
A Hierarchical Prototypical Network
for Few-Shot Remote Sensing Scene

Classification

Manal Hamzaoui(B), Laetitia Chapel, Minh-Tan Pham, and Sébastien Lefèvre
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Abstract. Few-shot learning (FSL) aims at making predictions based
on a limited number of labeled samples. It is a hot topic in many fields
such as natural language processing, computer vision and more recently,
remote sensing. In this work, we focus on few-shot remote sensing scene
classification which aims to recognize unseen scene categories at training
stage from few or even a single labeled sample at test stage. Although
considerable progress has been achieved in this topic, less attention has
been paid to leveraging the prior structural knowledge. In this paper, we
learn transferable visual features by introducing the class hierarchy which
encodes the semantic relationship between the classes. We build on a
prototypical network and we define hierarchical prototypes that allow us
to encode the different levels of the hierarchy. Experiments conducted
on the remote sensing NWPU-RESISC45 dataset demonstrate that the
proposed hierarchical prototypical network acts as a regularizer and leads
to better performance than the original network in the context of few-
shot remote sensing scene classification.

Keywords: Few-shot learning · Class hierarchy · Scene classification ·
Remote sensing

1 Introduction

Scene classification is an important research topic in remote sensing which aims
to automatically assign a specific semantic category to each remote sensing scene
image. Deep learning frameworks have been applied to this problem and have
achieved outstanding performance on most remote sensing image scene classifica-
tion (RSISC) datasets. They essentially extract end-to-end features from images
using deep neural networks such as Auto-Encoders [6] and Convolutional Neural
Networks (CNN) [14]. However, most of supervised deep remote sensing scene clas-
sification algorithms are “data-hungry” as they require a large amount of labeled
data for training. When the labeled data are insufficient, there would be an obvi-
ous over-fitting and irrelevant extracted features, leading to a degradation of clas-
sification performance. However, obtaining labeled samples may be tough as it is
labor-intensive, time-consuming and may need strong human expertise.
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Inspired by the human ability to learn new abstract concepts from very few,
or even one, examples and to generalize quickly to new instances [15], few-shot
learning (FSL) was introduced as one of the alternative ways to deal with the
“data-hungry” issue. FSL methods can be divided into three categories [18]:
metric learning, meta-learning and transfer learning. Metric learning methods
learn a distance function that brings samples from the same category as close
as possible in the feature space while pushing samples from other categories as
far away as possible. As for meta-learning, also known as learning to learn, it
is the most common approach in FSL, which efficiently optimizes the model
parameters to new tasks. Transfer learning aims at using the knowledge gained
from relevant tasks towards new tasks , e.g. fine-tuning the pre-trained models
is a powerful transfer method.

Recently, the combination of meta-learning and metric learning has been one
of the most studied approaches in FSL for natural image classification [17,20] and
for remote sensing scene classification [22]. First, based on meta-learning, these
approaches construct tasks with few labeled samples, which enhances the general-
ization performance of the model for new tasks. Then, the similarity between image
features is measured to make predictions. Some of related methods include relation
network [19], classical matching network [20] and prototypical network [17].

In addition to the sparsity of labeled data, it may be more challenging to
classify remote sensing data than natural images. Indeed, remote sensing scene
images may present confusing visual similarity between different classes. The
large intra-class variation may even exceed the inter-class variance, thus similar
semantic classes may present significant visual dissimilarity [5]. Another chal-
lenge is that remote sensing images are top-down views and contain inevitably
many objects that are not relevant to the semantic class of the scene [10]. Yet,
this characteristic could be very useful in multi-label or hierarchical classification
tasks where several levels of semantic granularity are considered.

In the recent years, many approaches were proposed to tackle the problem
of few-shot remote sensing scene classification (FSRSSC). In [9], the authors
adopted the attention mechanism to delve into the inter-channel and inter-
spatial relationships to discover discriminative regions in the remote sensing
scene images. The authors in [3] used a Siamese-prototype network with pro-
totype self-calibration and inter-calibration to learn more discriminative pro-
totypes. In [22], the authors introduced a pre-training step on the base data
to provide better initialization of the feature extractor and performed the few-
shot remote sensing scene classification using cosine distance metric. However,
to the best our knowledge, the majority of these methods have focused only on
visual scene information to improve feature representations without considering
semantic knowledge that may exist within these classes. Yet this type of seman-
tic knowledge about classes, which can consist of attributes, word embeddings or
even a knowledge graph (e.g. WordNet [13]), is commonly used in zero-shot learn-
ing (ZSL) and increasingly in few-shot natural images classification approaches.

