that the standard algorithm uses them more than the Close Algorithm.
As shown in the upcoming Section, the Close Algorithm improves upon the
accuracy of the standard algorithm according to either metric. Thus, these results
may indicate that improving approximation quality will disincentivize scene-level
annotations naturally.

5.2 Scores

Table 1 provides a quantitative comparison between the Close- and standard
algorithm.4 While the Close Algorithm does better, its absolute accuracy remains
poor. E.g., if the neuron and label masks have the same coverage, an IoU score
of 0.1 means that more than 80% of the positive predictions made by the label
masks are inaccurate.

Table 1. IoU and ImRoU.75 scores of the standard vs. Close Algorithm for formula
lengths 3 and 10. Each cell shows mean/median scores in % for the respective setting.

IoU ImRoU.75

FL3 FL10 FL3 FL10

Standard 8.4/7.5 9.9/9.2 6.1/5.2 7.2/6.5

Close 9.3/8.4 11.3/10.4 7.3/6.4 8.9/7.9

We can identify at least two different hypotheses to explain this:5

4 Results for individual neurons differ from those in [17] because we use downsam-
pling to make annotations comparable (see Sect. 3.1), but the difference is mild and
does not systematically skew in either direction. At formula length 10, the standard
algorithm achieves a mean IoU of 0.099 (rounded to 3 decimal places) in both cases.

5 In [17], Mu and Andreas find diminishing returns of predictive performance from
raising the formula length beyond 10, which is evidence against the third hypothesis
that neurons frequently combine more than ten human concepts.
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Fig. 3. Examples of masks found by the standard algorithm optimizing for IoU (first
row) vs. masks found by the Close Algorithm optimizing for ImRoU.75 (second row),
at formula length 3. Here, the neuron masks are shown in red and the masks found
by the algorithm in blue; intersected areas are purple. Scene-level concepts have the
postfix -s. The numbers at the end of each line denote ImRoU.75 and IoU scores in
%. The three neurons shown here have been selected to be illustrative rather than at
random. (Color figure online)
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Hypothesis (1): neurons combine human concepts in ways that are not
represented by AND, OR, AND NOT, CLOSE-TO, WITH, and EXPAND, but
could be represented by different connectors.

Hypothesis (2): neurons activate on concepts that are not annotated in the
Broden dataset, such as the edges of objects.

Differentiating between these hypotheses is important to guide future
research as, e.g., improving scores by adding new connectors is likely to be possi-
ble insofar as problems are due to (1) rather than (2). However, the hypotheses
are not mutually exclusive.

6 User Study

We have conducted a small user study in which two participants take the role of
the algorithm in predicting image activations. To the extent that they outperform
the algorithm, their descriptions for their neurons are evidence on the distinction
between hypotheses (1) and (2) mentioned in Sect. 5.

6.1 Study Design

The two participants were selected among people who have completed a course
in computer science or statistics and did well on a pilot study with a similar
task. Each participant was given access to a large set of images and ground-
truth neuron masks through a simple web-based application. The application
allows hand-drawing masks and displays the ImRoU.75 score averaged across
those masks. After training for 40 min, participants were asked to test their
understanding by drawing masks for the neuron for a disjoint random sample
of 60 images. Each participant had access to the algorithmically computed label
masks (but not the formula) for one of the two neurons. After the task, partici-
pants were asked to provide a brief description of their neuron (up to 2 sentences)
and to describe interesting patterns they noticed (up to 10 sentences).

As mentioned in Sect. 4, neurons typically do not activate at all on over 95% of
images. Furthermore, over 55% of the remaining images are still approximately
false positives as the neurons only activate on 1–3 cells. For this reason, we
considered it acceptable to only include images with nonzero activations, as
otherwise, the task becomes tedious for the participants. The Close Algorithm
was retrained on this altered data set, achieving mean and median ImRoU.75

scores of .158 and .152, respectively (up from .089 and .079). Image subsets
shown to annotators have been sampled uniformly and subsequently pruned to
be disjoint for each neuron.

6.2 Results

Participants outperformed the algorithm on all four neurons. Table 2 shows the
quantitative results; Table 3 contrasts the short description given by the human
with the formulas found by the Close Algorithm. The participants completed
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neurons 353 and 329 first, respectively. Access to label masks had a slight neg-
ative correlation with relative performance (mean performance relative to the
algorithm on neurons with/without access was 1.261 and 1.277, respectively).

