
Chapter 12
Spatial Pattern Analysis and Identifying
Soil Pollution Hotspots Using Local
Moran’s I and GIS at a Regional Scale
in Northeast of Iran

Ali Keshavarzi, Gouri Sankar Bhunia, Pravat Kumar Shit, Güneş Ertunç,
and Mojtaba Zeraatpisheh

Abstract The spatial distribution of soil physicochemical characteristics and four
heavy metals (Mn, Fe, Zn, and Cu) in the semi-arid climatic region of Neyshabur
plain in Northeast of Iran was investigated and identified soil pollution hotspots zone
usingMoran’s I andGIS techniques. The geostatistical techniques, Pearson’s correla-
tion matrix, and spatial autocorrelation were used to locate the pollution sources and
concentration. Geostatistical interpolation techniques determined the spatial distri-
bution of heavy metals. The mean values of Iron (Fe), Manganese (Mn), Zink (Zn),
Copper (Cu) were 2.31, 7.18, 2.84, 1.16 mg/kg, respectively. The routs comes of the
spatial statistical method have established the gravity of pollutions and their anthro-
pogenic impact based on spatial changes in contamination levels. The genesis of
the pollution process was influenced by natural factors (e.g., the high soil shale, the
sandstone, the calcareous and the metamorphic parents and the background values)
as well as by anthropogenic factors (e.g., waste disposal, extraction from mines of
distinct mineral ores and high, unmanaged practices of fertilizer). Although nearly
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all the monitoring classes of land use suffered from contamination by heavy metals,
farmland was the most contaminated. This evidence will help land use planners and
environmental menace administrators to promote environmentally sound economic
expansion policies.

Keywords Environmental pollution · Geostatistics · GIS · Heavy metals ·
Hotspots zone · Iran

12.1 Introduction

The natural components of the earth’s crust are heavy metals. A number of these
constituents are of biological importance and play an important part in human life
when they trace the water, the air, dust, soils, and sediments. The soil is the most
polluting habitat as a “universal trap.” In a variety of cases, it gets tainted. Okrent
(1999) stated that soil pollution is demarcated as the growth of obstinate toxic soils,
chemicals, salt, or disease-causing substances that adversely affect crop growth and
animal health. Soil pollution must be monitored urgently to protect soil fertility and
increase productivity. Onemain source of heavymetals in the soil, and is accountable
for an improved pervasiveness and incidence of heavy metal pollution on the Earth’s
surface, is anthropogenic activity such as mining and metal smelting (Bhattacharya
et al. 2006). Generally, water, sewage, improper dumping or by-products, or contam-
ination from the processing of something of value absorbsmuch of the pollutants into
the ecosystem (Soffianian et al. 2014). Opencast mining operations, which produced
millions of tons of sulfide-rich waste, have a significant environmental effect on soils
and water sources (Parizanganeh et al. 2010). By accelerating erosion, we somewhat
lose this important natural resource. Besides that, the enormity of man-made waste,
sludge, and other products’ from new waste treatment plants also cause or lead to
polluted soil. To sustain the fertility and productivity of the soil, rigorous control
measures must be implemented, hence increasing the health of all living things.

Evaluating the ecological menace of polluted soil, pesticide application, sewage
sludge, and other anthropogenic activities resulting in exposure to hazardous
substances in the terrestrial environment is a complex task with manyalliedglitches.
In the present way that we evaluate themenace and the effect of anthropogenic agents
on the terrestrial climate, even though those factors were ignored, there are a variety
of unanswered issues. An assessment of the bioavailable percentage of radioactive
metals may be carried out to assess soil contamination of heavy metals. Soil metal
mobility has commonly been evaluated by a chemical method based on selective
withdrawals.

Iran has experienced broad developments in the last four decades, including
rapid urbanization, industrial development, and intensive cultivation inmany regions.
Sometimes these variations have been escorted by neglected environmental devalu-
ation (Moghtaderi et al. 2018, 2019; Khamesi et al. 2020). This is also an imperative
zone for agriculture where crops like maize, barley, and sugar beet are grown. Soils
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can be polluted by industrial and urban contaminations in agricultural areas, posing
a danger to humans, as showed by Doabi et al. (2018, 2019) in other areas of Iran,
by consuming food grown in these countries.

