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Abstract. Recent advancements in computer vision have seen a rise
in the prominence of applications using neural networks to understand
human poses. However, while accuracy has been steadily increasing on
State-of-the-Art datasets, these datasets often do not address the chal-
lenges seen in real-world applications. These challenges are dealing with
people distant from the camera, people in crowds, and heavily occluded
people. As a result, many real-world applications have trained on data
that does not reflect the data present in deployment, leading to signif-
icant underperformance. This article presents ADG-Pose, a method for
automatically generating datasets for real-world human pose estimation.
ADG-Pose utilizes top-down pose estimation for extracting human key-
points from unlabeled data. These datasets can be customized to deter-
mine person distances, crowdedness, and occlusion distributions. Models
trained with our method are able to perform in the presence of these
challenges where those trained on other datasets fail. Using ADG-Pose,
end-to-end accuracy for real-world skeleton-based action recognition sees
a 20% increase on scenes with moderate distance and occlusion levels,
and a 4× increase on distant scenes where other models failed to perform
better than random.
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1 Introduction

Human Pose Estimation has seen vast improvements in recent years. This accu-
racy increase has led to their adoption in real-world applications that bene-
fit from understanding human poses. Smart surveillance, public safety, medical
assistance [3,11,14]; are examples of real-world applications that rely on pose
information. Unfortunately, despite the current State-of-the-Art (SotA) achiev-
ing upwards of 80–90% accuracy on popular datasets, that accuracy often fails
to transfer to real-world scenarios. The number of high-quality datasets with
human pose annotations is alarmingly small, as creating them is expensive and
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time-consuming. Real-world applications are often trained on one of these few
datasets, regardless of whether the dataset represents the type of scenes present
in deployment.

The disconnect of the training data and inference data (i.e. data seen dur-
ing deployment) often leads to high-accuracy models, when tested on datasets,
underperforming in real-world applications. This disconnect is exceptionally
strong in applications that need to detect persons in crowded scenes, heavily
occluded persons, or persons very distant from the camera, particularly if the
application uses bottom-up pose estimation. A few datasets have been intro-
duced to address some of these issues [12,16,27], but they all only address a
single issue at a time. Further, they use different skeletal structures, making it
difficult to utilize them to train a single network. As such, there is a need for
datasets that fill the gaps that are left by the current offering.

This article proposes ADG-Pose, a method for generating datasets designed
specifically for real-world applications. ADG-Pose allows for the customization
of the data distribution along three axes: distance from the camera, crowdedness,
and occlusion. ADG-Pose uses high-accuracy models trained on existing datasets
to annotate ultra-high resolution images. From there, high-resolution images are
created that fit within the distribution parameters set by the user, resulting in a
machine annotated dataset customized towards the target real-world application.
To validate our method, we create Panda-Pose, a custom dataset suited towards
parking lot surveillance. We take a model previously trained on COCO [13] and
train it on Panda-Pose. We provide comparisons between the two models on
both COCO and Panda-Pose, including F1-score to account for false negatives.
We also provide qualitative results that show what validation accuracy fails to;
models trained on Panda-Pose detect people completely missed by those trained
on COCO. Often, these are not even annotated, whether because they are too
distant from the camera, in too large a crowd, or too occluded, and do not
contribute to validation accuracy.

As a final test of real-world viability, we compare how models trained on
Panda-Pose and those trained on COCO affect end-to-end accuracy when used
as a backbone for real-world skeleton-based action recognition on the UCF-
ARG dataset [6]. When using Panda-Pose for training, we see an increase of
20% and 30% on the ground and rooftop scenarios respectfully. For the rooftop
scenario, the COCO-trained models resulted in an accuracy equivalent to random
guessing.

In summary, this paper encompasses the following contributions:

1. We identify and formulate the data gaps and limitations of existing publicly
available datasets for real-world human pose estimation.

