
FAST: Fair Auctions via Secret
Transactions

Bernardo David1, Lorenzo Gentile1(B), and Mohsen Pourpouneh2

1 IT University of Copenhagen, Copenhagen, Denmark
bernardo@bmdavid.com, lorg@itu.dk

2 Copenhagen University, Copenhagen, Denmark
mohsen@ifro.ku.dk

Abstract. Sealed-bid auctions are a common way of allocating an asset
among a set of parties but require trusting an auctioneer who analyses
the bids and determines the winner. Many privacy-preserving computa-
tion protocols for auctions have been proposed to eliminate the need for a
trusted third party. However, they lack fairness, meaning that the adver-
sary learns the outcome of the auction before honest parties and may
choose to make the protocol fail without suffering any consequences. In
this work, we propose efficient protocols for both first and second-price
sealed-bid auctions with fairness against rational adversaries, leveraging
secret cryptocurrency transactions and public smart contracts. In our
approach, the bidders jointly compute the winner of the auction while pre-
serving the privacy of losing bids and ensuring that cheaters are financially
punished by losing a secret collateral deposit. We guarantee that it is never
profitable for rational adversaries to cheat by making the deposit equal
to the bid plus the cost of running the protocol, i.e., once a party com-
mits to a bid, it is guaranteed that it has the funds and it cannot walk
away from the protocol without forfeiting the bid. Moreover, our proto-
cols ensure that the winner is determined and the auction payments are
completed even if the adversary misbehaves so that it cannot force the
protocol to fail and then rejoin the auction with an adjusted bid. In com-
parison to the state-of-the-art, our constructions are both more efficient
and furthermore achieve stronger security properties, i.e., fairness. Inter-
estingly, we show how the second-price can be computed with a minimal
increase of the complexity of the simpler first-price case. Moreover, in case
there is no cheating, only collateral deposit and refund transactions must
be sent to the smart contract, significantly saving on-chain storage.

Keywords: Cryptographic Protocols · Multiparty Computation ·
Financial Cryptography · Auctions · Sealed-Bid · First-Price ·
Second-Price · Fairness · Blockchain

B. David—This work was supported by the Concordium Foundation and by the Inde-
pendent Research Fund Denmark with grants number 9040-00399B (TrA2C) and num-
ber 9131-00075B (PUMA).
L. Gentile—This work was supported by the Concordium Foundation.
M. Pourpouneh—This work was supported by the Center for Blockchains and Elec-
tronic Markets funded by the Carlsberg Foundation under grant no. CF18-1112.

c© Springer Nature Switzerland AG 2022
G. Ateniese and D. Venturi (Eds.): ACNS 2022, LNCS 13269, pp. 727–747, 2022.
https://doi.org/10.1007/978-3-031-09234-3_36

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-09234-3_36&domain=pdf
https://doi.org/10.1007/978-3-031-09234-3_36

728 B. David et al.

1 Introduction

Auctions are a common way of allocating goods or services among a set of parties
based on their bids, e.g., bandwidth spectrum, antiques, paintings, and slots for
advertisements in the context of web search engines or social networks [17]. In the
simplest form, there is a single indivisible object, and each bidder has a private
valuation for the object. One of the main desirable properties in designing an
auction is incentive compatibility, that is the auction must be designed in a way
that the participating parties can maximize their expected utilities by bidding
their true valuations of the object. According to design, the auction can be
categorized into open auctions, and sealed-bid auctions [31].

We focus on the case of sealed-bid auctions, constructing protocols where
parties holding a private bid do not have to rely on trusted third parties to
ensure bid privacy. In a sealed bid auction, each bidder communicates her bid to
the auctioneer privately. Then, the auctioneer is expected to declare the highest
bidder as the winner and not to disclose the losing bids. In particular, in the
sealed-bid first-price auction, the bidder submitting the highest bid wins the
auction and pays what she bids, while in the sealed-bid second-price auction (i.e.,
the Vickrey auction [41]) the bidder submitting the highest bid wins the auction
but pays the amount of the second-highest bid [30]. It is well-known that in the
second-price auctions bidding truthfully is a dominant strategy, but no dominant
strategy exists in the case of first-price auctions. Moreover, while in both first-
price and second-price auctions, a dishonest auctioneer may disclose the losing
bids, the second-price auction, in particular, highly depends on trusting the
auctioneer. Indeed, a dishonest auctioneer may substitute the second-highest
bid with a bid that is slightly smaller than the first bid to increase her revenue.
Therefore, it may not be possible or expensive to apply it in certain scenarios. As
a result, constructing cryptographic protocols for auctioneer-free and transparent
auction solutions is of great interest.

1.1 Our Contributions

In this paper, we propose Fair Auctions via Secret Transactions (FAST), in
which there is no trusted auctioneer and where rational adversaries are always
incentivized to complete protocol execution through a secret collateral deposit.
The proposed protocol is such that each party can make sure the winning bid
is the actual bid submitted by the winning party, and malicious parties can be
identified, financially punished and removed from the execution (guaranteeing a
winner is always determined). Our contributions are summarized as follows:

– We propose using secret collateral deposits dependent on private bids inputs
to ensure that the optimal strategy is for parties to complete the protocol.

– (Sect. 3) We propose methods for implementing a financial punishment mech-
anism based on secret deposits and standard public smart contracts, which
can be used to ensure the fair execution of our protocols.

FAST: Fair Auctions via Secret Transactions 729

– (Sects. 4) We propose cheater identifiable and publicly verifiable sealed bid
auction protocols compatible with our secret deposit approach and more effi-
cient than the state-of-the-art [3]. Our protocols are guaranteed to terminate,
finding the winner, and paying the seller even if cheating occurs.

To achieve fairness in an auction setting, we require each party to provide a
secret deposit of an amount of cryptocurrency equal to the party’s private bid
plus the cost of executing the protocol. In case a party is found to be cheating, a
smart contract automatically redistributes cheaters’ deposits among the honest
parties, the cheater is eliminated and the remaining parties re-execute the proto-
col using their initial bids/deposits. Having a bid-dependent deposit guarantees
that it is always more profitable to execute the protocol honestly than to cheat
(as analyzed in Sect. 5).

However, previous works that considered the use of cryptocurrency deposits
for achieving fairness (e.g. [2,6,8,9,18,29]) crucially rely on deposits being pub-
lic, thus using the same approach would reveal information about the bid. To
overcome this, we propose using secret deposits that keep the value of the deposit
secret until cheating is detected. Moreover, this ensures that the parties have suf-
ficient funds to bid for the object (e.g., in a second-price auction, a party could
bid very high just to figure out what is the second-highest price is and then claim
her submitted bid was just a mistake). Our protocols are publicly verifiable, i.e.
it is possible to prove to the smart contract (and to any third party verifier) that
a party has cheated.

In relation to previous works (discussed in Sect. 1.3), we emphasize that:

– While using deposits to achieve fairness represents a well-known technique,
previous works considered public deposits only.

– Public deposits are not suitable for applications such as sealed-bid auctions
since in order to achieve fairness, bid-dependent deposits are required, and
public deposits would reveal information about the bid. For this reason, we
introduce secret deposits, which represent a novel technique.

– From a sealed bid auction perspective, our protocol improves the state-of-
the-art both in terms of efficiency and security guarantees, i.e., it achieves
fairness (while in previous works the adversary may learn the outcome of the
auction before honest parties and abort without suffering any consequences).

– No previous work in this setting considers adaptive adversaries since it would
drastically increase the complexity of the protocol. For this reason, we focus
on the static adversary case only.

1.2 Our Techniques

We start with a first-price sealed-bid auction protocol that builds on a simple
passively secure protocol similar to that of SEAL [3] and compile it to achieve
active security. However, we not only obtain an actively secure protocol but
also add cheater identification and public verifiability properties. We use these
properties to add our financial punishment mechanism with secret deposits to
this protocol. Even though our protocol achieves stronger security guarantees

730 B. David et al.

than SEAL (i.e., sequential composability and fairness guarantees), it is more
efficient than the SEAL protocol as shown in Sect. 6.