Semantic knowledge is not a novelty in ZSL, since this task can not be accom-
plished without such knowledge. However, in FSL, this semantic knowledge has
hardly been used until recently. [2] proposed the TriNet to tackle the “1-shot”
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task by synthesizing the instance features from the semantic space which is given
by the label embeddings. In [21], the authors proposed a method called Seman-
tic Guided Attention (SEGA) mechanism which leverages semantic knowledge
to guide the visual perception in learning the discriminative visual features of
each class. Most of these FSL approaches that introduce semantic knowledge
involve the text modality . However, few attention has been paid to knowledge
transfer based on the class hierarchy which is either built using text modality as
in [8] or already predefined as in [11]. In [8], the authors proposed a hierarchical
image recognition approach by performing Softmax optimization on all levels of
the class hierarchy. This allows learning transferable visual features through this
class hierarchy which encodes semantic relationships between seen and unseen
classes. In [11], a class hierarchy was introduced to address the multi-class FSL
problem. The authors proposed a “memory-augmented hierarchical-classification
network (MahiNet)” model which leverages the hierarchy as prior knowledge to
train a coarse-to-fine classifier where each coarse class can cover multiple finer
classes.

According to [11], FSL with knowledge transfer can be accomplished inde-
pendently of an additional modality such as text and yields competitive perfor-
mances, when the class hierarchy is known or easily obtained, which fits well with
our research interests. This class hierarchy has been successfully applied to tra-
ditional supervised learning tasks. It can be introduced in the learning process
according to three approaches [1]: a label-embeddings approach, a hierarchi-
cal loss or hierarchical architectures. In label-embeddings approach, a mapping
function is used to encode class relationship information and associate it to class
representations such as soft-labels [1]. Hierarchical loss-based methods adjust the
loss to be optimized by assigning a higher penalty to predictions that are dis-
tant from the true label in the class hierarchy, such as hierarchical cross-entropy
loss [1]. As for hierarchical networks, they introduce the class hierarchy into the
classifier architecture without necessarily changing the loss function, allowing
them to make super-class predictions at early layers and fine predictions at later
layers.

The remote sensing classes can be easily arranged in a hierarchical structure
following well-known organizations such as Corine Land Cover (CLC), the Euro-
pean Nature Information System (EUNIS) habitat classification scheme or other
structures such as done in [12] where they propose a hierarchical organization of
the scene classes of the PatternNet [25] remote sensing scene dataset.

In this work, we rely on the semantic knowledge associated with scene classes
through their hierarchical organization. We build on prototypical networks to
define a hierarchical variant: in a nutshell, hierarchical prototypes are attached
to each level of the hierarchy, allowing us to first consider high-level aggre-
gated information before making a fine prediction. We show on a remote sensing
dataset that it acts as a regularizer, giving better performances not only at the
top nodes of the hierarchy, but also at the leaf classes. We also show that it
performs better than soft-labels [1] that we introduce for the first time (to our
knowledge) in a remote sensing few-shot learning context.



A Hierarchical Prototypical Network for FSRSSC 211

The remainder of our paper is organized as follows. In Sect. 2, we provide
some details about FSL and prototypical networks. Section 3 presents in depth
the proposed method. We describe the experimental setup and the obtained
results in Sect. 4. Conclusion and future works are given in Sect. 5.

2 Few-Shot Classification with Prototype Learning

2.1 Problem Formulation of the FSL

Fig. 1. Illustration of N-way K-shot classification episodes. The left side shows the M
episodes of the training step; each episode consists of N × K support samples and
N ×K′ query samples. The testing step is similarly defined on M ′ episodes, as shown
on the right.

