
Chapter 8
Elliptic Problems

8.1 The Laplacian

The Laplacian, defined by

Δu = div ∇u = ∂2u

∂x2
1

+ . . . + ∂2u

∂x2
N

,

is related to the mean of functions.

Definition 8.1.1 Let Ω be an open subset of RN and u ∈ L1
loc(Ω). The mean of u

is defined on

D = {(x, r) : x ∈ Ω, 0 < r < d(x, ∂Ω)}

by

M(x, r) = V −1
N

∫
BN

u(x + ry)dy.

Lemma 8.1.2 Let u ∈ C2(Ω). The mean of u satisfies on D the relation

lim
r↓0 2

N + 2

r2
[M(x, r) − u(x)] = Δu(x).

Proof Since we have uniformly for |y| < 1,

u(x + ry) = u(x) + r∇u(x) · y + r2

2
D2u(x)(y, y) + o(r2),

© Springer Nature Switzerland AG 2022
M. Willem, Functional Analysis, Cornerstones,
https://doi.org/10.1007/978-3-031-09149-0_8

197

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-09149-0_8&domain=pdf

 -2016 61494 a -2016
61494 a
 
https://doi.org/10.1007/978-3-031-09149-0_8


198 8 Elliptic Problems

we obtain by symmetry

∫
BN

xjdx = 0,
∫

BN

xjxkdx = 0, j �= k,

∫
BN

x2
j dx = VN

N + 2
,

and

M(x, r) = u(x) + r2

2

1

N + 2
Δu(x) + o(r2). ��

Lemma 8.1.3 Let u ∈ C2(Ω). The following properties are equivalent:

(a) Δu ≤ 0;
(b) for all (x, r) ∈ D, M(x, r) ≤ u(x).

Proof By the preceding lemma, (a) follows from (b).
Assume that (a) is satisfied. Differentiating under the integral sign and using the

divergence theorem, we obtain

∂M

∂r
(x, r) = V −1

N

∫
BN

∇u(x + ry) · ydy = rV −1
N

∫
BN

Δu(x + ry)
1 − |y|2

2
dy ≤ 0.

We conclude that

M(x, r) ≤ lim
r↓0 M(x, r) = u(x). ��

Definition 8.1.4 Let u ∈ L1
loc(Ω). The function u is superharmonic if for every

v ∈ D(Ω) such that v ≥ 0,
∫

Ω

uΔvdx ≤ 0.

The function u is subharmonic if −u is superharmonic.

The function u is harmonic if for every v ∈ D(Ω),
∫

Ω

uΔvdx = 0.

We extend Lemma 8.1.3 to locally integrable functions.

Theorem 8.1.5 (Mean-Value Inequality) Let u ∈ L1
loc(Ω). The following proper-

ties are equivalent:

(a) u is superharmonic;
(b) for almost all x ∈ Ω and for all 0 < r < d(x, ∂Ω), M(x, r) ≤ u(x).

Proof Let un = ρn ∗ u. Property (a) is equivalent to

(c) for every n, Δun ≤ 0 on Ωn.

Property (b) is equivalent to

(d) for all x ∈ Ωn and for all 0 < r < d(x, ∂Ωn), V
−1
N

∫
BN

un(x + ry)dy ≤ un(x).
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We conclude the proof using Lemma 8.1.3.

(a) ⇒ (c). By Proposition 4.3.6, we have on Ωn that

Δun(x) = Δρn ∗ u(x) =
∫

Ω

(
Δρn(x − y)

)
u(y)dy ≤ 0.

(c) ⇒ (a). It follows from the regularization theorem that for every v ∈ D(Ω),
v ≥ 0,

∫
Ω

uΔvdx = lim
n→∞

∫
Ω

unΔvdx = lim
n→∞

∫
Ω

(Δun)vdx ≤ 0.

(b) ⇒ (d). We have on Ωn that

V −1
N

∫
BN

un(x + ry)dy = V −1
N

∫
B(0,1/n)

dz

∫
BN

ρn(z)u(x + ry − z)dy

≤
∫

B(0,1/n)

ρn(z)u(x − z)dz = un(x).

(d) ⇒ (b). For j ≥ 1, we define

ωj = {x ∈ Ω : d(x, ∂Ω) > 1/j and |x| < j}.

Proposition 4.2.10 and the regularization theorem imply the existence of a sub-
sequence (unk

) converging to u in L1(ωj ) and almost everywhere on ωj . Hence
for almost all x ∈ ωj and for all 0 < r < d(x, ∂ωj ), M(x, r) ≤ u(x). Since

Ω =
∞⋃

j=1

ωj , property (b) is satisfied. ��

Theorem 8.1.6 (Maximum Principle) Let Ω be an open connected subset of RN

and u ∈ L1
loc(Ω) a superharmonic function such that u ≥ 0 almost everywhere on

Ω and u = 0 on a subset ofΩ with positive measure. Then u = 0 almost everywhere
on Ω .

Proof Define

U1 = {x ∈ Ω : there exists 0 < r < d(x, ∂Ω) such that M(x, r) = 0}.
U2 = {x ∈ Ω : there exists 0 < r < d(x, ∂Ω) such that M(x, r) > 0}.