Geospatial analytical techniques are key tools for soil parameter characterization
(Hou et al. 2017). In previous soil pollution studies, classical statistical methods
have been commonly used, but these approaches are affluent and time-consuming
and do not quantify assessment errors. Soil contamination can be well known by
Geographic Information System (GIS) and geostatistical methods at present (Soffi-
anian et al. 2015). In order to assess the spatial structure of heavy metals and soil
physico chemical characteristics, GIS are essential for the implementation through
geostatistical and multivariate analyses (Santos-Francés et al. 2017). In fact, it is
not possible to arrange adequate samples from the subject areas. Therefore, spatial
statistical approaches haves wapped traditional statistics, as they can precisely detect
pollutant changes in time and space and calculate estimation errors (Soffianian et al.
2014). Several studies have examined spatial distribution in industrial areas world-
wide of heavy metal pollution in the surface ground. For instance, Wang et al. (2017)
reported a less national standard but less than the natural baseline values for the
geographical dispersal of Cu, Zn, Cr, Cd, As, and Hg concentrations in the industrial
area of Sichuan, China. In the industrial city of Aran-o-Bidgol, Iran, Ravankhah et al.
(2016) carried out the assessment of the ecological menace of heavy metals from
surface soil. The Cd, Pb, Ni, and Cu levels were recorded above the background
values.

The study was showed in order to classify the area where heavymetals are tainted.
More specifically, first the spatial distribution of somemain soil properties and heavy
metals such as pH, OC, Sand, Silt, Clay, Phosphorus, Fe, Mn, Zn, and Cu were
determnined and then the spatial distribution of soil properties and heavy metals
were applied to find toxic hotspots and to detect potential causes of contaminants in
surface soils in the Neyshabur plain, Khorasan-e-Razavi Province, Northeast Iran.
Moreover, in order to reduce the uncertainties associatedwith parameters, the datasets
were further statistically analyzed using statistical approaches such as the correlation
matrix, spatial autocorrelation, and spatial modeling.

12.2 Study Area

The research was carried out in a catchment in the part of Neyshabur plain of
Khorasan-e-Razavi Province (36°2′–36°10′ N, and 58°52′–59°07′ E) of Northeast
Iran (Fig. 12.1). The study area covers by an area of almost 170 km2 with an eleva-
tion of 1256 m above mean sea level. The region is considered by the semi-arid
climate with mean temperature of 14.5 °C and annual precipitation of 233.7 mm.
The primary land use structure of the area is irrigated farming (Bagherzadeh et al.
2016). The general slope of the plain extends in NW–SE direction. The major land
type is described as piedmont plain and Qft2 unit is the key geological unit, which
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Fig. 12.1 Soil sampling locations in parts of Neyshabur Plain, Khorasan-e-Razavi region, Iran

indicates low levels of piedmont fan and valley terrace deposits. Aridisols and Enti-
sols are the most common soil types in the area, according to Bagherzadeh et al.
(2016).

12.3 Methods

12.3.1 Sampling and Analysis

Sixty-eight representative soil samples (during the period between 2018 and 2019)
were collected using a random sampling technique for an suitable demarcation of soil
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sampling areas to reflect the geographical distribution of the parameters distressing
the soils and heavy metals. A portable Global Positioning System (GPS) was applied
during soil sampling to find the sampling locations. Soil samples were taken from 0
to 20 cm because our goal was to focus on the topsoil, or the part of the soil influenced
by crop roots and water infiltration. Large plant materials and pebbles in the samples
were parted by hand and discarded. Bulk samples of the soil were spread on trays
in the laboratory and were air-dried for two weeks under ambient conditions. The
samples were subsequently tiled in a 2 mm mesh and dried in an oven at 50 °C for
approximately 48 h with mortar and pestle (Lu et al. 2010). The samples were then
homogenated and placed in polyethylene containers. The hydrometer method was
used to determine the textural fractions of sand (0.05–2 mm), silt (0.002–0.05 mm),
and clay (<0.002 mm) in soil (Gee and Bauder 1986). The approach of Walkley and
Black was used to quantify the number of organic carbon (OC) in the soil (Walkley
andBlack 1934). Themethod ofOlsen et al. (1954)was used to determine the amount
of available phosphorus (P). The process of extraction with 1 M ammonium acetate
(NH4OAC) at pH = 7 was used to quantify available potassium (K) (Thomas 1996).
A digital EC-pH metre was used to measure pH in saturated paste extract (Thomas
1996). An atomic absorption spectrometer was used to analyse heavymetals likeMn,
Fe, Zn, andCu. Following the procedure ofHeidari et al. (2019) the soil sampleswere
digested using the aqua-regia process (HNO3:HCl in a ratio of 1:3). The digested
samples were filtered and diluted in 20 mL double steam distilled water before being
utilised in the experiment. After every five samples, the standards and blanks were
run for quality assurance and quality control to ensure the machine’s 95% accuracy
(Arora et al. 2008). The 95–100% recovery rates for samples spiked with standards
confirmed the accuracy of the results (Xiao et al. 2013).