A Toy Example: Our protocol uses a modified version of the Anonymous Veto
Protocol from [25] as a building block. The anonymous veto protocol allows a set
of n parties P1, . . . ,Pn to anonymously indicate whether they want to veto or not
on a particular subject by essentially securely computing the logical-OR function
of their inputs. In this protocol, each party Pi has an input bit di ∈ {0, 1} with
0 indicating no veto and 1 indicating veto, and they wish to compute

∨n
i=1 di.

As proposed in [3], this simple anonymous veto protocol can be used for
auctions by having parties evaluate their bids bit-by-bit, starting from the most
significant bit and proceeding to execute the veto protocol for each bit in the
following way: 1. Until there is no veto, all parties only veto (input di = 1 in the
veto protocol) if and only if the current bit of their bid is 1; 2. After the first
veto, a party only vetoes if the bit of her bid in the last time a veto happened
was 1 and the current bit is also 1. In other words, in this toy protocol, parties
stop vetoing once they realize that there is another party with a higher bid (i.e.,
there was a veto in a round when their own bit were 0) and the party with the
highest bid continues vetoing according to her bid until the last bit. Therefore,
the veto protocol output represents the highest bid. However, a malicious party
can choose not to follow the protocol, altering the output.

Achieving Active Security with Cheater Identification and Public Ver-
ifiability: To achieve active security with cheater identification and public ver-
ifiability, we depart from a simple passively secure protocol and compile it into
an active secure protocol using NIZKs following an approach similar to that
of [26,29]. This ensures that at every round of the protocol all parties’ inputs
are computed according to the protocol rules, including previous rounds’ inputs
and outputs. However, since the generic techniques from [26,29] yield highly
inefficient protocols, we carefully construct tailor-made efficient non-interactive
zero-knowledge proofs for our specific protocol, ensuring it to be efficient.

Incentivizing Correct Behaviour with Secret Deposits: In order to create
incentives for parties to behave honestly, a deposit based on their bids is required.
However, a public deposit would leak information about the parties’ bids, which
have to be kept secret. Hence, we do secret deposits as discussed below and keep
the amount secret unless a party is identified as a cheater, in which case the
cheater’s deposit is distributed among the honest parties. The cheater is then
eliminated and the protocol is re-executed with the remaining parties using their
initial bids/deposits so that a winner is determined. This makes it rational not
to cheat both in the case of first and second-price auctions, i.e., cheating always
implies a lower utility than behaving honestly (see Sect. 5).

Achieving On-Chain Efficiency: In order to minimize the amount of on-chain
communication, an approach based on techniques from [5] is adopted. Every time
a message is sent from a given party to the other parties, all of them sign the
message received and send the signature to each other. Communication is only
done on-chain (through the smart contract) in case of suspected cheating.

FAST: Fair Auctions via Secret Transactions 731

Secret Deposits to Public Smart Contracts: Since we use secret deposits
based on confidential transactions [35], we need a mechanism to reveal the value
of cheating parties’ deposits to the smart contract so it can punish cheaters. We
do that by secret sharing trapdoor information used to reveal this value using a
publicly verifiable secret sharing (PVSS) scheme [15] that allows us to prove in
zero-knowledge both that the shares are valid and that they contain the trapdoor
for a given deposit. These shares are held by a committee that does not act unless
cheating is detected, in which case the committee members are reimbursed for
reconstructing the trapdoor with funds from the cheater’s deposit itself. We
discuss this approach in Sect. 3. Providing alternative methods for holding these
deposits is an important open problem.

1.3 Related Work

Research on secure auctions started by the work of Nurmi and Salomaa [38] and
Franklin and Reiter [23] in the late 1900s. However, in these first constructions,
the auctioneers open all bids at the end of the protocol, which reveals the losing
bids to all parties. Since then, many sealed bid auction protocols have been
proposed to protect the privacy of the losing bids, e.g., [1,4,27,32,33]. However,
in most of these protocols, privacy is obtained by distributing the computation
of the final outcome to a group of auctioneers.

A lot of work has been done to remove the role of the trusted parties, e.g.,
by Brandt [11]. In these protocols, the bidders must compute the winning bid in
a joint effort through emulating the role of the auctioneer. Moreover, the seller
plays a role in the auction and it is assumed that the seller has no incentive
to collude with other bidding parties. However, later by Dreier et al. [22] it
was pointed out that if the seller and a group of bidding parties collude with
each other, then they can learn the bids of other parties. Besides weak security
guarantees, the main drawback of the protocol proposed by Brandt [11] is that
it has exponential computational and communication complexities.

There have been implementations of auctions including [10], which have been
deployed in practice for the annual sugar beets auction in Denmark. Other
works [36] have considered the use of rational cryptography in enhancing privacy.
Finally, the current state-of-the-art in protocols for secure First-Price Sealed-
Bid Auctions was achieved in SEAL [3], which we compare with our protocols
in detail in Sect. 6. To the best of our knowledge, none of these works considers
incentives for the parties to complete the protocol or punishment for cheaters.

An often desired feature of Secure Multiparty Computation (MPC) is that
if a cheating party obtains the output, then all the honest parties should do so
as well. Protocols that guarantee this are also called fair and are known to be
impossible to achieve with dishonest majorities [16]. Recently, Andrychowicz et
al. [2] (and independently Bentov & Kumaresan [8]) initiated a line of research
that aims at incentivizing fairness in MPC by imposing cryptocurrency-based
financial penalties on misbehaving parties. A line of work [9,18] culminating
in [6] improved the performance of this approach with respect to the amount of
on-chain storage and size of the collateral deposits from each party, while others

732 B. David et al.

obtained stronger notions of fairness [29]. However, all of these works focus on
using public collateral deposits for incentivizing fairness, which is not possible for
our application. Moreover, they rely on general-purpose MPC, while we provide a
highly optimized specific purpose protocol for auctions with financial incentives.
The protocols of [21,24] are also based on cryptocurrencies. The work of [24]
is the closest to ours as it leverages a cryptocurrency to ensure fairness, but it
relies on SGX trusted execution enclaves.

2 Preliminaries

Let y
$← F (x) denote running the randomized algorithm F with input x and

implicit randomness, obtaining the output y. When the randomness r is specified,
we use y ← F (x; r). For a set X , let x

$← X denote x chosen uniformly at random
from X ; and for a distribution Y, let y

$← Y denote y sampled according to the
distribution Y. We denote concatenation of two values x and y by x|y. We denote
negligible functions as negl(x). We denote two computationally indistinguishable
ensembles X = {Xκ,z}κ∈N,z∈{0,1}∗ and Y = {Yκ,z}κ∈N,z∈{0,1}∗ of binary random
variables by X ≈c Y . For a field F we denote by F[X]≤m the vector space of
polynomials in F[X] of degree at most m.

2.1 Security Model and Setup Assumptions

We prove our protocol secure in the real/ideal simulation paradigm with sequen-
tial composition. This paradigm is commonly used to analyse cryptographic
protocol security and provides strong security guarantees, namely that several
instances of the protocol can be executed in sequence while preserving their
security. To prove security, a real world and an ideal world are defined and com-
pared. In the real world, the protocol π is executed with the parties, some of
which are corrupted and controlled by the adversary A. In the ideal world, the
protocol is replaced by an ideal functionality F and a simulator S interacts with
it. The ideal functionality F describes the behaviour that is expected from the
protocol and acts as a trusted entity. A protocol π is said to securely realize the
ideal functionality F , if for every polynomial-time adversary A in the real world,
there is a polynomial-time simulator S for the ideal world, such that the two
worlds cannot be distinguished. In more detail, no probabilistic polynomial-time
distinguisher D can have a non-negligible advantage in distinguishing the con-
catenation of the output of the honest parties and of the adversary A in the real
world from the concatenation of the output of the honest parties (which come
directly from F) and of the simulator S in the ideal world. More details about
this model are in [14]. Our protocol uses the Random Oracle Model (ROM).
Note that adopting the UC model, as an alternative, requires to use UC-secure
NIZK (instead of those described subsequently), but reduces the efficiency of
the protocol. Also, previous works consider the sequential composability model
only.