It is clear that U1 and U2 are open subsets of Ω such that Ω = U1 ∪ U2. By the
preceding theorem, we obtain
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U2 = {x ∈ Ω : for all 0 < r < d(x, ∂Ω),M(x, r) > 0},

so that U1 and U2 are disjoint. If Ω = U2, then u > 0 almost everywhere on Ω by
the preceding theorem. We conclude that Ω = U1 and u = 0 almost everywhere
on Ω . ��

8.2 Eigenfunctions

En nous servant de quelques conceptions de l’analyse
fonctionnelle nous représentons notre problème dans une forme
nouvelle et démontrons que dans cette forme le problème admet
toujours une solution unique.
Si la solution cherchée existe dans le sens classique, alors notre
solution se confond avec celle-ci.

S.L. Sobolev

Let Ω be a smooth bounded open subset of RN with frontier Γ . An eigenfunction
corresponding to the eigenvalue λ is a nonzero solution of the problem

{−Δu = λu in Ω,

u = 0 on Γ.
(P)

We will use the following weak formulation of problem (P): find u ∈ H 1
0 (Ω)

such that for all v ∈ H 1
0 (Ω),

∫
Ω

∇u · ∇v dx = λ

∫
Ω

uv dx.

Theorem 8.2.1 There exist an unbounded sequence of eigenvalues of (P)

0 < λ1 ≤ λ2 ≤ · · · ,

and a sequence of corresponding eigenfunctions that is a Hilbert basis of H 1
0 (Ω).

Proof On the space H 1
0 (Ω), we define the inner product

a(u, v) =
∫

Ω

∇u · ∇v dx

and the corresponding norm ||u||a = √
a(u, u).
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For every u ∈ H 1
0 (Ω), there exists one and only one Au ∈ H 1

0 (Ω) such that for
all v ∈ H 1

0 (Ω),

a(Au, v) =
∫

Ω

uv dx.

Hence problem (P) is equivalent to

λ−1u = Au.

Since a(Au, u) =
∫

Ω

u2dx, the eigenvalues of A are strictly positive. The operator

A is symmetric, since

a(Au, v) =
∫

Ω

uv dx = a(u,Av).

It follows from the Cauchy–Schwarz and Poincaré inequalities that

||Au||2a =
∫

Ω

u Au dx ≤ ||u||L2(Ω)||Au||L2(Ω) ≤ c||u||L2(Ω)||Au||a.

Hence

||Au||a ≤ c||u||L2(Ω).

By the Rellich–Kondrachov theorem, the embedding H 1
0 (Ω) → L2(Ω) is compact,

so that the operator A is compact. We conclude using Theorem 3.4.8. ��

Proposition 8.2.2 (Poincaré’s Principle) For every n ≥ 1,

λn = min

{∫
Ω

|∇u|2dx : u ∈H 1
0 (Ω),

∫
Ω

u2dx = 1,
∫
Ω

ue1dx = . . . =
∫
Ω

uen−1dx = 0

}
.

Proof We deduce from Theorem 3.4.7 that

λ−1
n = max

{
a(Au, u)

a(u, u)
: u ∈ H 1

0 (Ω), u �= 0, a(u, e1) = . . . = a(u, en−1) = 0

}
.

Since ek is an eigenfunction,

a(u, ek) = 0 ⇐⇒
∫

Ω

uekdx = 0.
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Hence we obtain

λ−1
n = max

{ ∫
Ω

u2dx∫
Ω

|∇u|2dx
: u ∈ H 1

0 (Ω), u �= 0,
∫

Ω

ue1dx = . . . =
∫

Ω

uen−1dx = 0

}
,

or

λn = min

{∫
Ω |∇u|2dx∫

Ω u2dx
: u ∈ H 1

0 (Ω), u �= 0,
∫
Ω

ue1dx = . . . =
∫
Ω

uen−1dx = 0

}
. ��

Proposition 8.2.3 Let u ∈ H 1
0 (Ω) be such that ||u||2 = 1 and ||∇u||22 = λ1. Then

u is an eigenfunction corresponding to the eigenvalue λ1.

Proof Let v ∈ H 1
0 (Ω). The function

g(ε) = ||∇(u + εv)||22 − λ1||u + εv||22
reaches its minimum at ε = 0. Hence g′(0) = 0 and

∫
Ω

∇u · ∇v dx − λ1

∫
Ω

uv dx = 0. ��

Proposition 8.2.4 Let Ω be a smooth bounded open connected subset of RN . Then
the eigenvalue λ1 of (P) is simple, and e1 is almost everywhere strictly positive
on Ω .

Proof Let u be an eigenfunction corresponding to λ1 and such that ||u||2 = 1.
By Corollary 6.1.14, v = |u| ∈ H 1

0 (Ω) and ||∇v||22 = ||∇u||22 = λ1. Since
||v||2 = ||u||2 = 1, the preceding proposition implies that v is an eigenfunction
corresponding to λ1. Assume that u+ �= 0. Then u+ is an eigenfunction correspond-
ing to λ1, and by the maximum principle, u+ > 0 almost everywhere on Ω . Hence
u = u+. Similarly, if u− �= 0, then −u = u− > 0 almost everywhere on Ω . We
can assume that e1 > 0 almost everywhere on Ω . If e2 corresponds to λ1, then e2 is

either positive or negative, and
∫

Ω

e1e2dx = 0. This is a contradiction. ��

Example Let Ω = ]0, π [. Then (P) becomes

{−u′′ = λu in ]0, π [,
u(0) = u(π) = 0.