In few-shot classification, we assume that we have two sets, a large labeled
training set, referred to as the base set Dbase, and a test set with few labeled
images per class, the novel set Dnovel. The classes that constitute the base and
novel sets, denoted Cbase and Cnovel respectively, are disjoint Cbase∩ Cnovel = ∅.
To mimic the sparsity of the test data in the training stage, we adopt the N-way
K-shot strategy (an episodic learning strategy) used in various FSL studies [17,
20], in which N refers to the number of classes and K (usually set to 1 or 5)
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is the number of labeled images per classes during a training/testing episode.
For each episode, we randomly sample a subset of N classes out of Cbase during
training and out of Cnovel during testing, which we denote Ce, to construct the
episode support set S and the episode query set Q. During a training episode, we
randomly sample K labeled images from Dbase for each class c ∈ Ce, resulting
in the episode support set S = {(xi, yi)}N×K

i=1 , where xi is an image and yi ∈
Ce its corresponding label. Similarly for the episode query set Q, K ′ labeled
images are sampled from the base set Dbase for each class c ∈ Ce, resulting in
Q = {(xq, yq)}N×K′

q=1 . In this training step, the support set S and the query set
Q are used to learn the model that projects the input images into the feature
space. The testing step is also carried out with the same episodic strategy where
we have an unlabeled query set Q (drawn from Dnovel) for which we want to
predict the class label of each query sample xq ∈ Q using the labeled support set
S (also drawn from Dnovel). Figure 1 shows a visualization of the N-way K-shot
episodes.

2.2 Prototypical Networks

Prototypical networks [17] adopt an episodic strategy to train a meta-learner
classifier M. Given an episode with a support set S and a query set Q, we
compute the representations of the images in S using the meta-learner feature
extractor fΦ (a neural network such as CNN) parameterized by Φ. Thereafter,
the representations are averaged to compute the prototypes pc for each class
c ∈ Ce as follows:

pc =
1
K

∑

(xi,yi)∈Sc

fΦ(xi) (1)

where Sc is the subset of the episode support set S that contains the samples of
class c ∈ Ce.

To optimize the feature extractor fΦ, we minimize the loss function:

L = − 1
N × K ′

∑

c∈Ce

∑

(xq,yq)∈Qc

log pΦ(yq = c | xq) (2)

where Qc is the subset of the episode query set Q that contains the samples of
class c, pΦ(yq = c | xq) is the probability of predicting a query sample (xq, yq) ∈ Q
as class c and is given as:

pΦ(yq = c|xq) =
exp(−d(fΦ(xq), pc))∑

c′∈Ce
exp(−d(fΦ(xq), pc′))

(3)

where d(.) represents a certain distance measurement, such as the Euclidean
distance [17] or the Cosine distance [22].
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3 A Hierarchical Prototypical Network for Few-Shot
Image Classification

3.1 Overall Framework

We propose a meta-learning framework whose complete pipeline is illustrated
in Fig. 2 to solve the few-shot problem when a hierarchy that describes the
organization between the classes is available. We train a meta-learner classifier
M by adopting an episodic training strategy. During training stage, using the
support set S, we compute N prototypes P = {pc}c∈Ce

for each class in the
current task (episode) and Nh hierarchical prototypes for their super-classes.
The query features are then compared to both the scene and the hierarchical
prototypes, allowing us to compute an episodic error at different levels of the
class hierarchy H to be minimized and used to finetune the parameters Φ of the
feature extractor fΦ. At testing stage, the parameters Φ of the feature extractor
fΦ are fixed and the meta-learner classifier M is evaluated on a set of episodes
sampled from the novel classes in Dnovel.

Fig. 2. Overall framework of the proposed hierarchical prototypical network for few-
shot image classification. In this example (one-shot), N = 5, Nh = 5, K = 1, K′ > 1
(usually set to 15).