FAST: Fair Auctions via Secret Transactions 733

Adversarial Model: We consider malicious adversaries that may deviate from
the protocol in any arbitrary way. Moreover, we consider the static case, where
the adversary is only allowed to corrupt parties before protocol execution starts
and parties remain corrupted (or not) throughout the execution. Moreover, we
assume that parties have access to synchronous communication channels, i.e.,
all messages are delivered within a given round with a known maximum delay.

Decisional Diffie Hellman (DDH) Assumption: The DDH problem consists
in deciding whether c = ab or c

$← Zp in a tuple (g, ga, gb, gc) where g is a
generator of a group G of order p, and a, b

$← Zp. The DDH assumption states
that the DDH problem is hard for every PPT distinguisher. It is well known
that the DDH assumption implies the Discrete Logarithm assumption.

2.2 Building Blocks

Pedersen Commitments: Let p and q be large primes such that q divides p−1
and let G be the unique subgroup of Z∗

p of order q. All the computations in G

are operations modulo p, however we omit the mod p to simplify the notation.
Let g, h denote random generators of G such that nobody knows the discrete
logarithm of h base g, i.e., a value w such that gw = h. The Pedersen commit-
ment scheme [40] to an s ∈ Zq is obtained by sampling t

$← Zq and computing
, (s, t) = gsht. Hence, the commitment , (s, t) is a value uniformly distributed
in G and opening the commitment requires to reveal the values of s and t. The
Pedersen commitments are additively homomorphic, i.e., starting from the com-
mitment to s1 ∈ Zq and s2 ∈ Zq, it is possible to compute a commitment to
s1 + s2 ∈ Zq, i.e., , (s1, t1)·, (s2, t2) =, (s1 + s2, t1 + t2).

Simplified UTXO Model: In order to focus on the novel aspects of our pro-
tocol, we represent cryptocurrency transactions under a simplified version of the
Bitcoin UTXO model [37]. For the sake of simplicity, we only consider operations
of the “Pay to Public Key” (P2PK) output type, which we later show how to
realize while keeping the values of transactions private. The formal description
of the adopted simplified UTXO model is discussed in the full version [20].

Confidential Transactions: In the case of confidential transactions [35] the
input and output amounts are kept secret using Pedersen commitments. How-
ever, in order to achieve public verifiability, the transactions contain a zero-
knowledge proof that the sum of the inputs is equal to the sum of the outputs,
and that all the outputs are between [0, 2l − 1] (which can be computed with
Bullet Proofs [12]). Note that the input set In in confidential transactions can
also be public, (i.e. In = {(id1, in1), . . . , (idm, inm)}), as long as the outputs
are kept private. In particular, confidential transactions can be formally defined
by modifying the simplified UTXO model described above as follows:

– Representing inputs and outputs: Set In is defined as In = {(id1,
com(in1, rin1)), . . . , (idm, com(inm, rinm))} and set Out is defined as Out =
{(com(out1, rout1), Addr1), . . . , (com(outn, routn), Addrn)}.

734 B. David et al.

– Generate Transaction with In,Out: Compute
∏n

j=1 com(outj ,routj
)

∏m
i=1 com(ini,rini

) = com

(0,
∑n

j=1 routj − ∑m
i=1 rini) with rini , routj

$← Zq, include in the transaction
the randomness

∑n
j=1 routj − ∑m

i=1 rini and the range proofs π guaranteeing
that out1, · · · , outn are between [0, 2l − 1]. The resulting transaction is then
represented by tx = (id, In,Out,Sig,

∑n
j=1 routj − ∑m

i=1 rini , π).

– Validate a Transaction tx: Compute
∏n

j=1 com(outj ,routj
)

∏m
i=1 com(ini,rini

) = com(s, t) and
check if the obtained commitments is equal to com(0,

∑n
j=1 routj −∑m

i=1 rini),
guaranteeing that

∑m
i=1 ini =

∑n
j=1 outj , then check the validity of the range

proofs π.
– Spend a transaction output Out: Parse Out = (com(outi, routi), Addri).

To spend Out, the commitment com(outi, routi) = goutihrouti has to be opened
by revealing outi and routi . Values outi and routi are included in a regular
UTXO transaction and they are described in the full version [20]. Later on,
this UTXO transaction can be validated by checking that outi, routi is a
valid opening of com(outi, routi) and following the steps of a regular UTXO
transaction validation.

– Spend a transaction output Out with a NIZKPoK of routi : Alterna-
tively, an output Out = (com(outi, routi), Addri) for which only outi and
ĥ = hrouti (but not routi) are known can be spent if a NIZK π′ proving
knowledge of routi is also available. Notice that knowing outi is sufficient
for validating the regular UTXO transaction created using Out as an input.
Moreover, it can be checked that goutihrouti = com(outi, routi) given outi and
ĥ = hrouti , while the proof π′ guarantees that ĥ = hrouti is well formed.1 Val-
ues outi, hrouti and the proof π′ are included in a regular UTXO transaction
generated and they are described in the full version [20]. Later on, this UTXO
transaction can be validated by checking that goutihrouti = com(outi, routi),
checking that π′ is valid and following the steps of a regular UTXO transac-
tion validation.

Publicly Verifiable Secret Sharing (PVSS): In our work, we use the PVSS
protocol πPV SS from [15]. A PVSS protocol allows for a dealer to distribute
encrypted shares to a set of parties in such a way that only one specific party
can decrypt a share but any third party verifier can check that all shares are
valid. Later on, each party can decrypt its corresponding share to allow for
reconstruction while showing to any third-party verifier that the decrypted share
corresponds to one of the initial encrypted shares. A deposit committee C =
{C1, . . . , Cm} will execute this protocol verifying and decrypting shares provided
as part of our secret deposit mechanism (further discussed in Sect. 3). Since the
parties in C executing πPV SS must have public keys registered as part of a setup
phase, we capture this requirement in FSC as presented in Sect. 2.2.

1 In fact, showing such a proof of knowledge π′ of routi together with hrouti and outi
makes it easy to adapt reduction of the binding property of the Pedersen commitment
scheme to the Discrete Logarithm assumption. Instead of obtaining routi from the
adversary, the reduction simply extracts it from π′.

FAST: Fair Auctions via Secret Transactions 735

NIZK for PVSS Share Consistency CC: As part of our secret deposit
mechanism (further discussed in Sect. 3), we will use a NIZK showing that shares
computed with the PVSS protocol πPV SS from [15] encode secrets gm and hr

that are terms of a Pedersen commitment c = gmhr. Formally, given generators
g1, . . . , gn, g, h of a cyclic group Gq of prime order q, pairwise distinct elements
α1, . . . , αn in Zq and a Pedersen commitment c = gmhr known by prover and
verifier, for p(x) and m, r known by the prover, this NIZK is used to prove
that (σ̂1, . . . , σ̂n) ∈

{(
g

p(α1)
1 , . . . , g

p(αn)
n

)
: p ∈ Zq[X], p(−1) = gm, p(−2) = hr

}
.

We denote this NIZK by CC((gi)i∈[n], (αi)i∈[n], g, h, c, (σ̂i)i∈[n]). Notice that this
NIZK can be constructed using the techniques from [13] and integrated with the
NIZK LDEI (Low-Degree Exponent Interpolation) defined in πPV SS [15].

Modelling a Stateful Smart Contract: We employ a stateful smart contract
functionality FSC similar to that of [18] in order to model the smart contract
that implements the financial punishment mechanism for our protocol. For the
sake of simplicity, we assume that each instance of FSC is already parameterized
by the address of the auctioneer party who will receive the payment for the
auctioned good, as well as by the identities (and public keys) of the parties in
a secret deposit committee C that will help the smart contract to open secret
deposits given by parties in case cheating is detected. We also assume that FSC

has a protocol verification mechanism pv for verifying the validity of protocol
messages. For description of the FSC see the full version [20].

3 Secret Deposits in Public Smart Contracts

When using secret deposits as in our application, it is implied that there exists
a secret trapdoor that can be used to reveal the value of such deposits (and
transfer them). However, since we base our financial punishment mechanism on
a standard public smart contract, we cannot expose the trapdoor to the smart
contract. Instead, we propose that a committee C = {C1, . . . , Cm} with m/2 + 2
honest members2 holds this trapdoor in a secret shared form. This committee
does not act unless a cheating party needs to be punished and the trapdoor
needs to be reconstructed to allow the smart contract to transfer her collateral
deposit. In this case, the committee can be reimbursed from the collateral funds.
We present a practical construction following this approach. Proposing methods
for keeping custody of such secret deposits is left as an important open problem.