2. We propose ADG-Pose, a novel method for the automated creation of new
datasets that address real-world human pose estimation, customizing for dis-
tance from camera, crowdedness, and occlusion.1

1 Code available at https://github.com/TeCSAR-UNCC/ADG-Pose.

https://github.com/TeCSAR-UNCC/ADG-Pose


260 G. Alinezhad Noghre et al.

3. We present Panda-Pose, an extension over the existing Panda dataset, to
demonstrate the benefits of ADG-Pose to address real-world pose estimation
in smart video surveillance applications.

4. We further demonstrate the benefits of ADG-Pose and Panda-Pose in context
of real-world skeleton-based action recognition.

2 Related Work

Keypoint-based human pose estimation can largely be separated into two main
categories: top-down methods that work off person crops and bottom-up methods
that work off entire scenes. Top-down methods are generally used for single
person pose estimation and are assumed to have person crops provided to them
[9,17,21]. Top-down methods can be adapted for multi-person pose estimation by
attaching them to an assisting detection network that generates person crops [4,
8]. In contrast to top-down methods, bottom-up methods look at the entire scene
image and detect all keypoints for all persons at once, using further processing to
group them to each individual [2,5,10,19,25]. Bottom-up methods are often less
computationally complex than top-down methods, as top-down methods have to
process data for each individual separately, scaling linearly with the number of
persons. In contrast, bottom-up approaches have static computation regardless
of the number of persons in a scene. This has led to some works focusing on
lightweight inference and real-time performance [15,18].

MPII [1] contains 25k images with 40k persons. Images are taken from
YouTube videos and have annotations for 16 keypoint skeletons. COCO [13]
contains over 200k images and 250k person instances. COCO has 17 keypoint
pose annotations for over 150k persons and is widely used to train and vali-
date SotA models. AI Challenger [24] consists of 300k images containing persons
labeled with 14 keypoint skeletons. CrowdPose [12] attempts to address the lack
of crowded scenes in the previous three datasets. Where MPII, AI Challenger,
and COCO have distributions that greatly favor scenes with a low number of
persons, CrowdPose creates its dataset by sampling from the other three in a way
that guarantees a uniform distribution in the crowdedness of the scenes. Crowd-
Pose contains 20k images with 80k persons annotated with AI Challenger style
keypoint skeletons. [27] introduces a new benchmark, OCHuman, that focuses
on heavily occluded scenes. Maintaining an average IoU of 0.67, OCHuman has
4731 images and 8110 persons annotated with COCO-style keypoint skeletons.
Tiny People Pose [16] consists of 200 images and 585 person instances labeled
with modified MPII style keypoint skeletons. The images are focused on persons
far from the camera that take consist of very few pixels. The motivation is to
address the lack of distant persons in common human pose datasets. Similar
focus on distant detection has been seen in object detection [7,22].

3 Real-World Pose Estimation Challenges

There are many challenges when using human pose estimation in real-world
applications. Take smart surveillance as an example. The types of locations
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surveillance cameras are placed are widely varied, even for a single system. In
a shopping mall cameras will be installed in stores, hallways, food courts, and
parking lots. In a store the camera will be closer to people, there will be fewer
people in the scene, and occlusions from the merchandise will be common. In
hallways and food courts there will be lots of people at medium to long distances
to cameras and crowded scenes and occlusions will be prevalent. In parking lots
people will often be very far from the camera and often partially occluded by
vehicles. Overall, we have identified three main challenges of real-world human
pose estimation:

1. Wide Variety of Distances: from an algorithmic perspective, this trans-
lates to the number of pixels a person takes up in an image. This can also be
looked at as the scale of a person compared to the total image resolution.

2. Occlusions: where a person is partially obscured by a part of the environ-
ment or another person.

3. Crowded Scenes: many real-world applications will require pose estimation
in highly crowded locations. In addition to occlusion, a large number of people
can make accurately detecting the poses very challenging.

