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Abstract. An automated classification of hematopoietic cells in bone
marrow whole slide images would be very beneficial to the workflow of
diagnosing diseases such as leukemia. However, the large number of cell
types and particularly their continuous maturation process makes this
task challenging: the boundaries of cell type classes in this process are
fuzzy, leading to inter-rater disagreement and noisy annotations. The
data qualifies as ordinal data, as the order of classes is well defined.
However, a sensible “distance” between them is difficult to establish.

In this work, we propose several classification and regression tech-
niques for ordinal data, which alter the encoding of network output
and ground-truth. For classification, we propose using the Gray code or
decreasing weights. For regression, we propose encodings inspired by bio-
logical properties or characteristics of the dataset. We analyze their per-
formance on a challenging dataset with neutrophilic granulocytes from
human bone marrow microscopy images. We show that for a sensible
evaluation, it is of utmost importance to take into account the relation
between cell types as well as the annotation noise. The proposed methods
are straight-forward to implement with any neural network and outper-
form common classification and regression methods.
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1 Introduction

For the diagnosis of hematopoietic diseases such as leukemia it is necessary to
analyze bone marrow samples in addition to peripheral blood. The major advan-
tage of bone marrow analysis is a more detailed insight into hematopoiesis, the
cell-forming process. The ratio of immature to mature granulocytes is of major
importance, particularly for the detection of chronic myelogenous leukemia.
While the process of maturation is a mostly continuous process, hematolo-
gists define five classes of granulocytes subsequent to the immature blast stage:
promyelocytes, myelocytes, metamyelocytes, band granulocytes and segmented
granulocytes. In theory, these maturity stages are well defined. However, man-
ual class assignment by experts is fuzzy at transition stages which results in
noisy labels. Inter-rater disagreement between adjacent classes can be observed.
This refers not only to the annotations used in training but also to the desired
predictions, which hampers a valid, automated evaluation.

Given the described continuous maturation process with transitions between
classes and the resulting inter-rater disagreement between adjacent maturity
stages, classification may not be the best option. While annotations are typically
given as one of five maturity stages – and predictions ought to follow the same for-
mat – network optimization could be performed as a regression task. Formulated
as regression, the task lies in predicting the maturity stage as a number, instead of a
class. As the order of maturity stages is known without an obvious distance metric
between those stages, this problem falls into the category of ordinal classification
or regression.

The field of regression is a common research area, including some research
which takes ordinal data into account. Also ordinal regression and classifica-
tion have been researched extensively for generic classifiers [6]. Straight-forward
approaches in this context, such as assigning regression targets or misclassifica-
tion costs, can be transferred to deep learning. Other deep learning approaches
require extensive changes to the network architecture and/or training process,
for example, through pairwise comparisons [9].

In the field of hematopoietic cell classification from bone marrow microscopy
images, the relationship between different classes is usually ignored. Song et al. [12,
13] work with bone marrow images but only distinguish between the erythroid and
myeloid cell. The maturity grade within individual lineages is not further consid-
ered. Choi et al. [3] use a VGG architecture [11] to distinguish between different
maturity stages within these two lineages. They treat most classes independently,
but refine the prediction of the two most mature neutrophilic cells with a second
VGG network. Preliminary experiments on our dataset showed, however, that this
network architecture is outperformed by using a DenseNet [5]. Chandradevan et
al. [2] perform a simple classification using a VGG network. All aforementioned
methods do not perform an analysis on the relationship between adjacent matu-
rity stages and do not take this knowledge into account for training and prediction.

Contribution
In this work, we propose and investigate several strategies to improve com-
mon classification and regression techniques in the case of ordinal data and
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justify the need for those by providing a multi-rater data analysis of the given
dataset. These straight-forward techniques are based on an established classi-
fication architecture and require minimal changes to the final linear layer and
the class encoding. They achieve improved results in the case of classification
and regression of neutrophilic granulocytes in human bone marrow microscopy
images in an evaluation on multi-rater data.