A Possible Solution: A feasible but not practical approach to do this would be
storing the trapdoor with the mechanism proposed in [7], where a secret is kept
by obliviously and randomly chosen committees by means of a proactive secret
sharing scheme where each current committee “encrypts the secret to the future”
in such a way that the next committee can open it. However, it is also necessary

2 We need m/2+2 honest members to instantiate our packed publicly verifiable secret
sharing based solution where two group elements are secret shared with a single
share vector.

736 B. David et al.

to ensure that the secrets actually correspond to the trapdoor for the parties’
deposits. Providing such proofs with the scheme of [7] would require expensive
generic zero-knowledge techniques (or a trusted setup for a zk-SNARK).

Protocol ΠC

Let C = {C1, . . . , Cm} be the deposit committee members and pkC1 , . . . , pkCm and
skC1 , . . . , skCm be their public keys and private keys, used to run πPV SS, respectively.
Moreover, let pkC1 , . . . , pkCm

and skC1 , . . . , skCm
be their public keys and private

keys, used for signatures, respectively. The following steps are executed by Cj ∈ C:

– Setup verification: Upon receiving (setup, sid, Pi, txi, pki, (σ̂i1, . . . , σ̂im),
LDEIi, CCi) from Pi, Cj checks that txi is valid, verifies the shares (σ̂i1, . . . , σ̂im)
correctness with respect to the committee public keys pkC1 , . . . , pkCm us-
ing the verification procedure of πPV SS through LDEIi and verifies
NIZK CCi. If all the checks pass, compute the hashes SĤ1i = H(txi, pki)
and SĤ2i = H((σ̂i1, . . . , σ̂im), LDEIi, CCi) and the signature SigCj,i =
sigskCj

(SĤ1i|SĤ2i), then send (setup-verification, sid, SigCj ,i) to Pi.

– Share decryption: Upon receiving (open, sid, Pi) from FSC, Cj uses the share
decryption procedure from πPV SS on σ̂ij , obtaining σ̃ij , DLEQij . and sending
(share-decryption, sid, (σ̂i1, . . . , σ̂im), LDEIi, CCi, σ̃ij , DLEQij)) to FSC.

Fig. 1. Protocol ΠC

A Protocol Based on PVSS: As an alternative, we propose leveraging the
structure of our confidential transaction based deposits to secret share their
openings with a recent efficient publicly verifiable secret sharing (PVSS) scheme
called Albatross [15]. Notice that the secret amount information bi in these
deposits is represented as a Pedersen commitment gbihri and that the Albatross
PVSS scheme also allows for sharing a group element gs, while proving in zero-
knowledge discrete logarithm relations involving gs in such a way that they can
be verified by any third party with access to the public encrypted share. Hence,
we propose limiting the bid bi bit length in such a way that we can employ
the same trick as in lifted ElGamal and have each party Pi share both gbi and
hri with the Albatross PVSS while proving that their public encrypted shares
correspond to a secret deposit gbihri . The validity of this claim can be verified
by the committee C itself or the smart contract during Stage 1 - Setup. Later
on, if bi needs to be recovered, C can reconstruct gbi , brute force bi (because it
has a restricted bit-length) and deliver it to the smart contract while proving
it has been correctly computed from the encrypted shares. As we explain in
Sect. 2, recovering bi and gri along with the proofs of share validity is sufficient
for transferring the secret deposit.

In Fig. 1, we present Protocol ΠC followed by the committee C = {C1, . . . , Cm}
and executed as part of Protocols ΠFPA described in Sect. 4. The interaction of
the other parties P = {P1, . . . ,Pn} executing Protocols ΠFPA and ΠSPA with
the committee C is described as part of Stage 1 - Setup of these protocols.

FAST: Fair Auctions via Secret Transactions 737

Selecting Committees: In order to focus on the novel aspects of our construc-
tions, we assume that the smart contract captured by FSC described in the full
version [20] is parameterized by a description of the committee C = {C1, . . . , Cm}
and the public keys corresponding to each committee member. Notice that in
practice this committee can be selected by the smart contract from the set of
parties executing the underlying blockchain consensus protocol. The problem of
selecting committees in a permissionless blockchain scenario has been extensively
addressed in both Proof-of-Stake e.g. [19,28] and Proof-of-Work [39] settings.

4 First-Price Auctions

In this section, we introduce our protocol for first-price auctions (while the case of
second-price auctions is addressed in the full version [20]). We consider a setting
with n parties P1, . . . ,Pn, where each party Pi has a l-bit bid bi = bi1| . . . |bil,
where bir denotes the r-th bit of party Pi’s bid.

Functionality FFPA

FFPA operates with an auctioneer PAUC , a set of parties P = {P1, . . . , Pn} who
have bids b1, . . . , bn as input and where bi = bi1| . . . |bil is the bit representation of
bi, as well as an adversary SFPA. FFPA is parameterized by a bid bit-length l and
keeps an initially empty list bids.

– Setup (Bid Registration): Upon receiving (bid, sid, coins(bi + work)) from
Pi where bi ∈ {0, 1}l and work is the amount required to compensate the cost
of running the protocol for all the other parties, FFPA appends bi to bids.

– First-Price Auction: After receiving (bid, sid, coins(bi+work)) from all parties
in P , for r = 1, . . . , l FFPA proceeds as follows:
1. Select bwr , i.e., the r-th bit of the highest bid bw in the list bids.
2. Send (round-winner, sid, bwr) to all parties and SFPA.
3. Check if bwr = 1 and bir = 0 for i = 1, . . . , n = w. If so, let rw = r, that is

the first position where bw has a bit 1 and the second highest bid bw2 has a
bit 0, and send (leak-to-winner, sid, rw) to Pw.

4. Send (abort?, sid) to SFPA. If SFPA answers with (abort, sid,Pi) where
Pi is corrupted, remove bi from bids, remove Pi from P , send (abort,
sid, Pi, coins(bi+work

|P|)) where |P| is the number of remaining parties to all
other parties in P , set again r = 1 and go to Step 1. If SFPA answers with
(proceed, sid), if r = l go to Payout, else increment r by 1 and go to Step 1.

– Payout: Send (refund, sid, Pw, coins(bi + work)) to all parties Pi = Pw, send
(refund, sid, coins(work)) to Pw, send coins(bw) to PAUC , and halt.

Fig. 2. Functionality FFPA

Modelling Fair Auctions: First, we introduce an ideal model for fair auctions
that we will use to prove the security of our protocol. For the sake of simplicity,
when discussing this model, we use coins(n) to indicate n currency tokens being

738 B. David et al.

transferred where n is represented in binary, instead of describing a full UTXO
transaction. Our ideal functionality FFPA is described in Fig. 2. This function-
ality models the fact that the adversary may choose to abort but all it may learn
is that it was the winner and the most significant bit where its bid differs from
the second-highest bid. Regardless of adversarial actions, an auction result is
always obtained and the auctioneer (i.e., the party selling the asset) is always
paid. The second-price case is presented in the full version [20].

The Protocol: In Figs. 3, 4, 5 and 6, we construct a Protocol ΠFPA that realizes
FFPA. This protocol is executed by n parties P1, . . . ,Pn, where each party Pi

has a l-bit bid bi = bi1| . . . |bil and a deposit committee C = {C1, . . . , Cm} that
helps open secret deposits from corrupted parties in the Recovery Stage. The
protocol consists of 4 main stages plus a recovery stage, which is only executed
in case of suspected (or detected) cheating. In the first stage, every party i sends
to the smart contract a secret deposit, whose structure will be explained in detail
later. In the second and third stages, all parties jointly compute the maximum
bid (bit-by-bit) by using an anonymous veto protocol that computes a logical
OR on private inputs. To this aim, the parties start from the most significant bit
position. Then, they apply the anonymous veto protocol according to their bits
bir, with 0 representing a no veto and 1 representing a veto. If the outcome of the
veto protocol (i.e., the logical-OR of the the inputs) is 1, then each party Pi with
input bir = 0 figures out that there is at least another party Pk whose bid bk is
higher than bi and Pi discovers that she cannot win the auction. Therefore, from
this point on, Pi stops vetoing, disregarding her actual bit bir in the next rounds.
Otherwise, Pi is expected to keep vetoing or not according to her bit bir. Finally,
in Stage 4 the winning party Pw executes the payment to the auctioneer (i.e., the
party selling the asset). Throughout all stages, the parties must provide proofs
that they have correctly computed all protocol messages. If a party is identified
as dishonest at any point, the Recovery Stage has to be executed.

