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Abstract. Vision transformer architectures have been demonstrated to
work very effectively for image classification tasks. Efforts to solve more
challenging vision tasks with transformers rely on convolutional back-
bones for feature extraction. In this paper we investigate the use of a
pure transformer architecture (i.e., one with no CNN backbone) for the
problem of 2D body pose estimation. We evaluate two ViT architectures
on the COCO dataset. We demonstrate that using an encoder-decoder
transformer architecture yields state of the art results on this estimation
problem.
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1 Introduction

In recent years, transformers have been gaining ground versus traditional con-
volutional neural networks in a number of computer vision tasks. The work of
Dosovitskiy et al. [3] demonstrated the use of the pure transformer model for
image classification. This was followed by a number of recent papers demonstrat-
ing improved performance [12], reduced computational requirements [4,14,16,18]
or both. All of these pure transformer models are applied only to the task of
image classification. For more challenging vision tasks such as 2D human pose
estimation, recent methods [7,8,17] use a combination of a convolutional back-
bone followed by a transformer front-end to achieve similar performance to that
of convolutional architectures.

In this work1, we investigate the use of a pure transformer-based architecture
for the task of 2D human pose estimation. More specifically, we focus on single
instance, direct coordinate regression of the human body keypoints. We evaluate
an encoder-decoder architecture derived from the work of Carion et al. [1]. In our
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model we eliminate the need for a convolutional based backbone (a ResNet in
the case of [1]) and we replace the encoder part of the transformer with a vision-
based [3] transformer encoder. By foregoing with the need of a convolutional
backbone, our model is realized by a much simpler architecture.

For the encoder part, we investigate the use of two vision transformer archi-
tectures:

– Deit [12]: ViT architecture trained with distillation, which exhibits baseline
performance for vision transformers.

– Xcit [4]: Cross-covariance transformers. Xcit reduces the computational
requirements by transposing the way ViT operates, i.e., instead of attend-
ing on tokens the transformer attends on the token-channels.

When comparing to other regression based methods [7,8] which use a com-
bination of transformers and convolutional backbones, our Deit-based model
performs on par with similar sized (in million parameters) models. Moreover,
our best model using an Xcit-based encoder achieves state of the art results on
the COCO dataset.

We compare our transformer-only architecture with two “baselines”. One
that uses a ResNet50 as the encoder section and another that uses a ViT
(encoder+decoder) feature extractor. The architecture and details of these
baselines are discussed in Sect. 3. We demonstrate experimentally that against
these baselines, when everything else is kept the same, the transformer encoder
improves performance.

Finally, we further improve the performance of our models using unsupervised
pre-training, as proposed by Caron et al. [2]. The training results of models that
use supervised and unsupervised pre-training are presented in Sect. 4.

In summary, the contributions of our work2 are the following:

– We propose a novel architecture for 2D human pose estimation that is using
vision transformers without the need for a CNN backbone for feature extrac-
tion.

– We demonstrate that our proposed architecture outperforms the SOTA on
public datasets by as much as 4.4% in AP (compared to [7]).

– We evaluate the performance of different vision transformer encoders for the
task of 2D human pose estimation.

– We demonstrate that the unsupervised pretraining of our transformer-based
models, improves their performance by 0.5% (for the Xcit model).

2 Related Work

2.1 Vision Transformers

The success of transformers in Natural Language Processing (NLP) has moti-
vated a lot of researchers to adopt transformers for the solution of vision tasks.
2 Code is available on https://github.com/padeler/PE-former.

https://github.com/padeler/PE-former
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Fig. 1. The DETR model adapted for 2D human pose estimation (top) and our pro-
posed model using Visual transformers (bottom). In our model, the cropped image of
a person (bottom left), is split into N tokens of p × p pixels (typically p is equal to
8 or 16 pixels). The tokens are processed by the transformer encoder (can be Deit or
Xcit based). The output feature tokens (N + 1 for the class token) are used as the
memory tokens in the DETR based transformer decoder. The decoder input is M joint
queries. M = 100 in our experiments. The Decoder outputs M prediction tokens which
are processed by a classification and a regression head (FFNs). The output is 2D joint
locations (range [0, 1]) and class predictions.

