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Abstract. There have recently been significant advances in the accu-
racy of algorithms proposed for time series classification (TSC). However,
a commonly asked question by real world practitioners and data scien-
tists less familiar with the research topic, is whether the complexity of
the algorithms considered state of the art is really necessary. Many times
the first approach suggested is a simple pipeline of summary statistics or
other time series feature extraction approaches such as TSFresh, which
in itself is a sensible question; in publications on TSC algorithms gen-
eralised for multiple problem types, we rarely see these approaches con-
sidered or compared against. We experiment with basic feature extrac-
tors using vector based classifiers shown to be effective with continuous
attributes in current state-of-the-art time series classifiers. We test these
approaches on the UCR time series dataset archive, looking to see if TSC
literature has overlooked the effectiveness of these approaches. We find
that a pipeline of TSFresh followed by a rotation forest classifier, which
we name FreshPRINCE, performs best. It is not state of the art, but it
is significantly more accurate than nearest neighbour with dynamic time
warping, and represents a reasonable benchmark for future comparison.

Keywords: Time series classification · Transformation based
classification · Time series pipeline

1 Introduction

A wide range of complex algorithms for time series classification (TSC) have been
proposed. These include ensembles of deep neural networks [14], heterogeneous
meta-ensembles build on different representations [22], homogeneous ensembles
with embedded representations [26] and randomised kernels [10]. The majority of
these algorithms rely on some form of transformation: features that in some way
model the discriminatory time characteristics are extracted and used in the clas-
sification process. These features are often very complex, and usually embedded
in the classifiers in complicated ways. For example, the Temporal Dictionary
Ensemble (TDE) [19] is centred around the Symbolic Fourier Approximation
(SFA) [25] transformation. The transform itself simply discretises the series into
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Fig. 1. Visualisation of a simple pipeline algorithm for TSC. Could using standard
transformers and vector based classifiers be as good as state of the art TSC algorithms?

a set of words using a sliding window. However, just performing the transform
does not lead to an algorithm that is competitive in accuracy. TDE also employs
a spacial pyramid, uses bi-gram frequency, a bespoke distance function and a
Gaussian process based parameter setting mechanism. The complexity increases
further if the data is multivariate, containing multiple time series per case.

Researchers not directly involved in TSC algorithm research, and data sci-
entists in particular, often ask the not unreasonable question of whether these
complicated representations are really necessary to get a good classifier. They
wonder whether a simple pipeline using standard feature extractors, as illus-
trated in Fig. 1 would not in fact be at least as good as complicated classifiers
claiming to be state of the art? Clearly, the answer will not be the same for all
problems, and the detailed answer depends on what level of accuracy is deemed
sufficient for a particular application. However, we can address the hypothe-
sis of whether, on average, a standard pipeline of transformation plus classifier
performs as well as bespoke benchmarks and state of the art. Specifically, we
compare a range of pipeline combinations of off the shelf unsupervised time
series transformers with commonly used vector based classifiers to the current
state of the art in TSC as described in [22]. In Sect. 2 we describe the transform-
ers and classifiers used in our pipeline experiments, and give a brief overview of
the state of the art in TSC. In Sect. 3 we describe our experimental structure,
and in Sect. 4 we present our findings. Finally, in Sect. 5 we draw our conclusions
and summarise what we have learnt from this study.

2 Background

TSC algorithms tend to follow one of three structures. The simplest involves
single pipelines such as that described in Sect. 1, where the transformation is
either supervised (e.g. Shapelet Transform Classifier [6]) or unsupervised (e.g.
ROCKET [10]). These algorithms tend to involve an over-produce and select
strategy: a huge number of features are created, and the classifier is left to deter-
mine which are most useful. The transform can remove time dependency, e.g. by
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calculating summary features. We call this type series-to-vector transformations.
Alternatively, they may be series-to-series, transforming into an alternative time
series representation where we hope the task becomes more easily tractable (e.g.
transforming to the frequency domain of the series).

The second transformation based design pattern involves ensembles of
pipelines, where each base pipeline consists of making repeated, different, trans-
forms and using a homogeneous base classifier (e.g. Canonical Interval For-
est [21]). These ensembles can also be heterogeneous, collating the classifications
from transformation pipelines and ensembles of differing representations of the
time series (e.g. HIVE-COTE [22]).