12.3.2 Statistical Analysis

The use of statistical methods helps us understand the dynamic soil quality data
matrices, classify potential causes that affect soil resources, and provide useful
knowledge for effective soil management (Simeonov et al. 2004; Reghunath et al.
2002). The correlation matrix was performed using Microsoft Excel version 2013.
Pearson’s correlation was done by the correlation matrix of soil heavy metal param-
eters. A correlation coefficient (near +1 or −1) means that a strong relationship
between two variables is established and ‘0’ indicates that no relationship occurs
between them. All the statistical analyses were performed at a significance level of
P < 0.05.

12.3.2.1 Incremental Spatial Autocorrelation

The Incremental Spatial Autocorrelation (ISA) method uses the Global Moran’s I
function, which calculates the strength of spatial clustering for each of the distances,
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to construct a sequence of that distances, and can be intended based on the following
equation:

I = n

S0

∑n
i=1

∑n
j=1 ωi, j , Zi Z j

∑n
i=1 Z

2
i

where, Zi is the deviation of heavy metallic soil parameters for sample location i
from its mean (xi − x), ωi, j is the spatial weight between sample location i and j, n
is equal to the total number of sampling sites, S0 is the cumulative of all the spatial
weights:

S0 =
n∑

i=1

n∑

j=1

wi, j

The Moran ‘s Index is positive because the data collection continues to cluster
geographicalluy (high values cluster next to other high values, low values cluster near
other small ones). The index would be negative if high values repel certain interests
and appear to be close to low. If positive cross-product values surpass negative cross-
product values, the index will be close to zero. The numerator is determined by the
variation in order to minimize index values from −1.0 to +1.0.

The ISAmechanism can be the extent to which high (clustered) or low (dispersed)
spatial correlations and whether they have been significant or not detected by a peak
suggested by the index. This can be both measures of distance are based on the
feature centers, and the default start distance (500 m) is the smallest distance (each
feature has at least one nearby area). The clustering strength is determined by the
returned z-point. Typically, the z-score, indicating an increasing clustering, increases
as the gap increases. The z-score usually peaks at a certain point (Jossart et al. 2020).
However, when there is more than one statistically significant peak, the clustering
at each of these distances is pronounced. Select the maximum distance that best fits
the size of the study you want; it is also the first statistically relevant summit that has
been identified.

12.3.2.2 Optimized Cluster Analysis

The mapping tools perform cluster analysis in order to determine the location of
hotspots, coldspots, spatial outliers, and similar features or areas of statistically
significant importanceusing the Anselin Local Moran’s I statistic (Anselin 1995).
The tool is particularly useful for intervention dependent on the location of one or
more clusters. This method distinguishes statistically important spatial clusters with
high (hot) and low (cold) values. The system aggregates heavy metallic soil data
automatically, determines the appropriate analysis scale, and corrects multiple tests
as well as spatial dependency.
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Since the Optimized Outlier Analysis tool uses the nearest average and median
next-door calculations for aggregation and also for an adequate scale of analysis,
a component for initial data assessment will also identify locations in each soil
characteristics at geographical locations. This method measures the average closest
distance of each element and compares all the distances spread.

12.3.2.3 Estimation of Spatial Interpolation of Soil Parameters

Spatial patterns, values in unmeasured areas, and the uncertainty associated with a
predicted value in unmeasured locations may be determined by Kernal Smoothing
(KS). KS is used to model and measure the spatial variability in the sampled places
of each of the influential parameters (Gribov and Krivoruchko 2004). The Z vector
p() theory is based on both randomly and spatially autocorrelated. The predictions
are model-based on:

Z(pi ) = μ + ε′(pi )

where µ is the constant stationary function (global mean) and ε′(pi ) is the spatially
correlated stochastic part of the variation. The forecasts are collected with:

Ẑok(p0) =
n∑

i=1

wi (p0) · Z(pi ) = λT
0 · a

where λ0 is the vector of kriging weights (wi), a is the vector of n observations at
primary locations.

