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Abstract. Automated Machine Learning (AutoML) tools are being increasingly
used by researchers to solve a large number of pattern recognition tasks. A typi-
cal AutoML tool efficiently evaluates the performance of classifiers (e.g., SVM,
Neural Network, Decision Tree, etc.) on an input dataset and determines the best
performing classifier, along with the corresponding optimized parameters. In this
work, we explore the use of a fusion scheme to combine the outputs of multiple
classifier models generated and optimized by an AutoML tool known as Auto
Tuned Models (ATM). We show that this approach provides a flexible framework
that can be successfully applied to a wide variety of medical image classification
tasks. Because each individual classification model is optimized for the given
dataset, regardless of the size of the dataset, there is no requirement to identify
and transfer knowledge from other domains. We generate up to 3,600 models for
each dataset and explore the efficiency of fusion on subsets of models, as well
as present two methods to automatically sort the classifier models for fusion.
Experiments conducted on three medical imaging datasets, viz., stem cell, brain
tumor and prostate cancer, convey the benefits of the proposed fusion scheme in
improving classification accuracy.
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1 Introduction

A classical pattern recognition system maps input data (e.g., an image) to an output
label referred to as a class (e.g., “face” or “bicycle” or “stem-cell”). This mapping is
accomplished using a classifier such as a neural network or a support vector machine,
with each classifier having a number of tunable parameters. Determining the best clas-
sifier and the associated optimized parameters for a given pattern recognition task is
often relegated to a trial-and-error approach that can be both laborious and sub-optimal.
Further, a classification model (i.e., a classifier along with its parameters) that is optimal
on one dataset may not work well on other datasets.

To address this issue, there is a need for developing techniques that can automat-
ically determine the best classifier for a given dataset. Over the years, a suite of such
automated machine learning (AutoML) tools have been created and shown to have the
ability to surpass the state of the art performances of previously hand-selected models.
One such tool, Auto Tuned Models (ATM), not only surpassed performance of human-
tuned models on 30% of 420 datasets in OpenML, but also completed this work in
1/100th of the time [21].
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These tools have the ability to produce many different optimized classifier models
based on different classifier types and different parameter combinations. In this work,
we explore the possibility of combining multiple classifier models generated by an
AutoML tool in order to further improve classification accuracy. The fusion scheme
is tested on three medical imaging datasets corresponding to stem cell detection, brain
tumor classification and prostate cancer classification.

Medical image classification is often challenging due to the costs of the imaging
machines, the required expertise to annotate images, and patient privacy laws. These
challenges often result in limited data availability which can restrict the ability to train
deep neural networks, which often require large annotated datasets. Adaptations to deep
neural networks such as transfer learning [4] or self-supervised learning techniques [11]
have been proposed to address these challenges. However, these approaches rely on the
ability to appropriately select an existing architecture or the creation of custom image
transformations. Thus, the use of classification techniques that do not require copious
amounts of annotated training data can be pertinent in such cases (Fig. 1).

Selection

Data Extraction Tune Models Select Models for Fusion Model Fusion  Classification

Fig. 1. Overview of proposed approach beginning with curating the dataset, producing candidate
classifier models and choosing a subset of models for score fusion.

2 Background

We define a classifier as the type of classification algorithm, such as K-Nearest Neigh-
bors (KNN), support vector machine (SVM), or multiple-layered perceptron (MLP).
Once a classifier’s parameters have been set, either by human intuition or via an
AutoML tool, the resulting instance is referred to as a classifier model (see Table 1).

2.1 Pattern Recognition with AutoML

Given labeled data, a supervised classifier learns a model that can accurately map the
input data to the correct output class label. The performance of a model depends on
many factors such as the amount of training data available, the balance of data across
classes, and the distribution of the data itself. A classifier model that performs well on a
given dataset may not achieve the same performance on a different dataset for the same
task.

Software packages used to generate these models have started to offer automated
methods for classifier selection and parameter tuning. These methods are referred to
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as automated machine learning (AutoML) tools, and have provided a way to intelli-
gently find classifier models optimized for specific datasets [12]. Popular AutoML tools
include Auto-WEKA [14], Auto-Sklearn [10], and TPOT (Tree-based Pipeline Opti-
mization Tool for Automating Data Science) [19]. In this work, we utilized a recently
developed AutoML tool known as Auto Tuned Models (ATM) [21]. We choose ATM
for its ability to tune models in parallel, as well as the ability to archive all the generated
models.