Table 2. ImRoU.75 scores achieved by human annotators (“Human Score”) vs. the
Close Algorithm (“CA Score”) on the test set (60 images, uniformly sampled), where
“Ratio” denotes Human Score

CA Score

Neuron Human score CA score Ratio Access

69 0.240 0.170 1.412 No

154 0.213 0.187 1.142 Yes

329 0.072 0.063 1.142 No

353 0.220 0.159 1.379 Yes

6.3 Discussion

The descriptions given by the participants include evidence for both hypotheses
– in fact, this is already true for just neuron 69. “[T]he front left pocket of a
pool table” could be algorithmically annotated using a new LEFT-OF connec-
tor, whereas “rectangles on the face of things” would require a new ground-truth
annotation of shapes rather than objects. Other descriptions in the latter cate-
gory include “potted plants in the forefront of images” (this would require dif-
ferentiating between foreground and background), “the area where you can sit
and reach a table”, and “where you would sit on a bed”. Conversely, “vertically
hung clothes” could in principle be found algorithmically, though this would be
difficult.

To get a qualitative sense of this task, consider the following response to the
“describe interesting patterns” question for neuron 353:

At first I thought the filter was just selecting tables and chairs (and that
seems to be what the label mask is filtering on), but there was definitely
a tendency to only pick the areas that were within reach of a surface,
so a chair alone may not necessarily be highlighted, but a chair with an
end table would definitely be, but just the area above the chair, and the
surface within reach. For something like a couch or a bed, it would only
highlight the side by the table. As the images were more complex, the
area highlighted tended to be smaller, so a table with 12 chairs that filled
the image would have a smaller proportion highlighted than a small table
with a single chair. It also tended to select the side closest to the camera,
I think, though I just realized that was what it was doing after the case,
and it may not really be the case, but there was a bias to a specific side.

Insofar as these observations reflect true behaviors of the neuron, the response
may shed further light on why the task remains challenging to do algorithmi-
cally. Determining that a neuron cares about a particular object may fail to
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Table 3. Descriptions given by human annotators vs. formulas found by the Close
Algorithm (trained on the subset of only images with nonzero activations)

N# Human description Close algorithm formula

69 Dark windows/doors/corridors/pits;
windows or rectangles on the face of things
(e.g. bulletin boards/lattices); the

top/middle of the first cabinet on the

right, the front left pocket of a pool table

(((door-X OR pool table OR house)
AND NOT kitchen-s) OR drawer OR
elevator door OR elevator OR telephone
booth OR hovel OR arcade machine)

154 Snowy mountains, greenhouses (especially
ceilings)

((((((mountain OR ice) CLOSE TO
sky-X) OR greenhouse OR tent OR
iceberg OR canopy) AND NOT
greenhouse-indoor-s) OR truck) AND
NOT wall-X)

329 Bedsheets, curtains, shelves, people’s
center of mass/chest area, rough stone
structures including sculptures, pool tables,
potted plants in the forefront of images

(bed-X OR rock OR person OR apparel
OR sofa-X OR shirt-X OR armchair
OR cliff OR viaduct-X OR aqueduct-X)

353 The area where you can sit and reach a
table, and the area above that table,
including chairs, couches, toilets, and
where you would sit on a bed. Also,
vertically hung clothes and occasionally
organizers with books/clothes

(table-X OR cradle-X OR chair-X OR
shirt-X OR apparel-X OR pillow-X OR
jacket-X OR cushion-X OR back-X OR
back pillow-X)

translate into a good score if the solution misses out on subtleties of this kind.
The CLOSE-TO connector can plausibly help with this, but it often remains a
crude approximation, e.g., it cannot determine whether a table is within reach
of a chair since the spatial distance in the scene is not strictly proportional to
the cell-based distance in the image. In fact, the Close Algorithm did not choose
any non-logical connectors for neuron 353 other than EXPAND, proving that
the CLOSE-TO connector is not helpful for predicting this particular neuron.

One may argue that the existing metrics are unfairly harsh as they fail to
take proximity into account: if the label mask predicts an incorrect cell, it makes
no difference whether the predicted cell is adjacent to a cluster of correct cells or
in an entirely different image. Unfortunately, a metric that cares about distance
is computationally expensive, making this problem difficult to address.

Due to the small sample size, these results do not permit a more quantitative
analysis. However, future experiments including more participants may make this
possible.

Finally, these results show that (a) it is possible for humans to outperform the
algorithm on this task, and (b), there is a substantial similarity between human
descriptions and algorithmic formulas.6 This is worth pointing out as there is
precedent of interpretability tools failing comparable “sanity checks” [1].

6 For all four neurons, there has been an overlap between the set of objects picked by
the algorithm and the human description. E.g., doors, mountains, beds, tables.
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