Sobolev’s embedding theorem and the du Bois–Reymond lemma imply that u ∈
C2(]0, π [) ∩ C([0, π ]). Hence λn = n2 and en =

√
2
π

sin nx
n

. The sequence (en) is a
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Hilbert basis on H 1
0 (]0, π [) with scalar product

∫ π

0
u′v′ dx, and the sequence (nen)

is a Hilbert basis of L2(]0, π [) with scalar product
∫ π

0
uv dx.

Definition 8.2.5 Let G be a subgroup of the orthogonal group O(N). The open
subset Ω of RN is G-invariant if for every g ∈ G and every x ∈ Ω , g−1x ∈ Ω . Let
Ω be G-invariant. The action of G on H 1

0 (Ω) is defined by gu(x) = u(g−1x). The
space of fixed points of G is defined by

Fix(G) = {u ∈ H 1
0 (Ω) : for every g ∈ G, gu = u}.

A function J : H 1
0 (Ω) → R is G-invariant if for every g ∈ G, J ◦ g = J .

Proposition 8.2.6 Let Ω be a G-invariant open subset of R
N satisfying the

assumptions of Proposition 8.2.4. Then e1 ∈ Fix(G).

Proof By a direct computation, we obtain, for all g ∈ G,

||ge1||2 = ||e1||2 = 1, ||∇ge1||22 = ||∇e1||22 = λ1.

Propositions 8.2.3 and 8.2.4 imply the existence of a scalar λ(g) such that

e1(g
−1x) = λ(g)e1(x).

Integrating on Ω , we obtain λ(g) = 1. But then ge1 = e1. Since g ∈ G is arbitrary,
e1 ∈ Fix(G). ��

Example (Symmetry of the First Eigenfunction) For a ball or an annulus

Ω = {x ∈ R
N : r < |x| < R},

we choose G = O(N). Hence e1 is a radial function.

We define v(|x|) = u(x). By a simple computation, we have

∂2

∂x2
k

u(x) = v′′(|x|) x2
k

|x|2 + v′(|x|)
(

1

|x| − x2
k

|x|3
)

.

Hence we obtain

Δu = v′′ + (N − 1)v′/|x|.

Let Ω = B(0, 1) ⊂ R
3. The first eigenfunction, u(x) = v(|x|), is a solution of
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−v′′ − 2v′/r = λv.

The function w = rv satisfies

−w′′ = λw,

so that

w(r) = a sin(
√

λr − b)

and

v(r) = a
sin(

√
λr − b)

r
.

Since u ∈ H 1
0 (Ω) ⊂ L6(Ω), b = 0 and λ = π2. Finally, we obtain

u(x) = a
sin(π |x|)

|x| .

It follows from Poincaré’s principle that

π2 = min
{
||∇u||2

L2(Ω)
/||u||2

L2(Ω)
: u ∈ H 1

0 (Ω) \ {0}
}

.

Let us characterize the eigenvalues without using the eigenfunctions.

Theorem 8.2.7 (Max-inf Principle) For every n ≥ 1,

λn = max
V ∈Vn−1

inf
u∈V ⊥

||u||
L2

=1

∫
Ω

|∇u|2dx,

where Vn−1 denotes the family of all (n − 1)-dimensional subspaces of H 1
0 (Ω).

Proof Let us denote by Λn the second member of the preceding equality. It follows
from Poincaré’s principle that λn ≤ Λn.

Let V ∈ Vn−1. Since the codimension of V ⊥ is equal to n − 1, there exists

x ∈ R
N \ {0} such that u =

n∑
j=1

xj ej ∈ V ⊥. Since

∫
Ω

|∇u|2dx =
n∑

j=1

λjx
2
j

∫
Ω

e2j dx ≤ λn

∫
Ω

u2dx,

we obtain
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inf
u∈V ⊥

||u||
L2

=1

∫
Ω

|∇u|2dx ≤ λn.

Since V ∈ Vn−1 is arbitrary, we conclude that Λn ≤ λn. ��

8.3 Symmetrization

La considération systématique des ensembles E[a ≤ f < b]
m’a été pratiquement utile parce qu’elle m’a toujours forcé à
grouper les conditions donnant des effets voisins.

Henri Lebesgue

According to the isodiametric inequality in R
2, among all domains with a fixed

diameter, the disk has the largest area. A simple proof was given by J.E. Littlewood
in 1953 in A Mathematician’s Miscellany. We can assume that the domain Ω is
convex and that the horizontal axis is tangent to Ω at the origin. We obtain

A = 1

2

∫ π
2

0
ρ2(θ) + ρ2

(
θ + π

2

)
dθ ≤ π(d/2)2.

We will prove the isoperimetric inequality in R
N using Schwarz’s symmetriza-

tion.

Fig. 8.1 Isodiametric inequality
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In this section, we consider Lebesgue’s measure on RN . We define

K+(RN) = {u ∈ K(RN) : for all x ∈ R
N, u(x) ≥ 0},

L
p
+(RN) = {u ∈ Lp(RN) : for almost all u(x) ≥ 0},

W
1,p
+ (RN) = W 1,p(RN) ∩ L

p
+(RN),

BV+(RN) = BV (RN) ∩ L1+(RN).

Definition 8.3.1 Schwarz’s symmetrization of a measurable subset A of R
N is

defined by A∗ = {x ∈ R
N : |x|NVN < m(A)}. An admissible function u : RN →

[0,+∞] is a measurable function such that for all t > 0,mu(t) = m({u > t}) < ∞.
Schwarz’s symmetrization of an admissible function u is defined on R

N by

u∗(x) = sup{t ∈ R : x ∈ {u > t}∗}.