3.2 Hierarchical Prototypical Network

Some works have already attempted to introduce the class hierarchy knowledge
into the few-shot classification process. In [8], the authors suggested to perform
a Softmax optimization over the different levels of the class hierarchy to enable
knowledge transfer from seen to unseen classes. Here, we rather rely on the proto-
typical networks and introduce the hierarchy knowledge thanks to the definition
of hierarchical prototypes. The overall idea is to regularize the latent space by
putting closer classes that are in the same branch of the class hierarchy, and
pushing apart classes that have common ancestors in higher levels of the class
hierarchy
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To properly formulate our approach, given an episode, we first compute the
prototypes per class which are prototypes at the leaf-level of the class hierarchy H
(following Eq. 1). We then compute the hierarchical prototypes by aggregating
the leaf-level prototypes according to H. The prototypes of the super-classes
c ∈ Cl

e (the hierarchical prototypes) at level l (1 < l < L with l = 1 the root
node and L = height(H)) are denoted as Pl = {pc

l }c∈Cl
e

and computed as the
mean of support samples of the super-class sub-tree Sc

l similarly to Eq. 1:

pc
l =

1
|Sc

l |
∑

(xi,yi)∈Sc
l

fΦ(xi) (4)

Note that when l = L, the prototypes at level l are the prototypes at the lowest
level of H (leaf-level prototypes).

The hierarchical prototypical network outputs a distribution over classes for
each query sample xq ∈ Q at different levels of H, based on a Softmax over
the distances to the prototypes of each level l in H. We then formulate the
probability of predicting the query features fΦ(xq) and the prototype pc

l of its
super-class c at level l in H as formulated in Eq. 3 as:

pΦ(yl
q = c|xq) =

exp(−d(fΦ(xq), pc
l ))∑

c′∈Cl
e
exp(−d(fΦ(xq), pc′

l ))
, (5)

where yl
q is the ancestor of yq at level l, Cl

e represents the super-classes at level
l at the current episode.

We therefore optimize a new loss function given as

LH−proto =
L∑

l=2

λlLl (6)

where λl = γl−1
∑L

l′=2 γl′−1 , γ is a hyper-parameter that controls the importance

of each level in the hierarchy and
∑L

l=2 λl = 1. Ll represents the prototypical
network loss at level l of the class hierarchy H.

As such, we can tune the importance of each level of the hierarchy into the
learning process: by choosing low values of γ, we put more importance into
organizing the higher levels of the hierarchy; a value close to one gives the same
importance for all the levels; a high value tends to behave like the flat cross
entropy loss formulation.

4 Few-Shot Learning for Remote Sensing Scene
Classification

We evaluate the performance of our hierarchical prototypical approach in a few-
shot scene classification task. We first present the remote sensing scene dataset
we consider in our study, since its labels are hierarchically organized Then, we
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describe the parameters and hyper-parameters setting. Finally, in order to assess
the interest of introducing semantic knowledge into the few-shot scene classifi-
cation task, we compare the classification results of the proposed approach to
some baseline methods for the 5-way 5-shot and 5-way 1-shot tasks.

4.1 Dataset Description

The NWPU-RESISC45 [4] dataset is a widely used benchmark for remote sens-
ing image scene classification. It consists of 31 500 images of 256 × 256 pixels;
the spatial resolution varies from approximately 30 to 0.2 m per pixel. It covers
45 scene categories, each with 700 RGB images, which can be organized hierar-
chically. Following [12] in which the authors propose a hierarchical organization
of the scene classes of the PatternNet [25] remote sensing scene dataset, we con-
struct a tree-like arrangement of these scene classes which reflects their semantic
relationships. We note that the leaf level of the constructed class hierarchy cor-
responds to the original scene classes of the dataset. A sub-tree of the 3−level
label tree is shown in Fig. 3.

Fig. 3. Sub-tree of the proposed label tree for the NWPU-RESISC45 remote sensing
dataset. The leaves correspond to the classes, the distance between two given classes is
the height of the subtree at the Lowest Common Ancestor (LCA) node, and can take
one of the following values: 0, 1, 2, and 3. The meta-train, meta-validation, and meta-
test categories are leaves with red, green, and blue boxes respectively. (Color figure
online)

For a fair comparison, we adopt the same split as done in [22]. We split the
dataset into three disjoint subsets: meta-training Dbase, meta-validation Dval,
and meta-test Dnovel containing 25, 8, and 12 categories, respectively. We note
that the meta-validation set is used for hyper-parameter selection in the meta-
training step. The meta-training set is further divided into three subsets: train-
ing, validation, and test sets. In our experiments, we follow [22] and resize all
the images to 80 × 80 pixels to fit our designed feature extractor.