Security Analysis: It is clear that this protocol correctly computes the highest
bid. The ideal smart contract enforces payment once a winner is determined and
punishments otherwise. The security of this protocol is formally stated in the
following theorem. A game-theoretical analysis is presented in Sect. 5, where it
is shown that the best strategy for any rational party is to follow the protocol.

Theorem 1. Under the DDH Assumption, Protocol ΠFPA securely computes
FFPA in the FSC-hybrid, random oracle model against a malicious static adver-
sary A corrupting all but one parties Pi ∈ P and m/2 − 2 parties Ci ∈ C.

Due to space limits, we leave the full proof to the full version [20].

5 Rational Strategies

In this section, we consider the incentives of parties in our protocols. Note that
the set of bidders is fixed through the execution, i.e., once the execution has
started, even if it is required to re-execute the protocol, no new bid can be

FAST: Fair Auctions via Secret Transactions 739

Protocol ΠFPA (Off-chain messages exchange)

Protocol ΠFPA is executed with n parties P = {P1, . . . , Pn}, where each party Pi

has a l-bit bid bi = bi1| . . . |bil and a deposit committee C = {C1, . . . , Cm}. Parties
P , C interact among themselves and with a smart contract FSC.

Off-chain messages exchange: To minimize the communication with the smart
contract, an approach based on [5] is adopted. Let r be a generic round of the
protocol, then each party Pi actually proceeds as follows when sending her messages:

– Roundr: each Pi sends msgr,i, sigski(msgr,i) to all the other parties;
– Roundr+1: all the other parties Pk for k ∈ {1, . . . , n} \ i sign the message

received from party i and send msgr,i, sigskk
(msgr,i) to all the other parties,

allowing them to check if party i sent no conflicting messages. Then, each party
repeats from the instructions described in the previous round;

– Conflicting messages: in case Pi sends conflicting messages msgr,i = msgr,i
to parties Pk = Pk , Pk or Pk send to the smart contract msgr,i, sigski(msgr,i)
and msgr,i, sigski(msgr,i) as a proof that Pi was dishonest;

– Evidence of a message: in case it has to be proven that a message msgr,i has
been sent by party Pi in round r, the other parties send to the smart contract
the signatures sigsk1(msgr,i), . . . , sigskn(msgr,i) along with the message msgr,i.

Fig. 3. Protocol ΠFPA (Off-chain messages exchange)

submitted, and it is therefore not possible to gain from the leaked information.
Moreover, in case there is a cheating party, the protocols refund the honest
parties with her deposit.

We now consider the utility of each party from participating in the pro-
tocol. The utility function of a generic party Pi in the first-price auction is
uFPA

i (b1, . . . , bn) = vi −bi if bi > maxj �=i bj and 0 otherwise, while in the second-
price auction is instead uSPA

i (b1, . . . , bn) = vi − maxj �=i bj if bi > maxj �=i bj and
0 otherwise, where vi represents the Pi’s private valuation of what is at stake in
the auction. It is known that in the first-price auctions the optimal strategy for
each rational party depends on their beliefs regarding other party’s valuations,
while in the second-price auction the optimal strategy for each party is to bid an
amount equal to her valuation regardless of the strategy of other parties [31,34],
i.e., bi = vi.

In case a party Pi is honest, she always gets her deposit work back. Then,
if she is the winner, she gets what is at stake in the auction and pays bi, while
if she is not the winner, she gets her entire deposit bi + work back. Therefore,
by following the protocol each rational party has a non-negative utility, i.e.,
ui(b1, . . . , bn) ≥ 0. However, if a party cheats her deposit bi +work is distributed
among honest parties. Therefore, the utility of a cheating party, regardless of
whether her bid is the highest or not, is ui(b1, . . . , bn) = −(bi + work) < 0,
which is strictly negative. Therefore, cheating is a dominated strategy for each
party, i.e., regardless of what other players do it always results in a lower utility.

740 B. David et al.

Protocol ΠFPA (Stage 1)

Stage 1 - Setup: Deposit committee parties Ck ∈ C first execute the Setup Verifi-
cation step of ΠC from Figure 1. All parties Pi proceed as follows:

1. Pi sends a secret deposit containing their bid bi, change change and a fee work
to the smart contract through a confidential transaction (as described in Sec-
tion 2.2). Let Addri be the address associated to party i and Addrs be the
address associated to the smart contract, Pi proceeds as follows:
(a) Pi sends (param, sid) to FSC, receiving (param, sid, g, h, pkC1 , . . . , pkCm).

(b) Pi computes the bit commitments as cir = gbirhrir , with rir
$← Zq, to each

bit bir of bi, and the bid commitment as ci = l
r=1 c2

l−r

ir = gbih
l
r=1 2l−rrir .

Let rbi be equal to l
r=1 2l−rrir. Then, ci can be rewritten as ci = gbihrbi =

com(bi, rbi).
(c) Define sets In = {(idi, ini)} and Out = {(ci, Addrs), (work, Addrs),

(com(changei, rchangei), Addri)}, where ci = com(bi, rbi) is the commitment
to the bid bi previously computed at Step 1, work is the amount required
to compensate the cost of running the protocol for all the other parties in

P and in C, change = ini − bi − work and rchange
$← Zq. Note that, in this

case case, ini and work are public, while bi and change are private.
(d) Compute rout = rbi + rchangei , so as to allow the other parties later to

verify that the sum of the inputs is equal to the sum of the outputs, i.e.

ci · com(change, rchange)
?
= com(ini − work, rout).

(e) Compute proofs (πbi , πchange) showing that bi, change ∈ [0, 2l −1], set txi =
(id, In,Out,Sig, rbi + rchangei , π).

(f) Compute the shares (σ̂i1, . . . , σ̂im, LDEIi) of gbi and hrbi using the distri-
bution procedure from πPV SS with pkC1 , . . . , pkCm received in step (a).

(g) Compute CCi ← CC((pkCj)j∈[m], (j)j∈[m], g, h, ci, (σ̂j)j∈[m]) to prove con-

sistency among the shares (σ̂i1, . . . , σ̂im) and the commitment terms gbi and
hrbi from ci = gbihrbi .

(h) Send (setup, sid, Pi, txi, pki, (σ̂i1, . . . , σ̂im), LDEIi, CCi) to each Cj ∈ C.
(i) Upon receiving (setup-verification, sid, SigCj,i) from all Cj ∈ C, com-

pute SĤ1i = H(txi, pki) and SĤ2i = H((σ̂i1, . . . , σ̂im), LDEIi, CCi) and
send (setup, sid, Pi, txi, pki, SĤ1i, SĤ2i, SigC1,i, . . . , SigCm,i)) to FSC. If a
party Ca ∈ C does not send this message, proceed to the Recovery Stage.

2. Pi samples xir
$← Zq and computes Xir = gxir for r = 1, . . . , l, sending

ci1, · · · , cil, Xi1, · · · , Xil to all other parties.
3. Upon receiving all messages cj1, · · · , cjl, Xj1, · · · , Xjl from other parties Pj , Pi

computes Yjk = j−1
m=1 Xmk/ n

m=j+1 Xmk for j = 1, . . . , n,k = 1, . . . , l, and

verifies for each other party Pj that cj = l
k=1 c2

l−k

jk for j ∈ {1, . . . , n}\ i. If this
verification fails or a message is not received, proceed to the Recovery Stage.