The following properties are clear:

(a) χA∗ = χ∗
A;

(b) m(A∗ \ B∗) ≤ m(A \ B);
(c) u∗ is radially decreasing, |x| ≤ |y| ⇒ u∗(x) ≥ u∗(y);
(d) u ≤ v ⇒ u∗ ≤ v∗.

Lemma 8.3.2 Let (An) be an increasing sequence of measurable sets. Then

∞⋃
n=1

A∗
n =

( ∞⋃
n=1

An

)∗
.

Proof By definition, A∗
n = B(0, rn),

( ∞⋃
n=1

An

)∗
= B(0, r), where rN

n VN =

m(An), rNVN = m

( ∞⋃
n=1

An

)
. It suffices to observe that by Proposition 2.2.26,

m

( ∞⋃
n=1

An

)
= lim

n→∞ m(An). ��

Theorem 8.3.3 Let u be an admissible function. Then u∗ is lower semicontinuous,
and for all t > 0, {u > t}∗ = {u∗ > t} and mu(t) = mu∗(t).

Proof Let t > 0. Using the preceding lemma, we obtain

{u > t}∗ =
(⋃

s>t

{u > s}
)∗

=
⋃
s>t

{u > s}∗ ⊂ {u∗ > t} ⊂ {u > t}∗.

In particular, {u∗ > t} is open and m{u > t} = m{u∗ > t}. ��
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Proposition 8.3.4 Let 1 ≤ p < ∞ and u, v ∈ L
p
+(RN). Then u∗, v∗ ∈ L

p
+(RN)

and

||u∗||p = ||u||p, ||u∗ − v∗||p ≤ ||u − v||p.

Proof Using Cavalieri’s principle and the preceding theorem, we obtain

||u∗||pp =
∫ ∞

0
m(u∗)p (t)dt =

∫ ∞

0
mup(t)dt = ||u||pp.

Assume that p ≥ 2, and define g(t) = |t |p, so that g is convex, even, of class C2,
and g(0) = g′(0) = 0. For a < b, the fundamental theorem of calculus implies that

g(b − a) =
∫ b

a

ds

∫ b

s

g′′(t − s)dt.

Hence we have that

g(u − v) =
∫ ∞

0
ds

∫ ∞

s

g′′(t − s)
[
χ{u>t}(1 − χ{v>s}) + χ{v>t}(1 − χ{u>s})

]
dt.

Integrating on RN and using Fubini’s theorem, we find that

∫
RN

g(u−v)dx =
∫ ∞

0
ds

∫ ∞

s

g′′(t−s)[m({u > t}\{v > s})+m({v > t}\{u > s})]dt.

Finally, we obtain

∫
RN

g(u∗ − v∗)dx ≤
∫
RN

g(u − v)dx.

If 1 ≤ p < 2, it suffices to approximate |t |p by gε(t) = (t2 + ε2)p/2 − εp, ε > 0.
��

Approximating Schwarz’s symmetrizations by polarizations, we will prove that
if u ∈ W

1,p
+ (RN), then u∗ ∈ W

1,p
+ (RN) and ||∇u∗||p ≤ ||∇u||p.

Definition 8.3.5 Let σH be the reflection with respect to the frontier of a closed
affine half-space H of RN . The polarization (with respect to H ) of a function u :
R

N → R is defined by

uH (x) = max{u(x), u(σH (x))}, x ∈ H,

= min{u(x), u(σH (x))}, x ∈ R
N \ H.
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The polarization AH of A ⊂ R
N is defined by χAH = χH

A . We denote by H the
family of all closed affine half-spaces of RN containing 0.

Let us recall that a closed affine half-space of RN is defined by

H = {x ∈ R
N : a · x ≤ b},

where a ∈ S
N−1 and b ∈ R. It is clear that

σH (x) = x + 2(b − a · x)a.

The following properties are easy to prove:

(a) if A is a measurable subset of RN , then m(AH ) = m(A);
(b) {uH > t} = {u > t}H ;
(c) if u is admissible, (uH )∗ = u∗;
(d) if moreover, H ∈ H, (u∗)H = u∗.

Lemma 8.3.6 Let f : R → R be convex and a ≤ b, c ≤ d. Then

f (b − d) + f (a − c) ≤ f (a − d) + f (b − c).

Proof Define x = b − d, y = b − a, and z = d − c. By convexity, we have

f (x) − f (x − y) ≤ f (x + z) − f (x + z − y). ��

Proposition 8.3.7 Let 1 ≤ p < ∞ and u, v ∈ Lp(RN). Then uH , vH ∈ Lp(RN),
and

||uH ||p = ||u||p, ||uH − vH ||p ≤ ||u − v||p.

Proof Observe that

∫
RN

|u(x)|pdx =
∫

H

|u(x)|p + |u(σH (x))|pdx

=
∫

H

|uH (x)|p + |uH (σH (x))|pdx =
∫
RN

|uH (x)|pdx.

Using the preceding lemma, it is easy to verify that for all x ∈ H ,

|uH (x) − vH (x)|p + |uH (σH (x)) − vH (σH (x))|p
≤ |u(x) − v(x)|p + |u(σH (x)) − v(σH (x))|p.