4.2 Implementation Details

Following recent FSRSSC studies [10,22–24], we utilize ResNet-12 as a backbone
for feature extraction. We also adopt the pre-training strategy as suggested in [22]
to better initialize the meta-learner feature extractor.
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We train our meta-learner for 1000 epochs with an early stopping of 50
epochs. The best model parameters were obtained within the first 300 epochs.
In standard deep learning, an epoch implies that the entire train set passes
through the deep neural network once. However, in meta-learning, an epoch is
a set of episodes randomly sampled from the base set Dbase, which we set to
1000 episodes per epoch. We optimize the model based on the average loss of 4
episodes, i.e. the batch size is set to 4 episodes. We use SGD optimizer to update
the network parameters with a momentum set to 0.9 and a weight decay set to
0.0005. The learning rate is fixed to 0.001. After each training epoch, we test
our model on a validation set Dval by randomly sampling 1000 episodes, the
network weights with the lowest validation loss are retained as the best results.
For the hyper-parameter γ, we assigned different values (γ = 1, γ < 1 andγ > 1)
in order to observe its impact on the framework performances.

For the meta-testing stage, we conduct a 5-way 1-shot and 5-way 5-shot clas-
sification following the widely used meta-learning protocol. We evaluate the best
model on 2000 randomly sampled episodes from the test set Dnovel. Following
the FSL evaluation protocol [17], for 5-way K-shot episode, we randomly sample
5 classes from the unseen classes Cnovel, K images per class to form the sup-
port set S, and 15 images per class to form the query set Q, making a total of
5 × (K + 15) images per episode.

4.3 Evaluation Metrics

We use two metrics to evaluate the performance of the different methods:

– The classification accuracy, computed at different levels of the class hierarchy;
– The hierarchical precision [16] which is defined as the total number of common

ancestors between the predicted class and the true class divided by the total
number of ancestors of the predicted classes:

hp =
∑

i |Ŷi ∩ Yi|
|∑i Ŷi|

(7)

where Ŷi = {ŷi ∪ Ancestor(ŷi,H)} is the set consisting of the most specific
predicted class for test example i and all its ancestor classes in H except the
root node and Yi = {yi ∪ Ancestor(yi,H)} is the set consisting of the most
specific true class for test example i and all its ancestor classes in H except
the root node.

For all evaluation metrics, we report the average of the test episodes with a
95% confidence interval.

4.4 Experimental Results

In both 5-way K-shot configurations, K = 1 or 5, we compare our method to
the original flat prototypical network [17] and to the approach proposed in [22]
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that uses the cosine metric as a similarity function, which we denote by Pro-
toNet and c-ProtoNet respectively. We re-implement both methods with their
related parameter setting according to [22] and use ResNet-12 as a backbone for
a fair comparison. We also compare our prototypes (namely h-ProtoNet) with
the results yielded by the soft-label method [1], which allows taking into account
the class hierarchy within the learning process. Results are provided in Table 1
for K = 5 and Table 2 for K = 1.

Table 1. 5-shot classification results computed on the test set of the NWPU-RESISC45
dataset at different levels of the class hierarchy: overall acc represents the classification
accuracy at the leaves (level 4) and thus the NWPU-RESISC45 classes; L3-acc and
L2-acc give the accuracy at level 3 and level 2, respectively; hp is the hierarchical
precision. All accuracy results are averaged over 2000 test episodes and are reported
with a 95% confidence interval.