The major limitation in creating a model that can address all these issues
is the data used for training. The most popular datasets (MPII [1], AI Chal-
lenger [24], COCO [13]) mostly consist of unoccluded people who are relatively
close to the camera in non-crowded scenes. While specialized datasets have been
introduced to address some of these concerns (CrowdPose [12], OCHuman [27],
Tiny People Pose [16]), they each only address a single issue at a time, and their
diverse annotation style and validation methods make it challenging to utilize
them all for training a single model. Currently, no single dataset can adequately
address the three main challenges of real-world human pose estimation.

Fig. 1. Ground truth keypoint annotations (green) from COCO dataset. (Color figure
online)
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Figure 1 displays keypoint annotations from the most prolific keypoint
dataset, COCO. Note how distant persons or those in crowded scenes are not
annotated. In the upper left image, all the persons riding elephants are unlabeled.
On the bottom right image, the vast majority of the crowd is unlabeled. In the
remaining images, persons distant from the camera are unlabeled, despite being
clearly visible. To be fair, hand annotating all these unlabeled people would be
both difficult and time-consuming, so their absence is understandable. COCO’s
annotation files include a number of all null keypoint annotations to go along
with people who might be in the image but are not annotated. During validation,
if extra skeletons that don’t have annotations are detected, the number of null
key points will be subtracted. COCO automatically disregards all but the 20
skeletons with the highest confidence. This is to make sure the networks are not
unjustly penalized for estimating skeletons for unlabeled people. Additionally,
accuracy on standard datasets is largely reported based on the “Precision” met-
ric, while the “Recall” metric (which includes false negatives) is often ignored. So
even if false negatives still occur, they are automatically disregarded by standard
validation metrics (i.e. COCO validation).

These limitations can disproportionately affect bottom-up approaches, often
preferred for real-world applications due to their much lower computational
complexities and much better real-time execution capabilities. In contrast to
top-down approaches, bottom-up methods aim to detect persons on their own.
The lack of labels can hurt them in both training, where they do not learn to
detect distance people, and validation, where they will not be penalized for
the large majority of their false negatives (hallucinating persons that are not
actually there).

4 ADG-Pose

We propose ADG-Pose, a method of Automated Dataset Generation for real-
world human pose estimation. ADG-Pose aims to address all three mentioned
challenges in the previous section. ADG-Pose enables users to determine the
person scale, crowdedness, and occlusion density distributions of the generated
datasets, allowing for training environments that better match the distributions
of the target application.

Figure 2 shows the three main stages of ADG-Pose. First, a high accuracy
top-down human pose estimation model is used to label ultra-high resolution
images. By utilizing ultra-high resolution images and a top-down approach, we
can mitigate potential issues with annotating distant people as the absolute res-
olution of the person crops will still be large enough to ensure high accuracy.
Second, we take the fully annotated ultra-high resolution images and generate
semi-random crops from them. These crops are semi-random because we intro-
duce user-defined parameters to ensure the final dataset will match the desired
statistics. First, the user can determine the resolution range to take crops at. To
better detect distant persons, larger resolution crops can be used and downscaled
to the desired input resolution, thus mimicking larger distances. Second, the user
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Fig. 2. Custom dataset generation. Beginning with ultra high resolution images, a
pretrained top-down pose estimation model is used to generate high accuracy key-
point annotations. Semi-random cropping is used to generate numerous high resolution
images inline with user specified statistic, forming the new dataset.

can determine the maximum, minimum, and mean number of persons in a crop.
This allows for customization of how crowded a scene is. Third, the user can
specify the desired average IoU between people in the crop, tweaking the overall
level of occlusion in the dataset. After these crops are made and the statistics
verified, the resulting images and annotations are synthesized into a new multi-
resolution dataset. Additional user-defined parameters include the total size of
the dataset, ”train/val/test splits”, image aspect ratio, and skeleton/validation
style, which must be compatible with the top-down model used for annotation.