It suffices then to integrate over H . ��
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Lemma 8.3.8 Let u : R
N → R be a uniformly continuous function. Then the

function uH : RN → R is uniformly continuous, and for all δ > 0, ωuH (δ) ≤ ωu(δ).

Proof Let δ > 0 and x, y ∈ R
N be such that |x − y| ≤ δ. If x, y ∈ H or if

x, y ∈ R
N \ H , we have

|σH (x) − σH (y)| = |x − y| ≤ δ

and

|uH (x) − uH (y)| ≤ max(|u(x) − u(y)|, |u(σH (x)) − u(σH (y))|) ≤ ωu(δ).

If x ∈ H and y ∈ R
N \ H , we have

|x − σH (y)| = |σH (x) − y| ≤ |σH (x) − σH (y)| = |x − y| ≤ δ

and

|uH (x) − uH (y)| ≤ max(|u(x) − u(σH (y))|, |u(σH (x)) − u(y)|,
|u(σH (x)) − u(σH (y))|, |u(x) − u(y)|) ≤ ωu(δ).

We conclude that

ωuH (δ) = sup
|x−y|≤δ

|uH (x) − uH (y)| ≤ ωu(δ). ��

Lemma 8.3.9 Let 1 ≤ p < ∞, u ∈ Lp(RN), and H ∈ H. Define g(x) = e−|x|2 .
Then

∫
RN

ug dx ≤
∫
RN

uH g dx. (*)

If, moreover, 0 ∈ o

H and

∫
RN

ug dx =
∫
RN

uH g dx, (**)

then uH = u.

Proof For all x ∈ H , we have

u(x)g(x) + u(σH (x))g(σH (x)) ≤ uH (x)g(x) + uH (σH (x))g(σH (x)).

It suffices then to integrate over H to prove (∗).
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If (∗∗) holds, we obtain, almost everywhere on H ,

u(x)g(x) + u(σH (x))g(σH (x)) = uH (x)g(x) + uH (σH (x))g(σH (x)).

If 0 ∈ o

H , then g(σH (x)) < g(x) for all x ∈ o

H , so that

u(x) = uH (x), u(σH (x)) = uH (σH (x)). ��

Lemma 8.3.10 Let u ∈ Lp(RN)
⋂

C(RN)(1 ≤ p < ∞) be such that, for all
H ∈ H, uH = u. Then u ≥ 0 and u = u∗.

Proof Let x, y ∈ R
N be such that x �= y and |x| ≤ |y|. There exists H ∈ H such

that x ∈ H and y = σH (x). By assumption, we have

u(y) = uH (y) ≤ uH (x) = u(x).

Hence

|x| ≤ |y| ⇒ u(y) ≤ u(x).

We conclude that there exists a (continuous) decreasing function v : [0,+∞[→ R

such that u(x) = v(|x|). Since u ∈ Lp(RN), it is clear that

lim
r→+∞ v(r) = 0.

Hence u ≥ 0 and for all t > 0, {u > t} = {u∗ > t}, so that u = u∗. ��
Consider a sequence of closed affine half-spaces

Hn = {x ∈ R
N : an · x ≤ bn}

such that ((an, bn)) is dense in SN−1× ]0,+∞[.
The following result is due to J. Van Schaftingen.

Theorem 8.3.11 Let 1 ≤ p < ∞ and u ∈ L
p
+(RN). Define

u0 = u,

un+1 = u
H1...Hn+1
n .

Then the sequence (un) converges to u∗ in Lp(RN).

Proof Assume that u ∈ K+(RN). There exists r > 0 such that spt u ⊂ B[0, r].
Hence for all n,

spt un ⊂ B[0, r].
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The sequence (un) is precompact in C(B[0, r]) by Ascoli’s theorem, since

(a) for every n, ||un||∞ = ||u||∞;
(b) for every ε > 0, there exists δ > 0, such that for every n, ωun(δ) ≤ ωu(δ) ≤ ε.

Assume that (unk
) converges uniformly to v. Observe that

spt v ⊂ B[0, r].

We shall prove that v = u∗. Since by Proposition 8.3.4,

||u∗ − v∗||1 = ||u∗
nk

− v∗||1 ≤ ||unk
− v||1 → 0, k → ∞,

it suffices to prove that v = v∗.
Let m ≥ 1. For every nk ≥ m, we have

unk+1 = u
H1...Hm...Hnk+1
nk

.

Lemma 8.3.9 implies that

∫
RN

uH1...Hm
nk

g dx ≤
∫
RN

unk+1g dx.

It follows from Proposition 8.3.7 that

∫
RN

vH1...Hmg dx ≤
∫
RN

vg dx.

By Lemma 8.3.9, vH1 = v, and by induction, vHm = v.
Let a ∈ S

N−1, b ≥ 0, and H = {x ∈ R
N : a · x ≤ b}. There exists

a sequence (nk) such that (ank
, bnk

) → (a, b). We deduce from Lebesgue’s
dominated convergence theorem that

||vH − v||1 = ||vH − vHnk ||1 → 0, k → ∞.