ATM is constructed with Python’s SciKit-Learn, and allows the same classifiers that
are supported in SciKit-Learn. An example of the SVM classifier, its parameters, and
the resulting tuned model are given in Table 1.

Table 1. Example of a classifier, parameters of the classifier, and values of these parameters. A
classifier model denotes a classifier with fixed parameter values.

Classifier Parameters Model

Support vector machine (SVM) | C ‘C’: 0.032573723204237015
Kernel ‘kernel’: ‘linear’
Probability ‘probability’: True
Cache Size ‘cache_size’: 15000
Class Weight ‘class_weight’: ‘balanced’
Maximum Iterations ‘max_iter’: 50000

The above approaches focus on classical pattern recognition approaches. Newer
AutoML tools such as Auto-DeepLab [17] and Auto-Keras [13] focus on tuning deep
learning models. However, we do not focus on the latter set of tools as our goal is to
demonstrate how simple classification models, trained on small-sized datasets, can be
judiciously selected and combined to improve classification performance in the context
of medical image classification.

2.2 Fusion

An AutoML tool typically outputs multiple classifier models, including the one with the
highest accuracy on the training set. While one model may have the highest accuracy, is
it possible to leverage multiple models to achieve higher performance? Combining mul-
tiple sources of information to improve performance is generally referred to as fusion,
and there are multiple levels at which fusion can be performed. This includes fusion at
the raw data level [8], feature level, score level [20], rank level [20], and decision level
[16].

This work considers fusion of multiple classifier models generated by ATM at the
score level. Since this technique relies only on the score reported, it is possible to use
this approach without knowledge of the features used to produce the score. In this work,
the score generally denotes the confidence of each classifier model when it renders an
output class label based on the input feature vector.
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There are many approaches to fusion, such as the simple sum rule where scores are
averaged [20]. The fusion in this paper is performed with an SVM, where the scores
from multiple models are input to an SVM which then maps this score vector to an
output class or label. The question we raise is the following: how do we determine the
models whose scores have to be fused?

3 Datasets

Three different medical imaging datasets are utilized in this work. These datasets
include stem cells, brain tumors, and prostate cancer grade classifications for magnetic
resonance imaging (MRI) scans. In our analysis, the MRI scans are comprised of a stack
of 16-bit tiff images. These images are generated from DICOM (Digital Imaging and
Communications in Medicine standard), a common file format generated by medical
imaging machines such as MRIs.

3.1 MSU Stem Cell Dataset

Afridi et al. created a dataset of 6 in vivo MRI scans of rat brains that were hand-labeled
for stem cells by radiologists [1,2]. This dataset was generated from 2 different MRI
machines of varying field strengths, and is intended to evaluate the generalizability and
robustness of potential stem cell detection algorithms. Each scan is composed of 16-
bit tiff images (Fig. 2, left), which radiologists manually reviewed to identify and label
stem cells. Once a stem cell is identified, a 9 x 9 pixel patch is extracted around the
stem cell (Fig. 2, right).

Using handcrafted features and Bayesian Classifiers, Afridi et al. [1] obtained an
AUC accuracy of 89.1%. They were able to further improve performance using a CNN-
based approach that incorporated the information about the time radiologists spent iden-
tifying stem cells (referred to as Labeling Latency). This approach achieved an accuracy
of 94.6% [2]. For our analysis, we divide the labeled data into 80% training and 20%
testing. This is summarized in Table 2 (Figs. 3).

9 x 9 Pixel
Patch

255 Pixels|

x 255 Slices Expert Identified Stem Cell

255 Pixels in Slice

Fig. 2. Visualization of a labeled MRI scan with stem cells marked in green (left). Extracting
patches containing identified stem cells, forming the stem-cell patches (right). (Color figure
online)
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Fig. 3. Non-stem cell patch extraction: After all stem cells have been identified (left), super-pixels
are calculated (center) and super-pixels are randomly selected such that there is no overlap with
stem-cell patches (right).

Table 2. Number of samples for each class in the training, testing, and entire stem-cell dataset

Stem cell detection | Training | Testing | Total

Stem cell 31,910 8,067 1 39,977
Non-stem cell 31,976 7,905 | 39,881
TOTAL 63,886 | 15,972 | 79,858

3.2 Brain Tumor Classification

Cheng et al. [6] generated a dataset comprised of brain scans of 233 patients with iden-
tified tumors. Figure 4 provides examples of four slices (top) and the annotated tumors
(bottom). In addition to the manually segmented tumor masks (highlighted in yellow
on the bottom row), we display the bounding box surrounding the tumors in red. Three
types of tumors are identified: Glioma, Meningioma, and Pituitary. Table 3 gives the
breakdown of the 3,064 MRI slices. For our analysis, we divide the labeled data into
80% training and 20% testing. This is summarized in Table 3.