The third common pattern involves transformations embedded inside a clas-
sifier structure. An example of this is a decision tree: where the data is trans-
formed, or a distance measure is applied prior to any splitting criteria at each
node (e.g. TS-CHIEF [26]).

2.1 State of the Art for TSC

The state-of-the art for TSC consists of one classifier from each of the structures
described, as well as a deep learning approach.

The Random Convolutional Kernel Transform (ROCKET) [10] is
a transform designed for classification. It generates a large number of parame-
terised convolutional kernels, used as part of a pipeline alongside a linear classi-
fier. Kernels are randomly initialised with respect to the following parameters:
the kernel length; a vector of weights; a bias term added to the result of the
convolution operation; the dilation to define the spread of the kernel weights
over the input instance; and padding for the input series at the start and end.
Each kernel is convoluted with an instance through a sliding window dot-product
producing an output vector, extracting only two values: the max value and the
proportion of positive values. These are concatenated into a feature vector for
all kernels.

The Time Series Combination of Heterogeneous and Integrated
Embedding Forest (TS-CHIEF) [26] is a homogeneous ensemble where
hybrid features are embedded in tree nodes rather than modularised through
separate classifiers. The trees in the TS-CHIEF ensemble embed distance mea-
sures, dictionary based histograms and spectral features. At each node, a number
of splitting criteria from each of these representations are considered. These splits
use randomly initialised parameters to help maintain diversity in the ensemble.

InceptionTime [14] is the only deep learning approach we are aware of
which achieves state-of-the-art accuracy for TSC. InceptionTime builds on a
residual network (ResNet), the prior best network for TSC [13]. The network is
composed of two blocks of three Inception modules [27] each, as opposed to the
three blocks of three traditional convolutional layers in ResNet. These blocks
maintain residual connections, and are followed by global average pooling and
softmax layers as before. InceptionTime creates an ensemble of networks with
randomly initialised weightings.
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The Hierarchical Vote Collective of Transform Ensembles, HIVE-
COTE 1.0 (HC1) [2], alongside the three algorithms above, are not signifi-
cantly different to each other in terms of accuracy. Additionally, all are signifi-
cantly more accurate on average than the best performing algorithms from the
bake off comparison of time series classifiers five years prior [3].

The second release of HIVE-COTE, HIVE-COTE 2.0 (HC2) [22] is a
heterogeneous ensemble of four classifiers built on four different base represen-
tations. HC2 is the only algorithm we are aware of which performs significantly
better than the four algorithms above. In HC2, three new classifiers are intro-
duced, with only the Shapelet Transform Classifier (STC) [5] retained from HC1.
TDE [19] replaces the Contractable Bag-of-SFA-Symbols (cBOSS) [20]. The
Diverse Representation Canonical Interval Forest (DrCIF) replaces both Time
Series Forest (TSF) [12] and the Random Interval Spectral Ensemble (RISE) [17]
for the interval and frequency representations. An ensemble of ROCKET [10]
classifiers called the Arsenal is introduced as a new convolutional/shapelet based
approach. Estimation of test accuracy via cross-validation is replaced by an
adapted form of out-of-bag error, although the final model is still built using all
training data.

2.2 Unsupervised Time Series Transformations

Time Series Feature Extraction based on Scalable Hypothesis Tests
(TSFresh) [8] is a collection of just under 800 features1 extracted from time
series data. TSFresh is very popular with the data science community, and is
frequently proposed as a good transform for classification. The Highly Com-
parative Time Series Analysis (hctsa) [15] toolbox can create over 7700
features2 for exploratory time series analysis. Alongside basic statistics of time
series values, hctsa includes features based on linear correlations, trends and
entropy. Features from various time series domains such as wavelets, informa-
tion theory and forecasting among others are also present. Both TSFresh and
hctsa cover similar domains, extracting masses of summary features from the
time series. Some of these extracted features will be similar, with differently
paramaterised variations of the same feature included if applicable.