The semivariogram is a convenient tool for analyzing spatial dependence
structures in geostatistics. It is focused on the basic difference and is defined by:

γ (h) = 1

2
Var(Z(pi ) − Z(pi + h))2

where Z(pi ) is the value of a randomvariable at some sampled location and Z(pi+h)

is the value of the location at a distance (pi + h).
The variogram for each parameter was drawn from a Polynomial, Quartic, Expo-

nential, and Gaussian model, based on the shortest distance between points and
determining the best variable model feature. To all kernel functions, r is a radius
centered at point s, and h is bandwidth for all formulas (Yan, 2009):

Polynomial =
(
1 − (

r
h

)3(
10 − (

r
h

)(
15 − 6

(
r
h

))))
, f or r

h < 1.

Quartic =
(
1 − (

r
h

)2
)2

, f or r
h < 1.
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Exponential = e−3( r
h ).

Gaussian = e−3( r
h )

2

.

12.3.2.4 Cross-Validation

For the evaluation and comparison of model performance, a cross-validation tech-
nique was adopted. In the model accuracy assessment, the, root mean squared error
(RMSE) and average standard error were identified (Zhang et al. 2018).

12.4 Results

12.4.1 Exploratory Analysis of Soil Variables

The physico chemical characteristics of soil that eventually affect the root growth and
mobility of the contaminant can greatly influence the assimilation of heavy metals.
Descriptive statistics of all soil variables are presented in Table 12.1. The soil pH of
the research area is ranges between 7.5 and 8.3, with a mean value of 7.9± 0.19. The
mean value of Organic Carbon (OC), Sand, Silt, clay, Phosphorus (P), Potassium
(K), Iron (Fe), Manganese (Mn), Zink (Zn), Copper (Cu) is calculated as 0.73%,
40.29%, 36.99%, 22.72%, 19.45 mg/kg, 261.05 mg/kg, 2.31 mg/kg, 7.18 mg/kg,

Table 12.1 Descriptive characteristics of concentration of heavy metals in soils samples

Mean Standard
error

Median Standard
deviation

Kurtosis Skewness Confidence
level
(95.0%)

pH 7.90 0.02 7.90 0.19 −0.59 −0.01 0.05

OC (%) 0.73 0.04 0.68 0.32 1.03 1.07 0.08

Sand (%) 40.29 1.18 40.30 9.72 0.34 0.57 2.35

Silt (%) 36.99 0.78 36.90 6.41 −0.53 −0.13 1.55

Clay (%) 22.72 0.73 23.00 5.99 −0.61 −0.26 1.45

Phosphorus
(mg/kg)

19.45 1.97 11.20 16.25 0.13 1.09 3.93

Potassium
(mg/kg)

261.05 16.16 249.71 133.27 3.10 1.42 32.26

Fe (mg/kg) 2.31 0.08 2.28 0.68 0.20 0.66 0.16

Mn (mg/kg) 7.18 0.49 6.04 4.06 2.53 1.61 0.98

Zn (mg/kg) 2.84 0.46 1.09 3.78 1.58 1.68 0.92

Cu (mg/kg) 1.16 0.04 1.13 0.29 −0.34 0.47 0.07
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2.84 mg/kg, 1.16 mg/kg, respectively. The highest standard deviation is calculated
for potassium (±133.27), followed by sand (±9.72), silt (±6.41), and clay (±5.99).
The negative kurtosis and skewness are calculated for pH, Silt, Clay, and Cu. The
maximum kurtosis is estimated for K (3.10), followed by Mn (2.53) and Zn (1.58).
The maximum skewness is calculated for Zn (1.68), followed by Mn (1.61) and K
(1.42).

12.4.2 Pearson’s Correlation

Thecorrelation coefficient for different soil properties results is presented inFig. 12.2.
The coefficient of correlation between the pH and zinc (r = 0.41) has been found to be
positive (P < 0.05). However non-significant (P > 0.05) relationship was found with
OC (r = 0.23) and Silt (r = 0.27). Results also showed strong negative correlation
between sand, silt (r = −0.80) and clay (r = −0.77). There is moderate positive
correlation was calculated between sand and zinc; whereas, a negative relationship
was found between clay and zinc. Similarly, the meager positive correlation was
observed between OC, K, and Mn with available P. A meager negative correlation is
observed between available K and zinc, and a positive correlation is calculated with
OC. Fe shows a moderate negative correlation with the clay and available K; and a

Fig. 12.2 Cross-correlation matrix of heavy metals in soils samples (n = 68)
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Table 12.2 Spatial autocorrelation of heavy metals in soils samples