While attention-based mechanisms acting on image features such as the ones
produced from a CNN, have been around for many years, only recently, Doso-
vitskiy et al. [3] demonstrated successfully with ViT the use of transformers
for image feature extraction, replacing the use of CNNs for the task of image
classification. While the ViT approach is very promising, it still suffers from
issues that arise from the quadratic complexity of the attention mechanism and
translates to heavy computational and memory requirements. Additionally, the
vanilla ViT models and, especially, their larger variants, are very hard to train
and require to be trained on huge annotated datasets. Following ViT, many
methods [9,14,16,18,19] appeared trying to solve or circumvent these issues
while also maintaining SOTA performance [4,12]. In this work, we incorporate
two very promising architectures, DEIT [12] and Xcit [4] in our models and
evaluate their performance.
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2.2 Transformers for Pose Estimation

Attention-based mechanisms have been applied to tackle demanding vision tasks
such as 2D human pose estimation. However, these rely on CNN backbones for
feature extraction. The addition of an attention mechanism enables methods
such as the one proposed by Li et al. [7] to achieve state of the art results,
improving on the best CNN based methods such as the HRNet by Sun et al. [11].
However, Li et al. Li et al. [7] base their model and build on an HRNet CNN
backbone. Similarly, methods such as TFPose by Mao et al. [8], POET by Stoffl
et al. [10] and Transpose by Yang et al. [17], build on a robust CNN backbone
and apply the attention mechanism on the extracted image features.

In this work, similarly to [7], we use the transformer-based decoder mod-
ule and the bipartite matching technique of Carion et al. [1]. However, instead
of relying on a CNN backbone or encoder for image features extraction, we
introduce an architecture that directly uses the output features from a vision
transformer.

3 Method

As shown in Fig. 1 (bottom row), our architecture consists of two major com-
ponents: A Visual Transformer encoder, and a Transformer decoder. The input
image is initially converted into tokens following the ViT paradigm. A position
embedding [13] is used to help retain the patch-location information. The tokens
and the position embedding are used as input to transformer encoder. The trans-
formed tokens are used as the memory [1] input of the transformer decoder. The
inputs of the decoder are M learned queries. For each query the network pro-
duces a joint prediction. The output tokens from the transformer decoder are
passed through two heads. The heads are feed forward neural networks (FFNs)
following the architecture of DETR. The first is a classification head used to
predict the joint type (i.e., class) of each query. The second is a regression head
that predicts the normalized coordinates in the range [0, 1] of the joint in the
input image. Predictions that do not correspond to joints are mapped to a “non
object” class.

In Sect. 3.1 we discuss the details of our encoder module and we present the
architecture of the various encoders that we examined. In Sect. 3.2 we present the
details of the decoder module which is derived from the DETR decoder. Finally,
in Sect. 3.3, we discuss the training techniques and hyperparameters used for the
experiments.

3.1 Transformer Encoder

Dosovitskiy et al. [3] proposed the use of image patches which, in the case of
ViT, have a size of 16 × 16. This approach of splitting the image into patches
is adopted by all the vision transformer methods that appeared since ViT. In
general, an input image of dimensions W ×H pixels, is split into n×m patches,
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each of which is a square block of p × p pixels. These patches are flattened into
vectors (tokens) and are subsequently passed through the transformer [13] layers.
The self-attention mechanism operates on an input matrix X ∈ RN×d, where N
is the number of tokens. Each token has d dimensions. The input X is linearly
projected to queries, keys and values (Q,K, V ). Keys and values are used to
compute an attention map

A(K,Q) = Softmax(QKT /
√
d).

The results of the self-attention mechanism is the weighted sum of the values V
with the attention map:

Attention(Q,K, V ) = A(K,Q)V.

The computational complexity of this original self-attention mechanism scales
quadratically with N , due to pairwise interactions between all N elements. The
use of image patches in ViT instead of pixels makes the use of self-attention
tractable, but the quadratic complexity still remains an issue.

In addition to the tokens created from the image patches, a vision transformer
also has an extra (learned) token. This token, usually called the CLS token,
is used to generate the final prediction when the transformer is trained for a
classification task. The transformed tokens at the output of the encoder have
the same number of channels as the input. In our model, the output tokens of
the encoder transformer including the CLS token are used as the “memory”
input of the decoder transformer.

DeiT Encoder: Touvron et al. [12] proposed a training methodology for the
ViT architecture that enables efficient training of the vision transformer without
the use of huge datasets. The proposed methodology enabled DeiT models to
surpass the accuracy of the ViT baseline, while training just on the ImageNet
dataset. They further improved on that by proposing a distillation strategy that
yielded accuracy similar to that of the best convolutional models. Our DeiT
encoder uses the DeiT-S model architecture. For our experiments, the encoders
are initialized using either the weights provided by the DeiT authors (DeiT-
S, trained with distillation at 224 × 224) of the weights provided by the Dino
authors. For our experiments we use two versions of the DeiT-S model, both
trained with input sizes of 224 × 224 pixels:

1. the DeiT-S variant trained with distillation and
2. the DeiT-S trained using the unsupervised methodology of Dino.