Panda-Pose: As a use-case, we choose a real-world application of smart security
in an outdoor parking lot environment. For skeleton and validation style, we
choose COCO [13] as it is currently the most prominent in the field. We use
HRNet-w32 [21] for our top-down annotation model and choose PANDA [23]
as our base dataset. PANDA is a gigapixel-level human-centric dataset with an
extremely wide field of view (∼1 km2). It contains bounding box annotations for
persons, with some scenes containing up to 4k persons. There are 555 frames
across four outdoor scenes, which would normally be far too few for training.
However, high density and extreme resolution (25k × 14k) result in significant
information per scene and more than adequate generated images. Additionally,
the wide variance in poses, scales, and occlusions allows us to create a range of
challenging datasets for different user specifications. We call the resulting dataset
Panda-Pose.

For the first specification, parking lots will likely include people quite distant
from the camera, resulting in a very small scale. As such, Panda-Pose targets a
person scale distribution on the smaller side. Since detecting small-scale persons
is more complicated than a large-scale person, we heavily weigh the lower end
of the scale spectrum, as can be seen in Fig. 3. The wide field of view of most
parking lot security cameras will allow for a fair amount of people in the scene,
though there is usually enough space that occlusions, while present, will be less
than that of more crowded indoor scenes. As such, we target a relatively high
number of people per image (∼9) and a moderate amount of occlusions (∼0.33).
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We also set a maximum of 30 people per image (for fair comparisons in Sect. 5).
Our aspect ratio is 4:3, the maximum resolution is 3840× 2880, and the minimum
is 480 × 360. There are 83k training, and 21k validation images with 775k and
202k annotated skeletons, respectively. 4% of images are without annotations.
Training and validation splits have matching distributions.

0 0.25 0.5 0.75 1

Panda-Pose

CrowdPose

OCHuman

COCO

Fig. 3. Person scale distributions across
datasets.

Table 1. Person density and occlusion
(IoU) across datasets.

Dataset Persons per image Average IoU

MPII 1.6 0.11

AI Challanger 2.33 0.12

COCO 1.25 0.11

OCHuman 1.72 0.67

CrowdPose 4 0.27

Tiny People Pose 2.93 –

Panda-Pose 9.33 0.33

Figure 3 and Table 1 present the statistics of Panda-Pose compared to existing
popular datasets. Note: stats for Tiny People Pose could not be gathered because
the dataset is not publicly available. Overall, the scale distribution in Panda-
Pose leans noticeably smaller than other datasets. The closest is COCO, whose
scale is about 1.7X larger at every quartile and whose minimum is 5X larger.
Additionally, COCO’s persons per image and average IoU are significantly lower
than Panda-Pose (7.5X and 3X, respectively), putting it well outside our desired
statistic. Looking at average IoU, CrowdPose [12] comes close enough to seem
a suitable replacement. However, CrowdPose has 1

2 the number of persons per
image, and their scale distribution is even worse than COCO’s for our applica-
tion. OCHuman [27] has twice the average IoU, making it far more occluded than
Panda-Pose. This could be argued to be a benefit, as detecting with occlusions is
significantly more challenging. However, people in OCHuman are generally very
close to the camera, taking up nearly the whole image with an average scale of
0.844. All this shows that while other datasets can address part of the challenges
for our chosen application, only Panda-Pose addresses them all, matching the
desired statics for training and validation.

5 Results and Evaluation

To validate the efficacy of ADG-Pose, we train a bottom-up pose estimator on
Panda-Pose (Sect. 4) and use it to compare Panda-Pose with the baseline COCO
[13] dataset. For the bottom-up pose estimator, we use EfficientHRNet [15] for
its lightweight and real-time execution capabilities, making it more suitable for
real-world applications. In addition, its scalability allows us to test with different
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network complexities. In this article, we use EfficientHRNet’s H0 and H1 models.
EfficientHRNet by default limits the number of detections to 30, fitting with
the COCO dataset. To more fairly compare, we take the same approach when
training and validating with our dataset. Training on Panda-Pose starts with
pretrained models and is fine-tuned for 150 epochs with a learning rate of 1e−5
for H0 and 1e − 6 for the larger H1.