The Canonical Time Series Characteristics (catch22) [18] are 22 fea-
tures chosen to be the most discriminatory of the full hctsa [15] set. This was
determined by an evaluation over the UCR datasets. The hctsa features were
initially pruned, removing those which are sensitive to mean and variance and
any which could not be calculated on over 80% of the UCR datasets. A feature
evaluation was then performed based on predictive performance. Any features
which performed below a threshold were removed. For the remaining features, a
hierarchical clustering was performed on the correlation matrix to remove redun-
dancy. From each of the 22 clusters formed, a single feature was selected, taking
into account balanced accuracy, computational efficiency and interpretability.

1 https://tsfresh.readthedocs.io/en/latest/text/list of features.html.
2 https://hctsa-users.gitbook.io/hctsa-manual/list-of-included-code-files.

https://tsfresh.readthedocs.io/en/latest/text/list_of_features.html
https://hctsa-users.gitbook.io/hctsa-manual/list-of-included-code-files
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Like the hctsa set it was extracted from, the catch22 features cover a wide range
of feature concepts.

Time Series Intervals are used in the interval based representation of TSC
algorithms. Classifiers from this representation extract multiple phase-dependent
subseries to extract discriminatory features from. Classifiers from this represen-
tation include TSF [12] and the Canonical Interval Forest (CIF) [21]. Both of
these algorithms select intervals with a random length and position, extracting
summary features from the resulting subseries and concatenating the output of
each. This interval selection and feature extraction process can itself be used as
an unsupervised transformation.

Generalised Signatures [23] are a set of feature extraction techniques, pri-
marily for multivariate time series based on rough path theory. We specifically
look at the generalised signature method [23] and the accompanying canoni-
cal signature pipeline. Signatures are collections of ordered cross-moments. The
pipeline begins by applying two augmentations by default. The basepoint aug-
mentation simply adds a zero at the beginning of the time series, making the
signature sensitive to translations of the time series. The time augmentation
adds the series timestamps as an extra coordinate to guarantee each signature is
unique and obtain information about the parameterisation of the time series. A
hierarchical dyadic window is run over the series, with the signature transform
being applied to each window. The output for each window is then concatenated
into a feature vector.

3 Experimental Structure

We perform our experiments on 112 equal length datasets with no missing values
from the UCR time series archive [9]. We resample each dataset randomly 30
times in a stratified manner, with the first resample being the original train-test
split from the archive. Each algorithm and dataset resample are seeded using
the fold index to ensure reproducibility.

The transformations used in our experiments can be found in the Python
sktime3 package. Each transformer was built and saved to file, with the pro-
cess being timed for our timing experiments. The classification portion of our
pipelines, and the TSC algorithms used in our comparison, were run using the
Java tsml4 toolkit implementations. An exception for this is the deep learn-
ing approach InceptionTime, which we use the sktime companion package
sktime-dl5 to run.

To compare our results for multiple classifiers over multiple datasets we use
critical difference diagrams [11]. We replace the post-hoc Nemenyi test with
a comparison of all classifiers using pairwise Wilcoxon signed-rank tests, and
cliques formed using the Holm correction as recommended in [4,16].

3 https://github.com/alan-turing-institute/sktime.
4 https://github.com/uea-machine-learning/tsml.
5 https://github.com/sktime/sktime-dl.

https://github.com/alan-turing-institute/sktime
https://github.com/uea-machine-learning/tsml
https://github.com/sktime/sktime-dl
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We create pipelines primarily using the transformations described in Sect. 2.2,
with the exception of the hctsa feature set, which required too much processing
time and memory to be run in our timeframe. In addition to these transfor-
mations, we also include two benchmark transformations: Principal Component
Analysis (PCA) and seven basic summary statistics. The seven statistics we
use are the mean, median, standard deviation, minimum, maximum and the
quantiles at 25% and 75%. PCA and basic summary statistics are the simplest
transformations available, and perhaps one of the simplest approaches one could
take towards TSC, alongside building classifiers on the raw time series and one-
nearest-neighbour classification with Euclidean distance.

Our random interval transformation experiments extract 100 randomly
selected intervals per dataset. We form two random interval pipelines, one
extracting our basic summary statistics from each interval (RandInterval) and
the other extracting the Catch22 features (RandIntC22).