Xcit Encoder: El-Nouby et al. [4] recently proposed the Xcit transformer.
In this approach they transpose the encoder architecture. Attention happens
between the channels of the tokens rather than between the tokens themselves.
The proposed attention mechanism is complemented by blocks that enable “local
patch interations”, enabling the exchange of information between neighboring
tokens on the image plane.
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The Xcit transformer scales linearly with the size of patches since the memory
and computation expensive operation of attention is applied to the channels
which are fixed in size. This characteristic of Xcit enables training with larger
input image sizes and more patches. In our experiments we use the Xcit-Small-
12 variant of the model which corresponds roughly to the DeiT-S variant of the
DeiT architecture. Similar to the DeiT (Sect. 3.1) encoder we use pre-trained
weights for this encoder. The weights are obtained with

1. supervised training on the ImageNet and
2. with the unsupervised methodology of Dino.

Resnet Encoder: In order to verify the positive impact of our proposed
attention-based encoder we implemented a third type of encoder, this time using
Resnet50 [6] as the architecture. The 50-layer variant was selected because it has
a similar number of parameters as the examined transformer-based encoders.

The Resnet encoder replaces the “Visual Transformer Encoder” block shown
in Fig. 1. Following the DETR implementation we use a 1 × 1 convolution to
project the output features of the Resnet to the number of channels expected
by the decoder. Subsequently we unroll each feature channel to a vector. These
vectors are passed as the memory tokens to the decoder. The Resnet50 encoder
is used to experimentally validate the positive effect of using vision transformers
(DEIT or Xcit) versus a conventional convolutional encoder.

VAB (ViT as Backbone): Related work that tackles pose estimation with
transformers typically uses a convolutional backbone to extract image features.
This model architecture is shown on the top row of Fig. 1. The features created
by the CNN backbone are flattened and used as input tokens to a transformer
front-end. In this model the transformer consists of an encoder and a decoder
block.

For our experiments we replace the CNN backbone for a visual transformer.
The vision transformer outputs feature tokens which are subsequently processed
by the (unchanged) transformer encoder-decoder block. We call this modification
VAB for “ViT as Backbone”. The VAB approach is closer in spirit to contempo-
rary methods for pose estimation replacing only the CNN backbone with ViT.
However it is larger in number of parameters and requires more computational
resources than its CNN-based counterparts. In our experiments we use the DeiT-
S as the visual transformer backbone.

3.2 Transformer Decoder

We adapt the decoder block of DETR and use it in our model. A number of
learned queries are used to predict joint locations. Predictions that do not corre-
spond to a joint are mapped to the “non-object” class. Following the work of Li
et al. [7] we use M = 100 queries for all our models. Adding more queries does
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not improve the result, while having queries equal to the number of expected
joints (i.e., 17 for the COCO dataset) gives slightly worse results.

Bipartite graph matching is used at training time to map the regressed joints
to the ground truth annotations. In contrast to the DETR decoder, our decoder
is configured to regress to 2D keypoints rather than object bounding boxes. This
translates to regressing 2 scalar values (x, y) in the range of [0, 1] for each joint.
In all our experiments we used a decoder with 6 layers which achieves a good
performance balance. Adding more layers to the decoder gives slightly improved
results at a cost of more parameters and higher computational and memory
requirements.

3.3 Training

We use AdamW to train our models with a weight decay of 1e − 4. For all our
experiments we use pretrained encoders while the decoder weights are randomly
initialized. The pretrained weights used are noted in each experiment. The learn-
ing rate for the encoder is set to 1e−5 and for the decoder to 1e−4. The learning
rate drops by a factor of 10 after the first 50 epochs and the models are trained
for a total of 80 epochs. For all our models we use a batch size of 42.

For data augmentation we follow the approach of Xiao et al. [15]. According
to this we apply a random scaling in the range [0.7, 1.3], a random rotation in the
range ([−40◦, 40◦]) and a random flip to the image crop. We found experimentally
that the jitter, blur and solarization used by [1] for the object detection task were
not helpful in our 2D human pose estimation problem, so these operations were
not used.

4 Experiments

We compare against two other regression based methods [7,8] for single instance
2D human pose estimation. Both of these methods use a convolutional backbone
and an attention mechanism derived from the DETR decoder to regress to the
2D keypoints of a human in the input image crop.