Parameters Moran’s Index Expected Index Variance z-score P-value

pH 0.749 −0.015 0.041 3.789 0.000

OC (%) 0.392 −0.015 0.040 2.045 0.041

Sand (%) 0.589 −0.015 0.040 3.015 0.003

Silt (%) 0.196 −0.015 0.041 1.047 0.295

Clay (%) 0.820 −0.015 0.041 4.142 0.000

Phosphorus (mg/kg) 0.138 −0.015 0.040 0.762 0.446

Potassium (mg/kg) −0.041 −0.015 0.038 −0.133 0.894

Fe (mg/kg) 0.360 −0.015 0.040 1.870 0.061

Mn (mg/kg) 0.118 −0.015 0.039 0.677 0.498

Zn (mg/kg) 0.317 −0.015 0.039 1.671 0.095

Cu (mg/kg) 0.298 −0.015 0.040 1.554 0.120

positive correlation with the Mn and Zn. Mn shows a moderate positive correlation
with the available P, K, and Fe. Zn shows a moderate positive correlation with the
pH, sand, and Fe; whereas, a negative correlation is calculated for clay, available K,
and Cu. Statistical outcomes exhibited that Cu, influencedby pH and CaCO3 levels,
increased with the moving soil fractions bonding.

The soil pH and the available proportion Cu had a negative association, as per the
observations. Based on the bioavailability and chemical processes of heavy metals,
binding in various fractions vary considerably. As a result of the apparent competition
between dissolvedmetals, the adsorption of heavymetals has been shown to decrease.
Heavy metals on the negative surfaces formed on organic colloidal materials and
on minerals, on the other hand, have been documented to adsorb electrostatically
(Sungur et al. 2014).

Table 12.2 shows the spatial autocorrelation of heavy metals of soil samples in the
part of Neyshabur plain of Khorasan-e-Razavi Province. The significance ofMoran’s
I is tested (P < 0.05). The maximumMoran’s I is calculated for clay (8.20), followed
by pH (0.749) and sand (0.589), and the corresponding P-values are calculated as
<0.0001. It represents a significant positive correlation between the sample values
and is clustered pattern. Moreover, the calculated value of Moran’s I of silt, P, Mn, K
are very close to zero, and the corresponding Z-score andP-values are not significant.
This indicates a uniform distribution pattern of soil heavy metal contents (silt, P, Mn,
K) in the study area. Zn, Fe, and OC have moderate significant (P < 0.05) positive
spatial autocorrelation among sample values in the study area.
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12.4.3 Spatial Autocorrelation

The statistical existence of data sets based on the distance between high auto-
correlation in the spatial area is taken into consideration. It typically can be accom-
plished through an iterative and data-led process that determines how spatial auto-
correlation occurs differs at various distances. For each increase in distance, space
autocorrelation measures the associated Moran’s I, Expected Index, Variance, z-
score, and p-values for a number of distance increments and reports. High Z-scores
value suggested statistical significance (P < 0.05). This means that heavy metal
concentrations are higher in Z-score based upon allocations of spatial variability and
metal heterogeneity at different soil depths (Ren et al. 2016). The threshold value of
the beginning distance is considered as 500m, and the incremental threshold distance
specified as 1030, 1560, 2091, 2621, 3152, 3682, 4213, 4743, and 5274 m (Table
12.3). The high value of Moran’s I indicate the distance at which the clustering of
the data is more affirmed. The highest Moran’s I value at 500 m is calculated for
pH (Z-score—3.065; P-value <0.002) and clay (Z-score—3.496; P-value <0.000),
followed by Sand (Z-score—2.218; P-value <0.033) and OC (Z-score—2.316; P-
value <0.020). At 1030m distance, the maximum ISA is calculated for clay (Moran’s
I—0.664; Z-score—6.891; P-value <0.000), followed by Zn (Moran’s I—0.424; Z-
score—4.547; P-value <0.000) and F (Moran’s I—0.403; Z-score—4.277; P-value
<0.000). At a distance of 1560 m, maximum ISA is calculated for clay (Moran’s
I—0.597; Z-score—9.492; P-value <0.000), followed by Zn (Moran’s I—0.475; Z-
score—7.717; P-value <0.000) and pH (Moran’s I—0.372; Z-score—6.002; P-value
<0.000). However, the derived output of ISA value for clay and Zn is maximum at
each threshold distance. Moreover, the minimum estimated ISA value is calculated
for P and Mn at each distance band at which the sample locations are uniformly
distributed.