Fig. 4. Example of brain scans (top) and labeled tumors (bottom). (Color figure online)

Table 3. Brain Tumor classes and number of samples for each class in the dataset

Brain tumor class | Training | Testing | Total

Glioma 566 143 709
Meningioma 1,141 290 1,431
Pituitary 744 180 924

TOTAL 2,451 613 3,064
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The authors of this dataset explored classification of tumors through region aug-
mentation by including the segmented tumor and the regions surrounding it [7]. They
obtained a classification accuracy of 82.3%. Afshar et al. further improved classification
performance to 86.56% by designing a Capsule Network [3]. In our work, however, we
only use the segmented tumor without surrounding pixels for classification.

3.3 Prostate Cancer Classification

The American Association of Physicists in Medicine, the International Society for
Optics and Photonics, and the National Cancer Institute collaborated to create the
PROSTATEX Challenges for classifying the aggressiveness of prostate cancer [5]. The
PROSTATEX challenge dataset provides information for 182 subjects. This information
includes multiple MRI scans with multiple weighting agents, and a cancer diagnosis
based on Gleason Score grouping. A low Gleason score indicates small, well formed
and uniform glands, i.e., mostly normal cells. A high score indicates irregular sizes,
glands, or masses (abnormal cells). These scores are categorized into 5 groups defined
in Table 4. Additionally, a set of KTrans images (a measure of capillary permeability is
provided for each patient. This data is already divided into training and test sets. The
best results of this competition was an AUC accuracy score of 95% (https://prostatex.
grand-challenge.org/evaluation/results/) (Fig. 5).

Table 4. Grade grouping of the Gleason Scores and number of samples for each group in the
dataset

Grade group Training samples | Testing samples
Grade group 1 (Gleason score < 6) 9 4
Grade group 2 (Gleason score 3 +4 =7) 2,405 236
Grade group 3 (Gleason score 4 + 3 =7) 1,063 28
Grade group 4 (Gleason score 4 +4=8;3+5=8;5+3=38) 304 8
Grade group 5 (Gleason scores 9-10) 88 4
TOTAL 3,869 280

Fig. 5. Examples of prostate scans from the PROSTATEx Challenge dataset.

4 Proposed Approach

The contribution of this work is the principled use of fusion to combine the multiple
classifier models produced by an AutoML tool such as ATM. Questions we explore
include which data representations to use, how many models are necessary to fuse, and
how to select models for fusion. In this section, the proposed approach is described in
detail. The proposed approach implements the following steps:


https://prostatex.grand-challenge.org/evaluation/results/
https://prostatex.grand-challenge.org/evaluation/results/
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1. Extract Data: For each of the datasets described in Sect.2, image patches are
extracted from the MRI scan and given a class label.

2. Form Feature-Sets: While the pixels in a patch can be directly used as raw input
to ATM, we also consider alternate inputs where a patch is subjected to different
feature extraction techniques via texture descriptors. These alternate representations
along with the original patch representation are referred to as Feature-Sets.

3. Generate Models with ATM: ATM [21] generates multiple classifier models from
the training set of extracted patches and the corresponding feature-sets.

4. Collect Model Scores: Test patches are given as input to the models to obtain a
score (described later in Sect. 4.4).

5. Perform Fusion: The scores of multiple classifier models are fused using an SVM
classifier.

For the rest of this section, let m;; represent the it" model pertaining to the ;"

classifier tuned on the k" feature-set (i € Z, j € J, k € K), and let FM represent
the subset of models to be used in fusion. Here, K represents the feature-sets (raw,
scaled, HOG, LBP, LBP-Uniform, LBP-Rotation Invariant), and J represents the col-
lection of classifiers (Logistic Regression, Support Vector Machine, Linear Classifier
with Stochastic Gradient Descent, Decision Tree, Extra Trees, Random Forest, Gaus-
sian Naive Bayes, Multinomial Naive Bayes, Bernoulli Naive Bayes, Gaussian Process,
Passive Aggressive, K Nearest Neighbors, Multi-Layer Perceptron).

4.1 Data Extraction

For the stem cell dataset, we use the same method proposed by Afridi et al. [2] to extract
image patches. We center patches around regions of interest (stem cell and non-stem
cell), as shown in Fig. 2. The resulting patches are 9 x 9 pixels.