2 Materials and Methods

2.1 Image Data

The data is obtained from human bone marrow samples as a purely retrospec-
tive, pseudonymized analysis under the Helsinki Declaration of 1975/2000 with
written informed consent of all patients. Each sample is stained using the stan-
dardized Pappenheim staining procedure [1]. Image acquisition is performed with
a whole slide scanner using 63× magnification and automatic immersion oil-
ing. From each sample, relevant regions are selected using a lower magnification
overview scan. In each region, cell positions are first proposed by an object detec-
tion network and then manually corrected. Each cell is annotated by two medical
experts, who have agreed on the cell type. This annotated label is later referred
to as an MTA-label and it forms the ground truth in all training processes.
Examples are shown in Fig. 1.

In this work, the focus lies on predicting maturity stages. To this end, patches
that are centered around individual cells of the neutrophilic granulopoiesis are
extracted. In total, this results in 4301 cells from six classes: blast, promyelocyte,
myelocyte, metamyelocyte, band granulocyte and segmented granulocyte. Of
these, 767 cells have been annotated by additional different experts (two to
three medical experts, with one annotation as mentioned above). If one expert
declares a cell to be one of the considered cell types, while another assigns a
completely different cell lineage, this is denoted by the cell type other.

Inter-rater Analysis. A comparison between two of the raters highlights the
characteristics of inter-rater variability with respect to the maturity progression.
Ignoring the other class, they agreed on the maturity stage in 65.3% of all cases.
In 96.6% of all cases, however, they only differed by, at most, one stage. Apart
from a single case, the remainder is, at most, two stages apart.

Fig. 1. One example for every cell type, which corresponds to a single maturity stage.
From left to right: blast, promyelocyte, myelocyte, metamyelocyte, band granulocyte
and segmented granulocyte.
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This highlights the importance of a) using methods that not only consider
absolute labels but also consider the data as ordinal and b) a multi-rater eval-
uation. When not taking the ordinality of this data into account, the ground
truth provided by a single expert (or even multiple experts working together on
a single annotation) could be considered wrong by a second expert in almost a
third of all cases. This could lead to undesirable effects in training by putting
a focus on “false” predictions that would actually be considered as correct by
another rater.

Due to the necessary amount of manual work by medical experts, it is often
impossible to obtain a complete multi-rater dataset for training. Instead, we
propose strategies to include the ordinality of data into the training on a single-
rater dataset. Nevertheless, the evaluation needs to be performed on multi-rater
data, in order to get an indication of the actual success of such techniques.

2.2 Classification Techniques

Classification using convolutional neural networks is commonly performed using
the Cross-Entropy Loss on the softmax output of the network. However, this
loss treats all classes independently – the relationship between adjacent maturity
stages can not be modeled using this loss. This can be mitigated by adapting the
optimization target, which is usually a one-hot encoded vector representing the
ground truth class. We propose two alternative ground truth encodings which
are based on (1) declining weights and (2) on the Gray code to incorporate
the biological dependencies into the target vector. Both methods are applied by
computing the binary cross-entropy loss on a sigmoidal activation of the network
output.

According to the taxonomy of Gutiérrez et al. [6], these approaches are similar
to cost-sensitive classification techniques. They differ, however, in the encoding,
which in this work is specifically designed to work with a typical deep learning
architecture and the corresponding loss functions.

Declining Weights. Instead of using the one-hot encoding to represent a class
(e.g. [0, 0, 1, 0, 0, 0] to represent the myelocyte), we propose an encoding that
additionally assigns a smaller number to adjacent classes. Specifically, each class
c is represented based on the distance to the ground truth class cgt using w

|c−cgt|
dec .

The distance here refers to the number of cell types between a class (inclusive)
and the ground truth class (exclusive), such that adjacent classes have a dis-
tance of 1). For instance, with wdec = 1

2 and cgt = 2 (myelocyte), this yields
[14 ,

1
2 , 1,

1
2 ,

1
4 ,

1
8 ] as an encoding. Consequently, mis-classifications between adja-

cent classes yield lower losses than mis-classifications between distant classes.
Compared to similar ordinal classification techniques [8], we encode the rela-

tionship between classes not as a cost but as an acceptability measure.

Gray Code. As another alternative to one-hot encoding, we propose utilizing
the Reflected Binary Code (RBC), also known as the Gray code [4]. This code has
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Common Regression

Frequency Encoding

Duration Encoding

Fig. 2. Target intervals for regression techniques.

the advantage of differing only in one bit in the encoding of adjacent numbers.
This encoding allows the representation of n classes in �log n� bits. Due to the
property of RBC, adjacent classes have similar encodings. For the six classes in
this dataset, the first six of the eight possible encodings with the required three
bits are used. For instance, a myelocyte (c = 2) is encoded as RBC(c) = [0, 1, 1].
Again, this code results in lower losses if adjacent classes are mis-classified.