12.4.4 Cluster Analysis

The GiZ-Score map is generated by the optimal cluster analysis (OCA) tool, which
shows the hot and cold locations in the study area. It also provides point features
in the research region that signify hot and cold locations (Fig. 12.3). GiZScore is a
tool that creates a z-score value for each sampling location, which serves to identify
the statistical significance of feature clusters and, ultimately, hot and cold locations.
Heavy metallic parameters of soil characteristics with a high positive z-score are
designated as hotspots (red), while heavy metallic elements of soil features with a
low z-score are designated as cold spots (blue). The z-score is used to determine
whether the sampling location exhibit a random pattern or statistically significant
clustering or dispersion, indicating a spatial process at work. As a result, the greater
the value for a statistically significant positive z-score, themore intense the clustering
of the hotspot.
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Fig. 12.3 Optimized cluster analysis of soil samples using Getis-Ord Gi* statistics
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Fig. 12.3 (continued)
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In Fig. 12.3a, it can be seen that hotspots and coldspots are presented by pHwhere
the values were 2.946422 > z > 1.767853 (red) and−3.17487 < z <−1.785019 (blue)
standard deviations, respectively. The hotspots and coldspots of OC are presented
as 3.101711 > z > 1.952999 (red) and −2.117656 < z < −1.714938 (blue) standard
deviations, respectively (Fig. 12.3b). The significance of hotspots and coldspots of
sand are presented as 4.249433 > z > 2.203002 (red) and−3.046544 < z <−2.02786
(blue) standard deviations, respectively (Fig. 12.3c). The standard deviations of the
hotspots and coldspots of Silt are 2.1069 > z > 1.793934 (red) and −2.514968 < z <
−1.886327 (blue) (Fig. 12.3d). The significance of hotspots and coldspots of clay are
presented as 3.736432 > z > 1.858045 (red) and −4.870407 < z < −2.229149 (blue)
standard deviations, respectively (Fig. 12.3e). Hotspot and cold spot as indicated
by P, with standard deviations of 2.263199 > z > 1.767853 (red) to −2.233934 <
z < −1.848018 (blue) (Fig. 12.3f). K showing 2.266854 > z > 1.797812 and −
2.688332 < z < −1.710025 (blue) standard deviations are the hotspots and coldspots
(Fig. 12.3g). The hotspots and coldspots are presented by Fe, where the values were
2.959069 > z > 1.846312 (red) and −2.60816 < z < −1.876887 (blue) standard
deviations, respectively (Fig. 12.3h). Mn shows the hotspots and cold spots with
standard deviations of 3.227574 > z > 1.757108 (red) and −2.232847 < z < −
1.700522 (blue) (Fig. 12.3i). Zn displays hotspots and coldspots with 4.940435 >
z > 1.759745 (red), and −1.968598 < z < −1.817021 (blue), respectively, standard
deviations (Fig. 12.3j). Coldspots and hotspots are presented with the values of Cu
with standard deviations of 2.977647 > z > 1.917672 (red) and −2.112617 < z < −
1.763338 (blue) (Fig. 12.3k).

12.4.5 Spatial Distribution

The aim is to test the performance in heavy metal parameters, combination with
estimation and simulation, of four different semivariogram models to explain their
uncertainty and spatial heterogeneity. In Table 12.4, along with their respective best-
fit results, the simulated semivariogram for the Polynomial,Quartic, Exponential, and
Gaussian models is evaluated in order to illustrate the spatial dependence of heavy
metal accumulation in soil. The exponential and gaussian models looked similar
except for the slight difference in soil heavy metals distribution patches.

In order to map the metal content and delineate the polluted areas, a spatial corre-
lation between the data available with the kernel smoothing technique was used. The
results showed that the exponential model was well-matched with the soil heavy
metal data (Fig. 12.4). The highest value of pH is observed in the central part and a
small pocket north of the study area. The low pH value is observed in the south and
east of the region. The pH value of 7.95–8.1 is also observed in the middle of the
study area. The maximum concentration of OC is found in the central and northwest
of the study area. The medium concentration of OC is portrayed in the central and
eastern parts of the study area. The minimum concentration of OC is found in the
west and south of the region. The maximum concentration of sand is observed in the
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Table 12.4 Best-fitted models used for soil characteristics