Method hyp-param Overall acc L3-acc L2-acc hp

ProtoNet [17] / 83.76 ± 0.13 84.80 ± 0.04 85.62 ± 0.09 84.72 ± 0.08

c-ProtoNet [22] 10 80.21 ± 0.59 82.11 ± 1.80 84.81 ± 4.08 82.38 ± 2.16

Soft-labels [1] 4 84.22 ± 0.25 85.35 ± 0.23 86.19 ± 0.23 85.25 ± 0.23

h-ProtoNet (ours) 0.5 84.90 ± 0.25 86.01 ± 0.22 86.72 ± 0.23 85.88 ± 0.22

h-ProtoNet (ours) 1 85.11± 0.23 86.10± 0.22 86.81± 0.22 86.01± 0.21

h-ProtoNet (ours) 2 84.95 ± 0.23 85.93 ± 0.22 86.65 ± 0.20 85.85 ± 0.22

For both 1-shot and 5-shot cases, our proposed h-ProtoNet achieves the high-
est accuracy and outperforms both flat prototypes and the soft-labels hierarchical
loss. We obtain the best performance with γ = 1, that is to say when all the
(hierarchical) prototypes have the same weights. When we put more weights on
the prototypes that correspond to the higher level of the hierarchy (correspond-
ing to nodes close to the root, γ < 1) or to those that correspond to the leaves
(γ > 1), we obtain degraded performances, that are still better than the other
methods. Note that this value of γ = 1 would have been selected if we perform a
cross-validation on the validation set. We argue that the improvement observed
in the case of the hierarchical prototypes is due to an efficient regularization of
the latent space, with a loss that encourages leaves within the same branch of
the level hierarchy to be closer. As such, the performances at level 2 and 3 are
improved, but also the overall accuracy.
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Table 2. 1-shot classification results computed on the test set of the NWPU-RESISC45
dataset at different levels of the class hierarchy: overall acc represents the classification
accuracy at the leaves (level 4) and thus the NWPU-RESISC45 classes; L3-acc and
L2-acc give the accuracy at level 3 and level 2, respectively; hp is the hierarchical
precision. All accuracy results are averaged over 2000 test episodes and are reported
with a 95% confidence interval.

Method hyp-param Overall acc L3-acc L2-acc hp

ProtoNet [17] / 65.67 ± 0.46 67.39 ± 0.45 69.49 ± 0.45 67.52 ± 0.44

c-ProtoNet [22] 10 65.64 ± 0.45 67.52 ± 0.45 69.62 ± 0.45 67.59 ± 0.44

Soft-labels [1] 3 65.65 ± 0.45 67.24 ± 0.45 69.56 ± 0.45 65.65 ± 0.45

h-ProtoNet (ours) 0.5 67.23 + 0.45 69.02± 0.45 71.41± 0.45 69.22± 0.43

h-ProtoNet (ours) 1 67.25± 0.45 68.94 ± 0.45 71.23 ± 0.45 69.14 ± 0.43

h-ProtoNet (ours) 2 66.86 ± 0.45 68.74 ± 0.45 70.92 ± 0.45 68.84 ± 0.44

5 Conclusion and Future Works

Few-shot learning has captured the attention of the remote sensing community
thanks to the great success it has achieved in other fields. In many cases, when
dealing with the problem of scene classification, the organization of the classes
is defined in a hierarchical manner, with classes being semantically closer than
some others. In this work, we present a novel prototypical network which defines
hierarchical prototypes that match the nodes of the label hierarchy1. We evalu-
ate our method on a benchmarked [4] remote sensing scene dataset in a few-shot
learning context and we show that hierarchical prototypes ensure a regulariza-
tion of the latent space, providing higher performance than flat prototypes but
also than a competitive hierarchical loss introduced in another context.

In future work, we plan to investigate the use of the hierarchical prototypes
on other tasks such as semantic segmentation, where we consider adding spatial
information among regions to output meaningful hierarchical prototypes. We
also intend to use graph prototypical networks instead of prototypical networks,
which better take into account the class relationships. We further consider relying
on other metric spaces than the Euclidean one, e.g. hyperbolic spaces that are
known to better encode the distances when the data are hierarchically-organized.
Thus, a follow-up of this work could be to build hyperbolic prototypes to enforce
the hierarchical information into the learning process.

Acknowledgement. This work was supported by the ANR Multiscale project under
the reference ANR-18-CE23-0022.

1 We recently became aware of a paper that proposes a similar approach to classify
audio data in the FSL context [7]. The difference lies rather in the experimental part
in which we use a deeper network and a pre-training step.
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