2.3 Regression Techniques

Regression techniques predict a continuous number (in this case correlating to
the grade of maturity) instead of a class. The simplest implementation of regres-
sion would be to assign an integer number (0–5) to each class. Since the order of
the classes is known but the distance is not, we propose using domain knowledge
to obtain a more suitable encoding. We propose using either the cell frequencies
or biological knowledge about the cell types.

In addition to the established regression technique, we design specific targets
for the given use-case. These are not encoded as scalars, as is commonly done,
but as intervals. We further investigate different ways of sampling training val-
ues from these intervals as well as handling predictions in correctly predicted
intervals.

Both proposed intervals are illustrated in Fig. 2.

Frequency-Based Regression. This method utilizes the number of samples
per class to obtain a more suitable encoding. More precisely, we compute for
each class c a value fc = log nc

n̄ based on the number of samples of that class
nc and the average number of samples of all classes n̄. In this case, this results
in the values [0.74, 1.09, 0.95, 1.00, 1.09, 1.12]. Each class c is assigned to a range
determined by the cumulative sum to [

∑
i<c fi,

∑
i≤c fi], which starts at 0 for

c = 0 and is unlimited for the last class. In order to determine a label in training,
we either draw a number at random from this range or use the center.

This encoding ensures that classes with fewer samples are mapped to a
smaller range of values.

Stage Duration. During the maturation process, cells at each stage take a
specific amount of time to develop. According to the literature, typical times are
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24, 28, 3, 33, 12 and 20 h for each stage, respectively. These numbers can be used
in a similar way as the numbers fc from the previous section. Ranges can be
defined in the same way and training labels can be drawn at random from the
range or fixed to the center.

This encoding ensures that classes with shorter duration in the bone marrow
are mapped to a smaller range of values.

Loss Computation. In both frequency-based and duration-based encoding,
each cell type is represented by an interval of numbers. We analyze four different
options on defining a loss for the training process. First, we use the Mean-
Squared-Error (MSE) loss between prediction and the mean of the ground truth
interval. Second, we use MSE loss between prediction and a randomly drawn
number from within the ground truth interval. Furthermore, we use the same
two options but set the loss to 0 if the prediction lies within the correct interval.

2.4 Experimental Setup

The base network architecture is a DenseNet-121 [7] pre-trained on Ima-
geNet [10], which showed excellent results in similar tasks [5]. We train with
a batch size of 64 with image patches of size 224 × 224 px2 normalized to zero
mean and unit variance with respect to the ImageNet data. Training is per-
formed to a maximum of 256 epochs and stopped early if the validation score
has not improved for 128 epochs. For the final evaluation on the test set, we use
the network from the epoch with the highest validation score, which is the macro
F1-score. In total, we train the network in five-fold cross-validation (four sets
for training, one set for validation). Each trained network is evaluated on the
previously excluded part of the dataset with annotations by multiple experts.

For the evaluation, we derive three different measures (any, most and MTA)
based on the F1-score which differ in the matching between prediction and the
ground truth labels. Any results in a true positive if the prediction matches any
of the ground truth labels. Most results in a true positive only if the prediction
matches the most frequent ground truth label (or any of the most frequent
ground truth labels in case of a tie). MTA results in a true positive only if the
prediction matches the label from the team of MTAs who also annotated the
training and validation datasets. Labels by other experts are ignored in this
evaluation mode.

Next to common classification (denoted as CLF in Fig. 3) and regression
(REG), we evaluate the presented methods in different configurations. For
classification-based methods, we evaluate the Gray Code method (RBC ) and
the Declining weights method (dw) with weights w ∈ [0.1, 0.2, 0.5]. For the
regression-based methods, we evaluate both frequency-based (f) and duration-
based (t) regression. For each of these, we evaluate choosing the labels as mean
(denoted by µ as index) or random (r). We further test whether it is beneficial
to set the loss to zero if the predicted number falls into the correct interval. The
other label does not contribute to the loss if it is encountered during training. It
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Fig. 3. Resulting F1-Scores (y-axis) for the various methods (x-axis). t refers to
duration-based regression, f to frequency-based regression, with µ indicating choos-
ing the mean as a label, and r indicating random drawing. An asterix (∗) means that
the loss is set to zero if the interval is correctly predicted. CLF and REG refer to com-
mon classification and regression, respectively. dw denotes the Declining weights and
RBC the Gray Code method. Colors denote different evaluation metrics as described
in Sect. 2.4.

is further ignored in the evaluation (even though false predictions of other are
still counted as false negatives).