Table 2. Precision, recall, and F1-score on COCO val.

Method Backbone Input size AP AR F1

Trained on COCO

OpenPose [2] – – 61.0 – –

Hourglass [17] Hourglass 512 56.6 – –

PersonLab [19] ResNet-152 1401 66.5 – –

PifPaf [10] ResNet-152 – 67.4 – –

HigherHRNet [5] HRNet-W32 512 67.1 – –

HigherHRNet [5] HRNet-W48 640 69.8 – –

LOGO-CAP [25] HRNet-W32 512 69.6 – –

LOGO-CAP [25] HRNet-W48 640 72.2 – –

EfficientHRNet-H0 [15] EfficientNet-B0 512 64.8 69.6 67.1

EfficientHRNet-H1 [15] EfficientNet-B1 544 66.3 70.7 68.4

trained on Panda-Pose

EfficientHRNet-H0 [15] EfficientNet-B0 512 50.6 59.2 54.6

EfficientHRNet-H1 [15] EfficientNet-B1 512 48.9 56.8 52.6

Evaluation on COCO: To show how H0 trained on Panda-Pose compares with
SotA models trained on COCO, we conduct validation on the COCO dataset.
Table 2 contains accuracy when validated on COCO val (including precision,
recall, and F1-score) while Fig. 4 shows qualitative examples from validation.
Looking at the reported validation accuracy, the Panda-Pose trained H0 performs
significantly worse than all other models. However, when looking at actual exam-
ples from the validation set, we see a completely different story. As discussed in
Sect. 3 ground truth annotations are missing from distant people or in crowded
scenes. This leads to lots of missed detections from COCO trained models, as
seen in the center row. Multiple persons in the crowded scene on the left and
distant people in the middle and right image are not detected. The Panda-Pose
model is able to detect all persons in the first two images and only misses the
single most distant person in the last image. However, since these people are
not annotated on the COCO dataset, the COCO model does not get penalized
for missing them and the Panda-Pose model does not benefit from being able
to detect them, at least as far as COCO validation is concerned. However, real-
world applications like our test case would weigh being able to detect distant
persons much higher. Additionally, while the Panda-Pose model is not perfect, it



266 G. Alinezhad Noghre et al.

also attempts to detect highly occluded persons. Looking at the leftmost image,
the network greatly misinterprets that person’s pose by trying to predict key
points for the highly occluded person behind the man serving the ball. Mean-
while, the COCO model does not even detect that person. Another thing to note
is how the H1 Panda-Pose model with an input resolution of 768 actually per-
formed worse than H0 on COCO val. This is caused by lower resolution COCO
images’ upscaling to fit the higher input resolution, leading to additional noise.
This is in line with the conclusions made in [5].

Table 3. Precision, recall, and F1-score of EfficientHRNet models on Panda-Pose.