Soil samples Model Mean RMSE Avg. SE

pH Polynomial5 −0.011 0.159 0.425

Quartic −0.011 0.161 0.423

Gaussian −0.014 0.160 0.433

Exponential −0.013 0.158 0.427

Organic Carbon (%) Polynomial5 0.111 0.365 0.315

Quartic 0.112 0.363 0.313

Gaussian 0.112 0.363 0.307

Exponential 0.109 0.358 0.312

Sand (%) Polynomial 1.888 9.312 55.05

Quartic 1.918 9.27 55.03

Gaussian 1.972 9.23 54.9

Exponential 1.888 9.118 54.11

Silt (%) Polynomial5 0.804 7.076 39.031

Quartic 0.782 6.985 38.755

Gaussian 0.780 6.851 38.426

Exponential 0.745 6.896 38.269

Clay (%) Polynomial5 0.301 4.192 18.064

Quartic 0.286 4.185 18.049

Gaussian 0.260 4.192 18.072

Exponential 0.243 4.088 17.71

Phosphorus (mg/kg) Polynomial5 8.863 18.597 59.975

Quartic 8.991 18.44 60.105

Gaussian 9.986 18.685 61.16

Exponential 8.518 18.339 61.201

Potassium (mg/kg) Polynomial5 55.869 174.706 2361.018

Quartic 57.395 172.825 2352.581

Gaussian 60.023 166.594 2339.885

Exponential 55.860 174.14 2308.157

Fe (mg/kg) Polynomial5 0.068 0.553 0.819

Quartic 0.068 0.552 0.825

Gaussian 0.072 0.544 0.841

Exponential 0.067 0.555 0.828

Mn (mg/kg) Polynomial5 1.503 4.346 12.266

Quartic 1.554 4.496 11.764

Gaussian 1.869 4.579 12.593

Exponential 1.365 4.433 12.214

(continued)
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Table 12.4 (continued)

Soil samples Model Mean RMSE Avg. SE

Zn (mg/kg) Polynomial5 1.452 3.519 5.384

Quartic 1.462 3.521 5.456

Gaussian 1.566 3.529 5.589

Exponential 1.421 3.516 5.421

Cu (mg/kg) Polynomial5 0.053 0.277 0.292

Quartic 0.053 0.277 0.292

Gaussian 0.060 0.281 0.295

Exponential 0.049 0.274 0.291

northcenter of the study area. However, the minimum sand concentration is observed
south and northwest of the study area. The spatial distribution of silt is varied in the
study area, whereas the maximum sand distribution is found in the south-center and
northwest and its gradually decreases from the central region. There is a hetero-
geneous distribution of Zn concentration in the study area. Fe is heterogeneously
distributed in the study area. The maximum Mn is portrayed in the north and east
of the region, andtheminimum Mn is observed in the central and west of the region.
The highest Fe is found in the central and east of the study site, and the south and
west part is recorded as low Fe concentration. The maximum concentration of Zn is
found in the east and west of the study area whereas, the central part of the region
is recorded as low concentration of Zn. The highest concentration of Cu is observed
in the east and central north of the region and south of the study area with low Cu
concentration.

12.5 Discussion

In several regions of the world, particularly in developing countries, metal soil pollu-
tion has become a major and pervasive challenge. Farming may be a source of
heavy metals in the soil (Huang and Jin 2008), urbanization, industrial development,
andmining (Zhong et al. 2012). Heavy metal pollution is mainly due to urban and
industrial aerosols, burning of fuel, liquid and solids, mining waste, industrial and
farm chemicals, etc. The soils are primarily drained by different soil areas where
either the inorganic or organic colloids are preserved very strongly. The weathering
of the parents’ materials means that heavy metals are existing in all uncontaminated
soils. Chemical waste inorganic contaminants cause serious waste disposal issues.
Superphosphate, phosphoric acid, aluminum, steel, and ceramics industry fluorides
can be found in the atmosphere. 55.89% of the total samples haveapH value >7.90.
Most trace elements’ solubility decreases when soil pH rises, resulting in low quan-
tities in soil solution (Kabata-Pendias 2011). Any change in the pH of the soil has
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Fig. 12.4 Spatial variability maps of physico-chemical parameters and heavy metals
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Fig. 12.4 (continued)
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an impact on the solubility of metals. This is likely to be dependent on the metals’
ionic species and the pH change’s direction. 42.65% P concentration is significantly
increased (>16 mg/kg) from the topsoil to the subsoil, indicating that the subsoil
aced as sink or source for P leaching. As a result, subsurface products may be eval-
uated for the implementation of mitigation measures to prevent P leaching in soil
horizons based on the P content and the soil saturation threshold (Andersson et al.
2015). Soils can be very acidic by sulfur dioxide emitted by plants and thermal
plants. These metals damage the leaf and destroy plant life (Richardson et al. 2006).
Water irrigation with sewage is responsible for deep irrigation vicissitudes in the
soils. Numerous variations in the soil as an offset of sewage irrigation comprise
physical changes such as leaching, humus deviations, porosity, etc., and chemical
changes such as soil reactions, soil base exchanges, salinity, nutrient quantities, and
nutrient accessibility nitrogen, potash, phosphorus and so forth. This can result in
plant phytotoxicity.