4.1 Evaluation Methodology

We train and evaluate our models on the COCO val dataset. We use the detection
results from a person detector with AP 50.2 on the COCO Val2017 set. Following
standard practice [7,15] we use flip test and average the results from the original
and flipped images. Unless otherwise noted, the methods we compare against
use the same evaluation techniques.

4.2 Comparison with SOTA

As shown in Table 1, our architecture performs on par or surpasses methods that
use CNN backbones for the same task. Using the DEIT encoder requires more
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Table 1. A comparison of transformer based methods for 2D body pose estimation with
direct regression. Both TFPose [8] and PRTR [7] models use a Resnet50 for backbone.
The dataset is COCO2017-Val. Flip test is used on all methods. The decoder depth
for all models is 6. Note: the code for TFPose [8] is not available and the model is not
provided by the authors, so the number of parameters is unknown. In our work the
“-Dino” suffix denotes the use of unsupervised pretraining, Xcit refers to Xcit-small-12,
and Deit refers to Deit-small.

Method Input size #Parameters AP AR

TFPose 192× 256 – 71.0 –

TFPose 288× 384 – 72.4 –

PRTR 288× 384 41.5M 68.2 76

PRTR 384× 512 41.5M 71.0 78

OURS-Deit-dino-p8 192× 256 36.4M 70.6 78.1

OURS-Xcit-p16 288× 384 40.6M 70.2 77.4

OURS-Xcit-dino-p16 288× 384 40.6M 70.7 77.9

OURS-Xcit-dino-p8 192× 256 40.5M 71.6 78.7

OURS-Xcit-dino-p8 288× 384 40.5M 72.6 79.4

memory and CPU resources although the number of parameters is relatively low.
Due to the increased requirements, we limit our comparison tests of DEIT to
192 × 256 resolution for patch sizes of 8 × 8 pixels.

Our DEIT variant scores just 0.4% lower than TFPose3 for input 192 × 256.
However, it outperforms PRTR @ 288× 384, despite the higher input resolution
and the greater number of parameters (5.1M) of the later.

Due to its reduced computational and memory requirements, our Xcit variant
can be trained to higher resolutions and, thus, larger number of input tokens. We
train networks at 192 × 256 and 288 × 384 input resolutions for the 16 × 16 and
8×8 patch sizes. Our Xcit based models outperform both the TFPose and PRTR
networks at their corresponding resolutions, while having the same number of
parameters as PRTR.

Overall, patch size of 8 × 8 pixels and resolutions of 288 × 384 yield the
best performance. In fact, our Xcit-based network (Xcit-dino-p8) at 288 × 384
outperforms the PRTR trained at the same resolution by 4.4% in AP and 3.4%
in AR and even outperforms PRTR at resolution 384 × 512 by 1.6% in AP.
However, experiments of the Xcit variant at even higher resolutions (384 × 512)
did not show any significant improvements.

4.3 Transformer vs CNN vs VAB Encoders

We evaluate the performance of a transformer based encoder (Deit, Xcit) versus
a CNN (Resnet50) based encoder and a VAB model. The networks are trained on
3 We contacted the authors of TFPose for additional information to use in our com-

parison, such as number of parameters and AR scores but got no response.
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Table 2. Encoder Comparison. Deit vs Xcit vs resnet50 vs VAB. For all experiments
the patch size is set to 16 × 16 pixels. Input resolution is 192 × 256. All Networks are
trained and evaluated on the COCO val dataset. Deit performs worse while also having
the smallest number of parameters. Xcit is the best performing overall, however it also
has 10% more parameters than Deit.

Method #Parameters AP AR

Resnet50-PE-former 39.0M 63.4 72.2

VAB 47.4M 63.2 72.6

Deit 36.4M 62.2 71.6

Xcit 40.6M 66.2 74.6

Table 3. Comparison of Unsupervised Dino weight init. Patch size is set to 16 and
input size is 192 × 256. Dino networks are identical but initialized with the weights
of networks trained with the dino unsupervised methodology. Networks are trained
and evaluated on the COCO val dataset. Interestingly, the Resnet50 variant does not
show the same improvements as the attention-based encoders with unsupervised pre-
training.

Method # Parameters AP AR

Deit 36.4M 62.2 71.6

Dino Deit 36.4M 66.7 75.0

Xcit 40.6M 66.2 74.6

Dino Xcit 40.6M 68.0 76.1

Resnet50-PE-former 39.0M 63.4 72.2

Dino Resnet50-PE-former 39.0M 61.0 70.1

COCO and evaluated on the COCO2017-val. For all the encoders, the imagenet
pretrained weights are used. The results are shown in Table 2. The networks are
trained with an input resolution of 192 × 256 and patch size of 16 × 16 pixels.
Apart from replacing the encoders, the rest of the model (decoder) and training
hyperparameters are kept the same.