3 Results

Figure 3 shows the evaluation in terms of F1-scores for each method. For all
methods, the F1-Score using most-matching is higher than MTA-matching. In
the following, differences in F1-score are given in percentage points (p.p.) rather
than percentage.

In terms of common classification and regression methods, regression per-
forms better with increases of 1.7, 1.6 and 1.3 for any, most and MTA-matching,
respectively. While the Declining weights method yields better results than com-
mon classification (improvements of 1.0, 1.2, 1.6), scores are slightly lower (by
0.7, 0.2, 0.6) compared to common regression. There are only minor differences
for different weights. The Gray Code method, however, slightly exceed the com-
mon regression scores as well (by 0.3, 0.1, 0.6).

Of the regression methods, frequency-based regression performs generally
better than duration-based regression, with the exception of random drawing
without setting the loss to zero in the correct interval. For both methods, ran-
dom drawing performs better with setting the loss to zero if the prediction lies



Ordinal Cell Classification 193

in the correct interval. Whereas, using the mean performs better if the loss is
not set to zero. Depending on the matching, two or three of the frequency-
based regression methods outperform common classification and regression. The
largest improvement (of 0.7, 1.2, 1.1) to common regression can be observed for
frequency-based regression using the mean.

4 Discussion

The results highlight properties of the data as well as the ordinal classification
and regression techniques.

The fact that generally higher scores are achieved for most rather than for
MTA-matching indicates that cases exist, in which two raters contradict the
MTA annotation. The former is used as a ground truth for training and would
be used for evaluation if no multi-rater annotations were available. This high-
lights the importance of taking the inter-rater variability into account both for
evaluation and for training. For evaluation, differences of approximately 0.15 in
terms of macro F1-Score can be observed in the evaluation of this scenario. A
correct and medically relevant interpretation of results and, consequently, of the
quality of newly developed methods needs to take this into account. However,
trends between evaluation metrics are generally similar such that using only the
MTA-label as an approximation is a valid choice for comparison between meth-
ods. In future work, the inter-rater disagreement ought also to be reflected in
the training process.

The importance of taking the ordinal nature of the data into account is fur-
ther supported by performance differences between common regression and clas-
sification. Without further adaption to the data, regression already outperforms
common classification by taking the order of classes into account.

Regarding ordinal classification techniques, both approaches presented
improve results compared to common classification. The Declining weights
method, however, does not reach the performance of common regression. It is
furthermore interesting to note that the choice of weights in the evaluated range
only has a negligible influence on the results. Even a small weight of w = 0.1
already performs consistently better than common classification. A larger weight
results in smaller variance between folds and very slight F1-Score improvements.
The Gray Code method performs better compared to both common classifica-
tion and regression. Furthermore, the variance of the results is slightly lower than
with regression. Both approaches can easily be transferred to other classification
tasks with ordinal data and require no restructuring of the network backbone.

Of the two regression techniques, frequency-based regression generally yields
superior results. This can, in part, be explained by the comparatively short dura-
tion of cells in the third maturity stage, which may lead to predictive difficulties
using duration-based regression. Furthermore, the variation of interval lengths
is much larger than in the frequency-based approach. In both approaches, set-
ting the loss to zero within the correct predicted interval is beneficial if random
labels are drawn, but not if the mean is used. While the mean “pulls” the predic-
tion towards the interval center, this is not the case for randomly chosen labels,
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which even fluctuate for each sample in every epoch. Frequency-based regression
outperforms all other approaches in both random sampling and interval mean.
The latter achieves this with lower variance, which makes it the most superior
method. Frequency-based regression can also be easily transferred to other appli-
cations of ordinal classification, as no external domain knowledge but rather a
property of the dataset itself is used.