Metal ions reach the water of the soil at various such concentrations by which they
may either stay in the water or reach drainages to be consumed by plants increasing
on the soil or be preserved in sparingly soluble or insoluble soil types (Urzelai
et al. 2000). This soil’s organic matter is very similar to heavy metal cations, which
form stable complexes and thus reduce its nutrient content. However, one or two
of the elements in agricultural soils can be concentrated in several ways, such as
chemicals, sewage sludge, farm slurries, etc. Increased doses of fertilizer, pesticides,
or agricultural chemicals are added over a period of time to contaminate soils using
heavy metals. There are also cadmium residuesin some phosphatic fertilizers that
can be found in these soil areas. Soil micronutrient accessibility measures parent
materials, the effects of soil redox potentials, pH, soil microbial activity, interactions
with coexisting ions, soil mineral reactions, and organic matter, as well as the effects
of soil edaphic and biological factors activity in the study area. Pearson’s correlation
coefficient analyzed the relationship between different physico-chemical properties
and heavy metal values. A bivariant approach is used for defining the interaction
between two different parameters. Agricultural practices, including soil water control
application and soil modifications, will make soil micronutrients available. Crop
residues are a major source of many micronutrients. Roughly 50–80% of the rice
and wheat crops used in Zn, Cu, andMnmay be recovered by incorporating residues
(Dhaliwal et al. 2019).

In order to transform test point data on sampling sites into thematic maps showing
the geographical variation, traditional interpolator processes like the Generalized
Kriging method, a polynomial method, and the Inverse Distance Weighting (IDW)
approaches were widely used (Rodrigo-Comino et al. 2019). In comparison, the vari-
ogram model is used by the Kriging interpolation method to illustrate the structure
of the geographical change of assessed values and the spatial autocorrelation in the
modeling of the surface (Wang et al. 2017). The kriging technique includes a collec-
tion ofmethods of stochastic-based interpolation, such as ordinary kriging, cokriging,
universal kriging, simple kriging, residual methods, and regression methods (Li and
Heap 2014).
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Soils of low Zn may have low total Zn (some acidic leached soils in the tropical
world) or may have a relatively high total Zn content; however, because of the soil
chemistry, a plant-accessible fraction that favors the synthesis of poorly soluble Zn
complexes (Rengel 2002). Intensive cultivation of high yield rice and wheat threat-
ened the continuedhigh levels of foodproductionwith aZn andFe shortfall in rice and
Mn weight of wheat. It is widely known to be one of the most operative procedures
of growing OC levels and improving soil quality in the application of organic mate-
rials. A significant cultivation activity in terms of crop yield and efficiency, climate
conservation, and soil regeneration is the use of appropriate quantities of fertilizer
(Oenema et al. 2009; Atafar et al. 2010). As a guideline, 15 kg of both phosphorus
and sulfur are available to plants for every ton of carbon in OC as organic matter
is demolished (Hoyle et al. 2013). As a result, locations with a lot of heavy metal
would pollute the soil and put people’s and other living organisms’ health at risk.
The soil concentrations of these metals were higher than critical concentrations in
the majority of the field, but their presence in the soil reduces solubility and bioavail-
ability (Krami et al. 2013). The low metal contamination levels in other parts of the
region indicate that those areas are safe regions.

12.6 Conclusion

In the present study, geostatistical techniques, correlationmatrix, spatial autocorrela-
tion, and spatial modeling were used to analyze the geographical distribution pattern
and concentration of heavy metals in Neyshabur plain region in Iran. The outcomes
of the geostatistical techniques have confirmed the gravity of pollution and their
anthropogenic impact based on spatial changes in contamination levels. The genesis
of the pollution process was influenced by natural factors (e.g., the high soil shale, the
sandstone, the calcareous and the metamorphic parents and the background values)
as well as by anthropogenic factors (e.g., waste disposal, extraction from mines of
special mineral ores and high, unmanaged uses of fertilizer). Although nearly all
the monitoring classes of land use suffered from contamination by heavy metals,
farmland was the most polluted. This information will help land use planners and
environmental risk administrators.

Disclosure Statement No potential conflict of interest was reported by the author(s).
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