For the brain tumor dataset, we first find the smallest width and also the smallest
height of all the bounding boxes within the dataset. This worked out to be 14 pixels
on both dimensions. We then locate the center pixel of the tumor’s bounding box, and
extract a 14 x 14 pixel patch surrounding the center pixel. This approach ensures that
the patches contain only tumor information and nothing of the surrounding brain tissue.

For the prostate dataset, locations of legions were provided in the same manner as
the stem cell data. That is, an expert identified point-of-interest is labeled within an
MRI scan. We extract a 15 x 15 pixel patch of the slice around the point of interest.

4.2 Data Descriptors Through Feature-Sets

In addition to the raw pixel values within the patches, scaled pixel intensities and texture
descriptors are also considered. These methods produce the following feature-sets: Raw
pixel intensities (in the range [0, 65,535]), Scaled Intensities (in the range of [0, 255]),
Histogram of Oriented Gradients (HOG) [9], DAISY feature descriptors [22], and Local
Binary Pattern (Classical, Rotation-Invariant, Uniform) [18].
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4.3 Model Generation

Once all the feature-sets are generated, the labeled training data for each feature-set
in K is run through ATM. We set ATM’s model budget, B, to 600 models for each
feature-set in K. With | K| = 6, this means ATM produces up to 3,600 tuned models.
Since the number of tuned models is very large, we would like a principled manner to
form a subset of candidate models, F'M, that will reliably improve performance while
efficiently selecting only the models necessary to achieve good results. This selection
process is described in Sect. 4.5.

4.4 Model Scores

Given an input feature-set, each tuned classifier model predicts an output class label.
Additionally, each model produces a score, which in many cases, corresponds to a prob-
ability value. For example, a multi layered perceptron (MLP) model classifies the input
data by using a softmax score, which is the probability that the input data belongs to
class y. If scores are not readily available from a tuned model, other representations of
prediction strengths are used to estimate a score. To obtain scores for the KNN classi-
fier, for example, we average the Euclidean distance of the K neighbors. The smaller
the distance, the stronger the evidence is that the point is correctly classified. For the
Extra Trees and Random Forest classifiers, the score denotes the percentage of trees that
correctly classify the sample, and for the singular decision tree, the score corresponds
to the percentage of nodes in agreement.

4.5 Model Selection for Fusion

With so many optimized models generated, a question arises. Should all models be
included in fusion? It is possible that several optimized models are only slight varia-
tions of a dominant classifier’s parameters, resulting in redundant score data and biased
classification predictions. Before we propose methods to automatically select models
for fusion, we first explore various methods to partitioning the models to form subset
F' M and address potential bias.

Forming FM: The first obvious method to subsetting M into F'M is to select the top
n models reporting the highest classification accuracy (Top). This approach is straight-
forward and is effective at drastically cutting the size of M. However, as before, we
find that if a certain classifier performs particularly well on a dataset, a large portion of
the n models in F'M will belong to the same classifier and make similar classification
errors. Therefore, we next explore forming F'M by partitioning M based on the classi-
fier type (CS), the feature-set (FS), and the classifier-feature-set combination (CFS). To
form F'M, we select the highest performing model from each partition. For example,
in the CS stratification approach we select the model with the highest reported AUC
accuracy for each classifier type. Lastly, we form F'M by considering every optimized
model produced by ATM (F'M == M). In summary, the following are the approaches
we apply to form F'M: Top, CS, FS, CFS, and the entire set of models.

Once the models in F'M have been identified using one of the aforementioned meth-
ods, the next step is to design an algorithm to effectively select the minimal number of
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classifier models to fuse. Intelligently selecting models for fusion begins with deciding
which model best complements the models already selected for fusion. To facilitate
this, we compute the pair-wise score correlation between all pairs of candidate models.
Typically, combining models which are least correlated can be beneficial [15]. In this
work, we develop two techniques for selecting models to fuse. In both approaches, we
start with the best performing model generated by ATM and then use pairwise corre-
lation value to guide model selection. Then, we compare the performance of these two
approaches, examining how the accuracy and efficiency are impacted by the number of
models fused.

Static Selection: The first selected model is the best model produced by ATM. The
remainder of the models in /"M that are not selected form the unselected model set.
The next model chosen is the unselected model with the least correlation to the last
selected model. This process is repeated until there are no more unselected models and
the selection is complete. By using the Pearson correlation between models’ scores
across training samples in order to select models, we are selecting models whose scores
contain new information not captured by the previously selected models.