The methods presented are easily applicable to other applications with ordi-
nal data and adapting them to an established network architecture is straight-
forward. Taking ordinality into account is particularly beneficial for mitigating
inter-rater variability: inter-rater disagreement is usually of lower severity (i.e.,
“off-by-one” disagreements are most likely). By directly incorporating and mini-
mizing the severity of mis-classifications into the training process through ordinal
methods, the network becomes capable of learning a similar behavior. While this
does not necessarily increase measures such as the F-score (which treats all mis-
classifications the same when not working with a multi-rater dataset, as used in
this work), it improves the clinical soundness of results. It also becomes easily
possible to identify “borderline-cases”, either by regression values close to class
thresholds or through the softmax values for the predicted classes, and validate
them in a post-processing step.

Compared to the non-public data reported in related works, the dataset
described in this paper is more challenging. Whereas Song et al. [12,13] only dif-
ferentiate between two lineages, we focus explicitly on the maturity progression
within those lineages. The dataset by Choi et al. [3] includes these classes but
does not include labels from multiple independent raters (only a label confirma-
tion by a second rater).

Even though they evaluate the most commonly considered cell classes, the
image data by Chandradevan et al. [2] is selected to be as simple as possible for
classification. This makes the applicability of this dataset in real world clinical
applications doubtful.

5 Conclusion

We proposed and evaluated several methods for the handling of ordinal data
using various encodings for different regression and classification techniques. All
methods are straight-forward to implement without any changes to the network
backbone. We show that several of these techniques, particularly Gray Code
based classification and frequency-based regression, improve ordinal classifica-
tion results on a challenging hematopoietic cell dataset. This is supported by an
analysis on a dataset annotated by multiple experts. This study highlights the
importance of taking into account dependencies between classes and noisy labels
between adjacent classes.
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5. Gräbel, P., et al.: Systematic analysis and automated search of hyper-parameters

for cell classifier training. In: IEEE International Symposium on Biomedical Imag-
ing (ISBI) (2020)

6. Gutiérrez, P.A., Perez-Ortiz, M., Sanchez-Monedero, J., Fernandez-Navarro, F.,
Hervas-Martinez, C.: Ordinal regression methods: survey and experimental study.
IEEE Trans. Knowl. Data Eng. 28(1), 127–146 (2015)

7. Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected
convolutional networks. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 4700–4708 (2017)

8. Kotsiantis, S.B., Pintelas, P.E.: A cost sensitive technique for ordinal classification
problems. In: Vouros, G.A., Panayiotopoulos, T. (eds.) SETN 2004. LNCS (LNAI),
vol. 3025, pp. 220–229. Springer, Heidelberg (2004). https://doi.org/10.1007/978-
3-540-24674-9 24

9. Liu, Y., Kong, A.W.K., Goh, C.K.: A constrained deep neural network for ordi-
nal regression. In: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pp. 831–839 (2018)

10. Russakovsky, O., et al.: ImageNet large scale visual recognition challenge. Int. J.
Comput. Vision 115(3), 211–252 (2015)

11. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale
image recognition. arXiv preprint arXiv:1409.1556 (2014)

12. Song, T.H., Sanchez, V., ElDaly, H., Rajpoot, N.: Simultaneous cell detection and
classification in bone marrow histology images. IEEE J. Biomed. Health Inform.
23, 1469–1476 (2018)

13. Song, T.H., Sanchez, V., Eldaly, H., Rajpoot, N.M.: Hybrid deep autoencoder with
curvature gaussian for detection of various types of cells in bone marrow trephine
biopsy images. In: 2017 IEEE 14th International Symposium on Biomedical Imag-
ing (ISBI 2017), pp. 1040–1043. IEEE (2017)

https://doi.org/10.1007/978-3-540-24674-9_24
https://doi.org/10.1007/978-3-540-24674-9_24
http://arxiv.org/abs/1409.1556

	Ordinal Classification and Regression Techniques for Distinguishing Neutrophilic Cell Maturity Stages in Human Bone Marrow
	1 Introduction
	2 Materials and Methods
	2.1 Image Data
	2.2 Classification Techniques
	2.3 Regression Techniques
	2.4 Experimental Setup

	3 Results
	4 Discussion
	5 Conclusion
	References