Fig. 4. Protocol ΠFPA (Stage 1)

The above analysis shows that it is not rational for an adversary A controlling
a single party to deviate from the protocol. Next, we show that it is also the case
for an adversary A controlling more than one party. Let Pi,Pj be two parties
controlled by A and let vA be the valuation of the adversary for what is at stake

FAST: Fair Auctions via Secret Transactions 741

Protocol ΠFPA (Stages 2 and 3)

Stage 2 - Before First Veto: All parties Pi, starting from the most significant bit
bi1 and moving bit-by-bit to the least significant bit bil of their bid bi = bi1| . . . |bil,
run in each round r the anonymous veto protocol until the outcome is a veto (i.e.,
Vr = 1) for the first time. Therefore each party Pi proceeds as follows:

1. Compute vir as follows: if bir = 0 then vir = Y xir
ir ; if bir = 1 then vir = gr̄ir where

r̄ir
$← Zq. Then generate NIZK proving that vir has been correctly computed

BVir ← BV {bir, rir, xir, r̄ir | (cir
gbir

= cir = hrir ∧ vir = Y xir
ir ∧ Xir = gxir) ∨

(cir
gbir

= cir
g

= hrir ∧ vir = gr̄ir)}, sending a message (vir, BVir) to all parties.

2. Upon receiving all messages (vkr, BVkr) from other parties Pk, Pi checks the
proofs BVkr for k ∈ {1, . . . , n}\i and, if all checks pass, computes Vr = n

k=1 vkr
and then goes to Stage 3 if Vr = 1 (at least one veto), otherwise follows the steps
in Stage 2 again until the round r = l. Note that, unless all the bids are equal
to 0, at some point the condition Vr = 1 is satisfied. If a message is not received
from party Pk or if BVkr is invalid, proceed to the Recovery Stage.

Stage 3 - After First Veto: Let r denote the last round at which there was a veto
(i.e., Vr = 1). All parties Pi, starting from bir+1 and moving bit-by-bit to the least
significant bit bil of their bid bi = bi1| . . . |bil, run in each round r > r the anonymous
veto protocol taking into account both the input bit bir and the declared input bit
dir, defined as the value that satisfies the logical condition (bir = 0∧dir = 0)∨(bir =
1∧dir = 1∧dir = 1)∨(bir = 1∧dir = 0∧dir = 0), i.e., each party Pi vetoes at round
r iff she also vetoed at round r (i.e., dir = 1), and her current input bit bir = 1.
Therefore, each Pi proceeds as follows:

1. Compute vir as follows: if bir = 0, then vir = Y xir
ir ; if dir = 1 ∧ bir = 1, then

vir = gr̄ir where r̄ir
$← Zq ; if dir = 0 ∧ bir = 1, then vir = Y xir

ir . Then generate
NIZK proving that vir has been correctly computed
AVir ← AV {bir, rir, xir, r̄ir, r̄ir, xir | (cir

gbir
= cir = hrir ∧ vir = Y xir

ir ∧ Xir =

gxir) ∨ (cir
gbir

= cir
g

= hrir ∧ dir = gr̄ir ∧ vir = gr̄ir) ∨ (cir
gbir

= cir
g

= hrir ∧ dir =

Y
xir
ir ∧ Xir = gxir ∧ vir = Y xir

ir ∧ Xir = gxir)}, sending a message (vir, AVir) to
all parties.

2. Upon receiving all messages (vkr, AVkr) from other parties Pk, Pi checks the
proofs AVkr for k ∈ {1, . . . , n}\i and, if all checks pass, computes Vr = n

k=1 vkr,
following the steps in Stage 3 again until round r = l. If a message is not received
from party Pk or if AVkr is invalid, proceed to the Recovery Stage.

Fig. 5. Protocol ΠFPA (Stages 2 and 3)

in the auction. Without loss of generality let bi > bj . If A does not deviate from
the protocol, then her utility is either 0 (in case neither bi nor bj is the winning
bid) or vA − bi (in case bi is the winning bid). Instead, if A deviates from the
protocol by making Pi dropout, in case bj is not the second-highest bid, then
her utility is −(work + bi). If bj is the second-highest bid, A gets what is at
stake in the auction but her utility is vA − (bi + work + bj). Therefore A always
prefers to behave honestly.

742 B. David et al.

Protocol ΠFPA (Stages 4 and Recovery)

Stage 4 - Output: At this point, each party Pi knows the value of Vr for each
round r = 1, · · · , l and the protocol proceeds as follows:

1. Pi computes the winning bid as bw = bw1| · · · |bwl, such that bwr = 1 if Vr = 1
and bwr = 0 if Vr = 1, and sends bw to all other parties (causing all parties Pk

to sign bw and send sigskk
(bw) to each other). We denote by Pw the winning

party (i.e. the party whose bid is bw).
2. Pw opens the commitment to her bid com(bw, rbw) towards the smart contract

by sending (output, sid, Pw, bw, rbw , {sigskk
(bw)}k∈[n]) to FSC.

3. If Pw does not open her commitment or if multiple parties open their commit-
ments, Pi proceeds to the Recovery Stage.

4. Finally, all parties who honestly completed the execution of the protocol receive
a refund of their deposit from the smart contract, apart from the winning party,
who only receives a refund equivalent to the work funds.

Recovery Stage: Parties Ci ∈ C listen to FSC and execute the Share Decryption
step of ΠC from Figure 1 if requested. In case a party Pi ∈ P is suspected of cheating,
the Recovery stage is executed as follows to identify the cheater depending on the
exact suspected cheating:

– Missing message or signatures: a message msgri or a signature
sigski(msgr−1,i), on a message msgr−1,i by Pi, expected to be sent in round r by
Pi is not received by Pk. Then, Pk sends to FSC the message (recovery-missing,
sid, msg, {sigskk

(msg)}k∈[n]), where msg is the last message signed by all parties
and waits for FSC to request the missing message. In that way, Pi is expected to
send msgri or sigski(msgr−1,i) to FSC. If no action is taken, Pi is identified as a
cheater.

– Conflicting messages or Invalid message: In round r, Pi sends conflicting
messages msgri, sigski(msgri) and msgri, sigski(msgri) to different parties Pk and
Pk. In this case, Pk and Pk set the conflicting messages as a proof of cheating
πc = (msgri, sigski(msgri), msgri, sigski(msgri)). Otherwise, Pi sends an invalid
message msgri, sigski(msgri) to Pk (i.e. the message does not follow the structure
described in the protocol for messages in round r), Pk uses this message as a proof
of cheating πc = (msgri, sigski(msgri)). Pk sends (recovery-cheat, sid, Pi, πc)
to the smart contract and Pi is identified as a cheater.

Every party Pi identified as a cheater loses her whole deposit (bi + work), which is
distributed to the other parties by FSC, and the protocol continues as follows:

– Re-execution (unknown bw): in case bw has not been computed, the protocol is
re-executed from Stage 2 excluding the parties identified as cheaters.

– Complete payment (known bw but unknown Pw): in case bw has been
computed but Pw does not send (output, sid, Pw, bw, rbw , {sigskk

(bw)}k∈[n]) to
FSC, all Pi ∈ P compute a NIZK NWi ← NW{xi1, . . . , xil | (V1 = 1 ∧ vi1 =
Y xi1
i1) ∨ . . . ∨ (Vl = 1 ∧ vi1 = Y xi1

i1)} showing that they are not the winner. Then
they send to FSC (recovery-payment, sid, NWi). The winner Pw (in case it is
identified) or all parties Pi who do not act (in case Pw is not identified) are iden-
tified as dishonest and lose their deposits, which are distributed among the honest
parties.

Fig. 6. Protocol ΠFPA (Stages 4 and Recovery)

FAST: Fair Auctions via Secret Transactions 743

Note that it is necessary to have the deposit amount at least equal to the bid.
Indeed, let d be any deposit amount smaller than bi. Then the utility of A by
making Pi drop out the protocol is vA − (d + work + bj), while it is vA − bi by
behaving honestly. Therefore, in case d + work + bj < bi, A prefers to deviate
from the protocol to increase her utility. A similar argument shows that in the
second-price auction, A always prefers to act honestly.

6 Complexity Analysis and Comparison to Other
Protocols

In this section, we present concrete estimates for the computational and commu-
nication complexity of our first and second-price auction protocols, i.e., ΠFPA

and ΠSPA, respectively. We show that, in the first-price case, ΠFPA is more
efficient than the state-of-the-art protocol SEAL [3]. In the second-price case,
we show that ΠSPA only incurs a small overhead (dominated by re-executing
one round) over ΠFPA. Note that the complexity of Stages 2 and 3 is based on
the NIZK constructions available in the full version [20].