Algorithm 1. Static Selection

DECLARE: Selected < ARRAY[0:2] of sorted(F M)
DECLARE: NotSelected < ARRAY [2 : n] of sorted(F M)
while length of NotSelected > 1 do

corrs < pearson(Selected, NotSelected)

Selected insert min(corrs) Model

NotSelected remove min(corrs) Model
end while

Dynamic Selection: We next explore sorting models by dynamically updating the cor-
relation values after selecting a new model for fusion. Once the first 2 candidate models
are selected as described in the static sort above, we immediately fuse the selected mod-
els to obtain a new model with the new set of fused scores. We update the correlation
coefficients with the unselected models to account for the scores from the newly fused
model. This selection method is dynamic and allows for the flexibility to select the next
model based on the current models already selected for fusion.

Algorithm 2. Dynamic Selection

DECLARE: Selected «+— ARRAY[0:2] of sorted(FM)
DECLARE: Fused <« Fused(Selected)
DECLARE: NotSelected <— ARRAY |2 : n] of sorted(FM)
while length of NotSelected > 1 do

corrs « pearson(Selected, NotSelected)

Selected insert min(corrs) Model

NotSelected remove min(corrs) Model

Fused — fuse(Selected)

NotSelected insert Fused Model
end while
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5 Results and Analysis

The proposed method is able to improve the AUC accuracies, both over any individual
AutoML generated model and over the previous state-of-the-art accuracies described
in Sect. 3. We focus on the Prostate and Brain datasets, as ATM produced significantly
optimized models for the Stem Cell dataset with individual AUC accuracies over 99%.
While no single stratification approach universally performed the best, we find that
using a stratification approach reports higher AUC accuracies than randomly selecting
the same number of models (repeated 5 times), as shown in Table 5, with the class-
feature stratification (CFS) technique providing the best results with the fewest models
for the prostate dataset, and selecting models from the top-performing stratification
(TOP) provides the best results for the brain dataset. Figure 6 shows how the AUC
accuracies change as models are added to the fusion.

Table 5. Summary of the best accuracies (%) achieved through fusion compared to previous pub-
lished performances. Entries in parenthesis indicate number of models fused and the stratification
approach. Note, ATM produced models which achieve strong results and so fusing additional
models are not considered.

Brain tumor Prostate Stem cell
Previous accuracy 86.56 [3] 95.00 [5] 94.6 [2]
SVM fusion: proposed model selection | 100 (27, TOP) 100 (124, CFS) 99.8 (1)
SVM fusion: random model selection | 91.45 4 0.5889 (27) | 99.16 £ 0.0004 (124) | 71.43 (1)
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«n 10 1.0 SR
8 v m—
O o, o apsule Networ 0.8 0.95
© o8 / [ \WJ7 (0.86) / g (:58)
8 0.6 k/ 0.6 ’
) |
< o4 0.4 |
g |
< 02| — static Sorting 02 “,‘ —— Dynamic Sorting: Top Stratification

Dynamic Sorting |l — Dynamic Sorting: Class-Feature Stratification

5 0 15 20 25 30 10 20 30 40 50

ProstateX Challenge
10 (0.95) ]

apsule Netw,

(0.86) 08

0.6

0.4

0.21 — static Sorting: Top 0.2

Aisleh —— Static Sorting
—— Dynamic Sorting: Top apsled
00 06 Dynamic Sorting

20 40 60 80 25 50 75 100 125 150

Number of Sorted Models  Number of Sorted Models

AUC Accuracies

Fig. 6. Plots illustrating the changes in accuracy as increasing number of models are included for
fusion. Left: Brain dataset, Right: Prostate dataset.
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6 Summary

We applied score fusion to combine multiple classification models generated by an
AutoML tool to produce improved accuracy on three medical imaging datasets. Further,
we developed two methods to select models for fusion based on Pearson’s correlation
coefficient. This case study focused on medical image datasets, and obtained several
classification models via an AutoML tool (ATM) to fuse together. We observe that fus-
ing models improves the accuracy beyond the best individual classification model pro-
duced by ATM, and that the highest accuracy achieved through fusion of these models
surpasses the accuracy of even deep learning approaches. Furthermore, these results are
achieved with small training data sizes without auxiliary information, such as labeling
behavior or pixels surrounding the area of interest. This underscores the importance of
judiciously selecting models for fusion in order to improve classification accuracy.
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