For the classifier portion of our pipelines, we test three different vector based
classifiers. Rotation Forest (RotF) [24] is the classifier of choice for the STC
pipeline, and has shown to be significantly better than other popular approaches
on problems only containing continuous attributes [1]. Extreme Gradient Boost-
ing (XGBoost) [7] of Kaggle fame is our second classifier option. Our third
option is a ridge regression classifiers with cross-validation to select parameters
(RidgeCV), the better performing linear classifier suggested for the ROCKET
pipeline [10].

4 Results

We structure our results to answer four specific questions:

1. Which transformation is best given a specific classifier?
2. Which classifier is best, given a specific transform?
3. How do the pipeline classifiers compare to standard benchmarks?
4. How do the pipeline classifiers compare to state-of-the-art?

Figures 2 show the relative performance of difference transforms for our three
base classifiers. We include for reference our two baseline classifiers, Rotation
Forest (RotF) built on the raw time series and 1-nearest neighbour using dynamic
time warping with a tuned window size (DTWCV).

The pattern of results is similar for all three classifiers: TSFresh and Rand-
IntC22 are ranked top for all three classifiers. Both are significantly higher ranked
than all the other transforms, and both baseline classifiers, except for the case
of TSFresh with a ridge classifier. Summary statistics is always the worst app-
roach and PCA, Catch22, Signatures are no better than, or worse than, the
benchmark classifiers. RandomIntervals is significantly better than the bench-
marks with rotation forest. There is an anomaly when drawing cliques (RotF
and DTW are not always in the same clique despite there being no significant
difference in all experiments, as it is impossible to draw accurately), but the
initial indications are clear: TSFresh and RandIntC22 are the best performing
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Fig. 2. Relative rank performance of seven transforms used in a simple pipeline with a
linear ridge classifier (a), XGBoost (b) and rotation forest (c). TSFresh and RandInt22
are significantly better than all other transforms with most base classifiers.

techniques and, with the possible exception of RandomIntervals, the others do
not outperform the standard benchmarks, and are therefore of less interest. We
investigate the relative performance of classifiers by comparing the two best
transforms (TSFresh and RandIntC22) in combination with the three classifiers.
Figure 3 shows that RotF is significantly better than RidgeCV and XGBoost for
both transforms. This supports the argument made in [1] that rotation forest is
the best classifier for problems with all continuous attributes. Figures 4 show the
pairwise scatter plots for four pairs of pipelines. Figures (a), (b) and (c) show the
difference in accuracies on the archive for both TSFresh and RandIntC22 using
each of our base classifiers. Figure (d) compares our best performing pipeline,
TSFresh with rotation forest, to the next best, TSFresh pipeline using XGBoost.

Fig. 3. Relative performance of three classifiers Rotation Forest, XBoost and RidgeCV
(prefixes RotF, XG and Ridge) with two transforms TSFresh and RandIntCatch22
(suffix TSFr and RIC22). RotF is significantly better than the other classifiers, and
RotF with TSFresh is the best overall combination.
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Fig. 4. Pairwise scatter plots for TSFresh vs RandIntC22 with (a) RidgeCV, (b)
XGBoost and (c) rotation forest, and (d) the scatter plot of using TSFresh with
XGBoost with TSFresh. (a), (b) and (c) demonstrate the superiority of TSFresh over
RandIntC22. (d) shows that rotation forest significantly outperforms XGBoost.

Our primary finding is that the pipeline of TSFresh and rotation forest is, on
average, the highest ranked and the most accurate simple pipeline approach for
classifying data from the UCR archive. We feel the approach deserves a name
better than RotF-TSFr. Hence, we call it the FreshPRINCE (Fresh Pipeline
with RotatIoN forest Classifier). We investigate classification performance of
the FreshPRINCE against the current and previous state of the art. Figure 5
shows FreshPRINCE against the very latest state of the art, HIVE-COTEv2.0
(HC2), the previously best performing algorithms, InceptionTime, TS-CHIEF
and ROCKET and the popular benchmark, DTWCV. Figure 5 shows that Fresh-
PRINCE does not achieve SOTA, but it does perform better than the popular
benchmark 1-NN with DTW (DTWCV). Table 1 presents the summary perfor-
mance measures averaged over all data. FreshPRINCE is approximately 6.5%
more accurate than DTWCV, but on average 1.4% and 3.8% less accurate than
ROCKET and HC2.
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Fig. 5. Critical difference plot for FreshPRINCE against SOTA and DTW.