Table 1. First-price auction computational complexity comparison in terms of expo-
nentiations performed by a party Pi ∈ P: n is the number of parties, l is the total
number of rounds in Stages 2 and 3 (i.e., bit-length of bids), τ is the number of rounds
in Stage 2.

Stage 1 Stage 2 Stage 3 Total

FAST nl + l + 8 log l + 2 τ(8 + 10n) (l − τ)(19 + 22n) 23nl + 20l + 8 log l−
11τ − 12nτ + 2

SEAL [3] 11l + 12nl τ(17 + 20n) (l − τ)(33 + 36n) 48nl + 44l − 16τ−
16nτ

Table 2. First-price auction communication complexity comparison in terms of trans-
mitted bits by a party Pi ∈ P: n is the number of parties, l is the total number of
rounds in Stages 2 and 3 (i.e., the bit-length of bids), τ is the number of rounds of
Stage 2, |G| and |Zq| indicate the bit-length of elements g ∈ G and z ∈ Zq respectively,
κ id the security parameter, as defined in Sect. 2.

Stage 1 Stage 2 Stage 3 Total

FAST n((2l + 10)|G|+ nτ(|G| + 6|Zq|) n(l − τ)(|G|+ n
(|G|(3l + 10)+

3κ + 4 log l) 11|Zq|) |Zq|(11l − 5τ) + 3κ+

4 log l
)

SEAL [3] 17nl|G| 23nτ |G| 36n(l − τ)|G| (53nl − 13nτ)|G|

The First-Price Case: A concrete estimate of computational complexity is
shown in Table 1 and one for communication complexity is shown in Table 2.

744 B. David et al.

We estimate these concrete complexities in terms of the number of exponen-
tiations performed by a party Pi and of the number of bits transmitted by a
party Pi in an execution of protocol ΠFPA, respectively. Moreover, we compare
the complexity of our protocol with SEAL [3], which is the current state-of-the-
art protocol for first-price sealed-bid auctions. In a similar way to our proto-
col, SEAL requires all parties to jointly compute the maximum bid bit-by-bit
and is subdivided into a Stage 1 devoted to the setup, a Stage 2 identifying
the rounds of the protocol before the first veto and a Stage 3 identifying the
rounds of the protocol after the first veto. Hence, we highlight the differences
in terms of complexity stage by stage. Note that, in order to make the commu-
nication complexities of the two protocols comparable, both of them have been
expressed in terms of |G|. Finally, FAST has an additional Stage 4 guaranteeing
that the payment from the winning party Pw to the auctioneer is executed. On
the other hand, SEAL does not guarantee this property. In particular, Stage 4
requires 1 exponentiation per party and has a communication complexity equal
to 2(n − 1)|G|.
The Second-Price Case: The computational and communication complexities
of the proposed second-price auction are still linear in the number of agents. That
is, assuming that at round r, there is a party who is the only one that is vetoing,
then the parties have to re-run the rth round with one less party. More precisely,
by following the notation of Table 1 and 2, let τ be the number of rounds in Stage
2, then the computational complexity of Stage 1 and Stage 2 is similar to the
first-price auction, that is nl+l+8 log l+2 for Stage 1, and 8τ +10nτ for Stage 2.
Let r, be the number of rounds until there is only a single party who is veto-ing.
Therefore the computational complexity of Stage 3 is 19r + 22nr until there is
only a single veto. After this, the parties have to run the protocol with one less
party, i.e., n − 1 parties. Depending on the bid structure of the remaining n − 1
parties, the protocol is either in Stage 2 or Stage 3. Let τ ′ denote the number
of rounds until the remaining n − 1 parties get a veto. Then the computational
complexity for these τ ′ rounds would be 8τ ′ +10(n−1)τ ′, and for the remaining
l− (τ + τ ′ + r) it would be 19

(
l− (τ + τ ′ + r)

)
+22(n−1)

(
l− (τ + τ ′ + r)

)
. Using

the same notation, a similar argument follows for the communication complexity
per party in the case of the second-price auction.

References

1. Abe, M., Suzuki, K.: M + 1-st price auction using homomorphic encryption. In:
Naccache, D., Paillier, P. (eds.) PKC 2002. LNCS, vol. 2274, pp. 115–124. Springer,
Heidelberg (2002). https://doi.org/10.1007/3-540-45664-3 8

2. Andrychowicz, M., Dziembowski, S., Malinowski, D., Mazurek, L.: Secure multi-
party computations on bitcoin. In: 2014 IEEE Symposium on Security and Privacy,
pp. 443–458. IEEE Computer Society Press, May 2014

3. Bag, S., Hao, F., Shahandashti, S.F., Ray, I.G.: Seal: sealed-bid auction without
auctioneers. IEEE Trans. Inf. Forensics Secur. 15, 2042–2052 (2019)

https://doi.org/10.1007/3-540-45664-3_8

FAST: Fair Auctions via Secret Transactions 745

4. Baudron, O., Stern, J.: Non-interactive private auctions. In: Syverson, P. (ed.) FC
2001. LNCS, vol. 2339, pp. 364–377. Springer, Heidelberg (2002). https://doi.org/
10.1007/3-540-46088-8 28

5. Baum, C., David, B., Dowsley, R.: A framework for universally composable publicly
verifiable cryptographic protocols. IACR Cryptol. ePrint Arch. 2020, 207 (2020)

6. Baum, C., David, B., Dowsley, R.: Insured MPC: efficient secure computation
with financial penalties. In: Bonneau, J., Heninger, N. (eds.) FC 2020. LNCS, vol.
12059, pp. 404–420. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
51280-4 22

7. Benhamouda, F., et al.: Can a public blockchain keep a secret? In: Pass, R.,
Pietrzak, K. (eds.) TCC 2020. LNCS, vol. 12550, pp. 260–290. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-64375-1 10

8. Bentov, I., Kumaresan, R.: How to use bitcoin to design fair protocols. In: Garay,
J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol. 8617, pp. 421–439. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-662-44381-1 24

9. Bentov, I., Kumaresan, R., Miller, A.: Instantaneous decentralized poker. In: Tak-
agi, T., Peyrin, T. (eds.) ASIACRYPT 2017. LNCS, vol. 10625, pp. 410–440.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70697-9 15

10. Bogetoft, P., Damg̊ard, I., Jakobsen, T., Nielsen, K., Pagter, J., Toft, T.: A prac-
tical implementation of secure auctions based on multiparty integer computation.
In: Di Crescenzo, G., Rubin, A. (eds.) FC 2006. LNCS, vol. 4107, pp. 142–147.
Springer, Heidelberg (2006). https://doi.org/10.1007/11889663 10

11. Brandt, F.: Fully private auctions in a constant number of rounds. In: Wright,
R.N. (ed.) FC 2003. LNCS, vol. 2742, pp. 223–238. Springer, Heidelberg (2003).
https://doi.org/10.1007/978-3-540-45126-6 16

12. Bünz, B., Bootle, J., Boneh, D., Poelstra, A., Wuille, P., Maxwell, G.: Bulletproofs:
short proofs for confidential transactions and more. In: 2018 IEEE Symposium on
Security and Privacy, pp. 315–334. IEEE Computer Society Press, May 2018

13. Camenisch, J., Stadler, M.: Proof systems for general statements about discrete
logarithms. Technical Report/ETH Zurich, Department of Computer Science, vol.
260 (1997)

14. Canetti, R.: Security and composition of multiparty cryptographic protocols. J.
Cryptol. 13(1), 143–202 (2000)

15. Cascudo, I., David, B.: ALBATROSS: publicly AttestabLe BATched randomness
based on secret sharing. In: Moriai, S., Wang, H. (eds.) ASIACRYPT 2020. LNCS,
vol. 12493, pp. 311–341. Springer, Cham (2020). https://doi.org/10.1007/978-3-
030-64840-4 11

16. Cleve, R.: Limits on the security of coin flips when half the processors are faulty
(extended abstract). In: 18th ACM STOC, pp. 364–369. ACM Press, May 1986