Hence for all H ∈ H, v = vH . Lemma 8.3.10 ensures that v = v∗.
Let u ∈ L

p
+(RN) and ε > 0. The density theorem implies the existence of

w ∈ K+(RN) such that ||u − w||p ≤ ε. By the preceding step, the sequence

w0 = w,

wn+1 = w
H1...Hn+1
n ,

converges to w∗ in Lp(RN). Hence there exists m such that for n ≥ m, ||wn −
w∗||p ≤ ε. It follows from Propositions 8.3.4 and 8.3.7 that for n ≥ m,
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||un −u∗||p ≤ ||un −wn||p +||wn −w∗||p +||w∗ −u∗||p ≤ 2||u−w||p + ε ≤ 3ε.

Since ε > 0 is arbitrary, the proof is complete. ��

Proposition 8.3.12 Let 1 ≤ p < ∞ and u ∈ W 1,p(RN). Then uH ∈ W 1,p(RN)

and ||∇uH ||p = ||∇u||p.
Proof Define v = u ◦ σH . Observe that

uH = 1

2
(u + v) + 1

2
|u − v|, on H,

= 1

2
(u + v) − 1

2
|u − v|, on RN \ H.

Since the trace of |u − v| is equal to 0 on ∂H , uH ∈ W 1,p(RN). Let x ∈ H .
Corollary 6.1.14 implies that for u(x) ≥ v(x),

∇uH (x) = ∇u(x),∇uH (σH (x)) = ∇u(σH (x)),

and for u(x) < v(x),

∇uH (x) = ∇v(x),∇uH (σH (x)) = ∇v(σH (x)).

We conclude that on H ,

|∇uH (x)|p + |∇uH (σH (x))|p = |∇u(x)|p + |∇u(σH (x))|p. ��

Proposition 8.3.13 Let u ∈ BV (RN). Then uH ∈ BV (RN) and ||DuH || ≤ ||Du||.
Proof Let un = ρn ∗ u. Propositions 4.3.14 and 8.3.7 imply that un → u and
uH

n → uH in L1(RN). Theorem 7.3.3 and Proposition 8.3.12 ensure that

||DuH
n || = ||∇uH

n ||1 = ||∇un||1.

We conclude by Theorem 7.3.2 and Lemma 7.3.6 that

||DuH || ≤ lim ||DuH
n || = lim ||∇un||1 = ||Du||. ��

Theorem 8.3.14 (Pólya–Szegő Inequality) Let 1 < p < ∞ and u ∈ W
1,p
+ (RN).

Then u∗ ∈ W
1,p
+ (RN) and ||∇u∗||p ≤ ||∇u||p.

Proof The sequence (un) given by Theorem 8.3.11 converges to u∗ in Lp(RN). By
Proposition 8.3.12, for every n, ||∇un||p = ||∇u||p. It follows from Theorem 6.1.7
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that

||∇u∗||p ≤ lim ||∇un||p = ||∇u||p. ��

Theorem 8.3.15 (Hilden’s Inequality, 1976) Let u ∈ BV+(RN). Then u∗ ∈
BV+(RN) and ||Du∗|| ≤ ||Du||.
Proof The sequence (un) given by Theorem 8.3.11 converges to u∗ in L1∗

(RN). By
Proposition 8.3.13, for every n,

||Dun+1|| ≤ ||Dun|| ≤ ||Du||.

It follows from Theorem 7.3.2 that

||Du∗|| ≤ lim ||Dun|| ≤ ||Du||. ��

Theorem 8.3.16 (De Giorgi’s Isoperimetric Inequality) Let N ≥ 2, and let A be
a measurable subset of RN with finite measure. Then

NV
1/N
N (m(A))1−1/N ≤ p(A).

Proof If p(A) = +∞, the inequality is clear. If this is not the case, then χA ∈
BV+(RN). By definition of Schwarz’s symmetrization,

A∗ = B(0, r), VNrN = m(A).

Theorems 7.4.1 and 8.3.15 imply that

NVNrN−1 = p(A∗) = ||DχA∗ ||RN = ||Dχ∗
A||RN ≤ ||DχA||RN = p(A).

It is easy to conclude the proof. ��
Using scaling invariance, we obtain the following version of the isoperimetric

inequality.

Corollary 8.3.17 Let A be a measurable subset of RN with finite measure, and let
B be an open ball of RN . Then

p(B)/m(B)1−1/N ≤ p(A)/m(A)1−1/N .

The constant NV
1/N
N , corresponding to the characteristic function of a ball, is the

optimal constant for the Gagliardo–Nirenberg inequality.
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Theorem 8.3.18 Let N ≥ 2 and u ∈ LN/(N−1) such that ||Du|| < +∞. Then

NV
1/N
N ||u||N/(N−1) ≤ ||Du||.

Proof

(a) Let p = N/(N − 1), v ∈ Lp(RN), v ≥ 0, and g ∈ Lp′
(RN). If ||g||p′ = 1, we

deduce from Fubini’s theorem and Hölder’s inequality that

∫
RN

gvdx =
∫
RN

dx

∫ ∞

0
gχv>tdt =

∫ ∞

0
dt

∫
RN

gχv>tdx ≤
∫ ∞

0
m({v > t})1/pdt.

Hence we obtain

||v||p = max||g||p′=1

∫
RN

gvdx ≤
∫ ∞

0
m({v > t})1/pdt. (∗)

(b) Let u ∈ D(Ω). Using inequality (∗), the Morse–Sard theorem (Theorem 9.3.1),
the coarea formula (Theorem 9.3.3), and the isoperimetric inequality, we obtain

NV
1/N
N ||u||p ≤ NV

1/N
N [||u+||p + ||u−||p]

≤ NV
1/N
N

[∫ ∞

0
m({u > t})1/pdt +

∫ 0

−∞
m({u < t})1/pdt

]

≤
∫ ∞

0
dt

∫
u=t

dγ +
∫ 0

−∞
dt

∫
u=t

dγ =
∫
RN

|∇u|dx.