As expected, VAB is the largest network with the highest memory and com-
putational requirements. However, it performs on par with the Resnet50 vari-
ant. The Resnet variant despite having almost the same number of parameters
as Xcit, requires less memory and computational resources during training and
inference. Still, it under-performs compared to Xcit by 2.8% in AP and 2.4% in
AR. The Deit variant performs a bit worse (1.2% in AP) than Resnet but it is
also smaller by 2.6M parameters.

Xcit exhibits the best overall performance with a lead of 2.8% in AP and
2.4% in AR over the Resnet50 variant.
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4.4 Unsupervised Pre-training

All the models presented in Sect. 3 use pre-trained weights for the encoder part,
while the decoder’s weights are randomly initialized. We use the weights as they
are provided by the authors of each architecture Deit4, Xcit5). Additionally,
we evaluate the use of weights6 created using unsupervised learning [2]. More
specifically, we evaluate using the Deit, Xcit and Resnet50 encoders.

Table 3 presents the obtained results. For the purposes of our evaluation we
train two Deit (deit-small) and two Xcit (xcit-small-12) variants. For all vari-
ants, input resolution of 192 × 256 and patch size is set to 16 × 16. All hyper-
parameters are kept the same. We initialize the encoders of the Dino variants
using weights acquired with unsupervised learning on Imagenet. In contrast,
the normal variants start with encoders initialized with weights acquired with
supervised learning on Imagenet. For both Deit and Xcit we observe significant
improvement on the performance. However, the amount of improvement drops
as the overall performance of the network gets higher (see the entries of Table 1
for OURS-Xcit-p16 and OURS-Xcit-dino-p16 ).

As the authors of [2] hypothesise, we believe that this improvement stems
from having the dino-trained model learn a different embedding than the super-
vised variant. The model is focusing only on the salient parts of the image (i.e.,
the person) and is not miss-guided by annotation biases and errors that affect
the supervised approach. This hypotheses is further supported by the recent
work of He et al. [5] on unsupervised learning using masked autoencoders.

Interestingly, our CNN based encoder (Resnet50) does not benefit from
the unsupervised pretraining. The resnet50-PE-former-dino pretrained with the
DINO weights, yields worse results than the supervised variant (resnet50-PE-
former). This result hints to a fundamentally different way the transformer-based
methods learn about salient image parts: When training a CNN, interactions
are local on each layer (i.e., depend on the size of the convolutional kernel). On
the other hand, vision transformers such as Xcit and Deit, allow for long-range
interactions. Long range interactions enable the exchange of information between
areas in the image that are far apart. For DINO the implicit task during training
is to identify salient parts in an image. As a consequence long range interactions
help the network reason about larger objects (i.e., a person).

For models with the transformer based encoders (deit, xcit), it is possible
that further fine tuning such as pre-training on the same resolution as the final
network or pre-training on a person dataset (i.e. COCO-person) instead of ima-
genet, could further boost the final gains. However these tasks are beyond the
scope of this work and are left for future work.

4 https://github.com/facebookresearch/deit.
5 https://github.com/facebookresearch/xcit.
6 https://github.com/facebookresearch/dino.

https://github.com/facebookresearch/deit
https://github.com/facebookresearch/xcit
https://github.com/facebookresearch/dino
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5 Conclusions

We presented a novel encoder-decoder architecture using only transformers that
achieves SOTA results for the task for single instance 2D human pose estimation.
We evaluated two very promising ViT variants as our encoders: Xcit and Deit.
We verified the positive impact of our transformer based encoder-decoder by
comparing with modified versions of our model with a CNN-encoder and a VAB
variant. Out model using the Xcit based encoder, performs best both in accuracy
and resource requirements, outperforming contemporary methods by as mach as
4.4% in AP on the COCO-val dataset. Our Deit based encoder variant is on
par with methods using CNN based backbones for patch sizes of 8 × 8 pixels.
Furthermore, we demonstrate that using unsupervised pretraining can improve
performance, especially for larger patch sizes (i.e., 16 × 16).

Attention-based models look promising for a range of vision tasks. It is con-
ceivable that, with further improvements on the architectures or the training
methodologies, these models will dethrone the older CNN-based architectures
both in accuracy and resource requirements.
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