17. Cramton, P., et al.: Spectrum auctions. In: Handbook of Telecommunications Eco-
nomics, vol. 1, pp. 605–639 (2002)

18. David, B., Dowsley, R., Larangeira, M.: Kaleidoscope: an efficient poker proto-
col with payment distribution and penalty enforcement. In: Meiklejohn, S., Sako,
K. (eds.) FC 2018. LNCS, vol. 10957, pp. 500–519. Springer, Heidelberg (2018).
https://doi.org/10.1007/978-3-662-58387-6 27

19. David, B., Gaži, P., Kiayias, A., Russell, A.: Ouroboros praos: an adaptively-secure,
semi-synchronous proof-of-stake blockchain. In: Nielsen, J.B., Rijmen, V. (eds.)
EUROCRYPT 2018. LNCS, vol. 10821, pp. 66–98. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-78375-8 3

20. David, B., Gentile, L., Pourpouneh, M.: FAST: fair auctions via secret transactions.
Cryptology ePrint Archive, Report 2021/264 (2021). https://ia.cr/2021/264

https://doi.org/10.1007/3-540-46088-8_28
https://doi.org/10.1007/3-540-46088-8_28
https://doi.org/10.1007/978-3-030-51280-4_22
https://doi.org/10.1007/978-3-030-51280-4_22
https://doi.org/10.1007/978-3-030-64375-1_10
https://doi.org/10.1007/978-3-662-44381-1_24
https://doi.org/10.1007/978-3-319-70697-9_15
https://doi.org/10.1007/11889663_10
https://doi.org/10.1007/978-3-540-45126-6_16
https://doi.org/10.1007/978-3-030-64840-4_11
https://doi.org/10.1007/978-3-030-64840-4_11
https://doi.org/10.1007/978-3-662-58387-6_27
https://doi.org/10.1007/978-3-319-78375-8_3
https://doi.org/10.1007/978-3-319-78375-8_3
https://ia.cr/2021/264

746 B. David et al.

21. Deuber, D., Döttling, N., Magri, B., Malavolta, G., Thyagarajan, S.A.K.: Minting
mechanism for proof of stake blockchains. In: Conti, M., Zhou, J., Casalicchio, E.,
Spognardi, A. (eds.) ACNS 2020. LNCS, vol. 12146, pp. 315–334. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-57808-4 16

22. Dreier, J., Dumas, J.-G., Lafourcade, P.: Brandt’s fully private auction protocol
revisited. J. Comput. Secur. 23(5), 587–610 (2015)

23. Franklin, M.K., Reiter, M.K.: The design and implementation of a secure auction
service. IEEE Trans. Softw. Eng. 22(5), 302–312 (1996)

24. Galal, H.S., Youssef, A.M.: Trustee: full privacy preserving Vickrey auction on top
of ethereum. In: Bracciali, A., Clark, J., Pintore, F., Rønne, P.B., Sala, M. (eds.)
FC 2019. LNCS, vol. 11599, pp. 190–207. Springer, Cham (2020). https://doi.org/
10.1007/978-3-030-43725-1 14

25. Hao, F., Zieliński, P.: A 2-round anonymous veto protocol. In: Christianson, B.,
Crispo, B., Malcolm, J.A., Roe, M. (eds.) Security Protocols 2006. LNCS, vol.
5087, pp. 202–211. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-
642-04904-0 28

26. Ishai, Y., Ostrovsky, R., Zikas, V.: Secure multi-party computation with identifiable
abort. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol. 8617, pp.
369–386. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44381-
1 21

27. Juels, A., Szydlo, M.: A two-server, sealed-bid auction protocol. In: Blaze, M. (ed.)
FC 2002. LNCS, vol. 2357, pp. 72–86. Springer, Heidelberg (2003). https://doi.org/
10.1007/3-540-36504-4 6

28. Kiayias, A., Russell, A., David, B., Oliynykov, R.: Ouroboros: a provably secure
proof-of-stake blockchain protocol. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017.
LNCS, vol. 10401, pp. 357–388. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-63688-7 12

29. Kiayias, A., Zhou, H.-S., Zikas, V.: Fair and robust multi-party computation using
a global transaction ledger. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT
2016. LNCS, vol. 9666, pp. 705–734. Springer, Heidelberg (2016). https://doi.org/
10.1007/978-3-662-49896-5 25

30. Klemperer, P.: Auctions: Theory and Practice. Princeton University Press, Prince-
ton (2004)

31. Krishna, V.: Auction Theory. Academic Press, Cambridge (2009)
32. Kurosawa, K., Ogata, W.: Bit-slice auction circuit. In: Gollmann, D., Karjoth,

G., Waidner, M. (eds.) ESORICS 2002. LNCS, vol. 2502, pp. 24–38. Springer,
Heidelberg (2002). https://doi.org/10.1007/3-540-45853-0 2

33. Lipmaa, H., Asokan, N., Niemi, V.: Secure Vickrey auctions without threshold
trust. In: Blaze, M. (ed.) FC 2002. LNCS, vol. 2357, pp. 87–101. Springer, Heidel-
berg (2003). https://doi.org/10.1007/3-540-36504-4 7

34. Mas-Colell, A., Whinston, M.D., Green, J.R., et al.: Microeconomic Theory, vol.
1. Oxford University Press, New York (1995)

35. Maxwell, G.: Confidential transactions (2016). https://people.xiph.org/∼greg/
confidential values.txt

36. Miltersen, P.B., Nielsen, J.B., Triandopoulos, N.: Privacy-enhancing auctions using
rational cryptography. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp.
541–558. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03356-
8 32

37. Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system (2008)
38. Nurmi, H., Salomaa, A.: Cryptographic protocols for Vickrey auctions. Group

Decis. Negot. 2(4), 363–373 (1993). https://doi.org/10.1007/BF01384489

https://doi.org/10.1007/978-3-030-57808-4_16
https://doi.org/10.1007/978-3-030-43725-1_14
https://doi.org/10.1007/978-3-030-43725-1_14
https://doi.org/10.1007/978-3-642-04904-0_28
https://doi.org/10.1007/978-3-642-04904-0_28
https://doi.org/10.1007/978-3-662-44381-1_21
https://doi.org/10.1007/978-3-662-44381-1_21
https://doi.org/10.1007/3-540-36504-4_6
https://doi.org/10.1007/3-540-36504-4_6
https://doi.org/10.1007/978-3-319-63688-7_12
https://doi.org/10.1007/978-3-319-63688-7_12
https://doi.org/10.1007/978-3-662-49896-5_25
https://doi.org/10.1007/978-3-662-49896-5_25
https://doi.org/10.1007/3-540-45853-0_2
https://doi.org/10.1007/3-540-36504-4_7
https://people.xiph.org/~greg/confidential_values.txt
https://people.xiph.org/~greg/confidential_values.txt
https://doi.org/10.1007/978-3-642-03356-8_32
https://doi.org/10.1007/978-3-642-03356-8_32
https://doi.org/10.1007/BF01384489

FAST: Fair Auctions via Secret Transactions 747

39. Pass, R., Shi, E.: Hybrid consensus: efficient consensus in the permissionless model.
In: Richa, A.W. (ed.) 31st International Symposium on Distributed Computing,
DISC 2017, volume 91 of LIPIcs, Vienna, Austria, 16–20 October 2017, pp. 39:1–
39:16. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2017)

40. Pedersen, T.P.: Non-interactive and information-theoretic secure verifiable secret
sharing. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 129–140.
Springer, Heidelberg (1992). https://doi.org/10.1007/3-540-46766-1 9

41. Vickrey, W.: Counterspeculation, auctions, and competitive sealed tenders. J.
Finance 16(1), 8–37 (1961)

https://doi.org/10.1007/3-540-46766-1_9

	FAST: Fair Auctions via Secret Transactions
	1 Introduction
	1.1 Our Contributions
	1.2 Our Techniques
	1.3 Related Work

	2 Preliminaries
	2.1 Security Model and Setup Assumptions
	2.2 Building Blocks

	3 Secret Deposits in Public Smart Contracts
	4 First-Price Auctions
	5 Rational Strategies
	6 Complexity Analysis and Comparison to Other Protocols
	References