Table 1. Summary performance statistics averaged over 112 UCR datasets. Test set
accuracy (Acc), balanced accuracy (BalAcc), F1 statistic (F1), Area under the receiver
operator curve (AUROC) and negative log likelihood (NLL).

Classifier Acc BalAcc F1 AUROC NLL

HC2 89.06% 86.85% 0.8575 0.9684 0.5245

TS-CHIEF 87.73% 85.80% 0.8475 0.9592 0.7479

InceptionTime 87.36% 85.67% 0.8443 0.9583 0.6104

ROCKET 86.61% 84.58% 0.8339 0.9536 1.5754

FreshPRINCE 85.22% 82.98% 0.8168 0.9565 0.7230

DTWCV 77.72% 76.10% 0.7449 0.7860 1.4796

Table 2 displays the run times for generating the results summarised in Fig. 5
and Table 1. The FreshPRINCE is not as fast as the ROCKET classifier, but is
still faster than then other SOTA TSC algorithms.

Table 2. Classifier runtimes, Average (Minutes), Total (Hours), Max (Hours).

DTWCV FreshPRINCE Rocket InceptionTime TS-CHIEF HC2

Average 13.9545 10.5905 1.52939 46.3823 544.7552 182.844

Total 26.0485 19.7689 2.85461 86.5802 1016.8751 341.3084

Max 7.3248 3.856 0.4301 7.1093 166.7567 54.9177

We believe that, given the simplicity of the pipeline approach, the Fresh-
PRINCE pipeline should be a benchmark against which new algorithms should
be compared. If the claimed merits of an approach are primarily its accuracy,
then we believe it should achieve significantly better accuracy than the simple
approach of a TSFresh transform followed by a rotation forest classifier.

4.1 Implementation and Reproduction of Results

Given that we suggest FreshPRINCE as a benchmark classifier for new compar-
isons, we also provide resources for using it as such. We include our results for
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FreshPRINCE on the 112 UCR datasets used in this experiment on the time
series classification web page.6 For experiments outside the UCR archive, we
have implemented the pipeline in the Python sktime package. The most com-
monly used machine learning package for Python, sklearn, does not contain a
rotation forest implementation. As such, we also include an implementation of
the algorithm in sktime.

Listings 1.1 displays the process for running FreshPRINCE using the sktime
package, loading data from its .ts file forma.

1 from sktime.utils.data_io import

load_from_tsfile_to_dataframe as load_ts

2 from sktime.classification.feature_based import

FreshPRINCE

3

4 if __name__ == "__main__":

5 # Load dataset

6 trainX , trainY = load_ts("../ Data/data_TRAIN.ts")

7 testX , testY = load_ts("../ Data/data_TEST.ts")

8

9 # Create classifier and build on training data

10 fresh_prince = FreshPRINCE ()

11 fresh_prince.fit(trainX , trainY)

12

13 # Find accuracy on testing data

14 accuracy = fresh_prince.score(testX , testY)

Listing 1.1. Running the FreshPRINCE pipeline in Python using sktime.

FreshPRINCE can also be run using a sklearn pipeline, using the sktime TSFresh
transformer and rotation forest implementations, as shown in Listing 1.2.

1 fresh_prince = Pipeline ([

2 (

3 "transform",

4 TSFreshFeatureExtractor (

5 default_fc_parameters ="comprehensive "),

6 ),

7 ("classifier", RotationForest ()),

8 ])

Listing 1.2. Forming the FreshPRINCE pipeline in Python using sktime components
and the sklearn Pipeline framework.

5 Conclusion

We have tested a commonly held belief that a simple pipeline of transformation
and standard classifier is a useful approach for time series classification. We
have found that there is some merit in this opinion: simple transformations such

6 http://www.timeseriesclassification.com/results.php.

http://www.timeseriesclassification.com/results.php
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as PCA or summary stats are not effective, but more complex transformations
such as TSFresh and random intervals with the Catch22 features do achieve a
respectable level of accuracy on average. They are significantly worse than state
of the art in 2021 and 2020, but significantly better than the state from 10
years ago (DTWCV). We suggest the best performing pipeline, a combination
of TSFresh and rotation forest we call FreshPRINCE for brevity, be used more
commonly as a TSC benchmark.
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