(c) By density, we obtain, for every u ∈ D1,1(RN),

NV
1/N
N ||u||p ≤ ||∇u||1.

We conclude using Proposition 4.3.14 and Lemma 7.3.6. ��

Definition 8.3.19 Let Ω be an open subset of RN . We define

λ1(Ω) = inf
{
||∇u||22/||u||22 : u ∈ W

1,2
0 (Ω) \ {0}

}
.

Theorem 8.3.20 (Faber–Krahn Inequality) Let Ω be an open subset of RN with
finite measure. Then λ1(Ω

∗) ≤ λ1(Ω).
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Proof Define Q(u) = ||∇u||22/||u||22. Let u ∈ W
1,2
0 (Ω) \ {0} and v = |u|. By

Corollary 6.1.14, Q(v) = Q(u). Proposition 8.3.4 and the Pólya–Szegő inequality
imply that Q(v∗) ≤ Q(v). It is easy to verify that v∗ ∈ W

1,2
0 (Ω∗) \ {0}. Hence we

obtain

λ1(Ω
∗) ≤ Q(v∗) ≤ Q(v) = Q(u).

Since u ∈ W
1,2
0 (Ω) \ {0} is arbitrary, it is easy to conclude the proof. ��

Using scaling invariance, we obtain the following version of the Faber–Krahn
inequality.

Corollary 8.3.21 Let Ω be an open subset of RN , and let B be an open ball of RN .
Then

λ1(B)m(B)2/N ≤ λ1(Ω)m(Ω)2/N .

Remark Equality in the isoperimetric inequality or in the Faber–Krahn inequality is
achieved only when the corresponding domain is a ball.

8.4 Elementary Solutions

There exists no locally integrable function corresponding to the Dirac measure.

Definition 8.4.1 The Dirac measure is defined on K(RN) by

〈δ, u〉 = u(0).

Definition 8.4.2 The elementary solutions of the Laplacian are defined on R
N\{0}

by

EN(x) = 1

2π
log

1

|x| , N = 2,

EN(x) = 1

(N − 2)NVN

1

|x|N−2
, N ≥ 3.

Theorem 8.4.3 Let N ≥ 2. In D∗(RN), we have

−ΔEN = δ.

Proof Define v(x) = w(|x|). Since
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Δv = w′′ + (N − 1)w′/|x|,

it is easy to verify that on R
N\{0},ΔEN = 0. It is clear that EN ∈ L1

loc(R
N).

Let u ∈ D(RN) and R > 0 be such that spt u ⊂ B(0, R). We have to verify that

−u(0) =
∫
RN

ENΔu dx = lim
ε→0

∫
ε<|x|<R

ENΔu dx.

We obtain using the divergence theorem that

f (ε) =
∫

ε<|x|<R

(ENΔu − uΔEN) dx =
∫

∂B(0,ε)

(
u∇EN · γ

|γ | − EN∇u · γ

|γ |
)

dγ.

By a simple computation,

∫
∂B(0,ε)

∇EN · γ

|γ | = −1, lim
ε→0

∫
∂B(0,ε)

ENdγ = 0,

so that lim
ε→0

f (ε) = −u(0). ��

Definition 8.4.4 Let f, g ∈ D∗(Ω). By definition, f ≤ g if for every u ∈ D(Ω)

such that u ≥ 0, 〈f, u〉 ≤ 〈g, u〉.

Theorem 8.4.5 (Kato’s Inequality) Let g ∈ L1
loc(Ω) be such that Δg ∈ L1

loc(Ω).
Then

(sgn g) Δg ≤ Δ|g|.

Proof Let u ∈ D(Ω) and ω ⊂⊂ Ω be such that u ≥ 0 and spt u ⊂ ω. Define
gn = ρn ∗ g, and for ε > 0, fε(t) = (t2 + ε2)1/2. Since gn → g in L1(ω), we can
assume, passing if necessary to a subsequence, that gn → g almost everywhere on
ω.

For all ε > 0 and for n large enough, we have

∫
Ω

f ′
ε(gn)(Δgn)u dx ≤

∫
Ω

(Δfε(gn))u dx =
∫

Ω

fε(gn)Δu dx.

When n → ∞, we find that

∫
Ω

f ′
ε(g)(Δg)u dx ≤

∫
Ω

fε(g)Δu dx.

When ε ↓ 0, we obtain
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∫
Ω

(sgn g)(Δg)u dx ≤
∫

Ω

|g| Δu dx. ��

8.5 Comments

The notion of polarization of sets appeared in 1952, in a paper by Wolontis [87].
Polarizations of functions were first used by Baernstein and Taylor to approximate
symmetrization of functions on the sphere in the remarkable paper [3]. The
explicit approximation of Schwarz’s symmetrization by polarizations is due to Van
Schaftingen [84]. See [73, 85] for other aspects of polarizations. The proof of
Proposition 8.3.4 uses a device of Alberti [2]. The notion of symmetrization, and
more generally, the use of reflections to prove symmetry, goes back to Jakob Steiner
[79].