Method Backbone Input size AP AR F1

trained on COCO

EfficientHRNet-H0 EfficientNet-B0 512 20.2 24.0 21.9

EfficientHRNet-H1 EfficientNet-B1 544 21.1 25.1 23.4

trained on Panda-Pose

EfficientHRNet-H0 EfficientNet-B0 512 31.4 38.7 34.7

EfficientHRNet-H1 EfficientNet-B1 512 34.6 44.0 38.7

EfficientHRNet-H0 EfficientNet-B0 768 36.5 44.0 39.9

EfficientHRNet-H1 EfficientNet-B1 768 41.3 49.9 45.2

Evaluation on Panda-Pose: As explored in Sect. 3, the COCO dataset does
not accurately represent our target real-world application. Since Panda-Pose was
created to closely match our target application we look at how the performance
of models trained on COCO compare with those trained on Panda-Pose. This
dataset is significantly more challenging than COCO, with 7.5× the number
of persons per image, 3× the occlusions, and a significant shift in distribution
towards smaller scale persons. As seen in Table 3, EfficientHRNet-H0 trained on
COCO barely reaches past 20% AP and has an F1-score of 21.9%. Moving to
the H1 model increases AP to 21.1% and F1 to 23.4%. In contrast H0 trained
on Panda-Pose reaches an AP of 31.4% and F1 of 34.7%, and increase of 1.5×
and 1.6× respectively. Increasing the resolution of H0 to 768 increases AP to
36.5% and F1 to 39.9%, which is a 15% increase with no other changes to
the model. Notably, increases to 768 resolution have a negative effect on COCO
accuracy [5], but since Panda-Pose is much higher resolution, performance is
improved. This effect is even more prominent than simply increasing the model
size without changing the resolution. However, changing the model size to H1

and the resolution to 768, we see an AP of 41.3% and F1 of 45.2%, double
what was achievable with the COCO model.

While these results are important, the COCO trained models are at an obvi-
ous disadvantage having not trained on Panda-Pose. In addition to the clear
challenges of scale, crowdedness, and occlusions, COCO models must combat
general domain shift that Panda-Pose models do not. As such, we must use a
third dataset unseen by both COCO and Panda-Pose models.
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Fig. 4. Top: COCO ground truth keypoints (green). Middle: H0 predictions when
trained on COCO. Bottom: H0 predictions when trained on Panda-Pose. In all cases,
red boxes denote unannotated or undetected persons. (Color figure online)

Case Study - Action Recognition: Continuing with the use case of park-
ing lot surveillance, we assess the end-to-end performance of real-world action
recognition on the UCF-ARG dataset [6]. UCF-ARG consists of 10 actions by
12 actors on three different high resolution (1920 × 1080) cameras. We focus on
the “Ground” and “Rooftop” cameras, as the aerial camera does not fit our use
case. We utilize a spatial-temporal graph convolutional network which uses a
graph-based formulation to construct dynamic skeletons [26], and add attentive
feedback to predict actions, as in [20]. The skeletal poses come from H0.

The COCO trained model achieves 60% accuracy on Ground and 10% accu-
racy on Rooftop, the latter of which is random guessing. As seen in Fig. 5, the
COCO trained model is completely unable to detect the highly distant persons
in Rooftop. The model trained on Panda-Pose is able to achieve much better
results of 81% on Ground and 40% on Rooftop. Not only is it able to detect
more persons in Ground, leading to a 1.35× increase in end-to-end accuracy,
but it can effectively detect people in Rooftop where the COCO model failed.
The significantly smaller person scale distribution of Panda-Pose gives models
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Fig. 5. Sample images from UCF-ARG Ground (left) and Rooftop (right) with COCO
(blue) and Panda-Pose (pink) predictions. (Color figure online)

the ability to accurately detect people much farther from the camera than other
datasets, which is an ability completely overlooked in COCO’s validation. How-
ever, the quality of the poses does slightly suffer from lack of information of very
distant persons, as can be seen in Fig. 5. These results emphasize the efficacy of
Panda-Pose and ADG-Pose for real-world applications.

6 Conclusion

In this article we presented ADG-Pose for generating datasets for real-world
human pose estimation. Current SotA datasets do not always address the chal-
lenges faced by real-world applications, which often leads to unexpected under
performance. By using ultra-high resolution images and high accuracy neural
networks, ADG-Pose allows users to customize datasets towards their chosen
application by determining the data distribution along the axes of crowdedness,
occlusion, and distance from the camera. We have shown through quantitative
and qualitative analysis how validation on current SotA datasets can fail to
properly address the challenges of real-world applications, and we have pro-
vided real-world skeleton based action recognition as a use case to show how our
method produces models better suited for real-world applications.
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