The elegant proof of Theorem 8.3.18 is due to O.S. Rothaus, J. Funct. Anal. 64
(1985) 296–313.

8.6 Exercises for Chap. 8

1. Let u ∈ C(Ω). The spherical means of u are defined on D by

S(x, r) = (NVN)−1
∫
SN−1

u(x + rσ )dσ.

Verify that when u ∈ C2(Ω),

lim
r↓0

2N

r2
[S(x, r) − u(x)] = Δu(x).

2. Let u ∈ C(Ω) be such that for every (x, r) ∈ D, u(x) = M(x, r). Then for
every x ∈ Ωn, ρn ∗ u = u.

The argument is due to A. Ponce:

ρn ∗ u(x) =
∫
RN

ρn(x − y)u(y)dy =
∫ ∞

0
dt

∫
ρ(x−y)>t

u(y)dy

= u(x)

∫ ∞

0
dt

∫
ρ(x−y)>t

dy = u(x).

3. (Weyl’s theorem.) Let u ∈ L1
loc(Ω). The following properties are equivalent:

(a) u is harmonic;
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(b) for almost all x ∈ Ω and for all 0 < r < d(x, ∂Ω), u(x) = M(x, r);
(c) there exists v ∈ C∞(Ω), almost everywhere equal to u, such that Δv = 0.

4. Let u ∈ C2(Ω) be a harmonic function. Assume that u ≥ 0 on B[0, R] ⊂ Ω .
Then for every 0 < r < R and |y| < R − r , we have

|u(y) − u(0)| ≤ 1

rNVN

∫
r−|y|<|x|<r+|y|

u(x)dx

= (r + |y|)N − (r − |y|)N
rN

u(0).

Hint: Use the mean-value property.
5. (Liouville’s theorem.) Let u ∈ C∞(RN) be a harmonic function, bounded from

below on R
N . Then u is constant.

6. Let Ω be an open connected subset of RN , and let u ∈ C∞(Ω) be a harmonic
function such that for some x ∈ Ω , u(x) = inf

Ω
u. Then u is constant.

7. If u ∈ D(]0, π [), then
∫ π

0

∣∣∣du

dx

∣∣∣2 − u2dx =
∫ π

0

∣∣∣du

dx
− cos x

sin x
u

∣∣∣2dx.

Hence

min
u∈H1

0 (]0,π [)
||u||2=1

∫ π

0

∣∣∣du

dx

∣∣∣2dx = 1.

8. (Min–max principle.) For every n ≥ 1,

λn = min
V ∈Vn

max
u∈V

||u||2=1

∫
Ω

|∇u|2dx,

where Vn denotes the family of all n-dimensional subspaces of H 1
0 (Ω).

9. Let us recall that

λ1(G) = inf
{
||∇u||22/||u||22 : u ∈ W

1,2
0 (G) \ {0}

}
.

Let Ω be an open subset of RM , and ω an open subset of RN . Then:

(a) λ1(Ω × ω) = λ1(Ω) + λ1(ω);
(b) λ1(R

N) = 0;
(c) λ1(Ω × R

N) = λ1(Ω).
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10. Define u ∈ D+(RN) such that for every y ∈ R
N , τyu �= u∗, and for 1 ≤ p <

∞, ||∇u||p = ||∇u∗||p.Hint: Consider two functions v andw such that v = v∗,
w = w∗, v ≡ 1 on B(0, 1), and spt w ⊂ B[0, 1/2], and define u = v + τyw.

11. (Hardy–Littlewood inequality.) Let 1 < p < ∞, u ∈ L
p
+(RN), and v ∈

L
p′
+ (RN). Then

∫
RN

u v dx ≤
∫
RN

u∗v∗dx.

12. Let 1 ≤ p < ∞ and u, v ∈ L
p
+(RN). Then

||u + v||p ≤ ||u∗ + v∗||p.

Hint: Assume first that p > 1. Observe that

||u + v||p = sup
w∈Lp′
||w||

p′

∫
RN

(u + v)w dx.

13. Let Ω be a domain in R
N invariant under rotations. A function u : Ω → R is

foliated Schwarz’s symmetric with respect to e ∈ S
N−1 if u(x) depends only on

(r, θ) = (|x|, cos−1( x
|x| · e)) and is decreasing in θ .

Let e ∈ S
N−1. We denote by He the family of closed half-spaces H in R

N

such that 0 ∈ ∂H and e ∈ H .
Prove that a function u : Ω → R is foliated Schwarz’s symmetric with

respect to e if and only if for every H ∈ He, uH = u.
14. Let u ∈ Lp(RN)(1 ≤ p < ∞), and let the closed affine half-space H ⊂ R

N

be such that uH = u. Then, for every n ≥ 1, (ρn ∗ u)H = ρn ∗ u.
Hint. For every x, y ∈ H , we have

|x − y| = ∣∣σH (x) − σH (y)
∣∣ ≤ ∣∣x − σH (y)

∣∣= ∣∣σH (x) − y
∣∣.

Hence we obtain, for every x ∈ H ,

ρn ∗ u(x) − ρn ∗ u
(
σH (x)

)

=
∫

H

[
u(y) − u

(
σH (y)

)] [
ρn(x − y) − ρn

(
σH (x) − y

)]
dy ≥ 0.

15. Let u ∈ Lp(RN)(1 ≤ p < ∞) be such that, for all H ∈ H, uH = u. Then
u ≥ 0 and u = u∗.
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